1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
16 #include "print-tree.h"
18 #include "compression.h"
20 #include "block-group.h"
21 #include "space-info.h"
23 #include "inode-item.h"
25 #define MAX_CONFLICT_INODES 10
27 /* magic values for the inode_only field in btrfs_log_inode:
29 * LOG_INODE_ALL means to log everything
30 * LOG_INODE_EXISTS means to log just enough to recreate the inode
39 * directory trouble cases
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
48 * rename foo/some_dir foo2/some_dir
50 * fsync foo/some_dir/some_file
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
92 LOG_WALK_REPLAY_INODES,
93 LOG_WALK_REPLAY_DIR_INDEX,
97 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
98 struct btrfs_inode *inode,
100 struct btrfs_log_ctx *ctx);
101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 struct btrfs_root *root,
103 struct btrfs_path *path, u64 objectid);
104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 struct btrfs_root *root,
106 struct btrfs_root *log,
107 struct btrfs_path *path,
108 u64 dirid, int del_all);
109 static void wait_log_commit(struct btrfs_root *root, int transid);
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 struct btrfs_root *root,
141 struct btrfs_log_ctx *ctx)
143 struct btrfs_fs_info *fs_info = root->fs_info;
144 struct btrfs_root *tree_root = fs_info->tree_root;
145 const bool zoned = btrfs_is_zoned(fs_info);
147 bool created = false;
150 * First check if the log root tree was already created. If not, create
151 * it before locking the root's log_mutex, just to keep lockdep happy.
153 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
154 mutex_lock(&tree_root->log_mutex);
155 if (!fs_info->log_root_tree) {
156 ret = btrfs_init_log_root_tree(trans, fs_info);
158 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
162 mutex_unlock(&tree_root->log_mutex);
167 mutex_lock(&root->log_mutex);
170 if (root->log_root) {
171 int index = (root->log_transid + 1) % 2;
173 if (btrfs_need_log_full_commit(trans)) {
174 ret = BTRFS_LOG_FORCE_COMMIT;
178 if (zoned && atomic_read(&root->log_commit[index])) {
179 wait_log_commit(root, root->log_transid - 1);
183 if (!root->log_start_pid) {
184 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
185 root->log_start_pid = current->pid;
186 } else if (root->log_start_pid != current->pid) {
187 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
191 * This means fs_info->log_root_tree was already created
192 * for some other FS trees. Do the full commit not to mix
193 * nodes from multiple log transactions to do sequential
196 if (zoned && !created) {
197 ret = BTRFS_LOG_FORCE_COMMIT;
201 ret = btrfs_add_log_tree(trans, root);
205 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
206 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
207 root->log_start_pid = current->pid;
210 atomic_inc(&root->log_writers);
211 if (!ctx->logging_new_name) {
212 int index = root->log_transid % 2;
213 list_add_tail(&ctx->list, &root->log_ctxs[index]);
214 ctx->log_transid = root->log_transid;
218 mutex_unlock(&root->log_mutex);
223 * returns 0 if there was a log transaction running and we were able
224 * to join, or returns -ENOENT if there were not transactions
227 static int join_running_log_trans(struct btrfs_root *root)
229 const bool zoned = btrfs_is_zoned(root->fs_info);
232 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
235 mutex_lock(&root->log_mutex);
237 if (root->log_root) {
238 int index = (root->log_transid + 1) % 2;
241 if (zoned && atomic_read(&root->log_commit[index])) {
242 wait_log_commit(root, root->log_transid - 1);
245 atomic_inc(&root->log_writers);
247 mutex_unlock(&root->log_mutex);
252 * This either makes the current running log transaction wait
253 * until you call btrfs_end_log_trans() or it makes any future
254 * log transactions wait until you call btrfs_end_log_trans()
256 void btrfs_pin_log_trans(struct btrfs_root *root)
258 atomic_inc(&root->log_writers);
262 * indicate we're done making changes to the log tree
263 * and wake up anyone waiting to do a sync
265 void btrfs_end_log_trans(struct btrfs_root *root)
267 if (atomic_dec_and_test(&root->log_writers)) {
268 /* atomic_dec_and_test implies a barrier */
269 cond_wake_up_nomb(&root->log_writer_wait);
273 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
275 filemap_fdatawait_range(buf->pages[0]->mapping,
276 buf->start, buf->start + buf->len - 1);
280 * the walk control struct is used to pass state down the chain when
281 * processing the log tree. The stage field tells us which part
282 * of the log tree processing we are currently doing. The others
283 * are state fields used for that specific part
285 struct walk_control {
286 /* should we free the extent on disk when done? This is used
287 * at transaction commit time while freeing a log tree
291 /* pin only walk, we record which extents on disk belong to the
296 /* what stage of the replay code we're currently in */
300 * Ignore any items from the inode currently being processed. Needs
301 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
302 * the LOG_WALK_REPLAY_INODES stage.
304 bool ignore_cur_inode;
306 /* the root we are currently replaying */
307 struct btrfs_root *replay_dest;
309 /* the trans handle for the current replay */
310 struct btrfs_trans_handle *trans;
312 /* the function that gets used to process blocks we find in the
313 * tree. Note the extent_buffer might not be up to date when it is
314 * passed in, and it must be checked or read if you need the data
317 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
318 struct walk_control *wc, u64 gen, int level);
322 * process_func used to pin down extents, write them or wait on them
324 static int process_one_buffer(struct btrfs_root *log,
325 struct extent_buffer *eb,
326 struct walk_control *wc, u64 gen, int level)
328 struct btrfs_fs_info *fs_info = log->fs_info;
332 * If this fs is mixed then we need to be able to process the leaves to
333 * pin down any logged extents, so we have to read the block.
335 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
336 ret = btrfs_read_extent_buffer(eb, gen, level, NULL);
342 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
347 if (btrfs_buffer_uptodate(eb, gen, 0) &&
348 btrfs_header_level(eb) == 0)
349 ret = btrfs_exclude_logged_extents(eb);
354 static int do_overwrite_item(struct btrfs_trans_handle *trans,
355 struct btrfs_root *root,
356 struct btrfs_path *path,
357 struct extent_buffer *eb, int slot,
358 struct btrfs_key *key)
362 u64 saved_i_size = 0;
363 int save_old_i_size = 0;
364 unsigned long src_ptr;
365 unsigned long dst_ptr;
366 int overwrite_root = 0;
367 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
369 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
372 item_size = btrfs_item_size(eb, slot);
373 src_ptr = btrfs_item_ptr_offset(eb, slot);
375 /* Our caller must have done a search for the key for us. */
376 ASSERT(path->nodes[0] != NULL);
379 * And the slot must point to the exact key or the slot where the key
380 * should be at (the first item with a key greater than 'key')
382 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
383 struct btrfs_key found_key;
385 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
386 ret = btrfs_comp_cpu_keys(&found_key, key);
395 u32 dst_size = btrfs_item_size(path->nodes[0],
397 if (dst_size != item_size)
400 if (item_size == 0) {
401 btrfs_release_path(path);
404 dst_copy = kmalloc(item_size, GFP_NOFS);
405 src_copy = kmalloc(item_size, GFP_NOFS);
406 if (!dst_copy || !src_copy) {
407 btrfs_release_path(path);
413 read_extent_buffer(eb, src_copy, src_ptr, item_size);
415 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
416 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
418 ret = memcmp(dst_copy, src_copy, item_size);
423 * they have the same contents, just return, this saves
424 * us from cowing blocks in the destination tree and doing
425 * extra writes that may not have been done by a previous
429 btrfs_release_path(path);
434 * We need to load the old nbytes into the inode so when we
435 * replay the extents we've logged we get the right nbytes.
438 struct btrfs_inode_item *item;
442 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
443 struct btrfs_inode_item);
444 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
445 item = btrfs_item_ptr(eb, slot,
446 struct btrfs_inode_item);
447 btrfs_set_inode_nbytes(eb, item, nbytes);
450 * If this is a directory we need to reset the i_size to
451 * 0 so that we can set it up properly when replaying
452 * the rest of the items in this log.
454 mode = btrfs_inode_mode(eb, item);
456 btrfs_set_inode_size(eb, item, 0);
458 } else if (inode_item) {
459 struct btrfs_inode_item *item;
463 * New inode, set nbytes to 0 so that the nbytes comes out
464 * properly when we replay the extents.
466 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
467 btrfs_set_inode_nbytes(eb, item, 0);
470 * If this is a directory we need to reset the i_size to 0 so
471 * that we can set it up properly when replaying the rest of
472 * the items in this log.
474 mode = btrfs_inode_mode(eb, item);
476 btrfs_set_inode_size(eb, item, 0);
479 btrfs_release_path(path);
480 /* try to insert the key into the destination tree */
481 path->skip_release_on_error = 1;
482 ret = btrfs_insert_empty_item(trans, root, path,
484 path->skip_release_on_error = 0;
486 /* make sure any existing item is the correct size */
487 if (ret == -EEXIST || ret == -EOVERFLOW) {
489 found_size = btrfs_item_size(path->nodes[0],
491 if (found_size > item_size)
492 btrfs_truncate_item(path, item_size, 1);
493 else if (found_size < item_size)
494 btrfs_extend_item(path, item_size - found_size);
498 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
501 /* don't overwrite an existing inode if the generation number
502 * was logged as zero. This is done when the tree logging code
503 * is just logging an inode to make sure it exists after recovery.
505 * Also, don't overwrite i_size on directories during replay.
506 * log replay inserts and removes directory items based on the
507 * state of the tree found in the subvolume, and i_size is modified
510 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
511 struct btrfs_inode_item *src_item;
512 struct btrfs_inode_item *dst_item;
514 src_item = (struct btrfs_inode_item *)src_ptr;
515 dst_item = (struct btrfs_inode_item *)dst_ptr;
517 if (btrfs_inode_generation(eb, src_item) == 0) {
518 struct extent_buffer *dst_eb = path->nodes[0];
519 const u64 ino_size = btrfs_inode_size(eb, src_item);
522 * For regular files an ino_size == 0 is used only when
523 * logging that an inode exists, as part of a directory
524 * fsync, and the inode wasn't fsynced before. In this
525 * case don't set the size of the inode in the fs/subvol
526 * tree, otherwise we would be throwing valid data away.
528 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
529 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
531 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
535 if (overwrite_root &&
536 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
537 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
539 saved_i_size = btrfs_inode_size(path->nodes[0],
544 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
547 if (save_old_i_size) {
548 struct btrfs_inode_item *dst_item;
549 dst_item = (struct btrfs_inode_item *)dst_ptr;
550 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
553 /* make sure the generation is filled in */
554 if (key->type == BTRFS_INODE_ITEM_KEY) {
555 struct btrfs_inode_item *dst_item;
556 dst_item = (struct btrfs_inode_item *)dst_ptr;
557 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
558 btrfs_set_inode_generation(path->nodes[0], dst_item,
563 btrfs_mark_buffer_dirty(path->nodes[0]);
564 btrfs_release_path(path);
569 * Item overwrite used by replay and tree logging. eb, slot and key all refer
570 * to the src data we are copying out.
572 * root is the tree we are copying into, and path is a scratch
573 * path for use in this function (it should be released on entry and
574 * will be released on exit).
576 * If the key is already in the destination tree the existing item is
577 * overwritten. If the existing item isn't big enough, it is extended.
578 * If it is too large, it is truncated.
580 * If the key isn't in the destination yet, a new item is inserted.
582 static int overwrite_item(struct btrfs_trans_handle *trans,
583 struct btrfs_root *root,
584 struct btrfs_path *path,
585 struct extent_buffer *eb, int slot,
586 struct btrfs_key *key)
590 /* Look for the key in the destination tree. */
591 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
595 return do_overwrite_item(trans, root, path, eb, slot, key);
599 * simple helper to read an inode off the disk from a given root
600 * This can only be called for subvolume roots and not for the log
602 static noinline struct inode *read_one_inode(struct btrfs_root *root,
607 inode = btrfs_iget(root->fs_info->sb, objectid, root);
613 /* replays a single extent in 'eb' at 'slot' with 'key' into the
614 * subvolume 'root'. path is released on entry and should be released
617 * extents in the log tree have not been allocated out of the extent
618 * tree yet. So, this completes the allocation, taking a reference
619 * as required if the extent already exists or creating a new extent
620 * if it isn't in the extent allocation tree yet.
622 * The extent is inserted into the file, dropping any existing extents
623 * from the file that overlap the new one.
625 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
626 struct btrfs_root *root,
627 struct btrfs_path *path,
628 struct extent_buffer *eb, int slot,
629 struct btrfs_key *key)
631 struct btrfs_drop_extents_args drop_args = { 0 };
632 struct btrfs_fs_info *fs_info = root->fs_info;
635 u64 start = key->offset;
637 struct btrfs_file_extent_item *item;
638 struct inode *inode = NULL;
642 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
643 found_type = btrfs_file_extent_type(eb, item);
645 if (found_type == BTRFS_FILE_EXTENT_REG ||
646 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
647 nbytes = btrfs_file_extent_num_bytes(eb, item);
648 extent_end = start + nbytes;
651 * We don't add to the inodes nbytes if we are prealloc or a
654 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
656 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
657 size = btrfs_file_extent_ram_bytes(eb, item);
658 nbytes = btrfs_file_extent_ram_bytes(eb, item);
659 extent_end = ALIGN(start + size,
660 fs_info->sectorsize);
666 inode = read_one_inode(root, key->objectid);
673 * first check to see if we already have this extent in the
674 * file. This must be done before the btrfs_drop_extents run
675 * so we don't try to drop this extent.
677 ret = btrfs_lookup_file_extent(trans, root, path,
678 btrfs_ino(BTRFS_I(inode)), start, 0);
681 (found_type == BTRFS_FILE_EXTENT_REG ||
682 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
683 struct btrfs_file_extent_item cmp1;
684 struct btrfs_file_extent_item cmp2;
685 struct btrfs_file_extent_item *existing;
686 struct extent_buffer *leaf;
688 leaf = path->nodes[0];
689 existing = btrfs_item_ptr(leaf, path->slots[0],
690 struct btrfs_file_extent_item);
692 read_extent_buffer(eb, &cmp1, (unsigned long)item,
694 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
698 * we already have a pointer to this exact extent,
699 * we don't have to do anything
701 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
702 btrfs_release_path(path);
706 btrfs_release_path(path);
708 /* drop any overlapping extents */
709 drop_args.start = start;
710 drop_args.end = extent_end;
711 drop_args.drop_cache = true;
712 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
716 if (found_type == BTRFS_FILE_EXTENT_REG ||
717 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
719 unsigned long dest_offset;
720 struct btrfs_key ins;
722 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
723 btrfs_fs_incompat(fs_info, NO_HOLES))
726 ret = btrfs_insert_empty_item(trans, root, path, key,
730 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
732 copy_extent_buffer(path->nodes[0], eb, dest_offset,
733 (unsigned long)item, sizeof(*item));
735 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
736 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
737 ins.type = BTRFS_EXTENT_ITEM_KEY;
738 offset = key->offset - btrfs_file_extent_offset(eb, item);
741 * Manually record dirty extent, as here we did a shallow
742 * file extent item copy and skip normal backref update,
743 * but modifying extent tree all by ourselves.
744 * So need to manually record dirty extent for qgroup,
745 * as the owner of the file extent changed from log tree
746 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
748 ret = btrfs_qgroup_trace_extent(trans,
749 btrfs_file_extent_disk_bytenr(eb, item),
750 btrfs_file_extent_disk_num_bytes(eb, item),
755 if (ins.objectid > 0) {
756 struct btrfs_ref ref = { 0 };
759 LIST_HEAD(ordered_sums);
762 * is this extent already allocated in the extent
763 * allocation tree? If so, just add a reference
765 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
769 } else if (ret == 0) {
770 btrfs_init_generic_ref(&ref,
771 BTRFS_ADD_DELAYED_REF,
772 ins.objectid, ins.offset, 0);
773 btrfs_init_data_ref(&ref,
774 root->root_key.objectid,
775 key->objectid, offset, 0, false);
776 ret = btrfs_inc_extent_ref(trans, &ref);
781 * insert the extent pointer in the extent
784 ret = btrfs_alloc_logged_file_extent(trans,
785 root->root_key.objectid,
786 key->objectid, offset, &ins);
790 btrfs_release_path(path);
792 if (btrfs_file_extent_compression(eb, item)) {
793 csum_start = ins.objectid;
794 csum_end = csum_start + ins.offset;
796 csum_start = ins.objectid +
797 btrfs_file_extent_offset(eb, item);
798 csum_end = csum_start +
799 btrfs_file_extent_num_bytes(eb, item);
802 ret = btrfs_lookup_csums_range(root->log_root,
803 csum_start, csum_end - 1,
804 &ordered_sums, 0, false);
808 * Now delete all existing cums in the csum root that
809 * cover our range. We do this because we can have an
810 * extent that is completely referenced by one file
811 * extent item and partially referenced by another
812 * file extent item (like after using the clone or
813 * extent_same ioctls). In this case if we end up doing
814 * the replay of the one that partially references the
815 * extent first, and we do not do the csum deletion
816 * below, we can get 2 csum items in the csum tree that
817 * overlap each other. For example, imagine our log has
818 * the two following file extent items:
820 * key (257 EXTENT_DATA 409600)
821 * extent data disk byte 12845056 nr 102400
822 * extent data offset 20480 nr 20480 ram 102400
824 * key (257 EXTENT_DATA 819200)
825 * extent data disk byte 12845056 nr 102400
826 * extent data offset 0 nr 102400 ram 102400
828 * Where the second one fully references the 100K extent
829 * that starts at disk byte 12845056, and the log tree
830 * has a single csum item that covers the entire range
833 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
835 * After the first file extent item is replayed, the
836 * csum tree gets the following csum item:
838 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
840 * Which covers the 20K sub-range starting at offset 20K
841 * of our extent. Now when we replay the second file
842 * extent item, if we do not delete existing csum items
843 * that cover any of its blocks, we end up getting two
844 * csum items in our csum tree that overlap each other:
846 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
847 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
849 * Which is a problem, because after this anyone trying
850 * to lookup up for the checksum of any block of our
851 * extent starting at an offset of 40K or higher, will
852 * end up looking at the second csum item only, which
853 * does not contain the checksum for any block starting
854 * at offset 40K or higher of our extent.
856 while (!list_empty(&ordered_sums)) {
857 struct btrfs_ordered_sum *sums;
858 struct btrfs_root *csum_root;
860 sums = list_entry(ordered_sums.next,
861 struct btrfs_ordered_sum,
863 csum_root = btrfs_csum_root(fs_info,
866 ret = btrfs_del_csums(trans, csum_root,
870 ret = btrfs_csum_file_blocks(trans,
873 list_del(&sums->list);
879 btrfs_release_path(path);
881 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
882 /* inline extents are easy, we just overwrite them */
883 ret = overwrite_item(trans, root, path, eb, slot, key);
888 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
894 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
895 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
901 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
902 struct btrfs_inode *dir,
903 struct btrfs_inode *inode,
909 ret = btrfs_unlink_inode(trans, dir, inode, name, name_len);
913 * Whenever we need to check if a name exists or not, we check the
914 * fs/subvolume tree. So after an unlink we must run delayed items, so
915 * that future checks for a name during log replay see that the name
916 * does not exists anymore.
918 return btrfs_run_delayed_items(trans);
922 * when cleaning up conflicts between the directory names in the
923 * subvolume, directory names in the log and directory names in the
924 * inode back references, we may have to unlink inodes from directories.
926 * This is a helper function to do the unlink of a specific directory
929 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
930 struct btrfs_path *path,
931 struct btrfs_inode *dir,
932 struct btrfs_dir_item *di)
934 struct btrfs_root *root = dir->root;
938 struct extent_buffer *leaf;
939 struct btrfs_key location;
942 leaf = path->nodes[0];
944 btrfs_dir_item_key_to_cpu(leaf, di, &location);
945 name_len = btrfs_dir_name_len(leaf, di);
946 name = kmalloc(name_len, GFP_NOFS);
950 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
951 btrfs_release_path(path);
953 inode = read_one_inode(root, location.objectid);
959 ret = link_to_fixup_dir(trans, root, path, location.objectid);
963 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), name,
972 * See if a given name and sequence number found in an inode back reference are
973 * already in a directory and correctly point to this inode.
975 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
978 static noinline int inode_in_dir(struct btrfs_root *root,
979 struct btrfs_path *path,
980 u64 dirid, u64 objectid, u64 index,
981 const char *name, int name_len)
983 struct btrfs_dir_item *di;
984 struct btrfs_key location;
987 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
988 index, name, name_len, 0);
993 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
994 if (location.objectid != objectid)
1000 btrfs_release_path(path);
1001 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
1006 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1007 if (location.objectid == objectid)
1011 btrfs_release_path(path);
1016 * helper function to check a log tree for a named back reference in
1017 * an inode. This is used to decide if a back reference that is
1018 * found in the subvolume conflicts with what we find in the log.
1020 * inode backreferences may have multiple refs in a single item,
1021 * during replay we process one reference at a time, and we don't
1022 * want to delete valid links to a file from the subvolume if that
1023 * link is also in the log.
1025 static noinline int backref_in_log(struct btrfs_root *log,
1026 struct btrfs_key *key,
1028 const char *name, int namelen)
1030 struct btrfs_path *path;
1033 path = btrfs_alloc_path();
1037 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1040 } else if (ret == 1) {
1045 if (key->type == BTRFS_INODE_EXTREF_KEY)
1046 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1051 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1055 btrfs_free_path(path);
1059 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1060 struct btrfs_root *root,
1061 struct btrfs_path *path,
1062 struct btrfs_root *log_root,
1063 struct btrfs_inode *dir,
1064 struct btrfs_inode *inode,
1065 u64 inode_objectid, u64 parent_objectid,
1066 u64 ref_index, char *name, int namelen)
1070 int victim_name_len;
1071 struct extent_buffer *leaf;
1072 struct btrfs_dir_item *di;
1073 struct btrfs_key search_key;
1074 struct btrfs_inode_extref *extref;
1077 /* Search old style refs */
1078 search_key.objectid = inode_objectid;
1079 search_key.type = BTRFS_INODE_REF_KEY;
1080 search_key.offset = parent_objectid;
1081 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1083 struct btrfs_inode_ref *victim_ref;
1085 unsigned long ptr_end;
1087 leaf = path->nodes[0];
1089 /* are we trying to overwrite a back ref for the root directory
1090 * if so, just jump out, we're done
1092 if (search_key.objectid == search_key.offset)
1095 /* check all the names in this back reference to see
1096 * if they are in the log. if so, we allow them to stay
1097 * otherwise they must be unlinked as a conflict
1099 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1100 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1101 while (ptr < ptr_end) {
1102 victim_ref = (struct btrfs_inode_ref *)ptr;
1103 victim_name_len = btrfs_inode_ref_name_len(leaf,
1105 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1109 read_extent_buffer(leaf, victim_name,
1110 (unsigned long)(victim_ref + 1),
1113 ret = backref_in_log(log_root, &search_key,
1114 parent_objectid, victim_name,
1120 inc_nlink(&inode->vfs_inode);
1121 btrfs_release_path(path);
1123 ret = unlink_inode_for_log_replay(trans, dir, inode,
1124 victim_name, victim_name_len);
1132 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1135 btrfs_release_path(path);
1137 /* Same search but for extended refs */
1138 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1139 inode_objectid, parent_objectid, 0,
1141 if (IS_ERR(extref)) {
1142 return PTR_ERR(extref);
1143 } else if (extref) {
1147 struct inode *victim_parent;
1149 leaf = path->nodes[0];
1151 item_size = btrfs_item_size(leaf, path->slots[0]);
1152 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1154 while (cur_offset < item_size) {
1155 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1157 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1159 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1162 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1165 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1168 search_key.objectid = inode_objectid;
1169 search_key.type = BTRFS_INODE_EXTREF_KEY;
1170 search_key.offset = btrfs_extref_hash(parent_objectid,
1173 ret = backref_in_log(log_root, &search_key,
1174 parent_objectid, victim_name,
1181 victim_parent = read_one_inode(root,
1183 if (victim_parent) {
1184 inc_nlink(&inode->vfs_inode);
1185 btrfs_release_path(path);
1187 ret = unlink_inode_for_log_replay(trans,
1188 BTRFS_I(victim_parent),
1193 iput(victim_parent);
1201 cur_offset += victim_name_len + sizeof(*extref);
1204 btrfs_release_path(path);
1206 /* look for a conflicting sequence number */
1207 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1208 ref_index, name, namelen, 0);
1212 ret = drop_one_dir_item(trans, path, dir, di);
1216 btrfs_release_path(path);
1218 /* look for a conflicting name */
1219 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1224 ret = drop_one_dir_item(trans, path, dir, di);
1228 btrfs_release_path(path);
1233 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1234 u32 *namelen, char **name, u64 *index,
1235 u64 *parent_objectid)
1237 struct btrfs_inode_extref *extref;
1239 extref = (struct btrfs_inode_extref *)ref_ptr;
1241 *namelen = btrfs_inode_extref_name_len(eb, extref);
1242 *name = kmalloc(*namelen, GFP_NOFS);
1246 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1250 *index = btrfs_inode_extref_index(eb, extref);
1251 if (parent_objectid)
1252 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1257 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1258 u32 *namelen, char **name, u64 *index)
1260 struct btrfs_inode_ref *ref;
1262 ref = (struct btrfs_inode_ref *)ref_ptr;
1264 *namelen = btrfs_inode_ref_name_len(eb, ref);
1265 *name = kmalloc(*namelen, GFP_NOFS);
1269 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1272 *index = btrfs_inode_ref_index(eb, ref);
1278 * Take an inode reference item from the log tree and iterate all names from the
1279 * inode reference item in the subvolume tree with the same key (if it exists).
1280 * For any name that is not in the inode reference item from the log tree, do a
1281 * proper unlink of that name (that is, remove its entry from the inode
1282 * reference item and both dir index keys).
1284 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1285 struct btrfs_root *root,
1286 struct btrfs_path *path,
1287 struct btrfs_inode *inode,
1288 struct extent_buffer *log_eb,
1290 struct btrfs_key *key)
1293 unsigned long ref_ptr;
1294 unsigned long ref_end;
1295 struct extent_buffer *eb;
1298 btrfs_release_path(path);
1299 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1307 eb = path->nodes[0];
1308 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1309 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1310 while (ref_ptr < ref_end) {
1315 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1316 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1319 parent_id = key->offset;
1320 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1326 if (key->type == BTRFS_INODE_EXTREF_KEY)
1327 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1331 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1337 btrfs_release_path(path);
1338 dir = read_one_inode(root, parent_id);
1344 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1345 inode, name, namelen);
1355 if (key->type == BTRFS_INODE_EXTREF_KEY)
1356 ref_ptr += sizeof(struct btrfs_inode_extref);
1358 ref_ptr += sizeof(struct btrfs_inode_ref);
1362 btrfs_release_path(path);
1367 * replay one inode back reference item found in the log tree.
1368 * eb, slot and key refer to the buffer and key found in the log tree.
1369 * root is the destination we are replaying into, and path is for temp
1370 * use by this function. (it should be released on return).
1372 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1373 struct btrfs_root *root,
1374 struct btrfs_root *log,
1375 struct btrfs_path *path,
1376 struct extent_buffer *eb, int slot,
1377 struct btrfs_key *key)
1379 struct inode *dir = NULL;
1380 struct inode *inode = NULL;
1381 unsigned long ref_ptr;
1382 unsigned long ref_end;
1386 int log_ref_ver = 0;
1387 u64 parent_objectid;
1390 int ref_struct_size;
1392 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1393 ref_end = ref_ptr + btrfs_item_size(eb, slot);
1395 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1396 struct btrfs_inode_extref *r;
1398 ref_struct_size = sizeof(struct btrfs_inode_extref);
1400 r = (struct btrfs_inode_extref *)ref_ptr;
1401 parent_objectid = btrfs_inode_extref_parent(eb, r);
1403 ref_struct_size = sizeof(struct btrfs_inode_ref);
1404 parent_objectid = key->offset;
1406 inode_objectid = key->objectid;
1409 * it is possible that we didn't log all the parent directories
1410 * for a given inode. If we don't find the dir, just don't
1411 * copy the back ref in. The link count fixup code will take
1414 dir = read_one_inode(root, parent_objectid);
1420 inode = read_one_inode(root, inode_objectid);
1426 while (ref_ptr < ref_end) {
1428 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1429 &ref_index, &parent_objectid);
1431 * parent object can change from one array
1435 dir = read_one_inode(root, parent_objectid);
1441 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1447 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1448 btrfs_ino(BTRFS_I(inode)), ref_index,
1452 } else if (ret == 0) {
1454 * look for a conflicting back reference in the
1455 * metadata. if we find one we have to unlink that name
1456 * of the file before we add our new link. Later on, we
1457 * overwrite any existing back reference, and we don't
1458 * want to create dangling pointers in the directory.
1460 ret = __add_inode_ref(trans, root, path, log,
1461 BTRFS_I(dir), BTRFS_I(inode),
1462 inode_objectid, parent_objectid,
1463 ref_index, name, namelen);
1470 /* insert our name */
1471 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1472 name, namelen, 0, ref_index);
1476 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1480 /* Else, ret == 1, we already have a perfect match, we're done. */
1482 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1492 * Before we overwrite the inode reference item in the subvolume tree
1493 * with the item from the log tree, we must unlink all names from the
1494 * parent directory that are in the subvolume's tree inode reference
1495 * item, otherwise we end up with an inconsistent subvolume tree where
1496 * dir index entries exist for a name but there is no inode reference
1497 * item with the same name.
1499 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1504 /* finally write the back reference in the inode */
1505 ret = overwrite_item(trans, root, path, eb, slot, key);
1507 btrfs_release_path(path);
1514 static int count_inode_extrefs(struct btrfs_root *root,
1515 struct btrfs_inode *inode, struct btrfs_path *path)
1519 unsigned int nlink = 0;
1522 u64 inode_objectid = btrfs_ino(inode);
1525 struct btrfs_inode_extref *extref;
1526 struct extent_buffer *leaf;
1529 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1534 leaf = path->nodes[0];
1535 item_size = btrfs_item_size(leaf, path->slots[0]);
1536 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1539 while (cur_offset < item_size) {
1540 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1541 name_len = btrfs_inode_extref_name_len(leaf, extref);
1545 cur_offset += name_len + sizeof(*extref);
1549 btrfs_release_path(path);
1551 btrfs_release_path(path);
1553 if (ret < 0 && ret != -ENOENT)
1558 static int count_inode_refs(struct btrfs_root *root,
1559 struct btrfs_inode *inode, struct btrfs_path *path)
1562 struct btrfs_key key;
1563 unsigned int nlink = 0;
1565 unsigned long ptr_end;
1567 u64 ino = btrfs_ino(inode);
1570 key.type = BTRFS_INODE_REF_KEY;
1571 key.offset = (u64)-1;
1574 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1578 if (path->slots[0] == 0)
1583 btrfs_item_key_to_cpu(path->nodes[0], &key,
1585 if (key.objectid != ino ||
1586 key.type != BTRFS_INODE_REF_KEY)
1588 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1589 ptr_end = ptr + btrfs_item_size(path->nodes[0],
1591 while (ptr < ptr_end) {
1592 struct btrfs_inode_ref *ref;
1594 ref = (struct btrfs_inode_ref *)ptr;
1595 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1597 ptr = (unsigned long)(ref + 1) + name_len;
1601 if (key.offset == 0)
1603 if (path->slots[0] > 0) {
1608 btrfs_release_path(path);
1610 btrfs_release_path(path);
1616 * There are a few corners where the link count of the file can't
1617 * be properly maintained during replay. So, instead of adding
1618 * lots of complexity to the log code, we just scan the backrefs
1619 * for any file that has been through replay.
1621 * The scan will update the link count on the inode to reflect the
1622 * number of back refs found. If it goes down to zero, the iput
1623 * will free the inode.
1625 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1626 struct btrfs_root *root,
1627 struct inode *inode)
1629 struct btrfs_path *path;
1632 u64 ino = btrfs_ino(BTRFS_I(inode));
1634 path = btrfs_alloc_path();
1638 ret = count_inode_refs(root, BTRFS_I(inode), path);
1644 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1652 if (nlink != inode->i_nlink) {
1653 set_nlink(inode, nlink);
1654 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1658 BTRFS_I(inode)->index_cnt = (u64)-1;
1660 if (inode->i_nlink == 0) {
1661 if (S_ISDIR(inode->i_mode)) {
1662 ret = replay_dir_deletes(trans, root, NULL, path,
1667 ret = btrfs_insert_orphan_item(trans, root, ino);
1673 btrfs_free_path(path);
1677 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1678 struct btrfs_root *root,
1679 struct btrfs_path *path)
1682 struct btrfs_key key;
1683 struct inode *inode;
1685 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1686 key.type = BTRFS_ORPHAN_ITEM_KEY;
1687 key.offset = (u64)-1;
1689 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1695 if (path->slots[0] == 0)
1700 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1701 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1702 key.type != BTRFS_ORPHAN_ITEM_KEY)
1705 ret = btrfs_del_item(trans, root, path);
1709 btrfs_release_path(path);
1710 inode = read_one_inode(root, key.offset);
1716 ret = fixup_inode_link_count(trans, root, inode);
1722 * fixup on a directory may create new entries,
1723 * make sure we always look for the highset possible
1726 key.offset = (u64)-1;
1728 btrfs_release_path(path);
1734 * record a given inode in the fixup dir so we can check its link
1735 * count when replay is done. The link count is incremented here
1736 * so the inode won't go away until we check it
1738 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1739 struct btrfs_root *root,
1740 struct btrfs_path *path,
1743 struct btrfs_key key;
1745 struct inode *inode;
1747 inode = read_one_inode(root, objectid);
1751 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1752 key.type = BTRFS_ORPHAN_ITEM_KEY;
1753 key.offset = objectid;
1755 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1757 btrfs_release_path(path);
1759 if (!inode->i_nlink)
1760 set_nlink(inode, 1);
1763 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1764 } else if (ret == -EEXIST) {
1773 * when replaying the log for a directory, we only insert names
1774 * for inodes that actually exist. This means an fsync on a directory
1775 * does not implicitly fsync all the new files in it
1777 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1778 struct btrfs_root *root,
1779 u64 dirid, u64 index,
1780 char *name, int name_len,
1781 struct btrfs_key *location)
1783 struct inode *inode;
1787 inode = read_one_inode(root, location->objectid);
1791 dir = read_one_inode(root, dirid);
1797 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1798 name_len, 1, index);
1800 /* FIXME, put inode into FIXUP list */
1807 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1808 struct btrfs_inode *dir,
1809 struct btrfs_path *path,
1810 struct btrfs_dir_item *dst_di,
1811 const struct btrfs_key *log_key,
1815 struct btrfs_key found_key;
1817 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1818 /* The existing dentry points to the same inode, don't delete it. */
1819 if (found_key.objectid == log_key->objectid &&
1820 found_key.type == log_key->type &&
1821 found_key.offset == log_key->offset &&
1822 btrfs_dir_type(path->nodes[0], dst_di) == log_type)
1826 * Don't drop the conflicting directory entry if the inode for the new
1827 * entry doesn't exist.
1832 return drop_one_dir_item(trans, path, dir, dst_di);
1836 * take a single entry in a log directory item and replay it into
1839 * if a conflicting item exists in the subdirectory already,
1840 * the inode it points to is unlinked and put into the link count
1843 * If a name from the log points to a file or directory that does
1844 * not exist in the FS, it is skipped. fsyncs on directories
1845 * do not force down inodes inside that directory, just changes to the
1846 * names or unlinks in a directory.
1848 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1849 * non-existing inode) and 1 if the name was replayed.
1851 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1852 struct btrfs_root *root,
1853 struct btrfs_path *path,
1854 struct extent_buffer *eb,
1855 struct btrfs_dir_item *di,
1856 struct btrfs_key *key)
1860 struct btrfs_dir_item *dir_dst_di;
1861 struct btrfs_dir_item *index_dst_di;
1862 bool dir_dst_matches = false;
1863 bool index_dst_matches = false;
1864 struct btrfs_key log_key;
1865 struct btrfs_key search_key;
1870 bool update_size = true;
1871 bool name_added = false;
1873 dir = read_one_inode(root, key->objectid);
1877 name_len = btrfs_dir_name_len(eb, di);
1878 name = kmalloc(name_len, GFP_NOFS);
1884 log_type = btrfs_dir_type(eb, di);
1885 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1888 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1889 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1890 btrfs_release_path(path);
1893 exists = (ret == 0);
1896 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1898 if (IS_ERR(dir_dst_di)) {
1899 ret = PTR_ERR(dir_dst_di);
1901 } else if (dir_dst_di) {
1902 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1903 dir_dst_di, &log_key, log_type,
1907 dir_dst_matches = (ret == 1);
1910 btrfs_release_path(path);
1912 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1913 key->objectid, key->offset,
1915 if (IS_ERR(index_dst_di)) {
1916 ret = PTR_ERR(index_dst_di);
1918 } else if (index_dst_di) {
1919 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1920 index_dst_di, &log_key,
1924 index_dst_matches = (ret == 1);
1927 btrfs_release_path(path);
1929 if (dir_dst_matches && index_dst_matches) {
1931 update_size = false;
1936 * Check if the inode reference exists in the log for the given name,
1937 * inode and parent inode
1939 search_key.objectid = log_key.objectid;
1940 search_key.type = BTRFS_INODE_REF_KEY;
1941 search_key.offset = key->objectid;
1942 ret = backref_in_log(root->log_root, &search_key, 0, name, name_len);
1946 /* The dentry will be added later. */
1948 update_size = false;
1952 search_key.objectid = log_key.objectid;
1953 search_key.type = BTRFS_INODE_EXTREF_KEY;
1954 search_key.offset = key->objectid;
1955 ret = backref_in_log(root->log_root, &search_key, key->objectid, name,
1960 /* The dentry will be added later. */
1962 update_size = false;
1965 btrfs_release_path(path);
1966 ret = insert_one_name(trans, root, key->objectid, key->offset,
1967 name, name_len, &log_key);
1968 if (ret && ret != -ENOENT && ret != -EEXIST)
1972 update_size = false;
1976 if (!ret && update_size) {
1977 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1978 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
1982 if (!ret && name_added)
1987 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1988 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1989 struct btrfs_root *root,
1990 struct btrfs_path *path,
1991 struct extent_buffer *eb, int slot,
1992 struct btrfs_key *key)
1995 struct btrfs_dir_item *di;
1997 /* We only log dir index keys, which only contain a single dir item. */
1998 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
2000 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2001 ret = replay_one_name(trans, root, path, eb, di, key);
2006 * If this entry refers to a non-directory (directories can not have a
2007 * link count > 1) and it was added in the transaction that was not
2008 * committed, make sure we fixup the link count of the inode the entry
2009 * points to. Otherwise something like the following would result in a
2010 * directory pointing to an inode with a wrong link that does not account
2011 * for this dir entry:
2018 * ln testdir/bar testdir/bar_link
2019 * ln testdir/foo testdir/foo_link
2020 * xfs_io -c "fsync" testdir/bar
2024 * mount fs, log replay happens
2026 * File foo would remain with a link count of 1 when it has two entries
2027 * pointing to it in the directory testdir. This would make it impossible
2028 * to ever delete the parent directory has it would result in stale
2029 * dentries that can never be deleted.
2031 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2032 struct btrfs_path *fixup_path;
2033 struct btrfs_key di_key;
2035 fixup_path = btrfs_alloc_path();
2039 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2040 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2041 btrfs_free_path(fixup_path);
2048 * directory replay has two parts. There are the standard directory
2049 * items in the log copied from the subvolume, and range items
2050 * created in the log while the subvolume was logged.
2052 * The range items tell us which parts of the key space the log
2053 * is authoritative for. During replay, if a key in the subvolume
2054 * directory is in a logged range item, but not actually in the log
2055 * that means it was deleted from the directory before the fsync
2056 * and should be removed.
2058 static noinline int find_dir_range(struct btrfs_root *root,
2059 struct btrfs_path *path,
2061 u64 *start_ret, u64 *end_ret)
2063 struct btrfs_key key;
2065 struct btrfs_dir_log_item *item;
2069 if (*start_ret == (u64)-1)
2072 key.objectid = dirid;
2073 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2074 key.offset = *start_ret;
2076 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2080 if (path->slots[0] == 0)
2085 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2087 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2091 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2092 struct btrfs_dir_log_item);
2093 found_end = btrfs_dir_log_end(path->nodes[0], item);
2095 if (*start_ret >= key.offset && *start_ret <= found_end) {
2097 *start_ret = key.offset;
2098 *end_ret = found_end;
2103 /* check the next slot in the tree to see if it is a valid item */
2104 nritems = btrfs_header_nritems(path->nodes[0]);
2106 if (path->slots[0] >= nritems) {
2107 ret = btrfs_next_leaf(root, path);
2112 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2114 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2118 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2119 struct btrfs_dir_log_item);
2120 found_end = btrfs_dir_log_end(path->nodes[0], item);
2121 *start_ret = key.offset;
2122 *end_ret = found_end;
2125 btrfs_release_path(path);
2130 * this looks for a given directory item in the log. If the directory
2131 * item is not in the log, the item is removed and the inode it points
2134 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2135 struct btrfs_root *log,
2136 struct btrfs_path *path,
2137 struct btrfs_path *log_path,
2139 struct btrfs_key *dir_key)
2141 struct btrfs_root *root = BTRFS_I(dir)->root;
2143 struct extent_buffer *eb;
2145 struct btrfs_dir_item *di;
2148 struct inode *inode = NULL;
2149 struct btrfs_key location;
2152 * Currently we only log dir index keys. Even if we replay a log created
2153 * by an older kernel that logged both dir index and dir item keys, all
2154 * we need to do is process the dir index keys, we (and our caller) can
2155 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2157 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2159 eb = path->nodes[0];
2160 slot = path->slots[0];
2161 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2162 name_len = btrfs_dir_name_len(eb, di);
2163 name = kmalloc(name_len, GFP_NOFS);
2169 read_extent_buffer(eb, name, (unsigned long)(di + 1), name_len);
2172 struct btrfs_dir_item *log_di;
2174 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2178 if (IS_ERR(log_di)) {
2179 ret = PTR_ERR(log_di);
2181 } else if (log_di) {
2182 /* The dentry exists in the log, we have nothing to do. */
2188 btrfs_dir_item_key_to_cpu(eb, di, &location);
2189 btrfs_release_path(path);
2190 btrfs_release_path(log_path);
2191 inode = read_one_inode(root, location.objectid);
2197 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2202 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2205 * Unlike dir item keys, dir index keys can only have one name (entry) in
2206 * them, as there are no key collisions since each key has a unique offset
2207 * (an index number), so we're done.
2210 btrfs_release_path(path);
2211 btrfs_release_path(log_path);
2217 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2218 struct btrfs_root *root,
2219 struct btrfs_root *log,
2220 struct btrfs_path *path,
2223 struct btrfs_key search_key;
2224 struct btrfs_path *log_path;
2229 log_path = btrfs_alloc_path();
2233 search_key.objectid = ino;
2234 search_key.type = BTRFS_XATTR_ITEM_KEY;
2235 search_key.offset = 0;
2237 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2241 nritems = btrfs_header_nritems(path->nodes[0]);
2242 for (i = path->slots[0]; i < nritems; i++) {
2243 struct btrfs_key key;
2244 struct btrfs_dir_item *di;
2245 struct btrfs_dir_item *log_di;
2249 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2250 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2255 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2256 total_size = btrfs_item_size(path->nodes[0], i);
2258 while (cur < total_size) {
2259 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2260 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2261 u32 this_len = sizeof(*di) + name_len + data_len;
2264 name = kmalloc(name_len, GFP_NOFS);
2269 read_extent_buffer(path->nodes[0], name,
2270 (unsigned long)(di + 1), name_len);
2272 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2274 btrfs_release_path(log_path);
2276 /* Doesn't exist in log tree, so delete it. */
2277 btrfs_release_path(path);
2278 di = btrfs_lookup_xattr(trans, root, path, ino,
2279 name, name_len, -1);
2286 ret = btrfs_delete_one_dir_name(trans, root,
2290 btrfs_release_path(path);
2295 if (IS_ERR(log_di)) {
2296 ret = PTR_ERR(log_di);
2300 di = (struct btrfs_dir_item *)((char *)di + this_len);
2303 ret = btrfs_next_leaf(root, path);
2309 btrfs_free_path(log_path);
2310 btrfs_release_path(path);
2316 * deletion replay happens before we copy any new directory items
2317 * out of the log or out of backreferences from inodes. It
2318 * scans the log to find ranges of keys that log is authoritative for,
2319 * and then scans the directory to find items in those ranges that are
2320 * not present in the log.
2322 * Anything we don't find in the log is unlinked and removed from the
2325 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2326 struct btrfs_root *root,
2327 struct btrfs_root *log,
2328 struct btrfs_path *path,
2329 u64 dirid, int del_all)
2334 struct btrfs_key dir_key;
2335 struct btrfs_key found_key;
2336 struct btrfs_path *log_path;
2339 dir_key.objectid = dirid;
2340 dir_key.type = BTRFS_DIR_INDEX_KEY;
2341 log_path = btrfs_alloc_path();
2345 dir = read_one_inode(root, dirid);
2346 /* it isn't an error if the inode isn't there, that can happen
2347 * because we replay the deletes before we copy in the inode item
2351 btrfs_free_path(log_path);
2359 range_end = (u64)-1;
2361 ret = find_dir_range(log, path, dirid,
2362 &range_start, &range_end);
2369 dir_key.offset = range_start;
2372 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2377 nritems = btrfs_header_nritems(path->nodes[0]);
2378 if (path->slots[0] >= nritems) {
2379 ret = btrfs_next_leaf(root, path);
2385 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2387 if (found_key.objectid != dirid ||
2388 found_key.type != dir_key.type) {
2393 if (found_key.offset > range_end)
2396 ret = check_item_in_log(trans, log, path,
2401 if (found_key.offset == (u64)-1)
2403 dir_key.offset = found_key.offset + 1;
2405 btrfs_release_path(path);
2406 if (range_end == (u64)-1)
2408 range_start = range_end + 1;
2412 btrfs_release_path(path);
2413 btrfs_free_path(log_path);
2419 * the process_func used to replay items from the log tree. This
2420 * gets called in two different stages. The first stage just looks
2421 * for inodes and makes sure they are all copied into the subvolume.
2423 * The second stage copies all the other item types from the log into
2424 * the subvolume. The two stage approach is slower, but gets rid of
2425 * lots of complexity around inodes referencing other inodes that exist
2426 * only in the log (references come from either directory items or inode
2429 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2430 struct walk_control *wc, u64 gen, int level)
2433 struct btrfs_path *path;
2434 struct btrfs_root *root = wc->replay_dest;
2435 struct btrfs_key key;
2439 ret = btrfs_read_extent_buffer(eb, gen, level, NULL);
2443 level = btrfs_header_level(eb);
2448 path = btrfs_alloc_path();
2452 nritems = btrfs_header_nritems(eb);
2453 for (i = 0; i < nritems; i++) {
2454 btrfs_item_key_to_cpu(eb, &key, i);
2456 /* inode keys are done during the first stage */
2457 if (key.type == BTRFS_INODE_ITEM_KEY &&
2458 wc->stage == LOG_WALK_REPLAY_INODES) {
2459 struct btrfs_inode_item *inode_item;
2462 inode_item = btrfs_item_ptr(eb, i,
2463 struct btrfs_inode_item);
2465 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2466 * and never got linked before the fsync, skip it, as
2467 * replaying it is pointless since it would be deleted
2468 * later. We skip logging tmpfiles, but it's always
2469 * possible we are replaying a log created with a kernel
2470 * that used to log tmpfiles.
2472 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2473 wc->ignore_cur_inode = true;
2476 wc->ignore_cur_inode = false;
2478 ret = replay_xattr_deletes(wc->trans, root, log,
2479 path, key.objectid);
2482 mode = btrfs_inode_mode(eb, inode_item);
2483 if (S_ISDIR(mode)) {
2484 ret = replay_dir_deletes(wc->trans,
2485 root, log, path, key.objectid, 0);
2489 ret = overwrite_item(wc->trans, root, path,
2495 * Before replaying extents, truncate the inode to its
2496 * size. We need to do it now and not after log replay
2497 * because before an fsync we can have prealloc extents
2498 * added beyond the inode's i_size. If we did it after,
2499 * through orphan cleanup for example, we would drop
2500 * those prealloc extents just after replaying them.
2502 if (S_ISREG(mode)) {
2503 struct btrfs_drop_extents_args drop_args = { 0 };
2504 struct inode *inode;
2507 inode = read_one_inode(root, key.objectid);
2512 from = ALIGN(i_size_read(inode),
2513 root->fs_info->sectorsize);
2514 drop_args.start = from;
2515 drop_args.end = (u64)-1;
2516 drop_args.drop_cache = true;
2517 ret = btrfs_drop_extents(wc->trans, root,
2521 inode_sub_bytes(inode,
2522 drop_args.bytes_found);
2523 /* Update the inode's nbytes. */
2524 ret = btrfs_update_inode(wc->trans,
2525 root, BTRFS_I(inode));
2532 ret = link_to_fixup_dir(wc->trans, root,
2533 path, key.objectid);
2538 if (wc->ignore_cur_inode)
2541 if (key.type == BTRFS_DIR_INDEX_KEY &&
2542 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2543 ret = replay_one_dir_item(wc->trans, root, path,
2549 if (wc->stage < LOG_WALK_REPLAY_ALL)
2552 /* these keys are simply copied */
2553 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2554 ret = overwrite_item(wc->trans, root, path,
2558 } else if (key.type == BTRFS_INODE_REF_KEY ||
2559 key.type == BTRFS_INODE_EXTREF_KEY) {
2560 ret = add_inode_ref(wc->trans, root, log, path,
2562 if (ret && ret != -ENOENT)
2565 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2566 ret = replay_one_extent(wc->trans, root, path,
2572 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2573 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2574 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2575 * older kernel with such keys, ignore them.
2578 btrfs_free_path(path);
2583 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2585 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2587 struct btrfs_block_group *cache;
2589 cache = btrfs_lookup_block_group(fs_info, start);
2591 btrfs_err(fs_info, "unable to find block group for %llu", start);
2595 spin_lock(&cache->space_info->lock);
2596 spin_lock(&cache->lock);
2597 cache->reserved -= fs_info->nodesize;
2598 cache->space_info->bytes_reserved -= fs_info->nodesize;
2599 spin_unlock(&cache->lock);
2600 spin_unlock(&cache->space_info->lock);
2602 btrfs_put_block_group(cache);
2605 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2606 struct btrfs_root *root,
2607 struct btrfs_path *path, int *level,
2608 struct walk_control *wc)
2610 struct btrfs_fs_info *fs_info = root->fs_info;
2613 struct extent_buffer *next;
2614 struct extent_buffer *cur;
2618 while (*level > 0) {
2619 struct btrfs_key first_key;
2621 cur = path->nodes[*level];
2623 WARN_ON(btrfs_header_level(cur) != *level);
2625 if (path->slots[*level] >=
2626 btrfs_header_nritems(cur))
2629 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2630 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2631 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2632 blocksize = fs_info->nodesize;
2634 next = btrfs_find_create_tree_block(fs_info, bytenr,
2635 btrfs_header_owner(cur),
2638 return PTR_ERR(next);
2641 ret = wc->process_func(root, next, wc, ptr_gen,
2644 free_extent_buffer(next);
2648 path->slots[*level]++;
2650 ret = btrfs_read_extent_buffer(next, ptr_gen,
2651 *level - 1, &first_key);
2653 free_extent_buffer(next);
2658 btrfs_tree_lock(next);
2659 btrfs_clean_tree_block(next);
2660 btrfs_wait_tree_block_writeback(next);
2661 btrfs_tree_unlock(next);
2662 ret = btrfs_pin_reserved_extent(trans,
2665 free_extent_buffer(next);
2668 btrfs_redirty_list_add(
2669 trans->transaction, next);
2671 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2672 clear_extent_buffer_dirty(next);
2673 unaccount_log_buffer(fs_info, bytenr);
2676 free_extent_buffer(next);
2679 ret = btrfs_read_extent_buffer(next, ptr_gen, *level - 1, &first_key);
2681 free_extent_buffer(next);
2685 if (path->nodes[*level-1])
2686 free_extent_buffer(path->nodes[*level-1]);
2687 path->nodes[*level-1] = next;
2688 *level = btrfs_header_level(next);
2689 path->slots[*level] = 0;
2692 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2698 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2699 struct btrfs_root *root,
2700 struct btrfs_path *path, int *level,
2701 struct walk_control *wc)
2703 struct btrfs_fs_info *fs_info = root->fs_info;
2708 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2709 slot = path->slots[i];
2710 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2713 WARN_ON(*level == 0);
2716 ret = wc->process_func(root, path->nodes[*level], wc,
2717 btrfs_header_generation(path->nodes[*level]),
2723 struct extent_buffer *next;
2725 next = path->nodes[*level];
2728 btrfs_tree_lock(next);
2729 btrfs_clean_tree_block(next);
2730 btrfs_wait_tree_block_writeback(next);
2731 btrfs_tree_unlock(next);
2732 ret = btrfs_pin_reserved_extent(trans,
2733 path->nodes[*level]->start,
2734 path->nodes[*level]->len);
2737 btrfs_redirty_list_add(trans->transaction,
2740 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2741 clear_extent_buffer_dirty(next);
2743 unaccount_log_buffer(fs_info,
2744 path->nodes[*level]->start);
2747 free_extent_buffer(path->nodes[*level]);
2748 path->nodes[*level] = NULL;
2756 * drop the reference count on the tree rooted at 'snap'. This traverses
2757 * the tree freeing any blocks that have a ref count of zero after being
2760 static int walk_log_tree(struct btrfs_trans_handle *trans,
2761 struct btrfs_root *log, struct walk_control *wc)
2763 struct btrfs_fs_info *fs_info = log->fs_info;
2767 struct btrfs_path *path;
2770 path = btrfs_alloc_path();
2774 level = btrfs_header_level(log->node);
2776 path->nodes[level] = log->node;
2777 atomic_inc(&log->node->refs);
2778 path->slots[level] = 0;
2781 wret = walk_down_log_tree(trans, log, path, &level, wc);
2789 wret = walk_up_log_tree(trans, log, path, &level, wc);
2798 /* was the root node processed? if not, catch it here */
2799 if (path->nodes[orig_level]) {
2800 ret = wc->process_func(log, path->nodes[orig_level], wc,
2801 btrfs_header_generation(path->nodes[orig_level]),
2806 struct extent_buffer *next;
2808 next = path->nodes[orig_level];
2811 btrfs_tree_lock(next);
2812 btrfs_clean_tree_block(next);
2813 btrfs_wait_tree_block_writeback(next);
2814 btrfs_tree_unlock(next);
2815 ret = btrfs_pin_reserved_extent(trans,
2816 next->start, next->len);
2819 btrfs_redirty_list_add(trans->transaction, next);
2821 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2822 clear_extent_buffer_dirty(next);
2823 unaccount_log_buffer(fs_info, next->start);
2829 btrfs_free_path(path);
2834 * helper function to update the item for a given subvolumes log root
2835 * in the tree of log roots
2837 static int update_log_root(struct btrfs_trans_handle *trans,
2838 struct btrfs_root *log,
2839 struct btrfs_root_item *root_item)
2841 struct btrfs_fs_info *fs_info = log->fs_info;
2844 if (log->log_transid == 1) {
2845 /* insert root item on the first sync */
2846 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2847 &log->root_key, root_item);
2849 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2850 &log->root_key, root_item);
2855 static void wait_log_commit(struct btrfs_root *root, int transid)
2858 int index = transid % 2;
2861 * we only allow two pending log transactions at a time,
2862 * so we know that if ours is more than 2 older than the
2863 * current transaction, we're done
2866 prepare_to_wait(&root->log_commit_wait[index],
2867 &wait, TASK_UNINTERRUPTIBLE);
2869 if (!(root->log_transid_committed < transid &&
2870 atomic_read(&root->log_commit[index])))
2873 mutex_unlock(&root->log_mutex);
2875 mutex_lock(&root->log_mutex);
2877 finish_wait(&root->log_commit_wait[index], &wait);
2880 static void wait_for_writer(struct btrfs_root *root)
2885 prepare_to_wait(&root->log_writer_wait, &wait,
2886 TASK_UNINTERRUPTIBLE);
2887 if (!atomic_read(&root->log_writers))
2890 mutex_unlock(&root->log_mutex);
2892 mutex_lock(&root->log_mutex);
2894 finish_wait(&root->log_writer_wait, &wait);
2897 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2898 struct btrfs_log_ctx *ctx)
2900 mutex_lock(&root->log_mutex);
2901 list_del_init(&ctx->list);
2902 mutex_unlock(&root->log_mutex);
2906 * Invoked in log mutex context, or be sure there is no other task which
2907 * can access the list.
2909 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2910 int index, int error)
2912 struct btrfs_log_ctx *ctx;
2913 struct btrfs_log_ctx *safe;
2915 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2916 list_del_init(&ctx->list);
2917 ctx->log_ret = error;
2922 * btrfs_sync_log does sends a given tree log down to the disk and
2923 * updates the super blocks to record it. When this call is done,
2924 * you know that any inodes previously logged are safely on disk only
2927 * Any other return value means you need to call btrfs_commit_transaction.
2928 * Some of the edge cases for fsyncing directories that have had unlinks
2929 * or renames done in the past mean that sometimes the only safe
2930 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2931 * that has happened.
2933 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2934 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2940 struct btrfs_fs_info *fs_info = root->fs_info;
2941 struct btrfs_root *log = root->log_root;
2942 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2943 struct btrfs_root_item new_root_item;
2944 int log_transid = 0;
2945 struct btrfs_log_ctx root_log_ctx;
2946 struct blk_plug plug;
2950 mutex_lock(&root->log_mutex);
2951 log_transid = ctx->log_transid;
2952 if (root->log_transid_committed >= log_transid) {
2953 mutex_unlock(&root->log_mutex);
2954 return ctx->log_ret;
2957 index1 = log_transid % 2;
2958 if (atomic_read(&root->log_commit[index1])) {
2959 wait_log_commit(root, log_transid);
2960 mutex_unlock(&root->log_mutex);
2961 return ctx->log_ret;
2963 ASSERT(log_transid == root->log_transid);
2964 atomic_set(&root->log_commit[index1], 1);
2966 /* wait for previous tree log sync to complete */
2967 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2968 wait_log_commit(root, log_transid - 1);
2971 int batch = atomic_read(&root->log_batch);
2972 /* when we're on an ssd, just kick the log commit out */
2973 if (!btrfs_test_opt(fs_info, SSD) &&
2974 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2975 mutex_unlock(&root->log_mutex);
2976 schedule_timeout_uninterruptible(1);
2977 mutex_lock(&root->log_mutex);
2979 wait_for_writer(root);
2980 if (batch == atomic_read(&root->log_batch))
2984 /* bail out if we need to do a full commit */
2985 if (btrfs_need_log_full_commit(trans)) {
2986 ret = BTRFS_LOG_FORCE_COMMIT;
2987 mutex_unlock(&root->log_mutex);
2991 if (log_transid % 2 == 0)
2992 mark = EXTENT_DIRTY;
2996 /* we start IO on all the marked extents here, but we don't actually
2997 * wait for them until later.
2999 blk_start_plug(&plug);
3000 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3002 * -EAGAIN happens when someone, e.g., a concurrent transaction
3003 * commit, writes a dirty extent in this tree-log commit. This
3004 * concurrent write will create a hole writing out the extents,
3005 * and we cannot proceed on a zoned filesystem, requiring
3006 * sequential writing. While we can bail out to a full commit
3007 * here, but we can continue hoping the concurrent writing fills
3010 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3013 blk_finish_plug(&plug);
3014 btrfs_set_log_full_commit(trans);
3015 mutex_unlock(&root->log_mutex);
3020 * We _must_ update under the root->log_mutex in order to make sure we
3021 * have a consistent view of the log root we are trying to commit at
3024 * We _must_ copy this into a local copy, because we are not holding the
3025 * log_root_tree->log_mutex yet. This is important because when we
3026 * commit the log_root_tree we must have a consistent view of the
3027 * log_root_tree when we update the super block to point at the
3028 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3029 * with the commit and possibly point at the new block which we may not
3032 btrfs_set_root_node(&log->root_item, log->node);
3033 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3035 root->log_transid++;
3036 log->log_transid = root->log_transid;
3037 root->log_start_pid = 0;
3039 * IO has been started, blocks of the log tree have WRITTEN flag set
3040 * in their headers. new modifications of the log will be written to
3041 * new positions. so it's safe to allow log writers to go in.
3043 mutex_unlock(&root->log_mutex);
3045 if (btrfs_is_zoned(fs_info)) {
3046 mutex_lock(&fs_info->tree_root->log_mutex);
3047 if (!log_root_tree->node) {
3048 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3050 mutex_unlock(&fs_info->tree_root->log_mutex);
3051 blk_finish_plug(&plug);
3055 mutex_unlock(&fs_info->tree_root->log_mutex);
3058 btrfs_init_log_ctx(&root_log_ctx, NULL);
3060 mutex_lock(&log_root_tree->log_mutex);
3062 index2 = log_root_tree->log_transid % 2;
3063 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3064 root_log_ctx.log_transid = log_root_tree->log_transid;
3067 * Now we are safe to update the log_root_tree because we're under the
3068 * log_mutex, and we're a current writer so we're holding the commit
3069 * open until we drop the log_mutex.
3071 ret = update_log_root(trans, log, &new_root_item);
3073 if (!list_empty(&root_log_ctx.list))
3074 list_del_init(&root_log_ctx.list);
3076 blk_finish_plug(&plug);
3077 btrfs_set_log_full_commit(trans);
3080 "failed to update log for root %llu ret %d",
3081 root->root_key.objectid, ret);
3082 btrfs_wait_tree_log_extents(log, mark);
3083 mutex_unlock(&log_root_tree->log_mutex);
3087 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3088 blk_finish_plug(&plug);
3089 list_del_init(&root_log_ctx.list);
3090 mutex_unlock(&log_root_tree->log_mutex);
3091 ret = root_log_ctx.log_ret;
3095 index2 = root_log_ctx.log_transid % 2;
3096 if (atomic_read(&log_root_tree->log_commit[index2])) {
3097 blk_finish_plug(&plug);
3098 ret = btrfs_wait_tree_log_extents(log, mark);
3099 wait_log_commit(log_root_tree,
3100 root_log_ctx.log_transid);
3101 mutex_unlock(&log_root_tree->log_mutex);
3103 ret = root_log_ctx.log_ret;
3106 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3107 atomic_set(&log_root_tree->log_commit[index2], 1);
3109 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3110 wait_log_commit(log_root_tree,
3111 root_log_ctx.log_transid - 1);
3115 * now that we've moved on to the tree of log tree roots,
3116 * check the full commit flag again
3118 if (btrfs_need_log_full_commit(trans)) {
3119 blk_finish_plug(&plug);
3120 btrfs_wait_tree_log_extents(log, mark);
3121 mutex_unlock(&log_root_tree->log_mutex);
3122 ret = BTRFS_LOG_FORCE_COMMIT;
3123 goto out_wake_log_root;
3126 ret = btrfs_write_marked_extents(fs_info,
3127 &log_root_tree->dirty_log_pages,
3128 EXTENT_DIRTY | EXTENT_NEW);
3129 blk_finish_plug(&plug);
3131 * As described above, -EAGAIN indicates a hole in the extents. We
3132 * cannot wait for these write outs since the waiting cause a
3133 * deadlock. Bail out to the full commit instead.
3135 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3136 btrfs_set_log_full_commit(trans);
3137 btrfs_wait_tree_log_extents(log, mark);
3138 mutex_unlock(&log_root_tree->log_mutex);
3139 goto out_wake_log_root;
3141 btrfs_set_log_full_commit(trans);
3142 mutex_unlock(&log_root_tree->log_mutex);
3143 goto out_wake_log_root;
3145 ret = btrfs_wait_tree_log_extents(log, mark);
3147 ret = btrfs_wait_tree_log_extents(log_root_tree,
3148 EXTENT_NEW | EXTENT_DIRTY);
3150 btrfs_set_log_full_commit(trans);
3151 mutex_unlock(&log_root_tree->log_mutex);
3152 goto out_wake_log_root;
3155 log_root_start = log_root_tree->node->start;
3156 log_root_level = btrfs_header_level(log_root_tree->node);
3157 log_root_tree->log_transid++;
3158 mutex_unlock(&log_root_tree->log_mutex);
3161 * Here we are guaranteed that nobody is going to write the superblock
3162 * for the current transaction before us and that neither we do write
3163 * our superblock before the previous transaction finishes its commit
3164 * and writes its superblock, because:
3166 * 1) We are holding a handle on the current transaction, so no body
3167 * can commit it until we release the handle;
3169 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3170 * if the previous transaction is still committing, and hasn't yet
3171 * written its superblock, we wait for it to do it, because a
3172 * transaction commit acquires the tree_log_mutex when the commit
3173 * begins and releases it only after writing its superblock.
3175 mutex_lock(&fs_info->tree_log_mutex);
3178 * The previous transaction writeout phase could have failed, and thus
3179 * marked the fs in an error state. We must not commit here, as we
3180 * could have updated our generation in the super_for_commit and
3181 * writing the super here would result in transid mismatches. If there
3182 * is an error here just bail.
3184 if (BTRFS_FS_ERROR(fs_info)) {
3186 btrfs_set_log_full_commit(trans);
3187 btrfs_abort_transaction(trans, ret);
3188 mutex_unlock(&fs_info->tree_log_mutex);
3189 goto out_wake_log_root;
3192 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3193 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3194 ret = write_all_supers(fs_info, 1);
3195 mutex_unlock(&fs_info->tree_log_mutex);
3197 btrfs_set_log_full_commit(trans);
3198 btrfs_abort_transaction(trans, ret);
3199 goto out_wake_log_root;
3203 * We know there can only be one task here, since we have not yet set
3204 * root->log_commit[index1] to 0 and any task attempting to sync the
3205 * log must wait for the previous log transaction to commit if it's
3206 * still in progress or wait for the current log transaction commit if
3207 * someone else already started it. We use <= and not < because the
3208 * first log transaction has an ID of 0.
3210 ASSERT(root->last_log_commit <= log_transid);
3211 root->last_log_commit = log_transid;
3214 mutex_lock(&log_root_tree->log_mutex);
3215 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3217 log_root_tree->log_transid_committed++;
3218 atomic_set(&log_root_tree->log_commit[index2], 0);
3219 mutex_unlock(&log_root_tree->log_mutex);
3222 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3223 * all the updates above are seen by the woken threads. It might not be
3224 * necessary, but proving that seems to be hard.
3226 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3228 mutex_lock(&root->log_mutex);
3229 btrfs_remove_all_log_ctxs(root, index1, ret);
3230 root->log_transid_committed++;
3231 atomic_set(&root->log_commit[index1], 0);
3232 mutex_unlock(&root->log_mutex);
3235 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3236 * all the updates above are seen by the woken threads. It might not be
3237 * necessary, but proving that seems to be hard.
3239 cond_wake_up(&root->log_commit_wait[index1]);
3243 static void free_log_tree(struct btrfs_trans_handle *trans,
3244 struct btrfs_root *log)
3247 struct walk_control wc = {
3249 .process_func = process_one_buffer
3253 ret = walk_log_tree(trans, log, &wc);
3256 * We weren't able to traverse the entire log tree, the
3257 * typical scenario is getting an -EIO when reading an
3258 * extent buffer of the tree, due to a previous writeback
3261 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3262 &log->fs_info->fs_state);
3265 * Some extent buffers of the log tree may still be dirty
3266 * and not yet written back to storage, because we may
3267 * have updates to a log tree without syncing a log tree,
3268 * such as during rename and link operations. So flush
3269 * them out and wait for their writeback to complete, so
3270 * that we properly cleanup their state and pages.
3272 btrfs_write_marked_extents(log->fs_info,
3273 &log->dirty_log_pages,
3274 EXTENT_DIRTY | EXTENT_NEW);
3275 btrfs_wait_tree_log_extents(log,
3276 EXTENT_DIRTY | EXTENT_NEW);
3279 btrfs_abort_transaction(trans, ret);
3281 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3285 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3286 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3287 extent_io_tree_release(&log->log_csum_range);
3289 btrfs_put_root(log);
3293 * free all the extents used by the tree log. This should be called
3294 * at commit time of the full transaction
3296 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3298 if (root->log_root) {
3299 free_log_tree(trans, root->log_root);
3300 root->log_root = NULL;
3301 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3306 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3307 struct btrfs_fs_info *fs_info)
3309 if (fs_info->log_root_tree) {
3310 free_log_tree(trans, fs_info->log_root_tree);
3311 fs_info->log_root_tree = NULL;
3312 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3318 * Check if an inode was logged in the current transaction. This correctly deals
3319 * with the case where the inode was logged but has a logged_trans of 0, which
3320 * happens if the inode is evicted and loaded again, as logged_trans is an in
3321 * memory only field (not persisted).
3323 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3326 static int inode_logged(struct btrfs_trans_handle *trans,
3327 struct btrfs_inode *inode,
3328 struct btrfs_path *path_in)
3330 struct btrfs_path *path = path_in;
3331 struct btrfs_key key;
3334 if (inode->logged_trans == trans->transid)
3338 * If logged_trans is not 0, then we know the inode logged was not logged
3339 * in this transaction, so we can return false right away.
3341 if (inode->logged_trans > 0)
3345 * If no log tree was created for this root in this transaction, then
3346 * the inode can not have been logged in this transaction. In that case
3347 * set logged_trans to anything greater than 0 and less than the current
3348 * transaction's ID, to avoid the search below in a future call in case
3349 * a log tree gets created after this.
3351 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3352 inode->logged_trans = trans->transid - 1;
3357 * We have a log tree and the inode's logged_trans is 0. We can't tell
3358 * for sure if the inode was logged before in this transaction by looking
3359 * only at logged_trans. We could be pessimistic and assume it was, but
3360 * that can lead to unnecessarily logging an inode during rename and link
3361 * operations, and then further updating the log in followup rename and
3362 * link operations, specially if it's a directory, which adds latency
3363 * visible to applications doing a series of rename or link operations.
3365 * A logged_trans of 0 here can mean several things:
3367 * 1) The inode was never logged since the filesystem was mounted, and may
3368 * or may have not been evicted and loaded again;
3370 * 2) The inode was logged in a previous transaction, then evicted and
3371 * then loaded again;
3373 * 3) The inode was logged in the current transaction, then evicted and
3374 * then loaded again.
3376 * For cases 1) and 2) we don't want to return true, but we need to detect
3377 * case 3) and return true. So we do a search in the log root for the inode
3380 key.objectid = btrfs_ino(inode);
3381 key.type = BTRFS_INODE_ITEM_KEY;
3385 path = btrfs_alloc_path();
3390 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3393 btrfs_release_path(path);
3395 btrfs_free_path(path);
3398 * Logging an inode always results in logging its inode item. So if we
3399 * did not find the item we know the inode was not logged for sure.
3403 } else if (ret > 0) {
3405 * Set logged_trans to a value greater than 0 and less then the
3406 * current transaction to avoid doing the search in future calls.
3408 inode->logged_trans = trans->transid - 1;
3413 * The inode was previously logged and then evicted, set logged_trans to
3414 * the current transacion's ID, to avoid future tree searches as long as
3415 * the inode is not evicted again.
3417 inode->logged_trans = trans->transid;
3420 * If it's a directory, then we must set last_dir_index_offset to the
3421 * maximum possible value, so that the next attempt to log the inode does
3422 * not skip checking if dir index keys found in modified subvolume tree
3423 * leaves have been logged before, otherwise it would result in attempts
3424 * to insert duplicate dir index keys in the log tree. This must be done
3425 * because last_dir_index_offset is an in-memory only field, not persisted
3426 * in the inode item or any other on-disk structure, so its value is lost
3427 * once the inode is evicted.
3429 if (S_ISDIR(inode->vfs_inode.i_mode))
3430 inode->last_dir_index_offset = (u64)-1;
3436 * Delete a directory entry from the log if it exists.
3438 * Returns < 0 on error
3439 * 1 if the entry does not exists
3440 * 0 if the entry existed and was successfully deleted
3442 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3443 struct btrfs_root *log,
3444 struct btrfs_path *path,
3446 const char *name, int name_len,
3449 struct btrfs_dir_item *di;
3452 * We only log dir index items of a directory, so we don't need to look
3453 * for dir item keys.
3455 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3456 index, name, name_len, -1);
3463 * We do not need to update the size field of the directory's
3464 * inode item because on log replay we update the field to reflect
3465 * all existing entries in the directory (see overwrite_item()).
3467 return btrfs_delete_one_dir_name(trans, log, path, di);
3471 * If both a file and directory are logged, and unlinks or renames are
3472 * mixed in, we have a few interesting corners:
3474 * create file X in dir Y
3475 * link file X to X.link in dir Y
3477 * unlink file X but leave X.link
3480 * After a crash we would expect only X.link to exist. But file X
3481 * didn't get fsync'd again so the log has back refs for X and X.link.
3483 * We solve this by removing directory entries and inode backrefs from the
3484 * log when a file that was logged in the current transaction is
3485 * unlinked. Any later fsync will include the updated log entries, and
3486 * we'll be able to reconstruct the proper directory items from backrefs.
3488 * This optimizations allows us to avoid relogging the entire inode
3489 * or the entire directory.
3491 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3492 struct btrfs_root *root,
3493 const char *name, int name_len,
3494 struct btrfs_inode *dir, u64 index)
3496 struct btrfs_path *path;
3499 ret = inode_logged(trans, dir, NULL);
3503 btrfs_set_log_full_commit(trans);
3507 ret = join_running_log_trans(root);
3511 mutex_lock(&dir->log_mutex);
3513 path = btrfs_alloc_path();
3519 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3520 name, name_len, index);
3521 btrfs_free_path(path);
3523 mutex_unlock(&dir->log_mutex);
3525 btrfs_set_log_full_commit(trans);
3526 btrfs_end_log_trans(root);
3529 /* see comments for btrfs_del_dir_entries_in_log */
3530 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3531 struct btrfs_root *root,
3532 const char *name, int name_len,
3533 struct btrfs_inode *inode, u64 dirid)
3535 struct btrfs_root *log;
3539 ret = inode_logged(trans, inode, NULL);
3543 btrfs_set_log_full_commit(trans);
3547 ret = join_running_log_trans(root);
3550 log = root->log_root;
3551 mutex_lock(&inode->log_mutex);
3553 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3555 mutex_unlock(&inode->log_mutex);
3556 if (ret < 0 && ret != -ENOENT)
3557 btrfs_set_log_full_commit(trans);
3558 btrfs_end_log_trans(root);
3562 * creates a range item in the log for 'dirid'. first_offset and
3563 * last_offset tell us which parts of the key space the log should
3564 * be considered authoritative for.
3566 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3567 struct btrfs_root *log,
3568 struct btrfs_path *path,
3570 u64 first_offset, u64 last_offset)
3573 struct btrfs_key key;
3574 struct btrfs_dir_log_item *item;
3576 key.objectid = dirid;
3577 key.offset = first_offset;
3578 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3579 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3581 * -EEXIST is fine and can happen sporadically when we are logging a
3582 * directory and have concurrent insertions in the subvolume's tree for
3583 * items from other inodes and that result in pushing off some dir items
3584 * from one leaf to another in order to accommodate for the new items.
3585 * This results in logging the same dir index range key.
3587 if (ret && ret != -EEXIST)
3590 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3591 struct btrfs_dir_log_item);
3592 if (ret == -EEXIST) {
3593 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3596 * btrfs_del_dir_entries_in_log() might have been called during
3597 * an unlink between the initial insertion of this key and the
3598 * current update, or we might be logging a single entry deletion
3599 * during a rename, so set the new last_offset to the max value.
3601 last_offset = max(last_offset, curr_end);
3603 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3604 btrfs_mark_buffer_dirty(path->nodes[0]);
3605 btrfs_release_path(path);
3609 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3610 struct btrfs_root *log,
3611 struct extent_buffer *src,
3612 struct btrfs_path *dst_path,
3616 char *ins_data = NULL;
3617 struct btrfs_item_batch batch;
3618 struct extent_buffer *dst;
3619 unsigned long src_offset;
3620 unsigned long dst_offset;
3621 struct btrfs_key key;
3630 btrfs_item_key_to_cpu(src, &key, start_slot);
3631 item_size = btrfs_item_size(src, start_slot);
3633 batch.data_sizes = &item_size;
3634 batch.total_data_size = item_size;
3636 struct btrfs_key *ins_keys;
3639 ins_data = kmalloc(count * sizeof(u32) +
3640 count * sizeof(struct btrfs_key), GFP_NOFS);
3644 ins_sizes = (u32 *)ins_data;
3645 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3646 batch.keys = ins_keys;
3647 batch.data_sizes = ins_sizes;
3648 batch.total_data_size = 0;
3650 for (i = 0; i < count; i++) {
3651 const int slot = start_slot + i;
3653 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3654 ins_sizes[i] = btrfs_item_size(src, slot);
3655 batch.total_data_size += ins_sizes[i];
3659 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3663 dst = dst_path->nodes[0];
3665 * Copy all the items in bulk, in a single copy operation. Item data is
3666 * organized such that it's placed at the end of a leaf and from right
3667 * to left. For example, the data for the second item ends at an offset
3668 * that matches the offset where the data for the first item starts, the
3669 * data for the third item ends at an offset that matches the offset
3670 * where the data of the second items starts, and so on.
3671 * Therefore our source and destination start offsets for copy match the
3672 * offsets of the last items (highest slots).
3674 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3675 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3676 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3677 btrfs_release_path(dst_path);
3684 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3685 struct btrfs_inode *inode,
3686 struct btrfs_path *path,
3687 struct btrfs_path *dst_path,
3688 struct btrfs_log_ctx *ctx,
3689 u64 *last_old_dentry_offset)
3691 struct btrfs_root *log = inode->root->log_root;
3692 struct extent_buffer *src;
3693 const int nritems = btrfs_header_nritems(path->nodes[0]);
3694 const u64 ino = btrfs_ino(inode);
3695 bool last_found = false;
3696 int batch_start = 0;
3701 * We need to clone the leaf, release the read lock on it, and use the
3702 * clone before modifying the log tree. See the comment at copy_items()
3703 * about why we need to do this.
3705 src = btrfs_clone_extent_buffer(path->nodes[0]);
3710 btrfs_release_path(path);
3711 path->nodes[0] = src;
3714 for (; i < nritems; i++) {
3715 struct btrfs_dir_item *di;
3716 struct btrfs_key key;
3719 btrfs_item_key_to_cpu(src, &key, i);
3721 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3726 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3727 ctx->last_dir_item_offset = key.offset;
3730 * Skip ranges of items that consist only of dir item keys created
3731 * in past transactions. However if we find a gap, we must log a
3732 * dir index range item for that gap, so that index keys in that
3733 * gap are deleted during log replay.
3735 if (btrfs_dir_transid(src, di) < trans->transid) {
3736 if (key.offset > *last_old_dentry_offset + 1) {
3737 ret = insert_dir_log_key(trans, log, dst_path,
3738 ino, *last_old_dentry_offset + 1,
3744 *last_old_dentry_offset = key.offset;
3748 /* If we logged this dir index item before, we can skip it. */
3749 if (key.offset <= inode->last_dir_index_offset)
3753 * We must make sure that when we log a directory entry, the
3754 * corresponding inode, after log replay, has a matching link
3755 * count. For example:
3761 * xfs_io -c "fsync" mydir
3763 * <mount fs and log replay>
3765 * Would result in a fsync log that when replayed, our file inode
3766 * would have a link count of 1, but we get two directory entries
3767 * pointing to the same inode. After removing one of the names,
3768 * it would not be possible to remove the other name, which
3769 * resulted always in stale file handle errors, and would not be
3770 * possible to rmdir the parent directory, since its i_size could
3771 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3772 * resulting in -ENOTEMPTY errors.
3774 if (!ctx->log_new_dentries) {
3775 struct btrfs_key di_key;
3777 btrfs_dir_item_key_to_cpu(src, di, &di_key);
3778 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3779 ctx->log_new_dentries = true;
3782 if (batch_size == 0)
3787 if (batch_size > 0) {
3790 ret = flush_dir_items_batch(trans, log, src, dst_path,
3791 batch_start, batch_size);
3796 return last_found ? 1 : 0;
3800 * log all the items included in the current transaction for a given
3801 * directory. This also creates the range items in the log tree required
3802 * to replay anything deleted before the fsync
3804 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3805 struct btrfs_inode *inode,
3806 struct btrfs_path *path,
3807 struct btrfs_path *dst_path,
3808 struct btrfs_log_ctx *ctx,
3809 u64 min_offset, u64 *last_offset_ret)
3811 struct btrfs_key min_key;
3812 struct btrfs_root *root = inode->root;
3813 struct btrfs_root *log = root->log_root;
3816 u64 last_old_dentry_offset = min_offset - 1;
3817 u64 last_offset = (u64)-1;
3818 u64 ino = btrfs_ino(inode);
3820 min_key.objectid = ino;
3821 min_key.type = BTRFS_DIR_INDEX_KEY;
3822 min_key.offset = min_offset;
3824 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3827 * we didn't find anything from this transaction, see if there
3828 * is anything at all
3830 if (ret != 0 || min_key.objectid != ino ||
3831 min_key.type != BTRFS_DIR_INDEX_KEY) {
3832 min_key.objectid = ino;
3833 min_key.type = BTRFS_DIR_INDEX_KEY;
3834 min_key.offset = (u64)-1;
3835 btrfs_release_path(path);
3836 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3838 btrfs_release_path(path);
3841 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3843 /* if ret == 0 there are items for this type,
3844 * create a range to tell us the last key of this type.
3845 * otherwise, there are no items in this directory after
3846 * *min_offset, and we create a range to indicate that.
3849 struct btrfs_key tmp;
3851 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3853 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3854 last_old_dentry_offset = tmp.offset;
3855 } else if (ret < 0) {
3862 /* go backward to find any previous key */
3863 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3865 struct btrfs_key tmp;
3867 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3869 * The dir index key before the first one we found that needs to
3870 * be logged might be in a previous leaf, and there might be a
3871 * gap between these keys, meaning that we had deletions that
3872 * happened. So the key range item we log (key type
3873 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3874 * previous key's offset plus 1, so that those deletes are replayed.
3876 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3877 last_old_dentry_offset = tmp.offset;
3878 } else if (ret < 0) {
3883 btrfs_release_path(path);
3886 * Find the first key from this transaction again or the one we were at
3887 * in the loop below in case we had to reschedule. We may be logging the
3888 * directory without holding its VFS lock, which happen when logging new
3889 * dentries (through log_new_dir_dentries()) or in some cases when we
3890 * need to log the parent directory of an inode. This means a dir index
3891 * key might be deleted from the inode's root, and therefore we may not
3892 * find it anymore. If we can't find it, just move to the next key. We
3893 * can not bail out and ignore, because if we do that we will simply
3894 * not log dir index keys that come after the one that was just deleted
3895 * and we can end up logging a dir index range that ends at (u64)-1
3896 * (@last_offset is initialized to that), resulting in removing dir
3897 * entries we should not remove at log replay time.
3900 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3902 ret = btrfs_next_item(root, path);
3905 /* If ret is 1, there are no more keys in the inode's root. */
3910 * we have a block from this transaction, log every item in it
3911 * from our directory
3914 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3915 &last_old_dentry_offset);
3921 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3924 * look ahead to the next item and see if it is also
3925 * from this directory and from this transaction
3927 ret = btrfs_next_leaf(root, path);
3930 last_offset = (u64)-1;
3935 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3936 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3937 last_offset = (u64)-1;
3940 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3942 * The next leaf was not changed in the current transaction
3943 * and has at least one dir index key.
3944 * We check for the next key because there might have been
3945 * one or more deletions between the last key we logged and
3946 * that next key. So the key range item we log (key type
3947 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3948 * offset minus 1, so that those deletes are replayed.
3950 last_offset = min_key.offset - 1;
3953 if (need_resched()) {
3954 btrfs_release_path(path);
3960 btrfs_release_path(path);
3961 btrfs_release_path(dst_path);
3964 *last_offset_ret = last_offset;
3966 * In case the leaf was changed in the current transaction but
3967 * all its dir items are from a past transaction, the last item
3968 * in the leaf is a dir item and there's no gap between that last
3969 * dir item and the first one on the next leaf (which did not
3970 * change in the current transaction), then we don't need to log
3971 * a range, last_old_dentry_offset is == to last_offset.
3973 ASSERT(last_old_dentry_offset <= last_offset);
3974 if (last_old_dentry_offset < last_offset) {
3975 ret = insert_dir_log_key(trans, log, path, ino,
3976 last_old_dentry_offset + 1,
3986 * If the inode was logged before and it was evicted, then its
3987 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3988 * key offset. If that's the case, search for it and update the inode. This
3989 * is to avoid lookups in the log tree every time we try to insert a dir index
3990 * key from a leaf changed in the current transaction, and to allow us to always
3991 * do batch insertions of dir index keys.
3993 static int update_last_dir_index_offset(struct btrfs_inode *inode,
3994 struct btrfs_path *path,
3995 const struct btrfs_log_ctx *ctx)
3997 const u64 ino = btrfs_ino(inode);
3998 struct btrfs_key key;
4001 lockdep_assert_held(&inode->log_mutex);
4003 if (inode->last_dir_index_offset != (u64)-1)
4006 if (!ctx->logged_before) {
4007 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4012 key.type = BTRFS_DIR_INDEX_KEY;
4013 key.offset = (u64)-1;
4015 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4017 * An error happened or we actually have an index key with an offset
4018 * value of (u64)-1. Bail out, we're done.
4024 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4027 * No dir index items, bail out and leave last_dir_index_offset with
4028 * the value right before the first valid index value.
4030 if (path->slots[0] == 0)
4034 * btrfs_search_slot() left us at one slot beyond the slot with the last
4035 * index key, or beyond the last key of the directory that is not an
4036 * index key. If we have an index key before, set last_dir_index_offset
4037 * to its offset value, otherwise leave it with a value right before the
4038 * first valid index value, as it means we have an empty directory.
4040 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4041 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4042 inode->last_dir_index_offset = key.offset;
4045 btrfs_release_path(path);
4051 * logging directories is very similar to logging inodes, We find all the items
4052 * from the current transaction and write them to the log.
4054 * The recovery code scans the directory in the subvolume, and if it finds a
4055 * key in the range logged that is not present in the log tree, then it means
4056 * that dir entry was unlinked during the transaction.
4058 * In order for that scan to work, we must include one key smaller than
4059 * the smallest logged by this transaction and one key larger than the largest
4060 * key logged by this transaction.
4062 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4063 struct btrfs_inode *inode,
4064 struct btrfs_path *path,
4065 struct btrfs_path *dst_path,
4066 struct btrfs_log_ctx *ctx)
4072 ret = update_last_dir_index_offset(inode, path, ctx);
4076 min_key = BTRFS_DIR_START_INDEX;
4078 ctx->last_dir_item_offset = inode->last_dir_index_offset;
4081 ret = log_dir_items(trans, inode, path, dst_path,
4082 ctx, min_key, &max_key);
4085 if (max_key == (u64)-1)
4087 min_key = max_key + 1;
4090 inode->last_dir_index_offset = ctx->last_dir_item_offset;
4096 * a helper function to drop items from the log before we relog an
4097 * inode. max_key_type indicates the highest item type to remove.
4098 * This cannot be run for file data extents because it does not
4099 * free the extents they point to.
4101 static int drop_inode_items(struct btrfs_trans_handle *trans,
4102 struct btrfs_root *log,
4103 struct btrfs_path *path,
4104 struct btrfs_inode *inode,
4108 struct btrfs_key key;
4109 struct btrfs_key found_key;
4112 key.objectid = btrfs_ino(inode);
4113 key.type = max_key_type;
4114 key.offset = (u64)-1;
4117 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4118 BUG_ON(ret == 0); /* Logic error */
4122 if (path->slots[0] == 0)
4126 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4129 if (found_key.objectid != key.objectid)
4132 found_key.offset = 0;
4134 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
4138 ret = btrfs_del_items(trans, log, path, start_slot,
4139 path->slots[0] - start_slot + 1);
4141 * If start slot isn't 0 then we don't need to re-search, we've
4142 * found the last guy with the objectid in this tree.
4144 if (ret || start_slot != 0)
4146 btrfs_release_path(path);
4148 btrfs_release_path(path);
4154 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4155 struct btrfs_root *log_root,
4156 struct btrfs_inode *inode,
4157 u64 new_size, u32 min_type)
4159 struct btrfs_truncate_control control = {
4160 .new_size = new_size,
4161 .ino = btrfs_ino(inode),
4162 .min_type = min_type,
4163 .skip_ref_updates = true,
4166 return btrfs_truncate_inode_items(trans, log_root, &control);
4169 static void fill_inode_item(struct btrfs_trans_handle *trans,
4170 struct extent_buffer *leaf,
4171 struct btrfs_inode_item *item,
4172 struct inode *inode, int log_inode_only,
4175 struct btrfs_map_token token;
4178 btrfs_init_map_token(&token, leaf);
4180 if (log_inode_only) {
4181 /* set the generation to zero so the recover code
4182 * can tell the difference between an logging
4183 * just to say 'this inode exists' and a logging
4184 * to say 'update this inode with these values'
4186 btrfs_set_token_inode_generation(&token, item, 0);
4187 btrfs_set_token_inode_size(&token, item, logged_isize);
4189 btrfs_set_token_inode_generation(&token, item,
4190 BTRFS_I(inode)->generation);
4191 btrfs_set_token_inode_size(&token, item, inode->i_size);
4194 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4195 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4196 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4197 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4199 btrfs_set_token_timespec_sec(&token, &item->atime,
4200 inode->i_atime.tv_sec);
4201 btrfs_set_token_timespec_nsec(&token, &item->atime,
4202 inode->i_atime.tv_nsec);
4204 btrfs_set_token_timespec_sec(&token, &item->mtime,
4205 inode->i_mtime.tv_sec);
4206 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4207 inode->i_mtime.tv_nsec);
4209 btrfs_set_token_timespec_sec(&token, &item->ctime,
4210 inode->i_ctime.tv_sec);
4211 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4212 inode->i_ctime.tv_nsec);
4215 * We do not need to set the nbytes field, in fact during a fast fsync
4216 * its value may not even be correct, since a fast fsync does not wait
4217 * for ordered extent completion, which is where we update nbytes, it
4218 * only waits for writeback to complete. During log replay as we find
4219 * file extent items and replay them, we adjust the nbytes field of the
4220 * inode item in subvolume tree as needed (see overwrite_item()).
4223 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4224 btrfs_set_token_inode_transid(&token, item, trans->transid);
4225 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4226 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4227 BTRFS_I(inode)->ro_flags);
4228 btrfs_set_token_inode_flags(&token, item, flags);
4229 btrfs_set_token_inode_block_group(&token, item, 0);
4232 static int log_inode_item(struct btrfs_trans_handle *trans,
4233 struct btrfs_root *log, struct btrfs_path *path,
4234 struct btrfs_inode *inode, bool inode_item_dropped)
4236 struct btrfs_inode_item *inode_item;
4240 * If we are doing a fast fsync and the inode was logged before in the
4241 * current transaction, then we know the inode was previously logged and
4242 * it exists in the log tree. For performance reasons, in this case use
4243 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4244 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4245 * contention in case there are concurrent fsyncs for other inodes of the
4246 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4247 * already exists can also result in unnecessarily splitting a leaf.
4249 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4250 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4256 * This means it is the first fsync in the current transaction,
4257 * so the inode item is not in the log and we need to insert it.
4258 * We can never get -EEXIST because we are only called for a fast
4259 * fsync and in case an inode eviction happens after the inode was
4260 * logged before in the current transaction, when we load again
4261 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4262 * flags and set ->logged_trans to 0.
4264 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4265 sizeof(*inode_item));
4266 ASSERT(ret != -EEXIST);
4270 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4271 struct btrfs_inode_item);
4272 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4274 btrfs_release_path(path);
4278 static int log_csums(struct btrfs_trans_handle *trans,
4279 struct btrfs_inode *inode,
4280 struct btrfs_root *log_root,
4281 struct btrfs_ordered_sum *sums)
4283 const u64 lock_end = sums->bytenr + sums->len - 1;
4284 struct extent_state *cached_state = NULL;
4288 * If this inode was not used for reflink operations in the current
4289 * transaction with new extents, then do the fast path, no need to
4290 * worry about logging checksum items with overlapping ranges.
4292 if (inode->last_reflink_trans < trans->transid)
4293 return btrfs_csum_file_blocks(trans, log_root, sums);
4296 * Serialize logging for checksums. This is to avoid racing with the
4297 * same checksum being logged by another task that is logging another
4298 * file which happens to refer to the same extent as well. Such races
4299 * can leave checksum items in the log with overlapping ranges.
4301 ret = lock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4306 * Due to extent cloning, we might have logged a csum item that covers a
4307 * subrange of a cloned extent, and later we can end up logging a csum
4308 * item for a larger subrange of the same extent or the entire range.
4309 * This would leave csum items in the log tree that cover the same range
4310 * and break the searches for checksums in the log tree, resulting in
4311 * some checksums missing in the fs/subvolume tree. So just delete (or
4312 * trim and adjust) any existing csum items in the log for this range.
4314 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4316 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4318 unlock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4324 static noinline int copy_items(struct btrfs_trans_handle *trans,
4325 struct btrfs_inode *inode,
4326 struct btrfs_path *dst_path,
4327 struct btrfs_path *src_path,
4328 int start_slot, int nr, int inode_only,
4331 struct btrfs_root *log = inode->root->log_root;
4332 struct btrfs_file_extent_item *extent;
4333 struct extent_buffer *src;
4335 struct btrfs_key *ins_keys;
4337 struct btrfs_item_batch batch;
4341 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4342 const u64 i_size = i_size_read(&inode->vfs_inode);
4345 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4346 * use the clone. This is because otherwise we would be changing the log
4347 * tree, to insert items from the subvolume tree or insert csum items,
4348 * while holding a read lock on a leaf from the subvolume tree, which
4349 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4351 * 1) Modifying the log tree triggers an extent buffer allocation while
4352 * holding a write lock on a parent extent buffer from the log tree.
4353 * Allocating the pages for an extent buffer, or the extent buffer
4354 * struct, can trigger inode eviction and finally the inode eviction
4355 * will trigger a release/remove of a delayed node, which requires
4356 * taking the delayed node's mutex;
4358 * 2) Allocating a metadata extent for a log tree can trigger the async
4359 * reclaim thread and make us wait for it to release enough space and
4360 * unblock our reservation ticket. The reclaim thread can start
4361 * flushing delayed items, and that in turn results in the need to
4362 * lock delayed node mutexes and in the need to write lock extent
4363 * buffers of a subvolume tree - all this while holding a write lock
4364 * on the parent extent buffer in the log tree.
4366 * So one task in scenario 1) running in parallel with another task in
4367 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4368 * node mutex while having a read lock on a leaf from the subvolume,
4369 * while the other is holding the delayed node's mutex and wants to
4370 * write lock the same subvolume leaf for flushing delayed items.
4372 src = btrfs_clone_extent_buffer(src_path->nodes[0]);
4376 i = src_path->slots[0];
4377 btrfs_release_path(src_path);
4378 src_path->nodes[0] = src;
4379 src_path->slots[0] = i;
4381 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4382 nr * sizeof(u32), GFP_NOFS);
4386 ins_sizes = (u32 *)ins_data;
4387 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4388 batch.keys = ins_keys;
4389 batch.data_sizes = ins_sizes;
4390 batch.total_data_size = 0;
4394 for (i = 0; i < nr; i++) {
4395 const int src_slot = start_slot + i;
4396 struct btrfs_root *csum_root;
4397 struct btrfs_ordered_sum *sums;
4398 struct btrfs_ordered_sum *sums_next;
4399 LIST_HEAD(ordered_sums);
4403 u64 extent_num_bytes;
4406 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4408 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4411 extent = btrfs_item_ptr(src, src_slot,
4412 struct btrfs_file_extent_item);
4414 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4418 * Don't copy extents from past generations. That would make us
4419 * log a lot more metadata for common cases like doing only a
4420 * few random writes into a file and then fsync it for the first
4421 * time or after the full sync flag is set on the inode. We can
4422 * get leaves full of extent items, most of which are from past
4423 * generations, so we can skip them - as long as the inode has
4424 * not been the target of a reflink operation in this transaction,
4425 * as in that case it might have had file extent items with old
4426 * generations copied into it. We also must always log prealloc
4427 * extents that start at or beyond eof, otherwise we would lose
4428 * them on log replay.
4430 if (is_old_extent &&
4431 ins_keys[dst_index].offset < i_size &&
4432 inode->last_reflink_trans < trans->transid)
4438 /* Only regular extents have checksums. */
4439 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4443 * If it's an extent created in a past transaction, then its
4444 * checksums are already accessible from the committed csum tree,
4445 * no need to log them.
4450 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4451 /* If it's an explicit hole, there are no checksums. */
4452 if (disk_bytenr == 0)
4455 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4457 if (btrfs_file_extent_compression(src, extent)) {
4459 extent_num_bytes = disk_num_bytes;
4461 extent_offset = btrfs_file_extent_offset(src, extent);
4462 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4465 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4466 disk_bytenr += extent_offset;
4467 ret = btrfs_lookup_csums_range(csum_root, disk_bytenr,
4468 disk_bytenr + extent_num_bytes - 1,
4469 &ordered_sums, 0, false);
4473 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4475 ret = log_csums(trans, inode, log, sums);
4476 list_del(&sums->list);
4483 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4484 batch.total_data_size += ins_sizes[dst_index];
4490 * We have a leaf full of old extent items that don't need to be logged,
4491 * so we don't need to do anything.
4496 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4501 for (i = 0; i < nr; i++) {
4502 const int src_slot = start_slot + i;
4503 const int dst_slot = dst_path->slots[0] + dst_index;
4504 struct btrfs_key key;
4505 unsigned long src_offset;
4506 unsigned long dst_offset;
4509 * We're done, all the remaining items in the source leaf
4510 * correspond to old file extent items.
4512 if (dst_index >= batch.nr)
4515 btrfs_item_key_to_cpu(src, &key, src_slot);
4517 if (key.type != BTRFS_EXTENT_DATA_KEY)
4520 extent = btrfs_item_ptr(src, src_slot,
4521 struct btrfs_file_extent_item);
4523 /* See the comment in the previous loop, same logic. */
4524 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4525 key.offset < i_size &&
4526 inode->last_reflink_trans < trans->transid)
4530 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4531 src_offset = btrfs_item_ptr_offset(src, src_slot);
4533 if (key.type == BTRFS_INODE_ITEM_KEY) {
4534 struct btrfs_inode_item *inode_item;
4536 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4537 struct btrfs_inode_item);
4538 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4540 inode_only == LOG_INODE_EXISTS,
4543 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4544 src_offset, ins_sizes[dst_index]);
4550 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4551 btrfs_release_path(dst_path);
4558 static int extent_cmp(void *priv, const struct list_head *a,
4559 const struct list_head *b)
4561 const struct extent_map *em1, *em2;
4563 em1 = list_entry(a, struct extent_map, list);
4564 em2 = list_entry(b, struct extent_map, list);
4566 if (em1->start < em2->start)
4568 else if (em1->start > em2->start)
4573 static int log_extent_csums(struct btrfs_trans_handle *trans,
4574 struct btrfs_inode *inode,
4575 struct btrfs_root *log_root,
4576 const struct extent_map *em,
4577 struct btrfs_log_ctx *ctx)
4579 struct btrfs_ordered_extent *ordered;
4580 struct btrfs_root *csum_root;
4583 u64 mod_start = em->mod_start;
4584 u64 mod_len = em->mod_len;
4585 LIST_HEAD(ordered_sums);
4588 if (inode->flags & BTRFS_INODE_NODATASUM ||
4589 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4590 em->block_start == EXTENT_MAP_HOLE)
4593 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4594 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4595 const u64 mod_end = mod_start + mod_len;
4596 struct btrfs_ordered_sum *sums;
4601 if (ordered_end <= mod_start)
4603 if (mod_end <= ordered->file_offset)
4607 * We are going to copy all the csums on this ordered extent, so
4608 * go ahead and adjust mod_start and mod_len in case this ordered
4609 * extent has already been logged.
4611 if (ordered->file_offset > mod_start) {
4612 if (ordered_end >= mod_end)
4613 mod_len = ordered->file_offset - mod_start;
4615 * If we have this case
4617 * |--------- logged extent ---------|
4618 * |----- ordered extent ----|
4620 * Just don't mess with mod_start and mod_len, we'll
4621 * just end up logging more csums than we need and it
4625 if (ordered_end < mod_end) {
4626 mod_len = mod_end - ordered_end;
4627 mod_start = ordered_end;
4634 * To keep us from looping for the above case of an ordered
4635 * extent that falls inside of the logged extent.
4637 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4640 list_for_each_entry(sums, &ordered->list, list) {
4641 ret = log_csums(trans, inode, log_root, sums);
4647 /* We're done, found all csums in the ordered extents. */
4651 /* If we're compressed we have to save the entire range of csums. */
4652 if (em->compress_type) {
4654 csum_len = max(em->block_len, em->orig_block_len);
4656 csum_offset = mod_start - em->start;
4660 /* block start is already adjusted for the file extent offset. */
4661 csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4662 ret = btrfs_lookup_csums_range(csum_root,
4663 em->block_start + csum_offset,
4664 em->block_start + csum_offset +
4665 csum_len - 1, &ordered_sums, 0, false);
4669 while (!list_empty(&ordered_sums)) {
4670 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4671 struct btrfs_ordered_sum,
4674 ret = log_csums(trans, inode, log_root, sums);
4675 list_del(&sums->list);
4682 static int log_one_extent(struct btrfs_trans_handle *trans,
4683 struct btrfs_inode *inode,
4684 const struct extent_map *em,
4685 struct btrfs_path *path,
4686 struct btrfs_log_ctx *ctx)
4688 struct btrfs_drop_extents_args drop_args = { 0 };
4689 struct btrfs_root *log = inode->root->log_root;
4690 struct btrfs_file_extent_item fi = { 0 };
4691 struct extent_buffer *leaf;
4692 struct btrfs_key key;
4693 u64 extent_offset = em->start - em->orig_start;
4697 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4698 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4699 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4701 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4703 block_len = max(em->block_len, em->orig_block_len);
4704 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4705 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4706 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4707 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4708 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4710 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4713 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4714 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4715 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4716 btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4718 ret = log_extent_csums(trans, inode, log, em, ctx);
4723 * If this is the first time we are logging the inode in the current
4724 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4725 * because it does a deletion search, which always acquires write locks
4726 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4727 * but also adds significant contention in a log tree, since log trees
4728 * are small, with a root at level 2 or 3 at most, due to their short
4731 if (ctx->logged_before) {
4732 drop_args.path = path;
4733 drop_args.start = em->start;
4734 drop_args.end = em->start + em->len;
4735 drop_args.replace_extent = true;
4736 drop_args.extent_item_size = sizeof(fi);
4737 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4742 if (!drop_args.extent_inserted) {
4743 key.objectid = btrfs_ino(inode);
4744 key.type = BTRFS_EXTENT_DATA_KEY;
4745 key.offset = em->start;
4747 ret = btrfs_insert_empty_item(trans, log, path, &key,
4752 leaf = path->nodes[0];
4753 write_extent_buffer(leaf, &fi,
4754 btrfs_item_ptr_offset(leaf, path->slots[0]),
4756 btrfs_mark_buffer_dirty(leaf);
4758 btrfs_release_path(path);
4764 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4765 * lose them after doing a full/fast fsync and replaying the log. We scan the
4766 * subvolume's root instead of iterating the inode's extent map tree because
4767 * otherwise we can log incorrect extent items based on extent map conversion.
4768 * That can happen due to the fact that extent maps are merged when they
4769 * are not in the extent map tree's list of modified extents.
4771 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4772 struct btrfs_inode *inode,
4773 struct btrfs_path *path)
4775 struct btrfs_root *root = inode->root;
4776 struct btrfs_key key;
4777 const u64 i_size = i_size_read(&inode->vfs_inode);
4778 const u64 ino = btrfs_ino(inode);
4779 struct btrfs_path *dst_path = NULL;
4780 bool dropped_extents = false;
4781 u64 truncate_offset = i_size;
4782 struct extent_buffer *leaf;
4788 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4792 key.type = BTRFS_EXTENT_DATA_KEY;
4793 key.offset = i_size;
4794 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4799 * We must check if there is a prealloc extent that starts before the
4800 * i_size and crosses the i_size boundary. This is to ensure later we
4801 * truncate down to the end of that extent and not to the i_size, as
4802 * otherwise we end up losing part of the prealloc extent after a log
4803 * replay and with an implicit hole if there is another prealloc extent
4804 * that starts at an offset beyond i_size.
4806 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4811 struct btrfs_file_extent_item *ei;
4813 leaf = path->nodes[0];
4814 slot = path->slots[0];
4815 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4817 if (btrfs_file_extent_type(leaf, ei) ==
4818 BTRFS_FILE_EXTENT_PREALLOC) {
4821 btrfs_item_key_to_cpu(leaf, &key, slot);
4822 extent_end = key.offset +
4823 btrfs_file_extent_num_bytes(leaf, ei);
4825 if (extent_end > i_size)
4826 truncate_offset = extent_end;
4833 leaf = path->nodes[0];
4834 slot = path->slots[0];
4836 if (slot >= btrfs_header_nritems(leaf)) {
4838 ret = copy_items(trans, inode, dst_path, path,
4839 start_slot, ins_nr, 1, 0);
4844 ret = btrfs_next_leaf(root, path);
4854 btrfs_item_key_to_cpu(leaf, &key, slot);
4855 if (key.objectid > ino)
4857 if (WARN_ON_ONCE(key.objectid < ino) ||
4858 key.type < BTRFS_EXTENT_DATA_KEY ||
4859 key.offset < i_size) {
4863 if (!dropped_extents) {
4865 * Avoid logging extent items logged in past fsync calls
4866 * and leading to duplicate keys in the log tree.
4868 ret = truncate_inode_items(trans, root->log_root, inode,
4870 BTRFS_EXTENT_DATA_KEY);
4873 dropped_extents = true;
4880 dst_path = btrfs_alloc_path();
4888 ret = copy_items(trans, inode, dst_path, path,
4889 start_slot, ins_nr, 1, 0);
4891 btrfs_release_path(path);
4892 btrfs_free_path(dst_path);
4896 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4897 struct btrfs_inode *inode,
4898 struct btrfs_path *path,
4899 struct btrfs_log_ctx *ctx)
4901 struct btrfs_ordered_extent *ordered;
4902 struct btrfs_ordered_extent *tmp;
4903 struct extent_map *em, *n;
4904 struct list_head extents;
4905 struct extent_map_tree *tree = &inode->extent_tree;
4909 INIT_LIST_HEAD(&extents);
4911 write_lock(&tree->lock);
4913 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4914 list_del_init(&em->list);
4916 * Just an arbitrary number, this can be really CPU intensive
4917 * once we start getting a lot of extents, and really once we
4918 * have a bunch of extents we just want to commit since it will
4921 if (++num > 32768) {
4922 list_del_init(&tree->modified_extents);
4927 if (em->generation < trans->transid)
4930 /* We log prealloc extents beyond eof later. */
4931 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4932 em->start >= i_size_read(&inode->vfs_inode))
4935 /* Need a ref to keep it from getting evicted from cache */
4936 refcount_inc(&em->refs);
4937 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4938 list_add_tail(&em->list, &extents);
4942 list_sort(NULL, &extents, extent_cmp);
4944 while (!list_empty(&extents)) {
4945 em = list_entry(extents.next, struct extent_map, list);
4947 list_del_init(&em->list);
4950 * If we had an error we just need to delete everybody from our
4954 clear_em_logging(tree, em);
4955 free_extent_map(em);
4959 write_unlock(&tree->lock);
4961 ret = log_one_extent(trans, inode, em, path, ctx);
4962 write_lock(&tree->lock);
4963 clear_em_logging(tree, em);
4964 free_extent_map(em);
4966 WARN_ON(!list_empty(&extents));
4967 write_unlock(&tree->lock);
4970 ret = btrfs_log_prealloc_extents(trans, inode, path);
4975 * We have logged all extents successfully, now make sure the commit of
4976 * the current transaction waits for the ordered extents to complete
4977 * before it commits and wipes out the log trees, otherwise we would
4978 * lose data if an ordered extents completes after the transaction
4979 * commits and a power failure happens after the transaction commit.
4981 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4982 list_del_init(&ordered->log_list);
4983 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4985 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4986 spin_lock_irq(&inode->ordered_tree.lock);
4987 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4988 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4989 atomic_inc(&trans->transaction->pending_ordered);
4991 spin_unlock_irq(&inode->ordered_tree.lock);
4993 btrfs_put_ordered_extent(ordered);
4999 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
5000 struct btrfs_path *path, u64 *size_ret)
5002 struct btrfs_key key;
5005 key.objectid = btrfs_ino(inode);
5006 key.type = BTRFS_INODE_ITEM_KEY;
5009 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5012 } else if (ret > 0) {
5015 struct btrfs_inode_item *item;
5017 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5018 struct btrfs_inode_item);
5019 *size_ret = btrfs_inode_size(path->nodes[0], item);
5021 * If the in-memory inode's i_size is smaller then the inode
5022 * size stored in the btree, return the inode's i_size, so
5023 * that we get a correct inode size after replaying the log
5024 * when before a power failure we had a shrinking truncate
5025 * followed by addition of a new name (rename / new hard link).
5026 * Otherwise return the inode size from the btree, to avoid
5027 * data loss when replaying a log due to previously doing a
5028 * write that expands the inode's size and logging a new name
5029 * immediately after.
5031 if (*size_ret > inode->vfs_inode.i_size)
5032 *size_ret = inode->vfs_inode.i_size;
5035 btrfs_release_path(path);
5040 * At the moment we always log all xattrs. This is to figure out at log replay
5041 * time which xattrs must have their deletion replayed. If a xattr is missing
5042 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5043 * because if a xattr is deleted, the inode is fsynced and a power failure
5044 * happens, causing the log to be replayed the next time the fs is mounted,
5045 * we want the xattr to not exist anymore (same behaviour as other filesystems
5046 * with a journal, ext3/4, xfs, f2fs, etc).
5048 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5049 struct btrfs_inode *inode,
5050 struct btrfs_path *path,
5051 struct btrfs_path *dst_path)
5053 struct btrfs_root *root = inode->root;
5055 struct btrfs_key key;
5056 const u64 ino = btrfs_ino(inode);
5059 bool found_xattrs = false;
5061 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5065 key.type = BTRFS_XATTR_ITEM_KEY;
5068 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5073 int slot = path->slots[0];
5074 struct extent_buffer *leaf = path->nodes[0];
5075 int nritems = btrfs_header_nritems(leaf);
5077 if (slot >= nritems) {
5079 ret = copy_items(trans, inode, dst_path, path,
5080 start_slot, ins_nr, 1, 0);
5085 ret = btrfs_next_leaf(root, path);
5093 btrfs_item_key_to_cpu(leaf, &key, slot);
5094 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5101 found_xattrs = true;
5105 ret = copy_items(trans, inode, dst_path, path,
5106 start_slot, ins_nr, 1, 0);
5112 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5118 * When using the NO_HOLES feature if we punched a hole that causes the
5119 * deletion of entire leafs or all the extent items of the first leaf (the one
5120 * that contains the inode item and references) we may end up not processing
5121 * any extents, because there are no leafs with a generation matching the
5122 * current transaction that have extent items for our inode. So we need to find
5123 * if any holes exist and then log them. We also need to log holes after any
5124 * truncate operation that changes the inode's size.
5126 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5127 struct btrfs_inode *inode,
5128 struct btrfs_path *path)
5130 struct btrfs_root *root = inode->root;
5131 struct btrfs_fs_info *fs_info = root->fs_info;
5132 struct btrfs_key key;
5133 const u64 ino = btrfs_ino(inode);
5134 const u64 i_size = i_size_read(&inode->vfs_inode);
5135 u64 prev_extent_end = 0;
5138 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5142 key.type = BTRFS_EXTENT_DATA_KEY;
5145 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5150 struct extent_buffer *leaf = path->nodes[0];
5152 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5153 ret = btrfs_next_leaf(root, path);
5160 leaf = path->nodes[0];
5163 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5164 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5167 /* We have a hole, log it. */
5168 if (prev_extent_end < key.offset) {
5169 const u64 hole_len = key.offset - prev_extent_end;
5172 * Release the path to avoid deadlocks with other code
5173 * paths that search the root while holding locks on
5174 * leafs from the log root.
5176 btrfs_release_path(path);
5177 ret = btrfs_insert_hole_extent(trans, root->log_root,
5178 ino, prev_extent_end,
5184 * Search for the same key again in the root. Since it's
5185 * an extent item and we are holding the inode lock, the
5186 * key must still exist. If it doesn't just emit warning
5187 * and return an error to fall back to a transaction
5190 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5193 if (WARN_ON(ret > 0))
5195 leaf = path->nodes[0];
5198 prev_extent_end = btrfs_file_extent_end(path);
5203 if (prev_extent_end < i_size) {
5206 btrfs_release_path(path);
5207 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5208 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5209 prev_extent_end, hole_len);
5218 * When we are logging a new inode X, check if it doesn't have a reference that
5219 * matches the reference from some other inode Y created in a past transaction
5220 * and that was renamed in the current transaction. If we don't do this, then at
5221 * log replay time we can lose inode Y (and all its files if it's a directory):
5224 * echo "hello world" > /mnt/x/foobar
5227 * mkdir /mnt/x # or touch /mnt/x
5228 * xfs_io -c fsync /mnt/x
5230 * mount fs, trigger log replay
5232 * After the log replay procedure, we would lose the first directory and all its
5233 * files (file foobar).
5234 * For the case where inode Y is not a directory we simply end up losing it:
5236 * echo "123" > /mnt/foo
5238 * mv /mnt/foo /mnt/bar
5239 * echo "abc" > /mnt/foo
5240 * xfs_io -c fsync /mnt/foo
5243 * We also need this for cases where a snapshot entry is replaced by some other
5244 * entry (file or directory) otherwise we end up with an unreplayable log due to
5245 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5246 * if it were a regular entry:
5249 * btrfs subvolume snapshot /mnt /mnt/x/snap
5250 * btrfs subvolume delete /mnt/x/snap
5253 * fsync /mnt/x or fsync some new file inside it
5256 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5257 * the same transaction.
5259 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5261 const struct btrfs_key *key,
5262 struct btrfs_inode *inode,
5263 u64 *other_ino, u64 *other_parent)
5266 struct btrfs_path *search_path;
5269 u32 item_size = btrfs_item_size(eb, slot);
5271 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5273 search_path = btrfs_alloc_path();
5276 search_path->search_commit_root = 1;
5277 search_path->skip_locking = 1;
5279 while (cur_offset < item_size) {
5283 unsigned long name_ptr;
5284 struct btrfs_dir_item *di;
5286 if (key->type == BTRFS_INODE_REF_KEY) {
5287 struct btrfs_inode_ref *iref;
5289 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5290 parent = key->offset;
5291 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5292 name_ptr = (unsigned long)(iref + 1);
5293 this_len = sizeof(*iref) + this_name_len;
5295 struct btrfs_inode_extref *extref;
5297 extref = (struct btrfs_inode_extref *)(ptr +
5299 parent = btrfs_inode_extref_parent(eb, extref);
5300 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5301 name_ptr = (unsigned long)&extref->name;
5302 this_len = sizeof(*extref) + this_name_len;
5305 if (this_name_len > name_len) {
5308 new_name = krealloc(name, this_name_len, GFP_NOFS);
5313 name_len = this_name_len;
5317 read_extent_buffer(eb, name, name_ptr, this_name_len);
5318 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5319 parent, name, this_name_len, 0);
5320 if (di && !IS_ERR(di)) {
5321 struct btrfs_key di_key;
5323 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5325 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5326 if (di_key.objectid != key->objectid) {
5328 *other_ino = di_key.objectid;
5329 *other_parent = parent;
5337 } else if (IS_ERR(di)) {
5341 btrfs_release_path(search_path);
5343 cur_offset += this_len;
5347 btrfs_free_path(search_path);
5353 * Check if we need to log an inode. This is used in contexts where while
5354 * logging an inode we need to log another inode (either that it exists or in
5355 * full mode). This is used instead of btrfs_inode_in_log() because the later
5356 * requires the inode to be in the log and have the log transaction committed,
5357 * while here we do not care if the log transaction was already committed - our
5358 * caller will commit the log later - and we want to avoid logging an inode
5359 * multiple times when multiple tasks have joined the same log transaction.
5361 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5362 const struct btrfs_inode *inode)
5365 * If a directory was not modified, no dentries added or removed, we can
5366 * and should avoid logging it.
5368 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5372 * If this inode does not have new/updated/deleted xattrs since the last
5373 * time it was logged and is flagged as logged in the current transaction,
5374 * we can skip logging it. As for new/deleted names, those are updated in
5375 * the log by link/unlink/rename operations.
5376 * In case the inode was logged and then evicted and reloaded, its
5377 * logged_trans will be 0, in which case we have to fully log it since
5378 * logged_trans is a transient field, not persisted.
5380 if (inode->logged_trans == trans->transid &&
5381 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5387 struct btrfs_dir_list {
5389 struct list_head list;
5393 * Log the inodes of the new dentries of a directory.
5394 * See process_dir_items_leaf() for details about why it is needed.
5395 * This is a recursive operation - if an existing dentry corresponds to a
5396 * directory, that directory's new entries are logged too (same behaviour as
5397 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5398 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5399 * complains about the following circular lock dependency / possible deadlock:
5403 * lock(&type->i_mutex_dir_key#3/2);
5404 * lock(sb_internal#2);
5405 * lock(&type->i_mutex_dir_key#3/2);
5406 * lock(&sb->s_type->i_mutex_key#14);
5408 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5409 * sb_start_intwrite() in btrfs_start_transaction().
5410 * Not acquiring the VFS lock of the inodes is still safe because:
5412 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5413 * that while logging the inode new references (names) are added or removed
5414 * from the inode, leaving the logged inode item with a link count that does
5415 * not match the number of logged inode reference items. This is fine because
5416 * at log replay time we compute the real number of links and correct the
5417 * link count in the inode item (see replay_one_buffer() and
5418 * link_to_fixup_dir());
5420 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5421 * while logging the inode's items new index items (key type
5422 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5423 * has a size that doesn't match the sum of the lengths of all the logged
5424 * names - this is ok, not a problem, because at log replay time we set the
5425 * directory's i_size to the correct value (see replay_one_name() and
5426 * do_overwrite_item()).
5428 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5429 struct btrfs_inode *start_inode,
5430 struct btrfs_log_ctx *ctx)
5432 struct btrfs_root *root = start_inode->root;
5433 struct btrfs_fs_info *fs_info = root->fs_info;
5434 struct btrfs_path *path;
5435 LIST_HEAD(dir_list);
5436 struct btrfs_dir_list *dir_elem;
5437 u64 ino = btrfs_ino(start_inode);
5441 * If we are logging a new name, as part of a link or rename operation,
5442 * don't bother logging new dentries, as we just want to log the names
5443 * of an inode and that any new parents exist.
5445 if (ctx->logging_new_name)
5448 path = btrfs_alloc_path();
5453 struct extent_buffer *leaf;
5454 struct btrfs_key min_key;
5455 bool continue_curr_inode = true;
5459 min_key.objectid = ino;
5460 min_key.type = BTRFS_DIR_INDEX_KEY;
5463 btrfs_release_path(path);
5464 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
5467 } else if (ret > 0) {
5472 leaf = path->nodes[0];
5473 nritems = btrfs_header_nritems(leaf);
5474 for (i = path->slots[0]; i < nritems; i++) {
5475 struct btrfs_dir_item *di;
5476 struct btrfs_key di_key;
5477 struct inode *di_inode;
5478 int log_mode = LOG_INODE_EXISTS;
5481 btrfs_item_key_to_cpu(leaf, &min_key, i);
5482 if (min_key.objectid != ino ||
5483 min_key.type != BTRFS_DIR_INDEX_KEY) {
5484 continue_curr_inode = false;
5488 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5489 type = btrfs_dir_type(leaf, di);
5490 if (btrfs_dir_transid(leaf, di) < trans->transid)
5492 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5493 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5496 btrfs_release_path(path);
5497 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5498 if (IS_ERR(di_inode)) {
5499 ret = PTR_ERR(di_inode);
5503 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5504 btrfs_add_delayed_iput(di_inode);
5508 ctx->log_new_dentries = false;
5509 if (type == BTRFS_FT_DIR)
5510 log_mode = LOG_INODE_ALL;
5511 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5513 btrfs_add_delayed_iput(di_inode);
5516 if (ctx->log_new_dentries) {
5517 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5522 dir_elem->ino = di_key.objectid;
5523 list_add_tail(&dir_elem->list, &dir_list);
5528 if (continue_curr_inode && min_key.offset < (u64)-1) {
5534 if (list_empty(&dir_list))
5537 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5538 ino = dir_elem->ino;
5539 list_del(&dir_elem->list);
5543 btrfs_free_path(path);
5545 struct btrfs_dir_list *next;
5547 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5554 struct btrfs_ino_list {
5557 struct list_head list;
5560 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5562 struct btrfs_ino_list *curr;
5563 struct btrfs_ino_list *next;
5565 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5566 list_del(&curr->list);
5571 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5572 struct btrfs_path *path)
5574 struct btrfs_key key;
5578 key.type = BTRFS_INODE_ITEM_KEY;
5581 path->search_commit_root = 1;
5582 path->skip_locking = 1;
5584 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5585 if (WARN_ON_ONCE(ret > 0)) {
5587 * We have previously found the inode through the commit root
5588 * so this should not happen. If it does, just error out and
5589 * fallback to a transaction commit.
5592 } else if (ret == 0) {
5593 struct btrfs_inode_item *item;
5595 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5596 struct btrfs_inode_item);
5597 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5601 btrfs_release_path(path);
5602 path->search_commit_root = 0;
5603 path->skip_locking = 0;
5608 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5609 struct btrfs_root *root,
5610 struct btrfs_path *path,
5611 u64 ino, u64 parent,
5612 struct btrfs_log_ctx *ctx)
5614 struct btrfs_ino_list *ino_elem;
5615 struct inode *inode;
5618 * It's rare to have a lot of conflicting inodes, in practice it is not
5619 * common to have more than 1 or 2. We don't want to collect too many,
5620 * as we could end up logging too many inodes (even if only in
5621 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5624 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES) {
5625 btrfs_set_log_full_commit(trans);
5626 return BTRFS_LOG_FORCE_COMMIT;
5629 inode = btrfs_iget(root->fs_info->sb, ino, root);
5631 * If the other inode that had a conflicting dir entry was deleted in
5632 * the current transaction then we either:
5634 * 1) Log the parent directory (later after adding it to the list) if
5635 * the inode is a directory. This is because it may be a deleted
5636 * subvolume/snapshot or it may be a regular directory that had
5637 * deleted subvolumes/snapshots (or subdirectories that had them),
5638 * and at the moment we can't deal with dropping subvolumes/snapshots
5639 * during log replay. So we just log the parent, which will result in
5640 * a fallback to a transaction commit if we are dealing with those
5641 * cases (last_unlink_trans will match the current transaction);
5643 * 2) Do nothing if it's not a directory. During log replay we simply
5644 * unlink the conflicting dentry from the parent directory and then
5645 * add the dentry for our inode. Like this we can avoid logging the
5646 * parent directory (and maybe fallback to a transaction commit in
5647 * case it has a last_unlink_trans == trans->transid, due to moving
5648 * some inode from it to some other directory).
5650 if (IS_ERR(inode)) {
5651 int ret = PTR_ERR(inode);
5656 ret = conflicting_inode_is_dir(root, ino, path);
5657 /* Not a directory or we got an error. */
5661 /* Conflicting inode is a directory, so we'll log its parent. */
5662 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5665 ino_elem->ino = ino;
5666 ino_elem->parent = parent;
5667 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5668 ctx->num_conflict_inodes++;
5674 * If the inode was already logged skip it - otherwise we can hit an
5675 * infinite loop. Example:
5677 * From the commit root (previous transaction) we have the following
5680 * inode 257 a directory
5681 * inode 258 with references "zz" and "zz_link" on inode 257
5682 * inode 259 with reference "a" on inode 257
5684 * And in the current (uncommitted) transaction we have:
5686 * inode 257 a directory, unchanged
5687 * inode 258 with references "a" and "a2" on inode 257
5688 * inode 259 with reference "zz_link" on inode 257
5689 * inode 261 with reference "zz" on inode 257
5691 * When logging inode 261 the following infinite loop could
5692 * happen if we don't skip already logged inodes:
5694 * - we detect inode 258 as a conflicting inode, with inode 261
5695 * on reference "zz", and log it;
5697 * - we detect inode 259 as a conflicting inode, with inode 258
5698 * on reference "a", and log it;
5700 * - we detect inode 258 as a conflicting inode, with inode 259
5701 * on reference "zz_link", and log it - again! After this we
5702 * repeat the above steps forever.
5704 * Here we can use need_log_inode() because we only need to log the
5705 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5706 * so that the log ends up with the new name and without the old name.
5708 if (!need_log_inode(trans, BTRFS_I(inode))) {
5709 btrfs_add_delayed_iput(inode);
5713 btrfs_add_delayed_iput(inode);
5715 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5718 ino_elem->ino = ino;
5719 ino_elem->parent = parent;
5720 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5721 ctx->num_conflict_inodes++;
5726 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5727 struct btrfs_root *root,
5728 struct btrfs_log_ctx *ctx)
5730 struct btrfs_fs_info *fs_info = root->fs_info;
5734 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5735 * otherwise we could have unbounded recursion of btrfs_log_inode()
5736 * calls. This check guarantees we can have only 1 level of recursion.
5738 if (ctx->logging_conflict_inodes)
5741 ctx->logging_conflict_inodes = true;
5744 * New conflicting inodes may be found and added to the list while we
5745 * are logging a conflicting inode, so keep iterating while the list is
5748 while (!list_empty(&ctx->conflict_inodes)) {
5749 struct btrfs_ino_list *curr;
5750 struct inode *inode;
5754 curr = list_first_entry(&ctx->conflict_inodes,
5755 struct btrfs_ino_list, list);
5757 parent = curr->parent;
5758 list_del(&curr->list);
5761 inode = btrfs_iget(fs_info->sb, ino, root);
5763 * If the other inode that had a conflicting dir entry was
5764 * deleted in the current transaction, we need to log its parent
5765 * directory. See the comment at add_conflicting_inode().
5767 if (IS_ERR(inode)) {
5768 ret = PTR_ERR(inode);
5772 inode = btrfs_iget(fs_info->sb, parent, root);
5773 if (IS_ERR(inode)) {
5774 ret = PTR_ERR(inode);
5779 * Always log the directory, we cannot make this
5780 * conditional on need_log_inode() because the directory
5781 * might have been logged in LOG_INODE_EXISTS mode or
5782 * the dir index of the conflicting inode is not in a
5783 * dir index key range logged for the directory. So we
5784 * must make sure the deletion is recorded.
5786 ret = btrfs_log_inode(trans, BTRFS_I(inode),
5787 LOG_INODE_ALL, ctx);
5788 btrfs_add_delayed_iput(inode);
5795 * Here we can use need_log_inode() because we only need to log
5796 * the inode in LOG_INODE_EXISTS mode and rename operations
5797 * update the log, so that the log ends up with the new name and
5798 * without the old name.
5800 * We did this check at add_conflicting_inode(), but here we do
5801 * it again because if some other task logged the inode after
5802 * that, we can avoid doing it again.
5804 if (!need_log_inode(trans, BTRFS_I(inode))) {
5805 btrfs_add_delayed_iput(inode);
5810 * We are safe logging the other inode without acquiring its
5811 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5812 * are safe against concurrent renames of the other inode as
5813 * well because during a rename we pin the log and update the
5814 * log with the new name before we unpin it.
5816 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5817 btrfs_add_delayed_iput(inode);
5822 ctx->logging_conflict_inodes = false;
5824 free_conflicting_inodes(ctx);
5829 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5830 struct btrfs_inode *inode,
5831 struct btrfs_key *min_key,
5832 const struct btrfs_key *max_key,
5833 struct btrfs_path *path,
5834 struct btrfs_path *dst_path,
5835 const u64 logged_isize,
5836 const int inode_only,
5837 struct btrfs_log_ctx *ctx,
5838 bool *need_log_inode_item)
5840 const u64 i_size = i_size_read(&inode->vfs_inode);
5841 struct btrfs_root *root = inode->root;
5842 int ins_start_slot = 0;
5847 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5855 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5856 if (min_key->objectid != max_key->objectid)
5858 if (min_key->type > max_key->type)
5861 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5862 *need_log_inode_item = false;
5863 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5864 min_key->offset >= i_size) {
5866 * Extents at and beyond eof are logged with
5867 * btrfs_log_prealloc_extents().
5868 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5869 * and no keys greater than that, so bail out.
5872 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5873 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5874 (inode->generation == trans->transid ||
5875 ctx->logging_conflict_inodes)) {
5877 u64 other_parent = 0;
5879 ret = btrfs_check_ref_name_override(path->nodes[0],
5880 path->slots[0], min_key, inode,
5881 &other_ino, &other_parent);
5884 } else if (ret > 0 &&
5885 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5890 ins_start_slot = path->slots[0];
5892 ret = copy_items(trans, inode, dst_path, path,
5893 ins_start_slot, ins_nr,
5894 inode_only, logged_isize);
5899 btrfs_release_path(path);
5900 ret = add_conflicting_inode(trans, root, path,
5907 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5908 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5911 ret = copy_items(trans, inode, dst_path, path,
5913 ins_nr, inode_only, logged_isize);
5920 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5923 } else if (!ins_nr) {
5924 ins_start_slot = path->slots[0];
5929 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5930 ins_nr, inode_only, logged_isize);
5934 ins_start_slot = path->slots[0];
5937 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5938 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5943 ret = copy_items(trans, inode, dst_path, path,
5944 ins_start_slot, ins_nr, inode_only,
5950 btrfs_release_path(path);
5952 if (min_key->offset < (u64)-1) {
5954 } else if (min_key->type < max_key->type) {
5956 min_key->offset = 0;
5962 * We may process many leaves full of items for our inode, so
5963 * avoid monopolizing a cpu for too long by rescheduling while
5964 * not holding locks on any tree.
5969 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5970 ins_nr, inode_only, logged_isize);
5975 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5977 * Release the path because otherwise we might attempt to double
5978 * lock the same leaf with btrfs_log_prealloc_extents() below.
5980 btrfs_release_path(path);
5981 ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5987 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
5988 struct btrfs_root *log,
5989 struct btrfs_path *path,
5990 const struct btrfs_item_batch *batch,
5991 const struct btrfs_delayed_item *first_item)
5993 const struct btrfs_delayed_item *curr = first_item;
5996 ret = btrfs_insert_empty_items(trans, log, path, batch);
6000 for (int i = 0; i < batch->nr; i++) {
6003 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6004 write_extent_buffer(path->nodes[0], &curr->data,
6005 (unsigned long)data_ptr, curr->data_len);
6006 curr = list_next_entry(curr, log_list);
6010 btrfs_release_path(path);
6015 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6016 struct btrfs_inode *inode,
6017 struct btrfs_path *path,
6018 const struct list_head *delayed_ins_list,
6019 struct btrfs_log_ctx *ctx)
6021 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6022 const int max_batch_size = 195;
6023 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6024 const u64 ino = btrfs_ino(inode);
6025 struct btrfs_root *log = inode->root->log_root;
6026 struct btrfs_item_batch batch = {
6028 .total_data_size = 0,
6030 const struct btrfs_delayed_item *first = NULL;
6031 const struct btrfs_delayed_item *curr;
6033 struct btrfs_key *ins_keys;
6035 u64 curr_batch_size = 0;
6039 /* We are adding dir index items to the log tree. */
6040 lockdep_assert_held(&inode->log_mutex);
6043 * We collect delayed items before copying index keys from the subvolume
6044 * to the log tree. However just after we collected them, they may have
6045 * been flushed (all of them or just some of them), and therefore we
6046 * could have copied them from the subvolume tree to the log tree.
6047 * So find the first delayed item that was not yet logged (they are
6048 * sorted by index number).
6050 list_for_each_entry(curr, delayed_ins_list, log_list) {
6051 if (curr->index > inode->last_dir_index_offset) {
6057 /* Empty list or all delayed items were already logged. */
6061 ins_data = kmalloc(max_batch_size * sizeof(u32) +
6062 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6065 ins_sizes = (u32 *)ins_data;
6066 batch.data_sizes = ins_sizes;
6067 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6068 batch.keys = ins_keys;
6071 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6072 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6074 if (curr_batch_size + curr_size > leaf_data_size ||
6075 batch.nr == max_batch_size) {
6076 ret = insert_delayed_items_batch(trans, log, path,
6082 batch.total_data_size = 0;
6083 curr_batch_size = 0;
6087 ins_sizes[batch_idx] = curr->data_len;
6088 ins_keys[batch_idx].objectid = ino;
6089 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6090 ins_keys[batch_idx].offset = curr->index;
6091 curr_batch_size += curr_size;
6092 batch.total_data_size += curr->data_len;
6095 curr = list_next_entry(curr, log_list);
6098 ASSERT(batch.nr >= 1);
6099 ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6101 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6103 inode->last_dir_index_offset = curr->index;
6110 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6111 struct btrfs_inode *inode,
6112 struct btrfs_path *path,
6113 const struct list_head *delayed_del_list,
6114 struct btrfs_log_ctx *ctx)
6116 const u64 ino = btrfs_ino(inode);
6117 const struct btrfs_delayed_item *curr;
6119 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6122 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6123 u64 first_dir_index = curr->index;
6125 const struct btrfs_delayed_item *next;
6129 * Find a range of consecutive dir index items to delete. Like
6130 * this we log a single dir range item spanning several contiguous
6131 * dir items instead of logging one range item per dir index item.
6133 next = list_next_entry(curr, log_list);
6134 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6135 if (next->index != curr->index + 1)
6138 next = list_next_entry(next, log_list);
6141 last_dir_index = curr->index;
6142 ASSERT(last_dir_index >= first_dir_index);
6144 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6145 ino, first_dir_index, last_dir_index);
6148 curr = list_next_entry(curr, log_list);
6154 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6155 struct btrfs_inode *inode,
6156 struct btrfs_path *path,
6157 struct btrfs_log_ctx *ctx,
6158 const struct list_head *delayed_del_list,
6159 const struct btrfs_delayed_item *first,
6160 const struct btrfs_delayed_item **last_ret)
6162 const struct btrfs_delayed_item *next;
6163 struct extent_buffer *leaf = path->nodes[0];
6164 const int last_slot = btrfs_header_nritems(leaf) - 1;
6165 int slot = path->slots[0] + 1;
6166 const u64 ino = btrfs_ino(inode);
6168 next = list_next_entry(first, log_list);
6170 while (slot < last_slot &&
6171 !list_entry_is_head(next, delayed_del_list, log_list)) {
6172 struct btrfs_key key;
6174 btrfs_item_key_to_cpu(leaf, &key, slot);
6175 if (key.objectid != ino ||
6176 key.type != BTRFS_DIR_INDEX_KEY ||
6177 key.offset != next->index)
6182 next = list_next_entry(next, log_list);
6185 return btrfs_del_items(trans, inode->root->log_root, path,
6186 path->slots[0], slot - path->slots[0]);
6189 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6190 struct btrfs_inode *inode,
6191 struct btrfs_path *path,
6192 const struct list_head *delayed_del_list,
6193 struct btrfs_log_ctx *ctx)
6195 struct btrfs_root *log = inode->root->log_root;
6196 const struct btrfs_delayed_item *curr;
6197 u64 last_range_start;
6198 u64 last_range_end = 0;
6199 struct btrfs_key key;
6201 key.objectid = btrfs_ino(inode);
6202 key.type = BTRFS_DIR_INDEX_KEY;
6203 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6206 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6207 const struct btrfs_delayed_item *last = curr;
6208 u64 first_dir_index = curr->index;
6210 bool deleted_items = false;
6213 key.offset = curr->index;
6214 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6217 } else if (ret == 0) {
6218 ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6219 delayed_del_list, curr,
6223 deleted_items = true;
6226 btrfs_release_path(path);
6229 * If we deleted items from the leaf, it means we have a range
6230 * item logging their range, so no need to add one or update an
6231 * existing one. Otherwise we have to log a dir range item.
6236 last_dir_index = last->index;
6237 ASSERT(last_dir_index >= first_dir_index);
6239 * If this range starts right after where the previous one ends,
6240 * then we want to reuse the previous range item and change its
6241 * end offset to the end of this range. This is just to minimize
6242 * leaf space usage, by avoiding adding a new range item.
6244 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6245 first_dir_index = last_range_start;
6247 ret = insert_dir_log_key(trans, log, path, key.objectid,
6248 first_dir_index, last_dir_index);
6252 last_range_start = first_dir_index;
6253 last_range_end = last_dir_index;
6255 curr = list_next_entry(last, log_list);
6261 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6262 struct btrfs_inode *inode,
6263 struct btrfs_path *path,
6264 const struct list_head *delayed_del_list,
6265 struct btrfs_log_ctx *ctx)
6268 * We are deleting dir index items from the log tree or adding range
6271 lockdep_assert_held(&inode->log_mutex);
6273 if (list_empty(delayed_del_list))
6276 if (ctx->logged_before)
6277 return log_delayed_deletions_incremental(trans, inode, path,
6278 delayed_del_list, ctx);
6280 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6285 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6286 * items instead of the subvolume tree.
6288 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6289 struct btrfs_inode *inode,
6290 const struct list_head *delayed_ins_list,
6291 struct btrfs_log_ctx *ctx)
6293 const bool orig_log_new_dentries = ctx->log_new_dentries;
6294 struct btrfs_fs_info *fs_info = trans->fs_info;
6295 struct btrfs_delayed_item *item;
6299 * No need for the log mutex, plus to avoid potential deadlocks or
6300 * lockdep annotations due to nesting of delayed inode mutexes and log
6303 lockdep_assert_not_held(&inode->log_mutex);
6305 ASSERT(!ctx->logging_new_delayed_dentries);
6306 ctx->logging_new_delayed_dentries = true;
6308 list_for_each_entry(item, delayed_ins_list, log_list) {
6309 struct btrfs_dir_item *dir_item;
6310 struct inode *di_inode;
6311 struct btrfs_key key;
6312 int log_mode = LOG_INODE_EXISTS;
6314 dir_item = (struct btrfs_dir_item *)item->data;
6315 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6317 if (key.type == BTRFS_ROOT_ITEM_KEY)
6320 di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6321 if (IS_ERR(di_inode)) {
6322 ret = PTR_ERR(di_inode);
6326 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6327 btrfs_add_delayed_iput(di_inode);
6331 if (btrfs_stack_dir_type(dir_item) == BTRFS_FT_DIR)
6332 log_mode = LOG_INODE_ALL;
6334 ctx->log_new_dentries = false;
6335 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6337 if (!ret && ctx->log_new_dentries)
6338 ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6340 btrfs_add_delayed_iput(di_inode);
6346 ctx->log_new_dentries = orig_log_new_dentries;
6347 ctx->logging_new_delayed_dentries = false;
6352 /* log a single inode in the tree log.
6353 * At least one parent directory for this inode must exist in the tree
6354 * or be logged already.
6356 * Any items from this inode changed by the current transaction are copied
6357 * to the log tree. An extra reference is taken on any extents in this
6358 * file, allowing us to avoid a whole pile of corner cases around logging
6359 * blocks that have been removed from the tree.
6361 * See LOG_INODE_ALL and related defines for a description of what inode_only
6364 * This handles both files and directories.
6366 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6367 struct btrfs_inode *inode,
6369 struct btrfs_log_ctx *ctx)
6371 struct btrfs_path *path;
6372 struct btrfs_path *dst_path;
6373 struct btrfs_key min_key;
6374 struct btrfs_key max_key;
6375 struct btrfs_root *log = inode->root->log_root;
6377 bool fast_search = false;
6378 u64 ino = btrfs_ino(inode);
6379 struct extent_map_tree *em_tree = &inode->extent_tree;
6380 u64 logged_isize = 0;
6381 bool need_log_inode_item = true;
6382 bool xattrs_logged = false;
6383 bool inode_item_dropped = true;
6384 bool full_dir_logging = false;
6385 LIST_HEAD(delayed_ins_list);
6386 LIST_HEAD(delayed_del_list);
6388 path = btrfs_alloc_path();
6391 dst_path = btrfs_alloc_path();
6393 btrfs_free_path(path);
6397 min_key.objectid = ino;
6398 min_key.type = BTRFS_INODE_ITEM_KEY;
6401 max_key.objectid = ino;
6404 /* today the code can only do partial logging of directories */
6405 if (S_ISDIR(inode->vfs_inode.i_mode) ||
6406 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6407 &inode->runtime_flags) &&
6408 inode_only >= LOG_INODE_EXISTS))
6409 max_key.type = BTRFS_XATTR_ITEM_KEY;
6411 max_key.type = (u8)-1;
6412 max_key.offset = (u64)-1;
6414 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6415 full_dir_logging = true;
6418 * If we are logging a directory while we are logging dentries of the
6419 * delayed items of some other inode, then we need to flush the delayed
6420 * items of this directory and not log the delayed items directly. This
6421 * is to prevent more than one level of recursion into btrfs_log_inode()
6422 * by having something like this:
6424 * $ mkdir -p a/b/c/d/e/f/g/h/...
6425 * $ xfs_io -c "fsync" a
6427 * Where all directories in the path did not exist before and are
6428 * created in the current transaction.
6429 * So in such a case we directly log the delayed items of the main
6430 * directory ("a") without flushing them first, while for each of its
6431 * subdirectories we flush their delayed items before logging them.
6432 * This prevents a potential unbounded recursion like this:
6435 * log_new_delayed_dentries()
6437 * log_new_delayed_dentries()
6439 * log_new_delayed_dentries()
6442 * We have thresholds for the maximum number of delayed items to have in
6443 * memory, and once they are hit, the items are flushed asynchronously.
6444 * However the limit is quite high, so lets prevent deep levels of
6445 * recursion to happen by limiting the maximum depth to be 1.
6447 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6448 ret = btrfs_commit_inode_delayed_items(trans, inode);
6453 mutex_lock(&inode->log_mutex);
6456 * For symlinks, we must always log their content, which is stored in an
6457 * inline extent, otherwise we could end up with an empty symlink after
6458 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6459 * one attempts to create an empty symlink).
6460 * We don't need to worry about flushing delalloc, because when we create
6461 * the inline extent when the symlink is created (we never have delalloc
6464 if (S_ISLNK(inode->vfs_inode.i_mode))
6465 inode_only = LOG_INODE_ALL;
6468 * Before logging the inode item, cache the value returned by
6469 * inode_logged(), because after that we have the need to figure out if
6470 * the inode was previously logged in this transaction.
6472 ret = inode_logged(trans, inode, path);
6475 ctx->logged_before = (ret == 1);
6479 * This is for cases where logging a directory could result in losing a
6480 * a file after replaying the log. For example, if we move a file from a
6481 * directory A to a directory B, then fsync directory A, we have no way
6482 * to known the file was moved from A to B, so logging just A would
6483 * result in losing the file after a log replay.
6485 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6486 btrfs_set_log_full_commit(trans);
6487 ret = BTRFS_LOG_FORCE_COMMIT;
6492 * a brute force approach to making sure we get the most uptodate
6493 * copies of everything.
6495 if (S_ISDIR(inode->vfs_inode.i_mode)) {
6496 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6497 if (ctx->logged_before)
6498 ret = drop_inode_items(trans, log, path, inode,
6499 BTRFS_XATTR_ITEM_KEY);
6501 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6503 * Make sure the new inode item we write to the log has
6504 * the same isize as the current one (if it exists).
6505 * This is necessary to prevent data loss after log
6506 * replay, and also to prevent doing a wrong expanding
6507 * truncate - for e.g. create file, write 4K into offset
6508 * 0, fsync, write 4K into offset 4096, add hard link,
6509 * fsync some other file (to sync log), power fail - if
6510 * we use the inode's current i_size, after log replay
6511 * we get a 8Kb file, with the last 4Kb extent as a hole
6512 * (zeroes), as if an expanding truncate happened,
6513 * instead of getting a file of 4Kb only.
6515 ret = logged_inode_size(log, inode, path, &logged_isize);
6519 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6520 &inode->runtime_flags)) {
6521 if (inode_only == LOG_INODE_EXISTS) {
6522 max_key.type = BTRFS_XATTR_ITEM_KEY;
6523 if (ctx->logged_before)
6524 ret = drop_inode_items(trans, log, path,
6525 inode, max_key.type);
6527 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6528 &inode->runtime_flags);
6529 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6530 &inode->runtime_flags);
6531 if (ctx->logged_before)
6532 ret = truncate_inode_items(trans, log,
6535 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6536 &inode->runtime_flags) ||
6537 inode_only == LOG_INODE_EXISTS) {
6538 if (inode_only == LOG_INODE_ALL)
6540 max_key.type = BTRFS_XATTR_ITEM_KEY;
6541 if (ctx->logged_before)
6542 ret = drop_inode_items(trans, log, path, inode,
6545 if (inode_only == LOG_INODE_ALL)
6547 inode_item_dropped = false;
6556 * If we are logging a directory in full mode, collect the delayed items
6557 * before iterating the subvolume tree, so that we don't miss any new
6558 * dir index items in case they get flushed while or right after we are
6559 * iterating the subvolume tree.
6561 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6562 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6565 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6566 path, dst_path, logged_isize,
6568 &need_log_inode_item);
6572 btrfs_release_path(path);
6573 btrfs_release_path(dst_path);
6574 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6577 xattrs_logged = true;
6578 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6579 btrfs_release_path(path);
6580 btrfs_release_path(dst_path);
6581 ret = btrfs_log_holes(trans, inode, path);
6586 btrfs_release_path(path);
6587 btrfs_release_path(dst_path);
6588 if (need_log_inode_item) {
6589 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6593 * If we are doing a fast fsync and the inode was logged before
6594 * in this transaction, we don't need to log the xattrs because
6595 * they were logged before. If xattrs were added, changed or
6596 * deleted since the last time we logged the inode, then we have
6597 * already logged them because the inode had the runtime flag
6598 * BTRFS_INODE_COPY_EVERYTHING set.
6600 if (!xattrs_logged && inode->logged_trans < trans->transid) {
6601 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6604 btrfs_release_path(path);
6608 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6611 } else if (inode_only == LOG_INODE_ALL) {
6612 struct extent_map *em, *n;
6614 write_lock(&em_tree->lock);
6615 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6616 list_del_init(&em->list);
6617 write_unlock(&em_tree->lock);
6620 if (full_dir_logging) {
6621 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6624 ret = log_delayed_insertion_items(trans, inode, path,
6625 &delayed_ins_list, ctx);
6628 ret = log_delayed_deletion_items(trans, inode, path,
6629 &delayed_del_list, ctx);
6634 spin_lock(&inode->lock);
6635 inode->logged_trans = trans->transid;
6637 * Don't update last_log_commit if we logged that an inode exists.
6638 * We do this for three reasons:
6640 * 1) We might have had buffered writes to this inode that were
6641 * flushed and had their ordered extents completed in this
6642 * transaction, but we did not previously log the inode with
6643 * LOG_INODE_ALL. Later the inode was evicted and after that
6644 * it was loaded again and this LOG_INODE_EXISTS log operation
6645 * happened. We must make sure that if an explicit fsync against
6646 * the inode is performed later, it logs the new extents, an
6647 * updated inode item, etc, and syncs the log. The same logic
6648 * applies to direct IO writes instead of buffered writes.
6650 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6651 * is logged with an i_size of 0 or whatever value was logged
6652 * before. If later the i_size of the inode is increased by a
6653 * truncate operation, the log is synced through an fsync of
6654 * some other inode and then finally an explicit fsync against
6655 * this inode is made, we must make sure this fsync logs the
6656 * inode with the new i_size, the hole between old i_size and
6657 * the new i_size, and syncs the log.
6659 * 3) If we are logging that an ancestor inode exists as part of
6660 * logging a new name from a link or rename operation, don't update
6661 * its last_log_commit - otherwise if an explicit fsync is made
6662 * against an ancestor, the fsync considers the inode in the log
6663 * and doesn't sync the log, resulting in the ancestor missing after
6664 * a power failure unless the log was synced as part of an fsync
6665 * against any other unrelated inode.
6667 if (inode_only != LOG_INODE_EXISTS)
6668 inode->last_log_commit = inode->last_sub_trans;
6669 spin_unlock(&inode->lock);
6672 * Reset the last_reflink_trans so that the next fsync does not need to
6673 * go through the slower path when logging extents and their checksums.
6675 if (inode_only == LOG_INODE_ALL)
6676 inode->last_reflink_trans = 0;
6679 mutex_unlock(&inode->log_mutex);
6681 btrfs_free_path(path);
6682 btrfs_free_path(dst_path);
6685 free_conflicting_inodes(ctx);
6687 ret = log_conflicting_inodes(trans, inode->root, ctx);
6689 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6691 ret = log_new_delayed_dentries(trans, inode,
6692 &delayed_ins_list, ctx);
6694 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6701 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6702 struct btrfs_inode *inode,
6703 struct btrfs_log_ctx *ctx)
6705 struct btrfs_fs_info *fs_info = trans->fs_info;
6707 struct btrfs_path *path;
6708 struct btrfs_key key;
6709 struct btrfs_root *root = inode->root;
6710 const u64 ino = btrfs_ino(inode);
6712 path = btrfs_alloc_path();
6715 path->skip_locking = 1;
6716 path->search_commit_root = 1;
6719 key.type = BTRFS_INODE_REF_KEY;
6721 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6726 struct extent_buffer *leaf = path->nodes[0];
6727 int slot = path->slots[0];
6732 if (slot >= btrfs_header_nritems(leaf)) {
6733 ret = btrfs_next_leaf(root, path);
6741 btrfs_item_key_to_cpu(leaf, &key, slot);
6742 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6743 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6746 item_size = btrfs_item_size(leaf, slot);
6747 ptr = btrfs_item_ptr_offset(leaf, slot);
6748 while (cur_offset < item_size) {
6749 struct btrfs_key inode_key;
6750 struct inode *dir_inode;
6752 inode_key.type = BTRFS_INODE_ITEM_KEY;
6753 inode_key.offset = 0;
6755 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6756 struct btrfs_inode_extref *extref;
6758 extref = (struct btrfs_inode_extref *)
6760 inode_key.objectid = btrfs_inode_extref_parent(
6762 cur_offset += sizeof(*extref);
6763 cur_offset += btrfs_inode_extref_name_len(leaf,
6766 inode_key.objectid = key.offset;
6767 cur_offset = item_size;
6770 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6773 * If the parent inode was deleted, return an error to
6774 * fallback to a transaction commit. This is to prevent
6775 * getting an inode that was moved from one parent A to
6776 * a parent B, got its former parent A deleted and then
6777 * it got fsync'ed, from existing at both parents after
6778 * a log replay (and the old parent still existing).
6785 * mv /mnt/B/bar /mnt/A/bar
6786 * mv -T /mnt/A /mnt/B
6790 * If we ignore the old parent B which got deleted,
6791 * after a log replay we would have file bar linked
6792 * at both parents and the old parent B would still
6795 if (IS_ERR(dir_inode)) {
6796 ret = PTR_ERR(dir_inode);
6800 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6801 btrfs_add_delayed_iput(dir_inode);
6805 ctx->log_new_dentries = false;
6806 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6807 LOG_INODE_ALL, ctx);
6808 if (!ret && ctx->log_new_dentries)
6809 ret = log_new_dir_dentries(trans,
6810 BTRFS_I(dir_inode), ctx);
6811 btrfs_add_delayed_iput(dir_inode);
6819 btrfs_free_path(path);
6823 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6824 struct btrfs_root *root,
6825 struct btrfs_path *path,
6826 struct btrfs_log_ctx *ctx)
6828 struct btrfs_key found_key;
6830 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6833 struct btrfs_fs_info *fs_info = root->fs_info;
6834 struct extent_buffer *leaf = path->nodes[0];
6835 int slot = path->slots[0];
6836 struct btrfs_key search_key;
6837 struct inode *inode;
6841 btrfs_release_path(path);
6843 ino = found_key.offset;
6845 search_key.objectid = found_key.offset;
6846 search_key.type = BTRFS_INODE_ITEM_KEY;
6847 search_key.offset = 0;
6848 inode = btrfs_iget(fs_info->sb, ino, root);
6850 return PTR_ERR(inode);
6852 if (BTRFS_I(inode)->generation >= trans->transid &&
6853 need_log_inode(trans, BTRFS_I(inode)))
6854 ret = btrfs_log_inode(trans, BTRFS_I(inode),
6855 LOG_INODE_EXISTS, ctx);
6856 btrfs_add_delayed_iput(inode);
6860 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6863 search_key.type = BTRFS_INODE_REF_KEY;
6864 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6868 leaf = path->nodes[0];
6869 slot = path->slots[0];
6870 if (slot >= btrfs_header_nritems(leaf)) {
6871 ret = btrfs_next_leaf(root, path);
6876 leaf = path->nodes[0];
6877 slot = path->slots[0];
6880 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6881 if (found_key.objectid != search_key.objectid ||
6882 found_key.type != BTRFS_INODE_REF_KEY)
6888 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6889 struct btrfs_inode *inode,
6890 struct dentry *parent,
6891 struct btrfs_log_ctx *ctx)
6893 struct btrfs_root *root = inode->root;
6894 struct dentry *old_parent = NULL;
6895 struct super_block *sb = inode->vfs_inode.i_sb;
6899 if (!parent || d_really_is_negative(parent) ||
6903 inode = BTRFS_I(d_inode(parent));
6904 if (root != inode->root)
6907 if (inode->generation >= trans->transid &&
6908 need_log_inode(trans, inode)) {
6909 ret = btrfs_log_inode(trans, inode,
6910 LOG_INODE_EXISTS, ctx);
6914 if (IS_ROOT(parent))
6917 parent = dget_parent(parent);
6919 old_parent = parent;
6926 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6927 struct btrfs_inode *inode,
6928 struct dentry *parent,
6929 struct btrfs_log_ctx *ctx)
6931 struct btrfs_root *root = inode->root;
6932 const u64 ino = btrfs_ino(inode);
6933 struct btrfs_path *path;
6934 struct btrfs_key search_key;
6938 * For a single hard link case, go through a fast path that does not
6939 * need to iterate the fs/subvolume tree.
6941 if (inode->vfs_inode.i_nlink < 2)
6942 return log_new_ancestors_fast(trans, inode, parent, ctx);
6944 path = btrfs_alloc_path();
6948 search_key.objectid = ino;
6949 search_key.type = BTRFS_INODE_REF_KEY;
6950 search_key.offset = 0;
6952 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6959 struct extent_buffer *leaf = path->nodes[0];
6960 int slot = path->slots[0];
6961 struct btrfs_key found_key;
6963 if (slot >= btrfs_header_nritems(leaf)) {
6964 ret = btrfs_next_leaf(root, path);
6972 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6973 if (found_key.objectid != ino ||
6974 found_key.type > BTRFS_INODE_EXTREF_KEY)
6978 * Don't deal with extended references because they are rare
6979 * cases and too complex to deal with (we would need to keep
6980 * track of which subitem we are processing for each item in
6981 * this loop, etc). So just return some error to fallback to
6982 * a transaction commit.
6984 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6990 * Logging ancestors needs to do more searches on the fs/subvol
6991 * tree, so it releases the path as needed to avoid deadlocks.
6992 * Keep track of the last inode ref key and resume from that key
6993 * after logging all new ancestors for the current hard link.
6995 memcpy(&search_key, &found_key, sizeof(search_key));
6997 ret = log_new_ancestors(trans, root, path, ctx);
7000 btrfs_release_path(path);
7005 btrfs_free_path(path);
7010 * helper function around btrfs_log_inode to make sure newly created
7011 * parent directories also end up in the log. A minimal inode and backref
7012 * only logging is done of any parent directories that are older than
7013 * the last committed transaction
7015 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7016 struct btrfs_inode *inode,
7017 struct dentry *parent,
7019 struct btrfs_log_ctx *ctx)
7021 struct btrfs_root *root = inode->root;
7022 struct btrfs_fs_info *fs_info = root->fs_info;
7024 bool log_dentries = false;
7026 if (btrfs_test_opt(fs_info, NOTREELOG)) {
7027 ret = BTRFS_LOG_FORCE_COMMIT;
7031 if (btrfs_root_refs(&root->root_item) == 0) {
7032 ret = BTRFS_LOG_FORCE_COMMIT;
7037 * Skip already logged inodes or inodes corresponding to tmpfiles
7038 * (since logging them is pointless, a link count of 0 means they
7039 * will never be accessible).
7041 if ((btrfs_inode_in_log(inode, trans->transid) &&
7042 list_empty(&ctx->ordered_extents)) ||
7043 inode->vfs_inode.i_nlink == 0) {
7044 ret = BTRFS_NO_LOG_SYNC;
7048 ret = start_log_trans(trans, root, ctx);
7052 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7057 * for regular files, if its inode is already on disk, we don't
7058 * have to worry about the parents at all. This is because
7059 * we can use the last_unlink_trans field to record renames
7060 * and other fun in this file.
7062 if (S_ISREG(inode->vfs_inode.i_mode) &&
7063 inode->generation < trans->transid &&
7064 inode->last_unlink_trans < trans->transid) {
7069 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7070 log_dentries = true;
7073 * On unlink we must make sure all our current and old parent directory
7074 * inodes are fully logged. This is to prevent leaving dangling
7075 * directory index entries in directories that were our parents but are
7076 * not anymore. Not doing this results in old parent directory being
7077 * impossible to delete after log replay (rmdir will always fail with
7078 * error -ENOTEMPTY).
7084 * ln testdir/foo testdir/bar
7086 * unlink testdir/bar
7087 * xfs_io -c fsync testdir/foo
7089 * mount fs, triggers log replay
7091 * If we don't log the parent directory (testdir), after log replay the
7092 * directory still has an entry pointing to the file inode using the bar
7093 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7094 * the file inode has a link count of 1.
7100 * ln foo testdir/foo2
7101 * ln foo testdir/foo3
7103 * unlink testdir/foo3
7104 * xfs_io -c fsync foo
7106 * mount fs, triggers log replay
7108 * Similar as the first example, after log replay the parent directory
7109 * testdir still has an entry pointing to the inode file with name foo3
7110 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7111 * and has a link count of 2.
7113 if (inode->last_unlink_trans >= trans->transid) {
7114 ret = btrfs_log_all_parents(trans, inode, ctx);
7119 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7124 ret = log_new_dir_dentries(trans, inode, ctx);
7129 btrfs_set_log_full_commit(trans);
7130 ret = BTRFS_LOG_FORCE_COMMIT;
7134 btrfs_remove_log_ctx(root, ctx);
7135 btrfs_end_log_trans(root);
7141 * it is not safe to log dentry if the chunk root has added new
7142 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7143 * If this returns 1, you must commit the transaction to safely get your
7146 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7147 struct dentry *dentry,
7148 struct btrfs_log_ctx *ctx)
7150 struct dentry *parent = dget_parent(dentry);
7153 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7154 LOG_INODE_ALL, ctx);
7161 * should be called during mount to recover any replay any log trees
7164 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7167 struct btrfs_path *path;
7168 struct btrfs_trans_handle *trans;
7169 struct btrfs_key key;
7170 struct btrfs_key found_key;
7171 struct btrfs_root *log;
7172 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7173 struct walk_control wc = {
7174 .process_func = process_one_buffer,
7175 .stage = LOG_WALK_PIN_ONLY,
7178 path = btrfs_alloc_path();
7182 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7184 trans = btrfs_start_transaction(fs_info->tree_root, 0);
7185 if (IS_ERR(trans)) {
7186 ret = PTR_ERR(trans);
7193 ret = walk_log_tree(trans, log_root_tree, &wc);
7195 btrfs_abort_transaction(trans, ret);
7200 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7201 key.offset = (u64)-1;
7202 key.type = BTRFS_ROOT_ITEM_KEY;
7205 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7208 btrfs_abort_transaction(trans, ret);
7212 if (path->slots[0] == 0)
7216 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7218 btrfs_release_path(path);
7219 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7222 log = btrfs_read_tree_root(log_root_tree, &found_key);
7225 btrfs_abort_transaction(trans, ret);
7229 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7231 if (IS_ERR(wc.replay_dest)) {
7232 ret = PTR_ERR(wc.replay_dest);
7235 * We didn't find the subvol, likely because it was
7236 * deleted. This is ok, simply skip this log and go to
7239 * We need to exclude the root because we can't have
7240 * other log replays overwriting this log as we'll read
7241 * it back in a few more times. This will keep our
7242 * block from being modified, and we'll just bail for
7243 * each subsequent pass.
7246 ret = btrfs_pin_extent_for_log_replay(trans,
7249 btrfs_put_root(log);
7253 btrfs_abort_transaction(trans, ret);
7257 wc.replay_dest->log_root = log;
7258 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7260 /* The loop needs to continue due to the root refs */
7261 btrfs_abort_transaction(trans, ret);
7263 ret = walk_log_tree(trans, log, &wc);
7265 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7266 ret = fixup_inode_link_counts(trans, wc.replay_dest,
7269 btrfs_abort_transaction(trans, ret);
7272 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7273 struct btrfs_root *root = wc.replay_dest;
7275 btrfs_release_path(path);
7278 * We have just replayed everything, and the highest
7279 * objectid of fs roots probably has changed in case
7280 * some inode_item's got replayed.
7282 * root->objectid_mutex is not acquired as log replay
7283 * could only happen during mount.
7285 ret = btrfs_init_root_free_objectid(root);
7287 btrfs_abort_transaction(trans, ret);
7290 wc.replay_dest->log_root = NULL;
7291 btrfs_put_root(wc.replay_dest);
7292 btrfs_put_root(log);
7297 if (found_key.offset == 0)
7299 key.offset = found_key.offset - 1;
7301 btrfs_release_path(path);
7303 /* step one is to pin it all, step two is to replay just inodes */
7306 wc.process_func = replay_one_buffer;
7307 wc.stage = LOG_WALK_REPLAY_INODES;
7310 /* step three is to replay everything */
7311 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7316 btrfs_free_path(path);
7318 /* step 4: commit the transaction, which also unpins the blocks */
7319 ret = btrfs_commit_transaction(trans);
7323 log_root_tree->log_root = NULL;
7324 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7325 btrfs_put_root(log_root_tree);
7330 btrfs_end_transaction(wc.trans);
7331 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7332 btrfs_free_path(path);
7337 * there are some corner cases where we want to force a full
7338 * commit instead of allowing a directory to be logged.
7340 * They revolve around files there were unlinked from the directory, and
7341 * this function updates the parent directory so that a full commit is
7342 * properly done if it is fsync'd later after the unlinks are done.
7344 * Must be called before the unlink operations (updates to the subvolume tree,
7345 * inodes, etc) are done.
7347 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7348 struct btrfs_inode *dir, struct btrfs_inode *inode,
7352 * when we're logging a file, if it hasn't been renamed
7353 * or unlinked, and its inode is fully committed on disk,
7354 * we don't have to worry about walking up the directory chain
7355 * to log its parents.
7357 * So, we use the last_unlink_trans field to put this transid
7358 * into the file. When the file is logged we check it and
7359 * don't log the parents if the file is fully on disk.
7361 mutex_lock(&inode->log_mutex);
7362 inode->last_unlink_trans = trans->transid;
7363 mutex_unlock(&inode->log_mutex);
7366 * if this directory was already logged any new
7367 * names for this file/dir will get recorded
7369 if (dir->logged_trans == trans->transid)
7373 * if the inode we're about to unlink was logged,
7374 * the log will be properly updated for any new names
7376 if (inode->logged_trans == trans->transid)
7380 * when renaming files across directories, if the directory
7381 * there we're unlinking from gets fsync'd later on, there's
7382 * no way to find the destination directory later and fsync it
7383 * properly. So, we have to be conservative and force commits
7384 * so the new name gets discovered.
7389 /* we can safely do the unlink without any special recording */
7393 mutex_lock(&dir->log_mutex);
7394 dir->last_unlink_trans = trans->transid;
7395 mutex_unlock(&dir->log_mutex);
7399 * Make sure that if someone attempts to fsync the parent directory of a deleted
7400 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7401 * that after replaying the log tree of the parent directory's root we will not
7402 * see the snapshot anymore and at log replay time we will not see any log tree
7403 * corresponding to the deleted snapshot's root, which could lead to replaying
7404 * it after replaying the log tree of the parent directory (which would replay
7405 * the snapshot delete operation).
7407 * Must be called before the actual snapshot destroy operation (updates to the
7408 * parent root and tree of tree roots trees, etc) are done.
7410 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7411 struct btrfs_inode *dir)
7413 mutex_lock(&dir->log_mutex);
7414 dir->last_unlink_trans = trans->transid;
7415 mutex_unlock(&dir->log_mutex);
7419 * Update the log after adding a new name for an inode.
7421 * @trans: Transaction handle.
7422 * @old_dentry: The dentry associated with the old name and the old
7424 * @old_dir: The inode of the previous parent directory for the case
7425 * of a rename. For a link operation, it must be NULL.
7426 * @old_dir_index: The index number associated with the old name, meaningful
7427 * only for rename operations (when @old_dir is not NULL).
7428 * Ignored for link operations.
7429 * @parent: The dentry associated with the directory under which the
7430 * new name is located.
7432 * Call this after adding a new name for an inode, as a result of a link or
7433 * rename operation, and it will properly update the log to reflect the new name.
7435 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7436 struct dentry *old_dentry, struct btrfs_inode *old_dir,
7437 u64 old_dir_index, struct dentry *parent)
7439 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7440 struct btrfs_root *root = inode->root;
7441 struct btrfs_log_ctx ctx;
7442 bool log_pinned = false;
7446 * this will force the logging code to walk the dentry chain
7449 if (!S_ISDIR(inode->vfs_inode.i_mode))
7450 inode->last_unlink_trans = trans->transid;
7453 * if this inode hasn't been logged and directory we're renaming it
7454 * from hasn't been logged, we don't need to log it
7456 ret = inode_logged(trans, inode, NULL);
7459 } else if (ret == 0) {
7463 * If the inode was not logged and we are doing a rename (old_dir is not
7464 * NULL), check if old_dir was logged - if it was not we can return and
7467 ret = inode_logged(trans, old_dir, NULL);
7476 * If we are doing a rename (old_dir is not NULL) from a directory that
7477 * was previously logged, make sure that on log replay we get the old
7478 * dir entry deleted. This is needed because we will also log the new
7479 * name of the renamed inode, so we need to make sure that after log
7480 * replay we don't end up with both the new and old dir entries existing.
7482 if (old_dir && old_dir->logged_trans == trans->transid) {
7483 struct btrfs_root *log = old_dir->root->log_root;
7484 struct btrfs_path *path;
7486 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7489 * We have two inodes to update in the log, the old directory and
7490 * the inode that got renamed, so we must pin the log to prevent
7491 * anyone from syncing the log until we have updated both inodes
7494 ret = join_running_log_trans(root);
7496 * At least one of the inodes was logged before, so this should
7497 * not fail, but if it does, it's not serious, just bail out and
7498 * mark the log for a full commit.
7500 if (WARN_ON_ONCE(ret < 0))
7504 path = btrfs_alloc_path();
7511 * Other concurrent task might be logging the old directory,
7512 * as it can be triggered when logging other inode that had or
7513 * still has a dentry in the old directory. We lock the old
7514 * directory's log_mutex to ensure the deletion of the old
7515 * name is persisted, because during directory logging we
7516 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7517 * the old name's dir index item is in the delayed items, so
7518 * it could be missed by an in progress directory logging.
7520 mutex_lock(&old_dir->log_mutex);
7521 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7522 old_dentry->d_name.name,
7523 old_dentry->d_name.len, old_dir_index);
7526 * The dentry does not exist in the log, so record its
7529 btrfs_release_path(path);
7530 ret = insert_dir_log_key(trans, log, path,
7532 old_dir_index, old_dir_index);
7534 mutex_unlock(&old_dir->log_mutex);
7536 btrfs_free_path(path);
7541 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7542 ctx.logging_new_name = true;
7544 * We don't care about the return value. If we fail to log the new name
7545 * then we know the next attempt to sync the log will fallback to a full
7546 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7547 * we don't need to worry about getting a log committed that has an
7548 * inconsistent state after a rename operation.
7550 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7551 ASSERT(list_empty(&ctx.conflict_inodes));
7554 * If an error happened mark the log for a full commit because it's not
7555 * consistent and up to date or we couldn't find out if one of the
7556 * inodes was logged before in this transaction. Do it before unpinning
7557 * the log, to avoid any races with someone else trying to commit it.
7560 btrfs_set_log_full_commit(trans);
7562 btrfs_end_log_trans(root);