2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
24 #include "transaction.h"
27 #include "print-tree.h"
33 /* magic values for the inode_only field in btrfs_log_inode:
35 * LOG_INODE_ALL means to log everything
36 * LOG_INODE_EXISTS means to log just enough to recreate the inode
39 #define LOG_INODE_ALL 0
40 #define LOG_INODE_EXISTS 1
43 * directory trouble cases
45 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
46 * log, we must force a full commit before doing an fsync of the directory
47 * where the unlink was done.
48 * ---> record transid of last unlink/rename per directory
52 * rename foo/some_dir foo2/some_dir
54 * fsync foo/some_dir/some_file
56 * The fsync above will unlink the original some_dir without recording
57 * it in its new location (foo2). After a crash, some_dir will be gone
58 * unless the fsync of some_file forces a full commit
60 * 2) we must log any new names for any file or dir that is in the fsync
61 * log. ---> check inode while renaming/linking.
63 * 2a) we must log any new names for any file or dir during rename
64 * when the directory they are being removed from was logged.
65 * ---> check inode and old parent dir during rename
67 * 2a is actually the more important variant. With the extra logging
68 * a crash might unlink the old name without recreating the new one
70 * 3) after a crash, we must go through any directories with a link count
71 * of zero and redo the rm -rf
78 * The directory f1 was fully removed from the FS, but fsync was never
79 * called on f1, only its parent dir. After a crash the rm -rf must
80 * be replayed. This must be able to recurse down the entire
81 * directory tree. The inode link count fixup code takes care of the
86 * stages for the tree walking. The first
87 * stage (0) is to only pin down the blocks we find
88 * the second stage (1) is to make sure that all the inodes
89 * we find in the log are created in the subvolume.
91 * The last stage is to deal with directories and links and extents
92 * and all the other fun semantics
94 #define LOG_WALK_PIN_ONLY 0
95 #define LOG_WALK_REPLAY_INODES 1
96 #define LOG_WALK_REPLAY_ALL 2
98 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
99 struct btrfs_root *root, struct inode *inode,
101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 struct btrfs_root *root,
103 struct btrfs_path *path, u64 objectid);
104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 struct btrfs_root *root,
106 struct btrfs_root *log,
107 struct btrfs_path *path,
108 u64 dirid, int del_all);
111 * tree logging is a special write ahead log used to make sure that
112 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 * Full tree commits are expensive because they require commonly
115 * modified blocks to be recowed, creating many dirty pages in the
116 * extent tree an 4x-6x higher write load than ext3.
118 * Instead of doing a tree commit on every fsync, we use the
119 * key ranges and transaction ids to find items for a given file or directory
120 * that have changed in this transaction. Those items are copied into
121 * a special tree (one per subvolume root), that tree is written to disk
122 * and then the fsync is considered complete.
124 * After a crash, items are copied out of the log-tree back into the
125 * subvolume tree. Any file data extents found are recorded in the extent
126 * allocation tree, and the log-tree freed.
128 * The log tree is read three times, once to pin down all the extents it is
129 * using in ram and once, once to create all the inodes logged in the tree
130 * and once to do all the other items.
134 * start a sub transaction and setup the log tree
135 * this increments the log tree writer count to make the people
136 * syncing the tree wait for us to finish
138 static int start_log_trans(struct btrfs_trans_handle *trans,
139 struct btrfs_root *root)
144 mutex_lock(&root->log_mutex);
145 if (root->log_root) {
146 if (!root->log_start_pid) {
147 root->log_start_pid = current->pid;
148 root->log_multiple_pids = false;
149 } else if (root->log_start_pid != current->pid) {
150 root->log_multiple_pids = true;
153 atomic_inc(&root->log_batch);
154 atomic_inc(&root->log_writers);
155 mutex_unlock(&root->log_mutex);
158 root->log_multiple_pids = false;
159 root->log_start_pid = current->pid;
160 mutex_lock(&root->fs_info->tree_log_mutex);
161 if (!root->fs_info->log_root_tree) {
162 ret = btrfs_init_log_root_tree(trans, root->fs_info);
166 if (err == 0 && !root->log_root) {
167 ret = btrfs_add_log_tree(trans, root);
171 mutex_unlock(&root->fs_info->tree_log_mutex);
172 atomic_inc(&root->log_batch);
173 atomic_inc(&root->log_writers);
174 mutex_unlock(&root->log_mutex);
179 * returns 0 if there was a log transaction running and we were able
180 * to join, or returns -ENOENT if there were not transactions
183 static int join_running_log_trans(struct btrfs_root *root)
191 mutex_lock(&root->log_mutex);
192 if (root->log_root) {
194 atomic_inc(&root->log_writers);
196 mutex_unlock(&root->log_mutex);
201 * This either makes the current running log transaction wait
202 * until you call btrfs_end_log_trans() or it makes any future
203 * log transactions wait until you call btrfs_end_log_trans()
205 int btrfs_pin_log_trans(struct btrfs_root *root)
209 mutex_lock(&root->log_mutex);
210 atomic_inc(&root->log_writers);
211 mutex_unlock(&root->log_mutex);
216 * indicate we're done making changes to the log tree
217 * and wake up anyone waiting to do a sync
219 void btrfs_end_log_trans(struct btrfs_root *root)
221 if (atomic_dec_and_test(&root->log_writers)) {
223 if (waitqueue_active(&root->log_writer_wait))
224 wake_up(&root->log_writer_wait);
230 * the walk control struct is used to pass state down the chain when
231 * processing the log tree. The stage field tells us which part
232 * of the log tree processing we are currently doing. The others
233 * are state fields used for that specific part
235 struct walk_control {
236 /* should we free the extent on disk when done? This is used
237 * at transaction commit time while freeing a log tree
241 /* should we write out the extent buffer? This is used
242 * while flushing the log tree to disk during a sync
246 /* should we wait for the extent buffer io to finish? Also used
247 * while flushing the log tree to disk for a sync
251 /* pin only walk, we record which extents on disk belong to the
256 /* what stage of the replay code we're currently in */
259 /* the root we are currently replaying */
260 struct btrfs_root *replay_dest;
262 /* the trans handle for the current replay */
263 struct btrfs_trans_handle *trans;
265 /* the function that gets used to process blocks we find in the
266 * tree. Note the extent_buffer might not be up to date when it is
267 * passed in, and it must be checked or read if you need the data
270 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
271 struct walk_control *wc, u64 gen);
275 * process_func used to pin down extents, write them or wait on them
277 static int process_one_buffer(struct btrfs_root *log,
278 struct extent_buffer *eb,
279 struct walk_control *wc, u64 gen)
284 * If this fs is mixed then we need to be able to process the leaves to
285 * pin down any logged extents, so we have to read the block.
287 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
288 ret = btrfs_read_buffer(eb, gen);
294 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
297 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
298 if (wc->pin && btrfs_header_level(eb) == 0)
299 ret = btrfs_exclude_logged_extents(log, eb);
301 btrfs_write_tree_block(eb);
303 btrfs_wait_tree_block_writeback(eb);
309 * Item overwrite used by replay and tree logging. eb, slot and key all refer
310 * to the src data we are copying out.
312 * root is the tree we are copying into, and path is a scratch
313 * path for use in this function (it should be released on entry and
314 * will be released on exit).
316 * If the key is already in the destination tree the existing item is
317 * overwritten. If the existing item isn't big enough, it is extended.
318 * If it is too large, it is truncated.
320 * If the key isn't in the destination yet, a new item is inserted.
322 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
323 struct btrfs_root *root,
324 struct btrfs_path *path,
325 struct extent_buffer *eb, int slot,
326 struct btrfs_key *key)
330 u64 saved_i_size = 0;
331 int save_old_i_size = 0;
332 unsigned long src_ptr;
333 unsigned long dst_ptr;
334 int overwrite_root = 0;
335 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
337 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
340 item_size = btrfs_item_size_nr(eb, slot);
341 src_ptr = btrfs_item_ptr_offset(eb, slot);
343 /* look for the key in the destination tree */
344 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
351 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
353 if (dst_size != item_size)
356 if (item_size == 0) {
357 btrfs_release_path(path);
360 dst_copy = kmalloc(item_size, GFP_NOFS);
361 src_copy = kmalloc(item_size, GFP_NOFS);
362 if (!dst_copy || !src_copy) {
363 btrfs_release_path(path);
369 read_extent_buffer(eb, src_copy, src_ptr, item_size);
371 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
372 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
374 ret = memcmp(dst_copy, src_copy, item_size);
379 * they have the same contents, just return, this saves
380 * us from cowing blocks in the destination tree and doing
381 * extra writes that may not have been done by a previous
385 btrfs_release_path(path);
390 * We need to load the old nbytes into the inode so when we
391 * replay the extents we've logged we get the right nbytes.
394 struct btrfs_inode_item *item;
397 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
398 struct btrfs_inode_item);
399 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
400 item = btrfs_item_ptr(eb, slot,
401 struct btrfs_inode_item);
402 btrfs_set_inode_nbytes(eb, item, nbytes);
404 } else if (inode_item) {
405 struct btrfs_inode_item *item;
408 * New inode, set nbytes to 0 so that the nbytes comes out
409 * properly when we replay the extents.
411 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
412 btrfs_set_inode_nbytes(eb, item, 0);
415 btrfs_release_path(path);
416 /* try to insert the key into the destination tree */
417 ret = btrfs_insert_empty_item(trans, root, path,
420 /* make sure any existing item is the correct size */
421 if (ret == -EEXIST) {
423 found_size = btrfs_item_size_nr(path->nodes[0],
425 if (found_size > item_size)
426 btrfs_truncate_item(root, path, item_size, 1);
427 else if (found_size < item_size)
428 btrfs_extend_item(root, path,
429 item_size - found_size);
433 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
436 /* don't overwrite an existing inode if the generation number
437 * was logged as zero. This is done when the tree logging code
438 * is just logging an inode to make sure it exists after recovery.
440 * Also, don't overwrite i_size on directories during replay.
441 * log replay inserts and removes directory items based on the
442 * state of the tree found in the subvolume, and i_size is modified
445 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
446 struct btrfs_inode_item *src_item;
447 struct btrfs_inode_item *dst_item;
449 src_item = (struct btrfs_inode_item *)src_ptr;
450 dst_item = (struct btrfs_inode_item *)dst_ptr;
452 if (btrfs_inode_generation(eb, src_item) == 0)
455 if (overwrite_root &&
456 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
457 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
459 saved_i_size = btrfs_inode_size(path->nodes[0],
464 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
467 if (save_old_i_size) {
468 struct btrfs_inode_item *dst_item;
469 dst_item = (struct btrfs_inode_item *)dst_ptr;
470 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
473 /* make sure the generation is filled in */
474 if (key->type == BTRFS_INODE_ITEM_KEY) {
475 struct btrfs_inode_item *dst_item;
476 dst_item = (struct btrfs_inode_item *)dst_ptr;
477 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
478 btrfs_set_inode_generation(path->nodes[0], dst_item,
483 btrfs_mark_buffer_dirty(path->nodes[0]);
484 btrfs_release_path(path);
489 * simple helper to read an inode off the disk from a given root
490 * This can only be called for subvolume roots and not for the log
492 static noinline struct inode *read_one_inode(struct btrfs_root *root,
495 struct btrfs_key key;
498 key.objectid = objectid;
499 key.type = BTRFS_INODE_ITEM_KEY;
501 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
504 } else if (is_bad_inode(inode)) {
511 /* replays a single extent in 'eb' at 'slot' with 'key' into the
512 * subvolume 'root'. path is released on entry and should be released
515 * extents in the log tree have not been allocated out of the extent
516 * tree yet. So, this completes the allocation, taking a reference
517 * as required if the extent already exists or creating a new extent
518 * if it isn't in the extent allocation tree yet.
520 * The extent is inserted into the file, dropping any existing extents
521 * from the file that overlap the new one.
523 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
524 struct btrfs_root *root,
525 struct btrfs_path *path,
526 struct extent_buffer *eb, int slot,
527 struct btrfs_key *key)
531 u64 start = key->offset;
533 struct btrfs_file_extent_item *item;
534 struct inode *inode = NULL;
538 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
539 found_type = btrfs_file_extent_type(eb, item);
541 if (found_type == BTRFS_FILE_EXTENT_REG ||
542 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
543 nbytes = btrfs_file_extent_num_bytes(eb, item);
544 extent_end = start + nbytes;
547 * We don't add to the inodes nbytes if we are prealloc or a
550 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
552 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
553 size = btrfs_file_extent_inline_len(eb, item);
554 nbytes = btrfs_file_extent_ram_bytes(eb, item);
555 extent_end = ALIGN(start + size, root->sectorsize);
561 inode = read_one_inode(root, key->objectid);
568 * first check to see if we already have this extent in the
569 * file. This must be done before the btrfs_drop_extents run
570 * so we don't try to drop this extent.
572 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
576 (found_type == BTRFS_FILE_EXTENT_REG ||
577 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
578 struct btrfs_file_extent_item cmp1;
579 struct btrfs_file_extent_item cmp2;
580 struct btrfs_file_extent_item *existing;
581 struct extent_buffer *leaf;
583 leaf = path->nodes[0];
584 existing = btrfs_item_ptr(leaf, path->slots[0],
585 struct btrfs_file_extent_item);
587 read_extent_buffer(eb, &cmp1, (unsigned long)item,
589 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
593 * we already have a pointer to this exact extent,
594 * we don't have to do anything
596 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
597 btrfs_release_path(path);
601 btrfs_release_path(path);
603 /* drop any overlapping extents */
604 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
608 if (found_type == BTRFS_FILE_EXTENT_REG ||
609 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
611 unsigned long dest_offset;
612 struct btrfs_key ins;
614 ret = btrfs_insert_empty_item(trans, root, path, key,
618 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
620 copy_extent_buffer(path->nodes[0], eb, dest_offset,
621 (unsigned long)item, sizeof(*item));
623 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
624 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
625 ins.type = BTRFS_EXTENT_ITEM_KEY;
626 offset = key->offset - btrfs_file_extent_offset(eb, item);
628 if (ins.objectid > 0) {
631 LIST_HEAD(ordered_sums);
633 * is this extent already allocated in the extent
634 * allocation tree? If so, just add a reference
636 ret = btrfs_lookup_extent(root, ins.objectid,
639 ret = btrfs_inc_extent_ref(trans, root,
640 ins.objectid, ins.offset,
641 0, root->root_key.objectid,
642 key->objectid, offset, 0);
647 * insert the extent pointer in the extent
650 ret = btrfs_alloc_logged_file_extent(trans,
651 root, root->root_key.objectid,
652 key->objectid, offset, &ins);
656 btrfs_release_path(path);
658 if (btrfs_file_extent_compression(eb, item)) {
659 csum_start = ins.objectid;
660 csum_end = csum_start + ins.offset;
662 csum_start = ins.objectid +
663 btrfs_file_extent_offset(eb, item);
664 csum_end = csum_start +
665 btrfs_file_extent_num_bytes(eb, item);
668 ret = btrfs_lookup_csums_range(root->log_root,
669 csum_start, csum_end - 1,
673 while (!list_empty(&ordered_sums)) {
674 struct btrfs_ordered_sum *sums;
675 sums = list_entry(ordered_sums.next,
676 struct btrfs_ordered_sum,
679 ret = btrfs_csum_file_blocks(trans,
680 root->fs_info->csum_root,
682 list_del(&sums->list);
688 btrfs_release_path(path);
690 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
691 /* inline extents are easy, we just overwrite them */
692 ret = overwrite_item(trans, root, path, eb, slot, key);
697 inode_add_bytes(inode, nbytes);
698 ret = btrfs_update_inode(trans, root, inode);
706 * when cleaning up conflicts between the directory names in the
707 * subvolume, directory names in the log and directory names in the
708 * inode back references, we may have to unlink inodes from directories.
710 * This is a helper function to do the unlink of a specific directory
713 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
714 struct btrfs_root *root,
715 struct btrfs_path *path,
717 struct btrfs_dir_item *di)
722 struct extent_buffer *leaf;
723 struct btrfs_key location;
726 leaf = path->nodes[0];
728 btrfs_dir_item_key_to_cpu(leaf, di, &location);
729 name_len = btrfs_dir_name_len(leaf, di);
730 name = kmalloc(name_len, GFP_NOFS);
734 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
735 btrfs_release_path(path);
737 inode = read_one_inode(root, location.objectid);
743 ret = link_to_fixup_dir(trans, root, path, location.objectid);
747 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
750 btrfs_run_delayed_items(trans, root);
758 * helper function to see if a given name and sequence number found
759 * in an inode back reference are already in a directory and correctly
760 * point to this inode
762 static noinline int inode_in_dir(struct btrfs_root *root,
763 struct btrfs_path *path,
764 u64 dirid, u64 objectid, u64 index,
765 const char *name, int name_len)
767 struct btrfs_dir_item *di;
768 struct btrfs_key location;
771 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
772 index, name, name_len, 0);
773 if (di && !IS_ERR(di)) {
774 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
775 if (location.objectid != objectid)
779 btrfs_release_path(path);
781 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
782 if (di && !IS_ERR(di)) {
783 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
784 if (location.objectid != objectid)
790 btrfs_release_path(path);
795 * helper function to check a log tree for a named back reference in
796 * an inode. This is used to decide if a back reference that is
797 * found in the subvolume conflicts with what we find in the log.
799 * inode backreferences may have multiple refs in a single item,
800 * during replay we process one reference at a time, and we don't
801 * want to delete valid links to a file from the subvolume if that
802 * link is also in the log.
804 static noinline int backref_in_log(struct btrfs_root *log,
805 struct btrfs_key *key,
807 char *name, int namelen)
809 struct btrfs_path *path;
810 struct btrfs_inode_ref *ref;
812 unsigned long ptr_end;
813 unsigned long name_ptr;
819 path = btrfs_alloc_path();
823 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
827 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
829 if (key->type == BTRFS_INODE_EXTREF_KEY) {
830 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
831 name, namelen, NULL))
837 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
838 ptr_end = ptr + item_size;
839 while (ptr < ptr_end) {
840 ref = (struct btrfs_inode_ref *)ptr;
841 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
842 if (found_name_len == namelen) {
843 name_ptr = (unsigned long)(ref + 1);
844 ret = memcmp_extent_buffer(path->nodes[0], name,
851 ptr = (unsigned long)(ref + 1) + found_name_len;
854 btrfs_free_path(path);
858 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
859 struct btrfs_root *root,
860 struct btrfs_path *path,
861 struct btrfs_root *log_root,
862 struct inode *dir, struct inode *inode,
863 struct extent_buffer *eb,
864 u64 inode_objectid, u64 parent_objectid,
865 u64 ref_index, char *name, int namelen,
871 struct extent_buffer *leaf;
872 struct btrfs_dir_item *di;
873 struct btrfs_key search_key;
874 struct btrfs_inode_extref *extref;
877 /* Search old style refs */
878 search_key.objectid = inode_objectid;
879 search_key.type = BTRFS_INODE_REF_KEY;
880 search_key.offset = parent_objectid;
881 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
883 struct btrfs_inode_ref *victim_ref;
885 unsigned long ptr_end;
887 leaf = path->nodes[0];
889 /* are we trying to overwrite a back ref for the root directory
890 * if so, just jump out, we're done
892 if (search_key.objectid == search_key.offset)
895 /* check all the names in this back reference to see
896 * if they are in the log. if so, we allow them to stay
897 * otherwise they must be unlinked as a conflict
899 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
900 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
901 while (ptr < ptr_end) {
902 victim_ref = (struct btrfs_inode_ref *)ptr;
903 victim_name_len = btrfs_inode_ref_name_len(leaf,
905 victim_name = kmalloc(victim_name_len, GFP_NOFS);
909 read_extent_buffer(leaf, victim_name,
910 (unsigned long)(victim_ref + 1),
913 if (!backref_in_log(log_root, &search_key,
917 btrfs_inc_nlink(inode);
918 btrfs_release_path(path);
920 ret = btrfs_unlink_inode(trans, root, dir,
926 btrfs_run_delayed_items(trans, root);
932 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
936 * NOTE: we have searched root tree and checked the
937 * coresponding ref, it does not need to check again.
941 btrfs_release_path(path);
943 /* Same search but for extended refs */
944 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
945 inode_objectid, parent_objectid, 0,
947 if (!IS_ERR_OR_NULL(extref)) {
951 struct inode *victim_parent;
953 leaf = path->nodes[0];
955 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
956 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
958 while (cur_offset < item_size) {
959 extref = (struct btrfs_inode_extref *)base + cur_offset;
961 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
963 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
966 victim_name = kmalloc(victim_name_len, GFP_NOFS);
969 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
972 search_key.objectid = inode_objectid;
973 search_key.type = BTRFS_INODE_EXTREF_KEY;
974 search_key.offset = btrfs_extref_hash(parent_objectid,
978 if (!backref_in_log(log_root, &search_key,
979 parent_objectid, victim_name,
982 victim_parent = read_one_inode(root,
985 btrfs_inc_nlink(inode);
986 btrfs_release_path(path);
988 ret = btrfs_unlink_inode(trans, root,
993 btrfs_run_delayed_items(trans, root);
1006 cur_offset += victim_name_len + sizeof(*extref);
1010 btrfs_release_path(path);
1012 /* look for a conflicting sequence number */
1013 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1014 ref_index, name, namelen, 0);
1015 if (di && !IS_ERR(di)) {
1016 ret = drop_one_dir_item(trans, root, path, dir, di);
1020 btrfs_release_path(path);
1022 /* look for a conflicing name */
1023 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1025 if (di && !IS_ERR(di)) {
1026 ret = drop_one_dir_item(trans, root, path, dir, di);
1030 btrfs_release_path(path);
1035 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1036 u32 *namelen, char **name, u64 *index,
1037 u64 *parent_objectid)
1039 struct btrfs_inode_extref *extref;
1041 extref = (struct btrfs_inode_extref *)ref_ptr;
1043 *namelen = btrfs_inode_extref_name_len(eb, extref);
1044 *name = kmalloc(*namelen, GFP_NOFS);
1048 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1051 *index = btrfs_inode_extref_index(eb, extref);
1052 if (parent_objectid)
1053 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1058 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1059 u32 *namelen, char **name, u64 *index)
1061 struct btrfs_inode_ref *ref;
1063 ref = (struct btrfs_inode_ref *)ref_ptr;
1065 *namelen = btrfs_inode_ref_name_len(eb, ref);
1066 *name = kmalloc(*namelen, GFP_NOFS);
1070 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1072 *index = btrfs_inode_ref_index(eb, ref);
1078 * replay one inode back reference item found in the log tree.
1079 * eb, slot and key refer to the buffer and key found in the log tree.
1080 * root is the destination we are replaying into, and path is for temp
1081 * use by this function. (it should be released on return).
1083 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1084 struct btrfs_root *root,
1085 struct btrfs_root *log,
1086 struct btrfs_path *path,
1087 struct extent_buffer *eb, int slot,
1088 struct btrfs_key *key)
1091 struct inode *inode;
1092 unsigned long ref_ptr;
1093 unsigned long ref_end;
1097 int search_done = 0;
1098 int log_ref_ver = 0;
1099 u64 parent_objectid;
1102 int ref_struct_size;
1104 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1105 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1107 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1108 struct btrfs_inode_extref *r;
1110 ref_struct_size = sizeof(struct btrfs_inode_extref);
1112 r = (struct btrfs_inode_extref *)ref_ptr;
1113 parent_objectid = btrfs_inode_extref_parent(eb, r);
1115 ref_struct_size = sizeof(struct btrfs_inode_ref);
1116 parent_objectid = key->offset;
1118 inode_objectid = key->objectid;
1121 * it is possible that we didn't log all the parent directories
1122 * for a given inode. If we don't find the dir, just don't
1123 * copy the back ref in. The link count fixup code will take
1126 dir = read_one_inode(root, parent_objectid);
1130 inode = read_one_inode(root, inode_objectid);
1136 while (ref_ptr < ref_end) {
1138 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1139 &ref_index, &parent_objectid);
1141 * parent object can change from one array
1145 dir = read_one_inode(root, parent_objectid);
1149 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1155 /* if we already have a perfect match, we're done */
1156 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1157 ref_index, name, namelen)) {
1159 * look for a conflicting back reference in the
1160 * metadata. if we find one we have to unlink that name
1161 * of the file before we add our new link. Later on, we
1162 * overwrite any existing back reference, and we don't
1163 * want to create dangling pointers in the directory.
1167 ret = __add_inode_ref(trans, root, path, log,
1171 ref_index, name, namelen,
1181 /* insert our name */
1182 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1187 btrfs_update_inode(trans, root, inode);
1190 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1198 /* finally write the back reference in the inode */
1199 ret = overwrite_item(trans, root, path, eb, slot, key);
1201 btrfs_release_path(path);
1207 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1208 struct btrfs_root *root, u64 offset)
1211 ret = btrfs_find_orphan_item(root, offset);
1213 ret = btrfs_insert_orphan_item(trans, root, offset);
1217 static int count_inode_extrefs(struct btrfs_root *root,
1218 struct inode *inode, struct btrfs_path *path)
1222 unsigned int nlink = 0;
1225 u64 inode_objectid = btrfs_ino(inode);
1228 struct btrfs_inode_extref *extref;
1229 struct extent_buffer *leaf;
1232 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1237 leaf = path->nodes[0];
1238 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1239 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1241 while (cur_offset < item_size) {
1242 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1243 name_len = btrfs_inode_extref_name_len(leaf, extref);
1247 cur_offset += name_len + sizeof(*extref);
1251 btrfs_release_path(path);
1253 btrfs_release_path(path);
1260 static int count_inode_refs(struct btrfs_root *root,
1261 struct inode *inode, struct btrfs_path *path)
1264 struct btrfs_key key;
1265 unsigned int nlink = 0;
1267 unsigned long ptr_end;
1269 u64 ino = btrfs_ino(inode);
1272 key.type = BTRFS_INODE_REF_KEY;
1273 key.offset = (u64)-1;
1276 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1280 if (path->slots[0] == 0)
1284 btrfs_item_key_to_cpu(path->nodes[0], &key,
1286 if (key.objectid != ino ||
1287 key.type != BTRFS_INODE_REF_KEY)
1289 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1290 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1292 while (ptr < ptr_end) {
1293 struct btrfs_inode_ref *ref;
1295 ref = (struct btrfs_inode_ref *)ptr;
1296 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1298 ptr = (unsigned long)(ref + 1) + name_len;
1302 if (key.offset == 0)
1305 btrfs_release_path(path);
1307 btrfs_release_path(path);
1313 * There are a few corners where the link count of the file can't
1314 * be properly maintained during replay. So, instead of adding
1315 * lots of complexity to the log code, we just scan the backrefs
1316 * for any file that has been through replay.
1318 * The scan will update the link count on the inode to reflect the
1319 * number of back refs found. If it goes down to zero, the iput
1320 * will free the inode.
1322 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1323 struct btrfs_root *root,
1324 struct inode *inode)
1326 struct btrfs_path *path;
1329 u64 ino = btrfs_ino(inode);
1331 path = btrfs_alloc_path();
1335 ret = count_inode_refs(root, inode, path);
1341 ret = count_inode_extrefs(root, inode, path);
1352 if (nlink != inode->i_nlink) {
1353 set_nlink(inode, nlink);
1354 btrfs_update_inode(trans, root, inode);
1356 BTRFS_I(inode)->index_cnt = (u64)-1;
1358 if (inode->i_nlink == 0) {
1359 if (S_ISDIR(inode->i_mode)) {
1360 ret = replay_dir_deletes(trans, root, NULL, path,
1365 ret = insert_orphan_item(trans, root, ino);
1369 btrfs_free_path(path);
1373 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1374 struct btrfs_root *root,
1375 struct btrfs_path *path)
1378 struct btrfs_key key;
1379 struct inode *inode;
1381 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1382 key.type = BTRFS_ORPHAN_ITEM_KEY;
1383 key.offset = (u64)-1;
1385 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1390 if (path->slots[0] == 0)
1395 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1396 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1397 key.type != BTRFS_ORPHAN_ITEM_KEY)
1400 ret = btrfs_del_item(trans, root, path);
1404 btrfs_release_path(path);
1405 inode = read_one_inode(root, key.offset);
1409 ret = fixup_inode_link_count(trans, root, inode);
1415 * fixup on a directory may create new entries,
1416 * make sure we always look for the highset possible
1419 key.offset = (u64)-1;
1423 btrfs_release_path(path);
1429 * record a given inode in the fixup dir so we can check its link
1430 * count when replay is done. The link count is incremented here
1431 * so the inode won't go away until we check it
1433 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1434 struct btrfs_root *root,
1435 struct btrfs_path *path,
1438 struct btrfs_key key;
1440 struct inode *inode;
1442 inode = read_one_inode(root, objectid);
1446 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1447 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1448 key.offset = objectid;
1450 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1452 btrfs_release_path(path);
1454 if (!inode->i_nlink)
1455 set_nlink(inode, 1);
1457 btrfs_inc_nlink(inode);
1458 ret = btrfs_update_inode(trans, root, inode);
1459 } else if (ret == -EEXIST) {
1462 BUG(); /* Logic Error */
1470 * when replaying the log for a directory, we only insert names
1471 * for inodes that actually exist. This means an fsync on a directory
1472 * does not implicitly fsync all the new files in it
1474 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1475 struct btrfs_root *root,
1476 struct btrfs_path *path,
1477 u64 dirid, u64 index,
1478 char *name, int name_len, u8 type,
1479 struct btrfs_key *location)
1481 struct inode *inode;
1485 inode = read_one_inode(root, location->objectid);
1489 dir = read_one_inode(root, dirid);
1494 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1496 /* FIXME, put inode into FIXUP list */
1504 * take a single entry in a log directory item and replay it into
1507 * if a conflicting item exists in the subdirectory already,
1508 * the inode it points to is unlinked and put into the link count
1511 * If a name from the log points to a file or directory that does
1512 * not exist in the FS, it is skipped. fsyncs on directories
1513 * do not force down inodes inside that directory, just changes to the
1514 * names or unlinks in a directory.
1516 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1517 struct btrfs_root *root,
1518 struct btrfs_path *path,
1519 struct extent_buffer *eb,
1520 struct btrfs_dir_item *di,
1521 struct btrfs_key *key)
1525 struct btrfs_dir_item *dst_di;
1526 struct btrfs_key found_key;
1527 struct btrfs_key log_key;
1533 dir = read_one_inode(root, key->objectid);
1537 name_len = btrfs_dir_name_len(eb, di);
1538 name = kmalloc(name_len, GFP_NOFS);
1542 log_type = btrfs_dir_type(eb, di);
1543 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1546 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1547 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1552 btrfs_release_path(path);
1554 if (key->type == BTRFS_DIR_ITEM_KEY) {
1555 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1557 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1558 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1567 if (IS_ERR_OR_NULL(dst_di)) {
1568 /* we need a sequence number to insert, so we only
1569 * do inserts for the BTRFS_DIR_INDEX_KEY types
1571 if (key->type != BTRFS_DIR_INDEX_KEY)
1576 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1577 /* the existing item matches the logged item */
1578 if (found_key.objectid == log_key.objectid &&
1579 found_key.type == log_key.type &&
1580 found_key.offset == log_key.offset &&
1581 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1586 * don't drop the conflicting directory entry if the inode
1587 * for the new entry doesn't exist
1592 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1596 if (key->type == BTRFS_DIR_INDEX_KEY)
1599 btrfs_release_path(path);
1605 btrfs_release_path(path);
1606 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1607 name, name_len, log_type, &log_key);
1608 if (ret && ret != -ENOENT)
1615 * find all the names in a directory item and reconcile them into
1616 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1617 * one name in a directory item, but the same code gets used for
1618 * both directory index types
1620 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1621 struct btrfs_root *root,
1622 struct btrfs_path *path,
1623 struct extent_buffer *eb, int slot,
1624 struct btrfs_key *key)
1627 u32 item_size = btrfs_item_size_nr(eb, slot);
1628 struct btrfs_dir_item *di;
1631 unsigned long ptr_end;
1633 ptr = btrfs_item_ptr_offset(eb, slot);
1634 ptr_end = ptr + item_size;
1635 while (ptr < ptr_end) {
1636 di = (struct btrfs_dir_item *)ptr;
1637 if (verify_dir_item(root, eb, di))
1639 name_len = btrfs_dir_name_len(eb, di);
1640 ret = replay_one_name(trans, root, path, eb, di, key);
1643 ptr = (unsigned long)(di + 1);
1650 * directory replay has two parts. There are the standard directory
1651 * items in the log copied from the subvolume, and range items
1652 * created in the log while the subvolume was logged.
1654 * The range items tell us which parts of the key space the log
1655 * is authoritative for. During replay, if a key in the subvolume
1656 * directory is in a logged range item, but not actually in the log
1657 * that means it was deleted from the directory before the fsync
1658 * and should be removed.
1660 static noinline int find_dir_range(struct btrfs_root *root,
1661 struct btrfs_path *path,
1662 u64 dirid, int key_type,
1663 u64 *start_ret, u64 *end_ret)
1665 struct btrfs_key key;
1667 struct btrfs_dir_log_item *item;
1671 if (*start_ret == (u64)-1)
1674 key.objectid = dirid;
1675 key.type = key_type;
1676 key.offset = *start_ret;
1678 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1682 if (path->slots[0] == 0)
1687 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1689 if (key.type != key_type || key.objectid != dirid) {
1693 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1694 struct btrfs_dir_log_item);
1695 found_end = btrfs_dir_log_end(path->nodes[0], item);
1697 if (*start_ret >= key.offset && *start_ret <= found_end) {
1699 *start_ret = key.offset;
1700 *end_ret = found_end;
1705 /* check the next slot in the tree to see if it is a valid item */
1706 nritems = btrfs_header_nritems(path->nodes[0]);
1707 if (path->slots[0] >= nritems) {
1708 ret = btrfs_next_leaf(root, path);
1715 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1717 if (key.type != key_type || key.objectid != dirid) {
1721 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1722 struct btrfs_dir_log_item);
1723 found_end = btrfs_dir_log_end(path->nodes[0], item);
1724 *start_ret = key.offset;
1725 *end_ret = found_end;
1728 btrfs_release_path(path);
1733 * this looks for a given directory item in the log. If the directory
1734 * item is not in the log, the item is removed and the inode it points
1737 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1738 struct btrfs_root *root,
1739 struct btrfs_root *log,
1740 struct btrfs_path *path,
1741 struct btrfs_path *log_path,
1743 struct btrfs_key *dir_key)
1746 struct extent_buffer *eb;
1749 struct btrfs_dir_item *di;
1750 struct btrfs_dir_item *log_di;
1753 unsigned long ptr_end;
1755 struct inode *inode;
1756 struct btrfs_key location;
1759 eb = path->nodes[0];
1760 slot = path->slots[0];
1761 item_size = btrfs_item_size_nr(eb, slot);
1762 ptr = btrfs_item_ptr_offset(eb, slot);
1763 ptr_end = ptr + item_size;
1764 while (ptr < ptr_end) {
1765 di = (struct btrfs_dir_item *)ptr;
1766 if (verify_dir_item(root, eb, di)) {
1771 name_len = btrfs_dir_name_len(eb, di);
1772 name = kmalloc(name_len, GFP_NOFS);
1777 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1780 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1781 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1784 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1785 log_di = btrfs_lookup_dir_index_item(trans, log,
1791 if (IS_ERR_OR_NULL(log_di)) {
1792 btrfs_dir_item_key_to_cpu(eb, di, &location);
1793 btrfs_release_path(path);
1794 btrfs_release_path(log_path);
1795 inode = read_one_inode(root, location.objectid);
1801 ret = link_to_fixup_dir(trans, root,
1802 path, location.objectid);
1809 btrfs_inc_nlink(inode);
1810 ret = btrfs_unlink_inode(trans, root, dir, inode,
1813 btrfs_run_delayed_items(trans, root);
1819 /* there might still be more names under this key
1820 * check and repeat if required
1822 ret = btrfs_search_slot(NULL, root, dir_key, path,
1829 btrfs_release_path(log_path);
1832 ptr = (unsigned long)(di + 1);
1837 btrfs_release_path(path);
1838 btrfs_release_path(log_path);
1843 * deletion replay happens before we copy any new directory items
1844 * out of the log or out of backreferences from inodes. It
1845 * scans the log to find ranges of keys that log is authoritative for,
1846 * and then scans the directory to find items in those ranges that are
1847 * not present in the log.
1849 * Anything we don't find in the log is unlinked and removed from the
1852 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1853 struct btrfs_root *root,
1854 struct btrfs_root *log,
1855 struct btrfs_path *path,
1856 u64 dirid, int del_all)
1860 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1862 struct btrfs_key dir_key;
1863 struct btrfs_key found_key;
1864 struct btrfs_path *log_path;
1867 dir_key.objectid = dirid;
1868 dir_key.type = BTRFS_DIR_ITEM_KEY;
1869 log_path = btrfs_alloc_path();
1873 dir = read_one_inode(root, dirid);
1874 /* it isn't an error if the inode isn't there, that can happen
1875 * because we replay the deletes before we copy in the inode item
1879 btrfs_free_path(log_path);
1887 range_end = (u64)-1;
1889 ret = find_dir_range(log, path, dirid, key_type,
1890 &range_start, &range_end);
1895 dir_key.offset = range_start;
1898 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1903 nritems = btrfs_header_nritems(path->nodes[0]);
1904 if (path->slots[0] >= nritems) {
1905 ret = btrfs_next_leaf(root, path);
1909 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1911 if (found_key.objectid != dirid ||
1912 found_key.type != dir_key.type)
1915 if (found_key.offset > range_end)
1918 ret = check_item_in_log(trans, root, log, path,
1923 if (found_key.offset == (u64)-1)
1925 dir_key.offset = found_key.offset + 1;
1927 btrfs_release_path(path);
1928 if (range_end == (u64)-1)
1930 range_start = range_end + 1;
1935 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1936 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1937 dir_key.type = BTRFS_DIR_INDEX_KEY;
1938 btrfs_release_path(path);
1942 btrfs_release_path(path);
1943 btrfs_free_path(log_path);
1949 * the process_func used to replay items from the log tree. This
1950 * gets called in two different stages. The first stage just looks
1951 * for inodes and makes sure they are all copied into the subvolume.
1953 * The second stage copies all the other item types from the log into
1954 * the subvolume. The two stage approach is slower, but gets rid of
1955 * lots of complexity around inodes referencing other inodes that exist
1956 * only in the log (references come from either directory items or inode
1959 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1960 struct walk_control *wc, u64 gen)
1963 struct btrfs_path *path;
1964 struct btrfs_root *root = wc->replay_dest;
1965 struct btrfs_key key;
1970 ret = btrfs_read_buffer(eb, gen);
1974 level = btrfs_header_level(eb);
1979 path = btrfs_alloc_path();
1983 nritems = btrfs_header_nritems(eb);
1984 for (i = 0; i < nritems; i++) {
1985 btrfs_item_key_to_cpu(eb, &key, i);
1987 /* inode keys are done during the first stage */
1988 if (key.type == BTRFS_INODE_ITEM_KEY &&
1989 wc->stage == LOG_WALK_REPLAY_INODES) {
1990 struct btrfs_inode_item *inode_item;
1993 inode_item = btrfs_item_ptr(eb, i,
1994 struct btrfs_inode_item);
1995 mode = btrfs_inode_mode(eb, inode_item);
1996 if (S_ISDIR(mode)) {
1997 ret = replay_dir_deletes(wc->trans,
1998 root, log, path, key.objectid, 0);
2002 ret = overwrite_item(wc->trans, root, path,
2007 /* for regular files, make sure corresponding
2008 * orhpan item exist. extents past the new EOF
2009 * will be truncated later by orphan cleanup.
2011 if (S_ISREG(mode)) {
2012 ret = insert_orphan_item(wc->trans, root,
2018 ret = link_to_fixup_dir(wc->trans, root,
2019 path, key.objectid);
2023 if (wc->stage < LOG_WALK_REPLAY_ALL)
2026 /* these keys are simply copied */
2027 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2028 ret = overwrite_item(wc->trans, root, path,
2032 } else if (key.type == BTRFS_INODE_REF_KEY ||
2033 key.type == BTRFS_INODE_EXTREF_KEY) {
2034 ret = add_inode_ref(wc->trans, root, log, path,
2036 if (ret && ret != -ENOENT)
2039 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2040 ret = replay_one_extent(wc->trans, root, path,
2044 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
2045 key.type == BTRFS_DIR_INDEX_KEY) {
2046 ret = replay_one_dir_item(wc->trans, root, path,
2052 btrfs_free_path(path);
2056 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2057 struct btrfs_root *root,
2058 struct btrfs_path *path, int *level,
2059 struct walk_control *wc)
2064 struct extent_buffer *next;
2065 struct extent_buffer *cur;
2066 struct extent_buffer *parent;
2070 WARN_ON(*level < 0);
2071 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2073 while (*level > 0) {
2074 WARN_ON(*level < 0);
2075 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2076 cur = path->nodes[*level];
2078 if (btrfs_header_level(cur) != *level)
2081 if (path->slots[*level] >=
2082 btrfs_header_nritems(cur))
2085 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2086 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2087 blocksize = btrfs_level_size(root, *level - 1);
2089 parent = path->nodes[*level];
2090 root_owner = btrfs_header_owner(parent);
2092 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2097 ret = wc->process_func(root, next, wc, ptr_gen);
2099 free_extent_buffer(next);
2103 path->slots[*level]++;
2105 ret = btrfs_read_buffer(next, ptr_gen);
2107 free_extent_buffer(next);
2111 btrfs_tree_lock(next);
2112 btrfs_set_lock_blocking(next);
2113 clean_tree_block(trans, root, next);
2114 btrfs_wait_tree_block_writeback(next);
2115 btrfs_tree_unlock(next);
2117 WARN_ON(root_owner !=
2118 BTRFS_TREE_LOG_OBJECTID);
2119 ret = btrfs_free_and_pin_reserved_extent(root,
2122 free_extent_buffer(next);
2126 free_extent_buffer(next);
2129 ret = btrfs_read_buffer(next, ptr_gen);
2131 free_extent_buffer(next);
2135 WARN_ON(*level <= 0);
2136 if (path->nodes[*level-1])
2137 free_extent_buffer(path->nodes[*level-1]);
2138 path->nodes[*level-1] = next;
2139 *level = btrfs_header_level(next);
2140 path->slots[*level] = 0;
2143 WARN_ON(*level < 0);
2144 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2146 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2152 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2153 struct btrfs_root *root,
2154 struct btrfs_path *path, int *level,
2155 struct walk_control *wc)
2162 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2163 slot = path->slots[i];
2164 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2167 WARN_ON(*level == 0);
2170 struct extent_buffer *parent;
2171 if (path->nodes[*level] == root->node)
2172 parent = path->nodes[*level];
2174 parent = path->nodes[*level + 1];
2176 root_owner = btrfs_header_owner(parent);
2177 ret = wc->process_func(root, path->nodes[*level], wc,
2178 btrfs_header_generation(path->nodes[*level]));
2183 struct extent_buffer *next;
2185 next = path->nodes[*level];
2187 btrfs_tree_lock(next);
2188 btrfs_set_lock_blocking(next);
2189 clean_tree_block(trans, root, next);
2190 btrfs_wait_tree_block_writeback(next);
2191 btrfs_tree_unlock(next);
2193 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2194 ret = btrfs_free_and_pin_reserved_extent(root,
2195 path->nodes[*level]->start,
2196 path->nodes[*level]->len);
2200 free_extent_buffer(path->nodes[*level]);
2201 path->nodes[*level] = NULL;
2209 * drop the reference count on the tree rooted at 'snap'. This traverses
2210 * the tree freeing any blocks that have a ref count of zero after being
2213 static int walk_log_tree(struct btrfs_trans_handle *trans,
2214 struct btrfs_root *log, struct walk_control *wc)
2219 struct btrfs_path *path;
2222 path = btrfs_alloc_path();
2226 level = btrfs_header_level(log->node);
2228 path->nodes[level] = log->node;
2229 extent_buffer_get(log->node);
2230 path->slots[level] = 0;
2233 wret = walk_down_log_tree(trans, log, path, &level, wc);
2241 wret = walk_up_log_tree(trans, log, path, &level, wc);
2250 /* was the root node processed? if not, catch it here */
2251 if (path->nodes[orig_level]) {
2252 ret = wc->process_func(log, path->nodes[orig_level], wc,
2253 btrfs_header_generation(path->nodes[orig_level]));
2257 struct extent_buffer *next;
2259 next = path->nodes[orig_level];
2261 btrfs_tree_lock(next);
2262 btrfs_set_lock_blocking(next);
2263 clean_tree_block(trans, log, next);
2264 btrfs_wait_tree_block_writeback(next);
2265 btrfs_tree_unlock(next);
2267 WARN_ON(log->root_key.objectid !=
2268 BTRFS_TREE_LOG_OBJECTID);
2269 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2277 btrfs_free_path(path);
2282 * helper function to update the item for a given subvolumes log root
2283 * in the tree of log roots
2285 static int update_log_root(struct btrfs_trans_handle *trans,
2286 struct btrfs_root *log)
2290 if (log->log_transid == 1) {
2291 /* insert root item on the first sync */
2292 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2293 &log->root_key, &log->root_item);
2295 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2296 &log->root_key, &log->root_item);
2301 static int wait_log_commit(struct btrfs_trans_handle *trans,
2302 struct btrfs_root *root, unsigned long transid)
2305 int index = transid % 2;
2308 * we only allow two pending log transactions at a time,
2309 * so we know that if ours is more than 2 older than the
2310 * current transaction, we're done
2313 prepare_to_wait(&root->log_commit_wait[index],
2314 &wait, TASK_UNINTERRUPTIBLE);
2315 mutex_unlock(&root->log_mutex);
2317 if (root->fs_info->last_trans_log_full_commit !=
2318 trans->transid && root->log_transid < transid + 2 &&
2319 atomic_read(&root->log_commit[index]))
2322 finish_wait(&root->log_commit_wait[index], &wait);
2323 mutex_lock(&root->log_mutex);
2324 } while (root->fs_info->last_trans_log_full_commit !=
2325 trans->transid && root->log_transid < transid + 2 &&
2326 atomic_read(&root->log_commit[index]));
2330 static void wait_for_writer(struct btrfs_trans_handle *trans,
2331 struct btrfs_root *root)
2334 while (root->fs_info->last_trans_log_full_commit !=
2335 trans->transid && atomic_read(&root->log_writers)) {
2336 prepare_to_wait(&root->log_writer_wait,
2337 &wait, TASK_UNINTERRUPTIBLE);
2338 mutex_unlock(&root->log_mutex);
2339 if (root->fs_info->last_trans_log_full_commit !=
2340 trans->transid && atomic_read(&root->log_writers))
2342 mutex_lock(&root->log_mutex);
2343 finish_wait(&root->log_writer_wait, &wait);
2348 * btrfs_sync_log does sends a given tree log down to the disk and
2349 * updates the super blocks to record it. When this call is done,
2350 * you know that any inodes previously logged are safely on disk only
2353 * Any other return value means you need to call btrfs_commit_transaction.
2354 * Some of the edge cases for fsyncing directories that have had unlinks
2355 * or renames done in the past mean that sometimes the only safe
2356 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2357 * that has happened.
2359 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2360 struct btrfs_root *root)
2366 struct btrfs_root *log = root->log_root;
2367 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2368 unsigned long log_transid = 0;
2369 struct blk_plug plug;
2371 mutex_lock(&root->log_mutex);
2372 log_transid = root->log_transid;
2373 index1 = root->log_transid % 2;
2374 if (atomic_read(&root->log_commit[index1])) {
2375 wait_log_commit(trans, root, root->log_transid);
2376 mutex_unlock(&root->log_mutex);
2379 atomic_set(&root->log_commit[index1], 1);
2381 /* wait for previous tree log sync to complete */
2382 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2383 wait_log_commit(trans, root, root->log_transid - 1);
2385 int batch = atomic_read(&root->log_batch);
2386 /* when we're on an ssd, just kick the log commit out */
2387 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2388 mutex_unlock(&root->log_mutex);
2389 schedule_timeout_uninterruptible(1);
2390 mutex_lock(&root->log_mutex);
2392 wait_for_writer(trans, root);
2393 if (batch == atomic_read(&root->log_batch))
2397 /* bail out if we need to do a full commit */
2398 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2400 btrfs_free_logged_extents(log, log_transid);
2401 mutex_unlock(&root->log_mutex);
2405 if (log_transid % 2 == 0)
2406 mark = EXTENT_DIRTY;
2410 /* we start IO on all the marked extents here, but we don't actually
2411 * wait for them until later.
2413 blk_start_plug(&plug);
2414 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2416 blk_finish_plug(&plug);
2417 btrfs_abort_transaction(trans, root, ret);
2418 btrfs_free_logged_extents(log, log_transid);
2419 mutex_unlock(&root->log_mutex);
2423 btrfs_set_root_node(&log->root_item, log->node);
2425 root->log_transid++;
2426 log->log_transid = root->log_transid;
2427 root->log_start_pid = 0;
2430 * IO has been started, blocks of the log tree have WRITTEN flag set
2431 * in their headers. new modifications of the log will be written to
2432 * new positions. so it's safe to allow log writers to go in.
2434 mutex_unlock(&root->log_mutex);
2436 mutex_lock(&log_root_tree->log_mutex);
2437 atomic_inc(&log_root_tree->log_batch);
2438 atomic_inc(&log_root_tree->log_writers);
2439 mutex_unlock(&log_root_tree->log_mutex);
2441 ret = update_log_root(trans, log);
2443 mutex_lock(&log_root_tree->log_mutex);
2444 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2446 if (waitqueue_active(&log_root_tree->log_writer_wait))
2447 wake_up(&log_root_tree->log_writer_wait);
2451 blk_finish_plug(&plug);
2452 if (ret != -ENOSPC) {
2453 btrfs_abort_transaction(trans, root, ret);
2454 mutex_unlock(&log_root_tree->log_mutex);
2457 root->fs_info->last_trans_log_full_commit = trans->transid;
2458 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2459 btrfs_free_logged_extents(log, log_transid);
2460 mutex_unlock(&log_root_tree->log_mutex);
2465 index2 = log_root_tree->log_transid % 2;
2466 if (atomic_read(&log_root_tree->log_commit[index2])) {
2467 blk_finish_plug(&plug);
2468 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2469 wait_log_commit(trans, log_root_tree,
2470 log_root_tree->log_transid);
2471 btrfs_free_logged_extents(log, log_transid);
2472 mutex_unlock(&log_root_tree->log_mutex);
2476 atomic_set(&log_root_tree->log_commit[index2], 1);
2478 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2479 wait_log_commit(trans, log_root_tree,
2480 log_root_tree->log_transid - 1);
2483 wait_for_writer(trans, log_root_tree);
2486 * now that we've moved on to the tree of log tree roots,
2487 * check the full commit flag again
2489 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2490 blk_finish_plug(&plug);
2491 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2492 btrfs_free_logged_extents(log, log_transid);
2493 mutex_unlock(&log_root_tree->log_mutex);
2495 goto out_wake_log_root;
2498 ret = btrfs_write_marked_extents(log_root_tree,
2499 &log_root_tree->dirty_log_pages,
2500 EXTENT_DIRTY | EXTENT_NEW);
2501 blk_finish_plug(&plug);
2503 btrfs_abort_transaction(trans, root, ret);
2504 btrfs_free_logged_extents(log, log_transid);
2505 mutex_unlock(&log_root_tree->log_mutex);
2506 goto out_wake_log_root;
2508 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2509 btrfs_wait_marked_extents(log_root_tree,
2510 &log_root_tree->dirty_log_pages,
2511 EXTENT_NEW | EXTENT_DIRTY);
2512 btrfs_wait_logged_extents(log, log_transid);
2514 btrfs_set_super_log_root(root->fs_info->super_for_commit,
2515 log_root_tree->node->start);
2516 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2517 btrfs_header_level(log_root_tree->node));
2519 log_root_tree->log_transid++;
2522 mutex_unlock(&log_root_tree->log_mutex);
2525 * nobody else is going to jump in and write the the ctree
2526 * super here because the log_commit atomic below is protecting
2527 * us. We must be called with a transaction handle pinning
2528 * the running transaction open, so a full commit can't hop
2529 * in and cause problems either.
2531 btrfs_scrub_pause_super(root);
2532 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2533 btrfs_scrub_continue_super(root);
2535 btrfs_abort_transaction(trans, root, ret);
2536 goto out_wake_log_root;
2539 mutex_lock(&root->log_mutex);
2540 if (root->last_log_commit < log_transid)
2541 root->last_log_commit = log_transid;
2542 mutex_unlock(&root->log_mutex);
2545 atomic_set(&log_root_tree->log_commit[index2], 0);
2547 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2548 wake_up(&log_root_tree->log_commit_wait[index2]);
2550 atomic_set(&root->log_commit[index1], 0);
2552 if (waitqueue_active(&root->log_commit_wait[index1]))
2553 wake_up(&root->log_commit_wait[index1]);
2557 static void free_log_tree(struct btrfs_trans_handle *trans,
2558 struct btrfs_root *log)
2563 struct walk_control wc = {
2565 .process_func = process_one_buffer
2569 ret = walk_log_tree(trans, log, &wc);
2571 /* I don't think this can happen but just in case */
2573 btrfs_abort_transaction(trans, log, ret);
2577 ret = find_first_extent_bit(&log->dirty_log_pages,
2578 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2583 clear_extent_bits(&log->dirty_log_pages, start, end,
2584 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2588 * We may have short-circuited the log tree with the full commit logic
2589 * and left ordered extents on our list, so clear these out to keep us
2590 * from leaking inodes and memory.
2592 btrfs_free_logged_extents(log, 0);
2593 btrfs_free_logged_extents(log, 1);
2595 free_extent_buffer(log->node);
2600 * free all the extents used by the tree log. This should be called
2601 * at commit time of the full transaction
2603 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2605 if (root->log_root) {
2606 free_log_tree(trans, root->log_root);
2607 root->log_root = NULL;
2612 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2613 struct btrfs_fs_info *fs_info)
2615 if (fs_info->log_root_tree) {
2616 free_log_tree(trans, fs_info->log_root_tree);
2617 fs_info->log_root_tree = NULL;
2623 * If both a file and directory are logged, and unlinks or renames are
2624 * mixed in, we have a few interesting corners:
2626 * create file X in dir Y
2627 * link file X to X.link in dir Y
2629 * unlink file X but leave X.link
2632 * After a crash we would expect only X.link to exist. But file X
2633 * didn't get fsync'd again so the log has back refs for X and X.link.
2635 * We solve this by removing directory entries and inode backrefs from the
2636 * log when a file that was logged in the current transaction is
2637 * unlinked. Any later fsync will include the updated log entries, and
2638 * we'll be able to reconstruct the proper directory items from backrefs.
2640 * This optimizations allows us to avoid relogging the entire inode
2641 * or the entire directory.
2643 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2644 struct btrfs_root *root,
2645 const char *name, int name_len,
2646 struct inode *dir, u64 index)
2648 struct btrfs_root *log;
2649 struct btrfs_dir_item *di;
2650 struct btrfs_path *path;
2654 u64 dir_ino = btrfs_ino(dir);
2656 if (BTRFS_I(dir)->logged_trans < trans->transid)
2659 ret = join_running_log_trans(root);
2663 mutex_lock(&BTRFS_I(dir)->log_mutex);
2665 log = root->log_root;
2666 path = btrfs_alloc_path();
2672 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2673 name, name_len, -1);
2679 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2680 bytes_del += name_len;
2686 btrfs_release_path(path);
2687 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2688 index, name, name_len, -1);
2694 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2695 bytes_del += name_len;
2702 /* update the directory size in the log to reflect the names
2706 struct btrfs_key key;
2708 key.objectid = dir_ino;
2710 key.type = BTRFS_INODE_ITEM_KEY;
2711 btrfs_release_path(path);
2713 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2719 struct btrfs_inode_item *item;
2722 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2723 struct btrfs_inode_item);
2724 i_size = btrfs_inode_size(path->nodes[0], item);
2725 if (i_size > bytes_del)
2726 i_size -= bytes_del;
2729 btrfs_set_inode_size(path->nodes[0], item, i_size);
2730 btrfs_mark_buffer_dirty(path->nodes[0]);
2733 btrfs_release_path(path);
2736 btrfs_free_path(path);
2738 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2739 if (ret == -ENOSPC) {
2740 root->fs_info->last_trans_log_full_commit = trans->transid;
2743 btrfs_abort_transaction(trans, root, ret);
2745 btrfs_end_log_trans(root);
2750 /* see comments for btrfs_del_dir_entries_in_log */
2751 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2752 struct btrfs_root *root,
2753 const char *name, int name_len,
2754 struct inode *inode, u64 dirid)
2756 struct btrfs_root *log;
2760 if (BTRFS_I(inode)->logged_trans < trans->transid)
2763 ret = join_running_log_trans(root);
2766 log = root->log_root;
2767 mutex_lock(&BTRFS_I(inode)->log_mutex);
2769 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2771 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2772 if (ret == -ENOSPC) {
2773 root->fs_info->last_trans_log_full_commit = trans->transid;
2775 } else if (ret < 0 && ret != -ENOENT)
2776 btrfs_abort_transaction(trans, root, ret);
2777 btrfs_end_log_trans(root);
2783 * creates a range item in the log for 'dirid'. first_offset and
2784 * last_offset tell us which parts of the key space the log should
2785 * be considered authoritative for.
2787 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2788 struct btrfs_root *log,
2789 struct btrfs_path *path,
2790 int key_type, u64 dirid,
2791 u64 first_offset, u64 last_offset)
2794 struct btrfs_key key;
2795 struct btrfs_dir_log_item *item;
2797 key.objectid = dirid;
2798 key.offset = first_offset;
2799 if (key_type == BTRFS_DIR_ITEM_KEY)
2800 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2802 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2803 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2807 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2808 struct btrfs_dir_log_item);
2809 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2810 btrfs_mark_buffer_dirty(path->nodes[0]);
2811 btrfs_release_path(path);
2816 * log all the items included in the current transaction for a given
2817 * directory. This also creates the range items in the log tree required
2818 * to replay anything deleted before the fsync
2820 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2821 struct btrfs_root *root, struct inode *inode,
2822 struct btrfs_path *path,
2823 struct btrfs_path *dst_path, int key_type,
2824 u64 min_offset, u64 *last_offset_ret)
2826 struct btrfs_key min_key;
2827 struct btrfs_key max_key;
2828 struct btrfs_root *log = root->log_root;
2829 struct extent_buffer *src;
2834 u64 first_offset = min_offset;
2835 u64 last_offset = (u64)-1;
2836 u64 ino = btrfs_ino(inode);
2838 log = root->log_root;
2839 max_key.objectid = ino;
2840 max_key.offset = (u64)-1;
2841 max_key.type = key_type;
2843 min_key.objectid = ino;
2844 min_key.type = key_type;
2845 min_key.offset = min_offset;
2847 path->keep_locks = 1;
2849 ret = btrfs_search_forward(root, &min_key, &max_key,
2850 path, trans->transid);
2853 * we didn't find anything from this transaction, see if there
2854 * is anything at all
2856 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2857 min_key.objectid = ino;
2858 min_key.type = key_type;
2859 min_key.offset = (u64)-1;
2860 btrfs_release_path(path);
2861 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2863 btrfs_release_path(path);
2866 ret = btrfs_previous_item(root, path, ino, key_type);
2868 /* if ret == 0 there are items for this type,
2869 * create a range to tell us the last key of this type.
2870 * otherwise, there are no items in this directory after
2871 * *min_offset, and we create a range to indicate that.
2874 struct btrfs_key tmp;
2875 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2877 if (key_type == tmp.type)
2878 first_offset = max(min_offset, tmp.offset) + 1;
2883 /* go backward to find any previous key */
2884 ret = btrfs_previous_item(root, path, ino, key_type);
2886 struct btrfs_key tmp;
2887 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2888 if (key_type == tmp.type) {
2889 first_offset = tmp.offset;
2890 ret = overwrite_item(trans, log, dst_path,
2891 path->nodes[0], path->slots[0],
2899 btrfs_release_path(path);
2901 /* find the first key from this transaction again */
2902 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2909 * we have a block from this transaction, log every item in it
2910 * from our directory
2913 struct btrfs_key tmp;
2914 src = path->nodes[0];
2915 nritems = btrfs_header_nritems(src);
2916 for (i = path->slots[0]; i < nritems; i++) {
2917 btrfs_item_key_to_cpu(src, &min_key, i);
2919 if (min_key.objectid != ino || min_key.type != key_type)
2921 ret = overwrite_item(trans, log, dst_path, src, i,
2928 path->slots[0] = nritems;
2931 * look ahead to the next item and see if it is also
2932 * from this directory and from this transaction
2934 ret = btrfs_next_leaf(root, path);
2936 last_offset = (u64)-1;
2939 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2940 if (tmp.objectid != ino || tmp.type != key_type) {
2941 last_offset = (u64)-1;
2944 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2945 ret = overwrite_item(trans, log, dst_path,
2946 path->nodes[0], path->slots[0],
2951 last_offset = tmp.offset;
2956 btrfs_release_path(path);
2957 btrfs_release_path(dst_path);
2960 *last_offset_ret = last_offset;
2962 * insert the log range keys to indicate where the log
2965 ret = insert_dir_log_key(trans, log, path, key_type,
2966 ino, first_offset, last_offset);
2974 * logging directories is very similar to logging inodes, We find all the items
2975 * from the current transaction and write them to the log.
2977 * The recovery code scans the directory in the subvolume, and if it finds a
2978 * key in the range logged that is not present in the log tree, then it means
2979 * that dir entry was unlinked during the transaction.
2981 * In order for that scan to work, we must include one key smaller than
2982 * the smallest logged by this transaction and one key larger than the largest
2983 * key logged by this transaction.
2985 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2986 struct btrfs_root *root, struct inode *inode,
2987 struct btrfs_path *path,
2988 struct btrfs_path *dst_path)
2993 int key_type = BTRFS_DIR_ITEM_KEY;
2999 ret = log_dir_items(trans, root, inode, path,
3000 dst_path, key_type, min_key,
3004 if (max_key == (u64)-1)
3006 min_key = max_key + 1;
3009 if (key_type == BTRFS_DIR_ITEM_KEY) {
3010 key_type = BTRFS_DIR_INDEX_KEY;
3017 * a helper function to drop items from the log before we relog an
3018 * inode. max_key_type indicates the highest item type to remove.
3019 * This cannot be run for file data extents because it does not
3020 * free the extents they point to.
3022 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3023 struct btrfs_root *log,
3024 struct btrfs_path *path,
3025 u64 objectid, int max_key_type)
3028 struct btrfs_key key;
3029 struct btrfs_key found_key;
3032 key.objectid = objectid;
3033 key.type = max_key_type;
3034 key.offset = (u64)-1;
3037 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3038 BUG_ON(ret == 0); /* Logic error */
3042 if (path->slots[0] == 0)
3046 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3049 if (found_key.objectid != objectid)
3052 found_key.offset = 0;
3054 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3057 ret = btrfs_del_items(trans, log, path, start_slot,
3058 path->slots[0] - start_slot + 1);
3060 * If start slot isn't 0 then we don't need to re-search, we've
3061 * found the last guy with the objectid in this tree.
3063 if (ret || start_slot != 0)
3065 btrfs_release_path(path);
3067 btrfs_release_path(path);
3073 static void fill_inode_item(struct btrfs_trans_handle *trans,
3074 struct extent_buffer *leaf,
3075 struct btrfs_inode_item *item,
3076 struct inode *inode, int log_inode_only)
3078 struct btrfs_map_token token;
3080 btrfs_init_map_token(&token);
3082 if (log_inode_only) {
3083 /* set the generation to zero so the recover code
3084 * can tell the difference between an logging
3085 * just to say 'this inode exists' and a logging
3086 * to say 'update this inode with these values'
3088 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3089 btrfs_set_token_inode_size(leaf, item, 0, &token);
3091 btrfs_set_token_inode_generation(leaf, item,
3092 BTRFS_I(inode)->generation,
3094 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3097 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3098 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3099 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3100 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3102 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3103 inode->i_atime.tv_sec, &token);
3104 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3105 inode->i_atime.tv_nsec, &token);
3107 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3108 inode->i_mtime.tv_sec, &token);
3109 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3110 inode->i_mtime.tv_nsec, &token);
3112 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3113 inode->i_ctime.tv_sec, &token);
3114 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3115 inode->i_ctime.tv_nsec, &token);
3117 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3120 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3121 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3122 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3123 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3124 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3127 static int log_inode_item(struct btrfs_trans_handle *trans,
3128 struct btrfs_root *log, struct btrfs_path *path,
3129 struct inode *inode)
3131 struct btrfs_inode_item *inode_item;
3132 struct btrfs_key key;
3135 memcpy(&key, &BTRFS_I(inode)->location, sizeof(key));
3136 ret = btrfs_insert_empty_item(trans, log, path, &key,
3137 sizeof(*inode_item));
3138 if (ret && ret != -EEXIST)
3140 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3141 struct btrfs_inode_item);
3142 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3143 btrfs_release_path(path);
3147 static noinline int copy_items(struct btrfs_trans_handle *trans,
3148 struct inode *inode,
3149 struct btrfs_path *dst_path,
3150 struct extent_buffer *src,
3151 int start_slot, int nr, int inode_only)
3153 unsigned long src_offset;
3154 unsigned long dst_offset;
3155 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3156 struct btrfs_file_extent_item *extent;
3157 struct btrfs_inode_item *inode_item;
3159 struct btrfs_key *ins_keys;
3163 struct list_head ordered_sums;
3164 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3166 INIT_LIST_HEAD(&ordered_sums);
3168 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3169 nr * sizeof(u32), GFP_NOFS);
3173 ins_sizes = (u32 *)ins_data;
3174 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3176 for (i = 0; i < nr; i++) {
3177 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3178 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3180 ret = btrfs_insert_empty_items(trans, log, dst_path,
3181 ins_keys, ins_sizes, nr);
3187 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3188 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3189 dst_path->slots[0]);
3191 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3193 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3194 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3196 struct btrfs_inode_item);
3197 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3198 inode, inode_only == LOG_INODE_EXISTS);
3200 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3201 src_offset, ins_sizes[i]);
3204 /* take a reference on file data extents so that truncates
3205 * or deletes of this inode don't have to relog the inode
3208 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3211 extent = btrfs_item_ptr(src, start_slot + i,
3212 struct btrfs_file_extent_item);
3214 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3217 found_type = btrfs_file_extent_type(src, extent);
3218 if (found_type == BTRFS_FILE_EXTENT_REG) {
3220 ds = btrfs_file_extent_disk_bytenr(src,
3222 /* ds == 0 is a hole */
3226 dl = btrfs_file_extent_disk_num_bytes(src,
3228 cs = btrfs_file_extent_offset(src, extent);
3229 cl = btrfs_file_extent_num_bytes(src,
3231 if (btrfs_file_extent_compression(src,
3237 ret = btrfs_lookup_csums_range(
3238 log->fs_info->csum_root,
3239 ds + cs, ds + cs + cl - 1,
3242 btrfs_release_path(dst_path);
3250 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3251 btrfs_release_path(dst_path);
3255 * we have to do this after the loop above to avoid changing the
3256 * log tree while trying to change the log tree.
3259 while (!list_empty(&ordered_sums)) {
3260 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3261 struct btrfs_ordered_sum,
3264 ret = btrfs_csum_file_blocks(trans, log, sums);
3265 list_del(&sums->list);
3271 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3273 struct extent_map *em1, *em2;
3275 em1 = list_entry(a, struct extent_map, list);
3276 em2 = list_entry(b, struct extent_map, list);
3278 if (em1->start < em2->start)
3280 else if (em1->start > em2->start)
3285 static int log_one_extent(struct btrfs_trans_handle *trans,
3286 struct inode *inode, struct btrfs_root *root,
3287 struct extent_map *em, struct btrfs_path *path)
3289 struct btrfs_root *log = root->log_root;
3290 struct btrfs_file_extent_item *fi;
3291 struct extent_buffer *leaf;
3292 struct btrfs_ordered_extent *ordered;
3293 struct list_head ordered_sums;
3294 struct btrfs_map_token token;
3295 struct btrfs_key key;
3296 u64 mod_start = em->mod_start;
3297 u64 mod_len = em->mod_len;
3300 u64 extent_offset = em->start - em->orig_start;
3303 int index = log->log_transid % 2;
3304 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3306 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3307 em->start + em->len, NULL, 0);
3311 INIT_LIST_HEAD(&ordered_sums);
3312 btrfs_init_map_token(&token);
3313 key.objectid = btrfs_ino(inode);
3314 key.type = BTRFS_EXTENT_DATA_KEY;
3315 key.offset = em->start;
3317 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*fi));
3320 leaf = path->nodes[0];
3321 fi = btrfs_item_ptr(leaf, path->slots[0],
3322 struct btrfs_file_extent_item);
3324 btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3326 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3328 btrfs_set_token_file_extent_type(leaf, fi,
3329 BTRFS_FILE_EXTENT_PREALLOC,
3332 btrfs_set_token_file_extent_type(leaf, fi,
3333 BTRFS_FILE_EXTENT_REG,
3335 if (em->block_start == 0)
3339 block_len = max(em->block_len, em->orig_block_len);
3340 if (em->compress_type != BTRFS_COMPRESS_NONE) {
3341 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3344 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3346 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3347 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3349 extent_offset, &token);
3350 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3353 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3354 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3358 btrfs_set_token_file_extent_offset(leaf, fi,
3359 em->start - em->orig_start,
3361 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3362 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3363 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3365 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3366 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3367 btrfs_mark_buffer_dirty(leaf);
3369 btrfs_release_path(path);
3377 if (em->compress_type) {
3379 csum_len = block_len;
3383 * First check and see if our csums are on our outstanding ordered
3387 spin_lock_irq(&log->log_extents_lock[index]);
3388 list_for_each_entry(ordered, &log->logged_list[index], log_list) {
3389 struct btrfs_ordered_sum *sum;
3394 if (ordered->inode != inode)
3397 if (ordered->file_offset + ordered->len <= mod_start ||
3398 mod_start + mod_len <= ordered->file_offset)
3402 * We are going to copy all the csums on this ordered extent, so
3403 * go ahead and adjust mod_start and mod_len in case this
3404 * ordered extent has already been logged.
3406 if (ordered->file_offset > mod_start) {
3407 if (ordered->file_offset + ordered->len >=
3408 mod_start + mod_len)
3409 mod_len = ordered->file_offset - mod_start;
3411 * If we have this case
3413 * |--------- logged extent ---------|
3414 * |----- ordered extent ----|
3416 * Just don't mess with mod_start and mod_len, we'll
3417 * just end up logging more csums than we need and it
3421 if (ordered->file_offset + ordered->len <
3422 mod_start + mod_len) {
3423 mod_len = (mod_start + mod_len) -
3424 (ordered->file_offset + ordered->len);
3425 mod_start = ordered->file_offset +
3433 * To keep us from looping for the above case of an ordered
3434 * extent that falls inside of the logged extent.
3436 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3439 atomic_inc(&ordered->refs);
3440 spin_unlock_irq(&log->log_extents_lock[index]);
3442 * we've dropped the lock, we must either break or
3443 * start over after this.
3446 wait_event(ordered->wait, ordered->csum_bytes_left == 0);
3448 list_for_each_entry(sum, &ordered->list, list) {
3449 ret = btrfs_csum_file_blocks(trans, log, sum);
3451 btrfs_put_ordered_extent(ordered);
3455 btrfs_put_ordered_extent(ordered);
3459 spin_unlock_irq(&log->log_extents_lock[index]);
3462 if (!mod_len || ret)
3465 csum_offset = mod_start - em->start;
3468 /* block start is already adjusted for the file extent offset. */
3469 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3470 em->block_start + csum_offset,
3471 em->block_start + csum_offset +
3472 csum_len - 1, &ordered_sums, 0);
3476 while (!list_empty(&ordered_sums)) {
3477 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3478 struct btrfs_ordered_sum,
3481 ret = btrfs_csum_file_blocks(trans, log, sums);
3482 list_del(&sums->list);
3489 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3490 struct btrfs_root *root,
3491 struct inode *inode,
3492 struct btrfs_path *path)
3494 struct extent_map *em, *n;
3495 struct list_head extents;
3496 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3501 INIT_LIST_HEAD(&extents);
3503 write_lock(&tree->lock);
3504 test_gen = root->fs_info->last_trans_committed;
3506 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3507 list_del_init(&em->list);
3510 * Just an arbitrary number, this can be really CPU intensive
3511 * once we start getting a lot of extents, and really once we
3512 * have a bunch of extents we just want to commit since it will
3515 if (++num > 32768) {
3516 list_del_init(&tree->modified_extents);
3521 if (em->generation <= test_gen)
3523 /* Need a ref to keep it from getting evicted from cache */
3524 atomic_inc(&em->refs);
3525 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3526 list_add_tail(&em->list, &extents);
3530 list_sort(NULL, &extents, extent_cmp);
3533 while (!list_empty(&extents)) {
3534 em = list_entry(extents.next, struct extent_map, list);
3536 list_del_init(&em->list);
3539 * If we had an error we just need to delete everybody from our
3543 clear_em_logging(tree, em);
3544 free_extent_map(em);
3548 write_unlock(&tree->lock);
3550 ret = log_one_extent(trans, inode, root, em, path);
3551 write_lock(&tree->lock);
3552 clear_em_logging(tree, em);
3553 free_extent_map(em);
3555 WARN_ON(!list_empty(&extents));
3556 write_unlock(&tree->lock);
3558 btrfs_release_path(path);
3562 /* log a single inode in the tree log.
3563 * At least one parent directory for this inode must exist in the tree
3564 * or be logged already.
3566 * Any items from this inode changed by the current transaction are copied
3567 * to the log tree. An extra reference is taken on any extents in this
3568 * file, allowing us to avoid a whole pile of corner cases around logging
3569 * blocks that have been removed from the tree.
3571 * See LOG_INODE_ALL and related defines for a description of what inode_only
3574 * This handles both files and directories.
3576 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3577 struct btrfs_root *root, struct inode *inode,
3580 struct btrfs_path *path;
3581 struct btrfs_path *dst_path;
3582 struct btrfs_key min_key;
3583 struct btrfs_key max_key;
3584 struct btrfs_root *log = root->log_root;
3585 struct extent_buffer *src = NULL;
3589 int ins_start_slot = 0;
3591 bool fast_search = false;
3592 u64 ino = btrfs_ino(inode);
3594 path = btrfs_alloc_path();
3597 dst_path = btrfs_alloc_path();
3599 btrfs_free_path(path);
3603 min_key.objectid = ino;
3604 min_key.type = BTRFS_INODE_ITEM_KEY;
3607 max_key.objectid = ino;
3610 /* today the code can only do partial logging of directories */
3611 if (S_ISDIR(inode->i_mode) ||
3612 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3613 &BTRFS_I(inode)->runtime_flags) &&
3614 inode_only == LOG_INODE_EXISTS))
3615 max_key.type = BTRFS_XATTR_ITEM_KEY;
3617 max_key.type = (u8)-1;
3618 max_key.offset = (u64)-1;
3620 /* Only run delayed items if we are a dir or a new file */
3621 if (S_ISDIR(inode->i_mode) ||
3622 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3623 ret = btrfs_commit_inode_delayed_items(trans, inode);
3625 btrfs_free_path(path);
3626 btrfs_free_path(dst_path);
3631 mutex_lock(&BTRFS_I(inode)->log_mutex);
3633 btrfs_get_logged_extents(log, inode);
3636 * a brute force approach to making sure we get the most uptodate
3637 * copies of everything.
3639 if (S_ISDIR(inode->i_mode)) {
3640 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3642 if (inode_only == LOG_INODE_EXISTS)
3643 max_key_type = BTRFS_XATTR_ITEM_KEY;
3644 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3646 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3647 &BTRFS_I(inode)->runtime_flags)) {
3648 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3649 &BTRFS_I(inode)->runtime_flags);
3650 ret = btrfs_truncate_inode_items(trans, log,
3652 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3653 &BTRFS_I(inode)->runtime_flags)) {
3654 if (inode_only == LOG_INODE_ALL)
3656 max_key.type = BTRFS_XATTR_ITEM_KEY;
3657 ret = drop_objectid_items(trans, log, path, ino,
3660 if (inode_only == LOG_INODE_ALL)
3662 ret = log_inode_item(trans, log, dst_path, inode);
3675 path->keep_locks = 1;
3679 ret = btrfs_search_forward(root, &min_key, &max_key,
3680 path, trans->transid);
3684 /* note, ins_nr might be > 0 here, cleanup outside the loop */
3685 if (min_key.objectid != ino)
3687 if (min_key.type > max_key.type)
3690 src = path->nodes[0];
3691 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3694 } else if (!ins_nr) {
3695 ins_start_slot = path->slots[0];
3700 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3701 ins_nr, inode_only);
3707 ins_start_slot = path->slots[0];
3710 nritems = btrfs_header_nritems(path->nodes[0]);
3712 if (path->slots[0] < nritems) {
3713 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3718 ret = copy_items(trans, inode, dst_path, src,
3720 ins_nr, inode_only);
3727 btrfs_release_path(path);
3729 if (min_key.offset < (u64)-1)
3731 else if (min_key.type < (u8)-1)
3733 else if (min_key.objectid < (u64)-1)
3739 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3740 ins_nr, inode_only);
3749 btrfs_release_path(path);
3750 btrfs_release_path(dst_path);
3752 ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
3758 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3759 struct extent_map *em, *n;
3761 write_lock(&tree->lock);
3762 list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3763 list_del_init(&em->list);
3764 write_unlock(&tree->lock);
3767 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
3768 ret = log_directory_changes(trans, root, inode, path, dst_path);
3774 BTRFS_I(inode)->logged_trans = trans->transid;
3775 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
3778 btrfs_free_logged_extents(log, log->log_transid);
3779 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3781 btrfs_free_path(path);
3782 btrfs_free_path(dst_path);
3787 * follow the dentry parent pointers up the chain and see if any
3788 * of the directories in it require a full commit before they can
3789 * be logged. Returns zero if nothing special needs to be done or 1 if
3790 * a full commit is required.
3792 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
3793 struct inode *inode,
3794 struct dentry *parent,
3795 struct super_block *sb,
3799 struct btrfs_root *root;
3800 struct dentry *old_parent = NULL;
3803 * for regular files, if its inode is already on disk, we don't
3804 * have to worry about the parents at all. This is because
3805 * we can use the last_unlink_trans field to record renames
3806 * and other fun in this file.
3808 if (S_ISREG(inode->i_mode) &&
3809 BTRFS_I(inode)->generation <= last_committed &&
3810 BTRFS_I(inode)->last_unlink_trans <= last_committed)
3813 if (!S_ISDIR(inode->i_mode)) {
3814 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3816 inode = parent->d_inode;
3820 BTRFS_I(inode)->logged_trans = trans->transid;
3823 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3824 root = BTRFS_I(inode)->root;
3827 * make sure any commits to the log are forced
3828 * to be full commits
3830 root->fs_info->last_trans_log_full_commit =
3836 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3839 if (IS_ROOT(parent))
3842 parent = dget_parent(parent);
3844 old_parent = parent;
3845 inode = parent->d_inode;
3854 * helper function around btrfs_log_inode to make sure newly created
3855 * parent directories also end up in the log. A minimal inode and backref
3856 * only logging is done of any parent directories that are older than
3857 * the last committed transaction
3859 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3860 struct btrfs_root *root, struct inode *inode,
3861 struct dentry *parent, int exists_only)
3863 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3864 struct super_block *sb;
3865 struct dentry *old_parent = NULL;
3867 u64 last_committed = root->fs_info->last_trans_committed;
3871 if (btrfs_test_opt(root, NOTREELOG)) {
3876 if (root->fs_info->last_trans_log_full_commit >
3877 root->fs_info->last_trans_committed) {
3882 if (root != BTRFS_I(inode)->root ||
3883 btrfs_root_refs(&root->root_item) == 0) {
3888 ret = check_parent_dirs_for_sync(trans, inode, parent,
3889 sb, last_committed);
3893 if (btrfs_inode_in_log(inode, trans->transid)) {
3894 ret = BTRFS_NO_LOG_SYNC;
3898 ret = start_log_trans(trans, root);
3902 ret = btrfs_log_inode(trans, root, inode, inode_only);
3907 * for regular files, if its inode is already on disk, we don't
3908 * have to worry about the parents at all. This is because
3909 * we can use the last_unlink_trans field to record renames
3910 * and other fun in this file.
3912 if (S_ISREG(inode->i_mode) &&
3913 BTRFS_I(inode)->generation <= last_committed &&
3914 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3919 inode_only = LOG_INODE_EXISTS;
3921 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3924 inode = parent->d_inode;
3925 if (root != BTRFS_I(inode)->root)
3928 if (BTRFS_I(inode)->generation >
3929 root->fs_info->last_trans_committed) {
3930 ret = btrfs_log_inode(trans, root, inode, inode_only);
3934 if (IS_ROOT(parent))
3937 parent = dget_parent(parent);
3939 old_parent = parent;
3945 root->fs_info->last_trans_log_full_commit = trans->transid;
3948 btrfs_end_log_trans(root);
3954 * it is not safe to log dentry if the chunk root has added new
3955 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3956 * If this returns 1, you must commit the transaction to safely get your
3959 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3960 struct btrfs_root *root, struct dentry *dentry)
3962 struct dentry *parent = dget_parent(dentry);
3965 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3972 * should be called during mount to recover any replay any log trees
3975 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3978 struct btrfs_path *path;
3979 struct btrfs_trans_handle *trans;
3980 struct btrfs_key key;
3981 struct btrfs_key found_key;
3982 struct btrfs_key tmp_key;
3983 struct btrfs_root *log;
3984 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3985 struct walk_control wc = {
3986 .process_func = process_one_buffer,
3990 path = btrfs_alloc_path();
3994 fs_info->log_root_recovering = 1;
3996 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3997 if (IS_ERR(trans)) {
3998 ret = PTR_ERR(trans);
4005 ret = walk_log_tree(trans, log_root_tree, &wc);
4007 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4008 "recovering log root tree.");
4013 key.objectid = BTRFS_TREE_LOG_OBJECTID;
4014 key.offset = (u64)-1;
4015 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4018 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4021 btrfs_error(fs_info, ret,
4022 "Couldn't find tree log root.");
4026 if (path->slots[0] == 0)
4030 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4032 btrfs_release_path(path);
4033 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4036 log = btrfs_read_fs_root(log_root_tree, &found_key);
4039 btrfs_error(fs_info, ret,
4040 "Couldn't read tree log root.");
4044 tmp_key.objectid = found_key.offset;
4045 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4046 tmp_key.offset = (u64)-1;
4048 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4049 if (IS_ERR(wc.replay_dest)) {
4050 ret = PTR_ERR(wc.replay_dest);
4051 free_extent_buffer(log->node);
4052 free_extent_buffer(log->commit_root);
4054 btrfs_error(fs_info, ret, "Couldn't read target root "
4055 "for tree log recovery.");
4059 wc.replay_dest->log_root = log;
4060 btrfs_record_root_in_trans(trans, wc.replay_dest);
4061 ret = walk_log_tree(trans, log, &wc);
4063 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4064 ret = fixup_inode_link_counts(trans, wc.replay_dest,
4068 key.offset = found_key.offset - 1;
4069 wc.replay_dest->log_root = NULL;
4070 free_extent_buffer(log->node);
4071 free_extent_buffer(log->commit_root);
4077 if (found_key.offset == 0)
4080 btrfs_release_path(path);
4082 /* step one is to pin it all, step two is to replay just inodes */
4085 wc.process_func = replay_one_buffer;
4086 wc.stage = LOG_WALK_REPLAY_INODES;
4089 /* step three is to replay everything */
4090 if (wc.stage < LOG_WALK_REPLAY_ALL) {
4095 btrfs_free_path(path);
4097 /* step 4: commit the transaction, which also unpins the blocks */
4098 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4102 free_extent_buffer(log_root_tree->node);
4103 log_root_tree->log_root = NULL;
4104 fs_info->log_root_recovering = 0;
4105 kfree(log_root_tree);
4110 btrfs_end_transaction(wc.trans, fs_info->tree_root);
4111 btrfs_free_path(path);
4116 * there are some corner cases where we want to force a full
4117 * commit instead of allowing a directory to be logged.
4119 * They revolve around files there were unlinked from the directory, and
4120 * this function updates the parent directory so that a full commit is
4121 * properly done if it is fsync'd later after the unlinks are done.
4123 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4124 struct inode *dir, struct inode *inode,
4128 * when we're logging a file, if it hasn't been renamed
4129 * or unlinked, and its inode is fully committed on disk,
4130 * we don't have to worry about walking up the directory chain
4131 * to log its parents.
4133 * So, we use the last_unlink_trans field to put this transid
4134 * into the file. When the file is logged we check it and
4135 * don't log the parents if the file is fully on disk.
4137 if (S_ISREG(inode->i_mode))
4138 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4141 * if this directory was already logged any new
4142 * names for this file/dir will get recorded
4145 if (BTRFS_I(dir)->logged_trans == trans->transid)
4149 * if the inode we're about to unlink was logged,
4150 * the log will be properly updated for any new names
4152 if (BTRFS_I(inode)->logged_trans == trans->transid)
4156 * when renaming files across directories, if the directory
4157 * there we're unlinking from gets fsync'd later on, there's
4158 * no way to find the destination directory later and fsync it
4159 * properly. So, we have to be conservative and force commits
4160 * so the new name gets discovered.
4165 /* we can safely do the unlink without any special recording */
4169 BTRFS_I(dir)->last_unlink_trans = trans->transid;
4173 * Call this after adding a new name for a file and it will properly
4174 * update the log to reflect the new name.
4176 * It will return zero if all goes well, and it will return 1 if a
4177 * full transaction commit is required.
4179 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4180 struct inode *inode, struct inode *old_dir,
4181 struct dentry *parent)
4183 struct btrfs_root * root = BTRFS_I(inode)->root;
4186 * this will force the logging code to walk the dentry chain
4189 if (S_ISREG(inode->i_mode))
4190 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4193 * if this inode hasn't been logged and directory we're renaming it
4194 * from hasn't been logged, we don't need to log it
4196 if (BTRFS_I(inode)->logged_trans <=
4197 root->fs_info->last_trans_committed &&
4198 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4199 root->fs_info->last_trans_committed))
4202 return btrfs_log_inode_parent(trans, root, inode, parent, 1);