cifs: fix leak of iface for primary channel
[platform/kernel/linux-starfive.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "zoned.h"
27 #include "fs.h"
28 #include "accessors.h"
29 #include "extent-tree.h"
30 #include "root-tree.h"
31 #include "defrag.h"
32 #include "dir-item.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37
38 static struct kmem_cache *btrfs_trans_handle_cachep;
39
40 #define BTRFS_ROOT_TRANS_TAG 0
41
42 /*
43  * Transaction states and transitions
44  *
45  * No running transaction (fs tree blocks are not modified)
46  * |
47  * | To next stage:
48  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
49  * V
50  * Transaction N [[TRANS_STATE_RUNNING]]
51  * |
52  * | New trans handles can be attached to transaction N by calling all
53  * | start_transaction() variants.
54  * |
55  * | To next stage:
56  * |  Call btrfs_commit_transaction() on any trans handle attached to
57  * |  transaction N
58  * V
59  * Transaction N [[TRANS_STATE_COMMIT_PREP]]
60  * |
61  * | If there are simultaneous calls to btrfs_commit_transaction() one will win
62  * | the race and the rest will wait for the winner to commit the transaction.
63  * |
64  * | The winner will wait for previous running transaction to completely finish
65  * | if there is one.
66  * |
67  * Transaction N [[TRANS_STATE_COMMIT_START]]
68  * |
69  * | Then one of the following happens:
70  * | - Wait for all other trans handle holders to release.
71  * |   The btrfs_commit_transaction() caller will do the commit work.
72  * | - Wait for current transaction to be committed by others.
73  * |   Other btrfs_commit_transaction() caller will do the commit work.
74  * |
75  * | At this stage, only btrfs_join_transaction*() variants can attach
76  * | to this running transaction.
77  * | All other variants will wait for current one to finish and attach to
78  * | transaction N+1.
79  * |
80  * | To next stage:
81  * |  Caller is chosen to commit transaction N, and all other trans handle
82  * |  haven been released.
83  * V
84  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
85  * |
86  * | The heavy lifting transaction work is started.
87  * | From running delayed refs (modifying extent tree) to creating pending
88  * | snapshots, running qgroups.
89  * | In short, modify supporting trees to reflect modifications of subvolume
90  * | trees.
91  * |
92  * | At this stage, all start_transaction() calls will wait for this
93  * | transaction to finish and attach to transaction N+1.
94  * |
95  * | To next stage:
96  * |  Until all supporting trees are updated.
97  * V
98  * Transaction N [[TRANS_STATE_UNBLOCKED]]
99  * |                                                Transaction N+1
100  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
101  * | need to write them back to disk and update     |
102  * | super blocks.                                  |
103  * |                                                |
104  * | At this stage, new transaction is allowed to   |
105  * | start.                                         |
106  * | All new start_transaction() calls will be      |
107  * | attached to transid N+1.                       |
108  * |                                                |
109  * | To next stage:                                 |
110  * |  Until all tree blocks are super blocks are    |
111  * |  written to block devices                      |
112  * V                                                |
113  * Transaction N [[TRANS_STATE_COMPLETED]]          V
114  *   All tree blocks and super blocks are written.  Transaction N+1
115  *   This transaction is finished and all its       [[TRANS_STATE_COMMIT_START]]
116  *   data structures will be cleaned up.            | Life goes on
117  */
118 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
119         [TRANS_STATE_RUNNING]           = 0U,
120         [TRANS_STATE_COMMIT_PREP]       = 0U,
121         [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
122         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
123                                            __TRANS_ATTACH |
124                                            __TRANS_JOIN |
125                                            __TRANS_JOIN_NOSTART),
126         [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
127                                            __TRANS_ATTACH |
128                                            __TRANS_JOIN |
129                                            __TRANS_JOIN_NOLOCK |
130                                            __TRANS_JOIN_NOSTART),
131         [TRANS_STATE_SUPER_COMMITTED]   = (__TRANS_START |
132                                            __TRANS_ATTACH |
133                                            __TRANS_JOIN |
134                                            __TRANS_JOIN_NOLOCK |
135                                            __TRANS_JOIN_NOSTART),
136         [TRANS_STATE_COMPLETED]         = (__TRANS_START |
137                                            __TRANS_ATTACH |
138                                            __TRANS_JOIN |
139                                            __TRANS_JOIN_NOLOCK |
140                                            __TRANS_JOIN_NOSTART),
141 };
142
143 void btrfs_put_transaction(struct btrfs_transaction *transaction)
144 {
145         WARN_ON(refcount_read(&transaction->use_count) == 0);
146         if (refcount_dec_and_test(&transaction->use_count)) {
147                 BUG_ON(!list_empty(&transaction->list));
148                 WARN_ON(!RB_EMPTY_ROOT(
149                                 &transaction->delayed_refs.href_root.rb_root));
150                 WARN_ON(!RB_EMPTY_ROOT(
151                                 &transaction->delayed_refs.dirty_extent_root));
152                 if (transaction->delayed_refs.pending_csums)
153                         btrfs_err(transaction->fs_info,
154                                   "pending csums is %llu",
155                                   transaction->delayed_refs.pending_csums);
156                 /*
157                  * If any block groups are found in ->deleted_bgs then it's
158                  * because the transaction was aborted and a commit did not
159                  * happen (things failed before writing the new superblock
160                  * and calling btrfs_finish_extent_commit()), so we can not
161                  * discard the physical locations of the block groups.
162                  */
163                 while (!list_empty(&transaction->deleted_bgs)) {
164                         struct btrfs_block_group *cache;
165
166                         cache = list_first_entry(&transaction->deleted_bgs,
167                                                  struct btrfs_block_group,
168                                                  bg_list);
169                         list_del_init(&cache->bg_list);
170                         btrfs_unfreeze_block_group(cache);
171                         btrfs_put_block_group(cache);
172                 }
173                 WARN_ON(!list_empty(&transaction->dev_update_list));
174                 kfree(transaction);
175         }
176 }
177
178 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
179 {
180         struct btrfs_transaction *cur_trans = trans->transaction;
181         struct btrfs_fs_info *fs_info = trans->fs_info;
182         struct btrfs_root *root, *tmp;
183
184         /*
185          * At this point no one can be using this transaction to modify any tree
186          * and no one can start another transaction to modify any tree either.
187          */
188         ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
189
190         down_write(&fs_info->commit_root_sem);
191
192         if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
193                 fs_info->last_reloc_trans = trans->transid;
194
195         list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
196                                  dirty_list) {
197                 list_del_init(&root->dirty_list);
198                 free_extent_buffer(root->commit_root);
199                 root->commit_root = btrfs_root_node(root);
200                 extent_io_tree_release(&root->dirty_log_pages);
201                 btrfs_qgroup_clean_swapped_blocks(root);
202         }
203
204         /* We can free old roots now. */
205         spin_lock(&cur_trans->dropped_roots_lock);
206         while (!list_empty(&cur_trans->dropped_roots)) {
207                 root = list_first_entry(&cur_trans->dropped_roots,
208                                         struct btrfs_root, root_list);
209                 list_del_init(&root->root_list);
210                 spin_unlock(&cur_trans->dropped_roots_lock);
211                 btrfs_free_log(trans, root);
212                 btrfs_drop_and_free_fs_root(fs_info, root);
213                 spin_lock(&cur_trans->dropped_roots_lock);
214         }
215         spin_unlock(&cur_trans->dropped_roots_lock);
216
217         up_write(&fs_info->commit_root_sem);
218 }
219
220 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
221                                          unsigned int type)
222 {
223         if (type & TRANS_EXTWRITERS)
224                 atomic_inc(&trans->num_extwriters);
225 }
226
227 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
228                                          unsigned int type)
229 {
230         if (type & TRANS_EXTWRITERS)
231                 atomic_dec(&trans->num_extwriters);
232 }
233
234 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
235                                           unsigned int type)
236 {
237         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
238 }
239
240 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
241 {
242         return atomic_read(&trans->num_extwriters);
243 }
244
245 /*
246  * To be called after doing the chunk btree updates right after allocating a new
247  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
248  * chunk after all chunk btree updates and after finishing the second phase of
249  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
250  * group had its chunk item insertion delayed to the second phase.
251  */
252 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
253 {
254         struct btrfs_fs_info *fs_info = trans->fs_info;
255
256         if (!trans->chunk_bytes_reserved)
257                 return;
258
259         btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
260                                 trans->chunk_bytes_reserved, NULL);
261         trans->chunk_bytes_reserved = 0;
262 }
263
264 /*
265  * either allocate a new transaction or hop into the existing one
266  */
267 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
268                                      unsigned int type)
269 {
270         struct btrfs_transaction *cur_trans;
271
272         spin_lock(&fs_info->trans_lock);
273 loop:
274         /* The file system has been taken offline. No new transactions. */
275         if (BTRFS_FS_ERROR(fs_info)) {
276                 spin_unlock(&fs_info->trans_lock);
277                 return -EROFS;
278         }
279
280         cur_trans = fs_info->running_transaction;
281         if (cur_trans) {
282                 if (TRANS_ABORTED(cur_trans)) {
283                         spin_unlock(&fs_info->trans_lock);
284                         return cur_trans->aborted;
285                 }
286                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
287                         spin_unlock(&fs_info->trans_lock);
288                         return -EBUSY;
289                 }
290                 refcount_inc(&cur_trans->use_count);
291                 atomic_inc(&cur_trans->num_writers);
292                 extwriter_counter_inc(cur_trans, type);
293                 spin_unlock(&fs_info->trans_lock);
294                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
295                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
296                 return 0;
297         }
298         spin_unlock(&fs_info->trans_lock);
299
300         /*
301          * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
302          * current transaction, and commit it. If there is no transaction, just
303          * return ENOENT.
304          */
305         if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
306                 return -ENOENT;
307
308         /*
309          * JOIN_NOLOCK only happens during the transaction commit, so
310          * it is impossible that ->running_transaction is NULL
311          */
312         BUG_ON(type == TRANS_JOIN_NOLOCK);
313
314         cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
315         if (!cur_trans)
316                 return -ENOMEM;
317
318         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
319         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
320
321         spin_lock(&fs_info->trans_lock);
322         if (fs_info->running_transaction) {
323                 /*
324                  * someone started a transaction after we unlocked.  Make sure
325                  * to redo the checks above
326                  */
327                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
328                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
329                 kfree(cur_trans);
330                 goto loop;
331         } else if (BTRFS_FS_ERROR(fs_info)) {
332                 spin_unlock(&fs_info->trans_lock);
333                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
334                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
335                 kfree(cur_trans);
336                 return -EROFS;
337         }
338
339         cur_trans->fs_info = fs_info;
340         atomic_set(&cur_trans->pending_ordered, 0);
341         init_waitqueue_head(&cur_trans->pending_wait);
342         atomic_set(&cur_trans->num_writers, 1);
343         extwriter_counter_init(cur_trans, type);
344         init_waitqueue_head(&cur_trans->writer_wait);
345         init_waitqueue_head(&cur_trans->commit_wait);
346         cur_trans->state = TRANS_STATE_RUNNING;
347         /*
348          * One for this trans handle, one so it will live on until we
349          * commit the transaction.
350          */
351         refcount_set(&cur_trans->use_count, 2);
352         cur_trans->flags = 0;
353         cur_trans->start_time = ktime_get_seconds();
354
355         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
356
357         cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
358         cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
359         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
360
361         /*
362          * although the tree mod log is per file system and not per transaction,
363          * the log must never go across transaction boundaries.
364          */
365         smp_mb();
366         if (!list_empty(&fs_info->tree_mod_seq_list))
367                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
368         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
369                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
370         atomic64_set(&fs_info->tree_mod_seq, 0);
371
372         spin_lock_init(&cur_trans->delayed_refs.lock);
373
374         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
375         INIT_LIST_HEAD(&cur_trans->dev_update_list);
376         INIT_LIST_HEAD(&cur_trans->switch_commits);
377         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
378         INIT_LIST_HEAD(&cur_trans->io_bgs);
379         INIT_LIST_HEAD(&cur_trans->dropped_roots);
380         mutex_init(&cur_trans->cache_write_mutex);
381         spin_lock_init(&cur_trans->dirty_bgs_lock);
382         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
383         spin_lock_init(&cur_trans->dropped_roots_lock);
384         list_add_tail(&cur_trans->list, &fs_info->trans_list);
385         extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
386                         IO_TREE_TRANS_DIRTY_PAGES);
387         extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
388                         IO_TREE_FS_PINNED_EXTENTS);
389         fs_info->generation++;
390         cur_trans->transid = fs_info->generation;
391         fs_info->running_transaction = cur_trans;
392         cur_trans->aborted = 0;
393         spin_unlock(&fs_info->trans_lock);
394
395         return 0;
396 }
397
398 /*
399  * This does all the record keeping required to make sure that a shareable root
400  * is properly recorded in a given transaction.  This is required to make sure
401  * the old root from before we joined the transaction is deleted when the
402  * transaction commits.
403  */
404 static int record_root_in_trans(struct btrfs_trans_handle *trans,
405                                struct btrfs_root *root,
406                                int force)
407 {
408         struct btrfs_fs_info *fs_info = root->fs_info;
409         int ret = 0;
410
411         if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
412             root->last_trans < trans->transid) || force) {
413                 WARN_ON(!force && root->commit_root != root->node);
414
415                 /*
416                  * see below for IN_TRANS_SETUP usage rules
417                  * we have the reloc mutex held now, so there
418                  * is only one writer in this function
419                  */
420                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
421
422                 /* make sure readers find IN_TRANS_SETUP before
423                  * they find our root->last_trans update
424                  */
425                 smp_wmb();
426
427                 spin_lock(&fs_info->fs_roots_radix_lock);
428                 if (root->last_trans == trans->transid && !force) {
429                         spin_unlock(&fs_info->fs_roots_radix_lock);
430                         return 0;
431                 }
432                 radix_tree_tag_set(&fs_info->fs_roots_radix,
433                                    (unsigned long)root->root_key.objectid,
434                                    BTRFS_ROOT_TRANS_TAG);
435                 spin_unlock(&fs_info->fs_roots_radix_lock);
436                 root->last_trans = trans->transid;
437
438                 /* this is pretty tricky.  We don't want to
439                  * take the relocation lock in btrfs_record_root_in_trans
440                  * unless we're really doing the first setup for this root in
441                  * this transaction.
442                  *
443                  * Normally we'd use root->last_trans as a flag to decide
444                  * if we want to take the expensive mutex.
445                  *
446                  * But, we have to set root->last_trans before we
447                  * init the relocation root, otherwise, we trip over warnings
448                  * in ctree.c.  The solution used here is to flag ourselves
449                  * with root IN_TRANS_SETUP.  When this is 1, we're still
450                  * fixing up the reloc trees and everyone must wait.
451                  *
452                  * When this is zero, they can trust root->last_trans and fly
453                  * through btrfs_record_root_in_trans without having to take the
454                  * lock.  smp_wmb() makes sure that all the writes above are
455                  * done before we pop in the zero below
456                  */
457                 ret = btrfs_init_reloc_root(trans, root);
458                 smp_mb__before_atomic();
459                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
460         }
461         return ret;
462 }
463
464
465 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
466                             struct btrfs_root *root)
467 {
468         struct btrfs_fs_info *fs_info = root->fs_info;
469         struct btrfs_transaction *cur_trans = trans->transaction;
470
471         /* Add ourselves to the transaction dropped list */
472         spin_lock(&cur_trans->dropped_roots_lock);
473         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
474         spin_unlock(&cur_trans->dropped_roots_lock);
475
476         /* Make sure we don't try to update the root at commit time */
477         spin_lock(&fs_info->fs_roots_radix_lock);
478         radix_tree_tag_clear(&fs_info->fs_roots_radix,
479                              (unsigned long)root->root_key.objectid,
480                              BTRFS_ROOT_TRANS_TAG);
481         spin_unlock(&fs_info->fs_roots_radix_lock);
482 }
483
484 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
485                                struct btrfs_root *root)
486 {
487         struct btrfs_fs_info *fs_info = root->fs_info;
488         int ret;
489
490         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
491                 return 0;
492
493         /*
494          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
495          * and barriers
496          */
497         smp_rmb();
498         if (root->last_trans == trans->transid &&
499             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
500                 return 0;
501
502         mutex_lock(&fs_info->reloc_mutex);
503         ret = record_root_in_trans(trans, root, 0);
504         mutex_unlock(&fs_info->reloc_mutex);
505
506         return ret;
507 }
508
509 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
510 {
511         return (trans->state >= TRANS_STATE_COMMIT_START &&
512                 trans->state < TRANS_STATE_UNBLOCKED &&
513                 !TRANS_ABORTED(trans));
514 }
515
516 /* wait for commit against the current transaction to become unblocked
517  * when this is done, it is safe to start a new transaction, but the current
518  * transaction might not be fully on disk.
519  */
520 static void wait_current_trans(struct btrfs_fs_info *fs_info)
521 {
522         struct btrfs_transaction *cur_trans;
523
524         spin_lock(&fs_info->trans_lock);
525         cur_trans = fs_info->running_transaction;
526         if (cur_trans && is_transaction_blocked(cur_trans)) {
527                 refcount_inc(&cur_trans->use_count);
528                 spin_unlock(&fs_info->trans_lock);
529
530                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
531                 wait_event(fs_info->transaction_wait,
532                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
533                            TRANS_ABORTED(cur_trans));
534                 btrfs_put_transaction(cur_trans);
535         } else {
536                 spin_unlock(&fs_info->trans_lock);
537         }
538 }
539
540 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
541 {
542         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
543                 return 0;
544
545         if (type == TRANS_START)
546                 return 1;
547
548         return 0;
549 }
550
551 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
552 {
553         struct btrfs_fs_info *fs_info = root->fs_info;
554
555         if (!fs_info->reloc_ctl ||
556             !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
557             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
558             root->reloc_root)
559                 return false;
560
561         return true;
562 }
563
564 static struct btrfs_trans_handle *
565 start_transaction(struct btrfs_root *root, unsigned int num_items,
566                   unsigned int type, enum btrfs_reserve_flush_enum flush,
567                   bool enforce_qgroups)
568 {
569         struct btrfs_fs_info *fs_info = root->fs_info;
570         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
571         struct btrfs_trans_handle *h;
572         struct btrfs_transaction *cur_trans;
573         u64 num_bytes = 0;
574         u64 qgroup_reserved = 0;
575         bool reloc_reserved = false;
576         bool do_chunk_alloc = false;
577         int ret;
578
579         if (BTRFS_FS_ERROR(fs_info))
580                 return ERR_PTR(-EROFS);
581
582         if (current->journal_info) {
583                 WARN_ON(type & TRANS_EXTWRITERS);
584                 h = current->journal_info;
585                 refcount_inc(&h->use_count);
586                 WARN_ON(refcount_read(&h->use_count) > 2);
587                 h->orig_rsv = h->block_rsv;
588                 h->block_rsv = NULL;
589                 goto got_it;
590         }
591
592         /*
593          * Do the reservation before we join the transaction so we can do all
594          * the appropriate flushing if need be.
595          */
596         if (num_items && root != fs_info->chunk_root) {
597                 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
598                 u64 delayed_refs_bytes = 0;
599
600                 qgroup_reserved = num_items * fs_info->nodesize;
601                 /*
602                  * Use prealloc for now, as there might be a currently running
603                  * transaction that could free this reserved space prematurely
604                  * by committing.
605                  */
606                 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
607                                                          enforce_qgroups, false);
608                 if (ret)
609                         return ERR_PTR(ret);
610
611                 /*
612                  * We want to reserve all the bytes we may need all at once, so
613                  * we only do 1 enospc flushing cycle per transaction start.  We
614                  * accomplish this by simply assuming we'll do num_items worth
615                  * of delayed refs updates in this trans handle, and refill that
616                  * amount for whatever is missing in the reserve.
617                  */
618                 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
619                 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
620                     !btrfs_block_rsv_full(delayed_refs_rsv)) {
621                         delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info,
622                                                                           num_items);
623                         num_bytes += delayed_refs_bytes;
624                 }
625
626                 /*
627                  * Do the reservation for the relocation root creation
628                  */
629                 if (need_reserve_reloc_root(root)) {
630                         num_bytes += fs_info->nodesize;
631                         reloc_reserved = true;
632                 }
633
634                 ret = btrfs_reserve_metadata_bytes(fs_info, rsv, num_bytes, flush);
635                 if (ret)
636                         goto reserve_fail;
637                 if (delayed_refs_bytes) {
638                         btrfs_migrate_to_delayed_refs_rsv(fs_info, delayed_refs_bytes);
639                         num_bytes -= delayed_refs_bytes;
640                 }
641                 btrfs_block_rsv_add_bytes(rsv, num_bytes, true);
642
643                 if (rsv->space_info->force_alloc)
644                         do_chunk_alloc = true;
645         } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
646                    !btrfs_block_rsv_full(delayed_refs_rsv)) {
647                 /*
648                  * Some people call with btrfs_start_transaction(root, 0)
649                  * because they can be throttled, but have some other mechanism
650                  * for reserving space.  We still want these guys to refill the
651                  * delayed block_rsv so just add 1 items worth of reservation
652                  * here.
653                  */
654                 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
655                 if (ret)
656                         goto reserve_fail;
657         }
658 again:
659         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
660         if (!h) {
661                 ret = -ENOMEM;
662                 goto alloc_fail;
663         }
664
665         /*
666          * If we are JOIN_NOLOCK we're already committing a transaction and
667          * waiting on this guy, so we don't need to do the sb_start_intwrite
668          * because we're already holding a ref.  We need this because we could
669          * have raced in and did an fsync() on a file which can kick a commit
670          * and then we deadlock with somebody doing a freeze.
671          *
672          * If we are ATTACH, it means we just want to catch the current
673          * transaction and commit it, so we needn't do sb_start_intwrite(). 
674          */
675         if (type & __TRANS_FREEZABLE)
676                 sb_start_intwrite(fs_info->sb);
677
678         if (may_wait_transaction(fs_info, type))
679                 wait_current_trans(fs_info);
680
681         do {
682                 ret = join_transaction(fs_info, type);
683                 if (ret == -EBUSY) {
684                         wait_current_trans(fs_info);
685                         if (unlikely(type == TRANS_ATTACH ||
686                                      type == TRANS_JOIN_NOSTART))
687                                 ret = -ENOENT;
688                 }
689         } while (ret == -EBUSY);
690
691         if (ret < 0)
692                 goto join_fail;
693
694         cur_trans = fs_info->running_transaction;
695
696         h->transid = cur_trans->transid;
697         h->transaction = cur_trans;
698         refcount_set(&h->use_count, 1);
699         h->fs_info = root->fs_info;
700
701         h->type = type;
702         INIT_LIST_HEAD(&h->new_bgs);
703
704         smp_mb();
705         if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
706             may_wait_transaction(fs_info, type)) {
707                 current->journal_info = h;
708                 btrfs_commit_transaction(h);
709                 goto again;
710         }
711
712         if (num_bytes) {
713                 trace_btrfs_space_reservation(fs_info, "transaction",
714                                               h->transid, num_bytes, 1);
715                 h->block_rsv = &fs_info->trans_block_rsv;
716                 h->bytes_reserved = num_bytes;
717                 h->reloc_reserved = reloc_reserved;
718         }
719
720         /*
721          * Now that we have found a transaction to be a part of, convert the
722          * qgroup reservation from prealloc to pertrans. A different transaction
723          * can't race in and free our pertrans out from under us.
724          */
725         if (qgroup_reserved)
726                 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
727
728 got_it:
729         if (!current->journal_info)
730                 current->journal_info = h;
731
732         /*
733          * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
734          * ALLOC_FORCE the first run through, and then we won't allocate for
735          * anybody else who races in later.  We don't care about the return
736          * value here.
737          */
738         if (do_chunk_alloc && num_bytes) {
739                 u64 flags = h->block_rsv->space_info->flags;
740
741                 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
742                                   CHUNK_ALLOC_NO_FORCE);
743         }
744
745         /*
746          * btrfs_record_root_in_trans() needs to alloc new extents, and may
747          * call btrfs_join_transaction() while we're also starting a
748          * transaction.
749          *
750          * Thus it need to be called after current->journal_info initialized,
751          * or we can deadlock.
752          */
753         ret = btrfs_record_root_in_trans(h, root);
754         if (ret) {
755                 /*
756                  * The transaction handle is fully initialized and linked with
757                  * other structures so it needs to be ended in case of errors,
758                  * not just freed.
759                  */
760                 btrfs_end_transaction(h);
761                 return ERR_PTR(ret);
762         }
763
764         return h;
765
766 join_fail:
767         if (type & __TRANS_FREEZABLE)
768                 sb_end_intwrite(fs_info->sb);
769         kmem_cache_free(btrfs_trans_handle_cachep, h);
770 alloc_fail:
771         if (num_bytes)
772                 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
773                                         num_bytes, NULL);
774 reserve_fail:
775         btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
776         return ERR_PTR(ret);
777 }
778
779 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
780                                                    unsigned int num_items)
781 {
782         return start_transaction(root, num_items, TRANS_START,
783                                  BTRFS_RESERVE_FLUSH_ALL, true);
784 }
785
786 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
787                                         struct btrfs_root *root,
788                                         unsigned int num_items)
789 {
790         return start_transaction(root, num_items, TRANS_START,
791                                  BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
792 }
793
794 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
795 {
796         return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
797                                  true);
798 }
799
800 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
801 {
802         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
803                                  BTRFS_RESERVE_NO_FLUSH, true);
804 }
805
806 /*
807  * Similar to regular join but it never starts a transaction when none is
808  * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
809  * This is similar to btrfs_attach_transaction() but it allows the join to
810  * happen if the transaction commit already started but it's not yet in the
811  * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
812  */
813 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
814 {
815         return start_transaction(root, 0, TRANS_JOIN_NOSTART,
816                                  BTRFS_RESERVE_NO_FLUSH, true);
817 }
818
819 /*
820  * btrfs_attach_transaction() - catch the running transaction
821  *
822  * It is used when we want to commit the current the transaction, but
823  * don't want to start a new one.
824  *
825  * Note: If this function return -ENOENT, it just means there is no
826  * running transaction. But it is possible that the inactive transaction
827  * is still in the memory, not fully on disk. If you hope there is no
828  * inactive transaction in the fs when -ENOENT is returned, you should
829  * invoke
830  *     btrfs_attach_transaction_barrier()
831  */
832 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
833 {
834         return start_transaction(root, 0, TRANS_ATTACH,
835                                  BTRFS_RESERVE_NO_FLUSH, true);
836 }
837
838 /*
839  * btrfs_attach_transaction_barrier() - catch the running transaction
840  *
841  * It is similar to the above function, the difference is this one
842  * will wait for all the inactive transactions until they fully
843  * complete.
844  */
845 struct btrfs_trans_handle *
846 btrfs_attach_transaction_barrier(struct btrfs_root *root)
847 {
848         struct btrfs_trans_handle *trans;
849
850         trans = start_transaction(root, 0, TRANS_ATTACH,
851                                   BTRFS_RESERVE_NO_FLUSH, true);
852         if (trans == ERR_PTR(-ENOENT)) {
853                 int ret;
854
855                 ret = btrfs_wait_for_commit(root->fs_info, 0);
856                 if (ret)
857                         return ERR_PTR(ret);
858         }
859
860         return trans;
861 }
862
863 /* Wait for a transaction commit to reach at least the given state. */
864 static noinline void wait_for_commit(struct btrfs_transaction *commit,
865                                      const enum btrfs_trans_state min_state)
866 {
867         struct btrfs_fs_info *fs_info = commit->fs_info;
868         u64 transid = commit->transid;
869         bool put = false;
870
871         /*
872          * At the moment this function is called with min_state either being
873          * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
874          */
875         if (min_state == TRANS_STATE_COMPLETED)
876                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
877         else
878                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
879
880         while (1) {
881                 wait_event(commit->commit_wait, commit->state >= min_state);
882                 if (put)
883                         btrfs_put_transaction(commit);
884
885                 if (min_state < TRANS_STATE_COMPLETED)
886                         break;
887
888                 /*
889                  * A transaction isn't really completed until all of the
890                  * previous transactions are completed, but with fsync we can
891                  * end up with SUPER_COMMITTED transactions before a COMPLETED
892                  * transaction. Wait for those.
893                  */
894
895                 spin_lock(&fs_info->trans_lock);
896                 commit = list_first_entry_or_null(&fs_info->trans_list,
897                                                   struct btrfs_transaction,
898                                                   list);
899                 if (!commit || commit->transid > transid) {
900                         spin_unlock(&fs_info->trans_lock);
901                         break;
902                 }
903                 refcount_inc(&commit->use_count);
904                 put = true;
905                 spin_unlock(&fs_info->trans_lock);
906         }
907 }
908
909 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
910 {
911         struct btrfs_transaction *cur_trans = NULL, *t;
912         int ret = 0;
913
914         if (transid) {
915                 if (transid <= fs_info->last_trans_committed)
916                         goto out;
917
918                 /* find specified transaction */
919                 spin_lock(&fs_info->trans_lock);
920                 list_for_each_entry(t, &fs_info->trans_list, list) {
921                         if (t->transid == transid) {
922                                 cur_trans = t;
923                                 refcount_inc(&cur_trans->use_count);
924                                 ret = 0;
925                                 break;
926                         }
927                         if (t->transid > transid) {
928                                 ret = 0;
929                                 break;
930                         }
931                 }
932                 spin_unlock(&fs_info->trans_lock);
933
934                 /*
935                  * The specified transaction doesn't exist, or we
936                  * raced with btrfs_commit_transaction
937                  */
938                 if (!cur_trans) {
939                         if (transid > fs_info->last_trans_committed)
940                                 ret = -EINVAL;
941                         goto out;
942                 }
943         } else {
944                 /* find newest transaction that is committing | committed */
945                 spin_lock(&fs_info->trans_lock);
946                 list_for_each_entry_reverse(t, &fs_info->trans_list,
947                                             list) {
948                         if (t->state >= TRANS_STATE_COMMIT_START) {
949                                 if (t->state == TRANS_STATE_COMPLETED)
950                                         break;
951                                 cur_trans = t;
952                                 refcount_inc(&cur_trans->use_count);
953                                 break;
954                         }
955                 }
956                 spin_unlock(&fs_info->trans_lock);
957                 if (!cur_trans)
958                         goto out;  /* nothing committing|committed */
959         }
960
961         wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
962         ret = cur_trans->aborted;
963         btrfs_put_transaction(cur_trans);
964 out:
965         return ret;
966 }
967
968 void btrfs_throttle(struct btrfs_fs_info *fs_info)
969 {
970         wait_current_trans(fs_info);
971 }
972
973 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
974 {
975         struct btrfs_transaction *cur_trans = trans->transaction;
976
977         if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
978             test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
979                 return true;
980
981         if (btrfs_check_space_for_delayed_refs(trans->fs_info))
982                 return true;
983
984         return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
985 }
986
987 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
988
989 {
990         struct btrfs_fs_info *fs_info = trans->fs_info;
991
992         if (!trans->block_rsv) {
993                 ASSERT(!trans->bytes_reserved);
994                 return;
995         }
996
997         if (!trans->bytes_reserved)
998                 return;
999
1000         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1001         trace_btrfs_space_reservation(fs_info, "transaction",
1002                                       trans->transid, trans->bytes_reserved, 0);
1003         btrfs_block_rsv_release(fs_info, trans->block_rsv,
1004                                 trans->bytes_reserved, NULL);
1005         trans->bytes_reserved = 0;
1006 }
1007
1008 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1009                                    int throttle)
1010 {
1011         struct btrfs_fs_info *info = trans->fs_info;
1012         struct btrfs_transaction *cur_trans = trans->transaction;
1013         int err = 0;
1014
1015         if (refcount_read(&trans->use_count) > 1) {
1016                 refcount_dec(&trans->use_count);
1017                 trans->block_rsv = trans->orig_rsv;
1018                 return 0;
1019         }
1020
1021         btrfs_trans_release_metadata(trans);
1022         trans->block_rsv = NULL;
1023
1024         btrfs_create_pending_block_groups(trans);
1025
1026         btrfs_trans_release_chunk_metadata(trans);
1027
1028         if (trans->type & __TRANS_FREEZABLE)
1029                 sb_end_intwrite(info->sb);
1030
1031         WARN_ON(cur_trans != info->running_transaction);
1032         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1033         atomic_dec(&cur_trans->num_writers);
1034         extwriter_counter_dec(cur_trans, trans->type);
1035
1036         cond_wake_up(&cur_trans->writer_wait);
1037
1038         btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1039         btrfs_lockdep_release(info, btrfs_trans_num_writers);
1040
1041         btrfs_put_transaction(cur_trans);
1042
1043         if (current->journal_info == trans)
1044                 current->journal_info = NULL;
1045
1046         if (throttle)
1047                 btrfs_run_delayed_iputs(info);
1048
1049         if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1050                 wake_up_process(info->transaction_kthread);
1051                 if (TRANS_ABORTED(trans))
1052                         err = trans->aborted;
1053                 else
1054                         err = -EROFS;
1055         }
1056
1057         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1058         return err;
1059 }
1060
1061 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1062 {
1063         return __btrfs_end_transaction(trans, 0);
1064 }
1065
1066 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1067 {
1068         return __btrfs_end_transaction(trans, 1);
1069 }
1070
1071 /*
1072  * when btree blocks are allocated, they have some corresponding bits set for
1073  * them in one of two extent_io trees.  This is used to make sure all of
1074  * those extents are sent to disk but does not wait on them
1075  */
1076 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1077                                struct extent_io_tree *dirty_pages, int mark)
1078 {
1079         int err = 0;
1080         int werr = 0;
1081         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1082         struct extent_state *cached_state = NULL;
1083         u64 start = 0;
1084         u64 end;
1085
1086         while (find_first_extent_bit(dirty_pages, start, &start, &end,
1087                                      mark, &cached_state)) {
1088                 bool wait_writeback = false;
1089
1090                 err = convert_extent_bit(dirty_pages, start, end,
1091                                          EXTENT_NEED_WAIT,
1092                                          mark, &cached_state);
1093                 /*
1094                  * convert_extent_bit can return -ENOMEM, which is most of the
1095                  * time a temporary error. So when it happens, ignore the error
1096                  * and wait for writeback of this range to finish - because we
1097                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1098                  * to __btrfs_wait_marked_extents() would not know that
1099                  * writeback for this range started and therefore wouldn't
1100                  * wait for it to finish - we don't want to commit a
1101                  * superblock that points to btree nodes/leafs for which
1102                  * writeback hasn't finished yet (and without errors).
1103                  * We cleanup any entries left in the io tree when committing
1104                  * the transaction (through extent_io_tree_release()).
1105                  */
1106                 if (err == -ENOMEM) {
1107                         err = 0;
1108                         wait_writeback = true;
1109                 }
1110                 if (!err)
1111                         err = filemap_fdatawrite_range(mapping, start, end);
1112                 if (err)
1113                         werr = err;
1114                 else if (wait_writeback)
1115                         werr = filemap_fdatawait_range(mapping, start, end);
1116                 free_extent_state(cached_state);
1117                 cached_state = NULL;
1118                 cond_resched();
1119                 start = end + 1;
1120         }
1121         return werr;
1122 }
1123
1124 /*
1125  * when btree blocks are allocated, they have some corresponding bits set for
1126  * them in one of two extent_io trees.  This is used to make sure all of
1127  * those extents are on disk for transaction or log commit.  We wait
1128  * on all the pages and clear them from the dirty pages state tree
1129  */
1130 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1131                                        struct extent_io_tree *dirty_pages)
1132 {
1133         int err = 0;
1134         int werr = 0;
1135         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1136         struct extent_state *cached_state = NULL;
1137         u64 start = 0;
1138         u64 end;
1139
1140         while (find_first_extent_bit(dirty_pages, start, &start, &end,
1141                                      EXTENT_NEED_WAIT, &cached_state)) {
1142                 /*
1143                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1144                  * When committing the transaction, we'll remove any entries
1145                  * left in the io tree. For a log commit, we don't remove them
1146                  * after committing the log because the tree can be accessed
1147                  * concurrently - we do it only at transaction commit time when
1148                  * it's safe to do it (through extent_io_tree_release()).
1149                  */
1150                 err = clear_extent_bit(dirty_pages, start, end,
1151                                        EXTENT_NEED_WAIT, &cached_state);
1152                 if (err == -ENOMEM)
1153                         err = 0;
1154                 if (!err)
1155                         err = filemap_fdatawait_range(mapping, start, end);
1156                 if (err)
1157                         werr = err;
1158                 free_extent_state(cached_state);
1159                 cached_state = NULL;
1160                 cond_resched();
1161                 start = end + 1;
1162         }
1163         if (err)
1164                 werr = err;
1165         return werr;
1166 }
1167
1168 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1169                        struct extent_io_tree *dirty_pages)
1170 {
1171         bool errors = false;
1172         int err;
1173
1174         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1175         if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1176                 errors = true;
1177
1178         if (errors && !err)
1179                 err = -EIO;
1180         return err;
1181 }
1182
1183 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1184 {
1185         struct btrfs_fs_info *fs_info = log_root->fs_info;
1186         struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1187         bool errors = false;
1188         int err;
1189
1190         ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1191
1192         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1193         if ((mark & EXTENT_DIRTY) &&
1194             test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1195                 errors = true;
1196
1197         if ((mark & EXTENT_NEW) &&
1198             test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1199                 errors = true;
1200
1201         if (errors && !err)
1202                 err = -EIO;
1203         return err;
1204 }
1205
1206 /*
1207  * When btree blocks are allocated the corresponding extents are marked dirty.
1208  * This function ensures such extents are persisted on disk for transaction or
1209  * log commit.
1210  *
1211  * @trans: transaction whose dirty pages we'd like to write
1212  */
1213 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1214 {
1215         int ret;
1216         int ret2;
1217         struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1218         struct btrfs_fs_info *fs_info = trans->fs_info;
1219         struct blk_plug plug;
1220
1221         blk_start_plug(&plug);
1222         ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1223         blk_finish_plug(&plug);
1224         ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1225
1226         extent_io_tree_release(&trans->transaction->dirty_pages);
1227
1228         if (ret)
1229                 return ret;
1230         else if (ret2)
1231                 return ret2;
1232         else
1233                 return 0;
1234 }
1235
1236 /*
1237  * this is used to update the root pointer in the tree of tree roots.
1238  *
1239  * But, in the case of the extent allocation tree, updating the root
1240  * pointer may allocate blocks which may change the root of the extent
1241  * allocation tree.
1242  *
1243  * So, this loops and repeats and makes sure the cowonly root didn't
1244  * change while the root pointer was being updated in the metadata.
1245  */
1246 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1247                                struct btrfs_root *root)
1248 {
1249         int ret;
1250         u64 old_root_bytenr;
1251         u64 old_root_used;
1252         struct btrfs_fs_info *fs_info = root->fs_info;
1253         struct btrfs_root *tree_root = fs_info->tree_root;
1254
1255         old_root_used = btrfs_root_used(&root->root_item);
1256
1257         while (1) {
1258                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1259                 if (old_root_bytenr == root->node->start &&
1260                     old_root_used == btrfs_root_used(&root->root_item))
1261                         break;
1262
1263                 btrfs_set_root_node(&root->root_item, root->node);
1264                 ret = btrfs_update_root(trans, tree_root,
1265                                         &root->root_key,
1266                                         &root->root_item);
1267                 if (ret)
1268                         return ret;
1269
1270                 old_root_used = btrfs_root_used(&root->root_item);
1271         }
1272
1273         return 0;
1274 }
1275
1276 /*
1277  * update all the cowonly tree roots on disk
1278  *
1279  * The error handling in this function may not be obvious. Any of the
1280  * failures will cause the file system to go offline. We still need
1281  * to clean up the delayed refs.
1282  */
1283 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1284 {
1285         struct btrfs_fs_info *fs_info = trans->fs_info;
1286         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1287         struct list_head *io_bgs = &trans->transaction->io_bgs;
1288         struct list_head *next;
1289         struct extent_buffer *eb;
1290         int ret;
1291
1292         /*
1293          * At this point no one can be using this transaction to modify any tree
1294          * and no one can start another transaction to modify any tree either.
1295          */
1296         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1297
1298         eb = btrfs_lock_root_node(fs_info->tree_root);
1299         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1300                               0, &eb, BTRFS_NESTING_COW);
1301         btrfs_tree_unlock(eb);
1302         free_extent_buffer(eb);
1303
1304         if (ret)
1305                 return ret;
1306
1307         ret = btrfs_run_dev_stats(trans);
1308         if (ret)
1309                 return ret;
1310         ret = btrfs_run_dev_replace(trans);
1311         if (ret)
1312                 return ret;
1313         ret = btrfs_run_qgroups(trans);
1314         if (ret)
1315                 return ret;
1316
1317         ret = btrfs_setup_space_cache(trans);
1318         if (ret)
1319                 return ret;
1320
1321 again:
1322         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1323                 struct btrfs_root *root;
1324                 next = fs_info->dirty_cowonly_roots.next;
1325                 list_del_init(next);
1326                 root = list_entry(next, struct btrfs_root, dirty_list);
1327                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1328
1329                 list_add_tail(&root->dirty_list,
1330                               &trans->transaction->switch_commits);
1331                 ret = update_cowonly_root(trans, root);
1332                 if (ret)
1333                         return ret;
1334         }
1335
1336         /* Now flush any delayed refs generated by updating all of the roots */
1337         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1338         if (ret)
1339                 return ret;
1340
1341         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1342                 ret = btrfs_write_dirty_block_groups(trans);
1343                 if (ret)
1344                         return ret;
1345
1346                 /*
1347                  * We're writing the dirty block groups, which could generate
1348                  * delayed refs, which could generate more dirty block groups,
1349                  * so we want to keep this flushing in this loop to make sure
1350                  * everything gets run.
1351                  */
1352                 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1353                 if (ret)
1354                         return ret;
1355         }
1356
1357         if (!list_empty(&fs_info->dirty_cowonly_roots))
1358                 goto again;
1359
1360         /* Update dev-replace pointer once everything is committed */
1361         fs_info->dev_replace.committed_cursor_left =
1362                 fs_info->dev_replace.cursor_left_last_write_of_item;
1363
1364         return 0;
1365 }
1366
1367 /*
1368  * If we had a pending drop we need to see if there are any others left in our
1369  * dead roots list, and if not clear our bit and wake any waiters.
1370  */
1371 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1372 {
1373         /*
1374          * We put the drop in progress roots at the front of the list, so if the
1375          * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1376          * up.
1377          */
1378         spin_lock(&fs_info->trans_lock);
1379         if (!list_empty(&fs_info->dead_roots)) {
1380                 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1381                                                            struct btrfs_root,
1382                                                            root_list);
1383                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1384                         spin_unlock(&fs_info->trans_lock);
1385                         return;
1386                 }
1387         }
1388         spin_unlock(&fs_info->trans_lock);
1389
1390         btrfs_wake_unfinished_drop(fs_info);
1391 }
1392
1393 /*
1394  * dead roots are old snapshots that need to be deleted.  This allocates
1395  * a dirty root struct and adds it into the list of dead roots that need to
1396  * be deleted
1397  */
1398 void btrfs_add_dead_root(struct btrfs_root *root)
1399 {
1400         struct btrfs_fs_info *fs_info = root->fs_info;
1401
1402         spin_lock(&fs_info->trans_lock);
1403         if (list_empty(&root->root_list)) {
1404                 btrfs_grab_root(root);
1405
1406                 /* We want to process the partially complete drops first. */
1407                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1408                         list_add(&root->root_list, &fs_info->dead_roots);
1409                 else
1410                         list_add_tail(&root->root_list, &fs_info->dead_roots);
1411         }
1412         spin_unlock(&fs_info->trans_lock);
1413 }
1414
1415 /*
1416  * Update each subvolume root and its relocation root, if it exists, in the tree
1417  * of tree roots. Also free log roots if they exist.
1418  */
1419 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1420 {
1421         struct btrfs_fs_info *fs_info = trans->fs_info;
1422         struct btrfs_root *gang[8];
1423         int i;
1424         int ret;
1425
1426         /*
1427          * At this point no one can be using this transaction to modify any tree
1428          * and no one can start another transaction to modify any tree either.
1429          */
1430         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1431
1432         spin_lock(&fs_info->fs_roots_radix_lock);
1433         while (1) {
1434                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1435                                                  (void **)gang, 0,
1436                                                  ARRAY_SIZE(gang),
1437                                                  BTRFS_ROOT_TRANS_TAG);
1438                 if (ret == 0)
1439                         break;
1440                 for (i = 0; i < ret; i++) {
1441                         struct btrfs_root *root = gang[i];
1442                         int ret2;
1443
1444                         /*
1445                          * At this point we can neither have tasks logging inodes
1446                          * from a root nor trying to commit a log tree.
1447                          */
1448                         ASSERT(atomic_read(&root->log_writers) == 0);
1449                         ASSERT(atomic_read(&root->log_commit[0]) == 0);
1450                         ASSERT(atomic_read(&root->log_commit[1]) == 0);
1451
1452                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1453                                         (unsigned long)root->root_key.objectid,
1454                                         BTRFS_ROOT_TRANS_TAG);
1455                         spin_unlock(&fs_info->fs_roots_radix_lock);
1456
1457                         btrfs_free_log(trans, root);
1458                         ret2 = btrfs_update_reloc_root(trans, root);
1459                         if (ret2)
1460                                 return ret2;
1461
1462                         /* see comments in should_cow_block() */
1463                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1464                         smp_mb__after_atomic();
1465
1466                         if (root->commit_root != root->node) {
1467                                 list_add_tail(&root->dirty_list,
1468                                         &trans->transaction->switch_commits);
1469                                 btrfs_set_root_node(&root->root_item,
1470                                                     root->node);
1471                         }
1472
1473                         ret2 = btrfs_update_root(trans, fs_info->tree_root,
1474                                                 &root->root_key,
1475                                                 &root->root_item);
1476                         if (ret2)
1477                                 return ret2;
1478                         spin_lock(&fs_info->fs_roots_radix_lock);
1479                         btrfs_qgroup_free_meta_all_pertrans(root);
1480                 }
1481         }
1482         spin_unlock(&fs_info->fs_roots_radix_lock);
1483         return 0;
1484 }
1485
1486 /*
1487  * defrag a given btree.
1488  * Every leaf in the btree is read and defragged.
1489  */
1490 int btrfs_defrag_root(struct btrfs_root *root)
1491 {
1492         struct btrfs_fs_info *info = root->fs_info;
1493         struct btrfs_trans_handle *trans;
1494         int ret;
1495
1496         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1497                 return 0;
1498
1499         while (1) {
1500                 trans = btrfs_start_transaction(root, 0);
1501                 if (IS_ERR(trans)) {
1502                         ret = PTR_ERR(trans);
1503                         break;
1504                 }
1505
1506                 ret = btrfs_defrag_leaves(trans, root);
1507
1508                 btrfs_end_transaction(trans);
1509                 btrfs_btree_balance_dirty(info);
1510                 cond_resched();
1511
1512                 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1513                         break;
1514
1515                 if (btrfs_defrag_cancelled(info)) {
1516                         btrfs_debug(info, "defrag_root cancelled");
1517                         ret = -EAGAIN;
1518                         break;
1519                 }
1520         }
1521         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1522         return ret;
1523 }
1524
1525 /*
1526  * Do all special snapshot related qgroup dirty hack.
1527  *
1528  * Will do all needed qgroup inherit and dirty hack like switch commit
1529  * roots inside one transaction and write all btree into disk, to make
1530  * qgroup works.
1531  */
1532 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1533                                    struct btrfs_root *src,
1534                                    struct btrfs_root *parent,
1535                                    struct btrfs_qgroup_inherit *inherit,
1536                                    u64 dst_objectid)
1537 {
1538         struct btrfs_fs_info *fs_info = src->fs_info;
1539         int ret;
1540
1541         /*
1542          * Save some performance in the case that qgroups are not
1543          * enabled. If this check races with the ioctl, rescan will
1544          * kick in anyway.
1545          */
1546         if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1547                 return 0;
1548
1549         /*
1550          * Ensure dirty @src will be committed.  Or, after coming
1551          * commit_fs_roots() and switch_commit_roots(), any dirty but not
1552          * recorded root will never be updated again, causing an outdated root
1553          * item.
1554          */
1555         ret = record_root_in_trans(trans, src, 1);
1556         if (ret)
1557                 return ret;
1558
1559         /*
1560          * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1561          * src root, so we must run the delayed refs here.
1562          *
1563          * However this isn't particularly fool proof, because there's no
1564          * synchronization keeping us from changing the tree after this point
1565          * before we do the qgroup_inherit, or even from making changes while
1566          * we're doing the qgroup_inherit.  But that's a problem for the future,
1567          * for now flush the delayed refs to narrow the race window where the
1568          * qgroup counters could end up wrong.
1569          */
1570         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1571         if (ret) {
1572                 btrfs_abort_transaction(trans, ret);
1573                 return ret;
1574         }
1575
1576         ret = commit_fs_roots(trans);
1577         if (ret)
1578                 goto out;
1579         ret = btrfs_qgroup_account_extents(trans);
1580         if (ret < 0)
1581                 goto out;
1582
1583         /* Now qgroup are all updated, we can inherit it to new qgroups */
1584         ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1585                                    inherit);
1586         if (ret < 0)
1587                 goto out;
1588
1589         /*
1590          * Now we do a simplified commit transaction, which will:
1591          * 1) commit all subvolume and extent tree
1592          *    To ensure all subvolume and extent tree have a valid
1593          *    commit_root to accounting later insert_dir_item()
1594          * 2) write all btree blocks onto disk
1595          *    This is to make sure later btree modification will be cowed
1596          *    Or commit_root can be populated and cause wrong qgroup numbers
1597          * In this simplified commit, we don't really care about other trees
1598          * like chunk and root tree, as they won't affect qgroup.
1599          * And we don't write super to avoid half committed status.
1600          */
1601         ret = commit_cowonly_roots(trans);
1602         if (ret)
1603                 goto out;
1604         switch_commit_roots(trans);
1605         ret = btrfs_write_and_wait_transaction(trans);
1606         if (ret)
1607                 btrfs_handle_fs_error(fs_info, ret,
1608                         "Error while writing out transaction for qgroup");
1609
1610 out:
1611         /*
1612          * Force parent root to be updated, as we recorded it before so its
1613          * last_trans == cur_transid.
1614          * Or it won't be committed again onto disk after later
1615          * insert_dir_item()
1616          */
1617         if (!ret)
1618                 ret = record_root_in_trans(trans, parent, 1);
1619         return ret;
1620 }
1621
1622 /*
1623  * new snapshots need to be created at a very specific time in the
1624  * transaction commit.  This does the actual creation.
1625  *
1626  * Note:
1627  * If the error which may affect the commitment of the current transaction
1628  * happens, we should return the error number. If the error which just affect
1629  * the creation of the pending snapshots, just return 0.
1630  */
1631 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1632                                    struct btrfs_pending_snapshot *pending)
1633 {
1634
1635         struct btrfs_fs_info *fs_info = trans->fs_info;
1636         struct btrfs_key key;
1637         struct btrfs_root_item *new_root_item;
1638         struct btrfs_root *tree_root = fs_info->tree_root;
1639         struct btrfs_root *root = pending->root;
1640         struct btrfs_root *parent_root;
1641         struct btrfs_block_rsv *rsv;
1642         struct inode *parent_inode = pending->dir;
1643         struct btrfs_path *path;
1644         struct btrfs_dir_item *dir_item;
1645         struct extent_buffer *tmp;
1646         struct extent_buffer *old;
1647         struct timespec64 cur_time;
1648         int ret = 0;
1649         u64 to_reserve = 0;
1650         u64 index = 0;
1651         u64 objectid;
1652         u64 root_flags;
1653         unsigned int nofs_flags;
1654         struct fscrypt_name fname;
1655
1656         ASSERT(pending->path);
1657         path = pending->path;
1658
1659         ASSERT(pending->root_item);
1660         new_root_item = pending->root_item;
1661
1662         /*
1663          * We're inside a transaction and must make sure that any potential
1664          * allocations with GFP_KERNEL in fscrypt won't recurse back to
1665          * filesystem.
1666          */
1667         nofs_flags = memalloc_nofs_save();
1668         pending->error = fscrypt_setup_filename(parent_inode,
1669                                                 &pending->dentry->d_name, 0,
1670                                                 &fname);
1671         memalloc_nofs_restore(nofs_flags);
1672         if (pending->error)
1673                 goto free_pending;
1674
1675         pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1676         if (pending->error)
1677                 goto free_fname;
1678
1679         /*
1680          * Make qgroup to skip current new snapshot's qgroupid, as it is
1681          * accounted by later btrfs_qgroup_inherit().
1682          */
1683         btrfs_set_skip_qgroup(trans, objectid);
1684
1685         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1686
1687         if (to_reserve > 0) {
1688                 pending->error = btrfs_block_rsv_add(fs_info,
1689                                                      &pending->block_rsv,
1690                                                      to_reserve,
1691                                                      BTRFS_RESERVE_NO_FLUSH);
1692                 if (pending->error)
1693                         goto clear_skip_qgroup;
1694         }
1695
1696         key.objectid = objectid;
1697         key.offset = (u64)-1;
1698         key.type = BTRFS_ROOT_ITEM_KEY;
1699
1700         rsv = trans->block_rsv;
1701         trans->block_rsv = &pending->block_rsv;
1702         trans->bytes_reserved = trans->block_rsv->reserved;
1703         trace_btrfs_space_reservation(fs_info, "transaction",
1704                                       trans->transid,
1705                                       trans->bytes_reserved, 1);
1706         parent_root = BTRFS_I(parent_inode)->root;
1707         ret = record_root_in_trans(trans, parent_root, 0);
1708         if (ret)
1709                 goto fail;
1710         cur_time = current_time(parent_inode);
1711
1712         /*
1713          * insert the directory item
1714          */
1715         ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1716         if (ret) {
1717                 btrfs_abort_transaction(trans, ret);
1718                 goto fail;
1719         }
1720
1721         /* check if there is a file/dir which has the same name. */
1722         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1723                                          btrfs_ino(BTRFS_I(parent_inode)),
1724                                          &fname.disk_name, 0);
1725         if (dir_item != NULL && !IS_ERR(dir_item)) {
1726                 pending->error = -EEXIST;
1727                 goto dir_item_existed;
1728         } else if (IS_ERR(dir_item)) {
1729                 ret = PTR_ERR(dir_item);
1730                 btrfs_abort_transaction(trans, ret);
1731                 goto fail;
1732         }
1733         btrfs_release_path(path);
1734
1735         /*
1736          * pull in the delayed directory update
1737          * and the delayed inode item
1738          * otherwise we corrupt the FS during
1739          * snapshot
1740          */
1741         ret = btrfs_run_delayed_items(trans);
1742         if (ret) {      /* Transaction aborted */
1743                 btrfs_abort_transaction(trans, ret);
1744                 goto fail;
1745         }
1746
1747         ret = record_root_in_trans(trans, root, 0);
1748         if (ret) {
1749                 btrfs_abort_transaction(trans, ret);
1750                 goto fail;
1751         }
1752         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1753         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1754         btrfs_check_and_init_root_item(new_root_item);
1755
1756         root_flags = btrfs_root_flags(new_root_item);
1757         if (pending->readonly)
1758                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1759         else
1760                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1761         btrfs_set_root_flags(new_root_item, root_flags);
1762
1763         btrfs_set_root_generation_v2(new_root_item,
1764                         trans->transid);
1765         generate_random_guid(new_root_item->uuid);
1766         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1767                         BTRFS_UUID_SIZE);
1768         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1769                 memset(new_root_item->received_uuid, 0,
1770                        sizeof(new_root_item->received_uuid));
1771                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1772                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1773                 btrfs_set_root_stransid(new_root_item, 0);
1774                 btrfs_set_root_rtransid(new_root_item, 0);
1775         }
1776         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1777         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1778         btrfs_set_root_otransid(new_root_item, trans->transid);
1779
1780         old = btrfs_lock_root_node(root);
1781         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1782                               BTRFS_NESTING_COW);
1783         if (ret) {
1784                 btrfs_tree_unlock(old);
1785                 free_extent_buffer(old);
1786                 btrfs_abort_transaction(trans, ret);
1787                 goto fail;
1788         }
1789
1790         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1791         /* clean up in any case */
1792         btrfs_tree_unlock(old);
1793         free_extent_buffer(old);
1794         if (ret) {
1795                 btrfs_abort_transaction(trans, ret);
1796                 goto fail;
1797         }
1798         /* see comments in should_cow_block() */
1799         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1800         smp_wmb();
1801
1802         btrfs_set_root_node(new_root_item, tmp);
1803         /* record when the snapshot was created in key.offset */
1804         key.offset = trans->transid;
1805         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1806         btrfs_tree_unlock(tmp);
1807         free_extent_buffer(tmp);
1808         if (ret) {
1809                 btrfs_abort_transaction(trans, ret);
1810                 goto fail;
1811         }
1812
1813         /*
1814          * insert root back/forward references
1815          */
1816         ret = btrfs_add_root_ref(trans, objectid,
1817                                  parent_root->root_key.objectid,
1818                                  btrfs_ino(BTRFS_I(parent_inode)), index,
1819                                  &fname.disk_name);
1820         if (ret) {
1821                 btrfs_abort_transaction(trans, ret);
1822                 goto fail;
1823         }
1824
1825         key.offset = (u64)-1;
1826         pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1827         if (IS_ERR(pending->snap)) {
1828                 ret = PTR_ERR(pending->snap);
1829                 pending->snap = NULL;
1830                 btrfs_abort_transaction(trans, ret);
1831                 goto fail;
1832         }
1833
1834         ret = btrfs_reloc_post_snapshot(trans, pending);
1835         if (ret) {
1836                 btrfs_abort_transaction(trans, ret);
1837                 goto fail;
1838         }
1839
1840         /*
1841          * Do special qgroup accounting for snapshot, as we do some qgroup
1842          * snapshot hack to do fast snapshot.
1843          * To co-operate with that hack, we do hack again.
1844          * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1845          */
1846         ret = qgroup_account_snapshot(trans, root, parent_root,
1847                                       pending->inherit, objectid);
1848         if (ret < 0)
1849                 goto fail;
1850
1851         ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1852                                     BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1853                                     index);
1854         /* We have check then name at the beginning, so it is impossible. */
1855         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1856         if (ret) {
1857                 btrfs_abort_transaction(trans, ret);
1858                 goto fail;
1859         }
1860
1861         btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1862                                                   fname.disk_name.len * 2);
1863         parent_inode->i_mtime = inode_set_ctime_current(parent_inode);
1864         ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1865         if (ret) {
1866                 btrfs_abort_transaction(trans, ret);
1867                 goto fail;
1868         }
1869         ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1870                                   BTRFS_UUID_KEY_SUBVOL,
1871                                   objectid);
1872         if (ret) {
1873                 btrfs_abort_transaction(trans, ret);
1874                 goto fail;
1875         }
1876         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1877                 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1878                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1879                                           objectid);
1880                 if (ret && ret != -EEXIST) {
1881                         btrfs_abort_transaction(trans, ret);
1882                         goto fail;
1883                 }
1884         }
1885
1886 fail:
1887         pending->error = ret;
1888 dir_item_existed:
1889         trans->block_rsv = rsv;
1890         trans->bytes_reserved = 0;
1891 clear_skip_qgroup:
1892         btrfs_clear_skip_qgroup(trans);
1893 free_fname:
1894         fscrypt_free_filename(&fname);
1895 free_pending:
1896         kfree(new_root_item);
1897         pending->root_item = NULL;
1898         btrfs_free_path(path);
1899         pending->path = NULL;
1900
1901         return ret;
1902 }
1903
1904 /*
1905  * create all the snapshots we've scheduled for creation
1906  */
1907 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1908 {
1909         struct btrfs_pending_snapshot *pending, *next;
1910         struct list_head *head = &trans->transaction->pending_snapshots;
1911         int ret = 0;
1912
1913         list_for_each_entry_safe(pending, next, head, list) {
1914                 list_del(&pending->list);
1915                 ret = create_pending_snapshot(trans, pending);
1916                 if (ret)
1917                         break;
1918         }
1919         return ret;
1920 }
1921
1922 static void update_super_roots(struct btrfs_fs_info *fs_info)
1923 {
1924         struct btrfs_root_item *root_item;
1925         struct btrfs_super_block *super;
1926
1927         super = fs_info->super_copy;
1928
1929         root_item = &fs_info->chunk_root->root_item;
1930         super->chunk_root = root_item->bytenr;
1931         super->chunk_root_generation = root_item->generation;
1932         super->chunk_root_level = root_item->level;
1933
1934         root_item = &fs_info->tree_root->root_item;
1935         super->root = root_item->bytenr;
1936         super->generation = root_item->generation;
1937         super->root_level = root_item->level;
1938         if (btrfs_test_opt(fs_info, SPACE_CACHE))
1939                 super->cache_generation = root_item->generation;
1940         else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1941                 super->cache_generation = 0;
1942         if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1943                 super->uuid_tree_generation = root_item->generation;
1944 }
1945
1946 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1947 {
1948         struct btrfs_transaction *trans;
1949         int ret = 0;
1950
1951         spin_lock(&info->trans_lock);
1952         trans = info->running_transaction;
1953         if (trans)
1954                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1955         spin_unlock(&info->trans_lock);
1956         return ret;
1957 }
1958
1959 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1960 {
1961         struct btrfs_transaction *trans;
1962         int ret = 0;
1963
1964         spin_lock(&info->trans_lock);
1965         trans = info->running_transaction;
1966         if (trans)
1967                 ret = is_transaction_blocked(trans);
1968         spin_unlock(&info->trans_lock);
1969         return ret;
1970 }
1971
1972 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1973 {
1974         struct btrfs_fs_info *fs_info = trans->fs_info;
1975         struct btrfs_transaction *cur_trans;
1976
1977         /* Kick the transaction kthread. */
1978         set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1979         wake_up_process(fs_info->transaction_kthread);
1980
1981         /* take transaction reference */
1982         cur_trans = trans->transaction;
1983         refcount_inc(&cur_trans->use_count);
1984
1985         btrfs_end_transaction(trans);
1986
1987         /*
1988          * Wait for the current transaction commit to start and block
1989          * subsequent transaction joins
1990          */
1991         btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1992         wait_event(fs_info->transaction_blocked_wait,
1993                    cur_trans->state >= TRANS_STATE_COMMIT_START ||
1994                    TRANS_ABORTED(cur_trans));
1995         btrfs_put_transaction(cur_trans);
1996 }
1997
1998 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1999 {
2000         struct btrfs_fs_info *fs_info = trans->fs_info;
2001         struct btrfs_transaction *cur_trans = trans->transaction;
2002
2003         WARN_ON(refcount_read(&trans->use_count) > 1);
2004
2005         btrfs_abort_transaction(trans, err);
2006
2007         spin_lock(&fs_info->trans_lock);
2008
2009         /*
2010          * If the transaction is removed from the list, it means this
2011          * transaction has been committed successfully, so it is impossible
2012          * to call the cleanup function.
2013          */
2014         BUG_ON(list_empty(&cur_trans->list));
2015
2016         if (cur_trans == fs_info->running_transaction) {
2017                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2018                 spin_unlock(&fs_info->trans_lock);
2019
2020                 /*
2021                  * The thread has already released the lockdep map as reader
2022                  * already in btrfs_commit_transaction().
2023                  */
2024                 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2025                 wait_event(cur_trans->writer_wait,
2026                            atomic_read(&cur_trans->num_writers) == 1);
2027
2028                 spin_lock(&fs_info->trans_lock);
2029         }
2030
2031         /*
2032          * Now that we know no one else is still using the transaction we can
2033          * remove the transaction from the list of transactions. This avoids
2034          * the transaction kthread from cleaning up the transaction while some
2035          * other task is still using it, which could result in a use-after-free
2036          * on things like log trees, as it forces the transaction kthread to
2037          * wait for this transaction to be cleaned up by us.
2038          */
2039         list_del_init(&cur_trans->list);
2040
2041         spin_unlock(&fs_info->trans_lock);
2042
2043         btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2044
2045         spin_lock(&fs_info->trans_lock);
2046         if (cur_trans == fs_info->running_transaction)
2047                 fs_info->running_transaction = NULL;
2048         spin_unlock(&fs_info->trans_lock);
2049
2050         if (trans->type & __TRANS_FREEZABLE)
2051                 sb_end_intwrite(fs_info->sb);
2052         btrfs_put_transaction(cur_trans);
2053         btrfs_put_transaction(cur_trans);
2054
2055         trace_btrfs_transaction_commit(fs_info);
2056
2057         if (current->journal_info == trans)
2058                 current->journal_info = NULL;
2059
2060         /*
2061          * If relocation is running, we can't cancel scrub because that will
2062          * result in a deadlock. Before relocating a block group, relocation
2063          * pauses scrub, then starts and commits a transaction before unpausing
2064          * scrub. If the transaction commit is being done by the relocation
2065          * task or triggered by another task and the relocation task is waiting
2066          * for the commit, and we end up here due to an error in the commit
2067          * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2068          * asking for scrub to stop while having it asked to be paused higher
2069          * above in relocation code.
2070          */
2071         if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2072                 btrfs_scrub_cancel(fs_info);
2073
2074         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2075 }
2076
2077 /*
2078  * Release reserved delayed ref space of all pending block groups of the
2079  * transaction and remove them from the list
2080  */
2081 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2082 {
2083        struct btrfs_fs_info *fs_info = trans->fs_info;
2084        struct btrfs_block_group *block_group, *tmp;
2085
2086        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2087                btrfs_delayed_refs_rsv_release(fs_info, 1);
2088                list_del_init(&block_group->bg_list);
2089        }
2090 }
2091
2092 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2093 {
2094         /*
2095          * We use try_to_writeback_inodes_sb() here because if we used
2096          * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2097          * Currently are holding the fs freeze lock, if we do an async flush
2098          * we'll do btrfs_join_transaction() and deadlock because we need to
2099          * wait for the fs freeze lock.  Using the direct flushing we benefit
2100          * from already being in a transaction and our join_transaction doesn't
2101          * have to re-take the fs freeze lock.
2102          *
2103          * Note that try_to_writeback_inodes_sb() will only trigger writeback
2104          * if it can read lock sb->s_umount. It will always be able to lock it,
2105          * except when the filesystem is being unmounted or being frozen, but in
2106          * those cases sync_filesystem() is called, which results in calling
2107          * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2108          * Note that we don't call writeback_inodes_sb() directly, because it
2109          * will emit a warning if sb->s_umount is not locked.
2110          */
2111         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2112                 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2113         return 0;
2114 }
2115
2116 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2117 {
2118         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2119                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2120 }
2121
2122 /*
2123  * Add a pending snapshot associated with the given transaction handle to the
2124  * respective handle. This must be called after the transaction commit started
2125  * and while holding fs_info->trans_lock.
2126  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2127  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2128  * returns an error.
2129  */
2130 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2131 {
2132         struct btrfs_transaction *cur_trans = trans->transaction;
2133
2134         if (!trans->pending_snapshot)
2135                 return;
2136
2137         lockdep_assert_held(&trans->fs_info->trans_lock);
2138         ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2139
2140         list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2141 }
2142
2143 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2144 {
2145         fs_info->commit_stats.commit_count++;
2146         fs_info->commit_stats.last_commit_dur = interval;
2147         fs_info->commit_stats.max_commit_dur =
2148                         max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2149         fs_info->commit_stats.total_commit_dur += interval;
2150 }
2151
2152 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2153 {
2154         struct btrfs_fs_info *fs_info = trans->fs_info;
2155         struct btrfs_transaction *cur_trans = trans->transaction;
2156         struct btrfs_transaction *prev_trans = NULL;
2157         int ret;
2158         ktime_t start_time;
2159         ktime_t interval;
2160
2161         ASSERT(refcount_read(&trans->use_count) == 1);
2162         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2163
2164         clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2165
2166         /* Stop the commit early if ->aborted is set */
2167         if (TRANS_ABORTED(cur_trans)) {
2168                 ret = cur_trans->aborted;
2169                 goto lockdep_trans_commit_start_release;
2170         }
2171
2172         btrfs_trans_release_metadata(trans);
2173         trans->block_rsv = NULL;
2174
2175         /*
2176          * We only want one transaction commit doing the flushing so we do not
2177          * waste a bunch of time on lock contention on the extent root node.
2178          */
2179         if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2180                               &cur_trans->delayed_refs.flags)) {
2181                 /*
2182                  * Make a pass through all the delayed refs we have so far.
2183                  * Any running threads may add more while we are here.
2184                  */
2185                 ret = btrfs_run_delayed_refs(trans, 0);
2186                 if (ret)
2187                         goto lockdep_trans_commit_start_release;
2188         }
2189
2190         btrfs_create_pending_block_groups(trans);
2191
2192         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2193                 int run_it = 0;
2194
2195                 /* this mutex is also taken before trying to set
2196                  * block groups readonly.  We need to make sure
2197                  * that nobody has set a block group readonly
2198                  * after a extents from that block group have been
2199                  * allocated for cache files.  btrfs_set_block_group_ro
2200                  * will wait for the transaction to commit if it
2201                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2202                  *
2203                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2204                  * only one process starts all the block group IO.  It wouldn't
2205                  * hurt to have more than one go through, but there's no
2206                  * real advantage to it either.
2207                  */
2208                 mutex_lock(&fs_info->ro_block_group_mutex);
2209                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2210                                       &cur_trans->flags))
2211                         run_it = 1;
2212                 mutex_unlock(&fs_info->ro_block_group_mutex);
2213
2214                 if (run_it) {
2215                         ret = btrfs_start_dirty_block_groups(trans);
2216                         if (ret)
2217                                 goto lockdep_trans_commit_start_release;
2218                 }
2219         }
2220
2221         spin_lock(&fs_info->trans_lock);
2222         if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2223                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2224
2225                 add_pending_snapshot(trans);
2226
2227                 spin_unlock(&fs_info->trans_lock);
2228                 refcount_inc(&cur_trans->use_count);
2229
2230                 if (trans->in_fsync)
2231                         want_state = TRANS_STATE_SUPER_COMMITTED;
2232
2233                 btrfs_trans_state_lockdep_release(fs_info,
2234                                                   BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2235                 ret = btrfs_end_transaction(trans);
2236                 wait_for_commit(cur_trans, want_state);
2237
2238                 if (TRANS_ABORTED(cur_trans))
2239                         ret = cur_trans->aborted;
2240
2241                 btrfs_put_transaction(cur_trans);
2242
2243                 return ret;
2244         }
2245
2246         cur_trans->state = TRANS_STATE_COMMIT_PREP;
2247         wake_up(&fs_info->transaction_blocked_wait);
2248         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2249
2250         if (cur_trans->list.prev != &fs_info->trans_list) {
2251                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2252
2253                 if (trans->in_fsync)
2254                         want_state = TRANS_STATE_SUPER_COMMITTED;
2255
2256                 prev_trans = list_entry(cur_trans->list.prev,
2257                                         struct btrfs_transaction, list);
2258                 if (prev_trans->state < want_state) {
2259                         refcount_inc(&prev_trans->use_count);
2260                         spin_unlock(&fs_info->trans_lock);
2261
2262                         wait_for_commit(prev_trans, want_state);
2263
2264                         ret = READ_ONCE(prev_trans->aborted);
2265
2266                         btrfs_put_transaction(prev_trans);
2267                         if (ret)
2268                                 goto lockdep_release;
2269                         spin_lock(&fs_info->trans_lock);
2270                 }
2271         } else {
2272                 /*
2273                  * The previous transaction was aborted and was already removed
2274                  * from the list of transactions at fs_info->trans_list. So we
2275                  * abort to prevent writing a new superblock that reflects a
2276                  * corrupt state (pointing to trees with unwritten nodes/leafs).
2277                  */
2278                 if (BTRFS_FS_ERROR(fs_info)) {
2279                         spin_unlock(&fs_info->trans_lock);
2280                         ret = -EROFS;
2281                         goto lockdep_release;
2282                 }
2283         }
2284
2285         cur_trans->state = TRANS_STATE_COMMIT_START;
2286         wake_up(&fs_info->transaction_blocked_wait);
2287         spin_unlock(&fs_info->trans_lock);
2288
2289         /*
2290          * Get the time spent on the work done by the commit thread and not
2291          * the time spent waiting on a previous commit
2292          */
2293         start_time = ktime_get_ns();
2294
2295         extwriter_counter_dec(cur_trans, trans->type);
2296
2297         ret = btrfs_start_delalloc_flush(fs_info);
2298         if (ret)
2299                 goto lockdep_release;
2300
2301         ret = btrfs_run_delayed_items(trans);
2302         if (ret)
2303                 goto lockdep_release;
2304
2305         /*
2306          * The thread has started/joined the transaction thus it holds the
2307          * lockdep map as a reader. It has to release it before acquiring the
2308          * lockdep map as a writer.
2309          */
2310         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2311         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2312         wait_event(cur_trans->writer_wait,
2313                    extwriter_counter_read(cur_trans) == 0);
2314
2315         /* some pending stuffs might be added after the previous flush. */
2316         ret = btrfs_run_delayed_items(trans);
2317         if (ret) {
2318                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2319                 goto cleanup_transaction;
2320         }
2321
2322         btrfs_wait_delalloc_flush(fs_info);
2323
2324         /*
2325          * Wait for all ordered extents started by a fast fsync that joined this
2326          * transaction. Otherwise if this transaction commits before the ordered
2327          * extents complete we lose logged data after a power failure.
2328          */
2329         btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2330         wait_event(cur_trans->pending_wait,
2331                    atomic_read(&cur_trans->pending_ordered) == 0);
2332
2333         btrfs_scrub_pause(fs_info);
2334         /*
2335          * Ok now we need to make sure to block out any other joins while we
2336          * commit the transaction.  We could have started a join before setting
2337          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2338          */
2339         spin_lock(&fs_info->trans_lock);
2340         add_pending_snapshot(trans);
2341         cur_trans->state = TRANS_STATE_COMMIT_DOING;
2342         spin_unlock(&fs_info->trans_lock);
2343
2344         /*
2345          * The thread has started/joined the transaction thus it holds the
2346          * lockdep map as a reader. It has to release it before acquiring the
2347          * lockdep map as a writer.
2348          */
2349         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2350         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2351         wait_event(cur_trans->writer_wait,
2352                    atomic_read(&cur_trans->num_writers) == 1);
2353
2354         /*
2355          * Make lockdep happy by acquiring the state locks after
2356          * btrfs_trans_num_writers is released. If we acquired the state locks
2357          * before releasing the btrfs_trans_num_writers lock then lockdep would
2358          * complain because we did not follow the reverse order unlocking rule.
2359          */
2360         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2361         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2362         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2363
2364         /*
2365          * We've started the commit, clear the flag in case we were triggered to
2366          * do an async commit but somebody else started before the transaction
2367          * kthread could do the work.
2368          */
2369         clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2370
2371         if (TRANS_ABORTED(cur_trans)) {
2372                 ret = cur_trans->aborted;
2373                 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2374                 goto scrub_continue;
2375         }
2376         /*
2377          * the reloc mutex makes sure that we stop
2378          * the balancing code from coming in and moving
2379          * extents around in the middle of the commit
2380          */
2381         mutex_lock(&fs_info->reloc_mutex);
2382
2383         /*
2384          * We needn't worry about the delayed items because we will
2385          * deal with them in create_pending_snapshot(), which is the
2386          * core function of the snapshot creation.
2387          */
2388         ret = create_pending_snapshots(trans);
2389         if (ret)
2390                 goto unlock_reloc;
2391
2392         /*
2393          * We insert the dir indexes of the snapshots and update the inode
2394          * of the snapshots' parents after the snapshot creation, so there
2395          * are some delayed items which are not dealt with. Now deal with
2396          * them.
2397          *
2398          * We needn't worry that this operation will corrupt the snapshots,
2399          * because all the tree which are snapshoted will be forced to COW
2400          * the nodes and leaves.
2401          */
2402         ret = btrfs_run_delayed_items(trans);
2403         if (ret)
2404                 goto unlock_reloc;
2405
2406         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2407         if (ret)
2408                 goto unlock_reloc;
2409
2410         /*
2411          * make sure none of the code above managed to slip in a
2412          * delayed item
2413          */
2414         btrfs_assert_delayed_root_empty(fs_info);
2415
2416         WARN_ON(cur_trans != trans->transaction);
2417
2418         ret = commit_fs_roots(trans);
2419         if (ret)
2420                 goto unlock_reloc;
2421
2422         /* commit_fs_roots gets rid of all the tree log roots, it is now
2423          * safe to free the root of tree log roots
2424          */
2425         btrfs_free_log_root_tree(trans, fs_info);
2426
2427         /*
2428          * Since fs roots are all committed, we can get a quite accurate
2429          * new_roots. So let's do quota accounting.
2430          */
2431         ret = btrfs_qgroup_account_extents(trans);
2432         if (ret < 0)
2433                 goto unlock_reloc;
2434
2435         ret = commit_cowonly_roots(trans);
2436         if (ret)
2437                 goto unlock_reloc;
2438
2439         /*
2440          * The tasks which save the space cache and inode cache may also
2441          * update ->aborted, check it.
2442          */
2443         if (TRANS_ABORTED(cur_trans)) {
2444                 ret = cur_trans->aborted;
2445                 goto unlock_reloc;
2446         }
2447
2448         cur_trans = fs_info->running_transaction;
2449
2450         btrfs_set_root_node(&fs_info->tree_root->root_item,
2451                             fs_info->tree_root->node);
2452         list_add_tail(&fs_info->tree_root->dirty_list,
2453                       &cur_trans->switch_commits);
2454
2455         btrfs_set_root_node(&fs_info->chunk_root->root_item,
2456                             fs_info->chunk_root->node);
2457         list_add_tail(&fs_info->chunk_root->dirty_list,
2458                       &cur_trans->switch_commits);
2459
2460         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2461                 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2462                                     fs_info->block_group_root->node);
2463                 list_add_tail(&fs_info->block_group_root->dirty_list,
2464                               &cur_trans->switch_commits);
2465         }
2466
2467         switch_commit_roots(trans);
2468
2469         ASSERT(list_empty(&cur_trans->dirty_bgs));
2470         ASSERT(list_empty(&cur_trans->io_bgs));
2471         update_super_roots(fs_info);
2472
2473         btrfs_set_super_log_root(fs_info->super_copy, 0);
2474         btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2475         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2476                sizeof(*fs_info->super_copy));
2477
2478         btrfs_commit_device_sizes(cur_trans);
2479
2480         clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2481         clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2482
2483         btrfs_trans_release_chunk_metadata(trans);
2484
2485         /*
2486          * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2487          * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2488          * make sure that before we commit our superblock, no other task can
2489          * start a new transaction and commit a log tree before we commit our
2490          * superblock. Anyone trying to commit a log tree locks this mutex before
2491          * writing its superblock.
2492          */
2493         mutex_lock(&fs_info->tree_log_mutex);
2494
2495         spin_lock(&fs_info->trans_lock);
2496         cur_trans->state = TRANS_STATE_UNBLOCKED;
2497         fs_info->running_transaction = NULL;
2498         spin_unlock(&fs_info->trans_lock);
2499         mutex_unlock(&fs_info->reloc_mutex);
2500
2501         wake_up(&fs_info->transaction_wait);
2502         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2503
2504         /* If we have features changed, wake up the cleaner to update sysfs. */
2505         if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2506             fs_info->cleaner_kthread)
2507                 wake_up_process(fs_info->cleaner_kthread);
2508
2509         ret = btrfs_write_and_wait_transaction(trans);
2510         if (ret) {
2511                 btrfs_handle_fs_error(fs_info, ret,
2512                                       "Error while writing out transaction");
2513                 mutex_unlock(&fs_info->tree_log_mutex);
2514                 goto scrub_continue;
2515         }
2516
2517         ret = write_all_supers(fs_info, 0);
2518         /*
2519          * the super is written, we can safely allow the tree-loggers
2520          * to go about their business
2521          */
2522         mutex_unlock(&fs_info->tree_log_mutex);
2523         if (ret)
2524                 goto scrub_continue;
2525
2526         /*
2527          * We needn't acquire the lock here because there is no other task
2528          * which can change it.
2529          */
2530         cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2531         wake_up(&cur_trans->commit_wait);
2532         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2533
2534         btrfs_finish_extent_commit(trans);
2535
2536         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2537                 btrfs_clear_space_info_full(fs_info);
2538
2539         fs_info->last_trans_committed = cur_trans->transid;
2540         /*
2541          * We needn't acquire the lock here because there is no other task
2542          * which can change it.
2543          */
2544         cur_trans->state = TRANS_STATE_COMPLETED;
2545         wake_up(&cur_trans->commit_wait);
2546         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2547
2548         spin_lock(&fs_info->trans_lock);
2549         list_del_init(&cur_trans->list);
2550         spin_unlock(&fs_info->trans_lock);
2551
2552         btrfs_put_transaction(cur_trans);
2553         btrfs_put_transaction(cur_trans);
2554
2555         if (trans->type & __TRANS_FREEZABLE)
2556                 sb_end_intwrite(fs_info->sb);
2557
2558         trace_btrfs_transaction_commit(fs_info);
2559
2560         interval = ktime_get_ns() - start_time;
2561
2562         btrfs_scrub_continue(fs_info);
2563
2564         if (current->journal_info == trans)
2565                 current->journal_info = NULL;
2566
2567         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2568
2569         update_commit_stats(fs_info, interval);
2570
2571         return ret;
2572
2573 unlock_reloc:
2574         mutex_unlock(&fs_info->reloc_mutex);
2575         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2576 scrub_continue:
2577         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2578         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2579         btrfs_scrub_continue(fs_info);
2580 cleanup_transaction:
2581         btrfs_trans_release_metadata(trans);
2582         btrfs_cleanup_pending_block_groups(trans);
2583         btrfs_trans_release_chunk_metadata(trans);
2584         trans->block_rsv = NULL;
2585         btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2586         if (current->journal_info == trans)
2587                 current->journal_info = NULL;
2588         cleanup_transaction(trans, ret);
2589
2590         return ret;
2591
2592 lockdep_release:
2593         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2594         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2595         goto cleanup_transaction;
2596
2597 lockdep_trans_commit_start_release:
2598         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2599         btrfs_end_transaction(trans);
2600         return ret;
2601 }
2602
2603 /*
2604  * return < 0 if error
2605  * 0 if there are no more dead_roots at the time of call
2606  * 1 there are more to be processed, call me again
2607  *
2608  * The return value indicates there are certainly more snapshots to delete, but
2609  * if there comes a new one during processing, it may return 0. We don't mind,
2610  * because btrfs_commit_super will poke cleaner thread and it will process it a
2611  * few seconds later.
2612  */
2613 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2614 {
2615         struct btrfs_root *root;
2616         int ret;
2617
2618         spin_lock(&fs_info->trans_lock);
2619         if (list_empty(&fs_info->dead_roots)) {
2620                 spin_unlock(&fs_info->trans_lock);
2621                 return 0;
2622         }
2623         root = list_first_entry(&fs_info->dead_roots,
2624                         struct btrfs_root, root_list);
2625         list_del_init(&root->root_list);
2626         spin_unlock(&fs_info->trans_lock);
2627
2628         btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2629
2630         btrfs_kill_all_delayed_nodes(root);
2631
2632         if (btrfs_header_backref_rev(root->node) <
2633                         BTRFS_MIXED_BACKREF_REV)
2634                 ret = btrfs_drop_snapshot(root, 0, 0);
2635         else
2636                 ret = btrfs_drop_snapshot(root, 1, 0);
2637
2638         btrfs_put_root(root);
2639         return (ret < 0) ? 0 : 1;
2640 }
2641
2642 /*
2643  * We only mark the transaction aborted and then set the file system read-only.
2644  * This will prevent new transactions from starting or trying to join this
2645  * one.
2646  *
2647  * This means that error recovery at the call site is limited to freeing
2648  * any local memory allocations and passing the error code up without
2649  * further cleanup. The transaction should complete as it normally would
2650  * in the call path but will return -EIO.
2651  *
2652  * We'll complete the cleanup in btrfs_end_transaction and
2653  * btrfs_commit_transaction.
2654  */
2655 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2656                                       const char *function,
2657                                       unsigned int line, int errno, bool first_hit)
2658 {
2659         struct btrfs_fs_info *fs_info = trans->fs_info;
2660
2661         WRITE_ONCE(trans->aborted, errno);
2662         WRITE_ONCE(trans->transaction->aborted, errno);
2663         if (first_hit && errno == -ENOSPC)
2664                 btrfs_dump_space_info_for_trans_abort(fs_info);
2665         /* Wake up anybody who may be waiting on this transaction */
2666         wake_up(&fs_info->transaction_wait);
2667         wake_up(&fs_info->transaction_blocked_wait);
2668         __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
2669 }
2670
2671 int __init btrfs_transaction_init(void)
2672 {
2673         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2674                         sizeof(struct btrfs_trans_handle), 0,
2675                         SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2676         if (!btrfs_trans_handle_cachep)
2677                 return -ENOMEM;
2678         return 0;
2679 }
2680
2681 void __cold btrfs_transaction_exit(void)
2682 {
2683         kmem_cache_destroy(btrfs_trans_handle_cachep);
2684 }