1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
16 #include "print-tree.h"
18 #include "compression.h"
20 #include "block-group.h"
21 #include "space-info.h"
24 /* magic values for the inode_only field in btrfs_log_inode:
26 * LOG_INODE_ALL means to log everything
27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 * directory trouble cases
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
47 * rename foo/some_dir foo2/some_dir
49 * fsync foo/some_dir/some_file
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
91 LOG_WALK_REPLAY_INODES,
92 LOG_WALK_REPLAY_DIR_INDEX,
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 struct btrfs_root *root, struct btrfs_inode *inode,
99 struct btrfs_log_ctx *ctx);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_root *log,
106 struct btrfs_path *path,
107 u64 dirid, int del_all);
108 static void wait_log_commit(struct btrfs_root *root, int transid);
111 * tree logging is a special write ahead log used to make sure that
112 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 * Full tree commits are expensive because they require commonly
115 * modified blocks to be recowed, creating many dirty pages in the
116 * extent tree an 4x-6x higher write load than ext3.
118 * Instead of doing a tree commit on every fsync, we use the
119 * key ranges and transaction ids to find items for a given file or directory
120 * that have changed in this transaction. Those items are copied into
121 * a special tree (one per subvolume root), that tree is written to disk
122 * and then the fsync is considered complete.
124 * After a crash, items are copied out of the log-tree back into the
125 * subvolume tree. Any file data extents found are recorded in the extent
126 * allocation tree, and the log-tree freed.
128 * The log tree is read three times, once to pin down all the extents it is
129 * using in ram and once, once to create all the inodes logged in the tree
130 * and once to do all the other items.
134 * start a sub transaction and setup the log tree
135 * this increments the log tree writer count to make the people
136 * syncing the tree wait for us to finish
138 static int start_log_trans(struct btrfs_trans_handle *trans,
139 struct btrfs_root *root,
140 struct btrfs_log_ctx *ctx)
142 struct btrfs_fs_info *fs_info = root->fs_info;
143 struct btrfs_root *tree_root = fs_info->tree_root;
144 const bool zoned = btrfs_is_zoned(fs_info);
146 bool created = false;
149 * First check if the log root tree was already created. If not, create
150 * it before locking the root's log_mutex, just to keep lockdep happy.
152 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
153 mutex_lock(&tree_root->log_mutex);
154 if (!fs_info->log_root_tree) {
155 ret = btrfs_init_log_root_tree(trans, fs_info);
157 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
161 mutex_unlock(&tree_root->log_mutex);
166 mutex_lock(&root->log_mutex);
169 if (root->log_root) {
170 int index = (root->log_transid + 1) % 2;
172 if (btrfs_need_log_full_commit(trans)) {
177 if (zoned && atomic_read(&root->log_commit[index])) {
178 wait_log_commit(root, root->log_transid - 1);
182 if (!root->log_start_pid) {
183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
184 root->log_start_pid = current->pid;
185 } else if (root->log_start_pid != current->pid) {
186 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
190 * This means fs_info->log_root_tree was already created
191 * for some other FS trees. Do the full commit not to mix
192 * nodes from multiple log transactions to do sequential
195 if (zoned && !created) {
200 ret = btrfs_add_log_tree(trans, root);
204 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
205 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
206 root->log_start_pid = current->pid;
209 atomic_inc(&root->log_writers);
210 if (ctx && !ctx->logging_new_name) {
211 int index = root->log_transid % 2;
212 list_add_tail(&ctx->list, &root->log_ctxs[index]);
213 ctx->log_transid = root->log_transid;
217 mutex_unlock(&root->log_mutex);
222 * returns 0 if there was a log transaction running and we were able
223 * to join, or returns -ENOENT if there were not transactions
226 static int join_running_log_trans(struct btrfs_root *root)
228 const bool zoned = btrfs_is_zoned(root->fs_info);
231 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
234 mutex_lock(&root->log_mutex);
236 if (root->log_root) {
237 int index = (root->log_transid + 1) % 2;
240 if (zoned && atomic_read(&root->log_commit[index])) {
241 wait_log_commit(root, root->log_transid - 1);
244 atomic_inc(&root->log_writers);
246 mutex_unlock(&root->log_mutex);
251 * This either makes the current running log transaction wait
252 * until you call btrfs_end_log_trans() or it makes any future
253 * log transactions wait until you call btrfs_end_log_trans()
255 void btrfs_pin_log_trans(struct btrfs_root *root)
257 atomic_inc(&root->log_writers);
261 * indicate we're done making changes to the log tree
262 * and wake up anyone waiting to do a sync
264 void btrfs_end_log_trans(struct btrfs_root *root)
266 if (atomic_dec_and_test(&root->log_writers)) {
267 /* atomic_dec_and_test implies a barrier */
268 cond_wake_up_nomb(&root->log_writer_wait);
272 static int btrfs_write_tree_block(struct extent_buffer *buf)
274 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
275 buf->start + buf->len - 1);
278 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
280 filemap_fdatawait_range(buf->pages[0]->mapping,
281 buf->start, buf->start + buf->len - 1);
285 * the walk control struct is used to pass state down the chain when
286 * processing the log tree. The stage field tells us which part
287 * of the log tree processing we are currently doing. The others
288 * are state fields used for that specific part
290 struct walk_control {
291 /* should we free the extent on disk when done? This is used
292 * at transaction commit time while freeing a log tree
296 /* should we write out the extent buffer? This is used
297 * while flushing the log tree to disk during a sync
301 /* should we wait for the extent buffer io to finish? Also used
302 * while flushing the log tree to disk for a sync
306 /* pin only walk, we record which extents on disk belong to the
311 /* what stage of the replay code we're currently in */
315 * Ignore any items from the inode currently being processed. Needs
316 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
317 * the LOG_WALK_REPLAY_INODES stage.
319 bool ignore_cur_inode;
321 /* the root we are currently replaying */
322 struct btrfs_root *replay_dest;
324 /* the trans handle for the current replay */
325 struct btrfs_trans_handle *trans;
327 /* the function that gets used to process blocks we find in the
328 * tree. Note the extent_buffer might not be up to date when it is
329 * passed in, and it must be checked or read if you need the data
332 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
333 struct walk_control *wc, u64 gen, int level);
337 * process_func used to pin down extents, write them or wait on them
339 static int process_one_buffer(struct btrfs_root *log,
340 struct extent_buffer *eb,
341 struct walk_control *wc, u64 gen, int level)
343 struct btrfs_fs_info *fs_info = log->fs_info;
347 * If this fs is mixed then we need to be able to process the leaves to
348 * pin down any logged extents, so we have to read the block.
350 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
351 ret = btrfs_read_buffer(eb, gen, level, NULL);
357 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
360 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
361 if (wc->pin && btrfs_header_level(eb) == 0)
362 ret = btrfs_exclude_logged_extents(eb);
364 btrfs_write_tree_block(eb);
366 btrfs_wait_tree_block_writeback(eb);
372 * Item overwrite used by replay and tree logging. eb, slot and key all refer
373 * to the src data we are copying out.
375 * root is the tree we are copying into, and path is a scratch
376 * path for use in this function (it should be released on entry and
377 * will be released on exit).
379 * If the key is already in the destination tree the existing item is
380 * overwritten. If the existing item isn't big enough, it is extended.
381 * If it is too large, it is truncated.
383 * If the key isn't in the destination yet, a new item is inserted.
385 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
386 struct btrfs_root *root,
387 struct btrfs_path *path,
388 struct extent_buffer *eb, int slot,
389 struct btrfs_key *key)
393 u64 saved_i_size = 0;
394 int save_old_i_size = 0;
395 unsigned long src_ptr;
396 unsigned long dst_ptr;
397 int overwrite_root = 0;
398 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
400 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
403 item_size = btrfs_item_size_nr(eb, slot);
404 src_ptr = btrfs_item_ptr_offset(eb, slot);
406 /* look for the key in the destination tree */
407 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
414 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
416 if (dst_size != item_size)
419 if (item_size == 0) {
420 btrfs_release_path(path);
423 dst_copy = kmalloc(item_size, GFP_NOFS);
424 src_copy = kmalloc(item_size, GFP_NOFS);
425 if (!dst_copy || !src_copy) {
426 btrfs_release_path(path);
432 read_extent_buffer(eb, src_copy, src_ptr, item_size);
434 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
435 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
437 ret = memcmp(dst_copy, src_copy, item_size);
442 * they have the same contents, just return, this saves
443 * us from cowing blocks in the destination tree and doing
444 * extra writes that may not have been done by a previous
448 btrfs_release_path(path);
453 * We need to load the old nbytes into the inode so when we
454 * replay the extents we've logged we get the right nbytes.
457 struct btrfs_inode_item *item;
461 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
462 struct btrfs_inode_item);
463 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
464 item = btrfs_item_ptr(eb, slot,
465 struct btrfs_inode_item);
466 btrfs_set_inode_nbytes(eb, item, nbytes);
469 * If this is a directory we need to reset the i_size to
470 * 0 so that we can set it up properly when replaying
471 * the rest of the items in this log.
473 mode = btrfs_inode_mode(eb, item);
475 btrfs_set_inode_size(eb, item, 0);
477 } else if (inode_item) {
478 struct btrfs_inode_item *item;
482 * New inode, set nbytes to 0 so that the nbytes comes out
483 * properly when we replay the extents.
485 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
486 btrfs_set_inode_nbytes(eb, item, 0);
489 * If this is a directory we need to reset the i_size to 0 so
490 * that we can set it up properly when replaying the rest of
491 * the items in this log.
493 mode = btrfs_inode_mode(eb, item);
495 btrfs_set_inode_size(eb, item, 0);
498 btrfs_release_path(path);
499 /* try to insert the key into the destination tree */
500 path->skip_release_on_error = 1;
501 ret = btrfs_insert_empty_item(trans, root, path,
503 path->skip_release_on_error = 0;
505 /* make sure any existing item is the correct size */
506 if (ret == -EEXIST || ret == -EOVERFLOW) {
508 found_size = btrfs_item_size_nr(path->nodes[0],
510 if (found_size > item_size)
511 btrfs_truncate_item(path, item_size, 1);
512 else if (found_size < item_size)
513 btrfs_extend_item(path, item_size - found_size);
517 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
520 /* don't overwrite an existing inode if the generation number
521 * was logged as zero. This is done when the tree logging code
522 * is just logging an inode to make sure it exists after recovery.
524 * Also, don't overwrite i_size on directories during replay.
525 * log replay inserts and removes directory items based on the
526 * state of the tree found in the subvolume, and i_size is modified
529 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
530 struct btrfs_inode_item *src_item;
531 struct btrfs_inode_item *dst_item;
533 src_item = (struct btrfs_inode_item *)src_ptr;
534 dst_item = (struct btrfs_inode_item *)dst_ptr;
536 if (btrfs_inode_generation(eb, src_item) == 0) {
537 struct extent_buffer *dst_eb = path->nodes[0];
538 const u64 ino_size = btrfs_inode_size(eb, src_item);
541 * For regular files an ino_size == 0 is used only when
542 * logging that an inode exists, as part of a directory
543 * fsync, and the inode wasn't fsynced before. In this
544 * case don't set the size of the inode in the fs/subvol
545 * tree, otherwise we would be throwing valid data away.
547 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
548 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
550 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
554 if (overwrite_root &&
555 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
556 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
558 saved_i_size = btrfs_inode_size(path->nodes[0],
563 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
566 if (save_old_i_size) {
567 struct btrfs_inode_item *dst_item;
568 dst_item = (struct btrfs_inode_item *)dst_ptr;
569 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
572 /* make sure the generation is filled in */
573 if (key->type == BTRFS_INODE_ITEM_KEY) {
574 struct btrfs_inode_item *dst_item;
575 dst_item = (struct btrfs_inode_item *)dst_ptr;
576 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
577 btrfs_set_inode_generation(path->nodes[0], dst_item,
582 btrfs_mark_buffer_dirty(path->nodes[0]);
583 btrfs_release_path(path);
588 * simple helper to read an inode off the disk from a given root
589 * This can only be called for subvolume roots and not for the log
591 static noinline struct inode *read_one_inode(struct btrfs_root *root,
596 inode = btrfs_iget(root->fs_info->sb, objectid, root);
602 /* replays a single extent in 'eb' at 'slot' with 'key' into the
603 * subvolume 'root'. path is released on entry and should be released
606 * extents in the log tree have not been allocated out of the extent
607 * tree yet. So, this completes the allocation, taking a reference
608 * as required if the extent already exists or creating a new extent
609 * if it isn't in the extent allocation tree yet.
611 * The extent is inserted into the file, dropping any existing extents
612 * from the file that overlap the new one.
614 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
615 struct btrfs_root *root,
616 struct btrfs_path *path,
617 struct extent_buffer *eb, int slot,
618 struct btrfs_key *key)
620 struct btrfs_drop_extents_args drop_args = { 0 };
621 struct btrfs_fs_info *fs_info = root->fs_info;
624 u64 start = key->offset;
626 struct btrfs_file_extent_item *item;
627 struct inode *inode = NULL;
631 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
632 found_type = btrfs_file_extent_type(eb, item);
634 if (found_type == BTRFS_FILE_EXTENT_REG ||
635 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
636 nbytes = btrfs_file_extent_num_bytes(eb, item);
637 extent_end = start + nbytes;
640 * We don't add to the inodes nbytes if we are prealloc or a
643 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
645 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
646 size = btrfs_file_extent_ram_bytes(eb, item);
647 nbytes = btrfs_file_extent_ram_bytes(eb, item);
648 extent_end = ALIGN(start + size,
649 fs_info->sectorsize);
655 inode = read_one_inode(root, key->objectid);
662 * first check to see if we already have this extent in the
663 * file. This must be done before the btrfs_drop_extents run
664 * so we don't try to drop this extent.
666 ret = btrfs_lookup_file_extent(trans, root, path,
667 btrfs_ino(BTRFS_I(inode)), start, 0);
670 (found_type == BTRFS_FILE_EXTENT_REG ||
671 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
672 struct btrfs_file_extent_item cmp1;
673 struct btrfs_file_extent_item cmp2;
674 struct btrfs_file_extent_item *existing;
675 struct extent_buffer *leaf;
677 leaf = path->nodes[0];
678 existing = btrfs_item_ptr(leaf, path->slots[0],
679 struct btrfs_file_extent_item);
681 read_extent_buffer(eb, &cmp1, (unsigned long)item,
683 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
687 * we already have a pointer to this exact extent,
688 * we don't have to do anything
690 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
691 btrfs_release_path(path);
695 btrfs_release_path(path);
697 /* drop any overlapping extents */
698 drop_args.start = start;
699 drop_args.end = extent_end;
700 drop_args.drop_cache = true;
701 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
705 if (found_type == BTRFS_FILE_EXTENT_REG ||
706 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
708 unsigned long dest_offset;
709 struct btrfs_key ins;
711 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
712 btrfs_fs_incompat(fs_info, NO_HOLES))
715 ret = btrfs_insert_empty_item(trans, root, path, key,
719 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
721 copy_extent_buffer(path->nodes[0], eb, dest_offset,
722 (unsigned long)item, sizeof(*item));
724 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
725 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
726 ins.type = BTRFS_EXTENT_ITEM_KEY;
727 offset = key->offset - btrfs_file_extent_offset(eb, item);
730 * Manually record dirty extent, as here we did a shallow
731 * file extent item copy and skip normal backref update,
732 * but modifying extent tree all by ourselves.
733 * So need to manually record dirty extent for qgroup,
734 * as the owner of the file extent changed from log tree
735 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
737 ret = btrfs_qgroup_trace_extent(trans,
738 btrfs_file_extent_disk_bytenr(eb, item),
739 btrfs_file_extent_disk_num_bytes(eb, item),
744 if (ins.objectid > 0) {
745 struct btrfs_ref ref = { 0 };
748 LIST_HEAD(ordered_sums);
751 * is this extent already allocated in the extent
752 * allocation tree? If so, just add a reference
754 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
758 } else if (ret == 0) {
759 btrfs_init_generic_ref(&ref,
760 BTRFS_ADD_DELAYED_REF,
761 ins.objectid, ins.offset, 0);
762 btrfs_init_data_ref(&ref,
763 root->root_key.objectid,
764 key->objectid, offset);
765 ret = btrfs_inc_extent_ref(trans, &ref);
770 * insert the extent pointer in the extent
773 ret = btrfs_alloc_logged_file_extent(trans,
774 root->root_key.objectid,
775 key->objectid, offset, &ins);
779 btrfs_release_path(path);
781 if (btrfs_file_extent_compression(eb, item)) {
782 csum_start = ins.objectid;
783 csum_end = csum_start + ins.offset;
785 csum_start = ins.objectid +
786 btrfs_file_extent_offset(eb, item);
787 csum_end = csum_start +
788 btrfs_file_extent_num_bytes(eb, item);
791 ret = btrfs_lookup_csums_range(root->log_root,
792 csum_start, csum_end - 1,
797 * Now delete all existing cums in the csum root that
798 * cover our range. We do this because we can have an
799 * extent that is completely referenced by one file
800 * extent item and partially referenced by another
801 * file extent item (like after using the clone or
802 * extent_same ioctls). In this case if we end up doing
803 * the replay of the one that partially references the
804 * extent first, and we do not do the csum deletion
805 * below, we can get 2 csum items in the csum tree that
806 * overlap each other. For example, imagine our log has
807 * the two following file extent items:
809 * key (257 EXTENT_DATA 409600)
810 * extent data disk byte 12845056 nr 102400
811 * extent data offset 20480 nr 20480 ram 102400
813 * key (257 EXTENT_DATA 819200)
814 * extent data disk byte 12845056 nr 102400
815 * extent data offset 0 nr 102400 ram 102400
817 * Where the second one fully references the 100K extent
818 * that starts at disk byte 12845056, and the log tree
819 * has a single csum item that covers the entire range
822 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
824 * After the first file extent item is replayed, the
825 * csum tree gets the following csum item:
827 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
829 * Which covers the 20K sub-range starting at offset 20K
830 * of our extent. Now when we replay the second file
831 * extent item, if we do not delete existing csum items
832 * that cover any of its blocks, we end up getting two
833 * csum items in our csum tree that overlap each other:
835 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
836 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
838 * Which is a problem, because after this anyone trying
839 * to lookup up for the checksum of any block of our
840 * extent starting at an offset of 40K or higher, will
841 * end up looking at the second csum item only, which
842 * does not contain the checksum for any block starting
843 * at offset 40K or higher of our extent.
845 while (!list_empty(&ordered_sums)) {
846 struct btrfs_ordered_sum *sums;
847 sums = list_entry(ordered_sums.next,
848 struct btrfs_ordered_sum,
851 ret = btrfs_del_csums(trans,
856 ret = btrfs_csum_file_blocks(trans,
857 fs_info->csum_root, sums);
858 list_del(&sums->list);
864 btrfs_release_path(path);
866 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
867 /* inline extents are easy, we just overwrite them */
868 ret = overwrite_item(trans, root, path, eb, slot, key);
873 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
879 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
880 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
888 * when cleaning up conflicts between the directory names in the
889 * subvolume, directory names in the log and directory names in the
890 * inode back references, we may have to unlink inodes from directories.
892 * This is a helper function to do the unlink of a specific directory
895 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
896 struct btrfs_root *root,
897 struct btrfs_path *path,
898 struct btrfs_inode *dir,
899 struct btrfs_dir_item *di)
904 struct extent_buffer *leaf;
905 struct btrfs_key location;
908 leaf = path->nodes[0];
910 btrfs_dir_item_key_to_cpu(leaf, di, &location);
911 name_len = btrfs_dir_name_len(leaf, di);
912 name = kmalloc(name_len, GFP_NOFS);
916 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
917 btrfs_release_path(path);
919 inode = read_one_inode(root, location.objectid);
925 ret = link_to_fixup_dir(trans, root, path, location.objectid);
929 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
934 ret = btrfs_run_delayed_items(trans);
942 * See if a given name and sequence number found in an inode back reference are
943 * already in a directory and correctly point to this inode.
945 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
948 static noinline int inode_in_dir(struct btrfs_root *root,
949 struct btrfs_path *path,
950 u64 dirid, u64 objectid, u64 index,
951 const char *name, int name_len)
953 struct btrfs_dir_item *di;
954 struct btrfs_key location;
957 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
958 index, name, name_len, 0);
963 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
964 if (location.objectid != objectid)
970 btrfs_release_path(path);
971 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
976 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
977 if (location.objectid == objectid)
981 btrfs_release_path(path);
986 * helper function to check a log tree for a named back reference in
987 * an inode. This is used to decide if a back reference that is
988 * found in the subvolume conflicts with what we find in the log.
990 * inode backreferences may have multiple refs in a single item,
991 * during replay we process one reference at a time, and we don't
992 * want to delete valid links to a file from the subvolume if that
993 * link is also in the log.
995 static noinline int backref_in_log(struct btrfs_root *log,
996 struct btrfs_key *key,
998 const char *name, int namelen)
1000 struct btrfs_path *path;
1003 path = btrfs_alloc_path();
1007 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1010 } else if (ret == 1) {
1015 if (key->type == BTRFS_INODE_EXTREF_KEY)
1016 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1021 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1025 btrfs_free_path(path);
1029 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1030 struct btrfs_root *root,
1031 struct btrfs_path *path,
1032 struct btrfs_root *log_root,
1033 struct btrfs_inode *dir,
1034 struct btrfs_inode *inode,
1035 u64 inode_objectid, u64 parent_objectid,
1036 u64 ref_index, char *name, int namelen,
1041 int victim_name_len;
1042 struct extent_buffer *leaf;
1043 struct btrfs_dir_item *di;
1044 struct btrfs_key search_key;
1045 struct btrfs_inode_extref *extref;
1048 /* Search old style refs */
1049 search_key.objectid = inode_objectid;
1050 search_key.type = BTRFS_INODE_REF_KEY;
1051 search_key.offset = parent_objectid;
1052 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1054 struct btrfs_inode_ref *victim_ref;
1056 unsigned long ptr_end;
1058 leaf = path->nodes[0];
1060 /* are we trying to overwrite a back ref for the root directory
1061 * if so, just jump out, we're done
1063 if (search_key.objectid == search_key.offset)
1066 /* check all the names in this back reference to see
1067 * if they are in the log. if so, we allow them to stay
1068 * otherwise they must be unlinked as a conflict
1070 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1071 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1072 while (ptr < ptr_end) {
1073 victim_ref = (struct btrfs_inode_ref *)ptr;
1074 victim_name_len = btrfs_inode_ref_name_len(leaf,
1076 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1080 read_extent_buffer(leaf, victim_name,
1081 (unsigned long)(victim_ref + 1),
1084 ret = backref_in_log(log_root, &search_key,
1085 parent_objectid, victim_name,
1091 inc_nlink(&inode->vfs_inode);
1092 btrfs_release_path(path);
1094 ret = btrfs_unlink_inode(trans, root, dir, inode,
1095 victim_name, victim_name_len);
1099 ret = btrfs_run_delayed_items(trans);
1107 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1111 * NOTE: we have searched root tree and checked the
1112 * corresponding ref, it does not need to check again.
1116 btrfs_release_path(path);
1118 /* Same search but for extended refs */
1119 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1120 inode_objectid, parent_objectid, 0,
1122 if (!IS_ERR_OR_NULL(extref)) {
1126 struct inode *victim_parent;
1128 leaf = path->nodes[0];
1130 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1131 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1133 while (cur_offset < item_size) {
1134 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1136 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1138 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1141 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1144 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1147 search_key.objectid = inode_objectid;
1148 search_key.type = BTRFS_INODE_EXTREF_KEY;
1149 search_key.offset = btrfs_extref_hash(parent_objectid,
1152 ret = backref_in_log(log_root, &search_key,
1153 parent_objectid, victim_name,
1159 victim_parent = read_one_inode(root,
1161 if (victim_parent) {
1162 inc_nlink(&inode->vfs_inode);
1163 btrfs_release_path(path);
1165 ret = btrfs_unlink_inode(trans, root,
1166 BTRFS_I(victim_parent),
1171 ret = btrfs_run_delayed_items(
1174 iput(victim_parent);
1183 cur_offset += victim_name_len + sizeof(*extref);
1187 btrfs_release_path(path);
1189 /* look for a conflicting sequence number */
1190 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1191 ref_index, name, namelen, 0);
1195 ret = drop_one_dir_item(trans, root, path, dir, di);
1199 btrfs_release_path(path);
1201 /* look for a conflicting name */
1202 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1207 ret = drop_one_dir_item(trans, root, path, dir, di);
1211 btrfs_release_path(path);
1216 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1217 u32 *namelen, char **name, u64 *index,
1218 u64 *parent_objectid)
1220 struct btrfs_inode_extref *extref;
1222 extref = (struct btrfs_inode_extref *)ref_ptr;
1224 *namelen = btrfs_inode_extref_name_len(eb, extref);
1225 *name = kmalloc(*namelen, GFP_NOFS);
1229 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1233 *index = btrfs_inode_extref_index(eb, extref);
1234 if (parent_objectid)
1235 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1240 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1241 u32 *namelen, char **name, u64 *index)
1243 struct btrfs_inode_ref *ref;
1245 ref = (struct btrfs_inode_ref *)ref_ptr;
1247 *namelen = btrfs_inode_ref_name_len(eb, ref);
1248 *name = kmalloc(*namelen, GFP_NOFS);
1252 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1255 *index = btrfs_inode_ref_index(eb, ref);
1261 * Take an inode reference item from the log tree and iterate all names from the
1262 * inode reference item in the subvolume tree with the same key (if it exists).
1263 * For any name that is not in the inode reference item from the log tree, do a
1264 * proper unlink of that name (that is, remove its entry from the inode
1265 * reference item and both dir index keys).
1267 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1268 struct btrfs_root *root,
1269 struct btrfs_path *path,
1270 struct btrfs_inode *inode,
1271 struct extent_buffer *log_eb,
1273 struct btrfs_key *key)
1276 unsigned long ref_ptr;
1277 unsigned long ref_end;
1278 struct extent_buffer *eb;
1281 btrfs_release_path(path);
1282 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1290 eb = path->nodes[0];
1291 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1292 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1293 while (ref_ptr < ref_end) {
1298 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1299 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1302 parent_id = key->offset;
1303 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1309 if (key->type == BTRFS_INODE_EXTREF_KEY)
1310 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1314 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1320 btrfs_release_path(path);
1321 dir = read_one_inode(root, parent_id);
1327 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1328 inode, name, namelen);
1338 if (key->type == BTRFS_INODE_EXTREF_KEY)
1339 ref_ptr += sizeof(struct btrfs_inode_extref);
1341 ref_ptr += sizeof(struct btrfs_inode_ref);
1345 btrfs_release_path(path);
1349 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1350 const u8 ref_type, const char *name,
1353 struct btrfs_key key;
1354 struct btrfs_path *path;
1355 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1358 path = btrfs_alloc_path();
1362 key.objectid = btrfs_ino(BTRFS_I(inode));
1363 key.type = ref_type;
1364 if (key.type == BTRFS_INODE_REF_KEY)
1365 key.offset = parent_id;
1367 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1369 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1376 if (key.type == BTRFS_INODE_EXTREF_KEY)
1377 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1378 path->slots[0], parent_id, name, namelen);
1380 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1384 btrfs_free_path(path);
1388 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1389 struct inode *dir, struct inode *inode, const char *name,
1390 int namelen, u64 ref_index)
1392 struct btrfs_dir_item *dir_item;
1393 struct btrfs_key key;
1394 struct btrfs_path *path;
1395 struct inode *other_inode = NULL;
1398 path = btrfs_alloc_path();
1402 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1403 btrfs_ino(BTRFS_I(dir)),
1406 btrfs_release_path(path);
1408 } else if (IS_ERR(dir_item)) {
1409 ret = PTR_ERR(dir_item);
1414 * Our inode's dentry collides with the dentry of another inode which is
1415 * in the log but not yet processed since it has a higher inode number.
1416 * So delete that other dentry.
1418 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1419 btrfs_release_path(path);
1420 other_inode = read_one_inode(root, key.objectid);
1425 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1430 * If we dropped the link count to 0, bump it so that later the iput()
1431 * on the inode will not free it. We will fixup the link count later.
1433 if (other_inode->i_nlink == 0)
1434 inc_nlink(other_inode);
1436 ret = btrfs_run_delayed_items(trans);
1440 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1441 name, namelen, 0, ref_index);
1444 btrfs_free_path(path);
1450 * replay one inode back reference item found in the log tree.
1451 * eb, slot and key refer to the buffer and key found in the log tree.
1452 * root is the destination we are replaying into, and path is for temp
1453 * use by this function. (it should be released on return).
1455 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1456 struct btrfs_root *root,
1457 struct btrfs_root *log,
1458 struct btrfs_path *path,
1459 struct extent_buffer *eb, int slot,
1460 struct btrfs_key *key)
1462 struct inode *dir = NULL;
1463 struct inode *inode = NULL;
1464 unsigned long ref_ptr;
1465 unsigned long ref_end;
1469 int search_done = 0;
1470 int log_ref_ver = 0;
1471 u64 parent_objectid;
1474 int ref_struct_size;
1476 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1477 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1479 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1480 struct btrfs_inode_extref *r;
1482 ref_struct_size = sizeof(struct btrfs_inode_extref);
1484 r = (struct btrfs_inode_extref *)ref_ptr;
1485 parent_objectid = btrfs_inode_extref_parent(eb, r);
1487 ref_struct_size = sizeof(struct btrfs_inode_ref);
1488 parent_objectid = key->offset;
1490 inode_objectid = key->objectid;
1493 * it is possible that we didn't log all the parent directories
1494 * for a given inode. If we don't find the dir, just don't
1495 * copy the back ref in. The link count fixup code will take
1498 dir = read_one_inode(root, parent_objectid);
1504 inode = read_one_inode(root, inode_objectid);
1510 while (ref_ptr < ref_end) {
1512 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1513 &ref_index, &parent_objectid);
1515 * parent object can change from one array
1519 dir = read_one_inode(root, parent_objectid);
1525 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1531 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1532 btrfs_ino(BTRFS_I(inode)), ref_index,
1536 } else if (ret == 0) {
1538 * look for a conflicting back reference in the
1539 * metadata. if we find one we have to unlink that name
1540 * of the file before we add our new link. Later on, we
1541 * overwrite any existing back reference, and we don't
1542 * want to create dangling pointers in the directory.
1546 ret = __add_inode_ref(trans, root, path, log,
1551 ref_index, name, namelen,
1561 * If a reference item already exists for this inode
1562 * with the same parent and name, but different index,
1563 * drop it and the corresponding directory index entries
1564 * from the parent before adding the new reference item
1565 * and dir index entries, otherwise we would fail with
1566 * -EEXIST returned from btrfs_add_link() below.
1568 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1571 ret = btrfs_unlink_inode(trans, root,
1576 * If we dropped the link count to 0, bump it so
1577 * that later the iput() on the inode will not
1578 * free it. We will fixup the link count later.
1580 if (!ret && inode->i_nlink == 0)
1586 /* insert our name */
1587 ret = add_link(trans, root, dir, inode, name, namelen,
1592 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1596 /* Else, ret == 1, we already have a perfect match, we're done. */
1598 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1608 * Before we overwrite the inode reference item in the subvolume tree
1609 * with the item from the log tree, we must unlink all names from the
1610 * parent directory that are in the subvolume's tree inode reference
1611 * item, otherwise we end up with an inconsistent subvolume tree where
1612 * dir index entries exist for a name but there is no inode reference
1613 * item with the same name.
1615 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1620 /* finally write the back reference in the inode */
1621 ret = overwrite_item(trans, root, path, eb, slot, key);
1623 btrfs_release_path(path);
1630 static int count_inode_extrefs(struct btrfs_root *root,
1631 struct btrfs_inode *inode, struct btrfs_path *path)
1635 unsigned int nlink = 0;
1638 u64 inode_objectid = btrfs_ino(inode);
1641 struct btrfs_inode_extref *extref;
1642 struct extent_buffer *leaf;
1645 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1650 leaf = path->nodes[0];
1651 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1652 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1655 while (cur_offset < item_size) {
1656 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1657 name_len = btrfs_inode_extref_name_len(leaf, extref);
1661 cur_offset += name_len + sizeof(*extref);
1665 btrfs_release_path(path);
1667 btrfs_release_path(path);
1669 if (ret < 0 && ret != -ENOENT)
1674 static int count_inode_refs(struct btrfs_root *root,
1675 struct btrfs_inode *inode, struct btrfs_path *path)
1678 struct btrfs_key key;
1679 unsigned int nlink = 0;
1681 unsigned long ptr_end;
1683 u64 ino = btrfs_ino(inode);
1686 key.type = BTRFS_INODE_REF_KEY;
1687 key.offset = (u64)-1;
1690 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1694 if (path->slots[0] == 0)
1699 btrfs_item_key_to_cpu(path->nodes[0], &key,
1701 if (key.objectid != ino ||
1702 key.type != BTRFS_INODE_REF_KEY)
1704 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1705 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1707 while (ptr < ptr_end) {
1708 struct btrfs_inode_ref *ref;
1710 ref = (struct btrfs_inode_ref *)ptr;
1711 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1713 ptr = (unsigned long)(ref + 1) + name_len;
1717 if (key.offset == 0)
1719 if (path->slots[0] > 0) {
1724 btrfs_release_path(path);
1726 btrfs_release_path(path);
1732 * There are a few corners where the link count of the file can't
1733 * be properly maintained during replay. So, instead of adding
1734 * lots of complexity to the log code, we just scan the backrefs
1735 * for any file that has been through replay.
1737 * The scan will update the link count on the inode to reflect the
1738 * number of back refs found. If it goes down to zero, the iput
1739 * will free the inode.
1741 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1742 struct btrfs_root *root,
1743 struct inode *inode)
1745 struct btrfs_path *path;
1748 u64 ino = btrfs_ino(BTRFS_I(inode));
1750 path = btrfs_alloc_path();
1754 ret = count_inode_refs(root, BTRFS_I(inode), path);
1760 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1768 if (nlink != inode->i_nlink) {
1769 set_nlink(inode, nlink);
1770 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1774 BTRFS_I(inode)->index_cnt = (u64)-1;
1776 if (inode->i_nlink == 0) {
1777 if (S_ISDIR(inode->i_mode)) {
1778 ret = replay_dir_deletes(trans, root, NULL, path,
1783 ret = btrfs_insert_orphan_item(trans, root, ino);
1789 btrfs_free_path(path);
1793 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1794 struct btrfs_root *root,
1795 struct btrfs_path *path)
1798 struct btrfs_key key;
1799 struct inode *inode;
1801 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1802 key.type = BTRFS_ORPHAN_ITEM_KEY;
1803 key.offset = (u64)-1;
1805 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1811 if (path->slots[0] == 0)
1816 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1817 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1818 key.type != BTRFS_ORPHAN_ITEM_KEY)
1821 ret = btrfs_del_item(trans, root, path);
1825 btrfs_release_path(path);
1826 inode = read_one_inode(root, key.offset);
1832 ret = fixup_inode_link_count(trans, root, inode);
1838 * fixup on a directory may create new entries,
1839 * make sure we always look for the highset possible
1842 key.offset = (u64)-1;
1844 btrfs_release_path(path);
1850 * record a given inode in the fixup dir so we can check its link
1851 * count when replay is done. The link count is incremented here
1852 * so the inode won't go away until we check it
1854 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1855 struct btrfs_root *root,
1856 struct btrfs_path *path,
1859 struct btrfs_key key;
1861 struct inode *inode;
1863 inode = read_one_inode(root, objectid);
1867 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1868 key.type = BTRFS_ORPHAN_ITEM_KEY;
1869 key.offset = objectid;
1871 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1873 btrfs_release_path(path);
1875 if (!inode->i_nlink)
1876 set_nlink(inode, 1);
1879 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1880 } else if (ret == -EEXIST) {
1889 * when replaying the log for a directory, we only insert names
1890 * for inodes that actually exist. This means an fsync on a directory
1891 * does not implicitly fsync all the new files in it
1893 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1894 struct btrfs_root *root,
1895 u64 dirid, u64 index,
1896 char *name, int name_len,
1897 struct btrfs_key *location)
1899 struct inode *inode;
1903 inode = read_one_inode(root, location->objectid);
1907 dir = read_one_inode(root, dirid);
1913 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1914 name_len, 1, index);
1916 /* FIXME, put inode into FIXUP list */
1924 * take a single entry in a log directory item and replay it into
1927 * if a conflicting item exists in the subdirectory already,
1928 * the inode it points to is unlinked and put into the link count
1931 * If a name from the log points to a file or directory that does
1932 * not exist in the FS, it is skipped. fsyncs on directories
1933 * do not force down inodes inside that directory, just changes to the
1934 * names or unlinks in a directory.
1936 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1937 * non-existing inode) and 1 if the name was replayed.
1939 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1940 struct btrfs_root *root,
1941 struct btrfs_path *path,
1942 struct extent_buffer *eb,
1943 struct btrfs_dir_item *di,
1944 struct btrfs_key *key)
1948 struct btrfs_dir_item *dst_di;
1949 struct btrfs_key found_key;
1950 struct btrfs_key log_key;
1955 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1956 bool name_added = false;
1958 dir = read_one_inode(root, key->objectid);
1962 name_len = btrfs_dir_name_len(eb, di);
1963 name = kmalloc(name_len, GFP_NOFS);
1969 log_type = btrfs_dir_type(eb, di);
1970 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1973 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1974 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1975 btrfs_release_path(path);
1978 exists = (ret == 0);
1981 if (key->type == BTRFS_DIR_ITEM_KEY) {
1982 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1984 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1985 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1995 if (IS_ERR(dst_di)) {
1996 ret = PTR_ERR(dst_di);
1998 } else if (!dst_di) {
1999 /* we need a sequence number to insert, so we only
2000 * do inserts for the BTRFS_DIR_INDEX_KEY types
2002 if (key->type != BTRFS_DIR_INDEX_KEY)
2007 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
2008 /* the existing item matches the logged item */
2009 if (found_key.objectid == log_key.objectid &&
2010 found_key.type == log_key.type &&
2011 found_key.offset == log_key.offset &&
2012 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
2013 update_size = false;
2018 * don't drop the conflicting directory entry if the inode
2019 * for the new entry doesn't exist
2024 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2028 if (key->type == BTRFS_DIR_INDEX_KEY)
2031 btrfs_release_path(path);
2032 if (!ret && update_size) {
2033 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2034 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
2038 if (!ret && name_added)
2044 * Check if the inode reference exists in the log for the given name,
2045 * inode and parent inode
2047 found_key.objectid = log_key.objectid;
2048 found_key.type = BTRFS_INODE_REF_KEY;
2049 found_key.offset = key->objectid;
2050 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
2054 /* The dentry will be added later. */
2056 update_size = false;
2060 found_key.objectid = log_key.objectid;
2061 found_key.type = BTRFS_INODE_EXTREF_KEY;
2062 found_key.offset = key->objectid;
2063 ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2068 /* The dentry will be added later. */
2070 update_size = false;
2073 btrfs_release_path(path);
2074 ret = insert_one_name(trans, root, key->objectid, key->offset,
2075 name, name_len, &log_key);
2076 if (ret && ret != -ENOENT && ret != -EEXIST)
2080 update_size = false;
2086 * find all the names in a directory item and reconcile them into
2087 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2088 * one name in a directory item, but the same code gets used for
2089 * both directory index types
2091 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2092 struct btrfs_root *root,
2093 struct btrfs_path *path,
2094 struct extent_buffer *eb, int slot,
2095 struct btrfs_key *key)
2098 u32 item_size = btrfs_item_size_nr(eb, slot);
2099 struct btrfs_dir_item *di;
2102 unsigned long ptr_end;
2103 struct btrfs_path *fixup_path = NULL;
2105 ptr = btrfs_item_ptr_offset(eb, slot);
2106 ptr_end = ptr + item_size;
2107 while (ptr < ptr_end) {
2108 di = (struct btrfs_dir_item *)ptr;
2109 name_len = btrfs_dir_name_len(eb, di);
2110 ret = replay_one_name(trans, root, path, eb, di, key);
2113 ptr = (unsigned long)(di + 1);
2117 * If this entry refers to a non-directory (directories can not
2118 * have a link count > 1) and it was added in the transaction
2119 * that was not committed, make sure we fixup the link count of
2120 * the inode it the entry points to. Otherwise something like
2121 * the following would result in a directory pointing to an
2122 * inode with a wrong link that does not account for this dir
2130 * ln testdir/bar testdir/bar_link
2131 * ln testdir/foo testdir/foo_link
2132 * xfs_io -c "fsync" testdir/bar
2136 * mount fs, log replay happens
2138 * File foo would remain with a link count of 1 when it has two
2139 * entries pointing to it in the directory testdir. This would
2140 * make it impossible to ever delete the parent directory has
2141 * it would result in stale dentries that can never be deleted.
2143 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2144 struct btrfs_key di_key;
2147 fixup_path = btrfs_alloc_path();
2154 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2155 ret = link_to_fixup_dir(trans, root, fixup_path,
2162 btrfs_free_path(fixup_path);
2167 * directory replay has two parts. There are the standard directory
2168 * items in the log copied from the subvolume, and range items
2169 * created in the log while the subvolume was logged.
2171 * The range items tell us which parts of the key space the log
2172 * is authoritative for. During replay, if a key in the subvolume
2173 * directory is in a logged range item, but not actually in the log
2174 * that means it was deleted from the directory before the fsync
2175 * and should be removed.
2177 static noinline int find_dir_range(struct btrfs_root *root,
2178 struct btrfs_path *path,
2179 u64 dirid, int key_type,
2180 u64 *start_ret, u64 *end_ret)
2182 struct btrfs_key key;
2184 struct btrfs_dir_log_item *item;
2188 if (*start_ret == (u64)-1)
2191 key.objectid = dirid;
2192 key.type = key_type;
2193 key.offset = *start_ret;
2195 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2199 if (path->slots[0] == 0)
2204 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2206 if (key.type != key_type || key.objectid != dirid) {
2210 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2211 struct btrfs_dir_log_item);
2212 found_end = btrfs_dir_log_end(path->nodes[0], item);
2214 if (*start_ret >= key.offset && *start_ret <= found_end) {
2216 *start_ret = key.offset;
2217 *end_ret = found_end;
2222 /* check the next slot in the tree to see if it is a valid item */
2223 nritems = btrfs_header_nritems(path->nodes[0]);
2225 if (path->slots[0] >= nritems) {
2226 ret = btrfs_next_leaf(root, path);
2231 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2233 if (key.type != key_type || key.objectid != dirid) {
2237 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2238 struct btrfs_dir_log_item);
2239 found_end = btrfs_dir_log_end(path->nodes[0], item);
2240 *start_ret = key.offset;
2241 *end_ret = found_end;
2244 btrfs_release_path(path);
2249 * this looks for a given directory item in the log. If the directory
2250 * item is not in the log, the item is removed and the inode it points
2253 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2254 struct btrfs_root *root,
2255 struct btrfs_root *log,
2256 struct btrfs_path *path,
2257 struct btrfs_path *log_path,
2259 struct btrfs_key *dir_key)
2262 struct extent_buffer *eb;
2265 struct btrfs_dir_item *di;
2266 struct btrfs_dir_item *log_di;
2269 unsigned long ptr_end;
2271 struct inode *inode;
2272 struct btrfs_key location;
2275 eb = path->nodes[0];
2276 slot = path->slots[0];
2277 item_size = btrfs_item_size_nr(eb, slot);
2278 ptr = btrfs_item_ptr_offset(eb, slot);
2279 ptr_end = ptr + item_size;
2280 while (ptr < ptr_end) {
2281 di = (struct btrfs_dir_item *)ptr;
2282 name_len = btrfs_dir_name_len(eb, di);
2283 name = kmalloc(name_len, GFP_NOFS);
2288 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2291 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2292 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2295 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2296 log_di = btrfs_lookup_dir_index_item(trans, log,
2303 btrfs_dir_item_key_to_cpu(eb, di, &location);
2304 btrfs_release_path(path);
2305 btrfs_release_path(log_path);
2306 inode = read_one_inode(root, location.objectid);
2312 ret = link_to_fixup_dir(trans, root,
2313 path, location.objectid);
2321 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2322 BTRFS_I(inode), name, name_len);
2324 ret = btrfs_run_delayed_items(trans);
2330 /* there might still be more names under this key
2331 * check and repeat if required
2333 ret = btrfs_search_slot(NULL, root, dir_key, path,
2339 } else if (IS_ERR(log_di)) {
2341 return PTR_ERR(log_di);
2343 btrfs_release_path(log_path);
2346 ptr = (unsigned long)(di + 1);
2351 btrfs_release_path(path);
2352 btrfs_release_path(log_path);
2356 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2357 struct btrfs_root *root,
2358 struct btrfs_root *log,
2359 struct btrfs_path *path,
2362 struct btrfs_key search_key;
2363 struct btrfs_path *log_path;
2368 log_path = btrfs_alloc_path();
2372 search_key.objectid = ino;
2373 search_key.type = BTRFS_XATTR_ITEM_KEY;
2374 search_key.offset = 0;
2376 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2380 nritems = btrfs_header_nritems(path->nodes[0]);
2381 for (i = path->slots[0]; i < nritems; i++) {
2382 struct btrfs_key key;
2383 struct btrfs_dir_item *di;
2384 struct btrfs_dir_item *log_di;
2388 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2389 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2394 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2395 total_size = btrfs_item_size_nr(path->nodes[0], i);
2397 while (cur < total_size) {
2398 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2399 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2400 u32 this_len = sizeof(*di) + name_len + data_len;
2403 name = kmalloc(name_len, GFP_NOFS);
2408 read_extent_buffer(path->nodes[0], name,
2409 (unsigned long)(di + 1), name_len);
2411 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2413 btrfs_release_path(log_path);
2415 /* Doesn't exist in log tree, so delete it. */
2416 btrfs_release_path(path);
2417 di = btrfs_lookup_xattr(trans, root, path, ino,
2418 name, name_len, -1);
2425 ret = btrfs_delete_one_dir_name(trans, root,
2429 btrfs_release_path(path);
2434 if (IS_ERR(log_di)) {
2435 ret = PTR_ERR(log_di);
2439 di = (struct btrfs_dir_item *)((char *)di + this_len);
2442 ret = btrfs_next_leaf(root, path);
2448 btrfs_free_path(log_path);
2449 btrfs_release_path(path);
2455 * deletion replay happens before we copy any new directory items
2456 * out of the log or out of backreferences from inodes. It
2457 * scans the log to find ranges of keys that log is authoritative for,
2458 * and then scans the directory to find items in those ranges that are
2459 * not present in the log.
2461 * Anything we don't find in the log is unlinked and removed from the
2464 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2465 struct btrfs_root *root,
2466 struct btrfs_root *log,
2467 struct btrfs_path *path,
2468 u64 dirid, int del_all)
2472 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2474 struct btrfs_key dir_key;
2475 struct btrfs_key found_key;
2476 struct btrfs_path *log_path;
2479 dir_key.objectid = dirid;
2480 dir_key.type = BTRFS_DIR_ITEM_KEY;
2481 log_path = btrfs_alloc_path();
2485 dir = read_one_inode(root, dirid);
2486 /* it isn't an error if the inode isn't there, that can happen
2487 * because we replay the deletes before we copy in the inode item
2491 btrfs_free_path(log_path);
2499 range_end = (u64)-1;
2501 ret = find_dir_range(log, path, dirid, key_type,
2502 &range_start, &range_end);
2507 dir_key.offset = range_start;
2510 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2515 nritems = btrfs_header_nritems(path->nodes[0]);
2516 if (path->slots[0] >= nritems) {
2517 ret = btrfs_next_leaf(root, path);
2523 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2525 if (found_key.objectid != dirid ||
2526 found_key.type != dir_key.type)
2529 if (found_key.offset > range_end)
2532 ret = check_item_in_log(trans, root, log, path,
2537 if (found_key.offset == (u64)-1)
2539 dir_key.offset = found_key.offset + 1;
2541 btrfs_release_path(path);
2542 if (range_end == (u64)-1)
2544 range_start = range_end + 1;
2549 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2550 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2551 dir_key.type = BTRFS_DIR_INDEX_KEY;
2552 btrfs_release_path(path);
2556 btrfs_release_path(path);
2557 btrfs_free_path(log_path);
2563 * the process_func used to replay items from the log tree. This
2564 * gets called in two different stages. The first stage just looks
2565 * for inodes and makes sure they are all copied into the subvolume.
2567 * The second stage copies all the other item types from the log into
2568 * the subvolume. The two stage approach is slower, but gets rid of
2569 * lots of complexity around inodes referencing other inodes that exist
2570 * only in the log (references come from either directory items or inode
2573 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2574 struct walk_control *wc, u64 gen, int level)
2577 struct btrfs_path *path;
2578 struct btrfs_root *root = wc->replay_dest;
2579 struct btrfs_key key;
2583 ret = btrfs_read_buffer(eb, gen, level, NULL);
2587 level = btrfs_header_level(eb);
2592 path = btrfs_alloc_path();
2596 nritems = btrfs_header_nritems(eb);
2597 for (i = 0; i < nritems; i++) {
2598 btrfs_item_key_to_cpu(eb, &key, i);
2600 /* inode keys are done during the first stage */
2601 if (key.type == BTRFS_INODE_ITEM_KEY &&
2602 wc->stage == LOG_WALK_REPLAY_INODES) {
2603 struct btrfs_inode_item *inode_item;
2606 inode_item = btrfs_item_ptr(eb, i,
2607 struct btrfs_inode_item);
2609 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2610 * and never got linked before the fsync, skip it, as
2611 * replaying it is pointless since it would be deleted
2612 * later. We skip logging tmpfiles, but it's always
2613 * possible we are replaying a log created with a kernel
2614 * that used to log tmpfiles.
2616 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2617 wc->ignore_cur_inode = true;
2620 wc->ignore_cur_inode = false;
2622 ret = replay_xattr_deletes(wc->trans, root, log,
2623 path, key.objectid);
2626 mode = btrfs_inode_mode(eb, inode_item);
2627 if (S_ISDIR(mode)) {
2628 ret = replay_dir_deletes(wc->trans,
2629 root, log, path, key.objectid, 0);
2633 ret = overwrite_item(wc->trans, root, path,
2639 * Before replaying extents, truncate the inode to its
2640 * size. We need to do it now and not after log replay
2641 * because before an fsync we can have prealloc extents
2642 * added beyond the inode's i_size. If we did it after,
2643 * through orphan cleanup for example, we would drop
2644 * those prealloc extents just after replaying them.
2646 if (S_ISREG(mode)) {
2647 struct btrfs_drop_extents_args drop_args = { 0 };
2648 struct inode *inode;
2651 inode = read_one_inode(root, key.objectid);
2656 from = ALIGN(i_size_read(inode),
2657 root->fs_info->sectorsize);
2658 drop_args.start = from;
2659 drop_args.end = (u64)-1;
2660 drop_args.drop_cache = true;
2661 ret = btrfs_drop_extents(wc->trans, root,
2665 inode_sub_bytes(inode,
2666 drop_args.bytes_found);
2667 /* Update the inode's nbytes. */
2668 ret = btrfs_update_inode(wc->trans,
2669 root, BTRFS_I(inode));
2676 ret = link_to_fixup_dir(wc->trans, root,
2677 path, key.objectid);
2682 if (wc->ignore_cur_inode)
2685 if (key.type == BTRFS_DIR_INDEX_KEY &&
2686 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2687 ret = replay_one_dir_item(wc->trans, root, path,
2693 if (wc->stage < LOG_WALK_REPLAY_ALL)
2696 /* these keys are simply copied */
2697 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2698 ret = overwrite_item(wc->trans, root, path,
2702 } else if (key.type == BTRFS_INODE_REF_KEY ||
2703 key.type == BTRFS_INODE_EXTREF_KEY) {
2704 ret = add_inode_ref(wc->trans, root, log, path,
2706 if (ret && ret != -ENOENT)
2709 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2710 ret = replay_one_extent(wc->trans, root, path,
2714 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2715 ret = replay_one_dir_item(wc->trans, root, path,
2721 btrfs_free_path(path);
2726 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2728 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2730 struct btrfs_block_group *cache;
2732 cache = btrfs_lookup_block_group(fs_info, start);
2734 btrfs_err(fs_info, "unable to find block group for %llu", start);
2738 spin_lock(&cache->space_info->lock);
2739 spin_lock(&cache->lock);
2740 cache->reserved -= fs_info->nodesize;
2741 cache->space_info->bytes_reserved -= fs_info->nodesize;
2742 spin_unlock(&cache->lock);
2743 spin_unlock(&cache->space_info->lock);
2745 btrfs_put_block_group(cache);
2748 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2749 struct btrfs_root *root,
2750 struct btrfs_path *path, int *level,
2751 struct walk_control *wc)
2753 struct btrfs_fs_info *fs_info = root->fs_info;
2756 struct extent_buffer *next;
2757 struct extent_buffer *cur;
2761 while (*level > 0) {
2762 struct btrfs_key first_key;
2764 cur = path->nodes[*level];
2766 WARN_ON(btrfs_header_level(cur) != *level);
2768 if (path->slots[*level] >=
2769 btrfs_header_nritems(cur))
2772 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2773 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2774 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2775 blocksize = fs_info->nodesize;
2777 next = btrfs_find_create_tree_block(fs_info, bytenr,
2778 btrfs_header_owner(cur),
2781 return PTR_ERR(next);
2784 ret = wc->process_func(root, next, wc, ptr_gen,
2787 free_extent_buffer(next);
2791 path->slots[*level]++;
2793 ret = btrfs_read_buffer(next, ptr_gen,
2794 *level - 1, &first_key);
2796 free_extent_buffer(next);
2801 btrfs_tree_lock(next);
2802 btrfs_clean_tree_block(next);
2803 btrfs_wait_tree_block_writeback(next);
2804 btrfs_tree_unlock(next);
2805 ret = btrfs_pin_reserved_extent(trans,
2808 free_extent_buffer(next);
2811 btrfs_redirty_list_add(
2812 trans->transaction, next);
2814 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2815 clear_extent_buffer_dirty(next);
2816 unaccount_log_buffer(fs_info, bytenr);
2819 free_extent_buffer(next);
2822 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2824 free_extent_buffer(next);
2828 if (path->nodes[*level-1])
2829 free_extent_buffer(path->nodes[*level-1]);
2830 path->nodes[*level-1] = next;
2831 *level = btrfs_header_level(next);
2832 path->slots[*level] = 0;
2835 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2841 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2842 struct btrfs_root *root,
2843 struct btrfs_path *path, int *level,
2844 struct walk_control *wc)
2846 struct btrfs_fs_info *fs_info = root->fs_info;
2851 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2852 slot = path->slots[i];
2853 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2856 WARN_ON(*level == 0);
2859 ret = wc->process_func(root, path->nodes[*level], wc,
2860 btrfs_header_generation(path->nodes[*level]),
2866 struct extent_buffer *next;
2868 next = path->nodes[*level];
2871 btrfs_tree_lock(next);
2872 btrfs_clean_tree_block(next);
2873 btrfs_wait_tree_block_writeback(next);
2874 btrfs_tree_unlock(next);
2875 ret = btrfs_pin_reserved_extent(trans,
2876 path->nodes[*level]->start,
2877 path->nodes[*level]->len);
2881 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2882 clear_extent_buffer_dirty(next);
2884 unaccount_log_buffer(fs_info,
2885 path->nodes[*level]->start);
2888 free_extent_buffer(path->nodes[*level]);
2889 path->nodes[*level] = NULL;
2897 * drop the reference count on the tree rooted at 'snap'. This traverses
2898 * the tree freeing any blocks that have a ref count of zero after being
2901 static int walk_log_tree(struct btrfs_trans_handle *trans,
2902 struct btrfs_root *log, struct walk_control *wc)
2904 struct btrfs_fs_info *fs_info = log->fs_info;
2908 struct btrfs_path *path;
2911 path = btrfs_alloc_path();
2915 level = btrfs_header_level(log->node);
2917 path->nodes[level] = log->node;
2918 atomic_inc(&log->node->refs);
2919 path->slots[level] = 0;
2922 wret = walk_down_log_tree(trans, log, path, &level, wc);
2930 wret = walk_up_log_tree(trans, log, path, &level, wc);
2939 /* was the root node processed? if not, catch it here */
2940 if (path->nodes[orig_level]) {
2941 ret = wc->process_func(log, path->nodes[orig_level], wc,
2942 btrfs_header_generation(path->nodes[orig_level]),
2947 struct extent_buffer *next;
2949 next = path->nodes[orig_level];
2952 btrfs_tree_lock(next);
2953 btrfs_clean_tree_block(next);
2954 btrfs_wait_tree_block_writeback(next);
2955 btrfs_tree_unlock(next);
2956 ret = btrfs_pin_reserved_extent(trans,
2957 next->start, next->len);
2961 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2962 clear_extent_buffer_dirty(next);
2963 unaccount_log_buffer(fs_info, next->start);
2969 btrfs_free_path(path);
2974 * helper function to update the item for a given subvolumes log root
2975 * in the tree of log roots
2977 static int update_log_root(struct btrfs_trans_handle *trans,
2978 struct btrfs_root *log,
2979 struct btrfs_root_item *root_item)
2981 struct btrfs_fs_info *fs_info = log->fs_info;
2984 if (log->log_transid == 1) {
2985 /* insert root item on the first sync */
2986 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2987 &log->root_key, root_item);
2989 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2990 &log->root_key, root_item);
2995 static void wait_log_commit(struct btrfs_root *root, int transid)
2998 int index = transid % 2;
3001 * we only allow two pending log transactions at a time,
3002 * so we know that if ours is more than 2 older than the
3003 * current transaction, we're done
3006 prepare_to_wait(&root->log_commit_wait[index],
3007 &wait, TASK_UNINTERRUPTIBLE);
3009 if (!(root->log_transid_committed < transid &&
3010 atomic_read(&root->log_commit[index])))
3013 mutex_unlock(&root->log_mutex);
3015 mutex_lock(&root->log_mutex);
3017 finish_wait(&root->log_commit_wait[index], &wait);
3020 static void wait_for_writer(struct btrfs_root *root)
3025 prepare_to_wait(&root->log_writer_wait, &wait,
3026 TASK_UNINTERRUPTIBLE);
3027 if (!atomic_read(&root->log_writers))
3030 mutex_unlock(&root->log_mutex);
3032 mutex_lock(&root->log_mutex);
3034 finish_wait(&root->log_writer_wait, &wait);
3037 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3038 struct btrfs_log_ctx *ctx)
3043 mutex_lock(&root->log_mutex);
3044 list_del_init(&ctx->list);
3045 mutex_unlock(&root->log_mutex);
3049 * Invoked in log mutex context, or be sure there is no other task which
3050 * can access the list.
3052 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3053 int index, int error)
3055 struct btrfs_log_ctx *ctx;
3056 struct btrfs_log_ctx *safe;
3058 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3059 list_del_init(&ctx->list);
3060 ctx->log_ret = error;
3065 * btrfs_sync_log does sends a given tree log down to the disk and
3066 * updates the super blocks to record it. When this call is done,
3067 * you know that any inodes previously logged are safely on disk only
3070 * Any other return value means you need to call btrfs_commit_transaction.
3071 * Some of the edge cases for fsyncing directories that have had unlinks
3072 * or renames done in the past mean that sometimes the only safe
3073 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3074 * that has happened.
3076 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3077 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3083 struct btrfs_fs_info *fs_info = root->fs_info;
3084 struct btrfs_root *log = root->log_root;
3085 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3086 struct btrfs_root_item new_root_item;
3087 int log_transid = 0;
3088 struct btrfs_log_ctx root_log_ctx;
3089 struct blk_plug plug;
3093 mutex_lock(&root->log_mutex);
3094 log_transid = ctx->log_transid;
3095 if (root->log_transid_committed >= log_transid) {
3096 mutex_unlock(&root->log_mutex);
3097 return ctx->log_ret;
3100 index1 = log_transid % 2;
3101 if (atomic_read(&root->log_commit[index1])) {
3102 wait_log_commit(root, log_transid);
3103 mutex_unlock(&root->log_mutex);
3104 return ctx->log_ret;
3106 ASSERT(log_transid == root->log_transid);
3107 atomic_set(&root->log_commit[index1], 1);
3109 /* wait for previous tree log sync to complete */
3110 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3111 wait_log_commit(root, log_transid - 1);
3114 int batch = atomic_read(&root->log_batch);
3115 /* when we're on an ssd, just kick the log commit out */
3116 if (!btrfs_test_opt(fs_info, SSD) &&
3117 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3118 mutex_unlock(&root->log_mutex);
3119 schedule_timeout_uninterruptible(1);
3120 mutex_lock(&root->log_mutex);
3122 wait_for_writer(root);
3123 if (batch == atomic_read(&root->log_batch))
3127 /* bail out if we need to do a full commit */
3128 if (btrfs_need_log_full_commit(trans)) {
3130 mutex_unlock(&root->log_mutex);
3134 if (log_transid % 2 == 0)
3135 mark = EXTENT_DIRTY;
3139 /* we start IO on all the marked extents here, but we don't actually
3140 * wait for them until later.
3142 blk_start_plug(&plug);
3143 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3145 * -EAGAIN happens when someone, e.g., a concurrent transaction
3146 * commit, writes a dirty extent in this tree-log commit. This
3147 * concurrent write will create a hole writing out the extents,
3148 * and we cannot proceed on a zoned filesystem, requiring
3149 * sequential writing. While we can bail out to a full commit
3150 * here, but we can continue hoping the concurrent writing fills
3153 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3156 blk_finish_plug(&plug);
3157 btrfs_abort_transaction(trans, ret);
3158 btrfs_set_log_full_commit(trans);
3159 mutex_unlock(&root->log_mutex);
3164 * We _must_ update under the root->log_mutex in order to make sure we
3165 * have a consistent view of the log root we are trying to commit at
3168 * We _must_ copy this into a local copy, because we are not holding the
3169 * log_root_tree->log_mutex yet. This is important because when we
3170 * commit the log_root_tree we must have a consistent view of the
3171 * log_root_tree when we update the super block to point at the
3172 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3173 * with the commit and possibly point at the new block which we may not
3176 btrfs_set_root_node(&log->root_item, log->node);
3177 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3179 root->log_transid++;
3180 log->log_transid = root->log_transid;
3181 root->log_start_pid = 0;
3183 * IO has been started, blocks of the log tree have WRITTEN flag set
3184 * in their headers. new modifications of the log will be written to
3185 * new positions. so it's safe to allow log writers to go in.
3187 mutex_unlock(&root->log_mutex);
3189 if (btrfs_is_zoned(fs_info)) {
3190 mutex_lock(&fs_info->tree_root->log_mutex);
3191 if (!log_root_tree->node) {
3192 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3194 mutex_unlock(&fs_info->tree_root->log_mutex);
3198 mutex_unlock(&fs_info->tree_root->log_mutex);
3201 btrfs_init_log_ctx(&root_log_ctx, NULL);
3203 mutex_lock(&log_root_tree->log_mutex);
3205 index2 = log_root_tree->log_transid % 2;
3206 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3207 root_log_ctx.log_transid = log_root_tree->log_transid;
3210 * Now we are safe to update the log_root_tree because we're under the
3211 * log_mutex, and we're a current writer so we're holding the commit
3212 * open until we drop the log_mutex.
3214 ret = update_log_root(trans, log, &new_root_item);
3216 if (!list_empty(&root_log_ctx.list))
3217 list_del_init(&root_log_ctx.list);
3219 blk_finish_plug(&plug);
3220 btrfs_set_log_full_commit(trans);
3222 if (ret != -ENOSPC) {
3223 btrfs_abort_transaction(trans, ret);
3224 mutex_unlock(&log_root_tree->log_mutex);
3227 btrfs_wait_tree_log_extents(log, mark);
3228 mutex_unlock(&log_root_tree->log_mutex);
3233 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3234 blk_finish_plug(&plug);
3235 list_del_init(&root_log_ctx.list);
3236 mutex_unlock(&log_root_tree->log_mutex);
3237 ret = root_log_ctx.log_ret;
3241 index2 = root_log_ctx.log_transid % 2;
3242 if (atomic_read(&log_root_tree->log_commit[index2])) {
3243 blk_finish_plug(&plug);
3244 ret = btrfs_wait_tree_log_extents(log, mark);
3245 wait_log_commit(log_root_tree,
3246 root_log_ctx.log_transid);
3247 mutex_unlock(&log_root_tree->log_mutex);
3249 ret = root_log_ctx.log_ret;
3252 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3253 atomic_set(&log_root_tree->log_commit[index2], 1);
3255 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3256 wait_log_commit(log_root_tree,
3257 root_log_ctx.log_transid - 1);
3261 * now that we've moved on to the tree of log tree roots,
3262 * check the full commit flag again
3264 if (btrfs_need_log_full_commit(trans)) {
3265 blk_finish_plug(&plug);
3266 btrfs_wait_tree_log_extents(log, mark);
3267 mutex_unlock(&log_root_tree->log_mutex);
3269 goto out_wake_log_root;
3272 ret = btrfs_write_marked_extents(fs_info,
3273 &log_root_tree->dirty_log_pages,
3274 EXTENT_DIRTY | EXTENT_NEW);
3275 blk_finish_plug(&plug);
3277 * As described above, -EAGAIN indicates a hole in the extents. We
3278 * cannot wait for these write outs since the waiting cause a
3279 * deadlock. Bail out to the full commit instead.
3281 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3282 btrfs_set_log_full_commit(trans);
3283 btrfs_wait_tree_log_extents(log, mark);
3284 mutex_unlock(&log_root_tree->log_mutex);
3285 goto out_wake_log_root;
3287 btrfs_set_log_full_commit(trans);
3288 btrfs_abort_transaction(trans, ret);
3289 mutex_unlock(&log_root_tree->log_mutex);
3290 goto out_wake_log_root;
3292 ret = btrfs_wait_tree_log_extents(log, mark);
3294 ret = btrfs_wait_tree_log_extents(log_root_tree,
3295 EXTENT_NEW | EXTENT_DIRTY);
3297 btrfs_set_log_full_commit(trans);
3298 mutex_unlock(&log_root_tree->log_mutex);
3299 goto out_wake_log_root;
3302 log_root_start = log_root_tree->node->start;
3303 log_root_level = btrfs_header_level(log_root_tree->node);
3304 log_root_tree->log_transid++;
3305 mutex_unlock(&log_root_tree->log_mutex);
3308 * Here we are guaranteed that nobody is going to write the superblock
3309 * for the current transaction before us and that neither we do write
3310 * our superblock before the previous transaction finishes its commit
3311 * and writes its superblock, because:
3313 * 1) We are holding a handle on the current transaction, so no body
3314 * can commit it until we release the handle;
3316 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3317 * if the previous transaction is still committing, and hasn't yet
3318 * written its superblock, we wait for it to do it, because a
3319 * transaction commit acquires the tree_log_mutex when the commit
3320 * begins and releases it only after writing its superblock.
3322 mutex_lock(&fs_info->tree_log_mutex);
3325 * The previous transaction writeout phase could have failed, and thus
3326 * marked the fs in an error state. We must not commit here, as we
3327 * could have updated our generation in the super_for_commit and
3328 * writing the super here would result in transid mismatches. If there
3329 * is an error here just bail.
3331 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3333 btrfs_set_log_full_commit(trans);
3334 btrfs_abort_transaction(trans, ret);
3335 mutex_unlock(&fs_info->tree_log_mutex);
3336 goto out_wake_log_root;
3339 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3340 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3341 ret = write_all_supers(fs_info, 1);
3342 mutex_unlock(&fs_info->tree_log_mutex);
3344 btrfs_set_log_full_commit(trans);
3345 btrfs_abort_transaction(trans, ret);
3346 goto out_wake_log_root;
3350 * We know there can only be one task here, since we have not yet set
3351 * root->log_commit[index1] to 0 and any task attempting to sync the
3352 * log must wait for the previous log transaction to commit if it's
3353 * still in progress or wait for the current log transaction commit if
3354 * someone else already started it. We use <= and not < because the
3355 * first log transaction has an ID of 0.
3357 ASSERT(root->last_log_commit <= log_transid);
3358 root->last_log_commit = log_transid;
3361 mutex_lock(&log_root_tree->log_mutex);
3362 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3364 log_root_tree->log_transid_committed++;
3365 atomic_set(&log_root_tree->log_commit[index2], 0);
3366 mutex_unlock(&log_root_tree->log_mutex);
3369 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3370 * all the updates above are seen by the woken threads. It might not be
3371 * necessary, but proving that seems to be hard.
3373 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3375 mutex_lock(&root->log_mutex);
3376 btrfs_remove_all_log_ctxs(root, index1, ret);
3377 root->log_transid_committed++;
3378 atomic_set(&root->log_commit[index1], 0);
3379 mutex_unlock(&root->log_mutex);
3382 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3383 * all the updates above are seen by the woken threads. It might not be
3384 * necessary, but proving that seems to be hard.
3386 cond_wake_up(&root->log_commit_wait[index1]);
3390 static void free_log_tree(struct btrfs_trans_handle *trans,
3391 struct btrfs_root *log)
3394 struct walk_control wc = {
3396 .process_func = process_one_buffer
3400 ret = walk_log_tree(trans, log, &wc);
3403 btrfs_abort_transaction(trans, ret);
3405 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3409 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3410 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3411 extent_io_tree_release(&log->log_csum_range);
3413 if (trans && log->node)
3414 btrfs_redirty_list_add(trans->transaction, log->node);
3415 btrfs_put_root(log);
3419 * free all the extents used by the tree log. This should be called
3420 * at commit time of the full transaction
3422 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3424 if (root->log_root) {
3425 free_log_tree(trans, root->log_root);
3426 root->log_root = NULL;
3427 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3432 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3433 struct btrfs_fs_info *fs_info)
3435 if (fs_info->log_root_tree) {
3436 free_log_tree(trans, fs_info->log_root_tree);
3437 fs_info->log_root_tree = NULL;
3438 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3444 * Check if an inode was logged in the current transaction. This may often
3445 * return some false positives, because logged_trans is an in memory only field,
3446 * not persisted anywhere. This is meant to be used in contexts where a false
3447 * positive has no functional consequences.
3449 static bool inode_logged(struct btrfs_trans_handle *trans,
3450 struct btrfs_inode *inode)
3452 if (inode->logged_trans == trans->transid)
3456 * The inode's logged_trans is always 0 when we load it (because it is
3457 * not persisted in the inode item or elsewhere). So if it is 0, the
3458 * inode was last modified in the current transaction then the inode may
3459 * have been logged before in the current transaction, then evicted and
3460 * loaded again in the current transaction - or may have never been logged
3461 * in the current transaction, but since we can not be sure, we have to
3462 * assume it was, otherwise our callers can leave an inconsistent log.
3464 if (inode->logged_trans == 0 &&
3465 inode->last_trans == trans->transid &&
3466 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3473 * If both a file and directory are logged, and unlinks or renames are
3474 * mixed in, we have a few interesting corners:
3476 * create file X in dir Y
3477 * link file X to X.link in dir Y
3479 * unlink file X but leave X.link
3482 * After a crash we would expect only X.link to exist. But file X
3483 * didn't get fsync'd again so the log has back refs for X and X.link.
3485 * We solve this by removing directory entries and inode backrefs from the
3486 * log when a file that was logged in the current transaction is
3487 * unlinked. Any later fsync will include the updated log entries, and
3488 * we'll be able to reconstruct the proper directory items from backrefs.
3490 * This optimizations allows us to avoid relogging the entire inode
3491 * or the entire directory.
3493 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3494 struct btrfs_root *root,
3495 const char *name, int name_len,
3496 struct btrfs_inode *dir, u64 index)
3498 struct btrfs_root *log;
3499 struct btrfs_dir_item *di;
3500 struct btrfs_path *path;
3503 u64 dir_ino = btrfs_ino(dir);
3505 if (!inode_logged(trans, dir))
3508 ret = join_running_log_trans(root);
3512 mutex_lock(&dir->log_mutex);
3514 log = root->log_root;
3515 path = btrfs_alloc_path();
3521 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3522 name, name_len, -1);
3528 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3534 btrfs_release_path(path);
3535 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3536 index, name, name_len, -1);
3542 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3550 * We do not need to update the size field of the directory's inode item
3551 * because on log replay we update the field to reflect all existing
3552 * entries in the directory (see overwrite_item()).
3555 btrfs_free_path(path);
3557 mutex_unlock(&dir->log_mutex);
3558 if (err == -ENOSPC) {
3559 btrfs_set_log_full_commit(trans);
3561 } else if (err < 0) {
3562 btrfs_abort_transaction(trans, err);
3565 btrfs_end_log_trans(root);
3570 /* see comments for btrfs_del_dir_entries_in_log */
3571 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3572 struct btrfs_root *root,
3573 const char *name, int name_len,
3574 struct btrfs_inode *inode, u64 dirid)
3576 struct btrfs_root *log;
3580 if (!inode_logged(trans, inode))
3583 ret = join_running_log_trans(root);
3586 log = root->log_root;
3587 mutex_lock(&inode->log_mutex);
3589 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3591 mutex_unlock(&inode->log_mutex);
3592 if (ret == -ENOSPC) {
3593 btrfs_set_log_full_commit(trans);
3595 } else if (ret < 0 && ret != -ENOENT)
3596 btrfs_abort_transaction(trans, ret);
3597 btrfs_end_log_trans(root);
3603 * creates a range item in the log for 'dirid'. first_offset and
3604 * last_offset tell us which parts of the key space the log should
3605 * be considered authoritative for.
3607 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3608 struct btrfs_root *log,
3609 struct btrfs_path *path,
3610 int key_type, u64 dirid,
3611 u64 first_offset, u64 last_offset)
3614 struct btrfs_key key;
3615 struct btrfs_dir_log_item *item;
3617 key.objectid = dirid;
3618 key.offset = first_offset;
3619 if (key_type == BTRFS_DIR_ITEM_KEY)
3620 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3622 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3623 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3627 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3628 struct btrfs_dir_log_item);
3629 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3630 btrfs_mark_buffer_dirty(path->nodes[0]);
3631 btrfs_release_path(path);
3636 * log all the items included in the current transaction for a given
3637 * directory. This also creates the range items in the log tree required
3638 * to replay anything deleted before the fsync
3640 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3641 struct btrfs_root *root, struct btrfs_inode *inode,
3642 struct btrfs_path *path,
3643 struct btrfs_path *dst_path, int key_type,
3644 struct btrfs_log_ctx *ctx,
3645 u64 min_offset, u64 *last_offset_ret)
3647 struct btrfs_key min_key;
3648 struct btrfs_root *log = root->log_root;
3649 struct extent_buffer *src;
3654 u64 first_offset = min_offset;
3655 u64 last_offset = (u64)-1;
3656 u64 ino = btrfs_ino(inode);
3658 log = root->log_root;
3660 min_key.objectid = ino;
3661 min_key.type = key_type;
3662 min_key.offset = min_offset;
3664 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3667 * we didn't find anything from this transaction, see if there
3668 * is anything at all
3670 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3671 min_key.objectid = ino;
3672 min_key.type = key_type;
3673 min_key.offset = (u64)-1;
3674 btrfs_release_path(path);
3675 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3677 btrfs_release_path(path);
3680 ret = btrfs_previous_item(root, path, ino, key_type);
3682 /* if ret == 0 there are items for this type,
3683 * create a range to tell us the last key of this type.
3684 * otherwise, there are no items in this directory after
3685 * *min_offset, and we create a range to indicate that.
3688 struct btrfs_key tmp;
3689 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3691 if (key_type == tmp.type)
3692 first_offset = max(min_offset, tmp.offset) + 1;
3697 /* go backward to find any previous key */
3698 ret = btrfs_previous_item(root, path, ino, key_type);
3700 struct btrfs_key tmp;
3701 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3702 if (key_type == tmp.type) {
3703 first_offset = tmp.offset;
3704 ret = overwrite_item(trans, log, dst_path,
3705 path->nodes[0], path->slots[0],
3713 btrfs_release_path(path);
3716 * Find the first key from this transaction again. See the note for
3717 * log_new_dir_dentries, if we're logging a directory recursively we
3718 * won't be holding its i_mutex, which means we can modify the directory
3719 * while we're logging it. If we remove an entry between our first
3720 * search and this search we'll not find the key again and can just
3724 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3729 * we have a block from this transaction, log every item in it
3730 * from our directory
3733 struct btrfs_key tmp;
3734 src = path->nodes[0];
3735 nritems = btrfs_header_nritems(src);
3736 for (i = path->slots[0]; i < nritems; i++) {
3737 struct btrfs_dir_item *di;
3739 btrfs_item_key_to_cpu(src, &min_key, i);
3741 if (min_key.objectid != ino || min_key.type != key_type)
3744 if (need_resched()) {
3745 btrfs_release_path(path);
3750 ret = overwrite_item(trans, log, dst_path, src, i,
3758 * We must make sure that when we log a directory entry,
3759 * the corresponding inode, after log replay, has a
3760 * matching link count. For example:
3766 * xfs_io -c "fsync" mydir
3768 * <mount fs and log replay>
3770 * Would result in a fsync log that when replayed, our
3771 * file inode would have a link count of 1, but we get
3772 * two directory entries pointing to the same inode.
3773 * After removing one of the names, it would not be
3774 * possible to remove the other name, which resulted
3775 * always in stale file handle errors, and would not
3776 * be possible to rmdir the parent directory, since
3777 * its i_size could never decrement to the value
3778 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3780 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3781 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3783 (btrfs_dir_transid(src, di) == trans->transid ||
3784 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3785 tmp.type != BTRFS_ROOT_ITEM_KEY)
3786 ctx->log_new_dentries = true;
3788 path->slots[0] = nritems;
3791 * look ahead to the next item and see if it is also
3792 * from this directory and from this transaction
3794 ret = btrfs_next_leaf(root, path);
3797 last_offset = (u64)-1;
3802 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3803 if (tmp.objectid != ino || tmp.type != key_type) {
3804 last_offset = (u64)-1;
3807 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3808 ret = overwrite_item(trans, log, dst_path,
3809 path->nodes[0], path->slots[0],
3814 last_offset = tmp.offset;
3819 btrfs_release_path(path);
3820 btrfs_release_path(dst_path);
3823 *last_offset_ret = last_offset;
3825 * insert the log range keys to indicate where the log
3828 ret = insert_dir_log_key(trans, log, path, key_type,
3829 ino, first_offset, last_offset);
3837 * logging directories is very similar to logging inodes, We find all the items
3838 * from the current transaction and write them to the log.
3840 * The recovery code scans the directory in the subvolume, and if it finds a
3841 * key in the range logged that is not present in the log tree, then it means
3842 * that dir entry was unlinked during the transaction.
3844 * In order for that scan to work, we must include one key smaller than
3845 * the smallest logged by this transaction and one key larger than the largest
3846 * key logged by this transaction.
3848 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3849 struct btrfs_root *root, struct btrfs_inode *inode,
3850 struct btrfs_path *path,
3851 struct btrfs_path *dst_path,
3852 struct btrfs_log_ctx *ctx)
3857 int key_type = BTRFS_DIR_ITEM_KEY;
3863 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3864 ctx, min_key, &max_key);
3867 if (max_key == (u64)-1)
3869 min_key = max_key + 1;
3872 if (key_type == BTRFS_DIR_ITEM_KEY) {
3873 key_type = BTRFS_DIR_INDEX_KEY;
3880 * a helper function to drop items from the log before we relog an
3881 * inode. max_key_type indicates the highest item type to remove.
3882 * This cannot be run for file data extents because it does not
3883 * free the extents they point to.
3885 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3886 struct btrfs_root *log,
3887 struct btrfs_path *path,
3888 u64 objectid, int max_key_type)
3891 struct btrfs_key key;
3892 struct btrfs_key found_key;
3895 key.objectid = objectid;
3896 key.type = max_key_type;
3897 key.offset = (u64)-1;
3900 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3901 BUG_ON(ret == 0); /* Logic error */
3905 if (path->slots[0] == 0)
3909 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3912 if (found_key.objectid != objectid)
3915 found_key.offset = 0;
3917 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3921 ret = btrfs_del_items(trans, log, path, start_slot,
3922 path->slots[0] - start_slot + 1);
3924 * If start slot isn't 0 then we don't need to re-search, we've
3925 * found the last guy with the objectid in this tree.
3927 if (ret || start_slot != 0)
3929 btrfs_release_path(path);
3931 btrfs_release_path(path);
3937 static void fill_inode_item(struct btrfs_trans_handle *trans,
3938 struct extent_buffer *leaf,
3939 struct btrfs_inode_item *item,
3940 struct inode *inode, int log_inode_only,
3943 struct btrfs_map_token token;
3946 btrfs_init_map_token(&token, leaf);
3948 if (log_inode_only) {
3949 /* set the generation to zero so the recover code
3950 * can tell the difference between an logging
3951 * just to say 'this inode exists' and a logging
3952 * to say 'update this inode with these values'
3954 btrfs_set_token_inode_generation(&token, item, 0);
3955 btrfs_set_token_inode_size(&token, item, logged_isize);
3957 btrfs_set_token_inode_generation(&token, item,
3958 BTRFS_I(inode)->generation);
3959 btrfs_set_token_inode_size(&token, item, inode->i_size);
3962 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3963 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3964 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3965 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3967 btrfs_set_token_timespec_sec(&token, &item->atime,
3968 inode->i_atime.tv_sec);
3969 btrfs_set_token_timespec_nsec(&token, &item->atime,
3970 inode->i_atime.tv_nsec);
3972 btrfs_set_token_timespec_sec(&token, &item->mtime,
3973 inode->i_mtime.tv_sec);
3974 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3975 inode->i_mtime.tv_nsec);
3977 btrfs_set_token_timespec_sec(&token, &item->ctime,
3978 inode->i_ctime.tv_sec);
3979 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3980 inode->i_ctime.tv_nsec);
3983 * We do not need to set the nbytes field, in fact during a fast fsync
3984 * its value may not even be correct, since a fast fsync does not wait
3985 * for ordered extent completion, which is where we update nbytes, it
3986 * only waits for writeback to complete. During log replay as we find
3987 * file extent items and replay them, we adjust the nbytes field of the
3988 * inode item in subvolume tree as needed (see overwrite_item()).
3991 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3992 btrfs_set_token_inode_transid(&token, item, trans->transid);
3993 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3994 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3995 BTRFS_I(inode)->ro_flags);
3996 btrfs_set_token_inode_flags(&token, item, flags);
3997 btrfs_set_token_inode_block_group(&token, item, 0);
4000 static int log_inode_item(struct btrfs_trans_handle *trans,
4001 struct btrfs_root *log, struct btrfs_path *path,
4002 struct btrfs_inode *inode, bool inode_item_dropped)
4004 struct btrfs_inode_item *inode_item;
4008 * If we are doing a fast fsync and the inode was logged before in the
4009 * current transaction, then we know the inode was previously logged and
4010 * it exists in the log tree. For performance reasons, in this case use
4011 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4012 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4013 * contention in case there are concurrent fsyncs for other inodes of the
4014 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4015 * already exists can also result in unnecessarily splitting a leaf.
4017 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4018 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4024 * This means it is the first fsync in the current transaction,
4025 * so the inode item is not in the log and we need to insert it.
4026 * We can never get -EEXIST because we are only called for a fast
4027 * fsync and in case an inode eviction happens after the inode was
4028 * logged before in the current transaction, when we load again
4029 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4030 * flags and set ->logged_trans to 0.
4032 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4033 sizeof(*inode_item));
4034 ASSERT(ret != -EEXIST);
4038 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4039 struct btrfs_inode_item);
4040 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4042 btrfs_release_path(path);
4046 static int log_csums(struct btrfs_trans_handle *trans,
4047 struct btrfs_inode *inode,
4048 struct btrfs_root *log_root,
4049 struct btrfs_ordered_sum *sums)
4051 const u64 lock_end = sums->bytenr + sums->len - 1;
4052 struct extent_state *cached_state = NULL;
4056 * If this inode was not used for reflink operations in the current
4057 * transaction with new extents, then do the fast path, no need to
4058 * worry about logging checksum items with overlapping ranges.
4060 if (inode->last_reflink_trans < trans->transid)
4061 return btrfs_csum_file_blocks(trans, log_root, sums);
4064 * Serialize logging for checksums. This is to avoid racing with the
4065 * same checksum being logged by another task that is logging another
4066 * file which happens to refer to the same extent as well. Such races
4067 * can leave checksum items in the log with overlapping ranges.
4069 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
4070 lock_end, &cached_state);
4074 * Due to extent cloning, we might have logged a csum item that covers a
4075 * subrange of a cloned extent, and later we can end up logging a csum
4076 * item for a larger subrange of the same extent or the entire range.
4077 * This would leave csum items in the log tree that cover the same range
4078 * and break the searches for checksums in the log tree, resulting in
4079 * some checksums missing in the fs/subvolume tree. So just delete (or
4080 * trim and adjust) any existing csum items in the log for this range.
4082 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4084 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4086 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4092 static noinline int copy_items(struct btrfs_trans_handle *trans,
4093 struct btrfs_inode *inode,
4094 struct btrfs_path *dst_path,
4095 struct btrfs_path *src_path,
4096 int start_slot, int nr, int inode_only,
4099 struct btrfs_fs_info *fs_info = trans->fs_info;
4100 unsigned long src_offset;
4101 unsigned long dst_offset;
4102 struct btrfs_root *log = inode->root->log_root;
4103 struct btrfs_file_extent_item *extent;
4104 struct btrfs_inode_item *inode_item;
4105 struct extent_buffer *src = src_path->nodes[0];
4107 struct btrfs_key *ins_keys;
4111 struct list_head ordered_sums;
4112 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
4114 INIT_LIST_HEAD(&ordered_sums);
4116 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4117 nr * sizeof(u32), GFP_NOFS);
4121 ins_sizes = (u32 *)ins_data;
4122 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4124 for (i = 0; i < nr; i++) {
4125 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
4126 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4128 ret = btrfs_insert_empty_items(trans, log, dst_path,
4129 ins_keys, ins_sizes, nr);
4135 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
4136 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4137 dst_path->slots[0]);
4139 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4141 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
4142 inode_item = btrfs_item_ptr(dst_path->nodes[0],
4144 struct btrfs_inode_item);
4145 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4147 inode_only == LOG_INODE_EXISTS,
4150 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4151 src_offset, ins_sizes[i]);
4154 /* take a reference on file data extents so that truncates
4155 * or deletes of this inode don't have to relog the inode
4158 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4161 extent = btrfs_item_ptr(src, start_slot + i,
4162 struct btrfs_file_extent_item);
4164 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4167 found_type = btrfs_file_extent_type(src, extent);
4168 if (found_type == BTRFS_FILE_EXTENT_REG) {
4170 ds = btrfs_file_extent_disk_bytenr(src,
4172 /* ds == 0 is a hole */
4176 dl = btrfs_file_extent_disk_num_bytes(src,
4178 cs = btrfs_file_extent_offset(src, extent);
4179 cl = btrfs_file_extent_num_bytes(src,
4181 if (btrfs_file_extent_compression(src,
4187 ret = btrfs_lookup_csums_range(
4189 ds + cs, ds + cs + cl - 1,
4197 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4198 btrfs_release_path(dst_path);
4202 * we have to do this after the loop above to avoid changing the
4203 * log tree while trying to change the log tree.
4205 while (!list_empty(&ordered_sums)) {
4206 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4207 struct btrfs_ordered_sum,
4210 ret = log_csums(trans, inode, log, sums);
4211 list_del(&sums->list);
4218 static int extent_cmp(void *priv, const struct list_head *a,
4219 const struct list_head *b)
4221 const struct extent_map *em1, *em2;
4223 em1 = list_entry(a, struct extent_map, list);
4224 em2 = list_entry(b, struct extent_map, list);
4226 if (em1->start < em2->start)
4228 else if (em1->start > em2->start)
4233 static int log_extent_csums(struct btrfs_trans_handle *trans,
4234 struct btrfs_inode *inode,
4235 struct btrfs_root *log_root,
4236 const struct extent_map *em,
4237 struct btrfs_log_ctx *ctx)
4239 struct btrfs_ordered_extent *ordered;
4242 u64 mod_start = em->mod_start;
4243 u64 mod_len = em->mod_len;
4244 LIST_HEAD(ordered_sums);
4247 if (inode->flags & BTRFS_INODE_NODATASUM ||
4248 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4249 em->block_start == EXTENT_MAP_HOLE)
4252 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4253 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4254 const u64 mod_end = mod_start + mod_len;
4255 struct btrfs_ordered_sum *sums;
4260 if (ordered_end <= mod_start)
4262 if (mod_end <= ordered->file_offset)
4266 * We are going to copy all the csums on this ordered extent, so
4267 * go ahead and adjust mod_start and mod_len in case this ordered
4268 * extent has already been logged.
4270 if (ordered->file_offset > mod_start) {
4271 if (ordered_end >= mod_end)
4272 mod_len = ordered->file_offset - mod_start;
4274 * If we have this case
4276 * |--------- logged extent ---------|
4277 * |----- ordered extent ----|
4279 * Just don't mess with mod_start and mod_len, we'll
4280 * just end up logging more csums than we need and it
4284 if (ordered_end < mod_end) {
4285 mod_len = mod_end - ordered_end;
4286 mod_start = ordered_end;
4293 * To keep us from looping for the above case of an ordered
4294 * extent that falls inside of the logged extent.
4296 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4299 list_for_each_entry(sums, &ordered->list, list) {
4300 ret = log_csums(trans, inode, log_root, sums);
4306 /* We're done, found all csums in the ordered extents. */
4310 /* If we're compressed we have to save the entire range of csums. */
4311 if (em->compress_type) {
4313 csum_len = max(em->block_len, em->orig_block_len);
4315 csum_offset = mod_start - em->start;
4319 /* block start is already adjusted for the file extent offset. */
4320 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4321 em->block_start + csum_offset,
4322 em->block_start + csum_offset +
4323 csum_len - 1, &ordered_sums, 0);
4327 while (!list_empty(&ordered_sums)) {
4328 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4329 struct btrfs_ordered_sum,
4332 ret = log_csums(trans, inode, log_root, sums);
4333 list_del(&sums->list);
4340 static int log_one_extent(struct btrfs_trans_handle *trans,
4341 struct btrfs_inode *inode, struct btrfs_root *root,
4342 const struct extent_map *em,
4343 struct btrfs_path *path,
4344 struct btrfs_log_ctx *ctx)
4346 struct btrfs_drop_extents_args drop_args = { 0 };
4347 struct btrfs_root *log = root->log_root;
4348 struct btrfs_file_extent_item *fi;
4349 struct extent_buffer *leaf;
4350 struct btrfs_map_token token;
4351 struct btrfs_key key;
4352 u64 extent_offset = em->start - em->orig_start;
4356 ret = log_extent_csums(trans, inode, log, em, ctx);
4360 drop_args.path = path;
4361 drop_args.start = em->start;
4362 drop_args.end = em->start + em->len;
4363 drop_args.replace_extent = true;
4364 drop_args.extent_item_size = sizeof(*fi);
4365 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4369 if (!drop_args.extent_inserted) {
4370 key.objectid = btrfs_ino(inode);
4371 key.type = BTRFS_EXTENT_DATA_KEY;
4372 key.offset = em->start;
4374 ret = btrfs_insert_empty_item(trans, log, path, &key,
4379 leaf = path->nodes[0];
4380 btrfs_init_map_token(&token, leaf);
4381 fi = btrfs_item_ptr(leaf, path->slots[0],
4382 struct btrfs_file_extent_item);
4384 btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4385 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4386 btrfs_set_token_file_extent_type(&token, fi,
4387 BTRFS_FILE_EXTENT_PREALLOC);
4389 btrfs_set_token_file_extent_type(&token, fi,
4390 BTRFS_FILE_EXTENT_REG);
4392 block_len = max(em->block_len, em->orig_block_len);
4393 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4394 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4396 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4397 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4398 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4401 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4403 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4404 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4407 btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4408 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4409 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4410 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4411 btrfs_set_token_file_extent_encryption(&token, fi, 0);
4412 btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4413 btrfs_mark_buffer_dirty(leaf);
4415 btrfs_release_path(path);
4421 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4422 * lose them after doing a fast fsync and replaying the log. We scan the
4423 * subvolume's root instead of iterating the inode's extent map tree because
4424 * otherwise we can log incorrect extent items based on extent map conversion.
4425 * That can happen due to the fact that extent maps are merged when they
4426 * are not in the extent map tree's list of modified extents.
4428 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4429 struct btrfs_inode *inode,
4430 struct btrfs_path *path)
4432 struct btrfs_root *root = inode->root;
4433 struct btrfs_key key;
4434 const u64 i_size = i_size_read(&inode->vfs_inode);
4435 const u64 ino = btrfs_ino(inode);
4436 struct btrfs_path *dst_path = NULL;
4437 bool dropped_extents = false;
4438 u64 truncate_offset = i_size;
4439 struct extent_buffer *leaf;
4445 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4449 key.type = BTRFS_EXTENT_DATA_KEY;
4450 key.offset = i_size;
4451 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4456 * We must check if there is a prealloc extent that starts before the
4457 * i_size and crosses the i_size boundary. This is to ensure later we
4458 * truncate down to the end of that extent and not to the i_size, as
4459 * otherwise we end up losing part of the prealloc extent after a log
4460 * replay and with an implicit hole if there is another prealloc extent
4461 * that starts at an offset beyond i_size.
4463 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4468 struct btrfs_file_extent_item *ei;
4470 leaf = path->nodes[0];
4471 slot = path->slots[0];
4472 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4474 if (btrfs_file_extent_type(leaf, ei) ==
4475 BTRFS_FILE_EXTENT_PREALLOC) {
4478 btrfs_item_key_to_cpu(leaf, &key, slot);
4479 extent_end = key.offset +
4480 btrfs_file_extent_num_bytes(leaf, ei);
4482 if (extent_end > i_size)
4483 truncate_offset = extent_end;
4490 leaf = path->nodes[0];
4491 slot = path->slots[0];
4493 if (slot >= btrfs_header_nritems(leaf)) {
4495 ret = copy_items(trans, inode, dst_path, path,
4496 start_slot, ins_nr, 1, 0);
4501 ret = btrfs_next_leaf(root, path);
4511 btrfs_item_key_to_cpu(leaf, &key, slot);
4512 if (key.objectid > ino)
4514 if (WARN_ON_ONCE(key.objectid < ino) ||
4515 key.type < BTRFS_EXTENT_DATA_KEY ||
4516 key.offset < i_size) {
4520 if (!dropped_extents) {
4522 * Avoid logging extent items logged in past fsync calls
4523 * and leading to duplicate keys in the log tree.
4526 ret = btrfs_truncate_inode_items(trans,
4528 inode, truncate_offset,
4529 BTRFS_EXTENT_DATA_KEY,
4531 } while (ret == -EAGAIN);
4534 dropped_extents = true;
4541 dst_path = btrfs_alloc_path();
4549 ret = copy_items(trans, inode, dst_path, path,
4550 start_slot, ins_nr, 1, 0);
4552 btrfs_release_path(path);
4553 btrfs_free_path(dst_path);
4557 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4558 struct btrfs_root *root,
4559 struct btrfs_inode *inode,
4560 struct btrfs_path *path,
4561 struct btrfs_log_ctx *ctx)
4563 struct btrfs_ordered_extent *ordered;
4564 struct btrfs_ordered_extent *tmp;
4565 struct extent_map *em, *n;
4566 struct list_head extents;
4567 struct extent_map_tree *tree = &inode->extent_tree;
4571 INIT_LIST_HEAD(&extents);
4573 write_lock(&tree->lock);
4575 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4576 list_del_init(&em->list);
4578 * Just an arbitrary number, this can be really CPU intensive
4579 * once we start getting a lot of extents, and really once we
4580 * have a bunch of extents we just want to commit since it will
4583 if (++num > 32768) {
4584 list_del_init(&tree->modified_extents);
4589 if (em->generation < trans->transid)
4592 /* We log prealloc extents beyond eof later. */
4593 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4594 em->start >= i_size_read(&inode->vfs_inode))
4597 /* Need a ref to keep it from getting evicted from cache */
4598 refcount_inc(&em->refs);
4599 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4600 list_add_tail(&em->list, &extents);
4604 list_sort(NULL, &extents, extent_cmp);
4606 while (!list_empty(&extents)) {
4607 em = list_entry(extents.next, struct extent_map, list);
4609 list_del_init(&em->list);
4612 * If we had an error we just need to delete everybody from our
4616 clear_em_logging(tree, em);
4617 free_extent_map(em);
4621 write_unlock(&tree->lock);
4623 ret = log_one_extent(trans, inode, root, em, path, ctx);
4624 write_lock(&tree->lock);
4625 clear_em_logging(tree, em);
4626 free_extent_map(em);
4628 WARN_ON(!list_empty(&extents));
4629 write_unlock(&tree->lock);
4631 btrfs_release_path(path);
4633 ret = btrfs_log_prealloc_extents(trans, inode, path);
4638 * We have logged all extents successfully, now make sure the commit of
4639 * the current transaction waits for the ordered extents to complete
4640 * before it commits and wipes out the log trees, otherwise we would
4641 * lose data if an ordered extents completes after the transaction
4642 * commits and a power failure happens after the transaction commit.
4644 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4645 list_del_init(&ordered->log_list);
4646 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4648 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4649 spin_lock_irq(&inode->ordered_tree.lock);
4650 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4651 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4652 atomic_inc(&trans->transaction->pending_ordered);
4654 spin_unlock_irq(&inode->ordered_tree.lock);
4656 btrfs_put_ordered_extent(ordered);
4662 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4663 struct btrfs_path *path, u64 *size_ret)
4665 struct btrfs_key key;
4668 key.objectid = btrfs_ino(inode);
4669 key.type = BTRFS_INODE_ITEM_KEY;
4672 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4675 } else if (ret > 0) {
4678 struct btrfs_inode_item *item;
4680 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4681 struct btrfs_inode_item);
4682 *size_ret = btrfs_inode_size(path->nodes[0], item);
4684 * If the in-memory inode's i_size is smaller then the inode
4685 * size stored in the btree, return the inode's i_size, so
4686 * that we get a correct inode size after replaying the log
4687 * when before a power failure we had a shrinking truncate
4688 * followed by addition of a new name (rename / new hard link).
4689 * Otherwise return the inode size from the btree, to avoid
4690 * data loss when replaying a log due to previously doing a
4691 * write that expands the inode's size and logging a new name
4692 * immediately after.
4694 if (*size_ret > inode->vfs_inode.i_size)
4695 *size_ret = inode->vfs_inode.i_size;
4698 btrfs_release_path(path);
4703 * At the moment we always log all xattrs. This is to figure out at log replay
4704 * time which xattrs must have their deletion replayed. If a xattr is missing
4705 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4706 * because if a xattr is deleted, the inode is fsynced and a power failure
4707 * happens, causing the log to be replayed the next time the fs is mounted,
4708 * we want the xattr to not exist anymore (same behaviour as other filesystems
4709 * with a journal, ext3/4, xfs, f2fs, etc).
4711 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4712 struct btrfs_root *root,
4713 struct btrfs_inode *inode,
4714 struct btrfs_path *path,
4715 struct btrfs_path *dst_path)
4718 struct btrfs_key key;
4719 const u64 ino = btrfs_ino(inode);
4722 bool found_xattrs = false;
4724 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4728 key.type = BTRFS_XATTR_ITEM_KEY;
4731 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4736 int slot = path->slots[0];
4737 struct extent_buffer *leaf = path->nodes[0];
4738 int nritems = btrfs_header_nritems(leaf);
4740 if (slot >= nritems) {
4742 ret = copy_items(trans, inode, dst_path, path,
4743 start_slot, ins_nr, 1, 0);
4748 ret = btrfs_next_leaf(root, path);
4756 btrfs_item_key_to_cpu(leaf, &key, slot);
4757 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4764 found_xattrs = true;
4768 ret = copy_items(trans, inode, dst_path, path,
4769 start_slot, ins_nr, 1, 0);
4775 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
4781 * When using the NO_HOLES feature if we punched a hole that causes the
4782 * deletion of entire leafs or all the extent items of the first leaf (the one
4783 * that contains the inode item and references) we may end up not processing
4784 * any extents, because there are no leafs with a generation matching the
4785 * current transaction that have extent items for our inode. So we need to find
4786 * if any holes exist and then log them. We also need to log holes after any
4787 * truncate operation that changes the inode's size.
4789 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4790 struct btrfs_root *root,
4791 struct btrfs_inode *inode,
4792 struct btrfs_path *path)
4794 struct btrfs_fs_info *fs_info = root->fs_info;
4795 struct btrfs_key key;
4796 const u64 ino = btrfs_ino(inode);
4797 const u64 i_size = i_size_read(&inode->vfs_inode);
4798 u64 prev_extent_end = 0;
4801 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4805 key.type = BTRFS_EXTENT_DATA_KEY;
4808 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4813 struct extent_buffer *leaf = path->nodes[0];
4815 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4816 ret = btrfs_next_leaf(root, path);
4823 leaf = path->nodes[0];
4826 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4827 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4830 /* We have a hole, log it. */
4831 if (prev_extent_end < key.offset) {
4832 const u64 hole_len = key.offset - prev_extent_end;
4835 * Release the path to avoid deadlocks with other code
4836 * paths that search the root while holding locks on
4837 * leafs from the log root.
4839 btrfs_release_path(path);
4840 ret = btrfs_insert_file_extent(trans, root->log_root,
4841 ino, prev_extent_end, 0,
4842 0, hole_len, 0, hole_len,
4848 * Search for the same key again in the root. Since it's
4849 * an extent item and we are holding the inode lock, the
4850 * key must still exist. If it doesn't just emit warning
4851 * and return an error to fall back to a transaction
4854 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4857 if (WARN_ON(ret > 0))
4859 leaf = path->nodes[0];
4862 prev_extent_end = btrfs_file_extent_end(path);
4867 if (prev_extent_end < i_size) {
4870 btrfs_release_path(path);
4871 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4872 ret = btrfs_insert_file_extent(trans, root->log_root,
4873 ino, prev_extent_end, 0, 0,
4874 hole_len, 0, hole_len,
4884 * When we are logging a new inode X, check if it doesn't have a reference that
4885 * matches the reference from some other inode Y created in a past transaction
4886 * and that was renamed in the current transaction. If we don't do this, then at
4887 * log replay time we can lose inode Y (and all its files if it's a directory):
4890 * echo "hello world" > /mnt/x/foobar
4893 * mkdir /mnt/x # or touch /mnt/x
4894 * xfs_io -c fsync /mnt/x
4896 * mount fs, trigger log replay
4898 * After the log replay procedure, we would lose the first directory and all its
4899 * files (file foobar).
4900 * For the case where inode Y is not a directory we simply end up losing it:
4902 * echo "123" > /mnt/foo
4904 * mv /mnt/foo /mnt/bar
4905 * echo "abc" > /mnt/foo
4906 * xfs_io -c fsync /mnt/foo
4909 * We also need this for cases where a snapshot entry is replaced by some other
4910 * entry (file or directory) otherwise we end up with an unreplayable log due to
4911 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4912 * if it were a regular entry:
4915 * btrfs subvolume snapshot /mnt /mnt/x/snap
4916 * btrfs subvolume delete /mnt/x/snap
4919 * fsync /mnt/x or fsync some new file inside it
4922 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4923 * the same transaction.
4925 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4927 const struct btrfs_key *key,
4928 struct btrfs_inode *inode,
4929 u64 *other_ino, u64 *other_parent)
4932 struct btrfs_path *search_path;
4935 u32 item_size = btrfs_item_size_nr(eb, slot);
4937 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4939 search_path = btrfs_alloc_path();
4942 search_path->search_commit_root = 1;
4943 search_path->skip_locking = 1;
4945 while (cur_offset < item_size) {
4949 unsigned long name_ptr;
4950 struct btrfs_dir_item *di;
4952 if (key->type == BTRFS_INODE_REF_KEY) {
4953 struct btrfs_inode_ref *iref;
4955 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4956 parent = key->offset;
4957 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4958 name_ptr = (unsigned long)(iref + 1);
4959 this_len = sizeof(*iref) + this_name_len;
4961 struct btrfs_inode_extref *extref;
4963 extref = (struct btrfs_inode_extref *)(ptr +
4965 parent = btrfs_inode_extref_parent(eb, extref);
4966 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4967 name_ptr = (unsigned long)&extref->name;
4968 this_len = sizeof(*extref) + this_name_len;
4971 if (this_name_len > name_len) {
4974 new_name = krealloc(name, this_name_len, GFP_NOFS);
4979 name_len = this_name_len;
4983 read_extent_buffer(eb, name, name_ptr, this_name_len);
4984 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4985 parent, name, this_name_len, 0);
4986 if (di && !IS_ERR(di)) {
4987 struct btrfs_key di_key;
4989 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4991 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4992 if (di_key.objectid != key->objectid) {
4994 *other_ino = di_key.objectid;
4995 *other_parent = parent;
5003 } else if (IS_ERR(di)) {
5007 btrfs_release_path(search_path);
5009 cur_offset += this_len;
5013 btrfs_free_path(search_path);
5018 struct btrfs_ino_list {
5021 struct list_head list;
5024 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5025 struct btrfs_root *root,
5026 struct btrfs_path *path,
5027 struct btrfs_log_ctx *ctx,
5028 u64 ino, u64 parent)
5030 struct btrfs_ino_list *ino_elem;
5031 LIST_HEAD(inode_list);
5034 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5037 ino_elem->ino = ino;
5038 ino_elem->parent = parent;
5039 list_add_tail(&ino_elem->list, &inode_list);
5041 while (!list_empty(&inode_list)) {
5042 struct btrfs_fs_info *fs_info = root->fs_info;
5043 struct btrfs_key key;
5044 struct inode *inode;
5046 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
5048 ino = ino_elem->ino;
5049 parent = ino_elem->parent;
5050 list_del(&ino_elem->list);
5055 btrfs_release_path(path);
5057 inode = btrfs_iget(fs_info->sb, ino, root);
5059 * If the other inode that had a conflicting dir entry was
5060 * deleted in the current transaction, we need to log its parent
5063 if (IS_ERR(inode)) {
5064 ret = PTR_ERR(inode);
5065 if (ret == -ENOENT) {
5066 inode = btrfs_iget(fs_info->sb, parent, root);
5067 if (IS_ERR(inode)) {
5068 ret = PTR_ERR(inode);
5070 ret = btrfs_log_inode(trans, root,
5072 LOG_OTHER_INODE_ALL,
5074 btrfs_add_delayed_iput(inode);
5080 * If the inode was already logged skip it - otherwise we can
5081 * hit an infinite loop. Example:
5083 * From the commit root (previous transaction) we have the
5086 * inode 257 a directory
5087 * inode 258 with references "zz" and "zz_link" on inode 257
5088 * inode 259 with reference "a" on inode 257
5090 * And in the current (uncommitted) transaction we have:
5092 * inode 257 a directory, unchanged
5093 * inode 258 with references "a" and "a2" on inode 257
5094 * inode 259 with reference "zz_link" on inode 257
5095 * inode 261 with reference "zz" on inode 257
5097 * When logging inode 261 the following infinite loop could
5098 * happen if we don't skip already logged inodes:
5100 * - we detect inode 258 as a conflicting inode, with inode 261
5101 * on reference "zz", and log it;
5103 * - we detect inode 259 as a conflicting inode, with inode 258
5104 * on reference "a", and log it;
5106 * - we detect inode 258 as a conflicting inode, with inode 259
5107 * on reference "zz_link", and log it - again! After this we
5108 * repeat the above steps forever.
5110 spin_lock(&BTRFS_I(inode)->lock);
5112 * Check the inode's logged_trans only instead of
5113 * btrfs_inode_in_log(). This is because the last_log_commit of
5114 * the inode is not updated when we only log that it exists (see
5115 * btrfs_log_inode()).
5117 if (BTRFS_I(inode)->logged_trans == trans->transid) {
5118 spin_unlock(&BTRFS_I(inode)->lock);
5119 btrfs_add_delayed_iput(inode);
5122 spin_unlock(&BTRFS_I(inode)->lock);
5124 * We are safe logging the other inode without acquiring its
5125 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5126 * are safe against concurrent renames of the other inode as
5127 * well because during a rename we pin the log and update the
5128 * log with the new name before we unpin it.
5130 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5131 LOG_OTHER_INODE, ctx);
5133 btrfs_add_delayed_iput(inode);
5138 key.type = BTRFS_INODE_REF_KEY;
5140 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5142 btrfs_add_delayed_iput(inode);
5147 struct extent_buffer *leaf = path->nodes[0];
5148 int slot = path->slots[0];
5150 u64 other_parent = 0;
5152 if (slot >= btrfs_header_nritems(leaf)) {
5153 ret = btrfs_next_leaf(root, path);
5156 } else if (ret > 0) {
5163 btrfs_item_key_to_cpu(leaf, &key, slot);
5164 if (key.objectid != ino ||
5165 (key.type != BTRFS_INODE_REF_KEY &&
5166 key.type != BTRFS_INODE_EXTREF_KEY)) {
5171 ret = btrfs_check_ref_name_override(leaf, slot, &key,
5172 BTRFS_I(inode), &other_ino,
5177 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5182 ino_elem->ino = other_ino;
5183 ino_elem->parent = other_parent;
5184 list_add_tail(&ino_elem->list, &inode_list);
5189 btrfs_add_delayed_iput(inode);
5195 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5196 struct btrfs_inode *inode,
5197 struct btrfs_key *min_key,
5198 const struct btrfs_key *max_key,
5199 struct btrfs_path *path,
5200 struct btrfs_path *dst_path,
5201 const u64 logged_isize,
5202 const bool recursive_logging,
5203 const int inode_only,
5204 struct btrfs_log_ctx *ctx,
5205 bool *need_log_inode_item)
5207 struct btrfs_root *root = inode->root;
5208 int ins_start_slot = 0;
5213 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5221 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5222 if (min_key->objectid != max_key->objectid)
5224 if (min_key->type > max_key->type)
5227 if (min_key->type == BTRFS_INODE_ITEM_KEY)
5228 *need_log_inode_item = false;
5230 if ((min_key->type == BTRFS_INODE_REF_KEY ||
5231 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5232 inode->generation == trans->transid &&
5233 !recursive_logging) {
5235 u64 other_parent = 0;
5237 ret = btrfs_check_ref_name_override(path->nodes[0],
5238 path->slots[0], min_key, inode,
5239 &other_ino, &other_parent);
5242 } else if (ret > 0 && ctx &&
5243 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5248 ins_start_slot = path->slots[0];
5250 ret = copy_items(trans, inode, dst_path, path,
5251 ins_start_slot, ins_nr,
5252 inode_only, logged_isize);
5257 ret = log_conflicting_inodes(trans, root, path,
5258 ctx, other_ino, other_parent);
5261 btrfs_release_path(path);
5266 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5267 if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5270 ret = copy_items(trans, inode, dst_path, path,
5272 ins_nr, inode_only, logged_isize);
5279 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5282 } else if (!ins_nr) {
5283 ins_start_slot = path->slots[0];
5288 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5289 ins_nr, inode_only, logged_isize);
5293 ins_start_slot = path->slots[0];
5296 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5297 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5302 ret = copy_items(trans, inode, dst_path, path,
5303 ins_start_slot, ins_nr, inode_only,
5309 btrfs_release_path(path);
5311 if (min_key->offset < (u64)-1) {
5313 } else if (min_key->type < max_key->type) {
5315 min_key->offset = 0;
5321 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5322 ins_nr, inode_only, logged_isize);
5327 /* log a single inode in the tree log.
5328 * At least one parent directory for this inode must exist in the tree
5329 * or be logged already.
5331 * Any items from this inode changed by the current transaction are copied
5332 * to the log tree. An extra reference is taken on any extents in this
5333 * file, allowing us to avoid a whole pile of corner cases around logging
5334 * blocks that have been removed from the tree.
5336 * See LOG_INODE_ALL and related defines for a description of what inode_only
5339 * This handles both files and directories.
5341 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5342 struct btrfs_root *root, struct btrfs_inode *inode,
5344 struct btrfs_log_ctx *ctx)
5346 struct btrfs_path *path;
5347 struct btrfs_path *dst_path;
5348 struct btrfs_key min_key;
5349 struct btrfs_key max_key;
5350 struct btrfs_root *log = root->log_root;
5353 bool fast_search = false;
5354 u64 ino = btrfs_ino(inode);
5355 struct extent_map_tree *em_tree = &inode->extent_tree;
5356 u64 logged_isize = 0;
5357 bool need_log_inode_item = true;
5358 bool xattrs_logged = false;
5359 bool recursive_logging = false;
5360 bool inode_item_dropped = true;
5362 path = btrfs_alloc_path();
5365 dst_path = btrfs_alloc_path();
5367 btrfs_free_path(path);
5371 min_key.objectid = ino;
5372 min_key.type = BTRFS_INODE_ITEM_KEY;
5375 max_key.objectid = ino;
5378 /* today the code can only do partial logging of directories */
5379 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5380 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5381 &inode->runtime_flags) &&
5382 inode_only >= LOG_INODE_EXISTS))
5383 max_key.type = BTRFS_XATTR_ITEM_KEY;
5385 max_key.type = (u8)-1;
5386 max_key.offset = (u64)-1;
5389 * Only run delayed items if we are a directory. We want to make sure
5390 * all directory indexes hit the fs/subvolume tree so we can find them
5391 * and figure out which index ranges have to be logged.
5393 * Otherwise commit the delayed inode only if the full sync flag is set,
5394 * as we want to make sure an up to date version is in the subvolume
5395 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5396 * it to the log tree. For a non full sync, we always log the inode item
5397 * based on the in-memory struct btrfs_inode which is always up to date.
5399 if (S_ISDIR(inode->vfs_inode.i_mode))
5400 ret = btrfs_commit_inode_delayed_items(trans, inode);
5401 else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5402 ret = btrfs_commit_inode_delayed_inode(inode);
5405 btrfs_free_path(path);
5406 btrfs_free_path(dst_path);
5410 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5411 recursive_logging = true;
5412 if (inode_only == LOG_OTHER_INODE)
5413 inode_only = LOG_INODE_EXISTS;
5415 inode_only = LOG_INODE_ALL;
5416 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5418 mutex_lock(&inode->log_mutex);
5422 * This is for cases where logging a directory could result in losing a
5423 * a file after replaying the log. For example, if we move a file from a
5424 * directory A to a directory B, then fsync directory A, we have no way
5425 * to known the file was moved from A to B, so logging just A would
5426 * result in losing the file after a log replay.
5428 if (S_ISDIR(inode->vfs_inode.i_mode) &&
5429 inode_only == LOG_INODE_ALL &&
5430 inode->last_unlink_trans >= trans->transid) {
5431 btrfs_set_log_full_commit(trans);
5437 * a brute force approach to making sure we get the most uptodate
5438 * copies of everything.
5440 if (S_ISDIR(inode->vfs_inode.i_mode)) {
5441 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5443 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
5444 if (inode_only == LOG_INODE_EXISTS)
5445 max_key_type = BTRFS_XATTR_ITEM_KEY;
5446 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5448 if (inode_only == LOG_INODE_EXISTS) {
5450 * Make sure the new inode item we write to the log has
5451 * the same isize as the current one (if it exists).
5452 * This is necessary to prevent data loss after log
5453 * replay, and also to prevent doing a wrong expanding
5454 * truncate - for e.g. create file, write 4K into offset
5455 * 0, fsync, write 4K into offset 4096, add hard link,
5456 * fsync some other file (to sync log), power fail - if
5457 * we use the inode's current i_size, after log replay
5458 * we get a 8Kb file, with the last 4Kb extent as a hole
5459 * (zeroes), as if an expanding truncate happened,
5460 * instead of getting a file of 4Kb only.
5462 err = logged_inode_size(log, inode, path, &logged_isize);
5466 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5467 &inode->runtime_flags)) {
5468 if (inode_only == LOG_INODE_EXISTS) {
5469 max_key.type = BTRFS_XATTR_ITEM_KEY;
5470 ret = drop_objectid_items(trans, log, path, ino,
5473 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5474 &inode->runtime_flags);
5475 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5476 &inode->runtime_flags);
5478 ret = btrfs_truncate_inode_items(trans,
5479 log, inode, 0, 0, NULL);
5484 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5485 &inode->runtime_flags) ||
5486 inode_only == LOG_INODE_EXISTS) {
5487 if (inode_only == LOG_INODE_ALL)
5489 max_key.type = BTRFS_XATTR_ITEM_KEY;
5490 ret = drop_objectid_items(trans, log, path, ino,
5493 if (inode_only == LOG_INODE_ALL)
5495 inode_item_dropped = false;
5505 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5506 path, dst_path, logged_isize,
5507 recursive_logging, inode_only, ctx,
5508 &need_log_inode_item);
5512 btrfs_release_path(path);
5513 btrfs_release_path(dst_path);
5514 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5517 xattrs_logged = true;
5518 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5519 btrfs_release_path(path);
5520 btrfs_release_path(dst_path);
5521 err = btrfs_log_holes(trans, root, inode, path);
5526 btrfs_release_path(path);
5527 btrfs_release_path(dst_path);
5528 if (need_log_inode_item) {
5529 err = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
5533 * If we are doing a fast fsync and the inode was logged before
5534 * in this transaction, we don't need to log the xattrs because
5535 * they were logged before. If xattrs were added, changed or
5536 * deleted since the last time we logged the inode, then we have
5537 * already logged them because the inode had the runtime flag
5538 * BTRFS_INODE_COPY_EVERYTHING set.
5540 if (!xattrs_logged && inode->logged_trans < trans->transid) {
5541 err = btrfs_log_all_xattrs(trans, root, inode, path,
5545 btrfs_release_path(path);
5549 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5555 } else if (inode_only == LOG_INODE_ALL) {
5556 struct extent_map *em, *n;
5558 write_lock(&em_tree->lock);
5559 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5560 list_del_init(&em->list);
5561 write_unlock(&em_tree->lock);
5564 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5565 ret = log_directory_changes(trans, root, inode, path, dst_path,
5574 * If we are logging that an ancestor inode exists as part of logging a
5575 * new name from a link or rename operation, don't mark the inode as
5576 * logged - otherwise if an explicit fsync is made against an ancestor,
5577 * the fsync considers the inode in the log and doesn't sync the log,
5578 * resulting in the ancestor missing after a power failure unless the
5579 * log was synced as part of an fsync against any other unrelated inode.
5580 * So keep it simple for this case and just don't flag the ancestors as
5584 !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5585 &inode->vfs_inode != ctx->inode)) {
5586 spin_lock(&inode->lock);
5587 inode->logged_trans = trans->transid;
5589 * Don't update last_log_commit if we logged that an inode exists.
5590 * We do this for two reasons:
5592 * 1) We might have had buffered writes to this inode that were
5593 * flushed and had their ordered extents completed in this
5594 * transaction, but we did not previously log the inode with
5595 * LOG_INODE_ALL. Later the inode was evicted and after that
5596 * it was loaded again and this LOG_INODE_EXISTS log operation
5597 * happened. We must make sure that if an explicit fsync against
5598 * the inode is performed later, it logs the new extents, an
5599 * updated inode item, etc, and syncs the log. The same logic
5600 * applies to direct IO writes instead of buffered writes.
5602 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
5603 * is logged with an i_size of 0 or whatever value was logged
5604 * before. If later the i_size of the inode is increased by a
5605 * truncate operation, the log is synced through an fsync of
5606 * some other inode and then finally an explicit fsync against
5607 * this inode is made, we must make sure this fsync logs the
5608 * inode with the new i_size, the hole between old i_size and
5609 * the new i_size, and syncs the log.
5611 if (inode_only != LOG_INODE_EXISTS)
5612 inode->last_log_commit = inode->last_sub_trans;
5613 spin_unlock(&inode->lock);
5616 mutex_unlock(&inode->log_mutex);
5618 btrfs_free_path(path);
5619 btrfs_free_path(dst_path);
5624 * Check if we need to log an inode. This is used in contexts where while
5625 * logging an inode we need to log another inode (either that it exists or in
5626 * full mode). This is used instead of btrfs_inode_in_log() because the later
5627 * requires the inode to be in the log and have the log transaction committed,
5628 * while here we do not care if the log transaction was already committed - our
5629 * caller will commit the log later - and we want to avoid logging an inode
5630 * multiple times when multiple tasks have joined the same log transaction.
5632 static bool need_log_inode(struct btrfs_trans_handle *trans,
5633 struct btrfs_inode *inode)
5636 * If a directory was not modified, no dentries added or removed, we can
5637 * and should avoid logging it.
5639 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5643 * If this inode does not have new/updated/deleted xattrs since the last
5644 * time it was logged and is flagged as logged in the current transaction,
5645 * we can skip logging it. As for new/deleted names, those are updated in
5646 * the log by link/unlink/rename operations.
5647 * In case the inode was logged and then evicted and reloaded, its
5648 * logged_trans will be 0, in which case we have to fully log it since
5649 * logged_trans is a transient field, not persisted.
5651 if (inode->logged_trans == trans->transid &&
5652 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5658 struct btrfs_dir_list {
5660 struct list_head list;
5664 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5665 * details about the why it is needed.
5666 * This is a recursive operation - if an existing dentry corresponds to a
5667 * directory, that directory's new entries are logged too (same behaviour as
5668 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5669 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5670 * complains about the following circular lock dependency / possible deadlock:
5674 * lock(&type->i_mutex_dir_key#3/2);
5675 * lock(sb_internal#2);
5676 * lock(&type->i_mutex_dir_key#3/2);
5677 * lock(&sb->s_type->i_mutex_key#14);
5679 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5680 * sb_start_intwrite() in btrfs_start_transaction().
5681 * Not locking i_mutex of the inodes is still safe because:
5683 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5684 * that while logging the inode new references (names) are added or removed
5685 * from the inode, leaving the logged inode item with a link count that does
5686 * not match the number of logged inode reference items. This is fine because
5687 * at log replay time we compute the real number of links and correct the
5688 * link count in the inode item (see replay_one_buffer() and
5689 * link_to_fixup_dir());
5691 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5692 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5693 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5694 * has a size that doesn't match the sum of the lengths of all the logged
5695 * names. This does not result in a problem because if a dir_item key is
5696 * logged but its matching dir_index key is not logged, at log replay time we
5697 * don't use it to replay the respective name (see replay_one_name()). On the
5698 * other hand if only the dir_index key ends up being logged, the respective
5699 * name is added to the fs/subvol tree with both the dir_item and dir_index
5700 * keys created (see replay_one_name()).
5701 * The directory's inode item with a wrong i_size is not a problem as well,
5702 * since we don't use it at log replay time to set the i_size in the inode
5703 * item of the fs/subvol tree (see overwrite_item()).
5705 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5706 struct btrfs_root *root,
5707 struct btrfs_inode *start_inode,
5708 struct btrfs_log_ctx *ctx)
5710 struct btrfs_fs_info *fs_info = root->fs_info;
5711 struct btrfs_root *log = root->log_root;
5712 struct btrfs_path *path;
5713 LIST_HEAD(dir_list);
5714 struct btrfs_dir_list *dir_elem;
5717 path = btrfs_alloc_path();
5721 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5723 btrfs_free_path(path);
5726 dir_elem->ino = btrfs_ino(start_inode);
5727 list_add_tail(&dir_elem->list, &dir_list);
5729 while (!list_empty(&dir_list)) {
5730 struct extent_buffer *leaf;
5731 struct btrfs_key min_key;
5735 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5738 goto next_dir_inode;
5740 min_key.objectid = dir_elem->ino;
5741 min_key.type = BTRFS_DIR_ITEM_KEY;
5744 btrfs_release_path(path);
5745 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5747 goto next_dir_inode;
5748 } else if (ret > 0) {
5750 goto next_dir_inode;
5754 leaf = path->nodes[0];
5755 nritems = btrfs_header_nritems(leaf);
5756 for (i = path->slots[0]; i < nritems; i++) {
5757 struct btrfs_dir_item *di;
5758 struct btrfs_key di_key;
5759 struct inode *di_inode;
5760 struct btrfs_dir_list *new_dir_elem;
5761 int log_mode = LOG_INODE_EXISTS;
5764 btrfs_item_key_to_cpu(leaf, &min_key, i);
5765 if (min_key.objectid != dir_elem->ino ||
5766 min_key.type != BTRFS_DIR_ITEM_KEY)
5767 goto next_dir_inode;
5769 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5770 type = btrfs_dir_type(leaf, di);
5771 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5772 type != BTRFS_FT_DIR)
5774 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5775 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5778 btrfs_release_path(path);
5779 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5780 if (IS_ERR(di_inode)) {
5781 ret = PTR_ERR(di_inode);
5782 goto next_dir_inode;
5785 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5786 btrfs_add_delayed_iput(di_inode);
5790 ctx->log_new_dentries = false;
5791 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5792 log_mode = LOG_INODE_ALL;
5793 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5795 btrfs_add_delayed_iput(di_inode);
5797 goto next_dir_inode;
5798 if (ctx->log_new_dentries) {
5799 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5801 if (!new_dir_elem) {
5803 goto next_dir_inode;
5805 new_dir_elem->ino = di_key.objectid;
5806 list_add_tail(&new_dir_elem->list, &dir_list);
5811 ret = btrfs_next_leaf(log, path);
5813 goto next_dir_inode;
5814 } else if (ret > 0) {
5816 goto next_dir_inode;
5820 if (min_key.offset < (u64)-1) {
5825 list_del(&dir_elem->list);
5829 btrfs_free_path(path);
5833 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5834 struct btrfs_inode *inode,
5835 struct btrfs_log_ctx *ctx)
5837 struct btrfs_fs_info *fs_info = trans->fs_info;
5839 struct btrfs_path *path;
5840 struct btrfs_key key;
5841 struct btrfs_root *root = inode->root;
5842 const u64 ino = btrfs_ino(inode);
5844 path = btrfs_alloc_path();
5847 path->skip_locking = 1;
5848 path->search_commit_root = 1;
5851 key.type = BTRFS_INODE_REF_KEY;
5853 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5858 struct extent_buffer *leaf = path->nodes[0];
5859 int slot = path->slots[0];
5864 if (slot >= btrfs_header_nritems(leaf)) {
5865 ret = btrfs_next_leaf(root, path);
5873 btrfs_item_key_to_cpu(leaf, &key, slot);
5874 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5875 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5878 item_size = btrfs_item_size_nr(leaf, slot);
5879 ptr = btrfs_item_ptr_offset(leaf, slot);
5880 while (cur_offset < item_size) {
5881 struct btrfs_key inode_key;
5882 struct inode *dir_inode;
5884 inode_key.type = BTRFS_INODE_ITEM_KEY;
5885 inode_key.offset = 0;
5887 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5888 struct btrfs_inode_extref *extref;
5890 extref = (struct btrfs_inode_extref *)
5892 inode_key.objectid = btrfs_inode_extref_parent(
5894 cur_offset += sizeof(*extref);
5895 cur_offset += btrfs_inode_extref_name_len(leaf,
5898 inode_key.objectid = key.offset;
5899 cur_offset = item_size;
5902 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5905 * If the parent inode was deleted, return an error to
5906 * fallback to a transaction commit. This is to prevent
5907 * getting an inode that was moved from one parent A to
5908 * a parent B, got its former parent A deleted and then
5909 * it got fsync'ed, from existing at both parents after
5910 * a log replay (and the old parent still existing).
5917 * mv /mnt/B/bar /mnt/A/bar
5918 * mv -T /mnt/A /mnt/B
5922 * If we ignore the old parent B which got deleted,
5923 * after a log replay we would have file bar linked
5924 * at both parents and the old parent B would still
5927 if (IS_ERR(dir_inode)) {
5928 ret = PTR_ERR(dir_inode);
5932 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
5933 btrfs_add_delayed_iput(dir_inode);
5938 ctx->log_new_dentries = false;
5939 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5940 LOG_INODE_ALL, ctx);
5941 if (!ret && ctx && ctx->log_new_dentries)
5942 ret = log_new_dir_dentries(trans, root,
5943 BTRFS_I(dir_inode), ctx);
5944 btrfs_add_delayed_iput(dir_inode);
5952 btrfs_free_path(path);
5956 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5957 struct btrfs_root *root,
5958 struct btrfs_path *path,
5959 struct btrfs_log_ctx *ctx)
5961 struct btrfs_key found_key;
5963 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5966 struct btrfs_fs_info *fs_info = root->fs_info;
5967 struct extent_buffer *leaf = path->nodes[0];
5968 int slot = path->slots[0];
5969 struct btrfs_key search_key;
5970 struct inode *inode;
5974 btrfs_release_path(path);
5976 ino = found_key.offset;
5978 search_key.objectid = found_key.offset;
5979 search_key.type = BTRFS_INODE_ITEM_KEY;
5980 search_key.offset = 0;
5981 inode = btrfs_iget(fs_info->sb, ino, root);
5983 return PTR_ERR(inode);
5985 if (BTRFS_I(inode)->generation >= trans->transid &&
5986 need_log_inode(trans, BTRFS_I(inode)))
5987 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5988 LOG_INODE_EXISTS, ctx);
5989 btrfs_add_delayed_iput(inode);
5993 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5996 search_key.type = BTRFS_INODE_REF_KEY;
5997 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6001 leaf = path->nodes[0];
6002 slot = path->slots[0];
6003 if (slot >= btrfs_header_nritems(leaf)) {
6004 ret = btrfs_next_leaf(root, path);
6009 leaf = path->nodes[0];
6010 slot = path->slots[0];
6013 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6014 if (found_key.objectid != search_key.objectid ||
6015 found_key.type != BTRFS_INODE_REF_KEY)
6021 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6022 struct btrfs_inode *inode,
6023 struct dentry *parent,
6024 struct btrfs_log_ctx *ctx)
6026 struct btrfs_root *root = inode->root;
6027 struct dentry *old_parent = NULL;
6028 struct super_block *sb = inode->vfs_inode.i_sb;
6032 if (!parent || d_really_is_negative(parent) ||
6036 inode = BTRFS_I(d_inode(parent));
6037 if (root != inode->root)
6040 if (inode->generation >= trans->transid &&
6041 need_log_inode(trans, inode)) {
6042 ret = btrfs_log_inode(trans, root, inode,
6043 LOG_INODE_EXISTS, ctx);
6047 if (IS_ROOT(parent))
6050 parent = dget_parent(parent);
6052 old_parent = parent;
6059 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6060 struct btrfs_inode *inode,
6061 struct dentry *parent,
6062 struct btrfs_log_ctx *ctx)
6064 struct btrfs_root *root = inode->root;
6065 const u64 ino = btrfs_ino(inode);
6066 struct btrfs_path *path;
6067 struct btrfs_key search_key;
6071 * For a single hard link case, go through a fast path that does not
6072 * need to iterate the fs/subvolume tree.
6074 if (inode->vfs_inode.i_nlink < 2)
6075 return log_new_ancestors_fast(trans, inode, parent, ctx);
6077 path = btrfs_alloc_path();
6081 search_key.objectid = ino;
6082 search_key.type = BTRFS_INODE_REF_KEY;
6083 search_key.offset = 0;
6085 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6092 struct extent_buffer *leaf = path->nodes[0];
6093 int slot = path->slots[0];
6094 struct btrfs_key found_key;
6096 if (slot >= btrfs_header_nritems(leaf)) {
6097 ret = btrfs_next_leaf(root, path);
6105 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6106 if (found_key.objectid != ino ||
6107 found_key.type > BTRFS_INODE_EXTREF_KEY)
6111 * Don't deal with extended references because they are rare
6112 * cases and too complex to deal with (we would need to keep
6113 * track of which subitem we are processing for each item in
6114 * this loop, etc). So just return some error to fallback to
6115 * a transaction commit.
6117 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6123 * Logging ancestors needs to do more searches on the fs/subvol
6124 * tree, so it releases the path as needed to avoid deadlocks.
6125 * Keep track of the last inode ref key and resume from that key
6126 * after logging all new ancestors for the current hard link.
6128 memcpy(&search_key, &found_key, sizeof(search_key));
6130 ret = log_new_ancestors(trans, root, path, ctx);
6133 btrfs_release_path(path);
6138 btrfs_free_path(path);
6143 * helper function around btrfs_log_inode to make sure newly created
6144 * parent directories also end up in the log. A minimal inode and backref
6145 * only logging is done of any parent directories that are older than
6146 * the last committed transaction
6148 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6149 struct btrfs_inode *inode,
6150 struct dentry *parent,
6152 struct btrfs_log_ctx *ctx)
6154 struct btrfs_root *root = inode->root;
6155 struct btrfs_fs_info *fs_info = root->fs_info;
6157 bool log_dentries = false;
6159 if (btrfs_test_opt(fs_info, NOTREELOG)) {
6164 if (btrfs_root_refs(&root->root_item) == 0) {
6170 * Skip already logged inodes or inodes corresponding to tmpfiles
6171 * (since logging them is pointless, a link count of 0 means they
6172 * will never be accessible).
6174 if ((btrfs_inode_in_log(inode, trans->transid) &&
6175 list_empty(&ctx->ordered_extents)) ||
6176 inode->vfs_inode.i_nlink == 0) {
6177 ret = BTRFS_NO_LOG_SYNC;
6181 ret = start_log_trans(trans, root, ctx);
6185 ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
6190 * for regular files, if its inode is already on disk, we don't
6191 * have to worry about the parents at all. This is because
6192 * we can use the last_unlink_trans field to record renames
6193 * and other fun in this file.
6195 if (S_ISREG(inode->vfs_inode.i_mode) &&
6196 inode->generation < trans->transid &&
6197 inode->last_unlink_trans < trans->transid) {
6202 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6203 log_dentries = true;
6206 * On unlink we must make sure all our current and old parent directory
6207 * inodes are fully logged. This is to prevent leaving dangling
6208 * directory index entries in directories that were our parents but are
6209 * not anymore. Not doing this results in old parent directory being
6210 * impossible to delete after log replay (rmdir will always fail with
6211 * error -ENOTEMPTY).
6217 * ln testdir/foo testdir/bar
6219 * unlink testdir/bar
6220 * xfs_io -c fsync testdir/foo
6222 * mount fs, triggers log replay
6224 * If we don't log the parent directory (testdir), after log replay the
6225 * directory still has an entry pointing to the file inode using the bar
6226 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6227 * the file inode has a link count of 1.
6233 * ln foo testdir/foo2
6234 * ln foo testdir/foo3
6236 * unlink testdir/foo3
6237 * xfs_io -c fsync foo
6239 * mount fs, triggers log replay
6241 * Similar as the first example, after log replay the parent directory
6242 * testdir still has an entry pointing to the inode file with name foo3
6243 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6244 * and has a link count of 2.
6246 if (inode->last_unlink_trans >= trans->transid) {
6247 ret = btrfs_log_all_parents(trans, inode, ctx);
6252 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6257 ret = log_new_dir_dentries(trans, root, inode, ctx);
6262 btrfs_set_log_full_commit(trans);
6267 btrfs_remove_log_ctx(root, ctx);
6268 btrfs_end_log_trans(root);
6274 * it is not safe to log dentry if the chunk root has added new
6275 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6276 * If this returns 1, you must commit the transaction to safely get your
6279 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6280 struct dentry *dentry,
6281 struct btrfs_log_ctx *ctx)
6283 struct dentry *parent = dget_parent(dentry);
6286 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6287 LOG_INODE_ALL, ctx);
6294 * should be called during mount to recover any replay any log trees
6297 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6300 struct btrfs_path *path;
6301 struct btrfs_trans_handle *trans;
6302 struct btrfs_key key;
6303 struct btrfs_key found_key;
6304 struct btrfs_root *log;
6305 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6306 struct walk_control wc = {
6307 .process_func = process_one_buffer,
6308 .stage = LOG_WALK_PIN_ONLY,
6311 path = btrfs_alloc_path();
6315 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6317 trans = btrfs_start_transaction(fs_info->tree_root, 0);
6318 if (IS_ERR(trans)) {
6319 ret = PTR_ERR(trans);
6326 ret = walk_log_tree(trans, log_root_tree, &wc);
6328 btrfs_handle_fs_error(fs_info, ret,
6329 "Failed to pin buffers while recovering log root tree.");
6334 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6335 key.offset = (u64)-1;
6336 key.type = BTRFS_ROOT_ITEM_KEY;
6339 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6342 btrfs_handle_fs_error(fs_info, ret,
6343 "Couldn't find tree log root.");
6347 if (path->slots[0] == 0)
6351 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6353 btrfs_release_path(path);
6354 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6357 log = btrfs_read_tree_root(log_root_tree, &found_key);
6360 btrfs_handle_fs_error(fs_info, ret,
6361 "Couldn't read tree log root.");
6365 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6367 if (IS_ERR(wc.replay_dest)) {
6368 ret = PTR_ERR(wc.replay_dest);
6371 * We didn't find the subvol, likely because it was
6372 * deleted. This is ok, simply skip this log and go to
6375 * We need to exclude the root because we can't have
6376 * other log replays overwriting this log as we'll read
6377 * it back in a few more times. This will keep our
6378 * block from being modified, and we'll just bail for
6379 * each subsequent pass.
6382 ret = btrfs_pin_extent_for_log_replay(trans,
6385 btrfs_put_root(log);
6389 btrfs_handle_fs_error(fs_info, ret,
6390 "Couldn't read target root for tree log recovery.");
6394 wc.replay_dest->log_root = log;
6395 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6397 /* The loop needs to continue due to the root refs */
6398 btrfs_handle_fs_error(fs_info, ret,
6399 "failed to record the log root in transaction");
6401 ret = walk_log_tree(trans, log, &wc);
6403 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6404 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6408 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6409 struct btrfs_root *root = wc.replay_dest;
6411 btrfs_release_path(path);
6414 * We have just replayed everything, and the highest
6415 * objectid of fs roots probably has changed in case
6416 * some inode_item's got replayed.
6418 * root->objectid_mutex is not acquired as log replay
6419 * could only happen during mount.
6421 ret = btrfs_init_root_free_objectid(root);
6424 wc.replay_dest->log_root = NULL;
6425 btrfs_put_root(wc.replay_dest);
6426 btrfs_put_root(log);
6431 if (found_key.offset == 0)
6433 key.offset = found_key.offset - 1;
6435 btrfs_release_path(path);
6437 /* step one is to pin it all, step two is to replay just inodes */
6440 wc.process_func = replay_one_buffer;
6441 wc.stage = LOG_WALK_REPLAY_INODES;
6444 /* step three is to replay everything */
6445 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6450 btrfs_free_path(path);
6452 /* step 4: commit the transaction, which also unpins the blocks */
6453 ret = btrfs_commit_transaction(trans);
6457 log_root_tree->log_root = NULL;
6458 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6459 btrfs_put_root(log_root_tree);
6464 btrfs_end_transaction(wc.trans);
6465 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6466 btrfs_free_path(path);
6471 * there are some corner cases where we want to force a full
6472 * commit instead of allowing a directory to be logged.
6474 * They revolve around files there were unlinked from the directory, and
6475 * this function updates the parent directory so that a full commit is
6476 * properly done if it is fsync'd later after the unlinks are done.
6478 * Must be called before the unlink operations (updates to the subvolume tree,
6479 * inodes, etc) are done.
6481 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6482 struct btrfs_inode *dir, struct btrfs_inode *inode,
6486 * when we're logging a file, if it hasn't been renamed
6487 * or unlinked, and its inode is fully committed on disk,
6488 * we don't have to worry about walking up the directory chain
6489 * to log its parents.
6491 * So, we use the last_unlink_trans field to put this transid
6492 * into the file. When the file is logged we check it and
6493 * don't log the parents if the file is fully on disk.
6495 mutex_lock(&inode->log_mutex);
6496 inode->last_unlink_trans = trans->transid;
6497 mutex_unlock(&inode->log_mutex);
6500 * if this directory was already logged any new
6501 * names for this file/dir will get recorded
6503 if (dir->logged_trans == trans->transid)
6507 * if the inode we're about to unlink was logged,
6508 * the log will be properly updated for any new names
6510 if (inode->logged_trans == trans->transid)
6514 * when renaming files across directories, if the directory
6515 * there we're unlinking from gets fsync'd later on, there's
6516 * no way to find the destination directory later and fsync it
6517 * properly. So, we have to be conservative and force commits
6518 * so the new name gets discovered.
6523 /* we can safely do the unlink without any special recording */
6527 mutex_lock(&dir->log_mutex);
6528 dir->last_unlink_trans = trans->transid;
6529 mutex_unlock(&dir->log_mutex);
6533 * Make sure that if someone attempts to fsync the parent directory of a deleted
6534 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6535 * that after replaying the log tree of the parent directory's root we will not
6536 * see the snapshot anymore and at log replay time we will not see any log tree
6537 * corresponding to the deleted snapshot's root, which could lead to replaying
6538 * it after replaying the log tree of the parent directory (which would replay
6539 * the snapshot delete operation).
6541 * Must be called before the actual snapshot destroy operation (updates to the
6542 * parent root and tree of tree roots trees, etc) are done.
6544 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6545 struct btrfs_inode *dir)
6547 mutex_lock(&dir->log_mutex);
6548 dir->last_unlink_trans = trans->transid;
6549 mutex_unlock(&dir->log_mutex);
6553 * Call this after adding a new name for a file and it will properly
6554 * update the log to reflect the new name.
6556 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6557 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6558 struct dentry *parent)
6560 struct btrfs_log_ctx ctx;
6563 * this will force the logging code to walk the dentry chain
6566 if (!S_ISDIR(inode->vfs_inode.i_mode))
6567 inode->last_unlink_trans = trans->transid;
6570 * if this inode hasn't been logged and directory we're renaming it
6571 * from hasn't been logged, we don't need to log it
6573 if (!inode_logged(trans, inode) &&
6574 (!old_dir || !inode_logged(trans, old_dir)))
6578 * If we are doing a rename (old_dir is not NULL) from a directory that
6579 * was previously logged, make sure the next log attempt on the directory
6580 * is not skipped and logs the inode again. This is because the log may
6581 * not currently be authoritative for a range including the old
6582 * BTRFS_DIR_ITEM_KEY and BTRFS_DIR_INDEX_KEY keys, so we want to make
6583 * sure after a log replay we do not end up with both the new and old
6584 * dentries around (in case the inode is a directory we would have a
6585 * directory with two hard links and 2 inode references for different
6586 * parents). The next log attempt of old_dir will happen at
6587 * btrfs_log_all_parents(), called through btrfs_log_inode_parent()
6588 * below, because we have previously set inode->last_unlink_trans to the
6589 * current transaction ID, either here or at btrfs_record_unlink_dir() in
6590 * case inode is a directory.
6593 old_dir->logged_trans = 0;
6595 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6596 ctx.logging_new_name = true;
6598 * We don't care about the return value. If we fail to log the new name
6599 * then we know the next attempt to sync the log will fallback to a full
6600 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6601 * we don't need to worry about getting a log committed that has an
6602 * inconsistent state after a rename operation.
6604 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);