1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
16 #include "transaction.h"
20 #include "dev-replace.h"
22 #include "block-group.h"
23 #include "space-info.h"
25 #define BTRFS_ROOT_TRANS_TAG 0
28 * Transaction states and transitions
30 * No running transaction (fs tree blocks are not modified)
33 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35 * Transaction N [[TRANS_STATE_RUNNING]]
37 * | New trans handles can be attached to transaction N by calling all
38 * | start_transaction() variants.
41 * | Call btrfs_commit_transaction() on any trans handle attached to
44 * Transaction N [[TRANS_STATE_COMMIT_START]]
46 * | Will wait for previous running transaction to completely finish if there
49 * | Then one of the following happes:
50 * | - Wait for all other trans handle holders to release.
51 * | The btrfs_commit_transaction() caller will do the commit work.
52 * | - Wait for current transaction to be committed by others.
53 * | Other btrfs_commit_transaction() caller will do the commit work.
55 * | At this stage, only btrfs_join_transaction*() variants can attach
56 * | to this running transaction.
57 * | All other variants will wait for current one to finish and attach to
61 * | Caller is chosen to commit transaction N, and all other trans handle
62 * | haven been released.
64 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66 * | The heavy lifting transaction work is started.
67 * | From running delayed refs (modifying extent tree) to creating pending
68 * | snapshots, running qgroups.
69 * | In short, modify supporting trees to reflect modifications of subvolume
72 * | At this stage, all start_transaction() calls will wait for this
73 * | transaction to finish and attach to transaction N+1.
76 * | Until all supporting trees are updated.
78 * Transaction N [[TRANS_STATE_UNBLOCKED]]
80 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
81 * | need to write them back to disk and update |
84 * | At this stage, new transaction is allowed to |
86 * | All new start_transaction() calls will be |
87 * | attached to transid N+1. |
90 * | Until all tree blocks are super blocks are |
91 * | written to block devices |
93 * Transaction N [[TRANS_STATE_COMPLETED]] V
94 * All tree blocks and super blocks are written. Transaction N+1
95 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
96 * data structures will be cleaned up. | Life goes on
98 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
99 [TRANS_STATE_RUNNING] = 0U,
100 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
101 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
104 __TRANS_JOIN_NOSTART),
105 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
108 __TRANS_JOIN_NOLOCK |
109 __TRANS_JOIN_NOSTART),
110 [TRANS_STATE_COMPLETED] = (__TRANS_START |
113 __TRANS_JOIN_NOLOCK |
114 __TRANS_JOIN_NOSTART),
117 void btrfs_put_transaction(struct btrfs_transaction *transaction)
119 WARN_ON(refcount_read(&transaction->use_count) == 0);
120 if (refcount_dec_and_test(&transaction->use_count)) {
121 BUG_ON(!list_empty(&transaction->list));
122 WARN_ON(!RB_EMPTY_ROOT(
123 &transaction->delayed_refs.href_root.rb_root));
124 WARN_ON(!RB_EMPTY_ROOT(
125 &transaction->delayed_refs.dirty_extent_root));
126 if (transaction->delayed_refs.pending_csums)
127 btrfs_err(transaction->fs_info,
128 "pending csums is %llu",
129 transaction->delayed_refs.pending_csums);
131 * If any block groups are found in ->deleted_bgs then it's
132 * because the transaction was aborted and a commit did not
133 * happen (things failed before writing the new superblock
134 * and calling btrfs_finish_extent_commit()), so we can not
135 * discard the physical locations of the block groups.
137 while (!list_empty(&transaction->deleted_bgs)) {
138 struct btrfs_block_group *cache;
140 cache = list_first_entry(&transaction->deleted_bgs,
141 struct btrfs_block_group,
143 list_del_init(&cache->bg_list);
144 btrfs_unfreeze_block_group(cache);
145 btrfs_put_block_group(cache);
147 WARN_ON(!list_empty(&transaction->dev_update_list));
152 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
154 struct btrfs_transaction *cur_trans = trans->transaction;
155 struct btrfs_fs_info *fs_info = trans->fs_info;
156 struct btrfs_root *root, *tmp;
157 struct btrfs_caching_control *caching_ctl, *next;
159 down_write(&fs_info->commit_root_sem);
160 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
162 list_del_init(&root->dirty_list);
163 free_extent_buffer(root->commit_root);
164 root->commit_root = btrfs_root_node(root);
165 extent_io_tree_release(&root->dirty_log_pages);
166 btrfs_qgroup_clean_swapped_blocks(root);
169 /* We can free old roots now. */
170 spin_lock(&cur_trans->dropped_roots_lock);
171 while (!list_empty(&cur_trans->dropped_roots)) {
172 root = list_first_entry(&cur_trans->dropped_roots,
173 struct btrfs_root, root_list);
174 list_del_init(&root->root_list);
175 spin_unlock(&cur_trans->dropped_roots_lock);
176 btrfs_free_log(trans, root);
177 btrfs_drop_and_free_fs_root(fs_info, root);
178 spin_lock(&cur_trans->dropped_roots_lock);
180 spin_unlock(&cur_trans->dropped_roots_lock);
183 * We have to update the last_byte_to_unpin under the commit_root_sem,
184 * at the same time we swap out the commit roots.
186 * This is because we must have a real view of the last spot the caching
187 * kthreads were while caching. Consider the following views of the
188 * extent tree for a block group
191 * +----+----+----+----+----+----+----+
192 * |\\\\| |\\\\|\\\\| |\\\\|\\\\|
193 * +----+----+----+----+----+----+----+
197 * +----+----+----+----+----+----+----+
198 * | | | |\\\\| | |\\\\|
199 * +----+----+----+----+----+----+----+
202 * If the cache_ctl->progress was at 3, then we are only allowed to
203 * unpin [0,1) and [2,3], because the caching thread has already
204 * processed those extents. We are not allowed to unpin [5,6), because
205 * the caching thread will re-start it's search from 3, and thus find
206 * the hole from [4,6) to add to the free space cache.
208 spin_lock(&fs_info->block_group_cache_lock);
209 list_for_each_entry_safe(caching_ctl, next,
210 &fs_info->caching_block_groups, list) {
211 struct btrfs_block_group *cache = caching_ctl->block_group;
213 if (btrfs_block_group_done(cache)) {
214 cache->last_byte_to_unpin = (u64)-1;
215 list_del_init(&caching_ctl->list);
216 btrfs_put_caching_control(caching_ctl);
218 cache->last_byte_to_unpin = caching_ctl->progress;
221 spin_unlock(&fs_info->block_group_cache_lock);
222 up_write(&fs_info->commit_root_sem);
225 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
228 if (type & TRANS_EXTWRITERS)
229 atomic_inc(&trans->num_extwriters);
232 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
235 if (type & TRANS_EXTWRITERS)
236 atomic_dec(&trans->num_extwriters);
239 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
242 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
245 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
247 return atomic_read(&trans->num_extwriters);
251 * To be called after all the new block groups attached to the transaction
252 * handle have been created (btrfs_create_pending_block_groups()).
254 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
256 struct btrfs_fs_info *fs_info = trans->fs_info;
258 if (!trans->chunk_bytes_reserved)
261 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
263 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
264 trans->chunk_bytes_reserved, NULL);
265 trans->chunk_bytes_reserved = 0;
269 * either allocate a new transaction or hop into the existing one
271 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
274 struct btrfs_transaction *cur_trans;
276 spin_lock(&fs_info->trans_lock);
278 /* The file system has been taken offline. No new transactions. */
279 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
280 spin_unlock(&fs_info->trans_lock);
284 cur_trans = fs_info->running_transaction;
286 if (TRANS_ABORTED(cur_trans)) {
287 spin_unlock(&fs_info->trans_lock);
288 return cur_trans->aborted;
290 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
291 spin_unlock(&fs_info->trans_lock);
294 refcount_inc(&cur_trans->use_count);
295 atomic_inc(&cur_trans->num_writers);
296 extwriter_counter_inc(cur_trans, type);
297 spin_unlock(&fs_info->trans_lock);
300 spin_unlock(&fs_info->trans_lock);
303 * If we are ATTACH, we just want to catch the current transaction,
304 * and commit it. If there is no transaction, just return ENOENT.
306 if (type == TRANS_ATTACH)
310 * JOIN_NOLOCK only happens during the transaction commit, so
311 * it is impossible that ->running_transaction is NULL
313 BUG_ON(type == TRANS_JOIN_NOLOCK);
315 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
319 spin_lock(&fs_info->trans_lock);
320 if (fs_info->running_transaction) {
322 * someone started a transaction after we unlocked. Make sure
323 * to redo the checks above
327 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
328 spin_unlock(&fs_info->trans_lock);
333 cur_trans->fs_info = fs_info;
334 atomic_set(&cur_trans->pending_ordered, 0);
335 init_waitqueue_head(&cur_trans->pending_wait);
336 atomic_set(&cur_trans->num_writers, 1);
337 extwriter_counter_init(cur_trans, type);
338 init_waitqueue_head(&cur_trans->writer_wait);
339 init_waitqueue_head(&cur_trans->commit_wait);
340 cur_trans->state = TRANS_STATE_RUNNING;
342 * One for this trans handle, one so it will live on until we
343 * commit the transaction.
345 refcount_set(&cur_trans->use_count, 2);
346 cur_trans->flags = 0;
347 cur_trans->start_time = ktime_get_seconds();
349 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
351 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
352 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
353 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
356 * although the tree mod log is per file system and not per transaction,
357 * the log must never go across transaction boundaries.
360 if (!list_empty(&fs_info->tree_mod_seq_list))
361 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
362 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
363 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
364 atomic64_set(&fs_info->tree_mod_seq, 0);
366 spin_lock_init(&cur_trans->delayed_refs.lock);
368 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
369 INIT_LIST_HEAD(&cur_trans->dev_update_list);
370 INIT_LIST_HEAD(&cur_trans->switch_commits);
371 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
372 INIT_LIST_HEAD(&cur_trans->io_bgs);
373 INIT_LIST_HEAD(&cur_trans->dropped_roots);
374 mutex_init(&cur_trans->cache_write_mutex);
375 spin_lock_init(&cur_trans->dirty_bgs_lock);
376 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
377 spin_lock_init(&cur_trans->dropped_roots_lock);
378 list_add_tail(&cur_trans->list, &fs_info->trans_list);
379 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
380 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
381 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
382 IO_TREE_FS_PINNED_EXTENTS, NULL);
383 fs_info->generation++;
384 cur_trans->transid = fs_info->generation;
385 fs_info->running_transaction = cur_trans;
386 cur_trans->aborted = 0;
387 spin_unlock(&fs_info->trans_lock);
393 * This does all the record keeping required to make sure that a shareable root
394 * is properly recorded in a given transaction. This is required to make sure
395 * the old root from before we joined the transaction is deleted when the
396 * transaction commits.
398 static int record_root_in_trans(struct btrfs_trans_handle *trans,
399 struct btrfs_root *root,
402 struct btrfs_fs_info *fs_info = root->fs_info;
404 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
405 root->last_trans < trans->transid) || force) {
406 WARN_ON(root == fs_info->extent_root);
407 WARN_ON(!force && root->commit_root != root->node);
410 * see below for IN_TRANS_SETUP usage rules
411 * we have the reloc mutex held now, so there
412 * is only one writer in this function
414 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
416 /* make sure readers find IN_TRANS_SETUP before
417 * they find our root->last_trans update
421 spin_lock(&fs_info->fs_roots_radix_lock);
422 if (root->last_trans == trans->transid && !force) {
423 spin_unlock(&fs_info->fs_roots_radix_lock);
426 radix_tree_tag_set(&fs_info->fs_roots_radix,
427 (unsigned long)root->root_key.objectid,
428 BTRFS_ROOT_TRANS_TAG);
429 spin_unlock(&fs_info->fs_roots_radix_lock);
430 root->last_trans = trans->transid;
432 /* this is pretty tricky. We don't want to
433 * take the relocation lock in btrfs_record_root_in_trans
434 * unless we're really doing the first setup for this root in
437 * Normally we'd use root->last_trans as a flag to decide
438 * if we want to take the expensive mutex.
440 * But, we have to set root->last_trans before we
441 * init the relocation root, otherwise, we trip over warnings
442 * in ctree.c. The solution used here is to flag ourselves
443 * with root IN_TRANS_SETUP. When this is 1, we're still
444 * fixing up the reloc trees and everyone must wait.
446 * When this is zero, they can trust root->last_trans and fly
447 * through btrfs_record_root_in_trans without having to take the
448 * lock. smp_wmb() makes sure that all the writes above are
449 * done before we pop in the zero below
451 btrfs_init_reloc_root(trans, root);
452 smp_mb__before_atomic();
453 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
459 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
460 struct btrfs_root *root)
462 struct btrfs_fs_info *fs_info = root->fs_info;
463 struct btrfs_transaction *cur_trans = trans->transaction;
465 /* Add ourselves to the transaction dropped list */
466 spin_lock(&cur_trans->dropped_roots_lock);
467 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
468 spin_unlock(&cur_trans->dropped_roots_lock);
470 /* Make sure we don't try to update the root at commit time */
471 spin_lock(&fs_info->fs_roots_radix_lock);
472 radix_tree_tag_clear(&fs_info->fs_roots_radix,
473 (unsigned long)root->root_key.objectid,
474 BTRFS_ROOT_TRANS_TAG);
475 spin_unlock(&fs_info->fs_roots_radix_lock);
478 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
479 struct btrfs_root *root)
481 struct btrfs_fs_info *fs_info = root->fs_info;
483 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
487 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
491 if (root->last_trans == trans->transid &&
492 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
495 mutex_lock(&fs_info->reloc_mutex);
496 record_root_in_trans(trans, root, 0);
497 mutex_unlock(&fs_info->reloc_mutex);
502 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
504 return (trans->state >= TRANS_STATE_COMMIT_START &&
505 trans->state < TRANS_STATE_UNBLOCKED &&
506 !TRANS_ABORTED(trans));
509 /* wait for commit against the current transaction to become unblocked
510 * when this is done, it is safe to start a new transaction, but the current
511 * transaction might not be fully on disk.
513 static void wait_current_trans(struct btrfs_fs_info *fs_info)
515 struct btrfs_transaction *cur_trans;
517 spin_lock(&fs_info->trans_lock);
518 cur_trans = fs_info->running_transaction;
519 if (cur_trans && is_transaction_blocked(cur_trans)) {
520 refcount_inc(&cur_trans->use_count);
521 spin_unlock(&fs_info->trans_lock);
523 wait_event(fs_info->transaction_wait,
524 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
525 TRANS_ABORTED(cur_trans));
526 btrfs_put_transaction(cur_trans);
528 spin_unlock(&fs_info->trans_lock);
532 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
534 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
537 if (type == TRANS_START)
543 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
545 struct btrfs_fs_info *fs_info = root->fs_info;
547 if (!fs_info->reloc_ctl ||
548 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
549 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
556 static struct btrfs_trans_handle *
557 start_transaction(struct btrfs_root *root, unsigned int num_items,
558 unsigned int type, enum btrfs_reserve_flush_enum flush,
559 bool enforce_qgroups)
561 struct btrfs_fs_info *fs_info = root->fs_info;
562 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
563 struct btrfs_trans_handle *h;
564 struct btrfs_transaction *cur_trans;
566 u64 qgroup_reserved = 0;
567 bool reloc_reserved = false;
568 bool do_chunk_alloc = false;
571 /* Send isn't supposed to start transactions. */
572 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
574 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
575 return ERR_PTR(-EROFS);
577 if (current->journal_info) {
578 WARN_ON(type & TRANS_EXTWRITERS);
579 h = current->journal_info;
580 refcount_inc(&h->use_count);
581 WARN_ON(refcount_read(&h->use_count) > 2);
582 h->orig_rsv = h->block_rsv;
588 * Do the reservation before we join the transaction so we can do all
589 * the appropriate flushing if need be.
591 if (num_items && root != fs_info->chunk_root) {
592 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
593 u64 delayed_refs_bytes = 0;
595 qgroup_reserved = num_items * fs_info->nodesize;
596 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
602 * We want to reserve all the bytes we may need all at once, so
603 * we only do 1 enospc flushing cycle per transaction start. We
604 * accomplish this by simply assuming we'll do 2 x num_items
605 * worth of delayed refs updates in this trans handle, and
606 * refill that amount for whatever is missing in the reserve.
608 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
609 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
610 delayed_refs_rsv->full == 0) {
611 delayed_refs_bytes = num_bytes;
616 * Do the reservation for the relocation root creation
618 if (need_reserve_reloc_root(root)) {
619 num_bytes += fs_info->nodesize;
620 reloc_reserved = true;
623 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
626 if (delayed_refs_bytes) {
627 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
629 num_bytes -= delayed_refs_bytes;
632 if (rsv->space_info->force_alloc)
633 do_chunk_alloc = true;
634 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
635 !delayed_refs_rsv->full) {
637 * Some people call with btrfs_start_transaction(root, 0)
638 * because they can be throttled, but have some other mechanism
639 * for reserving space. We still want these guys to refill the
640 * delayed block_rsv so just add 1 items worth of reservation
643 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
648 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
655 * If we are JOIN_NOLOCK we're already committing a transaction and
656 * waiting on this guy, so we don't need to do the sb_start_intwrite
657 * because we're already holding a ref. We need this because we could
658 * have raced in and did an fsync() on a file which can kick a commit
659 * and then we deadlock with somebody doing a freeze.
661 * If we are ATTACH, it means we just want to catch the current
662 * transaction and commit it, so we needn't do sb_start_intwrite().
664 if (type & __TRANS_FREEZABLE)
665 sb_start_intwrite(fs_info->sb);
667 if (may_wait_transaction(fs_info, type))
668 wait_current_trans(fs_info);
671 ret = join_transaction(fs_info, type);
673 wait_current_trans(fs_info);
674 if (unlikely(type == TRANS_ATTACH ||
675 type == TRANS_JOIN_NOSTART))
678 } while (ret == -EBUSY);
683 cur_trans = fs_info->running_transaction;
685 h->transid = cur_trans->transid;
686 h->transaction = cur_trans;
688 refcount_set(&h->use_count, 1);
689 h->fs_info = root->fs_info;
692 h->can_flush_pending_bgs = true;
693 INIT_LIST_HEAD(&h->new_bgs);
696 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
697 may_wait_transaction(fs_info, type)) {
698 current->journal_info = h;
699 btrfs_commit_transaction(h);
704 trace_btrfs_space_reservation(fs_info, "transaction",
705 h->transid, num_bytes, 1);
706 h->block_rsv = &fs_info->trans_block_rsv;
707 h->bytes_reserved = num_bytes;
708 h->reloc_reserved = reloc_reserved;
712 if (!current->journal_info)
713 current->journal_info = h;
716 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
717 * ALLOC_FORCE the first run through, and then we won't allocate for
718 * anybody else who races in later. We don't care about the return
721 if (do_chunk_alloc && num_bytes) {
722 u64 flags = h->block_rsv->space_info->flags;
724 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
725 CHUNK_ALLOC_NO_FORCE);
729 * btrfs_record_root_in_trans() needs to alloc new extents, and may
730 * call btrfs_join_transaction() while we're also starting a
733 * Thus it need to be called after current->journal_info initialized,
734 * or we can deadlock.
736 btrfs_record_root_in_trans(h, root);
741 if (type & __TRANS_FREEZABLE)
742 sb_end_intwrite(fs_info->sb);
743 kmem_cache_free(btrfs_trans_handle_cachep, h);
746 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
749 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
753 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
754 unsigned int num_items)
756 return start_transaction(root, num_items, TRANS_START,
757 BTRFS_RESERVE_FLUSH_ALL, true);
760 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
761 struct btrfs_root *root,
762 unsigned int num_items)
764 return start_transaction(root, num_items, TRANS_START,
765 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
768 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
770 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
774 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
776 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
777 BTRFS_RESERVE_NO_FLUSH, true);
781 * Similar to regular join but it never starts a transaction when none is
782 * running or after waiting for the current one to finish.
784 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
786 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
787 BTRFS_RESERVE_NO_FLUSH, true);
791 * btrfs_attach_transaction() - catch the running transaction
793 * It is used when we want to commit the current the transaction, but
794 * don't want to start a new one.
796 * Note: If this function return -ENOENT, it just means there is no
797 * running transaction. But it is possible that the inactive transaction
798 * is still in the memory, not fully on disk. If you hope there is no
799 * inactive transaction in the fs when -ENOENT is returned, you should
801 * btrfs_attach_transaction_barrier()
803 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
805 return start_transaction(root, 0, TRANS_ATTACH,
806 BTRFS_RESERVE_NO_FLUSH, true);
810 * btrfs_attach_transaction_barrier() - catch the running transaction
812 * It is similar to the above function, the difference is this one
813 * will wait for all the inactive transactions until they fully
816 struct btrfs_trans_handle *
817 btrfs_attach_transaction_barrier(struct btrfs_root *root)
819 struct btrfs_trans_handle *trans;
821 trans = start_transaction(root, 0, TRANS_ATTACH,
822 BTRFS_RESERVE_NO_FLUSH, true);
823 if (trans == ERR_PTR(-ENOENT))
824 btrfs_wait_for_commit(root->fs_info, 0);
829 /* wait for a transaction commit to be fully complete */
830 static noinline void wait_for_commit(struct btrfs_transaction *commit)
832 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
835 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
837 struct btrfs_transaction *cur_trans = NULL, *t;
841 if (transid <= fs_info->last_trans_committed)
844 /* find specified transaction */
845 spin_lock(&fs_info->trans_lock);
846 list_for_each_entry(t, &fs_info->trans_list, list) {
847 if (t->transid == transid) {
849 refcount_inc(&cur_trans->use_count);
853 if (t->transid > transid) {
858 spin_unlock(&fs_info->trans_lock);
861 * The specified transaction doesn't exist, or we
862 * raced with btrfs_commit_transaction
865 if (transid > fs_info->last_trans_committed)
870 /* find newest transaction that is committing | committed */
871 spin_lock(&fs_info->trans_lock);
872 list_for_each_entry_reverse(t, &fs_info->trans_list,
874 if (t->state >= TRANS_STATE_COMMIT_START) {
875 if (t->state == TRANS_STATE_COMPLETED)
878 refcount_inc(&cur_trans->use_count);
882 spin_unlock(&fs_info->trans_lock);
884 goto out; /* nothing committing|committed */
887 wait_for_commit(cur_trans);
888 btrfs_put_transaction(cur_trans);
893 void btrfs_throttle(struct btrfs_fs_info *fs_info)
895 wait_current_trans(fs_info);
898 static bool should_end_transaction(struct btrfs_trans_handle *trans)
900 struct btrfs_fs_info *fs_info = trans->fs_info;
902 if (btrfs_check_space_for_delayed_refs(fs_info))
905 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
908 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
910 struct btrfs_transaction *cur_trans = trans->transaction;
912 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
913 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
916 return should_end_transaction(trans);
919 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
922 struct btrfs_fs_info *fs_info = trans->fs_info;
924 if (!trans->block_rsv) {
925 ASSERT(!trans->bytes_reserved);
929 if (!trans->bytes_reserved)
932 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
933 trace_btrfs_space_reservation(fs_info, "transaction",
934 trans->transid, trans->bytes_reserved, 0);
935 btrfs_block_rsv_release(fs_info, trans->block_rsv,
936 trans->bytes_reserved, NULL);
937 trans->bytes_reserved = 0;
940 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
943 struct btrfs_fs_info *info = trans->fs_info;
944 struct btrfs_transaction *cur_trans = trans->transaction;
947 if (refcount_read(&trans->use_count) > 1) {
948 refcount_dec(&trans->use_count);
949 trans->block_rsv = trans->orig_rsv;
953 btrfs_trans_release_metadata(trans);
954 trans->block_rsv = NULL;
956 btrfs_create_pending_block_groups(trans);
958 btrfs_trans_release_chunk_metadata(trans);
960 if (trans->type & __TRANS_FREEZABLE)
961 sb_end_intwrite(info->sb);
963 WARN_ON(cur_trans != info->running_transaction);
964 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
965 atomic_dec(&cur_trans->num_writers);
966 extwriter_counter_dec(cur_trans, trans->type);
968 cond_wake_up(&cur_trans->writer_wait);
969 btrfs_put_transaction(cur_trans);
971 if (current->journal_info == trans)
972 current->journal_info = NULL;
975 btrfs_run_delayed_iputs(info);
977 if (TRANS_ABORTED(trans) ||
978 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
979 wake_up_process(info->transaction_kthread);
980 if (TRANS_ABORTED(trans))
981 err = trans->aborted;
986 kmem_cache_free(btrfs_trans_handle_cachep, trans);
990 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
992 return __btrfs_end_transaction(trans, 0);
995 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
997 return __btrfs_end_transaction(trans, 1);
1001 * when btree blocks are allocated, they have some corresponding bits set for
1002 * them in one of two extent_io trees. This is used to make sure all of
1003 * those extents are sent to disk but does not wait on them
1005 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1006 struct extent_io_tree *dirty_pages, int mark)
1010 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1011 struct extent_state *cached_state = NULL;
1015 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1016 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1017 mark, &cached_state)) {
1018 bool wait_writeback = false;
1020 err = convert_extent_bit(dirty_pages, start, end,
1022 mark, &cached_state);
1024 * convert_extent_bit can return -ENOMEM, which is most of the
1025 * time a temporary error. So when it happens, ignore the error
1026 * and wait for writeback of this range to finish - because we
1027 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1028 * to __btrfs_wait_marked_extents() would not know that
1029 * writeback for this range started and therefore wouldn't
1030 * wait for it to finish - we don't want to commit a
1031 * superblock that points to btree nodes/leafs for which
1032 * writeback hasn't finished yet (and without errors).
1033 * We cleanup any entries left in the io tree when committing
1034 * the transaction (through extent_io_tree_release()).
1036 if (err == -ENOMEM) {
1038 wait_writeback = true;
1041 err = filemap_fdatawrite_range(mapping, start, end);
1044 else if (wait_writeback)
1045 werr = filemap_fdatawait_range(mapping, start, end);
1046 free_extent_state(cached_state);
1047 cached_state = NULL;
1051 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1056 * when btree blocks are allocated, they have some corresponding bits set for
1057 * them in one of two extent_io trees. This is used to make sure all of
1058 * those extents are on disk for transaction or log commit. We wait
1059 * on all the pages and clear them from the dirty pages state tree
1061 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1062 struct extent_io_tree *dirty_pages)
1066 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1067 struct extent_state *cached_state = NULL;
1071 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1072 EXTENT_NEED_WAIT, &cached_state)) {
1074 * Ignore -ENOMEM errors returned by clear_extent_bit().
1075 * When committing the transaction, we'll remove any entries
1076 * left in the io tree. For a log commit, we don't remove them
1077 * after committing the log because the tree can be accessed
1078 * concurrently - we do it only at transaction commit time when
1079 * it's safe to do it (through extent_io_tree_release()).
1081 err = clear_extent_bit(dirty_pages, start, end,
1082 EXTENT_NEED_WAIT, 0, 0, &cached_state);
1086 err = filemap_fdatawait_range(mapping, start, end);
1089 free_extent_state(cached_state);
1090 cached_state = NULL;
1099 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1100 struct extent_io_tree *dirty_pages)
1102 bool errors = false;
1105 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1106 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1114 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1116 struct btrfs_fs_info *fs_info = log_root->fs_info;
1117 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1118 bool errors = false;
1121 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1123 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1124 if ((mark & EXTENT_DIRTY) &&
1125 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1128 if ((mark & EXTENT_NEW) &&
1129 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1138 * When btree blocks are allocated the corresponding extents are marked dirty.
1139 * This function ensures such extents are persisted on disk for transaction or
1142 * @trans: transaction whose dirty pages we'd like to write
1144 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1148 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1149 struct btrfs_fs_info *fs_info = trans->fs_info;
1150 struct blk_plug plug;
1152 blk_start_plug(&plug);
1153 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1154 blk_finish_plug(&plug);
1155 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1157 extent_io_tree_release(&trans->transaction->dirty_pages);
1168 * this is used to update the root pointer in the tree of tree roots.
1170 * But, in the case of the extent allocation tree, updating the root
1171 * pointer may allocate blocks which may change the root of the extent
1174 * So, this loops and repeats and makes sure the cowonly root didn't
1175 * change while the root pointer was being updated in the metadata.
1177 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1178 struct btrfs_root *root)
1181 u64 old_root_bytenr;
1183 struct btrfs_fs_info *fs_info = root->fs_info;
1184 struct btrfs_root *tree_root = fs_info->tree_root;
1186 old_root_used = btrfs_root_used(&root->root_item);
1189 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1190 if (old_root_bytenr == root->node->start &&
1191 old_root_used == btrfs_root_used(&root->root_item))
1194 btrfs_set_root_node(&root->root_item, root->node);
1195 ret = btrfs_update_root(trans, tree_root,
1201 old_root_used = btrfs_root_used(&root->root_item);
1208 * update all the cowonly tree roots on disk
1210 * The error handling in this function may not be obvious. Any of the
1211 * failures will cause the file system to go offline. We still need
1212 * to clean up the delayed refs.
1214 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1216 struct btrfs_fs_info *fs_info = trans->fs_info;
1217 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1218 struct list_head *io_bgs = &trans->transaction->io_bgs;
1219 struct list_head *next;
1220 struct extent_buffer *eb;
1223 eb = btrfs_lock_root_node(fs_info->tree_root);
1224 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1225 0, &eb, BTRFS_NESTING_COW);
1226 btrfs_tree_unlock(eb);
1227 free_extent_buffer(eb);
1232 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1236 ret = btrfs_run_dev_stats(trans);
1239 ret = btrfs_run_dev_replace(trans);
1242 ret = btrfs_run_qgroups(trans);
1246 ret = btrfs_setup_space_cache(trans);
1250 /* run_qgroups might have added some more refs */
1251 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1255 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1256 struct btrfs_root *root;
1257 next = fs_info->dirty_cowonly_roots.next;
1258 list_del_init(next);
1259 root = list_entry(next, struct btrfs_root, dirty_list);
1260 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1262 if (root != fs_info->extent_root)
1263 list_add_tail(&root->dirty_list,
1264 &trans->transaction->switch_commits);
1265 ret = update_cowonly_root(trans, root);
1268 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1273 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1274 ret = btrfs_write_dirty_block_groups(trans);
1277 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1282 if (!list_empty(&fs_info->dirty_cowonly_roots))
1285 list_add_tail(&fs_info->extent_root->dirty_list,
1286 &trans->transaction->switch_commits);
1288 /* Update dev-replace pointer once everything is committed */
1289 fs_info->dev_replace.committed_cursor_left =
1290 fs_info->dev_replace.cursor_left_last_write_of_item;
1296 * dead roots are old snapshots that need to be deleted. This allocates
1297 * a dirty root struct and adds it into the list of dead roots that need to
1300 void btrfs_add_dead_root(struct btrfs_root *root)
1302 struct btrfs_fs_info *fs_info = root->fs_info;
1304 spin_lock(&fs_info->trans_lock);
1305 if (list_empty(&root->root_list)) {
1306 btrfs_grab_root(root);
1307 list_add_tail(&root->root_list, &fs_info->dead_roots);
1309 spin_unlock(&fs_info->trans_lock);
1313 * update all the cowonly tree roots on disk
1315 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1317 struct btrfs_fs_info *fs_info = trans->fs_info;
1318 struct btrfs_root *gang[8];
1322 spin_lock(&fs_info->fs_roots_radix_lock);
1324 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1327 BTRFS_ROOT_TRANS_TAG);
1330 for (i = 0; i < ret; i++) {
1331 struct btrfs_root *root = gang[i];
1334 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1335 (unsigned long)root->root_key.objectid,
1336 BTRFS_ROOT_TRANS_TAG);
1337 spin_unlock(&fs_info->fs_roots_radix_lock);
1339 btrfs_free_log(trans, root);
1340 btrfs_update_reloc_root(trans, root);
1342 /* see comments in should_cow_block() */
1343 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1344 smp_mb__after_atomic();
1346 if (root->commit_root != root->node) {
1347 list_add_tail(&root->dirty_list,
1348 &trans->transaction->switch_commits);
1349 btrfs_set_root_node(&root->root_item,
1353 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1358 spin_lock(&fs_info->fs_roots_radix_lock);
1359 btrfs_qgroup_free_meta_all_pertrans(root);
1362 spin_unlock(&fs_info->fs_roots_radix_lock);
1367 * defrag a given btree.
1368 * Every leaf in the btree is read and defragged.
1370 int btrfs_defrag_root(struct btrfs_root *root)
1372 struct btrfs_fs_info *info = root->fs_info;
1373 struct btrfs_trans_handle *trans;
1376 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1380 trans = btrfs_start_transaction(root, 0);
1382 return PTR_ERR(trans);
1384 ret = btrfs_defrag_leaves(trans, root);
1386 btrfs_end_transaction(trans);
1387 btrfs_btree_balance_dirty(info);
1390 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1393 if (btrfs_defrag_cancelled(info)) {
1394 btrfs_debug(info, "defrag_root cancelled");
1399 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1404 * Do all special snapshot related qgroup dirty hack.
1406 * Will do all needed qgroup inherit and dirty hack like switch commit
1407 * roots inside one transaction and write all btree into disk, to make
1410 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1411 struct btrfs_root *src,
1412 struct btrfs_root *parent,
1413 struct btrfs_qgroup_inherit *inherit,
1416 struct btrfs_fs_info *fs_info = src->fs_info;
1420 * Save some performance in the case that qgroups are not
1421 * enabled. If this check races with the ioctl, rescan will
1424 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1428 * Ensure dirty @src will be committed. Or, after coming
1429 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1430 * recorded root will never be updated again, causing an outdated root
1433 record_root_in_trans(trans, src, 1);
1436 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1437 * src root, so we must run the delayed refs here.
1439 * However this isn't particularly fool proof, because there's no
1440 * synchronization keeping us from changing the tree after this point
1441 * before we do the qgroup_inherit, or even from making changes while
1442 * we're doing the qgroup_inherit. But that's a problem for the future,
1443 * for now flush the delayed refs to narrow the race window where the
1444 * qgroup counters could end up wrong.
1446 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1448 btrfs_abort_transaction(trans, ret);
1453 * We are going to commit transaction, see btrfs_commit_transaction()
1454 * comment for reason locking tree_log_mutex
1456 mutex_lock(&fs_info->tree_log_mutex);
1458 ret = commit_fs_roots(trans);
1461 ret = btrfs_qgroup_account_extents(trans);
1465 /* Now qgroup are all updated, we can inherit it to new qgroups */
1466 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1472 * Now we do a simplified commit transaction, which will:
1473 * 1) commit all subvolume and extent tree
1474 * To ensure all subvolume and extent tree have a valid
1475 * commit_root to accounting later insert_dir_item()
1476 * 2) write all btree blocks onto disk
1477 * This is to make sure later btree modification will be cowed
1478 * Or commit_root can be populated and cause wrong qgroup numbers
1479 * In this simplified commit, we don't really care about other trees
1480 * like chunk and root tree, as they won't affect qgroup.
1481 * And we don't write super to avoid half committed status.
1483 ret = commit_cowonly_roots(trans);
1486 switch_commit_roots(trans);
1487 ret = btrfs_write_and_wait_transaction(trans);
1489 btrfs_handle_fs_error(fs_info, ret,
1490 "Error while writing out transaction for qgroup");
1493 mutex_unlock(&fs_info->tree_log_mutex);
1496 * Force parent root to be updated, as we recorded it before so its
1497 * last_trans == cur_transid.
1498 * Or it won't be committed again onto disk after later
1502 record_root_in_trans(trans, parent, 1);
1507 * new snapshots need to be created at a very specific time in the
1508 * transaction commit. This does the actual creation.
1511 * If the error which may affect the commitment of the current transaction
1512 * happens, we should return the error number. If the error which just affect
1513 * the creation of the pending snapshots, just return 0.
1515 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1516 struct btrfs_pending_snapshot *pending)
1519 struct btrfs_fs_info *fs_info = trans->fs_info;
1520 struct btrfs_key key;
1521 struct btrfs_root_item *new_root_item;
1522 struct btrfs_root *tree_root = fs_info->tree_root;
1523 struct btrfs_root *root = pending->root;
1524 struct btrfs_root *parent_root;
1525 struct btrfs_block_rsv *rsv;
1526 struct inode *parent_inode;
1527 struct btrfs_path *path;
1528 struct btrfs_dir_item *dir_item;
1529 struct dentry *dentry;
1530 struct extent_buffer *tmp;
1531 struct extent_buffer *old;
1532 struct timespec64 cur_time;
1539 ASSERT(pending->path);
1540 path = pending->path;
1542 ASSERT(pending->root_item);
1543 new_root_item = pending->root_item;
1545 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1547 goto no_free_objectid;
1550 * Make qgroup to skip current new snapshot's qgroupid, as it is
1551 * accounted by later btrfs_qgroup_inherit().
1553 btrfs_set_skip_qgroup(trans, objectid);
1555 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1557 if (to_reserve > 0) {
1558 pending->error = btrfs_block_rsv_add(root,
1559 &pending->block_rsv,
1561 BTRFS_RESERVE_NO_FLUSH);
1563 goto clear_skip_qgroup;
1566 key.objectid = objectid;
1567 key.offset = (u64)-1;
1568 key.type = BTRFS_ROOT_ITEM_KEY;
1570 rsv = trans->block_rsv;
1571 trans->block_rsv = &pending->block_rsv;
1572 trans->bytes_reserved = trans->block_rsv->reserved;
1573 trace_btrfs_space_reservation(fs_info, "transaction",
1575 trans->bytes_reserved, 1);
1576 dentry = pending->dentry;
1577 parent_inode = pending->dir;
1578 parent_root = BTRFS_I(parent_inode)->root;
1579 record_root_in_trans(trans, parent_root, 0);
1581 cur_time = current_time(parent_inode);
1584 * insert the directory item
1586 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1587 BUG_ON(ret); /* -ENOMEM */
1589 /* check if there is a file/dir which has the same name. */
1590 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1591 btrfs_ino(BTRFS_I(parent_inode)),
1592 dentry->d_name.name,
1593 dentry->d_name.len, 0);
1594 if (dir_item != NULL && !IS_ERR(dir_item)) {
1595 pending->error = -EEXIST;
1596 goto dir_item_existed;
1597 } else if (IS_ERR(dir_item)) {
1598 ret = PTR_ERR(dir_item);
1599 btrfs_abort_transaction(trans, ret);
1602 btrfs_release_path(path);
1605 * pull in the delayed directory update
1606 * and the delayed inode item
1607 * otherwise we corrupt the FS during
1610 ret = btrfs_run_delayed_items(trans);
1611 if (ret) { /* Transaction aborted */
1612 btrfs_abort_transaction(trans, ret);
1616 record_root_in_trans(trans, root, 0);
1617 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1618 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1619 btrfs_check_and_init_root_item(new_root_item);
1621 root_flags = btrfs_root_flags(new_root_item);
1622 if (pending->readonly)
1623 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1625 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1626 btrfs_set_root_flags(new_root_item, root_flags);
1628 btrfs_set_root_generation_v2(new_root_item,
1630 generate_random_guid(new_root_item->uuid);
1631 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1633 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1634 memset(new_root_item->received_uuid, 0,
1635 sizeof(new_root_item->received_uuid));
1636 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1637 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1638 btrfs_set_root_stransid(new_root_item, 0);
1639 btrfs_set_root_rtransid(new_root_item, 0);
1641 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1642 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1643 btrfs_set_root_otransid(new_root_item, trans->transid);
1645 old = btrfs_lock_root_node(root);
1646 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1649 btrfs_tree_unlock(old);
1650 free_extent_buffer(old);
1651 btrfs_abort_transaction(trans, ret);
1655 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1656 /* clean up in any case */
1657 btrfs_tree_unlock(old);
1658 free_extent_buffer(old);
1660 btrfs_abort_transaction(trans, ret);
1663 /* see comments in should_cow_block() */
1664 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1667 btrfs_set_root_node(new_root_item, tmp);
1668 /* record when the snapshot was created in key.offset */
1669 key.offset = trans->transid;
1670 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1671 btrfs_tree_unlock(tmp);
1672 free_extent_buffer(tmp);
1674 btrfs_abort_transaction(trans, ret);
1679 * insert root back/forward references
1681 ret = btrfs_add_root_ref(trans, objectid,
1682 parent_root->root_key.objectid,
1683 btrfs_ino(BTRFS_I(parent_inode)), index,
1684 dentry->d_name.name, dentry->d_name.len);
1686 btrfs_abort_transaction(trans, ret);
1690 key.offset = (u64)-1;
1691 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1692 if (IS_ERR(pending->snap)) {
1693 ret = PTR_ERR(pending->snap);
1694 pending->snap = NULL;
1695 btrfs_abort_transaction(trans, ret);
1699 ret = btrfs_reloc_post_snapshot(trans, pending);
1701 btrfs_abort_transaction(trans, ret);
1706 * Do special qgroup accounting for snapshot, as we do some qgroup
1707 * snapshot hack to do fast snapshot.
1708 * To co-operate with that hack, we do hack again.
1709 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1711 ret = qgroup_account_snapshot(trans, root, parent_root,
1712 pending->inherit, objectid);
1716 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1717 dentry->d_name.len, BTRFS_I(parent_inode),
1718 &key, BTRFS_FT_DIR, index);
1719 /* We have check then name at the beginning, so it is impossible. */
1720 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1722 btrfs_abort_transaction(trans, ret);
1726 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1727 dentry->d_name.len * 2);
1728 parent_inode->i_mtime = parent_inode->i_ctime =
1729 current_time(parent_inode);
1730 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1732 btrfs_abort_transaction(trans, ret);
1735 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1736 BTRFS_UUID_KEY_SUBVOL,
1739 btrfs_abort_transaction(trans, ret);
1742 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1743 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1744 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1746 if (ret && ret != -EEXIST) {
1747 btrfs_abort_transaction(trans, ret);
1752 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1754 btrfs_abort_transaction(trans, ret);
1759 pending->error = ret;
1761 trans->block_rsv = rsv;
1762 trans->bytes_reserved = 0;
1764 btrfs_clear_skip_qgroup(trans);
1766 kfree(new_root_item);
1767 pending->root_item = NULL;
1768 btrfs_free_path(path);
1769 pending->path = NULL;
1775 * create all the snapshots we've scheduled for creation
1777 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1779 struct btrfs_pending_snapshot *pending, *next;
1780 struct list_head *head = &trans->transaction->pending_snapshots;
1783 list_for_each_entry_safe(pending, next, head, list) {
1784 list_del(&pending->list);
1785 ret = create_pending_snapshot(trans, pending);
1792 static void update_super_roots(struct btrfs_fs_info *fs_info)
1794 struct btrfs_root_item *root_item;
1795 struct btrfs_super_block *super;
1797 super = fs_info->super_copy;
1799 root_item = &fs_info->chunk_root->root_item;
1800 super->chunk_root = root_item->bytenr;
1801 super->chunk_root_generation = root_item->generation;
1802 super->chunk_root_level = root_item->level;
1804 root_item = &fs_info->tree_root->root_item;
1805 super->root = root_item->bytenr;
1806 super->generation = root_item->generation;
1807 super->root_level = root_item->level;
1808 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1809 super->cache_generation = root_item->generation;
1810 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1811 super->cache_generation = 0;
1812 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1813 super->uuid_tree_generation = root_item->generation;
1816 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1818 struct btrfs_transaction *trans;
1821 spin_lock(&info->trans_lock);
1822 trans = info->running_transaction;
1824 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1825 spin_unlock(&info->trans_lock);
1829 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1831 struct btrfs_transaction *trans;
1834 spin_lock(&info->trans_lock);
1835 trans = info->running_transaction;
1837 ret = is_transaction_blocked(trans);
1838 spin_unlock(&info->trans_lock);
1843 * wait for the current transaction commit to start and block subsequent
1846 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1847 struct btrfs_transaction *trans)
1849 wait_event(fs_info->transaction_blocked_wait,
1850 trans->state >= TRANS_STATE_COMMIT_START ||
1851 TRANS_ABORTED(trans));
1855 * wait for the current transaction to start and then become unblocked.
1858 static void wait_current_trans_commit_start_and_unblock(
1859 struct btrfs_fs_info *fs_info,
1860 struct btrfs_transaction *trans)
1862 wait_event(fs_info->transaction_wait,
1863 trans->state >= TRANS_STATE_UNBLOCKED ||
1864 TRANS_ABORTED(trans));
1868 * commit transactions asynchronously. once btrfs_commit_transaction_async
1869 * returns, any subsequent transaction will not be allowed to join.
1871 struct btrfs_async_commit {
1872 struct btrfs_trans_handle *newtrans;
1873 struct work_struct work;
1876 static void do_async_commit(struct work_struct *work)
1878 struct btrfs_async_commit *ac =
1879 container_of(work, struct btrfs_async_commit, work);
1882 * We've got freeze protection passed with the transaction.
1883 * Tell lockdep about it.
1885 if (ac->newtrans->type & __TRANS_FREEZABLE)
1886 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1888 current->journal_info = ac->newtrans;
1890 btrfs_commit_transaction(ac->newtrans);
1894 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1895 int wait_for_unblock)
1897 struct btrfs_fs_info *fs_info = trans->fs_info;
1898 struct btrfs_async_commit *ac;
1899 struct btrfs_transaction *cur_trans;
1901 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1905 INIT_WORK(&ac->work, do_async_commit);
1906 ac->newtrans = btrfs_join_transaction(trans->root);
1907 if (IS_ERR(ac->newtrans)) {
1908 int err = PTR_ERR(ac->newtrans);
1913 /* take transaction reference */
1914 cur_trans = trans->transaction;
1915 refcount_inc(&cur_trans->use_count);
1917 btrfs_end_transaction(trans);
1920 * Tell lockdep we've released the freeze rwsem, since the
1921 * async commit thread will be the one to unlock it.
1923 if (ac->newtrans->type & __TRANS_FREEZABLE)
1924 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1926 schedule_work(&ac->work);
1928 /* wait for transaction to start and unblock */
1929 if (wait_for_unblock)
1930 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1932 wait_current_trans_commit_start(fs_info, cur_trans);
1934 if (current->journal_info == trans)
1935 current->journal_info = NULL;
1937 btrfs_put_transaction(cur_trans);
1942 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1944 struct btrfs_fs_info *fs_info = trans->fs_info;
1945 struct btrfs_transaction *cur_trans = trans->transaction;
1947 WARN_ON(refcount_read(&trans->use_count) > 1);
1949 btrfs_abort_transaction(trans, err);
1951 spin_lock(&fs_info->trans_lock);
1954 * If the transaction is removed from the list, it means this
1955 * transaction has been committed successfully, so it is impossible
1956 * to call the cleanup function.
1958 BUG_ON(list_empty(&cur_trans->list));
1960 list_del_init(&cur_trans->list);
1961 if (cur_trans == fs_info->running_transaction) {
1962 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1963 spin_unlock(&fs_info->trans_lock);
1964 wait_event(cur_trans->writer_wait,
1965 atomic_read(&cur_trans->num_writers) == 1);
1967 spin_lock(&fs_info->trans_lock);
1969 spin_unlock(&fs_info->trans_lock);
1971 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1973 spin_lock(&fs_info->trans_lock);
1974 if (cur_trans == fs_info->running_transaction)
1975 fs_info->running_transaction = NULL;
1976 spin_unlock(&fs_info->trans_lock);
1978 if (trans->type & __TRANS_FREEZABLE)
1979 sb_end_intwrite(fs_info->sb);
1980 btrfs_put_transaction(cur_trans);
1981 btrfs_put_transaction(cur_trans);
1983 trace_btrfs_transaction_commit(trans->root);
1985 if (current->journal_info == trans)
1986 current->journal_info = NULL;
1987 btrfs_scrub_cancel(fs_info);
1989 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1993 * Release reserved delayed ref space of all pending block groups of the
1994 * transaction and remove them from the list
1996 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1998 struct btrfs_fs_info *fs_info = trans->fs_info;
1999 struct btrfs_block_group *block_group, *tmp;
2001 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2002 btrfs_delayed_refs_rsv_release(fs_info, 1);
2003 list_del_init(&block_group->bg_list);
2007 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2010 * We use writeback_inodes_sb here because if we used
2011 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2012 * Currently are holding the fs freeze lock, if we do an async flush
2013 * we'll do btrfs_join_transaction() and deadlock because we need to
2014 * wait for the fs freeze lock. Using the direct flushing we benefit
2015 * from already being in a transaction and our join_transaction doesn't
2016 * have to re-take the fs freeze lock.
2018 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2019 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2023 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2025 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2026 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2029 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2031 struct btrfs_fs_info *fs_info = trans->fs_info;
2032 struct btrfs_transaction *cur_trans = trans->transaction;
2033 struct btrfs_transaction *prev_trans = NULL;
2036 ASSERT(refcount_read(&trans->use_count) == 1);
2039 * Some places just start a transaction to commit it. We need to make
2040 * sure that if this commit fails that the abort code actually marks the
2041 * transaction as failed, so set trans->dirty to make the abort code do
2044 trans->dirty = true;
2046 /* Stop the commit early if ->aborted is set */
2047 if (TRANS_ABORTED(cur_trans)) {
2048 ret = cur_trans->aborted;
2049 btrfs_end_transaction(trans);
2053 btrfs_trans_release_metadata(trans);
2054 trans->block_rsv = NULL;
2057 * We only want one transaction commit doing the flushing so we do not
2058 * waste a bunch of time on lock contention on the extent root node.
2060 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2061 &cur_trans->delayed_refs.flags)) {
2063 * Make a pass through all the delayed refs we have so far.
2064 * Any running threads may add more while we are here.
2066 ret = btrfs_run_delayed_refs(trans, 0);
2068 btrfs_end_transaction(trans);
2073 btrfs_create_pending_block_groups(trans);
2075 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2078 /* this mutex is also taken before trying to set
2079 * block groups readonly. We need to make sure
2080 * that nobody has set a block group readonly
2081 * after a extents from that block group have been
2082 * allocated for cache files. btrfs_set_block_group_ro
2083 * will wait for the transaction to commit if it
2084 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2086 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2087 * only one process starts all the block group IO. It wouldn't
2088 * hurt to have more than one go through, but there's no
2089 * real advantage to it either.
2091 mutex_lock(&fs_info->ro_block_group_mutex);
2092 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2095 mutex_unlock(&fs_info->ro_block_group_mutex);
2098 ret = btrfs_start_dirty_block_groups(trans);
2100 btrfs_end_transaction(trans);
2106 spin_lock(&fs_info->trans_lock);
2107 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2108 spin_unlock(&fs_info->trans_lock);
2109 refcount_inc(&cur_trans->use_count);
2110 ret = btrfs_end_transaction(trans);
2112 wait_for_commit(cur_trans);
2114 if (TRANS_ABORTED(cur_trans))
2115 ret = cur_trans->aborted;
2117 btrfs_put_transaction(cur_trans);
2122 cur_trans->state = TRANS_STATE_COMMIT_START;
2123 wake_up(&fs_info->transaction_blocked_wait);
2125 if (cur_trans->list.prev != &fs_info->trans_list) {
2126 prev_trans = list_entry(cur_trans->list.prev,
2127 struct btrfs_transaction, list);
2128 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2129 refcount_inc(&prev_trans->use_count);
2130 spin_unlock(&fs_info->trans_lock);
2132 wait_for_commit(prev_trans);
2133 ret = READ_ONCE(prev_trans->aborted);
2135 btrfs_put_transaction(prev_trans);
2137 goto cleanup_transaction;
2139 spin_unlock(&fs_info->trans_lock);
2142 spin_unlock(&fs_info->trans_lock);
2144 * The previous transaction was aborted and was already removed
2145 * from the list of transactions at fs_info->trans_list. So we
2146 * abort to prevent writing a new superblock that reflects a
2147 * corrupt state (pointing to trees with unwritten nodes/leafs).
2149 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2151 goto cleanup_transaction;
2155 extwriter_counter_dec(cur_trans, trans->type);
2157 ret = btrfs_start_delalloc_flush(fs_info);
2159 goto cleanup_transaction;
2161 ret = btrfs_run_delayed_items(trans);
2163 goto cleanup_transaction;
2165 wait_event(cur_trans->writer_wait,
2166 extwriter_counter_read(cur_trans) == 0);
2168 /* some pending stuffs might be added after the previous flush. */
2169 ret = btrfs_run_delayed_items(trans);
2171 goto cleanup_transaction;
2173 btrfs_wait_delalloc_flush(fs_info);
2176 * Wait for all ordered extents started by a fast fsync that joined this
2177 * transaction. Otherwise if this transaction commits before the ordered
2178 * extents complete we lose logged data after a power failure.
2180 wait_event(cur_trans->pending_wait,
2181 atomic_read(&cur_trans->pending_ordered) == 0);
2183 btrfs_scrub_pause(fs_info);
2185 * Ok now we need to make sure to block out any other joins while we
2186 * commit the transaction. We could have started a join before setting
2187 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2189 spin_lock(&fs_info->trans_lock);
2190 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2191 spin_unlock(&fs_info->trans_lock);
2192 wait_event(cur_trans->writer_wait,
2193 atomic_read(&cur_trans->num_writers) == 1);
2195 if (TRANS_ABORTED(cur_trans)) {
2196 ret = cur_trans->aborted;
2197 goto scrub_continue;
2200 * the reloc mutex makes sure that we stop
2201 * the balancing code from coming in and moving
2202 * extents around in the middle of the commit
2204 mutex_lock(&fs_info->reloc_mutex);
2207 * We needn't worry about the delayed items because we will
2208 * deal with them in create_pending_snapshot(), which is the
2209 * core function of the snapshot creation.
2211 ret = create_pending_snapshots(trans);
2216 * We insert the dir indexes of the snapshots and update the inode
2217 * of the snapshots' parents after the snapshot creation, so there
2218 * are some delayed items which are not dealt with. Now deal with
2221 * We needn't worry that this operation will corrupt the snapshots,
2222 * because all the tree which are snapshoted will be forced to COW
2223 * the nodes and leaves.
2225 ret = btrfs_run_delayed_items(trans);
2229 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2234 * make sure none of the code above managed to slip in a
2237 btrfs_assert_delayed_root_empty(fs_info);
2239 WARN_ON(cur_trans != trans->transaction);
2241 /* btrfs_commit_tree_roots is responsible for getting the
2242 * various roots consistent with each other. Every pointer
2243 * in the tree of tree roots has to point to the most up to date
2244 * root for every subvolume and other tree. So, we have to keep
2245 * the tree logging code from jumping in and changing any
2248 * At this point in the commit, there can't be any tree-log
2249 * writers, but a little lower down we drop the trans mutex
2250 * and let new people in. By holding the tree_log_mutex
2251 * from now until after the super is written, we avoid races
2252 * with the tree-log code.
2254 mutex_lock(&fs_info->tree_log_mutex);
2256 ret = commit_fs_roots(trans);
2258 goto unlock_tree_log;
2261 * Since the transaction is done, we can apply the pending changes
2262 * before the next transaction.
2264 btrfs_apply_pending_changes(fs_info);
2266 /* commit_fs_roots gets rid of all the tree log roots, it is now
2267 * safe to free the root of tree log roots
2269 btrfs_free_log_root_tree(trans, fs_info);
2272 * Since fs roots are all committed, we can get a quite accurate
2273 * new_roots. So let's do quota accounting.
2275 ret = btrfs_qgroup_account_extents(trans);
2277 goto unlock_tree_log;
2279 ret = commit_cowonly_roots(trans);
2281 goto unlock_tree_log;
2284 * The tasks which save the space cache and inode cache may also
2285 * update ->aborted, check it.
2287 if (TRANS_ABORTED(cur_trans)) {
2288 ret = cur_trans->aborted;
2289 goto unlock_tree_log;
2292 cur_trans = fs_info->running_transaction;
2294 btrfs_set_root_node(&fs_info->tree_root->root_item,
2295 fs_info->tree_root->node);
2296 list_add_tail(&fs_info->tree_root->dirty_list,
2297 &cur_trans->switch_commits);
2299 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2300 fs_info->chunk_root->node);
2301 list_add_tail(&fs_info->chunk_root->dirty_list,
2302 &cur_trans->switch_commits);
2304 switch_commit_roots(trans);
2306 ASSERT(list_empty(&cur_trans->dirty_bgs));
2307 ASSERT(list_empty(&cur_trans->io_bgs));
2308 update_super_roots(fs_info);
2310 btrfs_set_super_log_root(fs_info->super_copy, 0);
2311 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2312 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2313 sizeof(*fs_info->super_copy));
2315 btrfs_commit_device_sizes(cur_trans);
2317 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2318 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2320 btrfs_trans_release_chunk_metadata(trans);
2322 spin_lock(&fs_info->trans_lock);
2323 cur_trans->state = TRANS_STATE_UNBLOCKED;
2324 fs_info->running_transaction = NULL;
2325 spin_unlock(&fs_info->trans_lock);
2326 mutex_unlock(&fs_info->reloc_mutex);
2328 wake_up(&fs_info->transaction_wait);
2330 ret = btrfs_write_and_wait_transaction(trans);
2332 btrfs_handle_fs_error(fs_info, ret,
2333 "Error while writing out transaction");
2335 * reloc_mutex has been unlocked, tree_log_mutex is still held
2336 * but we can't jump to unlock_tree_log causing double unlock
2338 mutex_unlock(&fs_info->tree_log_mutex);
2339 goto scrub_continue;
2342 ret = write_all_supers(fs_info, 0);
2344 * the super is written, we can safely allow the tree-loggers
2345 * to go about their business
2347 mutex_unlock(&fs_info->tree_log_mutex);
2349 goto scrub_continue;
2351 btrfs_finish_extent_commit(trans);
2353 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2354 btrfs_clear_space_info_full(fs_info);
2356 fs_info->last_trans_committed = cur_trans->transid;
2358 * We needn't acquire the lock here because there is no other task
2359 * which can change it.
2361 cur_trans->state = TRANS_STATE_COMPLETED;
2362 wake_up(&cur_trans->commit_wait);
2364 spin_lock(&fs_info->trans_lock);
2365 list_del_init(&cur_trans->list);
2366 spin_unlock(&fs_info->trans_lock);
2368 btrfs_put_transaction(cur_trans);
2369 btrfs_put_transaction(cur_trans);
2371 if (trans->type & __TRANS_FREEZABLE)
2372 sb_end_intwrite(fs_info->sb);
2374 trace_btrfs_transaction_commit(trans->root);
2376 btrfs_scrub_continue(fs_info);
2378 if (current->journal_info == trans)
2379 current->journal_info = NULL;
2381 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2386 mutex_unlock(&fs_info->tree_log_mutex);
2388 mutex_unlock(&fs_info->reloc_mutex);
2390 btrfs_scrub_continue(fs_info);
2391 cleanup_transaction:
2392 btrfs_trans_release_metadata(trans);
2393 btrfs_cleanup_pending_block_groups(trans);
2394 btrfs_trans_release_chunk_metadata(trans);
2395 trans->block_rsv = NULL;
2396 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2397 if (current->journal_info == trans)
2398 current->journal_info = NULL;
2399 cleanup_transaction(trans, ret);
2405 * return < 0 if error
2406 * 0 if there are no more dead_roots at the time of call
2407 * 1 there are more to be processed, call me again
2409 * The return value indicates there are certainly more snapshots to delete, but
2410 * if there comes a new one during processing, it may return 0. We don't mind,
2411 * because btrfs_commit_super will poke cleaner thread and it will process it a
2412 * few seconds later.
2414 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2417 struct btrfs_fs_info *fs_info = root->fs_info;
2419 spin_lock(&fs_info->trans_lock);
2420 if (list_empty(&fs_info->dead_roots)) {
2421 spin_unlock(&fs_info->trans_lock);
2424 root = list_first_entry(&fs_info->dead_roots,
2425 struct btrfs_root, root_list);
2426 list_del_init(&root->root_list);
2427 spin_unlock(&fs_info->trans_lock);
2429 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2431 btrfs_kill_all_delayed_nodes(root);
2433 if (btrfs_header_backref_rev(root->node) <
2434 BTRFS_MIXED_BACKREF_REV)
2435 ret = btrfs_drop_snapshot(root, 0, 0);
2437 ret = btrfs_drop_snapshot(root, 1, 0);
2439 btrfs_put_root(root);
2440 return (ret < 0) ? 0 : 1;
2443 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2448 prev = xchg(&fs_info->pending_changes, 0);
2452 bit = 1 << BTRFS_PENDING_COMMIT;
2454 btrfs_debug(fs_info, "pending commit done");
2459 "unknown pending changes left 0x%lx, ignoring", prev);