2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
28 #include "transaction.h"
31 #include "inode-map.h"
33 #include "dev-replace.h"
35 #define BTRFS_ROOT_TRANS_TAG 0
37 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
38 [TRANS_STATE_RUNNING] = 0U,
39 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
44 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
48 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
53 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
60 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 WARN_ON(atomic_read(&transaction->use_count) == 0);
63 if (atomic_dec_and_test(&transaction->use_count)) {
64 BUG_ON(!list_empty(&transaction->list));
65 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
66 while (!list_empty(&transaction->pending_chunks)) {
67 struct extent_map *em;
69 em = list_first_entry(&transaction->pending_chunks,
70 struct extent_map, list);
71 list_del_init(&em->list);
74 kmem_cache_free(btrfs_transaction_cachep, transaction);
78 static noinline void switch_commit_root(struct btrfs_root *root)
80 free_extent_buffer(root->commit_root);
81 root->commit_root = btrfs_root_node(root);
84 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
87 if (type & TRANS_EXTWRITERS)
88 atomic_inc(&trans->num_extwriters);
91 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
94 if (type & TRANS_EXTWRITERS)
95 atomic_dec(&trans->num_extwriters);
98 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
101 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
104 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
106 return atomic_read(&trans->num_extwriters);
110 * either allocate a new transaction or hop into the existing one
112 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
114 struct btrfs_transaction *cur_trans;
115 struct btrfs_fs_info *fs_info = root->fs_info;
117 spin_lock(&fs_info->trans_lock);
119 /* The file system has been taken offline. No new transactions. */
120 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
121 spin_unlock(&fs_info->trans_lock);
125 cur_trans = fs_info->running_transaction;
127 if (cur_trans->aborted) {
128 spin_unlock(&fs_info->trans_lock);
129 return cur_trans->aborted;
131 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
132 spin_unlock(&fs_info->trans_lock);
135 atomic_inc(&cur_trans->use_count);
136 atomic_inc(&cur_trans->num_writers);
137 extwriter_counter_inc(cur_trans, type);
138 spin_unlock(&fs_info->trans_lock);
141 spin_unlock(&fs_info->trans_lock);
144 * If we are ATTACH, we just want to catch the current transaction,
145 * and commit it. If there is no transaction, just return ENOENT.
147 if (type == TRANS_ATTACH)
151 * JOIN_NOLOCK only happens during the transaction commit, so
152 * it is impossible that ->running_transaction is NULL
154 BUG_ON(type == TRANS_JOIN_NOLOCK);
156 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
160 spin_lock(&fs_info->trans_lock);
161 if (fs_info->running_transaction) {
163 * someone started a transaction after we unlocked. Make sure
164 * to redo the checks above
166 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
168 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
169 spin_unlock(&fs_info->trans_lock);
170 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
174 atomic_set(&cur_trans->num_writers, 1);
175 extwriter_counter_init(cur_trans, type);
176 init_waitqueue_head(&cur_trans->writer_wait);
177 init_waitqueue_head(&cur_trans->commit_wait);
178 cur_trans->state = TRANS_STATE_RUNNING;
180 * One for this trans handle, one so it will live on until we
181 * commit the transaction.
183 atomic_set(&cur_trans->use_count, 2);
184 cur_trans->start_time = get_seconds();
186 cur_trans->delayed_refs.href_root = RB_ROOT;
187 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
188 cur_trans->delayed_refs.num_heads_ready = 0;
189 cur_trans->delayed_refs.num_heads = 0;
190 cur_trans->delayed_refs.flushing = 0;
191 cur_trans->delayed_refs.run_delayed_start = 0;
194 * although the tree mod log is per file system and not per transaction,
195 * the log must never go across transaction boundaries.
198 if (!list_empty(&fs_info->tree_mod_seq_list))
199 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
200 "creating a fresh transaction\n");
201 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
202 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
203 "creating a fresh transaction\n");
204 atomic64_set(&fs_info->tree_mod_seq, 0);
206 spin_lock_init(&cur_trans->delayed_refs.lock);
208 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
209 INIT_LIST_HEAD(&cur_trans->ordered_operations);
210 INIT_LIST_HEAD(&cur_trans->pending_chunks);
211 list_add_tail(&cur_trans->list, &fs_info->trans_list);
212 extent_io_tree_init(&cur_trans->dirty_pages,
213 fs_info->btree_inode->i_mapping);
214 fs_info->generation++;
215 cur_trans->transid = fs_info->generation;
216 fs_info->running_transaction = cur_trans;
217 cur_trans->aborted = 0;
218 spin_unlock(&fs_info->trans_lock);
224 * this does all the record keeping required to make sure that a reference
225 * counted root is properly recorded in a given transaction. This is required
226 * to make sure the old root from before we joined the transaction is deleted
227 * when the transaction commits
229 static int record_root_in_trans(struct btrfs_trans_handle *trans,
230 struct btrfs_root *root)
232 if (root->ref_cows && root->last_trans < trans->transid) {
233 WARN_ON(root == root->fs_info->extent_root);
234 WARN_ON(root->commit_root != root->node);
237 * see below for in_trans_setup usage rules
238 * we have the reloc mutex held now, so there
239 * is only one writer in this function
241 root->in_trans_setup = 1;
243 /* make sure readers find in_trans_setup before
244 * they find our root->last_trans update
248 spin_lock(&root->fs_info->fs_roots_radix_lock);
249 if (root->last_trans == trans->transid) {
250 spin_unlock(&root->fs_info->fs_roots_radix_lock);
253 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
254 (unsigned long)root->root_key.objectid,
255 BTRFS_ROOT_TRANS_TAG);
256 spin_unlock(&root->fs_info->fs_roots_radix_lock);
257 root->last_trans = trans->transid;
259 /* this is pretty tricky. We don't want to
260 * take the relocation lock in btrfs_record_root_in_trans
261 * unless we're really doing the first setup for this root in
264 * Normally we'd use root->last_trans as a flag to decide
265 * if we want to take the expensive mutex.
267 * But, we have to set root->last_trans before we
268 * init the relocation root, otherwise, we trip over warnings
269 * in ctree.c. The solution used here is to flag ourselves
270 * with root->in_trans_setup. When this is 1, we're still
271 * fixing up the reloc trees and everyone must wait.
273 * When this is zero, they can trust root->last_trans and fly
274 * through btrfs_record_root_in_trans without having to take the
275 * lock. smp_wmb() makes sure that all the writes above are
276 * done before we pop in the zero below
278 btrfs_init_reloc_root(trans, root);
280 root->in_trans_setup = 0;
286 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
287 struct btrfs_root *root)
293 * see record_root_in_trans for comments about in_trans_setup usage
297 if (root->last_trans == trans->transid &&
298 !root->in_trans_setup)
301 mutex_lock(&root->fs_info->reloc_mutex);
302 record_root_in_trans(trans, root);
303 mutex_unlock(&root->fs_info->reloc_mutex);
308 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
310 return (trans->state >= TRANS_STATE_BLOCKED &&
311 trans->state < TRANS_STATE_UNBLOCKED &&
315 /* wait for commit against the current transaction to become unblocked
316 * when this is done, it is safe to start a new transaction, but the current
317 * transaction might not be fully on disk.
319 static void wait_current_trans(struct btrfs_root *root)
321 struct btrfs_transaction *cur_trans;
323 spin_lock(&root->fs_info->trans_lock);
324 cur_trans = root->fs_info->running_transaction;
325 if (cur_trans && is_transaction_blocked(cur_trans)) {
326 atomic_inc(&cur_trans->use_count);
327 spin_unlock(&root->fs_info->trans_lock);
329 wait_event(root->fs_info->transaction_wait,
330 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
332 btrfs_put_transaction(cur_trans);
334 spin_unlock(&root->fs_info->trans_lock);
338 static int may_wait_transaction(struct btrfs_root *root, int type)
340 if (root->fs_info->log_root_recovering)
343 if (type == TRANS_USERSPACE)
346 if (type == TRANS_START &&
347 !atomic_read(&root->fs_info->open_ioctl_trans))
353 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
355 if (!root->fs_info->reloc_ctl ||
357 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
364 static struct btrfs_trans_handle *
365 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
366 enum btrfs_reserve_flush_enum flush)
368 struct btrfs_trans_handle *h;
369 struct btrfs_transaction *cur_trans;
371 u64 qgroup_reserved = 0;
372 bool reloc_reserved = false;
375 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
376 return ERR_PTR(-EROFS);
378 if (current->journal_info) {
379 WARN_ON(type & TRANS_EXTWRITERS);
380 h = current->journal_info;
382 WARN_ON(h->use_count > 2);
383 h->orig_rsv = h->block_rsv;
389 * Do the reservation before we join the transaction so we can do all
390 * the appropriate flushing if need be.
392 if (num_items > 0 && root != root->fs_info->chunk_root) {
393 if (root->fs_info->quota_enabled &&
394 is_fstree(root->root_key.objectid)) {
395 qgroup_reserved = num_items * root->leafsize;
396 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
401 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
403 * Do the reservation for the relocation root creation
405 if (unlikely(need_reserve_reloc_root(root))) {
406 num_bytes += root->nodesize;
407 reloc_reserved = true;
410 ret = btrfs_block_rsv_add(root,
411 &root->fs_info->trans_block_rsv,
417 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
424 * If we are JOIN_NOLOCK we're already committing a transaction and
425 * waiting on this guy, so we don't need to do the sb_start_intwrite
426 * because we're already holding a ref. We need this because we could
427 * have raced in and did an fsync() on a file which can kick a commit
428 * and then we deadlock with somebody doing a freeze.
430 * If we are ATTACH, it means we just want to catch the current
431 * transaction and commit it, so we needn't do sb_start_intwrite().
433 if (type & __TRANS_FREEZABLE)
434 sb_start_intwrite(root->fs_info->sb);
436 if (may_wait_transaction(root, type))
437 wait_current_trans(root);
440 ret = join_transaction(root, type);
442 wait_current_trans(root);
443 if (unlikely(type == TRANS_ATTACH))
446 } while (ret == -EBUSY);
449 /* We must get the transaction if we are JOIN_NOLOCK. */
450 BUG_ON(type == TRANS_JOIN_NOLOCK);
454 cur_trans = root->fs_info->running_transaction;
456 h->transid = cur_trans->transid;
457 h->transaction = cur_trans;
459 h->bytes_reserved = 0;
461 h->delayed_ref_updates = 0;
467 h->qgroup_reserved = 0;
468 h->delayed_ref_elem.seq = 0;
470 h->allocating_chunk = false;
471 h->reloc_reserved = false;
473 INIT_LIST_HEAD(&h->qgroup_ref_list);
474 INIT_LIST_HEAD(&h->new_bgs);
477 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
478 may_wait_transaction(root, type)) {
479 btrfs_commit_transaction(h, root);
484 trace_btrfs_space_reservation(root->fs_info, "transaction",
485 h->transid, num_bytes, 1);
486 h->block_rsv = &root->fs_info->trans_block_rsv;
487 h->bytes_reserved = num_bytes;
488 h->reloc_reserved = reloc_reserved;
490 h->qgroup_reserved = qgroup_reserved;
493 btrfs_record_root_in_trans(h, root);
495 if (!current->journal_info && type != TRANS_USERSPACE)
496 current->journal_info = h;
500 if (type & __TRANS_FREEZABLE)
501 sb_end_intwrite(root->fs_info->sb);
502 kmem_cache_free(btrfs_trans_handle_cachep, h);
505 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
509 btrfs_qgroup_free(root, qgroup_reserved);
513 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
516 return start_transaction(root, num_items, TRANS_START,
517 BTRFS_RESERVE_FLUSH_ALL);
520 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
521 struct btrfs_root *root, int num_items)
523 return start_transaction(root, num_items, TRANS_START,
524 BTRFS_RESERVE_FLUSH_LIMIT);
527 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
529 return start_transaction(root, 0, TRANS_JOIN, 0);
532 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
534 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
537 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
539 return start_transaction(root, 0, TRANS_USERSPACE, 0);
543 * btrfs_attach_transaction() - catch the running transaction
545 * It is used when we want to commit the current the transaction, but
546 * don't want to start a new one.
548 * Note: If this function return -ENOENT, it just means there is no
549 * running transaction. But it is possible that the inactive transaction
550 * is still in the memory, not fully on disk. If you hope there is no
551 * inactive transaction in the fs when -ENOENT is returned, you should
553 * btrfs_attach_transaction_barrier()
555 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
557 return start_transaction(root, 0, TRANS_ATTACH, 0);
561 * btrfs_attach_transaction_barrier() - catch the running transaction
563 * It is similar to the above function, the differentia is this one
564 * will wait for all the inactive transactions until they fully
567 struct btrfs_trans_handle *
568 btrfs_attach_transaction_barrier(struct btrfs_root *root)
570 struct btrfs_trans_handle *trans;
572 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
573 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
574 btrfs_wait_for_commit(root, 0);
579 /* wait for a transaction commit to be fully complete */
580 static noinline void wait_for_commit(struct btrfs_root *root,
581 struct btrfs_transaction *commit)
583 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
586 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
588 struct btrfs_transaction *cur_trans = NULL, *t;
592 if (transid <= root->fs_info->last_trans_committed)
596 /* find specified transaction */
597 spin_lock(&root->fs_info->trans_lock);
598 list_for_each_entry(t, &root->fs_info->trans_list, list) {
599 if (t->transid == transid) {
601 atomic_inc(&cur_trans->use_count);
605 if (t->transid > transid) {
610 spin_unlock(&root->fs_info->trans_lock);
611 /* The specified transaction doesn't exist */
615 /* find newest transaction that is committing | committed */
616 spin_lock(&root->fs_info->trans_lock);
617 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
619 if (t->state >= TRANS_STATE_COMMIT_START) {
620 if (t->state == TRANS_STATE_COMPLETED)
623 atomic_inc(&cur_trans->use_count);
627 spin_unlock(&root->fs_info->trans_lock);
629 goto out; /* nothing committing|committed */
632 wait_for_commit(root, cur_trans);
633 btrfs_put_transaction(cur_trans);
638 void btrfs_throttle(struct btrfs_root *root)
640 if (!atomic_read(&root->fs_info->open_ioctl_trans))
641 wait_current_trans(root);
644 static int should_end_transaction(struct btrfs_trans_handle *trans,
645 struct btrfs_root *root)
647 if (root->fs_info->global_block_rsv.space_info->full &&
648 btrfs_check_space_for_delayed_refs(trans, root))
651 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
654 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
655 struct btrfs_root *root)
657 struct btrfs_transaction *cur_trans = trans->transaction;
662 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
663 cur_trans->delayed_refs.flushing)
666 updates = trans->delayed_ref_updates;
667 trans->delayed_ref_updates = 0;
669 err = btrfs_run_delayed_refs(trans, root, updates);
670 if (err) /* Error code will also eval true */
674 return should_end_transaction(trans, root);
677 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
678 struct btrfs_root *root, int throttle)
680 struct btrfs_transaction *cur_trans = trans->transaction;
681 struct btrfs_fs_info *info = root->fs_info;
682 unsigned long cur = trans->delayed_ref_updates;
683 int lock = (trans->type != TRANS_JOIN_NOLOCK);
686 if (trans->use_count > 1) {
688 trans->block_rsv = trans->orig_rsv;
693 * do the qgroup accounting as early as possible
695 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
697 btrfs_trans_release_metadata(trans, root);
698 trans->block_rsv = NULL;
700 if (trans->qgroup_reserved) {
702 * the same root has to be passed here between start_transaction
703 * and end_transaction. Subvolume quota depends on this.
705 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
706 trans->qgroup_reserved = 0;
709 if (!list_empty(&trans->new_bgs))
710 btrfs_create_pending_block_groups(trans, root);
712 trans->delayed_ref_updates = 0;
713 if (!trans->sync && btrfs_should_throttle_delayed_refs(trans, root)) {
714 cur = max_t(unsigned long, cur, 32);
715 trans->delayed_ref_updates = 0;
716 btrfs_run_delayed_refs(trans, root, cur);
719 btrfs_trans_release_metadata(trans, root);
720 trans->block_rsv = NULL;
722 if (!list_empty(&trans->new_bgs))
723 btrfs_create_pending_block_groups(trans, root);
725 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
726 should_end_transaction(trans, root) &&
727 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
728 spin_lock(&info->trans_lock);
729 if (cur_trans->state == TRANS_STATE_RUNNING)
730 cur_trans->state = TRANS_STATE_BLOCKED;
731 spin_unlock(&info->trans_lock);
734 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
736 return btrfs_commit_transaction(trans, root);
738 wake_up_process(info->transaction_kthread);
741 if (trans->type & __TRANS_FREEZABLE)
742 sb_end_intwrite(root->fs_info->sb);
744 WARN_ON(cur_trans != info->running_transaction);
745 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
746 atomic_dec(&cur_trans->num_writers);
747 extwriter_counter_dec(cur_trans, trans->type);
750 if (waitqueue_active(&cur_trans->writer_wait))
751 wake_up(&cur_trans->writer_wait);
752 btrfs_put_transaction(cur_trans);
754 if (current->journal_info == trans)
755 current->journal_info = NULL;
758 btrfs_run_delayed_iputs(root);
760 if (trans->aborted ||
761 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
762 wake_up_process(info->transaction_kthread);
765 assert_qgroups_uptodate(trans);
767 kmem_cache_free(btrfs_trans_handle_cachep, trans);
771 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
772 struct btrfs_root *root)
774 return __btrfs_end_transaction(trans, root, 0);
777 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
778 struct btrfs_root *root)
780 return __btrfs_end_transaction(trans, root, 1);
784 * when btree blocks are allocated, they have some corresponding bits set for
785 * them in one of two extent_io trees. This is used to make sure all of
786 * those extents are sent to disk but does not wait on them
788 int btrfs_write_marked_extents(struct btrfs_root *root,
789 struct extent_io_tree *dirty_pages, int mark)
793 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
794 struct extent_state *cached_state = NULL;
798 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
799 mark, &cached_state)) {
800 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
801 mark, &cached_state, GFP_NOFS);
803 err = filemap_fdatawrite_range(mapping, start, end);
815 * when btree blocks are allocated, they have some corresponding bits set for
816 * them in one of two extent_io trees. This is used to make sure all of
817 * those extents are on disk for transaction or log commit. We wait
818 * on all the pages and clear them from the dirty pages state tree
820 int btrfs_wait_marked_extents(struct btrfs_root *root,
821 struct extent_io_tree *dirty_pages, int mark)
825 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
826 struct extent_state *cached_state = NULL;
830 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
831 EXTENT_NEED_WAIT, &cached_state)) {
832 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
833 0, 0, &cached_state, GFP_NOFS);
834 err = filemap_fdatawait_range(mapping, start, end);
846 * when btree blocks are allocated, they have some corresponding bits set for
847 * them in one of two extent_io trees. This is used to make sure all of
848 * those extents are on disk for transaction or log commit
850 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
851 struct extent_io_tree *dirty_pages, int mark)
855 struct blk_plug plug;
857 blk_start_plug(&plug);
858 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
859 blk_finish_plug(&plug);
860 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
869 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
870 struct btrfs_root *root)
872 if (!trans || !trans->transaction) {
873 struct inode *btree_inode;
874 btree_inode = root->fs_info->btree_inode;
875 return filemap_write_and_wait(btree_inode->i_mapping);
877 return btrfs_write_and_wait_marked_extents(root,
878 &trans->transaction->dirty_pages,
883 * this is used to update the root pointer in the tree of tree roots.
885 * But, in the case of the extent allocation tree, updating the root
886 * pointer may allocate blocks which may change the root of the extent
889 * So, this loops and repeats and makes sure the cowonly root didn't
890 * change while the root pointer was being updated in the metadata.
892 static int update_cowonly_root(struct btrfs_trans_handle *trans,
893 struct btrfs_root *root)
898 struct btrfs_root *tree_root = root->fs_info->tree_root;
900 old_root_used = btrfs_root_used(&root->root_item);
901 btrfs_write_dirty_block_groups(trans, root);
904 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
905 if (old_root_bytenr == root->node->start &&
906 old_root_used == btrfs_root_used(&root->root_item))
909 btrfs_set_root_node(&root->root_item, root->node);
910 ret = btrfs_update_root(trans, tree_root,
916 old_root_used = btrfs_root_used(&root->root_item);
917 ret = btrfs_write_dirty_block_groups(trans, root);
922 if (root != root->fs_info->extent_root)
923 switch_commit_root(root);
929 * update all the cowonly tree roots on disk
931 * The error handling in this function may not be obvious. Any of the
932 * failures will cause the file system to go offline. We still need
933 * to clean up the delayed refs.
935 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
936 struct btrfs_root *root)
938 struct btrfs_fs_info *fs_info = root->fs_info;
939 struct list_head *next;
940 struct extent_buffer *eb;
943 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
947 eb = btrfs_lock_root_node(fs_info->tree_root);
948 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
950 btrfs_tree_unlock(eb);
951 free_extent_buffer(eb);
956 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
960 ret = btrfs_run_dev_stats(trans, root->fs_info);
963 ret = btrfs_run_dev_replace(trans, root->fs_info);
966 ret = btrfs_run_qgroups(trans, root->fs_info);
970 /* run_qgroups might have added some more refs */
971 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
975 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
976 next = fs_info->dirty_cowonly_roots.next;
978 root = list_entry(next, struct btrfs_root, dirty_list);
980 ret = update_cowonly_root(trans, root);
985 down_write(&fs_info->extent_commit_sem);
986 switch_commit_root(fs_info->extent_root);
987 up_write(&fs_info->extent_commit_sem);
989 btrfs_after_dev_replace_commit(fs_info);
995 * dead roots are old snapshots that need to be deleted. This allocates
996 * a dirty root struct and adds it into the list of dead roots that need to
999 void btrfs_add_dead_root(struct btrfs_root *root)
1001 spin_lock(&root->fs_info->trans_lock);
1002 if (list_empty(&root->root_list))
1003 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1004 spin_unlock(&root->fs_info->trans_lock);
1008 * update all the cowonly tree roots on disk
1010 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1011 struct btrfs_root *root)
1013 struct btrfs_root *gang[8];
1014 struct btrfs_fs_info *fs_info = root->fs_info;
1019 spin_lock(&fs_info->fs_roots_radix_lock);
1021 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1024 BTRFS_ROOT_TRANS_TAG);
1027 for (i = 0; i < ret; i++) {
1029 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1030 (unsigned long)root->root_key.objectid,
1031 BTRFS_ROOT_TRANS_TAG);
1032 spin_unlock(&fs_info->fs_roots_radix_lock);
1034 btrfs_free_log(trans, root);
1035 btrfs_update_reloc_root(trans, root);
1036 btrfs_orphan_commit_root(trans, root);
1038 btrfs_save_ino_cache(root, trans);
1040 /* see comments in should_cow_block() */
1041 root->force_cow = 0;
1044 if (root->commit_root != root->node) {
1045 mutex_lock(&root->fs_commit_mutex);
1046 switch_commit_root(root);
1047 btrfs_unpin_free_ino(root);
1048 mutex_unlock(&root->fs_commit_mutex);
1050 btrfs_set_root_node(&root->root_item,
1054 err = btrfs_update_root(trans, fs_info->tree_root,
1057 spin_lock(&fs_info->fs_roots_radix_lock);
1062 spin_unlock(&fs_info->fs_roots_radix_lock);
1067 * defrag a given btree.
1068 * Every leaf in the btree is read and defragged.
1070 int btrfs_defrag_root(struct btrfs_root *root)
1072 struct btrfs_fs_info *info = root->fs_info;
1073 struct btrfs_trans_handle *trans;
1076 if (xchg(&root->defrag_running, 1))
1080 trans = btrfs_start_transaction(root, 0);
1082 return PTR_ERR(trans);
1084 ret = btrfs_defrag_leaves(trans, root);
1086 btrfs_end_transaction(trans, root);
1087 btrfs_btree_balance_dirty(info->tree_root);
1090 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1093 if (btrfs_defrag_cancelled(root->fs_info)) {
1094 pr_debug("BTRFS: defrag_root cancelled\n");
1099 root->defrag_running = 0;
1104 * new snapshots need to be created at a very specific time in the
1105 * transaction commit. This does the actual creation.
1108 * If the error which may affect the commitment of the current transaction
1109 * happens, we should return the error number. If the error which just affect
1110 * the creation of the pending snapshots, just return 0.
1112 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1113 struct btrfs_fs_info *fs_info,
1114 struct btrfs_pending_snapshot *pending)
1116 struct btrfs_key key;
1117 struct btrfs_root_item *new_root_item;
1118 struct btrfs_root *tree_root = fs_info->tree_root;
1119 struct btrfs_root *root = pending->root;
1120 struct btrfs_root *parent_root;
1121 struct btrfs_block_rsv *rsv;
1122 struct inode *parent_inode;
1123 struct btrfs_path *path;
1124 struct btrfs_dir_item *dir_item;
1125 struct dentry *dentry;
1126 struct extent_buffer *tmp;
1127 struct extent_buffer *old;
1128 struct timespec cur_time = CURRENT_TIME;
1136 path = btrfs_alloc_path();
1138 pending->error = -ENOMEM;
1142 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1143 if (!new_root_item) {
1144 pending->error = -ENOMEM;
1145 goto root_item_alloc_fail;
1148 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1150 goto no_free_objectid;
1152 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1154 if (to_reserve > 0) {
1155 pending->error = btrfs_block_rsv_add(root,
1156 &pending->block_rsv,
1158 BTRFS_RESERVE_NO_FLUSH);
1160 goto no_free_objectid;
1163 pending->error = btrfs_qgroup_inherit(trans, fs_info,
1164 root->root_key.objectid,
1165 objectid, pending->inherit);
1167 goto no_free_objectid;
1169 key.objectid = objectid;
1170 key.offset = (u64)-1;
1171 key.type = BTRFS_ROOT_ITEM_KEY;
1173 rsv = trans->block_rsv;
1174 trans->block_rsv = &pending->block_rsv;
1175 trans->bytes_reserved = trans->block_rsv->reserved;
1177 dentry = pending->dentry;
1178 parent_inode = pending->dir;
1179 parent_root = BTRFS_I(parent_inode)->root;
1180 record_root_in_trans(trans, parent_root);
1183 * insert the directory item
1185 ret = btrfs_set_inode_index(parent_inode, &index);
1186 BUG_ON(ret); /* -ENOMEM */
1188 /* check if there is a file/dir which has the same name. */
1189 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1190 btrfs_ino(parent_inode),
1191 dentry->d_name.name,
1192 dentry->d_name.len, 0);
1193 if (dir_item != NULL && !IS_ERR(dir_item)) {
1194 pending->error = -EEXIST;
1195 goto dir_item_existed;
1196 } else if (IS_ERR(dir_item)) {
1197 ret = PTR_ERR(dir_item);
1198 btrfs_abort_transaction(trans, root, ret);
1201 btrfs_release_path(path);
1204 * pull in the delayed directory update
1205 * and the delayed inode item
1206 * otherwise we corrupt the FS during
1209 ret = btrfs_run_delayed_items(trans, root);
1210 if (ret) { /* Transaction aborted */
1211 btrfs_abort_transaction(trans, root, ret);
1215 record_root_in_trans(trans, root);
1216 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1217 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1218 btrfs_check_and_init_root_item(new_root_item);
1220 root_flags = btrfs_root_flags(new_root_item);
1221 if (pending->readonly)
1222 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1224 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1225 btrfs_set_root_flags(new_root_item, root_flags);
1227 btrfs_set_root_generation_v2(new_root_item,
1229 uuid_le_gen(&new_uuid);
1230 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1231 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1233 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1234 memset(new_root_item->received_uuid, 0,
1235 sizeof(new_root_item->received_uuid));
1236 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1237 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1238 btrfs_set_root_stransid(new_root_item, 0);
1239 btrfs_set_root_rtransid(new_root_item, 0);
1241 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1242 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1243 btrfs_set_root_otransid(new_root_item, trans->transid);
1245 old = btrfs_lock_root_node(root);
1246 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1248 btrfs_tree_unlock(old);
1249 free_extent_buffer(old);
1250 btrfs_abort_transaction(trans, root, ret);
1254 btrfs_set_lock_blocking(old);
1256 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1257 /* clean up in any case */
1258 btrfs_tree_unlock(old);
1259 free_extent_buffer(old);
1261 btrfs_abort_transaction(trans, root, ret);
1265 /* see comments in should_cow_block() */
1266 root->force_cow = 1;
1269 btrfs_set_root_node(new_root_item, tmp);
1270 /* record when the snapshot was created in key.offset */
1271 key.offset = trans->transid;
1272 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1273 btrfs_tree_unlock(tmp);
1274 free_extent_buffer(tmp);
1276 btrfs_abort_transaction(trans, root, ret);
1281 * insert root back/forward references
1283 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1284 parent_root->root_key.objectid,
1285 btrfs_ino(parent_inode), index,
1286 dentry->d_name.name, dentry->d_name.len);
1288 btrfs_abort_transaction(trans, root, ret);
1292 key.offset = (u64)-1;
1293 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1294 if (IS_ERR(pending->snap)) {
1295 ret = PTR_ERR(pending->snap);
1296 btrfs_abort_transaction(trans, root, ret);
1300 ret = btrfs_reloc_post_snapshot(trans, pending);
1302 btrfs_abort_transaction(trans, root, ret);
1306 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1308 btrfs_abort_transaction(trans, root, ret);
1312 ret = btrfs_insert_dir_item(trans, parent_root,
1313 dentry->d_name.name, dentry->d_name.len,
1315 BTRFS_FT_DIR, index);
1316 /* We have check then name at the beginning, so it is impossible. */
1317 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1319 btrfs_abort_transaction(trans, root, ret);
1323 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1324 dentry->d_name.len * 2);
1325 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1326 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1328 btrfs_abort_transaction(trans, root, ret);
1331 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1332 BTRFS_UUID_KEY_SUBVOL, objectid);
1334 btrfs_abort_transaction(trans, root, ret);
1337 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1338 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1339 new_root_item->received_uuid,
1340 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1342 if (ret && ret != -EEXIST) {
1343 btrfs_abort_transaction(trans, root, ret);
1348 pending->error = ret;
1350 trans->block_rsv = rsv;
1351 trans->bytes_reserved = 0;
1353 kfree(new_root_item);
1354 root_item_alloc_fail:
1355 btrfs_free_path(path);
1360 * create all the snapshots we've scheduled for creation
1362 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1363 struct btrfs_fs_info *fs_info)
1365 struct btrfs_pending_snapshot *pending, *next;
1366 struct list_head *head = &trans->transaction->pending_snapshots;
1369 list_for_each_entry_safe(pending, next, head, list) {
1370 list_del(&pending->list);
1371 ret = create_pending_snapshot(trans, fs_info, pending);
1378 static void update_super_roots(struct btrfs_root *root)
1380 struct btrfs_root_item *root_item;
1381 struct btrfs_super_block *super;
1383 super = root->fs_info->super_copy;
1385 root_item = &root->fs_info->chunk_root->root_item;
1386 super->chunk_root = root_item->bytenr;
1387 super->chunk_root_generation = root_item->generation;
1388 super->chunk_root_level = root_item->level;
1390 root_item = &root->fs_info->tree_root->root_item;
1391 super->root = root_item->bytenr;
1392 super->generation = root_item->generation;
1393 super->root_level = root_item->level;
1394 if (btrfs_test_opt(root, SPACE_CACHE))
1395 super->cache_generation = root_item->generation;
1396 if (root->fs_info->update_uuid_tree_gen)
1397 super->uuid_tree_generation = root_item->generation;
1400 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1402 struct btrfs_transaction *trans;
1405 spin_lock(&info->trans_lock);
1406 trans = info->running_transaction;
1408 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1409 spin_unlock(&info->trans_lock);
1413 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1415 struct btrfs_transaction *trans;
1418 spin_lock(&info->trans_lock);
1419 trans = info->running_transaction;
1421 ret = is_transaction_blocked(trans);
1422 spin_unlock(&info->trans_lock);
1427 * wait for the current transaction commit to start and block subsequent
1430 static void wait_current_trans_commit_start(struct btrfs_root *root,
1431 struct btrfs_transaction *trans)
1433 wait_event(root->fs_info->transaction_blocked_wait,
1434 trans->state >= TRANS_STATE_COMMIT_START ||
1439 * wait for the current transaction to start and then become unblocked.
1442 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1443 struct btrfs_transaction *trans)
1445 wait_event(root->fs_info->transaction_wait,
1446 trans->state >= TRANS_STATE_UNBLOCKED ||
1451 * commit transactions asynchronously. once btrfs_commit_transaction_async
1452 * returns, any subsequent transaction will not be allowed to join.
1454 struct btrfs_async_commit {
1455 struct btrfs_trans_handle *newtrans;
1456 struct btrfs_root *root;
1457 struct work_struct work;
1460 static void do_async_commit(struct work_struct *work)
1462 struct btrfs_async_commit *ac =
1463 container_of(work, struct btrfs_async_commit, work);
1466 * We've got freeze protection passed with the transaction.
1467 * Tell lockdep about it.
1469 if (ac->newtrans->type & __TRANS_FREEZABLE)
1471 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1474 current->journal_info = ac->newtrans;
1476 btrfs_commit_transaction(ac->newtrans, ac->root);
1480 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1481 struct btrfs_root *root,
1482 int wait_for_unblock)
1484 struct btrfs_async_commit *ac;
1485 struct btrfs_transaction *cur_trans;
1487 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1491 INIT_WORK(&ac->work, do_async_commit);
1493 ac->newtrans = btrfs_join_transaction(root);
1494 if (IS_ERR(ac->newtrans)) {
1495 int err = PTR_ERR(ac->newtrans);
1500 /* take transaction reference */
1501 cur_trans = trans->transaction;
1502 atomic_inc(&cur_trans->use_count);
1504 btrfs_end_transaction(trans, root);
1507 * Tell lockdep we've released the freeze rwsem, since the
1508 * async commit thread will be the one to unlock it.
1510 if (ac->newtrans->type & __TRANS_FREEZABLE)
1512 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1515 schedule_work(&ac->work);
1517 /* wait for transaction to start and unblock */
1518 if (wait_for_unblock)
1519 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1521 wait_current_trans_commit_start(root, cur_trans);
1523 if (current->journal_info == trans)
1524 current->journal_info = NULL;
1526 btrfs_put_transaction(cur_trans);
1531 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1532 struct btrfs_root *root, int err)
1534 struct btrfs_transaction *cur_trans = trans->transaction;
1537 WARN_ON(trans->use_count > 1);
1539 btrfs_abort_transaction(trans, root, err);
1541 spin_lock(&root->fs_info->trans_lock);
1544 * If the transaction is removed from the list, it means this
1545 * transaction has been committed successfully, so it is impossible
1546 * to call the cleanup function.
1548 BUG_ON(list_empty(&cur_trans->list));
1550 list_del_init(&cur_trans->list);
1551 if (cur_trans == root->fs_info->running_transaction) {
1552 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1553 spin_unlock(&root->fs_info->trans_lock);
1554 wait_event(cur_trans->writer_wait,
1555 atomic_read(&cur_trans->num_writers) == 1);
1557 spin_lock(&root->fs_info->trans_lock);
1559 spin_unlock(&root->fs_info->trans_lock);
1561 btrfs_cleanup_one_transaction(trans->transaction, root);
1563 spin_lock(&root->fs_info->trans_lock);
1564 if (cur_trans == root->fs_info->running_transaction)
1565 root->fs_info->running_transaction = NULL;
1566 spin_unlock(&root->fs_info->trans_lock);
1568 if (trans->type & __TRANS_FREEZABLE)
1569 sb_end_intwrite(root->fs_info->sb);
1570 btrfs_put_transaction(cur_trans);
1571 btrfs_put_transaction(cur_trans);
1573 trace_btrfs_transaction_commit(root);
1575 btrfs_scrub_continue(root);
1577 if (current->journal_info == trans)
1578 current->journal_info = NULL;
1580 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1583 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1584 struct btrfs_root *root)
1588 ret = btrfs_run_delayed_items(trans, root);
1590 * running the delayed items may have added new refs. account
1591 * them now so that they hinder processing of more delayed refs
1592 * as little as possible.
1595 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1599 ret = btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1604 * rename don't use btrfs_join_transaction, so, once we
1605 * set the transaction to blocked above, we aren't going
1606 * to get any new ordered operations. We can safely run
1607 * it here and no for sure that nothing new will be added
1610 ret = btrfs_run_ordered_operations(trans, root, 1);
1615 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1617 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1618 return btrfs_start_delalloc_roots(fs_info, 1);
1622 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1624 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1625 btrfs_wait_ordered_roots(fs_info, -1);
1628 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1629 struct btrfs_root *root)
1631 struct btrfs_transaction *cur_trans = trans->transaction;
1632 struct btrfs_transaction *prev_trans = NULL;
1635 ret = btrfs_run_ordered_operations(trans, root, 0);
1637 btrfs_abort_transaction(trans, root, ret);
1638 btrfs_end_transaction(trans, root);
1642 /* Stop the commit early if ->aborted is set */
1643 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1644 ret = cur_trans->aborted;
1645 btrfs_end_transaction(trans, root);
1649 /* make a pass through all the delayed refs we have so far
1650 * any runnings procs may add more while we are here
1652 ret = btrfs_run_delayed_refs(trans, root, 0);
1654 btrfs_end_transaction(trans, root);
1658 btrfs_trans_release_metadata(trans, root);
1659 trans->block_rsv = NULL;
1660 if (trans->qgroup_reserved) {
1661 btrfs_qgroup_free(root, trans->qgroup_reserved);
1662 trans->qgroup_reserved = 0;
1665 cur_trans = trans->transaction;
1668 * set the flushing flag so procs in this transaction have to
1669 * start sending their work down.
1671 cur_trans->delayed_refs.flushing = 1;
1674 if (!list_empty(&trans->new_bgs))
1675 btrfs_create_pending_block_groups(trans, root);
1677 ret = btrfs_run_delayed_refs(trans, root, 0);
1679 btrfs_end_transaction(trans, root);
1683 spin_lock(&root->fs_info->trans_lock);
1684 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1685 spin_unlock(&root->fs_info->trans_lock);
1686 atomic_inc(&cur_trans->use_count);
1687 ret = btrfs_end_transaction(trans, root);
1689 wait_for_commit(root, cur_trans);
1691 btrfs_put_transaction(cur_trans);
1696 cur_trans->state = TRANS_STATE_COMMIT_START;
1697 wake_up(&root->fs_info->transaction_blocked_wait);
1699 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1700 prev_trans = list_entry(cur_trans->list.prev,
1701 struct btrfs_transaction, list);
1702 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1703 atomic_inc(&prev_trans->use_count);
1704 spin_unlock(&root->fs_info->trans_lock);
1706 wait_for_commit(root, prev_trans);
1708 btrfs_put_transaction(prev_trans);
1710 spin_unlock(&root->fs_info->trans_lock);
1713 spin_unlock(&root->fs_info->trans_lock);
1716 extwriter_counter_dec(cur_trans, trans->type);
1718 ret = btrfs_start_delalloc_flush(root->fs_info);
1720 goto cleanup_transaction;
1722 ret = btrfs_flush_all_pending_stuffs(trans, root);
1724 goto cleanup_transaction;
1726 wait_event(cur_trans->writer_wait,
1727 extwriter_counter_read(cur_trans) == 0);
1729 /* some pending stuffs might be added after the previous flush. */
1730 ret = btrfs_flush_all_pending_stuffs(trans, root);
1732 goto cleanup_transaction;
1734 btrfs_wait_delalloc_flush(root->fs_info);
1736 btrfs_scrub_pause(root);
1738 * Ok now we need to make sure to block out any other joins while we
1739 * commit the transaction. We could have started a join before setting
1740 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1742 spin_lock(&root->fs_info->trans_lock);
1743 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1744 spin_unlock(&root->fs_info->trans_lock);
1745 wait_event(cur_trans->writer_wait,
1746 atomic_read(&cur_trans->num_writers) == 1);
1748 /* ->aborted might be set after the previous check, so check it */
1749 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1750 ret = cur_trans->aborted;
1751 goto cleanup_transaction;
1754 * the reloc mutex makes sure that we stop
1755 * the balancing code from coming in and moving
1756 * extents around in the middle of the commit
1758 mutex_lock(&root->fs_info->reloc_mutex);
1761 * We needn't worry about the delayed items because we will
1762 * deal with them in create_pending_snapshot(), which is the
1763 * core function of the snapshot creation.
1765 ret = create_pending_snapshots(trans, root->fs_info);
1767 mutex_unlock(&root->fs_info->reloc_mutex);
1768 goto cleanup_transaction;
1772 * We insert the dir indexes of the snapshots and update the inode
1773 * of the snapshots' parents after the snapshot creation, so there
1774 * are some delayed items which are not dealt with. Now deal with
1777 * We needn't worry that this operation will corrupt the snapshots,
1778 * because all the tree which are snapshoted will be forced to COW
1779 * the nodes and leaves.
1781 ret = btrfs_run_delayed_items(trans, root);
1783 mutex_unlock(&root->fs_info->reloc_mutex);
1784 goto cleanup_transaction;
1787 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1789 mutex_unlock(&root->fs_info->reloc_mutex);
1790 goto cleanup_transaction;
1794 * make sure none of the code above managed to slip in a
1797 btrfs_assert_delayed_root_empty(root);
1799 WARN_ON(cur_trans != trans->transaction);
1801 /* btrfs_commit_tree_roots is responsible for getting the
1802 * various roots consistent with each other. Every pointer
1803 * in the tree of tree roots has to point to the most up to date
1804 * root for every subvolume and other tree. So, we have to keep
1805 * the tree logging code from jumping in and changing any
1808 * At this point in the commit, there can't be any tree-log
1809 * writers, but a little lower down we drop the trans mutex
1810 * and let new people in. By holding the tree_log_mutex
1811 * from now until after the super is written, we avoid races
1812 * with the tree-log code.
1814 mutex_lock(&root->fs_info->tree_log_mutex);
1816 ret = commit_fs_roots(trans, root);
1818 mutex_unlock(&root->fs_info->tree_log_mutex);
1819 mutex_unlock(&root->fs_info->reloc_mutex);
1820 goto cleanup_transaction;
1824 * Since the transaction is done, we should set the inode map cache flag
1825 * before any other comming transaction.
1827 if (btrfs_test_opt(root, CHANGE_INODE_CACHE))
1828 btrfs_set_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1830 btrfs_clear_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1832 /* commit_fs_roots gets rid of all the tree log roots, it is now
1833 * safe to free the root of tree log roots
1835 btrfs_free_log_root_tree(trans, root->fs_info);
1837 ret = commit_cowonly_roots(trans, root);
1839 mutex_unlock(&root->fs_info->tree_log_mutex);
1840 mutex_unlock(&root->fs_info->reloc_mutex);
1841 goto cleanup_transaction;
1845 * The tasks which save the space cache and inode cache may also
1846 * update ->aborted, check it.
1848 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1849 ret = cur_trans->aborted;
1850 mutex_unlock(&root->fs_info->tree_log_mutex);
1851 mutex_unlock(&root->fs_info->reloc_mutex);
1852 goto cleanup_transaction;
1855 btrfs_prepare_extent_commit(trans, root);
1857 cur_trans = root->fs_info->running_transaction;
1859 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1860 root->fs_info->tree_root->node);
1861 switch_commit_root(root->fs_info->tree_root);
1863 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1864 root->fs_info->chunk_root->node);
1865 switch_commit_root(root->fs_info->chunk_root);
1867 assert_qgroups_uptodate(trans);
1868 update_super_roots(root);
1870 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1871 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1872 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1873 sizeof(*root->fs_info->super_copy));
1875 spin_lock(&root->fs_info->trans_lock);
1876 cur_trans->state = TRANS_STATE_UNBLOCKED;
1877 root->fs_info->running_transaction = NULL;
1878 spin_unlock(&root->fs_info->trans_lock);
1879 mutex_unlock(&root->fs_info->reloc_mutex);
1881 wake_up(&root->fs_info->transaction_wait);
1883 ret = btrfs_write_and_wait_transaction(trans, root);
1885 btrfs_error(root->fs_info, ret,
1886 "Error while writing out transaction");
1887 mutex_unlock(&root->fs_info->tree_log_mutex);
1888 goto cleanup_transaction;
1891 ret = write_ctree_super(trans, root, 0);
1893 mutex_unlock(&root->fs_info->tree_log_mutex);
1894 goto cleanup_transaction;
1898 * the super is written, we can safely allow the tree-loggers
1899 * to go about their business
1901 mutex_unlock(&root->fs_info->tree_log_mutex);
1903 btrfs_finish_extent_commit(trans, root);
1905 root->fs_info->last_trans_committed = cur_trans->transid;
1907 * We needn't acquire the lock here because there is no other task
1908 * which can change it.
1910 cur_trans->state = TRANS_STATE_COMPLETED;
1911 wake_up(&cur_trans->commit_wait);
1913 spin_lock(&root->fs_info->trans_lock);
1914 list_del_init(&cur_trans->list);
1915 spin_unlock(&root->fs_info->trans_lock);
1917 btrfs_put_transaction(cur_trans);
1918 btrfs_put_transaction(cur_trans);
1920 if (trans->type & __TRANS_FREEZABLE)
1921 sb_end_intwrite(root->fs_info->sb);
1923 trace_btrfs_transaction_commit(root);
1925 btrfs_scrub_continue(root);
1927 if (current->journal_info == trans)
1928 current->journal_info = NULL;
1930 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1932 if (current != root->fs_info->transaction_kthread)
1933 btrfs_run_delayed_iputs(root);
1937 cleanup_transaction:
1938 btrfs_trans_release_metadata(trans, root);
1939 trans->block_rsv = NULL;
1940 if (trans->qgroup_reserved) {
1941 btrfs_qgroup_free(root, trans->qgroup_reserved);
1942 trans->qgroup_reserved = 0;
1944 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1945 if (current->journal_info == trans)
1946 current->journal_info = NULL;
1947 cleanup_transaction(trans, root, ret);
1953 * return < 0 if error
1954 * 0 if there are no more dead_roots at the time of call
1955 * 1 there are more to be processed, call me again
1957 * The return value indicates there are certainly more snapshots to delete, but
1958 * if there comes a new one during processing, it may return 0. We don't mind,
1959 * because btrfs_commit_super will poke cleaner thread and it will process it a
1960 * few seconds later.
1962 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1965 struct btrfs_fs_info *fs_info = root->fs_info;
1967 spin_lock(&fs_info->trans_lock);
1968 if (list_empty(&fs_info->dead_roots)) {
1969 spin_unlock(&fs_info->trans_lock);
1972 root = list_first_entry(&fs_info->dead_roots,
1973 struct btrfs_root, root_list);
1975 * Make sure root is not involved in send,
1976 * if we fail with first root, we return
1977 * directly rather than continue.
1979 spin_lock(&root->root_item_lock);
1980 if (root->send_in_progress) {
1981 spin_unlock(&fs_info->trans_lock);
1982 spin_unlock(&root->root_item_lock);
1985 spin_unlock(&root->root_item_lock);
1987 list_del_init(&root->root_list);
1988 spin_unlock(&fs_info->trans_lock);
1990 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
1992 btrfs_kill_all_delayed_nodes(root);
1994 if (btrfs_header_backref_rev(root->node) <
1995 BTRFS_MIXED_BACKREF_REV)
1996 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1998 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2000 * If we encounter a transaction abort during snapshot cleaning, we
2001 * don't want to crash here
2003 return (ret < 0) ? 0 : 1;