f11d803b2c4e5be798b93bc1e6b7e9a223d4a059
[platform/kernel/linux-starfive.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "zoned.h"
27 #include "fs.h"
28 #include "accessors.h"
29 #include "extent-tree.h"
30 #include "root-tree.h"
31 #include "defrag.h"
32 #include "dir-item.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37
38 static struct kmem_cache *btrfs_trans_handle_cachep;
39
40 #define BTRFS_ROOT_TRANS_TAG 0
41
42 /*
43  * Transaction states and transitions
44  *
45  * No running transaction (fs tree blocks are not modified)
46  * |
47  * | To next stage:
48  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
49  * V
50  * Transaction N [[TRANS_STATE_RUNNING]]
51  * |
52  * | New trans handles can be attached to transaction N by calling all
53  * | start_transaction() variants.
54  * |
55  * | To next stage:
56  * |  Call btrfs_commit_transaction() on any trans handle attached to
57  * |  transaction N
58  * V
59  * Transaction N [[TRANS_STATE_COMMIT_START]]
60  * |
61  * | Will wait for previous running transaction to completely finish if there
62  * | is one
63  * |
64  * | Then one of the following happes:
65  * | - Wait for all other trans handle holders to release.
66  * |   The btrfs_commit_transaction() caller will do the commit work.
67  * | - Wait for current transaction to be committed by others.
68  * |   Other btrfs_commit_transaction() caller will do the commit work.
69  * |
70  * | At this stage, only btrfs_join_transaction*() variants can attach
71  * | to this running transaction.
72  * | All other variants will wait for current one to finish and attach to
73  * | transaction N+1.
74  * |
75  * | To next stage:
76  * |  Caller is chosen to commit transaction N, and all other trans handle
77  * |  haven been released.
78  * V
79  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
80  * |
81  * | The heavy lifting transaction work is started.
82  * | From running delayed refs (modifying extent tree) to creating pending
83  * | snapshots, running qgroups.
84  * | In short, modify supporting trees to reflect modifications of subvolume
85  * | trees.
86  * |
87  * | At this stage, all start_transaction() calls will wait for this
88  * | transaction to finish and attach to transaction N+1.
89  * |
90  * | To next stage:
91  * |  Until all supporting trees are updated.
92  * V
93  * Transaction N [[TRANS_STATE_UNBLOCKED]]
94  * |                                                Transaction N+1
95  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
96  * | need to write them back to disk and update     |
97  * | super blocks.                                  |
98  * |                                                |
99  * | At this stage, new transaction is allowed to   |
100  * | start.                                         |
101  * | All new start_transaction() calls will be      |
102  * | attached to transid N+1.                       |
103  * |                                                |
104  * | To next stage:                                 |
105  * |  Until all tree blocks are super blocks are    |
106  * |  written to block devices                      |
107  * V                                                |
108  * Transaction N [[TRANS_STATE_COMPLETED]]          V
109  *   All tree blocks and super blocks are written.  Transaction N+1
110  *   This transaction is finished and all its       [[TRANS_STATE_COMMIT_START]]
111  *   data structures will be cleaned up.            | Life goes on
112  */
113 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
114         [TRANS_STATE_RUNNING]           = 0U,
115         [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
116         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
117                                            __TRANS_ATTACH |
118                                            __TRANS_JOIN |
119                                            __TRANS_JOIN_NOSTART),
120         [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
121                                            __TRANS_ATTACH |
122                                            __TRANS_JOIN |
123                                            __TRANS_JOIN_NOLOCK |
124                                            __TRANS_JOIN_NOSTART),
125         [TRANS_STATE_SUPER_COMMITTED]   = (__TRANS_START |
126                                            __TRANS_ATTACH |
127                                            __TRANS_JOIN |
128                                            __TRANS_JOIN_NOLOCK |
129                                            __TRANS_JOIN_NOSTART),
130         [TRANS_STATE_COMPLETED]         = (__TRANS_START |
131                                            __TRANS_ATTACH |
132                                            __TRANS_JOIN |
133                                            __TRANS_JOIN_NOLOCK |
134                                            __TRANS_JOIN_NOSTART),
135 };
136
137 void btrfs_put_transaction(struct btrfs_transaction *transaction)
138 {
139         WARN_ON(refcount_read(&transaction->use_count) == 0);
140         if (refcount_dec_and_test(&transaction->use_count)) {
141                 BUG_ON(!list_empty(&transaction->list));
142                 WARN_ON(!RB_EMPTY_ROOT(
143                                 &transaction->delayed_refs.href_root.rb_root));
144                 WARN_ON(!RB_EMPTY_ROOT(
145                                 &transaction->delayed_refs.dirty_extent_root));
146                 if (transaction->delayed_refs.pending_csums)
147                         btrfs_err(transaction->fs_info,
148                                   "pending csums is %llu",
149                                   transaction->delayed_refs.pending_csums);
150                 /*
151                  * If any block groups are found in ->deleted_bgs then it's
152                  * because the transaction was aborted and a commit did not
153                  * happen (things failed before writing the new superblock
154                  * and calling btrfs_finish_extent_commit()), so we can not
155                  * discard the physical locations of the block groups.
156                  */
157                 while (!list_empty(&transaction->deleted_bgs)) {
158                         struct btrfs_block_group *cache;
159
160                         cache = list_first_entry(&transaction->deleted_bgs,
161                                                  struct btrfs_block_group,
162                                                  bg_list);
163                         list_del_init(&cache->bg_list);
164                         btrfs_unfreeze_block_group(cache);
165                         btrfs_put_block_group(cache);
166                 }
167                 WARN_ON(!list_empty(&transaction->dev_update_list));
168                 kfree(transaction);
169         }
170 }
171
172 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
173 {
174         struct btrfs_transaction *cur_trans = trans->transaction;
175         struct btrfs_fs_info *fs_info = trans->fs_info;
176         struct btrfs_root *root, *tmp;
177
178         /*
179          * At this point no one can be using this transaction to modify any tree
180          * and no one can start another transaction to modify any tree either.
181          */
182         ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
183
184         down_write(&fs_info->commit_root_sem);
185
186         if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
187                 fs_info->last_reloc_trans = trans->transid;
188
189         list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
190                                  dirty_list) {
191                 list_del_init(&root->dirty_list);
192                 free_extent_buffer(root->commit_root);
193                 root->commit_root = btrfs_root_node(root);
194                 extent_io_tree_release(&root->dirty_log_pages);
195                 btrfs_qgroup_clean_swapped_blocks(root);
196         }
197
198         /* We can free old roots now. */
199         spin_lock(&cur_trans->dropped_roots_lock);
200         while (!list_empty(&cur_trans->dropped_roots)) {
201                 root = list_first_entry(&cur_trans->dropped_roots,
202                                         struct btrfs_root, root_list);
203                 list_del_init(&root->root_list);
204                 spin_unlock(&cur_trans->dropped_roots_lock);
205                 btrfs_free_log(trans, root);
206                 btrfs_drop_and_free_fs_root(fs_info, root);
207                 spin_lock(&cur_trans->dropped_roots_lock);
208         }
209         spin_unlock(&cur_trans->dropped_roots_lock);
210
211         up_write(&fs_info->commit_root_sem);
212 }
213
214 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
215                                          unsigned int type)
216 {
217         if (type & TRANS_EXTWRITERS)
218                 atomic_inc(&trans->num_extwriters);
219 }
220
221 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
222                                          unsigned int type)
223 {
224         if (type & TRANS_EXTWRITERS)
225                 atomic_dec(&trans->num_extwriters);
226 }
227
228 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
229                                           unsigned int type)
230 {
231         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
232 }
233
234 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
235 {
236         return atomic_read(&trans->num_extwriters);
237 }
238
239 /*
240  * To be called after doing the chunk btree updates right after allocating a new
241  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
242  * chunk after all chunk btree updates and after finishing the second phase of
243  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
244  * group had its chunk item insertion delayed to the second phase.
245  */
246 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
247 {
248         struct btrfs_fs_info *fs_info = trans->fs_info;
249
250         if (!trans->chunk_bytes_reserved)
251                 return;
252
253         btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
254                                 trans->chunk_bytes_reserved, NULL);
255         trans->chunk_bytes_reserved = 0;
256 }
257
258 /*
259  * either allocate a new transaction or hop into the existing one
260  */
261 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
262                                      unsigned int type)
263 {
264         struct btrfs_transaction *cur_trans;
265
266         spin_lock(&fs_info->trans_lock);
267 loop:
268         /* The file system has been taken offline. No new transactions. */
269         if (BTRFS_FS_ERROR(fs_info)) {
270                 spin_unlock(&fs_info->trans_lock);
271                 return -EROFS;
272         }
273
274         cur_trans = fs_info->running_transaction;
275         if (cur_trans) {
276                 if (TRANS_ABORTED(cur_trans)) {
277                         spin_unlock(&fs_info->trans_lock);
278                         return cur_trans->aborted;
279                 }
280                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
281                         spin_unlock(&fs_info->trans_lock);
282                         return -EBUSY;
283                 }
284                 refcount_inc(&cur_trans->use_count);
285                 atomic_inc(&cur_trans->num_writers);
286                 extwriter_counter_inc(cur_trans, type);
287                 spin_unlock(&fs_info->trans_lock);
288                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
289                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
290                 return 0;
291         }
292         spin_unlock(&fs_info->trans_lock);
293
294         /*
295          * If we are ATTACH, we just want to catch the current transaction,
296          * and commit it. If there is no transaction, just return ENOENT.
297          */
298         if (type == TRANS_ATTACH)
299                 return -ENOENT;
300
301         /*
302          * JOIN_NOLOCK only happens during the transaction commit, so
303          * it is impossible that ->running_transaction is NULL
304          */
305         BUG_ON(type == TRANS_JOIN_NOLOCK);
306
307         cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
308         if (!cur_trans)
309                 return -ENOMEM;
310
311         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
312         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
313
314         spin_lock(&fs_info->trans_lock);
315         if (fs_info->running_transaction) {
316                 /*
317                  * someone started a transaction after we unlocked.  Make sure
318                  * to redo the checks above
319                  */
320                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
321                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
322                 kfree(cur_trans);
323                 goto loop;
324         } else if (BTRFS_FS_ERROR(fs_info)) {
325                 spin_unlock(&fs_info->trans_lock);
326                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
327                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
328                 kfree(cur_trans);
329                 return -EROFS;
330         }
331
332         cur_trans->fs_info = fs_info;
333         atomic_set(&cur_trans->pending_ordered, 0);
334         init_waitqueue_head(&cur_trans->pending_wait);
335         atomic_set(&cur_trans->num_writers, 1);
336         extwriter_counter_init(cur_trans, type);
337         init_waitqueue_head(&cur_trans->writer_wait);
338         init_waitqueue_head(&cur_trans->commit_wait);
339         cur_trans->state = TRANS_STATE_RUNNING;
340         /*
341          * One for this trans handle, one so it will live on until we
342          * commit the transaction.
343          */
344         refcount_set(&cur_trans->use_count, 2);
345         cur_trans->flags = 0;
346         cur_trans->start_time = ktime_get_seconds();
347
348         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
349
350         cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
351         cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
352         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
353
354         /*
355          * although the tree mod log is per file system and not per transaction,
356          * the log must never go across transaction boundaries.
357          */
358         smp_mb();
359         if (!list_empty(&fs_info->tree_mod_seq_list))
360                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
361         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
362                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
363         atomic64_set(&fs_info->tree_mod_seq, 0);
364
365         spin_lock_init(&cur_trans->delayed_refs.lock);
366
367         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
368         INIT_LIST_HEAD(&cur_trans->dev_update_list);
369         INIT_LIST_HEAD(&cur_trans->switch_commits);
370         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
371         INIT_LIST_HEAD(&cur_trans->io_bgs);
372         INIT_LIST_HEAD(&cur_trans->dropped_roots);
373         mutex_init(&cur_trans->cache_write_mutex);
374         spin_lock_init(&cur_trans->dirty_bgs_lock);
375         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
376         spin_lock_init(&cur_trans->dropped_roots_lock);
377         list_add_tail(&cur_trans->list, &fs_info->trans_list);
378         extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
379                         IO_TREE_TRANS_DIRTY_PAGES);
380         extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
381                         IO_TREE_FS_PINNED_EXTENTS);
382         fs_info->generation++;
383         cur_trans->transid = fs_info->generation;
384         fs_info->running_transaction = cur_trans;
385         cur_trans->aborted = 0;
386         spin_unlock(&fs_info->trans_lock);
387
388         return 0;
389 }
390
391 /*
392  * This does all the record keeping required to make sure that a shareable root
393  * is properly recorded in a given transaction.  This is required to make sure
394  * the old root from before we joined the transaction is deleted when the
395  * transaction commits.
396  */
397 static int record_root_in_trans(struct btrfs_trans_handle *trans,
398                                struct btrfs_root *root,
399                                int force)
400 {
401         struct btrfs_fs_info *fs_info = root->fs_info;
402         int ret = 0;
403
404         if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
405             root->last_trans < trans->transid) || force) {
406                 WARN_ON(!force && root->commit_root != root->node);
407
408                 /*
409                  * see below for IN_TRANS_SETUP usage rules
410                  * we have the reloc mutex held now, so there
411                  * is only one writer in this function
412                  */
413                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
414
415                 /* make sure readers find IN_TRANS_SETUP before
416                  * they find our root->last_trans update
417                  */
418                 smp_wmb();
419
420                 spin_lock(&fs_info->fs_roots_radix_lock);
421                 if (root->last_trans == trans->transid && !force) {
422                         spin_unlock(&fs_info->fs_roots_radix_lock);
423                         return 0;
424                 }
425                 radix_tree_tag_set(&fs_info->fs_roots_radix,
426                                    (unsigned long)root->root_key.objectid,
427                                    BTRFS_ROOT_TRANS_TAG);
428                 spin_unlock(&fs_info->fs_roots_radix_lock);
429                 root->last_trans = trans->transid;
430
431                 /* this is pretty tricky.  We don't want to
432                  * take the relocation lock in btrfs_record_root_in_trans
433                  * unless we're really doing the first setup for this root in
434                  * this transaction.
435                  *
436                  * Normally we'd use root->last_trans as a flag to decide
437                  * if we want to take the expensive mutex.
438                  *
439                  * But, we have to set root->last_trans before we
440                  * init the relocation root, otherwise, we trip over warnings
441                  * in ctree.c.  The solution used here is to flag ourselves
442                  * with root IN_TRANS_SETUP.  When this is 1, we're still
443                  * fixing up the reloc trees and everyone must wait.
444                  *
445                  * When this is zero, they can trust root->last_trans and fly
446                  * through btrfs_record_root_in_trans without having to take the
447                  * lock.  smp_wmb() makes sure that all the writes above are
448                  * done before we pop in the zero below
449                  */
450                 ret = btrfs_init_reloc_root(trans, root);
451                 smp_mb__before_atomic();
452                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
453         }
454         return ret;
455 }
456
457
458 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
459                             struct btrfs_root *root)
460 {
461         struct btrfs_fs_info *fs_info = root->fs_info;
462         struct btrfs_transaction *cur_trans = trans->transaction;
463
464         /* Add ourselves to the transaction dropped list */
465         spin_lock(&cur_trans->dropped_roots_lock);
466         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
467         spin_unlock(&cur_trans->dropped_roots_lock);
468
469         /* Make sure we don't try to update the root at commit time */
470         spin_lock(&fs_info->fs_roots_radix_lock);
471         radix_tree_tag_clear(&fs_info->fs_roots_radix,
472                              (unsigned long)root->root_key.objectid,
473                              BTRFS_ROOT_TRANS_TAG);
474         spin_unlock(&fs_info->fs_roots_radix_lock);
475 }
476
477 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
478                                struct btrfs_root *root)
479 {
480         struct btrfs_fs_info *fs_info = root->fs_info;
481         int ret;
482
483         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
484                 return 0;
485
486         /*
487          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
488          * and barriers
489          */
490         smp_rmb();
491         if (root->last_trans == trans->transid &&
492             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
493                 return 0;
494
495         mutex_lock(&fs_info->reloc_mutex);
496         ret = record_root_in_trans(trans, root, 0);
497         mutex_unlock(&fs_info->reloc_mutex);
498
499         return ret;
500 }
501
502 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
503 {
504         return (trans->state >= TRANS_STATE_COMMIT_START &&
505                 trans->state < TRANS_STATE_UNBLOCKED &&
506                 !TRANS_ABORTED(trans));
507 }
508
509 /* wait for commit against the current transaction to become unblocked
510  * when this is done, it is safe to start a new transaction, but the current
511  * transaction might not be fully on disk.
512  */
513 static void wait_current_trans(struct btrfs_fs_info *fs_info)
514 {
515         struct btrfs_transaction *cur_trans;
516
517         spin_lock(&fs_info->trans_lock);
518         cur_trans = fs_info->running_transaction;
519         if (cur_trans && is_transaction_blocked(cur_trans)) {
520                 refcount_inc(&cur_trans->use_count);
521                 spin_unlock(&fs_info->trans_lock);
522
523                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
524                 wait_event(fs_info->transaction_wait,
525                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
526                            TRANS_ABORTED(cur_trans));
527                 btrfs_put_transaction(cur_trans);
528         } else {
529                 spin_unlock(&fs_info->trans_lock);
530         }
531 }
532
533 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
534 {
535         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
536                 return 0;
537
538         if (type == TRANS_START)
539                 return 1;
540
541         return 0;
542 }
543
544 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
545 {
546         struct btrfs_fs_info *fs_info = root->fs_info;
547
548         if (!fs_info->reloc_ctl ||
549             !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
550             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
551             root->reloc_root)
552                 return false;
553
554         return true;
555 }
556
557 static struct btrfs_trans_handle *
558 start_transaction(struct btrfs_root *root, unsigned int num_items,
559                   unsigned int type, enum btrfs_reserve_flush_enum flush,
560                   bool enforce_qgroups)
561 {
562         struct btrfs_fs_info *fs_info = root->fs_info;
563         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
564         struct btrfs_trans_handle *h;
565         struct btrfs_transaction *cur_trans;
566         u64 num_bytes = 0;
567         u64 qgroup_reserved = 0;
568         bool reloc_reserved = false;
569         bool do_chunk_alloc = false;
570         int ret;
571
572         if (BTRFS_FS_ERROR(fs_info))
573                 return ERR_PTR(-EROFS);
574
575         if (current->journal_info) {
576                 WARN_ON(type & TRANS_EXTWRITERS);
577                 h = current->journal_info;
578                 refcount_inc(&h->use_count);
579                 WARN_ON(refcount_read(&h->use_count) > 2);
580                 h->orig_rsv = h->block_rsv;
581                 h->block_rsv = NULL;
582                 goto got_it;
583         }
584
585         /*
586          * Do the reservation before we join the transaction so we can do all
587          * the appropriate flushing if need be.
588          */
589         if (num_items && root != fs_info->chunk_root) {
590                 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
591                 u64 delayed_refs_bytes = 0;
592
593                 qgroup_reserved = num_items * fs_info->nodesize;
594                 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
595                                 enforce_qgroups);
596                 if (ret)
597                         return ERR_PTR(ret);
598
599                 /*
600                  * We want to reserve all the bytes we may need all at once, so
601                  * we only do 1 enospc flushing cycle per transaction start.  We
602                  * accomplish this by simply assuming we'll do num_items worth
603                  * of delayed refs updates in this trans handle, and refill that
604                  * amount for whatever is missing in the reserve.
605                  */
606                 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
607                 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
608                     !btrfs_block_rsv_full(delayed_refs_rsv)) {
609                         delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info,
610                                                                           num_items);
611                         num_bytes += delayed_refs_bytes;
612                 }
613
614                 /*
615                  * Do the reservation for the relocation root creation
616                  */
617                 if (need_reserve_reloc_root(root)) {
618                         num_bytes += fs_info->nodesize;
619                         reloc_reserved = true;
620                 }
621
622                 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
623                 if (ret)
624                         goto reserve_fail;
625                 if (delayed_refs_bytes) {
626                         btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
627                                                           delayed_refs_bytes);
628                         num_bytes -= delayed_refs_bytes;
629                 }
630
631                 if (rsv->space_info->force_alloc)
632                         do_chunk_alloc = true;
633         } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
634                    !btrfs_block_rsv_full(delayed_refs_rsv)) {
635                 /*
636                  * Some people call with btrfs_start_transaction(root, 0)
637                  * because they can be throttled, but have some other mechanism
638                  * for reserving space.  We still want these guys to refill the
639                  * delayed block_rsv so just add 1 items worth of reservation
640                  * here.
641                  */
642                 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
643                 if (ret)
644                         goto reserve_fail;
645         }
646 again:
647         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
648         if (!h) {
649                 ret = -ENOMEM;
650                 goto alloc_fail;
651         }
652
653         /*
654          * If we are JOIN_NOLOCK we're already committing a transaction and
655          * waiting on this guy, so we don't need to do the sb_start_intwrite
656          * because we're already holding a ref.  We need this because we could
657          * have raced in and did an fsync() on a file which can kick a commit
658          * and then we deadlock with somebody doing a freeze.
659          *
660          * If we are ATTACH, it means we just want to catch the current
661          * transaction and commit it, so we needn't do sb_start_intwrite(). 
662          */
663         if (type & __TRANS_FREEZABLE)
664                 sb_start_intwrite(fs_info->sb);
665
666         if (may_wait_transaction(fs_info, type))
667                 wait_current_trans(fs_info);
668
669         do {
670                 ret = join_transaction(fs_info, type);
671                 if (ret == -EBUSY) {
672                         wait_current_trans(fs_info);
673                         if (unlikely(type == TRANS_ATTACH ||
674                                      type == TRANS_JOIN_NOSTART))
675                                 ret = -ENOENT;
676                 }
677         } while (ret == -EBUSY);
678
679         if (ret < 0)
680                 goto join_fail;
681
682         cur_trans = fs_info->running_transaction;
683
684         h->transid = cur_trans->transid;
685         h->transaction = cur_trans;
686         refcount_set(&h->use_count, 1);
687         h->fs_info = root->fs_info;
688
689         h->type = type;
690         INIT_LIST_HEAD(&h->new_bgs);
691
692         smp_mb();
693         if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
694             may_wait_transaction(fs_info, type)) {
695                 current->journal_info = h;
696                 btrfs_commit_transaction(h);
697                 goto again;
698         }
699
700         if (num_bytes) {
701                 trace_btrfs_space_reservation(fs_info, "transaction",
702                                               h->transid, num_bytes, 1);
703                 h->block_rsv = &fs_info->trans_block_rsv;
704                 h->bytes_reserved = num_bytes;
705                 h->reloc_reserved = reloc_reserved;
706         }
707
708 got_it:
709         if (!current->journal_info)
710                 current->journal_info = h;
711
712         /*
713          * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
714          * ALLOC_FORCE the first run through, and then we won't allocate for
715          * anybody else who races in later.  We don't care about the return
716          * value here.
717          */
718         if (do_chunk_alloc && num_bytes) {
719                 u64 flags = h->block_rsv->space_info->flags;
720
721                 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
722                                   CHUNK_ALLOC_NO_FORCE);
723         }
724
725         /*
726          * btrfs_record_root_in_trans() needs to alloc new extents, and may
727          * call btrfs_join_transaction() while we're also starting a
728          * transaction.
729          *
730          * Thus it need to be called after current->journal_info initialized,
731          * or we can deadlock.
732          */
733         ret = btrfs_record_root_in_trans(h, root);
734         if (ret) {
735                 /*
736                  * The transaction handle is fully initialized and linked with
737                  * other structures so it needs to be ended in case of errors,
738                  * not just freed.
739                  */
740                 btrfs_end_transaction(h);
741                 return ERR_PTR(ret);
742         }
743
744         return h;
745
746 join_fail:
747         if (type & __TRANS_FREEZABLE)
748                 sb_end_intwrite(fs_info->sb);
749         kmem_cache_free(btrfs_trans_handle_cachep, h);
750 alloc_fail:
751         if (num_bytes)
752                 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
753                                         num_bytes, NULL);
754 reserve_fail:
755         btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
756         return ERR_PTR(ret);
757 }
758
759 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
760                                                    unsigned int num_items)
761 {
762         return start_transaction(root, num_items, TRANS_START,
763                                  BTRFS_RESERVE_FLUSH_ALL, true);
764 }
765
766 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
767                                         struct btrfs_root *root,
768                                         unsigned int num_items)
769 {
770         return start_transaction(root, num_items, TRANS_START,
771                                  BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
772 }
773
774 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
775 {
776         return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
777                                  true);
778 }
779
780 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
781 {
782         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
783                                  BTRFS_RESERVE_NO_FLUSH, true);
784 }
785
786 /*
787  * Similar to regular join but it never starts a transaction when none is
788  * running or after waiting for the current one to finish.
789  */
790 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
791 {
792         return start_transaction(root, 0, TRANS_JOIN_NOSTART,
793                                  BTRFS_RESERVE_NO_FLUSH, true);
794 }
795
796 /*
797  * btrfs_attach_transaction() - catch the running transaction
798  *
799  * It is used when we want to commit the current the transaction, but
800  * don't want to start a new one.
801  *
802  * Note: If this function return -ENOENT, it just means there is no
803  * running transaction. But it is possible that the inactive transaction
804  * is still in the memory, not fully on disk. If you hope there is no
805  * inactive transaction in the fs when -ENOENT is returned, you should
806  * invoke
807  *     btrfs_attach_transaction_barrier()
808  */
809 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
810 {
811         return start_transaction(root, 0, TRANS_ATTACH,
812                                  BTRFS_RESERVE_NO_FLUSH, true);
813 }
814
815 /*
816  * btrfs_attach_transaction_barrier() - catch the running transaction
817  *
818  * It is similar to the above function, the difference is this one
819  * will wait for all the inactive transactions until they fully
820  * complete.
821  */
822 struct btrfs_trans_handle *
823 btrfs_attach_transaction_barrier(struct btrfs_root *root)
824 {
825         struct btrfs_trans_handle *trans;
826
827         trans = start_transaction(root, 0, TRANS_ATTACH,
828                                   BTRFS_RESERVE_NO_FLUSH, true);
829         if (trans == ERR_PTR(-ENOENT))
830                 btrfs_wait_for_commit(root->fs_info, 0);
831
832         return trans;
833 }
834
835 /* Wait for a transaction commit to reach at least the given state. */
836 static noinline void wait_for_commit(struct btrfs_transaction *commit,
837                                      const enum btrfs_trans_state min_state)
838 {
839         struct btrfs_fs_info *fs_info = commit->fs_info;
840         u64 transid = commit->transid;
841         bool put = false;
842
843         /*
844          * At the moment this function is called with min_state either being
845          * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
846          */
847         if (min_state == TRANS_STATE_COMPLETED)
848                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
849         else
850                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
851
852         while (1) {
853                 wait_event(commit->commit_wait, commit->state >= min_state);
854                 if (put)
855                         btrfs_put_transaction(commit);
856
857                 if (min_state < TRANS_STATE_COMPLETED)
858                         break;
859
860                 /*
861                  * A transaction isn't really completed until all of the
862                  * previous transactions are completed, but with fsync we can
863                  * end up with SUPER_COMMITTED transactions before a COMPLETED
864                  * transaction. Wait for those.
865                  */
866
867                 spin_lock(&fs_info->trans_lock);
868                 commit = list_first_entry_or_null(&fs_info->trans_list,
869                                                   struct btrfs_transaction,
870                                                   list);
871                 if (!commit || commit->transid > transid) {
872                         spin_unlock(&fs_info->trans_lock);
873                         break;
874                 }
875                 refcount_inc(&commit->use_count);
876                 put = true;
877                 spin_unlock(&fs_info->trans_lock);
878         }
879 }
880
881 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
882 {
883         struct btrfs_transaction *cur_trans = NULL, *t;
884         int ret = 0;
885
886         if (transid) {
887                 if (transid <= fs_info->last_trans_committed)
888                         goto out;
889
890                 /* find specified transaction */
891                 spin_lock(&fs_info->trans_lock);
892                 list_for_each_entry(t, &fs_info->trans_list, list) {
893                         if (t->transid == transid) {
894                                 cur_trans = t;
895                                 refcount_inc(&cur_trans->use_count);
896                                 ret = 0;
897                                 break;
898                         }
899                         if (t->transid > transid) {
900                                 ret = 0;
901                                 break;
902                         }
903                 }
904                 spin_unlock(&fs_info->trans_lock);
905
906                 /*
907                  * The specified transaction doesn't exist, or we
908                  * raced with btrfs_commit_transaction
909                  */
910                 if (!cur_trans) {
911                         if (transid > fs_info->last_trans_committed)
912                                 ret = -EINVAL;
913                         goto out;
914                 }
915         } else {
916                 /* find newest transaction that is committing | committed */
917                 spin_lock(&fs_info->trans_lock);
918                 list_for_each_entry_reverse(t, &fs_info->trans_list,
919                                             list) {
920                         if (t->state >= TRANS_STATE_COMMIT_START) {
921                                 if (t->state == TRANS_STATE_COMPLETED)
922                                         break;
923                                 cur_trans = t;
924                                 refcount_inc(&cur_trans->use_count);
925                                 break;
926                         }
927                 }
928                 spin_unlock(&fs_info->trans_lock);
929                 if (!cur_trans)
930                         goto out;  /* nothing committing|committed */
931         }
932
933         wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
934         ret = cur_trans->aborted;
935         btrfs_put_transaction(cur_trans);
936 out:
937         return ret;
938 }
939
940 void btrfs_throttle(struct btrfs_fs_info *fs_info)
941 {
942         wait_current_trans(fs_info);
943 }
944
945 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
946 {
947         struct btrfs_transaction *cur_trans = trans->transaction;
948
949         if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
950             test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
951                 return true;
952
953         if (btrfs_check_space_for_delayed_refs(trans->fs_info))
954                 return true;
955
956         return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
957 }
958
959 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
960
961 {
962         struct btrfs_fs_info *fs_info = trans->fs_info;
963
964         if (!trans->block_rsv) {
965                 ASSERT(!trans->bytes_reserved);
966                 return;
967         }
968
969         if (!trans->bytes_reserved)
970                 return;
971
972         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
973         trace_btrfs_space_reservation(fs_info, "transaction",
974                                       trans->transid, trans->bytes_reserved, 0);
975         btrfs_block_rsv_release(fs_info, trans->block_rsv,
976                                 trans->bytes_reserved, NULL);
977         trans->bytes_reserved = 0;
978 }
979
980 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
981                                    int throttle)
982 {
983         struct btrfs_fs_info *info = trans->fs_info;
984         struct btrfs_transaction *cur_trans = trans->transaction;
985         int err = 0;
986
987         if (refcount_read(&trans->use_count) > 1) {
988                 refcount_dec(&trans->use_count);
989                 trans->block_rsv = trans->orig_rsv;
990                 return 0;
991         }
992
993         btrfs_trans_release_metadata(trans);
994         trans->block_rsv = NULL;
995
996         btrfs_create_pending_block_groups(trans);
997
998         btrfs_trans_release_chunk_metadata(trans);
999
1000         if (trans->type & __TRANS_FREEZABLE)
1001                 sb_end_intwrite(info->sb);
1002
1003         WARN_ON(cur_trans != info->running_transaction);
1004         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1005         atomic_dec(&cur_trans->num_writers);
1006         extwriter_counter_dec(cur_trans, trans->type);
1007
1008         cond_wake_up(&cur_trans->writer_wait);
1009
1010         btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1011         btrfs_lockdep_release(info, btrfs_trans_num_writers);
1012
1013         btrfs_put_transaction(cur_trans);
1014
1015         if (current->journal_info == trans)
1016                 current->journal_info = NULL;
1017
1018         if (throttle)
1019                 btrfs_run_delayed_iputs(info);
1020
1021         if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1022                 wake_up_process(info->transaction_kthread);
1023                 if (TRANS_ABORTED(trans))
1024                         err = trans->aborted;
1025                 else
1026                         err = -EROFS;
1027         }
1028
1029         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1030         return err;
1031 }
1032
1033 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1034 {
1035         return __btrfs_end_transaction(trans, 0);
1036 }
1037
1038 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1039 {
1040         return __btrfs_end_transaction(trans, 1);
1041 }
1042
1043 /*
1044  * when btree blocks are allocated, they have some corresponding bits set for
1045  * them in one of two extent_io trees.  This is used to make sure all of
1046  * those extents are sent to disk but does not wait on them
1047  */
1048 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1049                                struct extent_io_tree *dirty_pages, int mark)
1050 {
1051         int err = 0;
1052         int werr = 0;
1053         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1054         struct extent_state *cached_state = NULL;
1055         u64 start = 0;
1056         u64 end;
1057
1058         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1059                                       mark, &cached_state)) {
1060                 bool wait_writeback = false;
1061
1062                 err = convert_extent_bit(dirty_pages, start, end,
1063                                          EXTENT_NEED_WAIT,
1064                                          mark, &cached_state);
1065                 /*
1066                  * convert_extent_bit can return -ENOMEM, which is most of the
1067                  * time a temporary error. So when it happens, ignore the error
1068                  * and wait for writeback of this range to finish - because we
1069                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1070                  * to __btrfs_wait_marked_extents() would not know that
1071                  * writeback for this range started and therefore wouldn't
1072                  * wait for it to finish - we don't want to commit a
1073                  * superblock that points to btree nodes/leafs for which
1074                  * writeback hasn't finished yet (and without errors).
1075                  * We cleanup any entries left in the io tree when committing
1076                  * the transaction (through extent_io_tree_release()).
1077                  */
1078                 if (err == -ENOMEM) {
1079                         err = 0;
1080                         wait_writeback = true;
1081                 }
1082                 if (!err)
1083                         err = filemap_fdatawrite_range(mapping, start, end);
1084                 if (err)
1085                         werr = err;
1086                 else if (wait_writeback)
1087                         werr = filemap_fdatawait_range(mapping, start, end);
1088                 free_extent_state(cached_state);
1089                 cached_state = NULL;
1090                 cond_resched();
1091                 start = end + 1;
1092         }
1093         return werr;
1094 }
1095
1096 /*
1097  * when btree blocks are allocated, they have some corresponding bits set for
1098  * them in one of two extent_io trees.  This is used to make sure all of
1099  * those extents are on disk for transaction or log commit.  We wait
1100  * on all the pages and clear them from the dirty pages state tree
1101  */
1102 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1103                                        struct extent_io_tree *dirty_pages)
1104 {
1105         int err = 0;
1106         int werr = 0;
1107         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1108         struct extent_state *cached_state = NULL;
1109         u64 start = 0;
1110         u64 end;
1111
1112         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1113                                       EXTENT_NEED_WAIT, &cached_state)) {
1114                 /*
1115                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1116                  * When committing the transaction, we'll remove any entries
1117                  * left in the io tree. For a log commit, we don't remove them
1118                  * after committing the log because the tree can be accessed
1119                  * concurrently - we do it only at transaction commit time when
1120                  * it's safe to do it (through extent_io_tree_release()).
1121                  */
1122                 err = clear_extent_bit(dirty_pages, start, end,
1123                                        EXTENT_NEED_WAIT, &cached_state);
1124                 if (err == -ENOMEM)
1125                         err = 0;
1126                 if (!err)
1127                         err = filemap_fdatawait_range(mapping, start, end);
1128                 if (err)
1129                         werr = err;
1130                 free_extent_state(cached_state);
1131                 cached_state = NULL;
1132                 cond_resched();
1133                 start = end + 1;
1134         }
1135         if (err)
1136                 werr = err;
1137         return werr;
1138 }
1139
1140 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1141                        struct extent_io_tree *dirty_pages)
1142 {
1143         bool errors = false;
1144         int err;
1145
1146         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1147         if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1148                 errors = true;
1149
1150         if (errors && !err)
1151                 err = -EIO;
1152         return err;
1153 }
1154
1155 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1156 {
1157         struct btrfs_fs_info *fs_info = log_root->fs_info;
1158         struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1159         bool errors = false;
1160         int err;
1161
1162         ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1163
1164         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1165         if ((mark & EXTENT_DIRTY) &&
1166             test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1167                 errors = true;
1168
1169         if ((mark & EXTENT_NEW) &&
1170             test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1171                 errors = true;
1172
1173         if (errors && !err)
1174                 err = -EIO;
1175         return err;
1176 }
1177
1178 /*
1179  * When btree blocks are allocated the corresponding extents are marked dirty.
1180  * This function ensures such extents are persisted on disk for transaction or
1181  * log commit.
1182  *
1183  * @trans: transaction whose dirty pages we'd like to write
1184  */
1185 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1186 {
1187         int ret;
1188         int ret2;
1189         struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1190         struct btrfs_fs_info *fs_info = trans->fs_info;
1191         struct blk_plug plug;
1192
1193         blk_start_plug(&plug);
1194         ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1195         blk_finish_plug(&plug);
1196         ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1197
1198         extent_io_tree_release(&trans->transaction->dirty_pages);
1199
1200         if (ret)
1201                 return ret;
1202         else if (ret2)
1203                 return ret2;
1204         else
1205                 return 0;
1206 }
1207
1208 /*
1209  * this is used to update the root pointer in the tree of tree roots.
1210  *
1211  * But, in the case of the extent allocation tree, updating the root
1212  * pointer may allocate blocks which may change the root of the extent
1213  * allocation tree.
1214  *
1215  * So, this loops and repeats and makes sure the cowonly root didn't
1216  * change while the root pointer was being updated in the metadata.
1217  */
1218 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1219                                struct btrfs_root *root)
1220 {
1221         int ret;
1222         u64 old_root_bytenr;
1223         u64 old_root_used;
1224         struct btrfs_fs_info *fs_info = root->fs_info;
1225         struct btrfs_root *tree_root = fs_info->tree_root;
1226
1227         old_root_used = btrfs_root_used(&root->root_item);
1228
1229         while (1) {
1230                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1231                 if (old_root_bytenr == root->node->start &&
1232                     old_root_used == btrfs_root_used(&root->root_item))
1233                         break;
1234
1235                 btrfs_set_root_node(&root->root_item, root->node);
1236                 ret = btrfs_update_root(trans, tree_root,
1237                                         &root->root_key,
1238                                         &root->root_item);
1239                 if (ret)
1240                         return ret;
1241
1242                 old_root_used = btrfs_root_used(&root->root_item);
1243         }
1244
1245         return 0;
1246 }
1247
1248 /*
1249  * update all the cowonly tree roots on disk
1250  *
1251  * The error handling in this function may not be obvious. Any of the
1252  * failures will cause the file system to go offline. We still need
1253  * to clean up the delayed refs.
1254  */
1255 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1256 {
1257         struct btrfs_fs_info *fs_info = trans->fs_info;
1258         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1259         struct list_head *io_bgs = &trans->transaction->io_bgs;
1260         struct list_head *next;
1261         struct extent_buffer *eb;
1262         int ret;
1263
1264         /*
1265          * At this point no one can be using this transaction to modify any tree
1266          * and no one can start another transaction to modify any tree either.
1267          */
1268         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1269
1270         eb = btrfs_lock_root_node(fs_info->tree_root);
1271         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1272                               0, &eb, BTRFS_NESTING_COW);
1273         btrfs_tree_unlock(eb);
1274         free_extent_buffer(eb);
1275
1276         if (ret)
1277                 return ret;
1278
1279         ret = btrfs_run_dev_stats(trans);
1280         if (ret)
1281                 return ret;
1282         ret = btrfs_run_dev_replace(trans);
1283         if (ret)
1284                 return ret;
1285         ret = btrfs_run_qgroups(trans);
1286         if (ret)
1287                 return ret;
1288
1289         ret = btrfs_setup_space_cache(trans);
1290         if (ret)
1291                 return ret;
1292
1293 again:
1294         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1295                 struct btrfs_root *root;
1296                 next = fs_info->dirty_cowonly_roots.next;
1297                 list_del_init(next);
1298                 root = list_entry(next, struct btrfs_root, dirty_list);
1299                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1300
1301                 list_add_tail(&root->dirty_list,
1302                               &trans->transaction->switch_commits);
1303                 ret = update_cowonly_root(trans, root);
1304                 if (ret)
1305                         return ret;
1306         }
1307
1308         /* Now flush any delayed refs generated by updating all of the roots */
1309         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1310         if (ret)
1311                 return ret;
1312
1313         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1314                 ret = btrfs_write_dirty_block_groups(trans);
1315                 if (ret)
1316                         return ret;
1317
1318                 /*
1319                  * We're writing the dirty block groups, which could generate
1320                  * delayed refs, which could generate more dirty block groups,
1321                  * so we want to keep this flushing in this loop to make sure
1322                  * everything gets run.
1323                  */
1324                 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1325                 if (ret)
1326                         return ret;
1327         }
1328
1329         if (!list_empty(&fs_info->dirty_cowonly_roots))
1330                 goto again;
1331
1332         /* Update dev-replace pointer once everything is committed */
1333         fs_info->dev_replace.committed_cursor_left =
1334                 fs_info->dev_replace.cursor_left_last_write_of_item;
1335
1336         return 0;
1337 }
1338
1339 /*
1340  * If we had a pending drop we need to see if there are any others left in our
1341  * dead roots list, and if not clear our bit and wake any waiters.
1342  */
1343 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1344 {
1345         /*
1346          * We put the drop in progress roots at the front of the list, so if the
1347          * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1348          * up.
1349          */
1350         spin_lock(&fs_info->trans_lock);
1351         if (!list_empty(&fs_info->dead_roots)) {
1352                 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1353                                                            struct btrfs_root,
1354                                                            root_list);
1355                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1356                         spin_unlock(&fs_info->trans_lock);
1357                         return;
1358                 }
1359         }
1360         spin_unlock(&fs_info->trans_lock);
1361
1362         btrfs_wake_unfinished_drop(fs_info);
1363 }
1364
1365 /*
1366  * dead roots are old snapshots that need to be deleted.  This allocates
1367  * a dirty root struct and adds it into the list of dead roots that need to
1368  * be deleted
1369  */
1370 void btrfs_add_dead_root(struct btrfs_root *root)
1371 {
1372         struct btrfs_fs_info *fs_info = root->fs_info;
1373
1374         spin_lock(&fs_info->trans_lock);
1375         if (list_empty(&root->root_list)) {
1376                 btrfs_grab_root(root);
1377
1378                 /* We want to process the partially complete drops first. */
1379                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1380                         list_add(&root->root_list, &fs_info->dead_roots);
1381                 else
1382                         list_add_tail(&root->root_list, &fs_info->dead_roots);
1383         }
1384         spin_unlock(&fs_info->trans_lock);
1385 }
1386
1387 /*
1388  * Update each subvolume root and its relocation root, if it exists, in the tree
1389  * of tree roots. Also free log roots if they exist.
1390  */
1391 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1392 {
1393         struct btrfs_fs_info *fs_info = trans->fs_info;
1394         struct btrfs_root *gang[8];
1395         int i;
1396         int ret;
1397
1398         /*
1399          * At this point no one can be using this transaction to modify any tree
1400          * and no one can start another transaction to modify any tree either.
1401          */
1402         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1403
1404         spin_lock(&fs_info->fs_roots_radix_lock);
1405         while (1) {
1406                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1407                                                  (void **)gang, 0,
1408                                                  ARRAY_SIZE(gang),
1409                                                  BTRFS_ROOT_TRANS_TAG);
1410                 if (ret == 0)
1411                         break;
1412                 for (i = 0; i < ret; i++) {
1413                         struct btrfs_root *root = gang[i];
1414                         int ret2;
1415
1416                         /*
1417                          * At this point we can neither have tasks logging inodes
1418                          * from a root nor trying to commit a log tree.
1419                          */
1420                         ASSERT(atomic_read(&root->log_writers) == 0);
1421                         ASSERT(atomic_read(&root->log_commit[0]) == 0);
1422                         ASSERT(atomic_read(&root->log_commit[1]) == 0);
1423
1424                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1425                                         (unsigned long)root->root_key.objectid,
1426                                         BTRFS_ROOT_TRANS_TAG);
1427                         spin_unlock(&fs_info->fs_roots_radix_lock);
1428
1429                         btrfs_free_log(trans, root);
1430                         ret2 = btrfs_update_reloc_root(trans, root);
1431                         if (ret2)
1432                                 return ret2;
1433
1434                         /* see comments in should_cow_block() */
1435                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1436                         smp_mb__after_atomic();
1437
1438                         if (root->commit_root != root->node) {
1439                                 list_add_tail(&root->dirty_list,
1440                                         &trans->transaction->switch_commits);
1441                                 btrfs_set_root_node(&root->root_item,
1442                                                     root->node);
1443                         }
1444
1445                         ret2 = btrfs_update_root(trans, fs_info->tree_root,
1446                                                 &root->root_key,
1447                                                 &root->root_item);
1448                         if (ret2)
1449                                 return ret2;
1450                         spin_lock(&fs_info->fs_roots_radix_lock);
1451                         btrfs_qgroup_free_meta_all_pertrans(root);
1452                 }
1453         }
1454         spin_unlock(&fs_info->fs_roots_radix_lock);
1455         return 0;
1456 }
1457
1458 /*
1459  * defrag a given btree.
1460  * Every leaf in the btree is read and defragged.
1461  */
1462 int btrfs_defrag_root(struct btrfs_root *root)
1463 {
1464         struct btrfs_fs_info *info = root->fs_info;
1465         struct btrfs_trans_handle *trans;
1466         int ret;
1467
1468         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1469                 return 0;
1470
1471         while (1) {
1472                 trans = btrfs_start_transaction(root, 0);
1473                 if (IS_ERR(trans)) {
1474                         ret = PTR_ERR(trans);
1475                         break;
1476                 }
1477
1478                 ret = btrfs_defrag_leaves(trans, root);
1479
1480                 btrfs_end_transaction(trans);
1481                 btrfs_btree_balance_dirty(info);
1482                 cond_resched();
1483
1484                 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1485                         break;
1486
1487                 if (btrfs_defrag_cancelled(info)) {
1488                         btrfs_debug(info, "defrag_root cancelled");
1489                         ret = -EAGAIN;
1490                         break;
1491                 }
1492         }
1493         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1494         return ret;
1495 }
1496
1497 /*
1498  * Do all special snapshot related qgroup dirty hack.
1499  *
1500  * Will do all needed qgroup inherit and dirty hack like switch commit
1501  * roots inside one transaction and write all btree into disk, to make
1502  * qgroup works.
1503  */
1504 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1505                                    struct btrfs_root *src,
1506                                    struct btrfs_root *parent,
1507                                    struct btrfs_qgroup_inherit *inherit,
1508                                    u64 dst_objectid)
1509 {
1510         struct btrfs_fs_info *fs_info = src->fs_info;
1511         int ret;
1512
1513         /*
1514          * Save some performance in the case that qgroups are not
1515          * enabled. If this check races with the ioctl, rescan will
1516          * kick in anyway.
1517          */
1518         if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1519                 return 0;
1520
1521         /*
1522          * Ensure dirty @src will be committed.  Or, after coming
1523          * commit_fs_roots() and switch_commit_roots(), any dirty but not
1524          * recorded root will never be updated again, causing an outdated root
1525          * item.
1526          */
1527         ret = record_root_in_trans(trans, src, 1);
1528         if (ret)
1529                 return ret;
1530
1531         /*
1532          * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1533          * src root, so we must run the delayed refs here.
1534          *
1535          * However this isn't particularly fool proof, because there's no
1536          * synchronization keeping us from changing the tree after this point
1537          * before we do the qgroup_inherit, or even from making changes while
1538          * we're doing the qgroup_inherit.  But that's a problem for the future,
1539          * for now flush the delayed refs to narrow the race window where the
1540          * qgroup counters could end up wrong.
1541          */
1542         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1543         if (ret) {
1544                 btrfs_abort_transaction(trans, ret);
1545                 return ret;
1546         }
1547
1548         ret = commit_fs_roots(trans);
1549         if (ret)
1550                 goto out;
1551         ret = btrfs_qgroup_account_extents(trans);
1552         if (ret < 0)
1553                 goto out;
1554
1555         /* Now qgroup are all updated, we can inherit it to new qgroups */
1556         ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1557                                    inherit);
1558         if (ret < 0)
1559                 goto out;
1560
1561         /*
1562          * Now we do a simplified commit transaction, which will:
1563          * 1) commit all subvolume and extent tree
1564          *    To ensure all subvolume and extent tree have a valid
1565          *    commit_root to accounting later insert_dir_item()
1566          * 2) write all btree blocks onto disk
1567          *    This is to make sure later btree modification will be cowed
1568          *    Or commit_root can be populated and cause wrong qgroup numbers
1569          * In this simplified commit, we don't really care about other trees
1570          * like chunk and root tree, as they won't affect qgroup.
1571          * And we don't write super to avoid half committed status.
1572          */
1573         ret = commit_cowonly_roots(trans);
1574         if (ret)
1575                 goto out;
1576         switch_commit_roots(trans);
1577         ret = btrfs_write_and_wait_transaction(trans);
1578         if (ret)
1579                 btrfs_handle_fs_error(fs_info, ret,
1580                         "Error while writing out transaction for qgroup");
1581
1582 out:
1583         /*
1584          * Force parent root to be updated, as we recorded it before so its
1585          * last_trans == cur_transid.
1586          * Or it won't be committed again onto disk after later
1587          * insert_dir_item()
1588          */
1589         if (!ret)
1590                 ret = record_root_in_trans(trans, parent, 1);
1591         return ret;
1592 }
1593
1594 /*
1595  * new snapshots need to be created at a very specific time in the
1596  * transaction commit.  This does the actual creation.
1597  *
1598  * Note:
1599  * If the error which may affect the commitment of the current transaction
1600  * happens, we should return the error number. If the error which just affect
1601  * the creation of the pending snapshots, just return 0.
1602  */
1603 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1604                                    struct btrfs_pending_snapshot *pending)
1605 {
1606
1607         struct btrfs_fs_info *fs_info = trans->fs_info;
1608         struct btrfs_key key;
1609         struct btrfs_root_item *new_root_item;
1610         struct btrfs_root *tree_root = fs_info->tree_root;
1611         struct btrfs_root *root = pending->root;
1612         struct btrfs_root *parent_root;
1613         struct btrfs_block_rsv *rsv;
1614         struct inode *parent_inode = pending->dir;
1615         struct btrfs_path *path;
1616         struct btrfs_dir_item *dir_item;
1617         struct extent_buffer *tmp;
1618         struct extent_buffer *old;
1619         struct timespec64 cur_time;
1620         int ret = 0;
1621         u64 to_reserve = 0;
1622         u64 index = 0;
1623         u64 objectid;
1624         u64 root_flags;
1625         unsigned int nofs_flags;
1626         struct fscrypt_name fname;
1627
1628         ASSERT(pending->path);
1629         path = pending->path;
1630
1631         ASSERT(pending->root_item);
1632         new_root_item = pending->root_item;
1633
1634         /*
1635          * We're inside a transaction and must make sure that any potential
1636          * allocations with GFP_KERNEL in fscrypt won't recurse back to
1637          * filesystem.
1638          */
1639         nofs_flags = memalloc_nofs_save();
1640         pending->error = fscrypt_setup_filename(parent_inode,
1641                                                 &pending->dentry->d_name, 0,
1642                                                 &fname);
1643         memalloc_nofs_restore(nofs_flags);
1644         if (pending->error)
1645                 goto free_pending;
1646
1647         pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1648         if (pending->error)
1649                 goto free_fname;
1650
1651         /*
1652          * Make qgroup to skip current new snapshot's qgroupid, as it is
1653          * accounted by later btrfs_qgroup_inherit().
1654          */
1655         btrfs_set_skip_qgroup(trans, objectid);
1656
1657         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1658
1659         if (to_reserve > 0) {
1660                 pending->error = btrfs_block_rsv_add(fs_info,
1661                                                      &pending->block_rsv,
1662                                                      to_reserve,
1663                                                      BTRFS_RESERVE_NO_FLUSH);
1664                 if (pending->error)
1665                         goto clear_skip_qgroup;
1666         }
1667
1668         key.objectid = objectid;
1669         key.offset = (u64)-1;
1670         key.type = BTRFS_ROOT_ITEM_KEY;
1671
1672         rsv = trans->block_rsv;
1673         trans->block_rsv = &pending->block_rsv;
1674         trans->bytes_reserved = trans->block_rsv->reserved;
1675         trace_btrfs_space_reservation(fs_info, "transaction",
1676                                       trans->transid,
1677                                       trans->bytes_reserved, 1);
1678         parent_root = BTRFS_I(parent_inode)->root;
1679         ret = record_root_in_trans(trans, parent_root, 0);
1680         if (ret)
1681                 goto fail;
1682         cur_time = current_time(parent_inode);
1683
1684         /*
1685          * insert the directory item
1686          */
1687         ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1688         if (ret) {
1689                 btrfs_abort_transaction(trans, ret);
1690                 goto fail;
1691         }
1692
1693         /* check if there is a file/dir which has the same name. */
1694         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1695                                          btrfs_ino(BTRFS_I(parent_inode)),
1696                                          &fname.disk_name, 0);
1697         if (dir_item != NULL && !IS_ERR(dir_item)) {
1698                 pending->error = -EEXIST;
1699                 goto dir_item_existed;
1700         } else if (IS_ERR(dir_item)) {
1701                 ret = PTR_ERR(dir_item);
1702                 btrfs_abort_transaction(trans, ret);
1703                 goto fail;
1704         }
1705         btrfs_release_path(path);
1706
1707         /*
1708          * pull in the delayed directory update
1709          * and the delayed inode item
1710          * otherwise we corrupt the FS during
1711          * snapshot
1712          */
1713         ret = btrfs_run_delayed_items(trans);
1714         if (ret) {      /* Transaction aborted */
1715                 btrfs_abort_transaction(trans, ret);
1716                 goto fail;
1717         }
1718
1719         ret = record_root_in_trans(trans, root, 0);
1720         if (ret) {
1721                 btrfs_abort_transaction(trans, ret);
1722                 goto fail;
1723         }
1724         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1725         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1726         btrfs_check_and_init_root_item(new_root_item);
1727
1728         root_flags = btrfs_root_flags(new_root_item);
1729         if (pending->readonly)
1730                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1731         else
1732                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1733         btrfs_set_root_flags(new_root_item, root_flags);
1734
1735         btrfs_set_root_generation_v2(new_root_item,
1736                         trans->transid);
1737         generate_random_guid(new_root_item->uuid);
1738         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1739                         BTRFS_UUID_SIZE);
1740         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1741                 memset(new_root_item->received_uuid, 0,
1742                        sizeof(new_root_item->received_uuid));
1743                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1744                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1745                 btrfs_set_root_stransid(new_root_item, 0);
1746                 btrfs_set_root_rtransid(new_root_item, 0);
1747         }
1748         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1749         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1750         btrfs_set_root_otransid(new_root_item, trans->transid);
1751
1752         old = btrfs_lock_root_node(root);
1753         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1754                               BTRFS_NESTING_COW);
1755         if (ret) {
1756                 btrfs_tree_unlock(old);
1757                 free_extent_buffer(old);
1758                 btrfs_abort_transaction(trans, ret);
1759                 goto fail;
1760         }
1761
1762         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1763         /* clean up in any case */
1764         btrfs_tree_unlock(old);
1765         free_extent_buffer(old);
1766         if (ret) {
1767                 btrfs_abort_transaction(trans, ret);
1768                 goto fail;
1769         }
1770         /* see comments in should_cow_block() */
1771         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1772         smp_wmb();
1773
1774         btrfs_set_root_node(new_root_item, tmp);
1775         /* record when the snapshot was created in key.offset */
1776         key.offset = trans->transid;
1777         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1778         btrfs_tree_unlock(tmp);
1779         free_extent_buffer(tmp);
1780         if (ret) {
1781                 btrfs_abort_transaction(trans, ret);
1782                 goto fail;
1783         }
1784
1785         /*
1786          * insert root back/forward references
1787          */
1788         ret = btrfs_add_root_ref(trans, objectid,
1789                                  parent_root->root_key.objectid,
1790                                  btrfs_ino(BTRFS_I(parent_inode)), index,
1791                                  &fname.disk_name);
1792         if (ret) {
1793                 btrfs_abort_transaction(trans, ret);
1794                 goto fail;
1795         }
1796
1797         key.offset = (u64)-1;
1798         pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1799         if (IS_ERR(pending->snap)) {
1800                 ret = PTR_ERR(pending->snap);
1801                 pending->snap = NULL;
1802                 btrfs_abort_transaction(trans, ret);
1803                 goto fail;
1804         }
1805
1806         ret = btrfs_reloc_post_snapshot(trans, pending);
1807         if (ret) {
1808                 btrfs_abort_transaction(trans, ret);
1809                 goto fail;
1810         }
1811
1812         /*
1813          * Do special qgroup accounting for snapshot, as we do some qgroup
1814          * snapshot hack to do fast snapshot.
1815          * To co-operate with that hack, we do hack again.
1816          * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1817          */
1818         ret = qgroup_account_snapshot(trans, root, parent_root,
1819                                       pending->inherit, objectid);
1820         if (ret < 0)
1821                 goto fail;
1822
1823         ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1824                                     BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1825                                     index);
1826         /* We have check then name at the beginning, so it is impossible. */
1827         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1828         if (ret) {
1829                 btrfs_abort_transaction(trans, ret);
1830                 goto fail;
1831         }
1832
1833         btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1834                                                   fname.disk_name.len * 2);
1835         parent_inode->i_mtime = current_time(parent_inode);
1836         parent_inode->i_ctime = parent_inode->i_mtime;
1837         ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1838         if (ret) {
1839                 btrfs_abort_transaction(trans, ret);
1840                 goto fail;
1841         }
1842         ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1843                                   BTRFS_UUID_KEY_SUBVOL,
1844                                   objectid);
1845         if (ret) {
1846                 btrfs_abort_transaction(trans, ret);
1847                 goto fail;
1848         }
1849         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1850                 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1851                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1852                                           objectid);
1853                 if (ret && ret != -EEXIST) {
1854                         btrfs_abort_transaction(trans, ret);
1855                         goto fail;
1856                 }
1857         }
1858
1859 fail:
1860         pending->error = ret;
1861 dir_item_existed:
1862         trans->block_rsv = rsv;
1863         trans->bytes_reserved = 0;
1864 clear_skip_qgroup:
1865         btrfs_clear_skip_qgroup(trans);
1866 free_fname:
1867         fscrypt_free_filename(&fname);
1868 free_pending:
1869         kfree(new_root_item);
1870         pending->root_item = NULL;
1871         btrfs_free_path(path);
1872         pending->path = NULL;
1873
1874         return ret;
1875 }
1876
1877 /*
1878  * create all the snapshots we've scheduled for creation
1879  */
1880 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1881 {
1882         struct btrfs_pending_snapshot *pending, *next;
1883         struct list_head *head = &trans->transaction->pending_snapshots;
1884         int ret = 0;
1885
1886         list_for_each_entry_safe(pending, next, head, list) {
1887                 list_del(&pending->list);
1888                 ret = create_pending_snapshot(trans, pending);
1889                 if (ret)
1890                         break;
1891         }
1892         return ret;
1893 }
1894
1895 static void update_super_roots(struct btrfs_fs_info *fs_info)
1896 {
1897         struct btrfs_root_item *root_item;
1898         struct btrfs_super_block *super;
1899
1900         super = fs_info->super_copy;
1901
1902         root_item = &fs_info->chunk_root->root_item;
1903         super->chunk_root = root_item->bytenr;
1904         super->chunk_root_generation = root_item->generation;
1905         super->chunk_root_level = root_item->level;
1906
1907         root_item = &fs_info->tree_root->root_item;
1908         super->root = root_item->bytenr;
1909         super->generation = root_item->generation;
1910         super->root_level = root_item->level;
1911         if (btrfs_test_opt(fs_info, SPACE_CACHE))
1912                 super->cache_generation = root_item->generation;
1913         else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1914                 super->cache_generation = 0;
1915         if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1916                 super->uuid_tree_generation = root_item->generation;
1917 }
1918
1919 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1920 {
1921         struct btrfs_transaction *trans;
1922         int ret = 0;
1923
1924         spin_lock(&info->trans_lock);
1925         trans = info->running_transaction;
1926         if (trans)
1927                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1928         spin_unlock(&info->trans_lock);
1929         return ret;
1930 }
1931
1932 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1933 {
1934         struct btrfs_transaction *trans;
1935         int ret = 0;
1936
1937         spin_lock(&info->trans_lock);
1938         trans = info->running_transaction;
1939         if (trans)
1940                 ret = is_transaction_blocked(trans);
1941         spin_unlock(&info->trans_lock);
1942         return ret;
1943 }
1944
1945 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1946 {
1947         struct btrfs_fs_info *fs_info = trans->fs_info;
1948         struct btrfs_transaction *cur_trans;
1949
1950         /* Kick the transaction kthread. */
1951         set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1952         wake_up_process(fs_info->transaction_kthread);
1953
1954         /* take transaction reference */
1955         cur_trans = trans->transaction;
1956         refcount_inc(&cur_trans->use_count);
1957
1958         btrfs_end_transaction(trans);
1959
1960         /*
1961          * Wait for the current transaction commit to start and block
1962          * subsequent transaction joins
1963          */
1964         btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
1965         wait_event(fs_info->transaction_blocked_wait,
1966                    cur_trans->state >= TRANS_STATE_COMMIT_START ||
1967                    TRANS_ABORTED(cur_trans));
1968         btrfs_put_transaction(cur_trans);
1969 }
1970
1971 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1972 {
1973         struct btrfs_fs_info *fs_info = trans->fs_info;
1974         struct btrfs_transaction *cur_trans = trans->transaction;
1975
1976         WARN_ON(refcount_read(&trans->use_count) > 1);
1977
1978         btrfs_abort_transaction(trans, err);
1979
1980         spin_lock(&fs_info->trans_lock);
1981
1982         /*
1983          * If the transaction is removed from the list, it means this
1984          * transaction has been committed successfully, so it is impossible
1985          * to call the cleanup function.
1986          */
1987         BUG_ON(list_empty(&cur_trans->list));
1988
1989         if (cur_trans == fs_info->running_transaction) {
1990                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1991                 spin_unlock(&fs_info->trans_lock);
1992
1993                 /*
1994                  * The thread has already released the lockdep map as reader
1995                  * already in btrfs_commit_transaction().
1996                  */
1997                 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
1998                 wait_event(cur_trans->writer_wait,
1999                            atomic_read(&cur_trans->num_writers) == 1);
2000
2001                 spin_lock(&fs_info->trans_lock);
2002         }
2003
2004         /*
2005          * Now that we know no one else is still using the transaction we can
2006          * remove the transaction from the list of transactions. This avoids
2007          * the transaction kthread from cleaning up the transaction while some
2008          * other task is still using it, which could result in a use-after-free
2009          * on things like log trees, as it forces the transaction kthread to
2010          * wait for this transaction to be cleaned up by us.
2011          */
2012         list_del_init(&cur_trans->list);
2013
2014         spin_unlock(&fs_info->trans_lock);
2015
2016         btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2017
2018         spin_lock(&fs_info->trans_lock);
2019         if (cur_trans == fs_info->running_transaction)
2020                 fs_info->running_transaction = NULL;
2021         spin_unlock(&fs_info->trans_lock);
2022
2023         if (trans->type & __TRANS_FREEZABLE)
2024                 sb_end_intwrite(fs_info->sb);
2025         btrfs_put_transaction(cur_trans);
2026         btrfs_put_transaction(cur_trans);
2027
2028         trace_btrfs_transaction_commit(fs_info);
2029
2030         if (current->journal_info == trans)
2031                 current->journal_info = NULL;
2032
2033         /*
2034          * If relocation is running, we can't cancel scrub because that will
2035          * result in a deadlock. Before relocating a block group, relocation
2036          * pauses scrub, then starts and commits a transaction before unpausing
2037          * scrub. If the transaction commit is being done by the relocation
2038          * task or triggered by another task and the relocation task is waiting
2039          * for the commit, and we end up here due to an error in the commit
2040          * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2041          * asking for scrub to stop while having it asked to be paused higher
2042          * above in relocation code.
2043          */
2044         if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2045                 btrfs_scrub_cancel(fs_info);
2046
2047         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2048 }
2049
2050 /*
2051  * Release reserved delayed ref space of all pending block groups of the
2052  * transaction and remove them from the list
2053  */
2054 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2055 {
2056        struct btrfs_fs_info *fs_info = trans->fs_info;
2057        struct btrfs_block_group *block_group, *tmp;
2058
2059        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2060                btrfs_delayed_refs_rsv_release(fs_info, 1);
2061                list_del_init(&block_group->bg_list);
2062        }
2063 }
2064
2065 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2066 {
2067         /*
2068          * We use try_to_writeback_inodes_sb() here because if we used
2069          * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2070          * Currently are holding the fs freeze lock, if we do an async flush
2071          * we'll do btrfs_join_transaction() and deadlock because we need to
2072          * wait for the fs freeze lock.  Using the direct flushing we benefit
2073          * from already being in a transaction and our join_transaction doesn't
2074          * have to re-take the fs freeze lock.
2075          *
2076          * Note that try_to_writeback_inodes_sb() will only trigger writeback
2077          * if it can read lock sb->s_umount. It will always be able to lock it,
2078          * except when the filesystem is being unmounted or being frozen, but in
2079          * those cases sync_filesystem() is called, which results in calling
2080          * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2081          * Note that we don't call writeback_inodes_sb() directly, because it
2082          * will emit a warning if sb->s_umount is not locked.
2083          */
2084         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2085                 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2086         return 0;
2087 }
2088
2089 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2090 {
2091         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2092                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2093 }
2094
2095 /*
2096  * Add a pending snapshot associated with the given transaction handle to the
2097  * respective handle. This must be called after the transaction commit started
2098  * and while holding fs_info->trans_lock.
2099  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2100  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2101  * returns an error.
2102  */
2103 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2104 {
2105         struct btrfs_transaction *cur_trans = trans->transaction;
2106
2107         if (!trans->pending_snapshot)
2108                 return;
2109
2110         lockdep_assert_held(&trans->fs_info->trans_lock);
2111         ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2112
2113         list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2114 }
2115
2116 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2117 {
2118         fs_info->commit_stats.commit_count++;
2119         fs_info->commit_stats.last_commit_dur = interval;
2120         fs_info->commit_stats.max_commit_dur =
2121                         max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2122         fs_info->commit_stats.total_commit_dur += interval;
2123 }
2124
2125 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2126 {
2127         struct btrfs_fs_info *fs_info = trans->fs_info;
2128         struct btrfs_transaction *cur_trans = trans->transaction;
2129         struct btrfs_transaction *prev_trans = NULL;
2130         int ret;
2131         ktime_t start_time;
2132         ktime_t interval;
2133
2134         ASSERT(refcount_read(&trans->use_count) == 1);
2135         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2136
2137         clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2138
2139         /* Stop the commit early if ->aborted is set */
2140         if (TRANS_ABORTED(cur_trans)) {
2141                 ret = cur_trans->aborted;
2142                 goto lockdep_trans_commit_start_release;
2143         }
2144
2145         btrfs_trans_release_metadata(trans);
2146         trans->block_rsv = NULL;
2147
2148         /*
2149          * We only want one transaction commit doing the flushing so we do not
2150          * waste a bunch of time on lock contention on the extent root node.
2151          */
2152         if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2153                               &cur_trans->delayed_refs.flags)) {
2154                 /*
2155                  * Make a pass through all the delayed refs we have so far.
2156                  * Any running threads may add more while we are here.
2157                  */
2158                 ret = btrfs_run_delayed_refs(trans, 0);
2159                 if (ret)
2160                         goto lockdep_trans_commit_start_release;
2161         }
2162
2163         btrfs_create_pending_block_groups(trans);
2164
2165         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2166                 int run_it = 0;
2167
2168                 /* this mutex is also taken before trying to set
2169                  * block groups readonly.  We need to make sure
2170                  * that nobody has set a block group readonly
2171                  * after a extents from that block group have been
2172                  * allocated for cache files.  btrfs_set_block_group_ro
2173                  * will wait for the transaction to commit if it
2174                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2175                  *
2176                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2177                  * only one process starts all the block group IO.  It wouldn't
2178                  * hurt to have more than one go through, but there's no
2179                  * real advantage to it either.
2180                  */
2181                 mutex_lock(&fs_info->ro_block_group_mutex);
2182                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2183                                       &cur_trans->flags))
2184                         run_it = 1;
2185                 mutex_unlock(&fs_info->ro_block_group_mutex);
2186
2187                 if (run_it) {
2188                         ret = btrfs_start_dirty_block_groups(trans);
2189                         if (ret)
2190                                 goto lockdep_trans_commit_start_release;
2191                 }
2192         }
2193
2194         spin_lock(&fs_info->trans_lock);
2195         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2196                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2197
2198                 add_pending_snapshot(trans);
2199
2200                 spin_unlock(&fs_info->trans_lock);
2201                 refcount_inc(&cur_trans->use_count);
2202
2203                 if (trans->in_fsync)
2204                         want_state = TRANS_STATE_SUPER_COMMITTED;
2205
2206                 btrfs_trans_state_lockdep_release(fs_info,
2207                                                   BTRFS_LOCKDEP_TRANS_COMMIT_START);
2208                 ret = btrfs_end_transaction(trans);
2209                 wait_for_commit(cur_trans, want_state);
2210
2211                 if (TRANS_ABORTED(cur_trans))
2212                         ret = cur_trans->aborted;
2213
2214                 btrfs_put_transaction(cur_trans);
2215
2216                 return ret;
2217         }
2218
2219         cur_trans->state = TRANS_STATE_COMMIT_START;
2220         wake_up(&fs_info->transaction_blocked_wait);
2221         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2222
2223         if (cur_trans->list.prev != &fs_info->trans_list) {
2224                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2225
2226                 if (trans->in_fsync)
2227                         want_state = TRANS_STATE_SUPER_COMMITTED;
2228
2229                 prev_trans = list_entry(cur_trans->list.prev,
2230                                         struct btrfs_transaction, list);
2231                 if (prev_trans->state < want_state) {
2232                         refcount_inc(&prev_trans->use_count);
2233                         spin_unlock(&fs_info->trans_lock);
2234
2235                         wait_for_commit(prev_trans, want_state);
2236
2237                         ret = READ_ONCE(prev_trans->aborted);
2238
2239                         btrfs_put_transaction(prev_trans);
2240                         if (ret)
2241                                 goto lockdep_release;
2242                 } else {
2243                         spin_unlock(&fs_info->trans_lock);
2244                 }
2245         } else {
2246                 spin_unlock(&fs_info->trans_lock);
2247                 /*
2248                  * The previous transaction was aborted and was already removed
2249                  * from the list of transactions at fs_info->trans_list. So we
2250                  * abort to prevent writing a new superblock that reflects a
2251                  * corrupt state (pointing to trees with unwritten nodes/leafs).
2252                  */
2253                 if (BTRFS_FS_ERROR(fs_info)) {
2254                         ret = -EROFS;
2255                         goto lockdep_release;
2256                 }
2257         }
2258
2259         /*
2260          * Get the time spent on the work done by the commit thread and not
2261          * the time spent waiting on a previous commit
2262          */
2263         start_time = ktime_get_ns();
2264
2265         extwriter_counter_dec(cur_trans, trans->type);
2266
2267         ret = btrfs_start_delalloc_flush(fs_info);
2268         if (ret)
2269                 goto lockdep_release;
2270
2271         ret = btrfs_run_delayed_items(trans);
2272         if (ret)
2273                 goto lockdep_release;
2274
2275         /*
2276          * The thread has started/joined the transaction thus it holds the
2277          * lockdep map as a reader. It has to release it before acquiring the
2278          * lockdep map as a writer.
2279          */
2280         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2281         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2282         wait_event(cur_trans->writer_wait,
2283                    extwriter_counter_read(cur_trans) == 0);
2284
2285         /* some pending stuffs might be added after the previous flush. */
2286         ret = btrfs_run_delayed_items(trans);
2287         if (ret) {
2288                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2289                 goto cleanup_transaction;
2290         }
2291
2292         btrfs_wait_delalloc_flush(fs_info);
2293
2294         /*
2295          * Wait for all ordered extents started by a fast fsync that joined this
2296          * transaction. Otherwise if this transaction commits before the ordered
2297          * extents complete we lose logged data after a power failure.
2298          */
2299         btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2300         wait_event(cur_trans->pending_wait,
2301                    atomic_read(&cur_trans->pending_ordered) == 0);
2302
2303         btrfs_scrub_pause(fs_info);
2304         /*
2305          * Ok now we need to make sure to block out any other joins while we
2306          * commit the transaction.  We could have started a join before setting
2307          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2308          */
2309         spin_lock(&fs_info->trans_lock);
2310         add_pending_snapshot(trans);
2311         cur_trans->state = TRANS_STATE_COMMIT_DOING;
2312         spin_unlock(&fs_info->trans_lock);
2313
2314         /*
2315          * The thread has started/joined the transaction thus it holds the
2316          * lockdep map as a reader. It has to release it before acquiring the
2317          * lockdep map as a writer.
2318          */
2319         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2320         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2321         wait_event(cur_trans->writer_wait,
2322                    atomic_read(&cur_trans->num_writers) == 1);
2323
2324         /*
2325          * Make lockdep happy by acquiring the state locks after
2326          * btrfs_trans_num_writers is released. If we acquired the state locks
2327          * before releasing the btrfs_trans_num_writers lock then lockdep would
2328          * complain because we did not follow the reverse order unlocking rule.
2329          */
2330         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2331         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2332         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2333
2334         /*
2335          * We've started the commit, clear the flag in case we were triggered to
2336          * do an async commit but somebody else started before the transaction
2337          * kthread could do the work.
2338          */
2339         clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2340
2341         if (TRANS_ABORTED(cur_trans)) {
2342                 ret = cur_trans->aborted;
2343                 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2344                 goto scrub_continue;
2345         }
2346         /*
2347          * the reloc mutex makes sure that we stop
2348          * the balancing code from coming in and moving
2349          * extents around in the middle of the commit
2350          */
2351         mutex_lock(&fs_info->reloc_mutex);
2352
2353         /*
2354          * We needn't worry about the delayed items because we will
2355          * deal with them in create_pending_snapshot(), which is the
2356          * core function of the snapshot creation.
2357          */
2358         ret = create_pending_snapshots(trans);
2359         if (ret)
2360                 goto unlock_reloc;
2361
2362         /*
2363          * We insert the dir indexes of the snapshots and update the inode
2364          * of the snapshots' parents after the snapshot creation, so there
2365          * are some delayed items which are not dealt with. Now deal with
2366          * them.
2367          *
2368          * We needn't worry that this operation will corrupt the snapshots,
2369          * because all the tree which are snapshoted will be forced to COW
2370          * the nodes and leaves.
2371          */
2372         ret = btrfs_run_delayed_items(trans);
2373         if (ret)
2374                 goto unlock_reloc;
2375
2376         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2377         if (ret)
2378                 goto unlock_reloc;
2379
2380         /*
2381          * make sure none of the code above managed to slip in a
2382          * delayed item
2383          */
2384         btrfs_assert_delayed_root_empty(fs_info);
2385
2386         WARN_ON(cur_trans != trans->transaction);
2387
2388         ret = commit_fs_roots(trans);
2389         if (ret)
2390                 goto unlock_reloc;
2391
2392         /* commit_fs_roots gets rid of all the tree log roots, it is now
2393          * safe to free the root of tree log roots
2394          */
2395         btrfs_free_log_root_tree(trans, fs_info);
2396
2397         /*
2398          * Since fs roots are all committed, we can get a quite accurate
2399          * new_roots. So let's do quota accounting.
2400          */
2401         ret = btrfs_qgroup_account_extents(trans);
2402         if (ret < 0)
2403                 goto unlock_reloc;
2404
2405         ret = commit_cowonly_roots(trans);
2406         if (ret)
2407                 goto unlock_reloc;
2408
2409         /*
2410          * The tasks which save the space cache and inode cache may also
2411          * update ->aborted, check it.
2412          */
2413         if (TRANS_ABORTED(cur_trans)) {
2414                 ret = cur_trans->aborted;
2415                 goto unlock_reloc;
2416         }
2417
2418         cur_trans = fs_info->running_transaction;
2419
2420         btrfs_set_root_node(&fs_info->tree_root->root_item,
2421                             fs_info->tree_root->node);
2422         list_add_tail(&fs_info->tree_root->dirty_list,
2423                       &cur_trans->switch_commits);
2424
2425         btrfs_set_root_node(&fs_info->chunk_root->root_item,
2426                             fs_info->chunk_root->node);
2427         list_add_tail(&fs_info->chunk_root->dirty_list,
2428                       &cur_trans->switch_commits);
2429
2430         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2431                 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2432                                     fs_info->block_group_root->node);
2433                 list_add_tail(&fs_info->block_group_root->dirty_list,
2434                               &cur_trans->switch_commits);
2435         }
2436
2437         switch_commit_roots(trans);
2438
2439         ASSERT(list_empty(&cur_trans->dirty_bgs));
2440         ASSERT(list_empty(&cur_trans->io_bgs));
2441         update_super_roots(fs_info);
2442
2443         btrfs_set_super_log_root(fs_info->super_copy, 0);
2444         btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2445         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2446                sizeof(*fs_info->super_copy));
2447
2448         btrfs_commit_device_sizes(cur_trans);
2449
2450         clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2451         clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2452
2453         btrfs_trans_release_chunk_metadata(trans);
2454
2455         /*
2456          * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2457          * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2458          * make sure that before we commit our superblock, no other task can
2459          * start a new transaction and commit a log tree before we commit our
2460          * superblock. Anyone trying to commit a log tree locks this mutex before
2461          * writing its superblock.
2462          */
2463         mutex_lock(&fs_info->tree_log_mutex);
2464
2465         spin_lock(&fs_info->trans_lock);
2466         cur_trans->state = TRANS_STATE_UNBLOCKED;
2467         fs_info->running_transaction = NULL;
2468         spin_unlock(&fs_info->trans_lock);
2469         mutex_unlock(&fs_info->reloc_mutex);
2470
2471         wake_up(&fs_info->transaction_wait);
2472         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2473
2474         /* If we have features changed, wake up the cleaner to update sysfs. */
2475         if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2476             fs_info->cleaner_kthread)
2477                 wake_up_process(fs_info->cleaner_kthread);
2478
2479         ret = btrfs_write_and_wait_transaction(trans);
2480         if (ret) {
2481                 btrfs_handle_fs_error(fs_info, ret,
2482                                       "Error while writing out transaction");
2483                 mutex_unlock(&fs_info->tree_log_mutex);
2484                 goto scrub_continue;
2485         }
2486
2487         ret = write_all_supers(fs_info, 0);
2488         /*
2489          * the super is written, we can safely allow the tree-loggers
2490          * to go about their business
2491          */
2492         mutex_unlock(&fs_info->tree_log_mutex);
2493         if (ret)
2494                 goto scrub_continue;
2495
2496         /*
2497          * We needn't acquire the lock here because there is no other task
2498          * which can change it.
2499          */
2500         cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2501         wake_up(&cur_trans->commit_wait);
2502         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2503
2504         btrfs_finish_extent_commit(trans);
2505
2506         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2507                 btrfs_clear_space_info_full(fs_info);
2508
2509         fs_info->last_trans_committed = cur_trans->transid;
2510         /*
2511          * We needn't acquire the lock here because there is no other task
2512          * which can change it.
2513          */
2514         cur_trans->state = TRANS_STATE_COMPLETED;
2515         wake_up(&cur_trans->commit_wait);
2516         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2517
2518         spin_lock(&fs_info->trans_lock);
2519         list_del_init(&cur_trans->list);
2520         spin_unlock(&fs_info->trans_lock);
2521
2522         btrfs_put_transaction(cur_trans);
2523         btrfs_put_transaction(cur_trans);
2524
2525         if (trans->type & __TRANS_FREEZABLE)
2526                 sb_end_intwrite(fs_info->sb);
2527
2528         trace_btrfs_transaction_commit(fs_info);
2529
2530         interval = ktime_get_ns() - start_time;
2531
2532         btrfs_scrub_continue(fs_info);
2533
2534         if (current->journal_info == trans)
2535                 current->journal_info = NULL;
2536
2537         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2538
2539         update_commit_stats(fs_info, interval);
2540
2541         return ret;
2542
2543 unlock_reloc:
2544         mutex_unlock(&fs_info->reloc_mutex);
2545         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2546 scrub_continue:
2547         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2548         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2549         btrfs_scrub_continue(fs_info);
2550 cleanup_transaction:
2551         btrfs_trans_release_metadata(trans);
2552         btrfs_cleanup_pending_block_groups(trans);
2553         btrfs_trans_release_chunk_metadata(trans);
2554         trans->block_rsv = NULL;
2555         btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2556         if (current->journal_info == trans)
2557                 current->journal_info = NULL;
2558         cleanup_transaction(trans, ret);
2559
2560         return ret;
2561
2562 lockdep_release:
2563         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2564         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2565         goto cleanup_transaction;
2566
2567 lockdep_trans_commit_start_release:
2568         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2569         btrfs_end_transaction(trans);
2570         return ret;
2571 }
2572
2573 /*
2574  * return < 0 if error
2575  * 0 if there are no more dead_roots at the time of call
2576  * 1 there are more to be processed, call me again
2577  *
2578  * The return value indicates there are certainly more snapshots to delete, but
2579  * if there comes a new one during processing, it may return 0. We don't mind,
2580  * because btrfs_commit_super will poke cleaner thread and it will process it a
2581  * few seconds later.
2582  */
2583 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2584 {
2585         struct btrfs_root *root;
2586         int ret;
2587
2588         spin_lock(&fs_info->trans_lock);
2589         if (list_empty(&fs_info->dead_roots)) {
2590                 spin_unlock(&fs_info->trans_lock);
2591                 return 0;
2592         }
2593         root = list_first_entry(&fs_info->dead_roots,
2594                         struct btrfs_root, root_list);
2595         list_del_init(&root->root_list);
2596         spin_unlock(&fs_info->trans_lock);
2597
2598         btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2599
2600         btrfs_kill_all_delayed_nodes(root);
2601
2602         if (btrfs_header_backref_rev(root->node) <
2603                         BTRFS_MIXED_BACKREF_REV)
2604                 ret = btrfs_drop_snapshot(root, 0, 0);
2605         else
2606                 ret = btrfs_drop_snapshot(root, 1, 0);
2607
2608         btrfs_put_root(root);
2609         return (ret < 0) ? 0 : 1;
2610 }
2611
2612 /*
2613  * We only mark the transaction aborted and then set the file system read-only.
2614  * This will prevent new transactions from starting or trying to join this
2615  * one.
2616  *
2617  * This means that error recovery at the call site is limited to freeing
2618  * any local memory allocations and passing the error code up without
2619  * further cleanup. The transaction should complete as it normally would
2620  * in the call path but will return -EIO.
2621  *
2622  * We'll complete the cleanup in btrfs_end_transaction and
2623  * btrfs_commit_transaction.
2624  */
2625 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2626                                       const char *function,
2627                                       unsigned int line, int errno, bool first_hit)
2628 {
2629         struct btrfs_fs_info *fs_info = trans->fs_info;
2630
2631         WRITE_ONCE(trans->aborted, errno);
2632         WRITE_ONCE(trans->transaction->aborted, errno);
2633         if (first_hit && errno == -ENOSPC)
2634                 btrfs_dump_space_info_for_trans_abort(fs_info);
2635         /* Wake up anybody who may be waiting on this transaction */
2636         wake_up(&fs_info->transaction_wait);
2637         wake_up(&fs_info->transaction_blocked_wait);
2638         __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
2639 }
2640
2641 int __init btrfs_transaction_init(void)
2642 {
2643         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2644                         sizeof(struct btrfs_trans_handle), 0,
2645                         SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2646         if (!btrfs_trans_handle_cachep)
2647                 return -ENOMEM;
2648         return 0;
2649 }
2650
2651 void __cold btrfs_transaction_exit(void)
2652 {
2653         kmem_cache_destroy(btrfs_trans_handle_cachep);
2654 }