1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/init.h>
5 #include <linux/slab.h>
6 #include <linux/rwsem.h>
7 #include <linux/xattr.h>
8 #include <linux/security.h>
9 #include <linux/posix_acl_xattr.h>
10 #include <linux/iversion.h>
11 #include <linux/fsverity.h>
12 #include <linux/sched/mm.h>
14 #include "btrfs_inode.h"
15 #include "transaction.h"
20 * Implementation of the interface defined in struct fsverity_operations.
22 * The main question is how and where to store the verity descriptor and the
23 * Merkle tree. We store both in dedicated btree items in the filesystem tree,
24 * together with the rest of the inode metadata. This means we'll need to do
25 * extra work to encrypt them once encryption is supported in btrfs, but btrfs
26 * has a lot of careful code around i_size and it seems better to make a new key
27 * type than try and adjust all of our expectations for i_size.
29 * Note that this differs from the implementation in ext4 and f2fs, where
30 * this data is stored as if it were in the file, but past EOF. However, btrfs
31 * does not have a widespread mechanism for caching opaque metadata pages, so we
32 * do pretend that the Merkle tree pages themselves are past EOF for the
33 * purposes of caching them (as opposed to creating a virtual inode).
35 * fs verity items are stored under two different key types on disk.
36 * The descriptor items:
37 * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ]
39 * At offset 0, we store a btrfs_verity_descriptor_item which tracks the
40 * size of the descriptor item and some extra data for encryption.
41 * Starting at offset 1, these hold the generic fs verity descriptor.
42 * The latter are opaque to btrfs, we just read and write them as a blob for
43 * the higher level verity code. The most common descriptor size is 256 bytes.
45 * The merkle tree items:
46 * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ]
48 * These also start at offset 0, and correspond to the merkle tree bytes.
49 * So when fsverity asks for page 0 of the merkle tree, we pull up one page
50 * starting at offset 0 for this key type. These are also opaque to btrfs,
51 * we're blindly storing whatever fsverity sends down.
53 * Another important consideration is the fact that the Merkle tree data scales
54 * linearly with the size of the file (with 4K pages/blocks and SHA-256, it's
55 * ~1/127th the size) so for large files, writing the tree can be a lengthy
56 * operation. For that reason, we guard the whole enable verity operation
57 * (between begin_enable_verity and end_enable_verity) with an orphan item.
58 * Again, because the data can be pretty large, it's quite possible that we
59 * could run out of space writing it, so we try our best to handle errors by
60 * stopping and rolling back rather than aborting the victim transaction.
63 #define MERKLE_START_ALIGN 65536
66 * Compute the logical file offset where we cache the Merkle tree.
68 * @inode: inode of the verity file
70 * For the purposes of caching the Merkle tree pages, as required by
71 * fs-verity, it is convenient to do size computations in terms of a file
72 * offset, rather than in terms of page indices.
74 * Use 64K to be sure it's past the last page in the file, even with 64K pages.
75 * That rounding operation itself can overflow loff_t, so we do it in u64 and
78 * Returns the file offset on success, negative error code on failure.
80 static loff_t merkle_file_pos(const struct inode *inode)
82 u64 sz = inode->i_size;
83 u64 rounded = round_up(sz, MERKLE_START_ALIGN);
85 if (rounded > inode->i_sb->s_maxbytes)
92 * Drop all the items for this inode with this key_type.
94 * @inode: inode to drop items for
95 * @key_type: type of items to drop (BTRFS_VERITY_DESC_ITEM or
96 * BTRFS_VERITY_MERKLE_ITEM)
98 * Before doing a verity enable we cleanup any existing verity items.
99 * This is also used to clean up if a verity enable failed half way through.
101 * Returns number of dropped items on success, negative error code on failure.
103 static int drop_verity_items(struct btrfs_inode *inode, u8 key_type)
105 struct btrfs_trans_handle *trans;
106 struct btrfs_root *root = inode->root;
107 struct btrfs_path *path;
108 struct btrfs_key key;
112 path = btrfs_alloc_path();
117 /* 1 for the item being dropped */
118 trans = btrfs_start_transaction(root, 1);
120 ret = PTR_ERR(trans);
125 * Walk backwards through all the items until we find one that
126 * isn't from our key type or objectid
128 key.objectid = btrfs_ino(inode);
130 key.offset = (u64)-1;
132 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
135 /* No more keys of this type, we're done */
136 if (path->slots[0] == 0)
139 } else if (ret < 0) {
140 btrfs_end_transaction(trans);
144 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
146 /* No more keys of this type, we're done */
147 if (key.objectid != btrfs_ino(inode) || key.type != key_type)
151 * This shouldn't be a performance sensitive function because
152 * it's not used as part of truncate. If it ever becomes
153 * perf sensitive, change this to walk forward and bulk delete
156 ret = btrfs_del_items(trans, root, path, path->slots[0], 1);
158 btrfs_end_transaction(trans);
162 btrfs_release_path(path);
163 btrfs_end_transaction(trans);
166 btrfs_end_transaction(trans);
168 btrfs_free_path(path);
173 * Drop all verity items
175 * @inode: inode to drop verity items for
177 * In most contexts where we are dropping verity items, we want to do it for all
178 * the types of verity items, not a particular one.
180 * Returns: 0 on success, negative error code on failure.
182 int btrfs_drop_verity_items(struct btrfs_inode *inode)
186 ret = drop_verity_items(inode, BTRFS_VERITY_DESC_ITEM_KEY);
189 ret = drop_verity_items(inode, BTRFS_VERITY_MERKLE_ITEM_KEY);
197 * Insert and write inode items with a given key type and offset.
199 * @inode: inode to insert for
200 * @key_type: key type to insert
201 * @offset: item offset to insert at
202 * @src: source data to write
203 * @len: length of source data to write
205 * Write len bytes from src into items of up to 2K length.
206 * The inserted items will have key (ino, key_type, offset + off) where off is
207 * consecutively increasing from 0 up to the last item ending at offset + len.
209 * Returns 0 on success and a negative error code on failure.
211 static int write_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset,
212 const char *src, u64 len)
214 struct btrfs_trans_handle *trans;
215 struct btrfs_path *path;
216 struct btrfs_root *root = inode->root;
217 struct extent_buffer *leaf;
218 struct btrfs_key key;
219 unsigned long copy_bytes;
220 unsigned long src_offset = 0;
224 path = btrfs_alloc_path();
229 /* 1 for the new item being inserted */
230 trans = btrfs_start_transaction(root, 1);
232 ret = PTR_ERR(trans);
236 key.objectid = btrfs_ino(inode);
241 * Insert 2K at a time mostly to be friendly for smaller leaf
244 copy_bytes = min_t(u64, len, 2048);
246 ret = btrfs_insert_empty_item(trans, root, path, &key, copy_bytes);
248 btrfs_end_transaction(trans);
252 leaf = path->nodes[0];
254 data = btrfs_item_ptr(leaf, path->slots[0], void);
255 write_extent_buffer(leaf, src + src_offset,
256 (unsigned long)data, copy_bytes);
257 offset += copy_bytes;
258 src_offset += copy_bytes;
261 btrfs_release_path(path);
262 btrfs_end_transaction(trans);
265 btrfs_free_path(path);
270 * Read inode items of the given key type and offset from the btree.
272 * @inode: inode to read items of
273 * @key_type: key type to read
274 * @offset: item offset to read from
275 * @dest: Buffer to read into. This parameter has slightly tricky
276 * semantics. If it is NULL, the function will not do any copying
277 * and will just return the size of all the items up to len bytes.
278 * If dest_page is passed, then the function will kmap_local the
279 * page and ignore dest, but it must still be non-NULL to avoid the
280 * counting-only behavior.
281 * @len: length in bytes to read
282 * @dest_page: copy into this page instead of the dest buffer
284 * Helper function to read items from the btree. This returns the number of
285 * bytes read or < 0 for errors. We can return short reads if the items don't
286 * exist on disk or aren't big enough to fill the desired length. Supports
287 * reading into a provided buffer (dest) or into the page cache
289 * Returns number of bytes read or a negative error code on failure.
291 static int read_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset,
292 char *dest, u64 len, struct page *dest_page)
294 struct btrfs_path *path;
295 struct btrfs_root *root = inode->root;
296 struct extent_buffer *leaf;
297 struct btrfs_key key;
302 unsigned long copy_bytes;
303 unsigned long dest_offset = 0;
308 path = btrfs_alloc_path();
313 path->reada = READA_FORWARD;
315 key.objectid = btrfs_ino(inode);
319 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
322 } else if (ret > 0) {
324 if (path->slots[0] == 0)
330 leaf = path->nodes[0];
331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
333 if (key.objectid != btrfs_ino(inode) || key.type != key_type)
336 item_end = btrfs_item_size(leaf, path->slots[0]) + key.offset;
340 * Once we've copied something, we want all of the items
343 if (key.offset != offset)
347 * Our initial offset might be in the middle of an
348 * item. Make sure it all makes sense.
350 if (key.offset > offset)
352 if (item_end <= offset)
356 /* desc = NULL to just sum all the item lengths */
360 copy_end = min(offset + len, item_end);
362 /* Number of bytes in this item we want to copy */
363 copy_bytes = copy_end - offset;
365 /* Offset from the start of item for copying */
366 copy_offset = offset - key.offset;
370 kaddr = kmap_local_page(dest_page);
372 data = btrfs_item_ptr(leaf, path->slots[0], void);
373 read_extent_buffer(leaf, kaddr + dest_offset,
374 (unsigned long)data + copy_offset,
381 offset += copy_bytes;
382 dest_offset += copy_bytes;
384 copied += copy_bytes;
387 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
389 * We've reached the last slot in this leaf and we need
390 * to go to the next leaf.
392 ret = btrfs_next_leaf(root, path);
395 } else if (ret > 0) {
402 btrfs_free_path(path);
409 * Delete an fsverity orphan
411 * @trans: transaction to do the delete in
412 * @inode: inode to orphan
414 * Capture verity orphan specific logic that is repeated in the couple places
415 * we delete verity orphans. Specifically, handling ENOENT and ignoring inodes
418 * Returns zero on success or a negative error code on failure.
420 static int del_orphan(struct btrfs_trans_handle *trans, struct btrfs_inode *inode)
422 struct btrfs_root *root = inode->root;
426 * If the inode has no links, it is either already unlinked, or was
427 * created with O_TMPFILE. In either case, it should have an orphan from
428 * that other operation. Rather than reference count the orphans, we
429 * simply ignore them here, because we only invoke the verity path in
430 * the orphan logic when i_nlink is 1.
432 if (!inode->vfs_inode.i_nlink)
435 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
442 * Rollback in-progress verity if we encounter an error.
444 * @inode: inode verity had an error for
446 * We try to handle recoverable errors while enabling verity by rolling it back
447 * and just failing the operation, rather than having an fs level error no
448 * matter what. However, any error in rollback is unrecoverable.
450 * Returns 0 on success, negative error code on failure.
452 static int rollback_verity(struct btrfs_inode *inode)
454 struct btrfs_trans_handle *trans = NULL;
455 struct btrfs_root *root = inode->root;
458 ASSERT(inode_is_locked(&inode->vfs_inode));
459 truncate_inode_pages(inode->vfs_inode.i_mapping, inode->vfs_inode.i_size);
460 clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
461 ret = btrfs_drop_verity_items(inode);
463 btrfs_handle_fs_error(root->fs_info, ret,
464 "failed to drop verity items in rollback %llu",
465 (u64)inode->vfs_inode.i_ino);
470 * 1 for updating the inode flag
471 * 1 for deleting the orphan
473 trans = btrfs_start_transaction(root, 2);
475 ret = PTR_ERR(trans);
477 btrfs_handle_fs_error(root->fs_info, ret,
478 "failed to start transaction in verity rollback %llu",
479 (u64)inode->vfs_inode.i_ino);
482 inode->ro_flags &= ~BTRFS_INODE_RO_VERITY;
483 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
484 ret = btrfs_update_inode(trans, root, inode);
486 btrfs_abort_transaction(trans, ret);
489 ret = del_orphan(trans, inode);
491 btrfs_abort_transaction(trans, ret);
496 btrfs_end_transaction(trans);
501 * Finalize making the file a valid verity file
503 * @inode: inode to be marked as verity
504 * @desc: contents of the verity descriptor to write (not NULL)
505 * @desc_size: size of the verity descriptor
507 * Do the actual work of finalizing verity after successfully writing the Merkle
510 * - write out the descriptor items
511 * - mark the inode with the verity flag
512 * - delete the orphan item
513 * - mark the ro compat bit
514 * - clear the in progress bit
516 * Returns 0 on success, negative error code on failure.
518 static int finish_verity(struct btrfs_inode *inode, const void *desc,
521 struct btrfs_trans_handle *trans = NULL;
522 struct btrfs_root *root = inode->root;
523 struct btrfs_verity_descriptor_item item;
526 /* Write out the descriptor item */
527 memset(&item, 0, sizeof(item));
528 btrfs_set_stack_verity_descriptor_size(&item, desc_size);
529 ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 0,
530 (const char *)&item, sizeof(item));
534 /* Write out the descriptor itself */
535 ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 1,
541 * 1 for updating the inode flag
542 * 1 for deleting the orphan
544 trans = btrfs_start_transaction(root, 2);
546 ret = PTR_ERR(trans);
549 inode->ro_flags |= BTRFS_INODE_RO_VERITY;
550 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
551 ret = btrfs_update_inode(trans, root, inode);
554 ret = del_orphan(trans, inode);
557 clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
558 btrfs_set_fs_compat_ro(root->fs_info, VERITY);
560 btrfs_end_transaction(trans);
567 * fsverity op that begins enabling verity.
569 * @filp: file to enable verity on
571 * Begin enabling fsverity for the file. We drop any existing verity items, add
572 * an orphan and set the in progress bit.
574 * Returns 0 on success, negative error code on failure.
576 static int btrfs_begin_enable_verity(struct file *filp)
578 struct btrfs_inode *inode = BTRFS_I(file_inode(filp));
579 struct btrfs_root *root = inode->root;
580 struct btrfs_trans_handle *trans;
583 ASSERT(inode_is_locked(file_inode(filp)));
585 if (test_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags))
589 * This should almost never do anything, but theoretically, it's
590 * possible that we failed to enable verity on a file, then were
591 * interrupted or failed while rolling back, failed to cleanup the
592 * orphan, and finally attempt to enable verity again.
594 ret = btrfs_drop_verity_items(inode);
598 /* 1 for the orphan item */
599 trans = btrfs_start_transaction(root, 1);
601 return PTR_ERR(trans);
603 ret = btrfs_orphan_add(trans, inode);
605 set_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
606 btrfs_end_transaction(trans);
612 * fsverity op that ends enabling verity.
614 * @filp: file we are finishing enabling verity on
615 * @desc: verity descriptor to write out (NULL in error conditions)
616 * @desc_size: size of the verity descriptor (variable with signatures)
617 * @merkle_tree_size: size of the merkle tree in bytes
619 * If desc is null, then VFS is signaling an error occurred during verity
620 * enable, and we should try to rollback. Otherwise, attempt to finish verity.
622 * Returns 0 on success, negative error code on error.
624 static int btrfs_end_enable_verity(struct file *filp, const void *desc,
625 size_t desc_size, u64 merkle_tree_size)
627 struct btrfs_inode *inode = BTRFS_I(file_inode(filp));
631 ASSERT(inode_is_locked(file_inode(filp)));
636 ret = finish_verity(inode, desc, desc_size);
642 rollback_ret = rollback_verity(inode);
644 btrfs_err(inode->root->fs_info,
645 "failed to rollback verity items: %d", rollback_ret);
650 * fsverity op that gets the struct fsverity_descriptor.
652 * @inode: inode to get the descriptor of
653 * @buf: output buffer for the descriptor contents
654 * @buf_size: size of the output buffer. 0 to query the size
656 * fsverity does a two pass setup for reading the descriptor, in the first pass
657 * it calls with buf_size = 0 to query the size of the descriptor, and then in
658 * the second pass it actually reads the descriptor off disk.
660 * Returns the size on success or a negative error code on failure.
662 int btrfs_get_verity_descriptor(struct inode *inode, void *buf, size_t buf_size)
666 struct btrfs_verity_descriptor_item item;
668 memset(&item, 0, sizeof(item));
669 ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 0,
670 (char *)&item, sizeof(item), NULL);
674 if (item.reserved[0] != 0 || item.reserved[1] != 0)
677 true_size = btrfs_stack_verity_descriptor_size(&item);
678 if (true_size > INT_MAX)
683 if (buf_size < true_size)
686 ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 1,
687 buf, buf_size, NULL);
690 if (ret != true_size)
697 * fsverity op that reads and caches a merkle tree page.
699 * @inode: inode to read a merkle tree page for
700 * @index: page index relative to the start of the merkle tree
701 * @num_ra_pages: number of pages to readahead. Optional, we ignore it
703 * The Merkle tree is stored in the filesystem btree, but its pages are cached
704 * with a logical position past EOF in the inode's mapping.
706 * Returns the page we read, or an ERR_PTR on error.
708 static struct page *btrfs_read_merkle_tree_page(struct inode *inode,
710 unsigned long num_ra_pages)
713 u64 off = (u64)index << PAGE_SHIFT;
714 loff_t merkle_pos = merkle_file_pos(inode);
718 return ERR_PTR(merkle_pos);
719 if (merkle_pos > inode->i_sb->s_maxbytes - off - PAGE_SIZE)
720 return ERR_PTR(-EFBIG);
721 index += merkle_pos >> PAGE_SHIFT;
723 page = find_get_page_flags(inode->i_mapping, index, FGP_ACCESSED);
725 if (PageUptodate(page))
730 * We only insert uptodate pages, so !Uptodate has to be
733 if (!PageUptodate(page)) {
736 return ERR_PTR(-EIO);
742 page = __page_cache_alloc(mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS));
744 return ERR_PTR(-ENOMEM);
747 * Merkle item keys are indexed from byte 0 in the merkle tree.
748 * They have the form:
750 * [ inode objectid, BTRFS_MERKLE_ITEM_KEY, offset in bytes ]
752 ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, off,
753 page_address(page), PAGE_SIZE, page);
759 memzero_page(page, ret, PAGE_SIZE - ret);
761 SetPageUptodate(page);
762 ret = add_to_page_cache_lru(page, inode->i_mapping, index, GFP_NOFS);
765 /* Inserted and ready for fsverity */
769 /* Did someone race us into inserting this page? */
778 * fsverity op that writes a Merkle tree block into the btree.
780 * @inode: inode to write a Merkle tree block for
781 * @buf: Merkle tree data block to write
782 * @index: index of the block in the Merkle tree
783 * @log_blocksize: log base 2 of the Merkle tree block size
785 * Note that the block size could be different from the page size, so it is not
786 * safe to assume that index is a page index.
788 * Returns 0 on success or negative error code on failure
790 static int btrfs_write_merkle_tree_block(struct inode *inode, const void *buf,
791 u64 index, int log_blocksize)
793 u64 off = index << log_blocksize;
794 u64 len = 1ULL << log_blocksize;
795 loff_t merkle_pos = merkle_file_pos(inode);
799 if (merkle_pos > inode->i_sb->s_maxbytes - off - len)
802 return write_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY,
806 const struct fsverity_operations btrfs_verityops = {
807 .begin_enable_verity = btrfs_begin_enable_verity,
808 .end_enable_verity = btrfs_end_enable_verity,
809 .get_verity_descriptor = btrfs_get_verity_descriptor,
810 .read_merkle_tree_page = btrfs_read_merkle_tree_page,
811 .write_merkle_tree_block = btrfs_write_merkle_tree_block,