Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[platform/kernel/linux-rpi.git] / fs / btrfs / tree-mod-log.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "messages.h"
4 #include "tree-mod-log.h"
5 #include "disk-io.h"
6 #include "fs.h"
7 #include "accessors.h"
8 #include "tree-checker.h"
9
10 struct tree_mod_root {
11         u64 logical;
12         u8 level;
13 };
14
15 struct tree_mod_elem {
16         struct rb_node node;
17         u64 logical;
18         u64 seq;
19         enum btrfs_mod_log_op op;
20
21         /*
22          * This is used for BTRFS_MOD_LOG_KEY_* and BTRFS_MOD_LOG_MOVE_KEYS
23          * operations.
24          */
25         int slot;
26
27         /* This is used for BTRFS_MOD_LOG_KEY* and BTRFS_MOD_LOG_ROOT_REPLACE. */
28         u64 generation;
29
30         /* Those are used for op == BTRFS_MOD_LOG_KEY_{REPLACE,REMOVE}. */
31         struct btrfs_disk_key key;
32         u64 blockptr;
33
34         /* This is used for op == BTRFS_MOD_LOG_MOVE_KEYS. */
35         struct {
36                 int dst_slot;
37                 int nr_items;
38         } move;
39
40         /* This is used for op == BTRFS_MOD_LOG_ROOT_REPLACE. */
41         struct tree_mod_root old_root;
42 };
43
44 /*
45  * Pull a new tree mod seq number for our operation.
46  */
47 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
48 {
49         return atomic64_inc_return(&fs_info->tree_mod_seq);
50 }
51
52 /*
53  * This adds a new blocker to the tree mod log's blocker list if the @elem
54  * passed does not already have a sequence number set. So when a caller expects
55  * to record tree modifications, it should ensure to set elem->seq to zero
56  * before calling btrfs_get_tree_mod_seq.
57  * Returns a fresh, unused tree log modification sequence number, even if no new
58  * blocker was added.
59  */
60 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
61                            struct btrfs_seq_list *elem)
62 {
63         write_lock(&fs_info->tree_mod_log_lock);
64         if (!elem->seq) {
65                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
66                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
67                 set_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags);
68         }
69         write_unlock(&fs_info->tree_mod_log_lock);
70
71         return elem->seq;
72 }
73
74 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
75                             struct btrfs_seq_list *elem)
76 {
77         struct rb_root *tm_root;
78         struct rb_node *node;
79         struct rb_node *next;
80         struct tree_mod_elem *tm;
81         u64 min_seq = BTRFS_SEQ_LAST;
82         u64 seq_putting = elem->seq;
83
84         if (!seq_putting)
85                 return;
86
87         write_lock(&fs_info->tree_mod_log_lock);
88         list_del(&elem->list);
89         elem->seq = 0;
90
91         if (list_empty(&fs_info->tree_mod_seq_list)) {
92                 clear_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags);
93         } else {
94                 struct btrfs_seq_list *first;
95
96                 first = list_first_entry(&fs_info->tree_mod_seq_list,
97                                          struct btrfs_seq_list, list);
98                 if (seq_putting > first->seq) {
99                         /*
100                          * Blocker with lower sequence number exists, we cannot
101                          * remove anything from the log.
102                          */
103                         write_unlock(&fs_info->tree_mod_log_lock);
104                         return;
105                 }
106                 min_seq = first->seq;
107         }
108
109         /*
110          * Anything that's lower than the lowest existing (read: blocked)
111          * sequence number can be removed from the tree.
112          */
113         tm_root = &fs_info->tree_mod_log;
114         for (node = rb_first(tm_root); node; node = next) {
115                 next = rb_next(node);
116                 tm = rb_entry(node, struct tree_mod_elem, node);
117                 if (tm->seq >= min_seq)
118                         continue;
119                 rb_erase(node, tm_root);
120                 kfree(tm);
121         }
122         write_unlock(&fs_info->tree_mod_log_lock);
123 }
124
125 /*
126  * Key order of the log:
127  *       node/leaf start address -> sequence
128  *
129  * The 'start address' is the logical address of the *new* root node for root
130  * replace operations, or the logical address of the affected block for all
131  * other operations.
132  */
133 static noinline int tree_mod_log_insert(struct btrfs_fs_info *fs_info,
134                                         struct tree_mod_elem *tm)
135 {
136         struct rb_root *tm_root;
137         struct rb_node **new;
138         struct rb_node *parent = NULL;
139         struct tree_mod_elem *cur;
140
141         lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
142
143         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
144
145         tm_root = &fs_info->tree_mod_log;
146         new = &tm_root->rb_node;
147         while (*new) {
148                 cur = rb_entry(*new, struct tree_mod_elem, node);
149                 parent = *new;
150                 if (cur->logical < tm->logical)
151                         new = &((*new)->rb_left);
152                 else if (cur->logical > tm->logical)
153                         new = &((*new)->rb_right);
154                 else if (cur->seq < tm->seq)
155                         new = &((*new)->rb_left);
156                 else if (cur->seq > tm->seq)
157                         new = &((*new)->rb_right);
158                 else
159                         return -EEXIST;
160         }
161
162         rb_link_node(&tm->node, parent, new);
163         rb_insert_color(&tm->node, tm_root);
164         return 0;
165 }
166
167 /*
168  * Determines if logging can be omitted. Returns true if it can. Otherwise, it
169  * returns false with the tree_mod_log_lock acquired. The caller must hold
170  * this until all tree mod log insertions are recorded in the rb tree and then
171  * write unlock fs_info::tree_mod_log_lock.
172  */
173 static inline bool tree_mod_dont_log(struct btrfs_fs_info *fs_info,
174                                     struct extent_buffer *eb)
175 {
176         if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
177                 return true;
178         if (eb && btrfs_header_level(eb) == 0)
179                 return true;
180
181         write_lock(&fs_info->tree_mod_log_lock);
182         if (list_empty(&(fs_info)->tree_mod_seq_list)) {
183                 write_unlock(&fs_info->tree_mod_log_lock);
184                 return true;
185         }
186
187         return false;
188 }
189
190 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
191 static inline bool tree_mod_need_log(const struct btrfs_fs_info *fs_info,
192                                     struct extent_buffer *eb)
193 {
194         if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
195                 return false;
196         if (eb && btrfs_header_level(eb) == 0)
197                 return false;
198
199         return true;
200 }
201
202 static struct tree_mod_elem *alloc_tree_mod_elem(struct extent_buffer *eb,
203                                                  int slot,
204                                                  enum btrfs_mod_log_op op)
205 {
206         struct tree_mod_elem *tm;
207
208         tm = kzalloc(sizeof(*tm), GFP_NOFS);
209         if (!tm)
210                 return NULL;
211
212         tm->logical = eb->start;
213         if (op != BTRFS_MOD_LOG_KEY_ADD) {
214                 btrfs_node_key(eb, &tm->key, slot);
215                 tm->blockptr = btrfs_node_blockptr(eb, slot);
216         }
217         tm->op = op;
218         tm->slot = slot;
219         tm->generation = btrfs_node_ptr_generation(eb, slot);
220         RB_CLEAR_NODE(&tm->node);
221
222         return tm;
223 }
224
225 int btrfs_tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
226                                   enum btrfs_mod_log_op op)
227 {
228         struct tree_mod_elem *tm;
229         int ret;
230
231         if (!tree_mod_need_log(eb->fs_info, eb))
232                 return 0;
233
234         tm = alloc_tree_mod_elem(eb, slot, op);
235         if (!tm)
236                 return -ENOMEM;
237
238         if (tree_mod_dont_log(eb->fs_info, eb)) {
239                 kfree(tm);
240                 return 0;
241         }
242
243         ret = tree_mod_log_insert(eb->fs_info, tm);
244         write_unlock(&eb->fs_info->tree_mod_log_lock);
245         if (ret)
246                 kfree(tm);
247
248         return ret;
249 }
250
251 int btrfs_tree_mod_log_insert_move(struct extent_buffer *eb,
252                                    int dst_slot, int src_slot,
253                                    int nr_items)
254 {
255         struct tree_mod_elem *tm = NULL;
256         struct tree_mod_elem **tm_list = NULL;
257         int ret = 0;
258         int i;
259         bool locked = false;
260
261         if (!tree_mod_need_log(eb->fs_info, eb))
262                 return 0;
263
264         tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
265         if (!tm_list)
266                 return -ENOMEM;
267
268         tm = kzalloc(sizeof(*tm), GFP_NOFS);
269         if (!tm) {
270                 ret = -ENOMEM;
271                 goto free_tms;
272         }
273
274         tm->logical = eb->start;
275         tm->slot = src_slot;
276         tm->move.dst_slot = dst_slot;
277         tm->move.nr_items = nr_items;
278         tm->op = BTRFS_MOD_LOG_MOVE_KEYS;
279
280         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
281                 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
282                                 BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING);
283                 if (!tm_list[i]) {
284                         ret = -ENOMEM;
285                         goto free_tms;
286                 }
287         }
288
289         if (tree_mod_dont_log(eb->fs_info, eb))
290                 goto free_tms;
291         locked = true;
292
293         /*
294          * When we override something during the move, we log these removals.
295          * This can only happen when we move towards the beginning of the
296          * buffer, i.e. dst_slot < src_slot.
297          */
298         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
299                 ret = tree_mod_log_insert(eb->fs_info, tm_list[i]);
300                 if (ret)
301                         goto free_tms;
302         }
303
304         ret = tree_mod_log_insert(eb->fs_info, tm);
305         if (ret)
306                 goto free_tms;
307         write_unlock(&eb->fs_info->tree_mod_log_lock);
308         kfree(tm_list);
309
310         return 0;
311
312 free_tms:
313         for (i = 0; i < nr_items; i++) {
314                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
315                         rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
316                 kfree(tm_list[i]);
317         }
318         if (locked)
319                 write_unlock(&eb->fs_info->tree_mod_log_lock);
320         kfree(tm_list);
321         kfree(tm);
322
323         return ret;
324 }
325
326 static inline int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
327                                        struct tree_mod_elem **tm_list,
328                                        int nritems)
329 {
330         int i, j;
331         int ret;
332
333         for (i = nritems - 1; i >= 0; i--) {
334                 ret = tree_mod_log_insert(fs_info, tm_list[i]);
335                 if (ret) {
336                         for (j = nritems - 1; j > i; j--)
337                                 rb_erase(&tm_list[j]->node,
338                                          &fs_info->tree_mod_log);
339                         return ret;
340                 }
341         }
342
343         return 0;
344 }
345
346 int btrfs_tree_mod_log_insert_root(struct extent_buffer *old_root,
347                                    struct extent_buffer *new_root,
348                                    bool log_removal)
349 {
350         struct btrfs_fs_info *fs_info = old_root->fs_info;
351         struct tree_mod_elem *tm = NULL;
352         struct tree_mod_elem **tm_list = NULL;
353         int nritems = 0;
354         int ret = 0;
355         int i;
356
357         if (!tree_mod_need_log(fs_info, NULL))
358                 return 0;
359
360         if (log_removal && btrfs_header_level(old_root) > 0) {
361                 nritems = btrfs_header_nritems(old_root);
362                 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
363                                   GFP_NOFS);
364                 if (!tm_list) {
365                         ret = -ENOMEM;
366                         goto free_tms;
367                 }
368                 for (i = 0; i < nritems; i++) {
369                         tm_list[i] = alloc_tree_mod_elem(old_root, i,
370                             BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING);
371                         if (!tm_list[i]) {
372                                 ret = -ENOMEM;
373                                 goto free_tms;
374                         }
375                 }
376         }
377
378         tm = kzalloc(sizeof(*tm), GFP_NOFS);
379         if (!tm) {
380                 ret = -ENOMEM;
381                 goto free_tms;
382         }
383
384         tm->logical = new_root->start;
385         tm->old_root.logical = old_root->start;
386         tm->old_root.level = btrfs_header_level(old_root);
387         tm->generation = btrfs_header_generation(old_root);
388         tm->op = BTRFS_MOD_LOG_ROOT_REPLACE;
389
390         if (tree_mod_dont_log(fs_info, NULL))
391                 goto free_tms;
392
393         if (tm_list)
394                 ret = tree_mod_log_free_eb(fs_info, tm_list, nritems);
395         if (!ret)
396                 ret = tree_mod_log_insert(fs_info, tm);
397
398         write_unlock(&fs_info->tree_mod_log_lock);
399         if (ret)
400                 goto free_tms;
401         kfree(tm_list);
402
403         return ret;
404
405 free_tms:
406         if (tm_list) {
407                 for (i = 0; i < nritems; i++)
408                         kfree(tm_list[i]);
409                 kfree(tm_list);
410         }
411         kfree(tm);
412
413         return ret;
414 }
415
416 static struct tree_mod_elem *__tree_mod_log_search(struct btrfs_fs_info *fs_info,
417                                                    u64 start, u64 min_seq,
418                                                    bool smallest)
419 {
420         struct rb_root *tm_root;
421         struct rb_node *node;
422         struct tree_mod_elem *cur = NULL;
423         struct tree_mod_elem *found = NULL;
424
425         read_lock(&fs_info->tree_mod_log_lock);
426         tm_root = &fs_info->tree_mod_log;
427         node = tm_root->rb_node;
428         while (node) {
429                 cur = rb_entry(node, struct tree_mod_elem, node);
430                 if (cur->logical < start) {
431                         node = node->rb_left;
432                 } else if (cur->logical > start) {
433                         node = node->rb_right;
434                 } else if (cur->seq < min_seq) {
435                         node = node->rb_left;
436                 } else if (!smallest) {
437                         /* We want the node with the highest seq */
438                         if (found)
439                                 BUG_ON(found->seq > cur->seq);
440                         found = cur;
441                         node = node->rb_left;
442                 } else if (cur->seq > min_seq) {
443                         /* We want the node with the smallest seq */
444                         if (found)
445                                 BUG_ON(found->seq < cur->seq);
446                         found = cur;
447                         node = node->rb_right;
448                 } else {
449                         found = cur;
450                         break;
451                 }
452         }
453         read_unlock(&fs_info->tree_mod_log_lock);
454
455         return found;
456 }
457
458 /*
459  * This returns the element from the log with the smallest time sequence
460  * value that's in the log (the oldest log item). Any element with a time
461  * sequence lower than min_seq will be ignored.
462  */
463 static struct tree_mod_elem *tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info,
464                                                         u64 start, u64 min_seq)
465 {
466         return __tree_mod_log_search(fs_info, start, min_seq, true);
467 }
468
469 /*
470  * This returns the element from the log with the largest time sequence
471  * value that's in the log (the most recent log item). Any element with
472  * a time sequence lower than min_seq will be ignored.
473  */
474 static struct tree_mod_elem *tree_mod_log_search(struct btrfs_fs_info *fs_info,
475                                                  u64 start, u64 min_seq)
476 {
477         return __tree_mod_log_search(fs_info, start, min_seq, false);
478 }
479
480 int btrfs_tree_mod_log_eb_copy(struct extent_buffer *dst,
481                                struct extent_buffer *src,
482                                unsigned long dst_offset,
483                                unsigned long src_offset,
484                                int nr_items)
485 {
486         struct btrfs_fs_info *fs_info = dst->fs_info;
487         int ret = 0;
488         struct tree_mod_elem **tm_list = NULL;
489         struct tree_mod_elem **tm_list_add, **tm_list_rem;
490         int i;
491         bool locked = false;
492
493         if (!tree_mod_need_log(fs_info, NULL))
494                 return 0;
495
496         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
497                 return 0;
498
499         tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
500                           GFP_NOFS);
501         if (!tm_list)
502                 return -ENOMEM;
503
504         tm_list_add = tm_list;
505         tm_list_rem = tm_list + nr_items;
506         for (i = 0; i < nr_items; i++) {
507                 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
508                                                      BTRFS_MOD_LOG_KEY_REMOVE);
509                 if (!tm_list_rem[i]) {
510                         ret = -ENOMEM;
511                         goto free_tms;
512                 }
513
514                 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
515                                                      BTRFS_MOD_LOG_KEY_ADD);
516                 if (!tm_list_add[i]) {
517                         ret = -ENOMEM;
518                         goto free_tms;
519                 }
520         }
521
522         if (tree_mod_dont_log(fs_info, NULL))
523                 goto free_tms;
524         locked = true;
525
526         for (i = 0; i < nr_items; i++) {
527                 ret = tree_mod_log_insert(fs_info, tm_list_rem[i]);
528                 if (ret)
529                         goto free_tms;
530                 ret = tree_mod_log_insert(fs_info, tm_list_add[i]);
531                 if (ret)
532                         goto free_tms;
533         }
534
535         write_unlock(&fs_info->tree_mod_log_lock);
536         kfree(tm_list);
537
538         return 0;
539
540 free_tms:
541         for (i = 0; i < nr_items * 2; i++) {
542                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
543                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
544                 kfree(tm_list[i]);
545         }
546         if (locked)
547                 write_unlock(&fs_info->tree_mod_log_lock);
548         kfree(tm_list);
549
550         return ret;
551 }
552
553 int btrfs_tree_mod_log_free_eb(struct extent_buffer *eb)
554 {
555         struct tree_mod_elem **tm_list = NULL;
556         int nritems = 0;
557         int i;
558         int ret = 0;
559
560         if (!tree_mod_need_log(eb->fs_info, eb))
561                 return 0;
562
563         nritems = btrfs_header_nritems(eb);
564         tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
565         if (!tm_list)
566                 return -ENOMEM;
567
568         for (i = 0; i < nritems; i++) {
569                 tm_list[i] = alloc_tree_mod_elem(eb, i,
570                                     BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING);
571                 if (!tm_list[i]) {
572                         ret = -ENOMEM;
573                         goto free_tms;
574                 }
575         }
576
577         if (tree_mod_dont_log(eb->fs_info, eb))
578                 goto free_tms;
579
580         ret = tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
581         write_unlock(&eb->fs_info->tree_mod_log_lock);
582         if (ret)
583                 goto free_tms;
584         kfree(tm_list);
585
586         return 0;
587
588 free_tms:
589         for (i = 0; i < nritems; i++)
590                 kfree(tm_list[i]);
591         kfree(tm_list);
592
593         return ret;
594 }
595
596 /*
597  * Returns the logical address of the oldest predecessor of the given root.
598  * Entries older than time_seq are ignored.
599  */
600 static struct tree_mod_elem *tree_mod_log_oldest_root(struct extent_buffer *eb_root,
601                                                       u64 time_seq)
602 {
603         struct tree_mod_elem *tm;
604         struct tree_mod_elem *found = NULL;
605         u64 root_logical = eb_root->start;
606         bool looped = false;
607
608         if (!time_seq)
609                 return NULL;
610
611         /*
612          * The very last operation that's logged for a root is the replacement
613          * operation (if it is replaced at all). This has the logical address
614          * of the *new* root, making it the very first operation that's logged
615          * for this root.
616          */
617         while (1) {
618                 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
619                                                 time_seq);
620                 if (!looped && !tm)
621                         return NULL;
622                 /*
623                  * If there are no tree operation for the oldest root, we simply
624                  * return it. This should only happen if that (old) root is at
625                  * level 0.
626                  */
627                 if (!tm)
628                         break;
629
630                 /*
631                  * If there's an operation that's not a root replacement, we
632                  * found the oldest version of our root. Normally, we'll find a
633                  * BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
634                  */
635                 if (tm->op != BTRFS_MOD_LOG_ROOT_REPLACE)
636                         break;
637
638                 found = tm;
639                 root_logical = tm->old_root.logical;
640                 looped = true;
641         }
642
643         /* If there's no old root to return, return what we found instead */
644         if (!found)
645                 found = tm;
646
647         return found;
648 }
649
650
651 /*
652  * tm is a pointer to the first operation to rewind within eb. Then, all
653  * previous operations will be rewound (until we reach something older than
654  * time_seq).
655  */
656 static void tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
657                                 struct extent_buffer *eb,
658                                 u64 time_seq,
659                                 struct tree_mod_elem *first_tm)
660 {
661         u32 n;
662         struct rb_node *next;
663         struct tree_mod_elem *tm = first_tm;
664         unsigned long o_dst;
665         unsigned long o_src;
666         unsigned long p_size = sizeof(struct btrfs_key_ptr);
667
668         n = btrfs_header_nritems(eb);
669         read_lock(&fs_info->tree_mod_log_lock);
670         while (tm && tm->seq >= time_seq) {
671                 /*
672                  * All the operations are recorded with the operator used for
673                  * the modification. As we're going backwards, we do the
674                  * opposite of each operation here.
675                  */
676                 switch (tm->op) {
677                 case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
678                         BUG_ON(tm->slot < n);
679                         fallthrough;
680                 case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING:
681                 case BTRFS_MOD_LOG_KEY_REMOVE:
682                         btrfs_set_node_key(eb, &tm->key, tm->slot);
683                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
684                         btrfs_set_node_ptr_generation(eb, tm->slot,
685                                                       tm->generation);
686                         n++;
687                         break;
688                 case BTRFS_MOD_LOG_KEY_REPLACE:
689                         BUG_ON(tm->slot >= n);
690                         btrfs_set_node_key(eb, &tm->key, tm->slot);
691                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
692                         btrfs_set_node_ptr_generation(eb, tm->slot,
693                                                       tm->generation);
694                         break;
695                 case BTRFS_MOD_LOG_KEY_ADD:
696                         /* if a move operation is needed it's in the log */
697                         n--;
698                         break;
699                 case BTRFS_MOD_LOG_MOVE_KEYS:
700                         o_dst = btrfs_node_key_ptr_offset(eb, tm->slot);
701                         o_src = btrfs_node_key_ptr_offset(eb, tm->move.dst_slot);
702                         memmove_extent_buffer(eb, o_dst, o_src,
703                                               tm->move.nr_items * p_size);
704                         break;
705                 case BTRFS_MOD_LOG_ROOT_REPLACE:
706                         /*
707                          * This operation is special. For roots, this must be
708                          * handled explicitly before rewinding.
709                          * For non-roots, this operation may exist if the node
710                          * was a root: root A -> child B; then A gets empty and
711                          * B is promoted to the new root. In the mod log, we'll
712                          * have a root-replace operation for B, a tree block
713                          * that is no root. We simply ignore that operation.
714                          */
715                         break;
716                 }
717                 next = rb_next(&tm->node);
718                 if (!next)
719                         break;
720                 tm = rb_entry(next, struct tree_mod_elem, node);
721                 if (tm->logical != first_tm->logical)
722                         break;
723         }
724         read_unlock(&fs_info->tree_mod_log_lock);
725         btrfs_set_header_nritems(eb, n);
726 }
727
728 /*
729  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
730  * is returned. If rewind operations happen, a fresh buffer is returned. The
731  * returned buffer is always read-locked. If the returned buffer is not the
732  * input buffer, the lock on the input buffer is released and the input buffer
733  * is freed (its refcount is decremented).
734  */
735 struct extent_buffer *btrfs_tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
736                                                 struct btrfs_path *path,
737                                                 struct extent_buffer *eb,
738                                                 u64 time_seq)
739 {
740         struct extent_buffer *eb_rewin;
741         struct tree_mod_elem *tm;
742
743         if (!time_seq)
744                 return eb;
745
746         if (btrfs_header_level(eb) == 0)
747                 return eb;
748
749         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
750         if (!tm)
751                 return eb;
752
753         if (tm->op == BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
754                 BUG_ON(tm->slot != 0);
755                 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
756                 if (!eb_rewin) {
757                         btrfs_tree_read_unlock(eb);
758                         free_extent_buffer(eb);
759                         return NULL;
760                 }
761                 btrfs_set_header_bytenr(eb_rewin, eb->start);
762                 btrfs_set_header_backref_rev(eb_rewin,
763                                              btrfs_header_backref_rev(eb));
764                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
765                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
766         } else {
767                 eb_rewin = btrfs_clone_extent_buffer(eb);
768                 if (!eb_rewin) {
769                         btrfs_tree_read_unlock(eb);
770                         free_extent_buffer(eb);
771                         return NULL;
772                 }
773         }
774
775         btrfs_tree_read_unlock(eb);
776         free_extent_buffer(eb);
777
778         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
779                                        eb_rewin, btrfs_header_level(eb_rewin));
780         btrfs_tree_read_lock(eb_rewin);
781         tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
782         WARN_ON(btrfs_header_nritems(eb_rewin) >
783                 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
784
785         return eb_rewin;
786 }
787
788 /*
789  * Rewind the state of @root's root node to the given @time_seq value.
790  * If there are no changes, the current root->root_node is returned. If anything
791  * changed in between, there's a fresh buffer allocated on which the rewind
792  * operations are done. In any case, the returned buffer is read locked.
793  * Returns NULL on error (with no locks held).
794  */
795 struct extent_buffer *btrfs_get_old_root(struct btrfs_root *root, u64 time_seq)
796 {
797         struct btrfs_fs_info *fs_info = root->fs_info;
798         struct tree_mod_elem *tm;
799         struct extent_buffer *eb = NULL;
800         struct extent_buffer *eb_root;
801         u64 eb_root_owner = 0;
802         struct extent_buffer *old;
803         struct tree_mod_root *old_root = NULL;
804         u64 old_generation = 0;
805         u64 logical;
806         int level;
807
808         eb_root = btrfs_read_lock_root_node(root);
809         tm = tree_mod_log_oldest_root(eb_root, time_seq);
810         if (!tm)
811                 return eb_root;
812
813         if (tm->op == BTRFS_MOD_LOG_ROOT_REPLACE) {
814                 old_root = &tm->old_root;
815                 old_generation = tm->generation;
816                 logical = old_root->logical;
817                 level = old_root->level;
818         } else {
819                 logical = eb_root->start;
820                 level = btrfs_header_level(eb_root);
821         }
822
823         tm = tree_mod_log_search(fs_info, logical, time_seq);
824         if (old_root && tm && tm->op != BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
825                 struct btrfs_tree_parent_check check = { 0 };
826
827                 btrfs_tree_read_unlock(eb_root);
828                 free_extent_buffer(eb_root);
829
830                 check.level = level;
831                 check.owner_root = root->root_key.objectid;
832
833                 old = read_tree_block(fs_info, logical, &check);
834                 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
835                         if (!IS_ERR(old))
836                                 free_extent_buffer(old);
837                         btrfs_warn(fs_info,
838                                    "failed to read tree block %llu from get_old_root",
839                                    logical);
840                 } else {
841                         struct tree_mod_elem *tm2;
842
843                         btrfs_tree_read_lock(old);
844                         eb = btrfs_clone_extent_buffer(old);
845                         /*
846                          * After the lookup for the most recent tree mod operation
847                          * above and before we locked and cloned the extent buffer
848                          * 'old', a new tree mod log operation may have been added.
849                          * So lookup for a more recent one to make sure the number
850                          * of mod log operations we replay is consistent with the
851                          * number of items we have in the cloned extent buffer,
852                          * otherwise we can hit a BUG_ON when rewinding the extent
853                          * buffer.
854                          */
855                         tm2 = tree_mod_log_search(fs_info, logical, time_seq);
856                         btrfs_tree_read_unlock(old);
857                         free_extent_buffer(old);
858                         ASSERT(tm2);
859                         ASSERT(tm2 == tm || tm2->seq > tm->seq);
860                         if (!tm2 || tm2->seq < tm->seq) {
861                                 free_extent_buffer(eb);
862                                 return NULL;
863                         }
864                         tm = tm2;
865                 }
866         } else if (old_root) {
867                 eb_root_owner = btrfs_header_owner(eb_root);
868                 btrfs_tree_read_unlock(eb_root);
869                 free_extent_buffer(eb_root);
870                 eb = alloc_dummy_extent_buffer(fs_info, logical);
871         } else {
872                 eb = btrfs_clone_extent_buffer(eb_root);
873                 btrfs_tree_read_unlock(eb_root);
874                 free_extent_buffer(eb_root);
875         }
876
877         if (!eb)
878                 return NULL;
879         if (old_root) {
880                 btrfs_set_header_bytenr(eb, eb->start);
881                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
882                 btrfs_set_header_owner(eb, eb_root_owner);
883                 btrfs_set_header_level(eb, old_root->level);
884                 btrfs_set_header_generation(eb, old_generation);
885         }
886         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
887                                        btrfs_header_level(eb));
888         btrfs_tree_read_lock(eb);
889         if (tm)
890                 tree_mod_log_rewind(fs_info, eb, time_seq, tm);
891         else
892                 WARN_ON(btrfs_header_level(eb) != 0);
893         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
894
895         return eb;
896 }
897
898 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
899 {
900         struct tree_mod_elem *tm;
901         int level;
902         struct extent_buffer *eb_root = btrfs_root_node(root);
903
904         tm = tree_mod_log_oldest_root(eb_root, time_seq);
905         if (tm && tm->op == BTRFS_MOD_LOG_ROOT_REPLACE)
906                 level = tm->old_root.level;
907         else
908                 level = btrfs_header_level(eb_root);
909
910         free_extent_buffer(eb_root);
911
912         return level;
913 }
914
915 /*
916  * Return the lowest sequence number in the tree modification log.
917  *
918  * Return the sequence number of the oldest tree modification log user, which
919  * corresponds to the lowest sequence number of all existing users. If there are
920  * no users it returns 0.
921  */
922 u64 btrfs_tree_mod_log_lowest_seq(struct btrfs_fs_info *fs_info)
923 {
924         u64 ret = 0;
925
926         read_lock(&fs_info->tree_mod_log_lock);
927         if (!list_empty(&fs_info->tree_mod_seq_list)) {
928                 struct btrfs_seq_list *elem;
929
930                 elem = list_first_entry(&fs_info->tree_mod_seq_list,
931                                         struct btrfs_seq_list, list);
932                 ret = elem->seq;
933         }
934         read_unlock(&fs_info->tree_mod_log_lock);
935
936         return ret;
937 }