2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
24 #include "transaction.h"
27 #include "print-tree.h"
32 /* magic values for the inode_only field in btrfs_log_inode:
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
42 * directory trouble cases
44 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45 * log, we must force a full commit before doing an fsync of the directory
46 * where the unlink was done.
47 * ---> record transid of last unlink/rename per directory
51 * rename foo/some_dir foo2/some_dir
53 * fsync foo/some_dir/some_file
55 * The fsync above will unlink the original some_dir without recording
56 * it in its new location (foo2). After a crash, some_dir will be gone
57 * unless the fsync of some_file forces a full commit
59 * 2) we must log any new names for any file or dir that is in the fsync
60 * log. ---> check inode while renaming/linking.
62 * 2a) we must log any new names for any file or dir during rename
63 * when the directory they are being removed from was logged.
64 * ---> check inode and old parent dir during rename
66 * 2a is actually the more important variant. With the extra logging
67 * a crash might unlink the old name without recreating the new one
69 * 3) after a crash, we must go through any directories with a link count
70 * of zero and redo the rm -rf
77 * The directory f1 was fully removed from the FS, but fsync was never
78 * called on f1, only its parent dir. After a crash the rm -rf must
79 * be replayed. This must be able to recurse down the entire
80 * directory tree. The inode link count fixup code takes care of the
85 * stages for the tree walking. The first
86 * stage (0) is to only pin down the blocks we find
87 * the second stage (1) is to make sure that all the inodes
88 * we find in the log are created in the subvolume.
90 * The last stage is to deal with directories and links and extents
91 * and all the other fun semantics
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_DIR_INDEX 2
96 #define LOG_WALK_REPLAY_ALL 3
98 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
99 struct btrfs_root *root, struct inode *inode,
101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 struct btrfs_root *root,
103 struct btrfs_path *path, u64 objectid);
104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 struct btrfs_root *root,
106 struct btrfs_root *log,
107 struct btrfs_path *path,
108 u64 dirid, int del_all);
111 * tree logging is a special write ahead log used to make sure that
112 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 * Full tree commits are expensive because they require commonly
115 * modified blocks to be recowed, creating many dirty pages in the
116 * extent tree an 4x-6x higher write load than ext3.
118 * Instead of doing a tree commit on every fsync, we use the
119 * key ranges and transaction ids to find items for a given file or directory
120 * that have changed in this transaction. Those items are copied into
121 * a special tree (one per subvolume root), that tree is written to disk
122 * and then the fsync is considered complete.
124 * After a crash, items are copied out of the log-tree back into the
125 * subvolume tree. Any file data extents found are recorded in the extent
126 * allocation tree, and the log-tree freed.
128 * The log tree is read three times, once to pin down all the extents it is
129 * using in ram and once, once to create all the inodes logged in the tree
130 * and once to do all the other items.
134 * start a sub transaction and setup the log tree
135 * this increments the log tree writer count to make the people
136 * syncing the tree wait for us to finish
138 static int start_log_trans(struct btrfs_trans_handle *trans,
139 struct btrfs_root *root)
144 mutex_lock(&root->log_mutex);
145 if (root->log_root) {
146 if (!root->log_start_pid) {
147 root->log_start_pid = current->pid;
148 root->log_multiple_pids = false;
149 } else if (root->log_start_pid != current->pid) {
150 root->log_multiple_pids = true;
153 atomic_inc(&root->log_batch);
154 atomic_inc(&root->log_writers);
155 mutex_unlock(&root->log_mutex);
158 root->log_multiple_pids = false;
159 root->log_start_pid = current->pid;
160 mutex_lock(&root->fs_info->tree_log_mutex);
161 if (!root->fs_info->log_root_tree) {
162 ret = btrfs_init_log_root_tree(trans, root->fs_info);
166 if (err == 0 && !root->log_root) {
167 ret = btrfs_add_log_tree(trans, root);
171 mutex_unlock(&root->fs_info->tree_log_mutex);
172 atomic_inc(&root->log_batch);
173 atomic_inc(&root->log_writers);
174 mutex_unlock(&root->log_mutex);
179 * returns 0 if there was a log transaction running and we were able
180 * to join, or returns -ENOENT if there were not transactions
183 static int join_running_log_trans(struct btrfs_root *root)
191 mutex_lock(&root->log_mutex);
192 if (root->log_root) {
194 atomic_inc(&root->log_writers);
196 mutex_unlock(&root->log_mutex);
201 * This either makes the current running log transaction wait
202 * until you call btrfs_end_log_trans() or it makes any future
203 * log transactions wait until you call btrfs_end_log_trans()
205 int btrfs_pin_log_trans(struct btrfs_root *root)
209 mutex_lock(&root->log_mutex);
210 atomic_inc(&root->log_writers);
211 mutex_unlock(&root->log_mutex);
216 * indicate we're done making changes to the log tree
217 * and wake up anyone waiting to do a sync
219 void btrfs_end_log_trans(struct btrfs_root *root)
221 if (atomic_dec_and_test(&root->log_writers)) {
223 if (waitqueue_active(&root->log_writer_wait))
224 wake_up(&root->log_writer_wait);
230 * the walk control struct is used to pass state down the chain when
231 * processing the log tree. The stage field tells us which part
232 * of the log tree processing we are currently doing. The others
233 * are state fields used for that specific part
235 struct walk_control {
236 /* should we free the extent on disk when done? This is used
237 * at transaction commit time while freeing a log tree
241 /* should we write out the extent buffer? This is used
242 * while flushing the log tree to disk during a sync
246 /* should we wait for the extent buffer io to finish? Also used
247 * while flushing the log tree to disk for a sync
251 /* pin only walk, we record which extents on disk belong to the
256 /* what stage of the replay code we're currently in */
259 /* the root we are currently replaying */
260 struct btrfs_root *replay_dest;
262 /* the trans handle for the current replay */
263 struct btrfs_trans_handle *trans;
265 /* the function that gets used to process blocks we find in the
266 * tree. Note the extent_buffer might not be up to date when it is
267 * passed in, and it must be checked or read if you need the data
270 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
271 struct walk_control *wc, u64 gen);
275 * process_func used to pin down extents, write them or wait on them
277 static int process_one_buffer(struct btrfs_root *log,
278 struct extent_buffer *eb,
279 struct walk_control *wc, u64 gen)
284 * If this fs is mixed then we need to be able to process the leaves to
285 * pin down any logged extents, so we have to read the block.
287 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
288 ret = btrfs_read_buffer(eb, gen);
294 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
297 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
298 if (wc->pin && btrfs_header_level(eb) == 0)
299 ret = btrfs_exclude_logged_extents(log, eb);
301 btrfs_write_tree_block(eb);
303 btrfs_wait_tree_block_writeback(eb);
309 * Item overwrite used by replay and tree logging. eb, slot and key all refer
310 * to the src data we are copying out.
312 * root is the tree we are copying into, and path is a scratch
313 * path for use in this function (it should be released on entry and
314 * will be released on exit).
316 * If the key is already in the destination tree the existing item is
317 * overwritten. If the existing item isn't big enough, it is extended.
318 * If it is too large, it is truncated.
320 * If the key isn't in the destination yet, a new item is inserted.
322 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
323 struct btrfs_root *root,
324 struct btrfs_path *path,
325 struct extent_buffer *eb, int slot,
326 struct btrfs_key *key)
330 u64 saved_i_size = 0;
331 int save_old_i_size = 0;
332 unsigned long src_ptr;
333 unsigned long dst_ptr;
334 int overwrite_root = 0;
335 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
337 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
340 item_size = btrfs_item_size_nr(eb, slot);
341 src_ptr = btrfs_item_ptr_offset(eb, slot);
343 /* look for the key in the destination tree */
344 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
351 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
353 if (dst_size != item_size)
356 if (item_size == 0) {
357 btrfs_release_path(path);
360 dst_copy = kmalloc(item_size, GFP_NOFS);
361 src_copy = kmalloc(item_size, GFP_NOFS);
362 if (!dst_copy || !src_copy) {
363 btrfs_release_path(path);
369 read_extent_buffer(eb, src_copy, src_ptr, item_size);
371 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
372 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
374 ret = memcmp(dst_copy, src_copy, item_size);
379 * they have the same contents, just return, this saves
380 * us from cowing blocks in the destination tree and doing
381 * extra writes that may not have been done by a previous
385 btrfs_release_path(path);
390 * We need to load the old nbytes into the inode so when we
391 * replay the extents we've logged we get the right nbytes.
394 struct btrfs_inode_item *item;
398 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
399 struct btrfs_inode_item);
400 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
401 item = btrfs_item_ptr(eb, slot,
402 struct btrfs_inode_item);
403 btrfs_set_inode_nbytes(eb, item, nbytes);
406 * If this is a directory we need to reset the i_size to
407 * 0 so that we can set it up properly when replaying
408 * the rest of the items in this log.
410 mode = btrfs_inode_mode(eb, item);
412 btrfs_set_inode_size(eb, item, 0);
414 } else if (inode_item) {
415 struct btrfs_inode_item *item;
419 * New inode, set nbytes to 0 so that the nbytes comes out
420 * properly when we replay the extents.
422 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
423 btrfs_set_inode_nbytes(eb, item, 0);
426 * If this is a directory we need to reset the i_size to 0 so
427 * that we can set it up properly when replaying the rest of
428 * the items in this log.
430 mode = btrfs_inode_mode(eb, item);
432 btrfs_set_inode_size(eb, item, 0);
435 btrfs_release_path(path);
436 /* try to insert the key into the destination tree */
437 ret = btrfs_insert_empty_item(trans, root, path,
440 /* make sure any existing item is the correct size */
441 if (ret == -EEXIST) {
443 found_size = btrfs_item_size_nr(path->nodes[0],
445 if (found_size > item_size)
446 btrfs_truncate_item(root, path, item_size, 1);
447 else if (found_size < item_size)
448 btrfs_extend_item(root, path,
449 item_size - found_size);
453 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
456 /* don't overwrite an existing inode if the generation number
457 * was logged as zero. This is done when the tree logging code
458 * is just logging an inode to make sure it exists after recovery.
460 * Also, don't overwrite i_size on directories during replay.
461 * log replay inserts and removes directory items based on the
462 * state of the tree found in the subvolume, and i_size is modified
465 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
466 struct btrfs_inode_item *src_item;
467 struct btrfs_inode_item *dst_item;
469 src_item = (struct btrfs_inode_item *)src_ptr;
470 dst_item = (struct btrfs_inode_item *)dst_ptr;
472 if (btrfs_inode_generation(eb, src_item) == 0)
475 if (overwrite_root &&
476 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
477 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
479 saved_i_size = btrfs_inode_size(path->nodes[0],
484 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
487 if (save_old_i_size) {
488 struct btrfs_inode_item *dst_item;
489 dst_item = (struct btrfs_inode_item *)dst_ptr;
490 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
493 /* make sure the generation is filled in */
494 if (key->type == BTRFS_INODE_ITEM_KEY) {
495 struct btrfs_inode_item *dst_item;
496 dst_item = (struct btrfs_inode_item *)dst_ptr;
497 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
498 btrfs_set_inode_generation(path->nodes[0], dst_item,
503 btrfs_mark_buffer_dirty(path->nodes[0]);
504 btrfs_release_path(path);
509 * simple helper to read an inode off the disk from a given root
510 * This can only be called for subvolume roots and not for the log
512 static noinline struct inode *read_one_inode(struct btrfs_root *root,
515 struct btrfs_key key;
518 key.objectid = objectid;
519 key.type = BTRFS_INODE_ITEM_KEY;
521 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
524 } else if (is_bad_inode(inode)) {
531 /* replays a single extent in 'eb' at 'slot' with 'key' into the
532 * subvolume 'root'. path is released on entry and should be released
535 * extents in the log tree have not been allocated out of the extent
536 * tree yet. So, this completes the allocation, taking a reference
537 * as required if the extent already exists or creating a new extent
538 * if it isn't in the extent allocation tree yet.
540 * The extent is inserted into the file, dropping any existing extents
541 * from the file that overlap the new one.
543 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
544 struct btrfs_root *root,
545 struct btrfs_path *path,
546 struct extent_buffer *eb, int slot,
547 struct btrfs_key *key)
551 u64 start = key->offset;
553 struct btrfs_file_extent_item *item;
554 struct inode *inode = NULL;
558 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
559 found_type = btrfs_file_extent_type(eb, item);
561 if (found_type == BTRFS_FILE_EXTENT_REG ||
562 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
563 nbytes = btrfs_file_extent_num_bytes(eb, item);
564 extent_end = start + nbytes;
567 * We don't add to the inodes nbytes if we are prealloc or a
570 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
572 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
573 size = btrfs_file_extent_inline_len(eb, item);
574 nbytes = btrfs_file_extent_ram_bytes(eb, item);
575 extent_end = ALIGN(start + size, root->sectorsize);
581 inode = read_one_inode(root, key->objectid);
588 * first check to see if we already have this extent in the
589 * file. This must be done before the btrfs_drop_extents run
590 * so we don't try to drop this extent.
592 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
596 (found_type == BTRFS_FILE_EXTENT_REG ||
597 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
598 struct btrfs_file_extent_item cmp1;
599 struct btrfs_file_extent_item cmp2;
600 struct btrfs_file_extent_item *existing;
601 struct extent_buffer *leaf;
603 leaf = path->nodes[0];
604 existing = btrfs_item_ptr(leaf, path->slots[0],
605 struct btrfs_file_extent_item);
607 read_extent_buffer(eb, &cmp1, (unsigned long)item,
609 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
613 * we already have a pointer to this exact extent,
614 * we don't have to do anything
616 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
617 btrfs_release_path(path);
621 btrfs_release_path(path);
623 /* drop any overlapping extents */
624 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
628 if (found_type == BTRFS_FILE_EXTENT_REG ||
629 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
631 unsigned long dest_offset;
632 struct btrfs_key ins;
634 ret = btrfs_insert_empty_item(trans, root, path, key,
638 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
640 copy_extent_buffer(path->nodes[0], eb, dest_offset,
641 (unsigned long)item, sizeof(*item));
643 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
644 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
645 ins.type = BTRFS_EXTENT_ITEM_KEY;
646 offset = key->offset - btrfs_file_extent_offset(eb, item);
648 if (ins.objectid > 0) {
651 LIST_HEAD(ordered_sums);
653 * is this extent already allocated in the extent
654 * allocation tree? If so, just add a reference
656 ret = btrfs_lookup_extent(root, ins.objectid,
659 ret = btrfs_inc_extent_ref(trans, root,
660 ins.objectid, ins.offset,
661 0, root->root_key.objectid,
662 key->objectid, offset, 0);
667 * insert the extent pointer in the extent
670 ret = btrfs_alloc_logged_file_extent(trans,
671 root, root->root_key.objectid,
672 key->objectid, offset, &ins);
676 btrfs_release_path(path);
678 if (btrfs_file_extent_compression(eb, item)) {
679 csum_start = ins.objectid;
680 csum_end = csum_start + ins.offset;
682 csum_start = ins.objectid +
683 btrfs_file_extent_offset(eb, item);
684 csum_end = csum_start +
685 btrfs_file_extent_num_bytes(eb, item);
688 ret = btrfs_lookup_csums_range(root->log_root,
689 csum_start, csum_end - 1,
693 while (!list_empty(&ordered_sums)) {
694 struct btrfs_ordered_sum *sums;
695 sums = list_entry(ordered_sums.next,
696 struct btrfs_ordered_sum,
699 ret = btrfs_csum_file_blocks(trans,
700 root->fs_info->csum_root,
702 list_del(&sums->list);
708 btrfs_release_path(path);
710 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
711 /* inline extents are easy, we just overwrite them */
712 ret = overwrite_item(trans, root, path, eb, slot, key);
717 inode_add_bytes(inode, nbytes);
718 ret = btrfs_update_inode(trans, root, inode);
726 * when cleaning up conflicts between the directory names in the
727 * subvolume, directory names in the log and directory names in the
728 * inode back references, we may have to unlink inodes from directories.
730 * This is a helper function to do the unlink of a specific directory
733 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
734 struct btrfs_root *root,
735 struct btrfs_path *path,
737 struct btrfs_dir_item *di)
742 struct extent_buffer *leaf;
743 struct btrfs_key location;
746 leaf = path->nodes[0];
748 btrfs_dir_item_key_to_cpu(leaf, di, &location);
749 name_len = btrfs_dir_name_len(leaf, di);
750 name = kmalloc(name_len, GFP_NOFS);
754 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
755 btrfs_release_path(path);
757 inode = read_one_inode(root, location.objectid);
763 ret = link_to_fixup_dir(trans, root, path, location.objectid);
767 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
771 ret = btrfs_run_delayed_items(trans, root);
779 * helper function to see if a given name and sequence number found
780 * in an inode back reference are already in a directory and correctly
781 * point to this inode
783 static noinline int inode_in_dir(struct btrfs_root *root,
784 struct btrfs_path *path,
785 u64 dirid, u64 objectid, u64 index,
786 const char *name, int name_len)
788 struct btrfs_dir_item *di;
789 struct btrfs_key location;
792 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
793 index, name, name_len, 0);
794 if (di && !IS_ERR(di)) {
795 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
796 if (location.objectid != objectid)
800 btrfs_release_path(path);
802 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
803 if (di && !IS_ERR(di)) {
804 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
805 if (location.objectid != objectid)
811 btrfs_release_path(path);
816 * helper function to check a log tree for a named back reference in
817 * an inode. This is used to decide if a back reference that is
818 * found in the subvolume conflicts with what we find in the log.
820 * inode backreferences may have multiple refs in a single item,
821 * during replay we process one reference at a time, and we don't
822 * want to delete valid links to a file from the subvolume if that
823 * link is also in the log.
825 static noinline int backref_in_log(struct btrfs_root *log,
826 struct btrfs_key *key,
828 char *name, int namelen)
830 struct btrfs_path *path;
831 struct btrfs_inode_ref *ref;
833 unsigned long ptr_end;
834 unsigned long name_ptr;
840 path = btrfs_alloc_path();
844 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
848 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
850 if (key->type == BTRFS_INODE_EXTREF_KEY) {
851 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
852 name, namelen, NULL))
858 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
859 ptr_end = ptr + item_size;
860 while (ptr < ptr_end) {
861 ref = (struct btrfs_inode_ref *)ptr;
862 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
863 if (found_name_len == namelen) {
864 name_ptr = (unsigned long)(ref + 1);
865 ret = memcmp_extent_buffer(path->nodes[0], name,
872 ptr = (unsigned long)(ref + 1) + found_name_len;
875 btrfs_free_path(path);
879 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
880 struct btrfs_root *root,
881 struct btrfs_path *path,
882 struct btrfs_root *log_root,
883 struct inode *dir, struct inode *inode,
884 struct extent_buffer *eb,
885 u64 inode_objectid, u64 parent_objectid,
886 u64 ref_index, char *name, int namelen,
892 struct extent_buffer *leaf;
893 struct btrfs_dir_item *di;
894 struct btrfs_key search_key;
895 struct btrfs_inode_extref *extref;
898 /* Search old style refs */
899 search_key.objectid = inode_objectid;
900 search_key.type = BTRFS_INODE_REF_KEY;
901 search_key.offset = parent_objectid;
902 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
904 struct btrfs_inode_ref *victim_ref;
906 unsigned long ptr_end;
908 leaf = path->nodes[0];
910 /* are we trying to overwrite a back ref for the root directory
911 * if so, just jump out, we're done
913 if (search_key.objectid == search_key.offset)
916 /* check all the names in this back reference to see
917 * if they are in the log. if so, we allow them to stay
918 * otherwise they must be unlinked as a conflict
920 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
921 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
922 while (ptr < ptr_end) {
923 victim_ref = (struct btrfs_inode_ref *)ptr;
924 victim_name_len = btrfs_inode_ref_name_len(leaf,
926 victim_name = kmalloc(victim_name_len, GFP_NOFS);
930 read_extent_buffer(leaf, victim_name,
931 (unsigned long)(victim_ref + 1),
934 if (!backref_in_log(log_root, &search_key,
939 btrfs_release_path(path);
941 ret = btrfs_unlink_inode(trans, root, dir,
947 ret = btrfs_run_delayed_items(trans, root);
955 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
959 * NOTE: we have searched root tree and checked the
960 * coresponding ref, it does not need to check again.
964 btrfs_release_path(path);
966 /* Same search but for extended refs */
967 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
968 inode_objectid, parent_objectid, 0,
970 if (!IS_ERR_OR_NULL(extref)) {
974 struct inode *victim_parent;
976 leaf = path->nodes[0];
978 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
979 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
981 while (cur_offset < item_size) {
982 extref = (struct btrfs_inode_extref *)base + cur_offset;
984 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
986 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
989 victim_name = kmalloc(victim_name_len, GFP_NOFS);
992 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
995 search_key.objectid = inode_objectid;
996 search_key.type = BTRFS_INODE_EXTREF_KEY;
997 search_key.offset = btrfs_extref_hash(parent_objectid,
1001 if (!backref_in_log(log_root, &search_key,
1002 parent_objectid, victim_name,
1005 victim_parent = read_one_inode(root,
1007 if (victim_parent) {
1009 btrfs_release_path(path);
1011 ret = btrfs_unlink_inode(trans, root,
1017 ret = btrfs_run_delayed_items(
1020 iput(victim_parent);
1031 cur_offset += victim_name_len + sizeof(*extref);
1035 btrfs_release_path(path);
1037 /* look for a conflicting sequence number */
1038 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1039 ref_index, name, namelen, 0);
1040 if (di && !IS_ERR(di)) {
1041 ret = drop_one_dir_item(trans, root, path, dir, di);
1045 btrfs_release_path(path);
1047 /* look for a conflicing name */
1048 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1050 if (di && !IS_ERR(di)) {
1051 ret = drop_one_dir_item(trans, root, path, dir, di);
1055 btrfs_release_path(path);
1060 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1061 u32 *namelen, char **name, u64 *index,
1062 u64 *parent_objectid)
1064 struct btrfs_inode_extref *extref;
1066 extref = (struct btrfs_inode_extref *)ref_ptr;
1068 *namelen = btrfs_inode_extref_name_len(eb, extref);
1069 *name = kmalloc(*namelen, GFP_NOFS);
1073 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1076 *index = btrfs_inode_extref_index(eb, extref);
1077 if (parent_objectid)
1078 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1083 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1084 u32 *namelen, char **name, u64 *index)
1086 struct btrfs_inode_ref *ref;
1088 ref = (struct btrfs_inode_ref *)ref_ptr;
1090 *namelen = btrfs_inode_ref_name_len(eb, ref);
1091 *name = kmalloc(*namelen, GFP_NOFS);
1095 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1097 *index = btrfs_inode_ref_index(eb, ref);
1103 * replay one inode back reference item found in the log tree.
1104 * eb, slot and key refer to the buffer and key found in the log tree.
1105 * root is the destination we are replaying into, and path is for temp
1106 * use by this function. (it should be released on return).
1108 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1109 struct btrfs_root *root,
1110 struct btrfs_root *log,
1111 struct btrfs_path *path,
1112 struct extent_buffer *eb, int slot,
1113 struct btrfs_key *key)
1115 struct inode *dir = NULL;
1116 struct inode *inode = NULL;
1117 unsigned long ref_ptr;
1118 unsigned long ref_end;
1122 int search_done = 0;
1123 int log_ref_ver = 0;
1124 u64 parent_objectid;
1127 int ref_struct_size;
1129 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1130 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1132 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1133 struct btrfs_inode_extref *r;
1135 ref_struct_size = sizeof(struct btrfs_inode_extref);
1137 r = (struct btrfs_inode_extref *)ref_ptr;
1138 parent_objectid = btrfs_inode_extref_parent(eb, r);
1140 ref_struct_size = sizeof(struct btrfs_inode_ref);
1141 parent_objectid = key->offset;
1143 inode_objectid = key->objectid;
1146 * it is possible that we didn't log all the parent directories
1147 * for a given inode. If we don't find the dir, just don't
1148 * copy the back ref in. The link count fixup code will take
1151 dir = read_one_inode(root, parent_objectid);
1157 inode = read_one_inode(root, inode_objectid);
1163 while (ref_ptr < ref_end) {
1165 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1166 &ref_index, &parent_objectid);
1168 * parent object can change from one array
1172 dir = read_one_inode(root, parent_objectid);
1178 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1184 /* if we already have a perfect match, we're done */
1185 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1186 ref_index, name, namelen)) {
1188 * look for a conflicting back reference in the
1189 * metadata. if we find one we have to unlink that name
1190 * of the file before we add our new link. Later on, we
1191 * overwrite any existing back reference, and we don't
1192 * want to create dangling pointers in the directory.
1196 ret = __add_inode_ref(trans, root, path, log,
1200 ref_index, name, namelen,
1209 /* insert our name */
1210 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1215 btrfs_update_inode(trans, root, inode);
1218 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1227 /* finally write the back reference in the inode */
1228 ret = overwrite_item(trans, root, path, eb, slot, key);
1230 btrfs_release_path(path);
1237 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1238 struct btrfs_root *root, u64 offset)
1241 ret = btrfs_find_orphan_item(root, offset);
1243 ret = btrfs_insert_orphan_item(trans, root, offset);
1247 static int count_inode_extrefs(struct btrfs_root *root,
1248 struct inode *inode, struct btrfs_path *path)
1252 unsigned int nlink = 0;
1255 u64 inode_objectid = btrfs_ino(inode);
1258 struct btrfs_inode_extref *extref;
1259 struct extent_buffer *leaf;
1262 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1267 leaf = path->nodes[0];
1268 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1269 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1271 while (cur_offset < item_size) {
1272 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1273 name_len = btrfs_inode_extref_name_len(leaf, extref);
1277 cur_offset += name_len + sizeof(*extref);
1281 btrfs_release_path(path);
1283 btrfs_release_path(path);
1290 static int count_inode_refs(struct btrfs_root *root,
1291 struct inode *inode, struct btrfs_path *path)
1294 struct btrfs_key key;
1295 unsigned int nlink = 0;
1297 unsigned long ptr_end;
1299 u64 ino = btrfs_ino(inode);
1302 key.type = BTRFS_INODE_REF_KEY;
1303 key.offset = (u64)-1;
1306 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1310 if (path->slots[0] == 0)
1315 btrfs_item_key_to_cpu(path->nodes[0], &key,
1317 if (key.objectid != ino ||
1318 key.type != BTRFS_INODE_REF_KEY)
1320 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1321 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1323 while (ptr < ptr_end) {
1324 struct btrfs_inode_ref *ref;
1326 ref = (struct btrfs_inode_ref *)ptr;
1327 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1329 ptr = (unsigned long)(ref + 1) + name_len;
1333 if (key.offset == 0)
1335 if (path->slots[0] > 0) {
1340 btrfs_release_path(path);
1342 btrfs_release_path(path);
1348 * There are a few corners where the link count of the file can't
1349 * be properly maintained during replay. So, instead of adding
1350 * lots of complexity to the log code, we just scan the backrefs
1351 * for any file that has been through replay.
1353 * The scan will update the link count on the inode to reflect the
1354 * number of back refs found. If it goes down to zero, the iput
1355 * will free the inode.
1357 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1358 struct btrfs_root *root,
1359 struct inode *inode)
1361 struct btrfs_path *path;
1364 u64 ino = btrfs_ino(inode);
1366 path = btrfs_alloc_path();
1370 ret = count_inode_refs(root, inode, path);
1376 ret = count_inode_extrefs(root, inode, path);
1387 if (nlink != inode->i_nlink) {
1388 set_nlink(inode, nlink);
1389 btrfs_update_inode(trans, root, inode);
1391 BTRFS_I(inode)->index_cnt = (u64)-1;
1393 if (inode->i_nlink == 0) {
1394 if (S_ISDIR(inode->i_mode)) {
1395 ret = replay_dir_deletes(trans, root, NULL, path,
1400 ret = insert_orphan_item(trans, root, ino);
1404 btrfs_free_path(path);
1408 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1409 struct btrfs_root *root,
1410 struct btrfs_path *path)
1413 struct btrfs_key key;
1414 struct inode *inode;
1416 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1417 key.type = BTRFS_ORPHAN_ITEM_KEY;
1418 key.offset = (u64)-1;
1420 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1425 if (path->slots[0] == 0)
1430 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1431 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1432 key.type != BTRFS_ORPHAN_ITEM_KEY)
1435 ret = btrfs_del_item(trans, root, path);
1439 btrfs_release_path(path);
1440 inode = read_one_inode(root, key.offset);
1444 ret = fixup_inode_link_count(trans, root, inode);
1450 * fixup on a directory may create new entries,
1451 * make sure we always look for the highset possible
1454 key.offset = (u64)-1;
1458 btrfs_release_path(path);
1464 * record a given inode in the fixup dir so we can check its link
1465 * count when replay is done. The link count is incremented here
1466 * so the inode won't go away until we check it
1468 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1469 struct btrfs_root *root,
1470 struct btrfs_path *path,
1473 struct btrfs_key key;
1475 struct inode *inode;
1477 inode = read_one_inode(root, objectid);
1481 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1482 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1483 key.offset = objectid;
1485 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1487 btrfs_release_path(path);
1489 if (!inode->i_nlink)
1490 set_nlink(inode, 1);
1493 ret = btrfs_update_inode(trans, root, inode);
1494 } else if (ret == -EEXIST) {
1497 BUG(); /* Logic Error */
1505 * when replaying the log for a directory, we only insert names
1506 * for inodes that actually exist. This means an fsync on a directory
1507 * does not implicitly fsync all the new files in it
1509 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1510 struct btrfs_root *root,
1511 struct btrfs_path *path,
1512 u64 dirid, u64 index,
1513 char *name, int name_len, u8 type,
1514 struct btrfs_key *location)
1516 struct inode *inode;
1520 inode = read_one_inode(root, location->objectid);
1524 dir = read_one_inode(root, dirid);
1530 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1532 /* FIXME, put inode into FIXUP list */
1540 * take a single entry in a log directory item and replay it into
1543 * if a conflicting item exists in the subdirectory already,
1544 * the inode it points to is unlinked and put into the link count
1547 * If a name from the log points to a file or directory that does
1548 * not exist in the FS, it is skipped. fsyncs on directories
1549 * do not force down inodes inside that directory, just changes to the
1550 * names or unlinks in a directory.
1552 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1553 struct btrfs_root *root,
1554 struct btrfs_path *path,
1555 struct extent_buffer *eb,
1556 struct btrfs_dir_item *di,
1557 struct btrfs_key *key)
1561 struct btrfs_dir_item *dst_di;
1562 struct btrfs_key found_key;
1563 struct btrfs_key log_key;
1568 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1570 dir = read_one_inode(root, key->objectid);
1574 name_len = btrfs_dir_name_len(eb, di);
1575 name = kmalloc(name_len, GFP_NOFS);
1581 log_type = btrfs_dir_type(eb, di);
1582 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1585 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1586 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1591 btrfs_release_path(path);
1593 if (key->type == BTRFS_DIR_ITEM_KEY) {
1594 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1596 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1597 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1606 if (IS_ERR_OR_NULL(dst_di)) {
1607 /* we need a sequence number to insert, so we only
1608 * do inserts for the BTRFS_DIR_INDEX_KEY types
1610 if (key->type != BTRFS_DIR_INDEX_KEY)
1615 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1616 /* the existing item matches the logged item */
1617 if (found_key.objectid == log_key.objectid &&
1618 found_key.type == log_key.type &&
1619 found_key.offset == log_key.offset &&
1620 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1625 * don't drop the conflicting directory entry if the inode
1626 * for the new entry doesn't exist
1631 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1635 if (key->type == BTRFS_DIR_INDEX_KEY)
1638 btrfs_release_path(path);
1639 if (!ret && update_size) {
1640 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1641 ret = btrfs_update_inode(trans, root, dir);
1648 btrfs_release_path(path);
1649 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1650 name, name_len, log_type, &log_key);
1651 if (ret && ret != -ENOENT)
1653 update_size = false;
1659 * find all the names in a directory item and reconcile them into
1660 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1661 * one name in a directory item, but the same code gets used for
1662 * both directory index types
1664 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1665 struct btrfs_root *root,
1666 struct btrfs_path *path,
1667 struct extent_buffer *eb, int slot,
1668 struct btrfs_key *key)
1671 u32 item_size = btrfs_item_size_nr(eb, slot);
1672 struct btrfs_dir_item *di;
1675 unsigned long ptr_end;
1677 ptr = btrfs_item_ptr_offset(eb, slot);
1678 ptr_end = ptr + item_size;
1679 while (ptr < ptr_end) {
1680 di = (struct btrfs_dir_item *)ptr;
1681 if (verify_dir_item(root, eb, di))
1683 name_len = btrfs_dir_name_len(eb, di);
1684 ret = replay_one_name(trans, root, path, eb, di, key);
1687 ptr = (unsigned long)(di + 1);
1694 * directory replay has two parts. There are the standard directory
1695 * items in the log copied from the subvolume, and range items
1696 * created in the log while the subvolume was logged.
1698 * The range items tell us which parts of the key space the log
1699 * is authoritative for. During replay, if a key in the subvolume
1700 * directory is in a logged range item, but not actually in the log
1701 * that means it was deleted from the directory before the fsync
1702 * and should be removed.
1704 static noinline int find_dir_range(struct btrfs_root *root,
1705 struct btrfs_path *path,
1706 u64 dirid, int key_type,
1707 u64 *start_ret, u64 *end_ret)
1709 struct btrfs_key key;
1711 struct btrfs_dir_log_item *item;
1715 if (*start_ret == (u64)-1)
1718 key.objectid = dirid;
1719 key.type = key_type;
1720 key.offset = *start_ret;
1722 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1726 if (path->slots[0] == 0)
1731 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1733 if (key.type != key_type || key.objectid != dirid) {
1737 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1738 struct btrfs_dir_log_item);
1739 found_end = btrfs_dir_log_end(path->nodes[0], item);
1741 if (*start_ret >= key.offset && *start_ret <= found_end) {
1743 *start_ret = key.offset;
1744 *end_ret = found_end;
1749 /* check the next slot in the tree to see if it is a valid item */
1750 nritems = btrfs_header_nritems(path->nodes[0]);
1751 if (path->slots[0] >= nritems) {
1752 ret = btrfs_next_leaf(root, path);
1759 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1761 if (key.type != key_type || key.objectid != dirid) {
1765 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1766 struct btrfs_dir_log_item);
1767 found_end = btrfs_dir_log_end(path->nodes[0], item);
1768 *start_ret = key.offset;
1769 *end_ret = found_end;
1772 btrfs_release_path(path);
1777 * this looks for a given directory item in the log. If the directory
1778 * item is not in the log, the item is removed and the inode it points
1781 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1782 struct btrfs_root *root,
1783 struct btrfs_root *log,
1784 struct btrfs_path *path,
1785 struct btrfs_path *log_path,
1787 struct btrfs_key *dir_key)
1790 struct extent_buffer *eb;
1793 struct btrfs_dir_item *di;
1794 struct btrfs_dir_item *log_di;
1797 unsigned long ptr_end;
1799 struct inode *inode;
1800 struct btrfs_key location;
1803 eb = path->nodes[0];
1804 slot = path->slots[0];
1805 item_size = btrfs_item_size_nr(eb, slot);
1806 ptr = btrfs_item_ptr_offset(eb, slot);
1807 ptr_end = ptr + item_size;
1808 while (ptr < ptr_end) {
1809 di = (struct btrfs_dir_item *)ptr;
1810 if (verify_dir_item(root, eb, di)) {
1815 name_len = btrfs_dir_name_len(eb, di);
1816 name = kmalloc(name_len, GFP_NOFS);
1821 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1824 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1825 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1828 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1829 log_di = btrfs_lookup_dir_index_item(trans, log,
1835 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
1836 btrfs_dir_item_key_to_cpu(eb, di, &location);
1837 btrfs_release_path(path);
1838 btrfs_release_path(log_path);
1839 inode = read_one_inode(root, location.objectid);
1845 ret = link_to_fixup_dir(trans, root,
1846 path, location.objectid);
1854 ret = btrfs_unlink_inode(trans, root, dir, inode,
1857 ret = btrfs_run_delayed_items(trans, root);
1863 /* there might still be more names under this key
1864 * check and repeat if required
1866 ret = btrfs_search_slot(NULL, root, dir_key, path,
1872 } else if (IS_ERR(log_di)) {
1874 return PTR_ERR(log_di);
1876 btrfs_release_path(log_path);
1879 ptr = (unsigned long)(di + 1);
1884 btrfs_release_path(path);
1885 btrfs_release_path(log_path);
1890 * deletion replay happens before we copy any new directory items
1891 * out of the log or out of backreferences from inodes. It
1892 * scans the log to find ranges of keys that log is authoritative for,
1893 * and then scans the directory to find items in those ranges that are
1894 * not present in the log.
1896 * Anything we don't find in the log is unlinked and removed from the
1899 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1900 struct btrfs_root *root,
1901 struct btrfs_root *log,
1902 struct btrfs_path *path,
1903 u64 dirid, int del_all)
1907 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1909 struct btrfs_key dir_key;
1910 struct btrfs_key found_key;
1911 struct btrfs_path *log_path;
1914 dir_key.objectid = dirid;
1915 dir_key.type = BTRFS_DIR_ITEM_KEY;
1916 log_path = btrfs_alloc_path();
1920 dir = read_one_inode(root, dirid);
1921 /* it isn't an error if the inode isn't there, that can happen
1922 * because we replay the deletes before we copy in the inode item
1926 btrfs_free_path(log_path);
1934 range_end = (u64)-1;
1936 ret = find_dir_range(log, path, dirid, key_type,
1937 &range_start, &range_end);
1942 dir_key.offset = range_start;
1945 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1950 nritems = btrfs_header_nritems(path->nodes[0]);
1951 if (path->slots[0] >= nritems) {
1952 ret = btrfs_next_leaf(root, path);
1956 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1958 if (found_key.objectid != dirid ||
1959 found_key.type != dir_key.type)
1962 if (found_key.offset > range_end)
1965 ret = check_item_in_log(trans, root, log, path,
1970 if (found_key.offset == (u64)-1)
1972 dir_key.offset = found_key.offset + 1;
1974 btrfs_release_path(path);
1975 if (range_end == (u64)-1)
1977 range_start = range_end + 1;
1982 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1983 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1984 dir_key.type = BTRFS_DIR_INDEX_KEY;
1985 btrfs_release_path(path);
1989 btrfs_release_path(path);
1990 btrfs_free_path(log_path);
1996 * the process_func used to replay items from the log tree. This
1997 * gets called in two different stages. The first stage just looks
1998 * for inodes and makes sure they are all copied into the subvolume.
2000 * The second stage copies all the other item types from the log into
2001 * the subvolume. The two stage approach is slower, but gets rid of
2002 * lots of complexity around inodes referencing other inodes that exist
2003 * only in the log (references come from either directory items or inode
2006 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2007 struct walk_control *wc, u64 gen)
2010 struct btrfs_path *path;
2011 struct btrfs_root *root = wc->replay_dest;
2012 struct btrfs_key key;
2017 ret = btrfs_read_buffer(eb, gen);
2021 level = btrfs_header_level(eb);
2026 path = btrfs_alloc_path();
2030 nritems = btrfs_header_nritems(eb);
2031 for (i = 0; i < nritems; i++) {
2032 btrfs_item_key_to_cpu(eb, &key, i);
2034 /* inode keys are done during the first stage */
2035 if (key.type == BTRFS_INODE_ITEM_KEY &&
2036 wc->stage == LOG_WALK_REPLAY_INODES) {
2037 struct btrfs_inode_item *inode_item;
2040 inode_item = btrfs_item_ptr(eb, i,
2041 struct btrfs_inode_item);
2042 mode = btrfs_inode_mode(eb, inode_item);
2043 if (S_ISDIR(mode)) {
2044 ret = replay_dir_deletes(wc->trans,
2045 root, log, path, key.objectid, 0);
2049 ret = overwrite_item(wc->trans, root, path,
2054 /* for regular files, make sure corresponding
2055 * orhpan item exist. extents past the new EOF
2056 * will be truncated later by orphan cleanup.
2058 if (S_ISREG(mode)) {
2059 ret = insert_orphan_item(wc->trans, root,
2065 ret = link_to_fixup_dir(wc->trans, root,
2066 path, key.objectid);
2071 if (key.type == BTRFS_DIR_INDEX_KEY &&
2072 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2073 ret = replay_one_dir_item(wc->trans, root, path,
2079 if (wc->stage < LOG_WALK_REPLAY_ALL)
2082 /* these keys are simply copied */
2083 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2084 ret = overwrite_item(wc->trans, root, path,
2088 } else if (key.type == BTRFS_INODE_REF_KEY ||
2089 key.type == BTRFS_INODE_EXTREF_KEY) {
2090 ret = add_inode_ref(wc->trans, root, log, path,
2092 if (ret && ret != -ENOENT)
2095 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2096 ret = replay_one_extent(wc->trans, root, path,
2100 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2101 ret = replay_one_dir_item(wc->trans, root, path,
2107 btrfs_free_path(path);
2111 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2112 struct btrfs_root *root,
2113 struct btrfs_path *path, int *level,
2114 struct walk_control *wc)
2119 struct extent_buffer *next;
2120 struct extent_buffer *cur;
2121 struct extent_buffer *parent;
2125 WARN_ON(*level < 0);
2126 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2128 while (*level > 0) {
2129 WARN_ON(*level < 0);
2130 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2131 cur = path->nodes[*level];
2133 WARN_ON(btrfs_header_level(cur) != *level);
2135 if (path->slots[*level] >=
2136 btrfs_header_nritems(cur))
2139 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2140 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2141 blocksize = btrfs_level_size(root, *level - 1);
2143 parent = path->nodes[*level];
2144 root_owner = btrfs_header_owner(parent);
2146 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2151 ret = wc->process_func(root, next, wc, ptr_gen);
2153 free_extent_buffer(next);
2157 path->slots[*level]++;
2159 ret = btrfs_read_buffer(next, ptr_gen);
2161 free_extent_buffer(next);
2166 btrfs_tree_lock(next);
2167 btrfs_set_lock_blocking(next);
2168 clean_tree_block(trans, root, next);
2169 btrfs_wait_tree_block_writeback(next);
2170 btrfs_tree_unlock(next);
2173 WARN_ON(root_owner !=
2174 BTRFS_TREE_LOG_OBJECTID);
2175 ret = btrfs_free_and_pin_reserved_extent(root,
2178 free_extent_buffer(next);
2182 free_extent_buffer(next);
2185 ret = btrfs_read_buffer(next, ptr_gen);
2187 free_extent_buffer(next);
2191 WARN_ON(*level <= 0);
2192 if (path->nodes[*level-1])
2193 free_extent_buffer(path->nodes[*level-1]);
2194 path->nodes[*level-1] = next;
2195 *level = btrfs_header_level(next);
2196 path->slots[*level] = 0;
2199 WARN_ON(*level < 0);
2200 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2202 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2208 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2209 struct btrfs_root *root,
2210 struct btrfs_path *path, int *level,
2211 struct walk_control *wc)
2218 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2219 slot = path->slots[i];
2220 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2223 WARN_ON(*level == 0);
2226 struct extent_buffer *parent;
2227 if (path->nodes[*level] == root->node)
2228 parent = path->nodes[*level];
2230 parent = path->nodes[*level + 1];
2232 root_owner = btrfs_header_owner(parent);
2233 ret = wc->process_func(root, path->nodes[*level], wc,
2234 btrfs_header_generation(path->nodes[*level]));
2239 struct extent_buffer *next;
2241 next = path->nodes[*level];
2244 btrfs_tree_lock(next);
2245 btrfs_set_lock_blocking(next);
2246 clean_tree_block(trans, root, next);
2247 btrfs_wait_tree_block_writeback(next);
2248 btrfs_tree_unlock(next);
2251 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2252 ret = btrfs_free_and_pin_reserved_extent(root,
2253 path->nodes[*level]->start,
2254 path->nodes[*level]->len);
2258 free_extent_buffer(path->nodes[*level]);
2259 path->nodes[*level] = NULL;
2267 * drop the reference count on the tree rooted at 'snap'. This traverses
2268 * the tree freeing any blocks that have a ref count of zero after being
2271 static int walk_log_tree(struct btrfs_trans_handle *trans,
2272 struct btrfs_root *log, struct walk_control *wc)
2277 struct btrfs_path *path;
2280 path = btrfs_alloc_path();
2284 level = btrfs_header_level(log->node);
2286 path->nodes[level] = log->node;
2287 extent_buffer_get(log->node);
2288 path->slots[level] = 0;
2291 wret = walk_down_log_tree(trans, log, path, &level, wc);
2299 wret = walk_up_log_tree(trans, log, path, &level, wc);
2308 /* was the root node processed? if not, catch it here */
2309 if (path->nodes[orig_level]) {
2310 ret = wc->process_func(log, path->nodes[orig_level], wc,
2311 btrfs_header_generation(path->nodes[orig_level]));
2315 struct extent_buffer *next;
2317 next = path->nodes[orig_level];
2320 btrfs_tree_lock(next);
2321 btrfs_set_lock_blocking(next);
2322 clean_tree_block(trans, log, next);
2323 btrfs_wait_tree_block_writeback(next);
2324 btrfs_tree_unlock(next);
2327 WARN_ON(log->root_key.objectid !=
2328 BTRFS_TREE_LOG_OBJECTID);
2329 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2337 btrfs_free_path(path);
2342 * helper function to update the item for a given subvolumes log root
2343 * in the tree of log roots
2345 static int update_log_root(struct btrfs_trans_handle *trans,
2346 struct btrfs_root *log)
2350 if (log->log_transid == 1) {
2351 /* insert root item on the first sync */
2352 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2353 &log->root_key, &log->root_item);
2355 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2356 &log->root_key, &log->root_item);
2361 static int wait_log_commit(struct btrfs_trans_handle *trans,
2362 struct btrfs_root *root, unsigned long transid)
2365 int index = transid % 2;
2368 * we only allow two pending log transactions at a time,
2369 * so we know that if ours is more than 2 older than the
2370 * current transaction, we're done
2373 prepare_to_wait(&root->log_commit_wait[index],
2374 &wait, TASK_UNINTERRUPTIBLE);
2375 mutex_unlock(&root->log_mutex);
2377 if (root->fs_info->last_trans_log_full_commit !=
2378 trans->transid && root->log_transid < transid + 2 &&
2379 atomic_read(&root->log_commit[index]))
2382 finish_wait(&root->log_commit_wait[index], &wait);
2383 mutex_lock(&root->log_mutex);
2384 } while (root->fs_info->last_trans_log_full_commit !=
2385 trans->transid && root->log_transid < transid + 2 &&
2386 atomic_read(&root->log_commit[index]));
2390 static void wait_for_writer(struct btrfs_trans_handle *trans,
2391 struct btrfs_root *root)
2394 while (root->fs_info->last_trans_log_full_commit !=
2395 trans->transid && atomic_read(&root->log_writers)) {
2396 prepare_to_wait(&root->log_writer_wait,
2397 &wait, TASK_UNINTERRUPTIBLE);
2398 mutex_unlock(&root->log_mutex);
2399 if (root->fs_info->last_trans_log_full_commit !=
2400 trans->transid && atomic_read(&root->log_writers))
2402 mutex_lock(&root->log_mutex);
2403 finish_wait(&root->log_writer_wait, &wait);
2408 * btrfs_sync_log does sends a given tree log down to the disk and
2409 * updates the super blocks to record it. When this call is done,
2410 * you know that any inodes previously logged are safely on disk only
2413 * Any other return value means you need to call btrfs_commit_transaction.
2414 * Some of the edge cases for fsyncing directories that have had unlinks
2415 * or renames done in the past mean that sometimes the only safe
2416 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2417 * that has happened.
2419 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2420 struct btrfs_root *root)
2426 struct btrfs_root *log = root->log_root;
2427 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2428 unsigned long log_transid = 0;
2429 struct blk_plug plug;
2431 mutex_lock(&root->log_mutex);
2432 log_transid = root->log_transid;
2433 index1 = root->log_transid % 2;
2434 if (atomic_read(&root->log_commit[index1])) {
2435 wait_log_commit(trans, root, root->log_transid);
2436 mutex_unlock(&root->log_mutex);
2439 atomic_set(&root->log_commit[index1], 1);
2441 /* wait for previous tree log sync to complete */
2442 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2443 wait_log_commit(trans, root, root->log_transid - 1);
2445 int batch = atomic_read(&root->log_batch);
2446 /* when we're on an ssd, just kick the log commit out */
2447 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2448 mutex_unlock(&root->log_mutex);
2449 schedule_timeout_uninterruptible(1);
2450 mutex_lock(&root->log_mutex);
2452 wait_for_writer(trans, root);
2453 if (batch == atomic_read(&root->log_batch))
2457 /* bail out if we need to do a full commit */
2458 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2460 btrfs_free_logged_extents(log, log_transid);
2461 mutex_unlock(&root->log_mutex);
2465 if (log_transid % 2 == 0)
2466 mark = EXTENT_DIRTY;
2470 /* we start IO on all the marked extents here, but we don't actually
2471 * wait for them until later.
2473 blk_start_plug(&plug);
2474 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2476 blk_finish_plug(&plug);
2477 btrfs_abort_transaction(trans, root, ret);
2478 btrfs_free_logged_extents(log, log_transid);
2479 mutex_unlock(&root->log_mutex);
2483 btrfs_set_root_node(&log->root_item, log->node);
2485 root->log_transid++;
2486 log->log_transid = root->log_transid;
2487 root->log_start_pid = 0;
2490 * IO has been started, blocks of the log tree have WRITTEN flag set
2491 * in their headers. new modifications of the log will be written to
2492 * new positions. so it's safe to allow log writers to go in.
2494 mutex_unlock(&root->log_mutex);
2496 mutex_lock(&log_root_tree->log_mutex);
2497 atomic_inc(&log_root_tree->log_batch);
2498 atomic_inc(&log_root_tree->log_writers);
2499 mutex_unlock(&log_root_tree->log_mutex);
2501 ret = update_log_root(trans, log);
2503 mutex_lock(&log_root_tree->log_mutex);
2504 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2506 if (waitqueue_active(&log_root_tree->log_writer_wait))
2507 wake_up(&log_root_tree->log_writer_wait);
2511 blk_finish_plug(&plug);
2512 if (ret != -ENOSPC) {
2513 btrfs_abort_transaction(trans, root, ret);
2514 mutex_unlock(&log_root_tree->log_mutex);
2517 root->fs_info->last_trans_log_full_commit = trans->transid;
2518 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2519 btrfs_free_logged_extents(log, log_transid);
2520 mutex_unlock(&log_root_tree->log_mutex);
2525 index2 = log_root_tree->log_transid % 2;
2526 if (atomic_read(&log_root_tree->log_commit[index2])) {
2527 blk_finish_plug(&plug);
2528 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2529 wait_log_commit(trans, log_root_tree,
2530 log_root_tree->log_transid);
2531 btrfs_free_logged_extents(log, log_transid);
2532 mutex_unlock(&log_root_tree->log_mutex);
2536 atomic_set(&log_root_tree->log_commit[index2], 1);
2538 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2539 wait_log_commit(trans, log_root_tree,
2540 log_root_tree->log_transid - 1);
2543 wait_for_writer(trans, log_root_tree);
2546 * now that we've moved on to the tree of log tree roots,
2547 * check the full commit flag again
2549 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2550 blk_finish_plug(&plug);
2551 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2552 btrfs_free_logged_extents(log, log_transid);
2553 mutex_unlock(&log_root_tree->log_mutex);
2555 goto out_wake_log_root;
2558 ret = btrfs_write_marked_extents(log_root_tree,
2559 &log_root_tree->dirty_log_pages,
2560 EXTENT_DIRTY | EXTENT_NEW);
2561 blk_finish_plug(&plug);
2563 btrfs_abort_transaction(trans, root, ret);
2564 btrfs_free_logged_extents(log, log_transid);
2565 mutex_unlock(&log_root_tree->log_mutex);
2566 goto out_wake_log_root;
2568 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2569 btrfs_wait_marked_extents(log_root_tree,
2570 &log_root_tree->dirty_log_pages,
2571 EXTENT_NEW | EXTENT_DIRTY);
2572 btrfs_wait_logged_extents(log, log_transid);
2574 btrfs_set_super_log_root(root->fs_info->super_for_commit,
2575 log_root_tree->node->start);
2576 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2577 btrfs_header_level(log_root_tree->node));
2579 log_root_tree->log_transid++;
2582 mutex_unlock(&log_root_tree->log_mutex);
2585 * nobody else is going to jump in and write the the ctree
2586 * super here because the log_commit atomic below is protecting
2587 * us. We must be called with a transaction handle pinning
2588 * the running transaction open, so a full commit can't hop
2589 * in and cause problems either.
2591 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2593 btrfs_abort_transaction(trans, root, ret);
2594 goto out_wake_log_root;
2597 mutex_lock(&root->log_mutex);
2598 if (root->last_log_commit < log_transid)
2599 root->last_log_commit = log_transid;
2600 mutex_unlock(&root->log_mutex);
2603 atomic_set(&log_root_tree->log_commit[index2], 0);
2605 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2606 wake_up(&log_root_tree->log_commit_wait[index2]);
2608 atomic_set(&root->log_commit[index1], 0);
2610 if (waitqueue_active(&root->log_commit_wait[index1]))
2611 wake_up(&root->log_commit_wait[index1]);
2615 static void free_log_tree(struct btrfs_trans_handle *trans,
2616 struct btrfs_root *log)
2621 struct walk_control wc = {
2623 .process_func = process_one_buffer
2626 ret = walk_log_tree(trans, log, &wc);
2627 /* I don't think this can happen but just in case */
2629 btrfs_abort_transaction(trans, log, ret);
2632 ret = find_first_extent_bit(&log->dirty_log_pages,
2633 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2638 clear_extent_bits(&log->dirty_log_pages, start, end,
2639 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2643 * We may have short-circuited the log tree with the full commit logic
2644 * and left ordered extents on our list, so clear these out to keep us
2645 * from leaking inodes and memory.
2647 btrfs_free_logged_extents(log, 0);
2648 btrfs_free_logged_extents(log, 1);
2650 free_extent_buffer(log->node);
2655 * free all the extents used by the tree log. This should be called
2656 * at commit time of the full transaction
2658 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2660 if (root->log_root) {
2661 free_log_tree(trans, root->log_root);
2662 root->log_root = NULL;
2667 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2668 struct btrfs_fs_info *fs_info)
2670 if (fs_info->log_root_tree) {
2671 free_log_tree(trans, fs_info->log_root_tree);
2672 fs_info->log_root_tree = NULL;
2678 * If both a file and directory are logged, and unlinks or renames are
2679 * mixed in, we have a few interesting corners:
2681 * create file X in dir Y
2682 * link file X to X.link in dir Y
2684 * unlink file X but leave X.link
2687 * After a crash we would expect only X.link to exist. But file X
2688 * didn't get fsync'd again so the log has back refs for X and X.link.
2690 * We solve this by removing directory entries and inode backrefs from the
2691 * log when a file that was logged in the current transaction is
2692 * unlinked. Any later fsync will include the updated log entries, and
2693 * we'll be able to reconstruct the proper directory items from backrefs.
2695 * This optimizations allows us to avoid relogging the entire inode
2696 * or the entire directory.
2698 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2699 struct btrfs_root *root,
2700 const char *name, int name_len,
2701 struct inode *dir, u64 index)
2703 struct btrfs_root *log;
2704 struct btrfs_dir_item *di;
2705 struct btrfs_path *path;
2709 u64 dir_ino = btrfs_ino(dir);
2711 if (BTRFS_I(dir)->logged_trans < trans->transid)
2714 ret = join_running_log_trans(root);
2718 mutex_lock(&BTRFS_I(dir)->log_mutex);
2720 log = root->log_root;
2721 path = btrfs_alloc_path();
2727 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2728 name, name_len, -1);
2734 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2735 bytes_del += name_len;
2741 btrfs_release_path(path);
2742 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2743 index, name, name_len, -1);
2749 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2750 bytes_del += name_len;
2757 /* update the directory size in the log to reflect the names
2761 struct btrfs_key key;
2763 key.objectid = dir_ino;
2765 key.type = BTRFS_INODE_ITEM_KEY;
2766 btrfs_release_path(path);
2768 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2774 struct btrfs_inode_item *item;
2777 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2778 struct btrfs_inode_item);
2779 i_size = btrfs_inode_size(path->nodes[0], item);
2780 if (i_size > bytes_del)
2781 i_size -= bytes_del;
2784 btrfs_set_inode_size(path->nodes[0], item, i_size);
2785 btrfs_mark_buffer_dirty(path->nodes[0]);
2788 btrfs_release_path(path);
2791 btrfs_free_path(path);
2793 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2794 if (ret == -ENOSPC) {
2795 root->fs_info->last_trans_log_full_commit = trans->transid;
2798 btrfs_abort_transaction(trans, root, ret);
2800 btrfs_end_log_trans(root);
2805 /* see comments for btrfs_del_dir_entries_in_log */
2806 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2807 struct btrfs_root *root,
2808 const char *name, int name_len,
2809 struct inode *inode, u64 dirid)
2811 struct btrfs_root *log;
2815 if (BTRFS_I(inode)->logged_trans < trans->transid)
2818 ret = join_running_log_trans(root);
2821 log = root->log_root;
2822 mutex_lock(&BTRFS_I(inode)->log_mutex);
2824 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2826 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2827 if (ret == -ENOSPC) {
2828 root->fs_info->last_trans_log_full_commit = trans->transid;
2830 } else if (ret < 0 && ret != -ENOENT)
2831 btrfs_abort_transaction(trans, root, ret);
2832 btrfs_end_log_trans(root);
2838 * creates a range item in the log for 'dirid'. first_offset and
2839 * last_offset tell us which parts of the key space the log should
2840 * be considered authoritative for.
2842 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2843 struct btrfs_root *log,
2844 struct btrfs_path *path,
2845 int key_type, u64 dirid,
2846 u64 first_offset, u64 last_offset)
2849 struct btrfs_key key;
2850 struct btrfs_dir_log_item *item;
2852 key.objectid = dirid;
2853 key.offset = first_offset;
2854 if (key_type == BTRFS_DIR_ITEM_KEY)
2855 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2857 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2858 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2862 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2863 struct btrfs_dir_log_item);
2864 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2865 btrfs_mark_buffer_dirty(path->nodes[0]);
2866 btrfs_release_path(path);
2871 * log all the items included in the current transaction for a given
2872 * directory. This also creates the range items in the log tree required
2873 * to replay anything deleted before the fsync
2875 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2876 struct btrfs_root *root, struct inode *inode,
2877 struct btrfs_path *path,
2878 struct btrfs_path *dst_path, int key_type,
2879 u64 min_offset, u64 *last_offset_ret)
2881 struct btrfs_key min_key;
2882 struct btrfs_root *log = root->log_root;
2883 struct extent_buffer *src;
2888 u64 first_offset = min_offset;
2889 u64 last_offset = (u64)-1;
2890 u64 ino = btrfs_ino(inode);
2892 log = root->log_root;
2894 min_key.objectid = ino;
2895 min_key.type = key_type;
2896 min_key.offset = min_offset;
2898 path->keep_locks = 1;
2900 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
2903 * we didn't find anything from this transaction, see if there
2904 * is anything at all
2906 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2907 min_key.objectid = ino;
2908 min_key.type = key_type;
2909 min_key.offset = (u64)-1;
2910 btrfs_release_path(path);
2911 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2913 btrfs_release_path(path);
2916 ret = btrfs_previous_item(root, path, ino, key_type);
2918 /* if ret == 0 there are items for this type,
2919 * create a range to tell us the last key of this type.
2920 * otherwise, there are no items in this directory after
2921 * *min_offset, and we create a range to indicate that.
2924 struct btrfs_key tmp;
2925 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2927 if (key_type == tmp.type)
2928 first_offset = max(min_offset, tmp.offset) + 1;
2933 /* go backward to find any previous key */
2934 ret = btrfs_previous_item(root, path, ino, key_type);
2936 struct btrfs_key tmp;
2937 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2938 if (key_type == tmp.type) {
2939 first_offset = tmp.offset;
2940 ret = overwrite_item(trans, log, dst_path,
2941 path->nodes[0], path->slots[0],
2949 btrfs_release_path(path);
2951 /* find the first key from this transaction again */
2952 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2953 if (WARN_ON(ret != 0))
2957 * we have a block from this transaction, log every item in it
2958 * from our directory
2961 struct btrfs_key tmp;
2962 src = path->nodes[0];
2963 nritems = btrfs_header_nritems(src);
2964 for (i = path->slots[0]; i < nritems; i++) {
2965 btrfs_item_key_to_cpu(src, &min_key, i);
2967 if (min_key.objectid != ino || min_key.type != key_type)
2969 ret = overwrite_item(trans, log, dst_path, src, i,
2976 path->slots[0] = nritems;
2979 * look ahead to the next item and see if it is also
2980 * from this directory and from this transaction
2982 ret = btrfs_next_leaf(root, path);
2984 last_offset = (u64)-1;
2987 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2988 if (tmp.objectid != ino || tmp.type != key_type) {
2989 last_offset = (u64)-1;
2992 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2993 ret = overwrite_item(trans, log, dst_path,
2994 path->nodes[0], path->slots[0],
2999 last_offset = tmp.offset;
3004 btrfs_release_path(path);
3005 btrfs_release_path(dst_path);
3008 *last_offset_ret = last_offset;
3010 * insert the log range keys to indicate where the log
3013 ret = insert_dir_log_key(trans, log, path, key_type,
3014 ino, first_offset, last_offset);
3022 * logging directories is very similar to logging inodes, We find all the items
3023 * from the current transaction and write them to the log.
3025 * The recovery code scans the directory in the subvolume, and if it finds a
3026 * key in the range logged that is not present in the log tree, then it means
3027 * that dir entry was unlinked during the transaction.
3029 * In order for that scan to work, we must include one key smaller than
3030 * the smallest logged by this transaction and one key larger than the largest
3031 * key logged by this transaction.
3033 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3034 struct btrfs_root *root, struct inode *inode,
3035 struct btrfs_path *path,
3036 struct btrfs_path *dst_path)
3041 int key_type = BTRFS_DIR_ITEM_KEY;
3047 ret = log_dir_items(trans, root, inode, path,
3048 dst_path, key_type, min_key,
3052 if (max_key == (u64)-1)
3054 min_key = max_key + 1;
3057 if (key_type == BTRFS_DIR_ITEM_KEY) {
3058 key_type = BTRFS_DIR_INDEX_KEY;
3065 * a helper function to drop items from the log before we relog an
3066 * inode. max_key_type indicates the highest item type to remove.
3067 * This cannot be run for file data extents because it does not
3068 * free the extents they point to.
3070 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3071 struct btrfs_root *log,
3072 struct btrfs_path *path,
3073 u64 objectid, int max_key_type)
3076 struct btrfs_key key;
3077 struct btrfs_key found_key;
3080 key.objectid = objectid;
3081 key.type = max_key_type;
3082 key.offset = (u64)-1;
3085 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3086 BUG_ON(ret == 0); /* Logic error */
3090 if (path->slots[0] == 0)
3094 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3097 if (found_key.objectid != objectid)
3100 found_key.offset = 0;
3102 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3105 ret = btrfs_del_items(trans, log, path, start_slot,
3106 path->slots[0] - start_slot + 1);
3108 * If start slot isn't 0 then we don't need to re-search, we've
3109 * found the last guy with the objectid in this tree.
3111 if (ret || start_slot != 0)
3113 btrfs_release_path(path);
3115 btrfs_release_path(path);
3121 static void fill_inode_item(struct btrfs_trans_handle *trans,
3122 struct extent_buffer *leaf,
3123 struct btrfs_inode_item *item,
3124 struct inode *inode, int log_inode_only)
3126 struct btrfs_map_token token;
3128 btrfs_init_map_token(&token);
3130 if (log_inode_only) {
3131 /* set the generation to zero so the recover code
3132 * can tell the difference between an logging
3133 * just to say 'this inode exists' and a logging
3134 * to say 'update this inode with these values'
3136 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3137 btrfs_set_token_inode_size(leaf, item, 0, &token);
3139 btrfs_set_token_inode_generation(leaf, item,
3140 BTRFS_I(inode)->generation,
3142 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3145 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3146 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3147 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3148 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3150 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3151 inode->i_atime.tv_sec, &token);
3152 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3153 inode->i_atime.tv_nsec, &token);
3155 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3156 inode->i_mtime.tv_sec, &token);
3157 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3158 inode->i_mtime.tv_nsec, &token);
3160 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3161 inode->i_ctime.tv_sec, &token);
3162 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3163 inode->i_ctime.tv_nsec, &token);
3165 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3168 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3169 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3170 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3171 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3172 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3175 static int log_inode_item(struct btrfs_trans_handle *trans,
3176 struct btrfs_root *log, struct btrfs_path *path,
3177 struct inode *inode)
3179 struct btrfs_inode_item *inode_item;
3182 ret = btrfs_insert_empty_item(trans, log, path,
3183 &BTRFS_I(inode)->location,
3184 sizeof(*inode_item));
3185 if (ret && ret != -EEXIST)
3187 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3188 struct btrfs_inode_item);
3189 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3190 btrfs_release_path(path);
3194 static noinline int copy_items(struct btrfs_trans_handle *trans,
3195 struct inode *inode,
3196 struct btrfs_path *dst_path,
3197 struct extent_buffer *src,
3198 int start_slot, int nr, int inode_only)
3200 unsigned long src_offset;
3201 unsigned long dst_offset;
3202 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3203 struct btrfs_file_extent_item *extent;
3204 struct btrfs_inode_item *inode_item;
3206 struct btrfs_key *ins_keys;
3210 struct list_head ordered_sums;
3211 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3213 INIT_LIST_HEAD(&ordered_sums);
3215 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3216 nr * sizeof(u32), GFP_NOFS);
3220 ins_sizes = (u32 *)ins_data;
3221 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3223 for (i = 0; i < nr; i++) {
3224 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3225 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3227 ret = btrfs_insert_empty_items(trans, log, dst_path,
3228 ins_keys, ins_sizes, nr);
3234 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3235 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3236 dst_path->slots[0]);
3238 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3240 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3241 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3243 struct btrfs_inode_item);
3244 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3245 inode, inode_only == LOG_INODE_EXISTS);
3247 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3248 src_offset, ins_sizes[i]);
3251 /* take a reference on file data extents so that truncates
3252 * or deletes of this inode don't have to relog the inode
3255 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3258 extent = btrfs_item_ptr(src, start_slot + i,
3259 struct btrfs_file_extent_item);
3261 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3264 found_type = btrfs_file_extent_type(src, extent);
3265 if (found_type == BTRFS_FILE_EXTENT_REG) {
3267 ds = btrfs_file_extent_disk_bytenr(src,
3269 /* ds == 0 is a hole */
3273 dl = btrfs_file_extent_disk_num_bytes(src,
3275 cs = btrfs_file_extent_offset(src, extent);
3276 cl = btrfs_file_extent_num_bytes(src,
3278 if (btrfs_file_extent_compression(src,
3284 ret = btrfs_lookup_csums_range(
3285 log->fs_info->csum_root,
3286 ds + cs, ds + cs + cl - 1,
3289 btrfs_release_path(dst_path);
3297 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3298 btrfs_release_path(dst_path);
3302 * we have to do this after the loop above to avoid changing the
3303 * log tree while trying to change the log tree.
3306 while (!list_empty(&ordered_sums)) {
3307 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3308 struct btrfs_ordered_sum,
3311 ret = btrfs_csum_file_blocks(trans, log, sums);
3312 list_del(&sums->list);
3318 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3320 struct extent_map *em1, *em2;
3322 em1 = list_entry(a, struct extent_map, list);
3323 em2 = list_entry(b, struct extent_map, list);
3325 if (em1->start < em2->start)
3327 else if (em1->start > em2->start)
3332 static int log_one_extent(struct btrfs_trans_handle *trans,
3333 struct inode *inode, struct btrfs_root *root,
3334 struct extent_map *em, struct btrfs_path *path)
3336 struct btrfs_root *log = root->log_root;
3337 struct btrfs_file_extent_item *fi;
3338 struct extent_buffer *leaf;
3339 struct btrfs_ordered_extent *ordered;
3340 struct list_head ordered_sums;
3341 struct btrfs_map_token token;
3342 struct btrfs_key key;
3343 u64 mod_start = em->mod_start;
3344 u64 mod_len = em->mod_len;
3347 u64 extent_offset = em->start - em->orig_start;
3350 int index = log->log_transid % 2;
3351 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3353 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3354 em->start + em->len, NULL, 0);
3358 INIT_LIST_HEAD(&ordered_sums);
3359 btrfs_init_map_token(&token);
3360 key.objectid = btrfs_ino(inode);
3361 key.type = BTRFS_EXTENT_DATA_KEY;
3362 key.offset = em->start;
3364 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*fi));
3367 leaf = path->nodes[0];
3368 fi = btrfs_item_ptr(leaf, path->slots[0],
3369 struct btrfs_file_extent_item);
3371 btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3373 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3375 btrfs_set_token_file_extent_type(leaf, fi,
3376 BTRFS_FILE_EXTENT_PREALLOC,
3379 btrfs_set_token_file_extent_type(leaf, fi,
3380 BTRFS_FILE_EXTENT_REG,
3382 if (em->block_start == EXTENT_MAP_HOLE)
3386 block_len = max(em->block_len, em->orig_block_len);
3387 if (em->compress_type != BTRFS_COMPRESS_NONE) {
3388 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3391 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3393 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3394 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3396 extent_offset, &token);
3397 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3400 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3401 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3405 btrfs_set_token_file_extent_offset(leaf, fi,
3406 em->start - em->orig_start,
3408 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3409 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3410 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3412 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3413 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3414 btrfs_mark_buffer_dirty(leaf);
3416 btrfs_release_path(path);
3425 * First check and see if our csums are on our outstanding ordered
3429 spin_lock_irq(&log->log_extents_lock[index]);
3430 list_for_each_entry(ordered, &log->logged_list[index], log_list) {
3431 struct btrfs_ordered_sum *sum;
3436 if (ordered->inode != inode)
3439 if (ordered->file_offset + ordered->len <= mod_start ||
3440 mod_start + mod_len <= ordered->file_offset)
3444 * We are going to copy all the csums on this ordered extent, so
3445 * go ahead and adjust mod_start and mod_len in case this
3446 * ordered extent has already been logged.
3448 if (ordered->file_offset > mod_start) {
3449 if (ordered->file_offset + ordered->len >=
3450 mod_start + mod_len)
3451 mod_len = ordered->file_offset - mod_start;
3453 * If we have this case
3455 * |--------- logged extent ---------|
3456 * |----- ordered extent ----|
3458 * Just don't mess with mod_start and mod_len, we'll
3459 * just end up logging more csums than we need and it
3463 if (ordered->file_offset + ordered->len <
3464 mod_start + mod_len) {
3465 mod_len = (mod_start + mod_len) -
3466 (ordered->file_offset + ordered->len);
3467 mod_start = ordered->file_offset +
3475 * To keep us from looping for the above case of an ordered
3476 * extent that falls inside of the logged extent.
3478 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3481 atomic_inc(&ordered->refs);
3482 spin_unlock_irq(&log->log_extents_lock[index]);
3484 * we've dropped the lock, we must either break or
3485 * start over after this.
3488 wait_event(ordered->wait, ordered->csum_bytes_left == 0);
3490 list_for_each_entry(sum, &ordered->list, list) {
3491 ret = btrfs_csum_file_blocks(trans, log, sum);
3493 btrfs_put_ordered_extent(ordered);
3497 btrfs_put_ordered_extent(ordered);
3501 spin_unlock_irq(&log->log_extents_lock[index]);
3504 if (!mod_len || ret)
3507 if (em->compress_type) {
3509 csum_len = block_len;
3511 csum_offset = mod_start - em->start;
3515 /* block start is already adjusted for the file extent offset. */
3516 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3517 em->block_start + csum_offset,
3518 em->block_start + csum_offset +
3519 csum_len - 1, &ordered_sums, 0);
3523 while (!list_empty(&ordered_sums)) {
3524 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3525 struct btrfs_ordered_sum,
3528 ret = btrfs_csum_file_blocks(trans, log, sums);
3529 list_del(&sums->list);
3536 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3537 struct btrfs_root *root,
3538 struct inode *inode,
3539 struct btrfs_path *path)
3541 struct extent_map *em, *n;
3542 struct list_head extents;
3543 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3548 INIT_LIST_HEAD(&extents);
3550 write_lock(&tree->lock);
3551 test_gen = root->fs_info->last_trans_committed;
3553 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3554 list_del_init(&em->list);
3557 * Just an arbitrary number, this can be really CPU intensive
3558 * once we start getting a lot of extents, and really once we
3559 * have a bunch of extents we just want to commit since it will
3562 if (++num > 32768) {
3563 list_del_init(&tree->modified_extents);
3568 if (em->generation <= test_gen)
3570 /* Need a ref to keep it from getting evicted from cache */
3571 atomic_inc(&em->refs);
3572 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3573 list_add_tail(&em->list, &extents);
3577 list_sort(NULL, &extents, extent_cmp);
3580 while (!list_empty(&extents)) {
3581 em = list_entry(extents.next, struct extent_map, list);
3583 list_del_init(&em->list);
3586 * If we had an error we just need to delete everybody from our
3590 clear_em_logging(tree, em);
3591 free_extent_map(em);
3595 write_unlock(&tree->lock);
3597 ret = log_one_extent(trans, inode, root, em, path);
3598 write_lock(&tree->lock);
3599 clear_em_logging(tree, em);
3600 free_extent_map(em);
3602 WARN_ON(!list_empty(&extents));
3603 write_unlock(&tree->lock);
3605 btrfs_release_path(path);
3609 /* log a single inode in the tree log.
3610 * At least one parent directory for this inode must exist in the tree
3611 * or be logged already.
3613 * Any items from this inode changed by the current transaction are copied
3614 * to the log tree. An extra reference is taken on any extents in this
3615 * file, allowing us to avoid a whole pile of corner cases around logging
3616 * blocks that have been removed from the tree.
3618 * See LOG_INODE_ALL and related defines for a description of what inode_only
3621 * This handles both files and directories.
3623 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3624 struct btrfs_root *root, struct inode *inode,
3627 struct btrfs_path *path;
3628 struct btrfs_path *dst_path;
3629 struct btrfs_key min_key;
3630 struct btrfs_key max_key;
3631 struct btrfs_root *log = root->log_root;
3632 struct extent_buffer *src = NULL;
3636 int ins_start_slot = 0;
3638 bool fast_search = false;
3639 u64 ino = btrfs_ino(inode);
3641 path = btrfs_alloc_path();
3644 dst_path = btrfs_alloc_path();
3646 btrfs_free_path(path);
3650 min_key.objectid = ino;
3651 min_key.type = BTRFS_INODE_ITEM_KEY;
3654 max_key.objectid = ino;
3657 /* today the code can only do partial logging of directories */
3658 if (S_ISDIR(inode->i_mode) ||
3659 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3660 &BTRFS_I(inode)->runtime_flags) &&
3661 inode_only == LOG_INODE_EXISTS))
3662 max_key.type = BTRFS_XATTR_ITEM_KEY;
3664 max_key.type = (u8)-1;
3665 max_key.offset = (u64)-1;
3667 /* Only run delayed items if we are a dir or a new file */
3668 if (S_ISDIR(inode->i_mode) ||
3669 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3670 ret = btrfs_commit_inode_delayed_items(trans, inode);
3672 btrfs_free_path(path);
3673 btrfs_free_path(dst_path);
3678 mutex_lock(&BTRFS_I(inode)->log_mutex);
3680 btrfs_get_logged_extents(log, inode);
3683 * a brute force approach to making sure we get the most uptodate
3684 * copies of everything.
3686 if (S_ISDIR(inode->i_mode)) {
3687 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3689 if (inode_only == LOG_INODE_EXISTS)
3690 max_key_type = BTRFS_XATTR_ITEM_KEY;
3691 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3693 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3694 &BTRFS_I(inode)->runtime_flags)) {
3695 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3696 &BTRFS_I(inode)->runtime_flags);
3697 ret = btrfs_truncate_inode_items(trans, log,
3699 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3700 &BTRFS_I(inode)->runtime_flags) ||
3701 inode_only == LOG_INODE_EXISTS) {
3702 if (inode_only == LOG_INODE_ALL)
3704 max_key.type = BTRFS_XATTR_ITEM_KEY;
3705 ret = drop_objectid_items(trans, log, path, ino,
3708 if (inode_only == LOG_INODE_ALL)
3710 ret = log_inode_item(trans, log, dst_path, inode);
3723 path->keep_locks = 1;
3727 ret = btrfs_search_forward(root, &min_key,
3728 path, trans->transid);
3732 /* note, ins_nr might be > 0 here, cleanup outside the loop */
3733 if (min_key.objectid != ino)
3735 if (min_key.type > max_key.type)
3738 src = path->nodes[0];
3739 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3742 } else if (!ins_nr) {
3743 ins_start_slot = path->slots[0];
3748 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3749 ins_nr, inode_only);
3755 ins_start_slot = path->slots[0];
3758 nritems = btrfs_header_nritems(path->nodes[0]);
3760 if (path->slots[0] < nritems) {
3761 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3766 ret = copy_items(trans, inode, dst_path, src,
3768 ins_nr, inode_only);
3775 btrfs_release_path(path);
3777 if (min_key.offset < (u64)-1) {
3779 } else if (min_key.type < max_key.type) {
3787 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3788 ins_nr, inode_only);
3797 btrfs_release_path(path);
3798 btrfs_release_path(dst_path);
3800 ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
3806 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3807 struct extent_map *em, *n;
3809 write_lock(&tree->lock);
3810 list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3811 list_del_init(&em->list);
3812 write_unlock(&tree->lock);
3815 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
3816 ret = log_directory_changes(trans, root, inode, path, dst_path);
3822 BTRFS_I(inode)->logged_trans = trans->transid;
3823 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
3826 btrfs_free_logged_extents(log, log->log_transid);
3827 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3829 btrfs_free_path(path);
3830 btrfs_free_path(dst_path);
3835 * follow the dentry parent pointers up the chain and see if any
3836 * of the directories in it require a full commit before they can
3837 * be logged. Returns zero if nothing special needs to be done or 1 if
3838 * a full commit is required.
3840 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
3841 struct inode *inode,
3842 struct dentry *parent,
3843 struct super_block *sb,
3847 struct btrfs_root *root;
3848 struct dentry *old_parent = NULL;
3849 struct inode *orig_inode = inode;
3852 * for regular files, if its inode is already on disk, we don't
3853 * have to worry about the parents at all. This is because
3854 * we can use the last_unlink_trans field to record renames
3855 * and other fun in this file.
3857 if (S_ISREG(inode->i_mode) &&
3858 BTRFS_I(inode)->generation <= last_committed &&
3859 BTRFS_I(inode)->last_unlink_trans <= last_committed)
3862 if (!S_ISDIR(inode->i_mode)) {
3863 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3865 inode = parent->d_inode;
3870 * If we are logging a directory then we start with our inode,
3871 * not our parents inode, so we need to skipp setting the
3872 * logged_trans so that further down in the log code we don't
3873 * think this inode has already been logged.
3875 if (inode != orig_inode)
3876 BTRFS_I(inode)->logged_trans = trans->transid;
3879 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3880 root = BTRFS_I(inode)->root;
3883 * make sure any commits to the log are forced
3884 * to be full commits
3886 root->fs_info->last_trans_log_full_commit =
3892 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3895 if (IS_ROOT(parent))
3898 parent = dget_parent(parent);
3900 old_parent = parent;
3901 inode = parent->d_inode;
3910 * helper function around btrfs_log_inode to make sure newly created
3911 * parent directories also end up in the log. A minimal inode and backref
3912 * only logging is done of any parent directories that are older than
3913 * the last committed transaction
3915 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3916 struct btrfs_root *root, struct inode *inode,
3917 struct dentry *parent, int exists_only)
3919 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3920 struct super_block *sb;
3921 struct dentry *old_parent = NULL;
3923 u64 last_committed = root->fs_info->last_trans_committed;
3927 if (btrfs_test_opt(root, NOTREELOG)) {
3932 if (root->fs_info->last_trans_log_full_commit >
3933 root->fs_info->last_trans_committed) {
3938 if (root != BTRFS_I(inode)->root ||
3939 btrfs_root_refs(&root->root_item) == 0) {
3944 ret = check_parent_dirs_for_sync(trans, inode, parent,
3945 sb, last_committed);
3949 if (btrfs_inode_in_log(inode, trans->transid)) {
3950 ret = BTRFS_NO_LOG_SYNC;
3954 ret = start_log_trans(trans, root);
3958 ret = btrfs_log_inode(trans, root, inode, inode_only);
3963 * for regular files, if its inode is already on disk, we don't
3964 * have to worry about the parents at all. This is because
3965 * we can use the last_unlink_trans field to record renames
3966 * and other fun in this file.
3968 if (S_ISREG(inode->i_mode) &&
3969 BTRFS_I(inode)->generation <= last_committed &&
3970 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3975 inode_only = LOG_INODE_EXISTS;
3977 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3980 inode = parent->d_inode;
3981 if (root != BTRFS_I(inode)->root)
3984 if (BTRFS_I(inode)->generation >
3985 root->fs_info->last_trans_committed) {
3986 ret = btrfs_log_inode(trans, root, inode, inode_only);
3990 if (IS_ROOT(parent))
3993 parent = dget_parent(parent);
3995 old_parent = parent;
4001 root->fs_info->last_trans_log_full_commit = trans->transid;
4004 btrfs_end_log_trans(root);
4010 * it is not safe to log dentry if the chunk root has added new
4011 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
4012 * If this returns 1, you must commit the transaction to safely get your
4015 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4016 struct btrfs_root *root, struct dentry *dentry)
4018 struct dentry *parent = dget_parent(dentry);
4021 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
4028 * should be called during mount to recover any replay any log trees
4031 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4034 struct btrfs_path *path;
4035 struct btrfs_trans_handle *trans;
4036 struct btrfs_key key;
4037 struct btrfs_key found_key;
4038 struct btrfs_key tmp_key;
4039 struct btrfs_root *log;
4040 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4041 struct walk_control wc = {
4042 .process_func = process_one_buffer,
4046 path = btrfs_alloc_path();
4050 fs_info->log_root_recovering = 1;
4052 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4053 if (IS_ERR(trans)) {
4054 ret = PTR_ERR(trans);
4061 ret = walk_log_tree(trans, log_root_tree, &wc);
4063 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4064 "recovering log root tree.");
4069 key.objectid = BTRFS_TREE_LOG_OBJECTID;
4070 key.offset = (u64)-1;
4071 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4074 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4077 btrfs_error(fs_info, ret,
4078 "Couldn't find tree log root.");
4082 if (path->slots[0] == 0)
4086 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4088 btrfs_release_path(path);
4089 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4092 log = btrfs_read_fs_root(log_root_tree, &found_key);
4095 btrfs_error(fs_info, ret,
4096 "Couldn't read tree log root.");
4100 tmp_key.objectid = found_key.offset;
4101 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4102 tmp_key.offset = (u64)-1;
4104 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4105 if (IS_ERR(wc.replay_dest)) {
4106 ret = PTR_ERR(wc.replay_dest);
4107 free_extent_buffer(log->node);
4108 free_extent_buffer(log->commit_root);
4110 btrfs_error(fs_info, ret, "Couldn't read target root "
4111 "for tree log recovery.");
4115 wc.replay_dest->log_root = log;
4116 btrfs_record_root_in_trans(trans, wc.replay_dest);
4117 ret = walk_log_tree(trans, log, &wc);
4119 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4120 ret = fixup_inode_link_counts(trans, wc.replay_dest,
4124 key.offset = found_key.offset - 1;
4125 wc.replay_dest->log_root = NULL;
4126 free_extent_buffer(log->node);
4127 free_extent_buffer(log->commit_root);
4133 if (found_key.offset == 0)
4136 btrfs_release_path(path);
4138 /* step one is to pin it all, step two is to replay just inodes */
4141 wc.process_func = replay_one_buffer;
4142 wc.stage = LOG_WALK_REPLAY_INODES;
4145 /* step three is to replay everything */
4146 if (wc.stage < LOG_WALK_REPLAY_ALL) {
4151 btrfs_free_path(path);
4153 /* step 4: commit the transaction, which also unpins the blocks */
4154 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4158 free_extent_buffer(log_root_tree->node);
4159 log_root_tree->log_root = NULL;
4160 fs_info->log_root_recovering = 0;
4161 kfree(log_root_tree);
4166 btrfs_end_transaction(wc.trans, fs_info->tree_root);
4167 btrfs_free_path(path);
4172 * there are some corner cases where we want to force a full
4173 * commit instead of allowing a directory to be logged.
4175 * They revolve around files there were unlinked from the directory, and
4176 * this function updates the parent directory so that a full commit is
4177 * properly done if it is fsync'd later after the unlinks are done.
4179 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4180 struct inode *dir, struct inode *inode,
4184 * when we're logging a file, if it hasn't been renamed
4185 * or unlinked, and its inode is fully committed on disk,
4186 * we don't have to worry about walking up the directory chain
4187 * to log its parents.
4189 * So, we use the last_unlink_trans field to put this transid
4190 * into the file. When the file is logged we check it and
4191 * don't log the parents if the file is fully on disk.
4193 if (S_ISREG(inode->i_mode))
4194 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4197 * if this directory was already logged any new
4198 * names for this file/dir will get recorded
4201 if (BTRFS_I(dir)->logged_trans == trans->transid)
4205 * if the inode we're about to unlink was logged,
4206 * the log will be properly updated for any new names
4208 if (BTRFS_I(inode)->logged_trans == trans->transid)
4212 * when renaming files across directories, if the directory
4213 * there we're unlinking from gets fsync'd later on, there's
4214 * no way to find the destination directory later and fsync it
4215 * properly. So, we have to be conservative and force commits
4216 * so the new name gets discovered.
4221 /* we can safely do the unlink without any special recording */
4225 BTRFS_I(dir)->last_unlink_trans = trans->transid;
4229 * Call this after adding a new name for a file and it will properly
4230 * update the log to reflect the new name.
4232 * It will return zero if all goes well, and it will return 1 if a
4233 * full transaction commit is required.
4235 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4236 struct inode *inode, struct inode *old_dir,
4237 struct dentry *parent)
4239 struct btrfs_root * root = BTRFS_I(inode)->root;
4242 * this will force the logging code to walk the dentry chain
4245 if (S_ISREG(inode->i_mode))
4246 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4249 * if this inode hasn't been logged and directory we're renaming it
4250 * from hasn't been logged, we don't need to log it
4252 if (BTRFS_I(inode)->logged_trans <=
4253 root->fs_info->last_trans_committed &&
4254 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4255 root->fs_info->last_trans_committed))
4258 return btrfs_log_inode_parent(trans, root, inode, parent, 1);