2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
28 #include "transaction.h"
31 #include "inode-map.h"
33 #include "dev-replace.h"
36 #define BTRFS_ROOT_TRANS_TAG 0
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 printk(KERN_ERR "pending csums is %llu\n",
69 transaction->delayed_refs.pending_csums);
70 while (!list_empty(&transaction->pending_chunks)) {
71 struct extent_map *em;
73 em = list_first_entry(&transaction->pending_chunks,
74 struct extent_map, list);
75 list_del_init(&em->list);
79 * If any block groups are found in ->deleted_bgs then it's
80 * because the transaction was aborted and a commit did not
81 * happen (things failed before writing the new superblock
82 * and calling btrfs_finish_extent_commit()), so we can not
83 * discard the physical locations of the block groups.
85 while (!list_empty(&transaction->deleted_bgs)) {
86 struct btrfs_block_group_cache *cache;
88 cache = list_first_entry(&transaction->deleted_bgs,
89 struct btrfs_block_group_cache,
91 list_del_init(&cache->bg_list);
92 btrfs_put_block_group_trimming(cache);
93 btrfs_put_block_group(cache);
95 kmem_cache_free(btrfs_transaction_cachep, transaction);
99 static void clear_btree_io_tree(struct extent_io_tree *tree)
101 spin_lock(&tree->lock);
103 * Do a single barrier for the waitqueue_active check here, the state
104 * of the waitqueue should not change once clear_btree_io_tree is
108 while (!RB_EMPTY_ROOT(&tree->state)) {
109 struct rb_node *node;
110 struct extent_state *state;
112 node = rb_first(&tree->state);
113 state = rb_entry(node, struct extent_state, rb_node);
114 rb_erase(&state->rb_node, &tree->state);
115 RB_CLEAR_NODE(&state->rb_node);
117 * btree io trees aren't supposed to have tasks waiting for
118 * changes in the flags of extent states ever.
120 ASSERT(!waitqueue_active(&state->wq));
121 free_extent_state(state);
123 cond_resched_lock(&tree->lock);
125 spin_unlock(&tree->lock);
128 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
129 struct btrfs_fs_info *fs_info)
131 struct btrfs_root *root, *tmp;
133 down_write(&fs_info->commit_root_sem);
134 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
136 list_del_init(&root->dirty_list);
137 free_extent_buffer(root->commit_root);
138 root->commit_root = btrfs_root_node(root);
139 if (is_fstree(root->objectid))
140 btrfs_unpin_free_ino(root);
141 clear_btree_io_tree(&root->dirty_log_pages);
144 /* We can free old roots now. */
145 spin_lock(&trans->dropped_roots_lock);
146 while (!list_empty(&trans->dropped_roots)) {
147 root = list_first_entry(&trans->dropped_roots,
148 struct btrfs_root, root_list);
149 list_del_init(&root->root_list);
150 spin_unlock(&trans->dropped_roots_lock);
151 btrfs_drop_and_free_fs_root(fs_info, root);
152 spin_lock(&trans->dropped_roots_lock);
154 spin_unlock(&trans->dropped_roots_lock);
155 up_write(&fs_info->commit_root_sem);
158 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
161 if (type & TRANS_EXTWRITERS)
162 atomic_inc(&trans->num_extwriters);
165 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
168 if (type & TRANS_EXTWRITERS)
169 atomic_dec(&trans->num_extwriters);
172 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
175 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
178 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
180 return atomic_read(&trans->num_extwriters);
184 * either allocate a new transaction or hop into the existing one
186 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
188 struct btrfs_transaction *cur_trans;
189 struct btrfs_fs_info *fs_info = root->fs_info;
191 spin_lock(&fs_info->trans_lock);
193 /* The file system has been taken offline. No new transactions. */
194 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
195 spin_unlock(&fs_info->trans_lock);
199 cur_trans = fs_info->running_transaction;
201 if (cur_trans->aborted) {
202 spin_unlock(&fs_info->trans_lock);
203 return cur_trans->aborted;
205 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
206 spin_unlock(&fs_info->trans_lock);
209 atomic_inc(&cur_trans->use_count);
210 atomic_inc(&cur_trans->num_writers);
211 extwriter_counter_inc(cur_trans, type);
212 spin_unlock(&fs_info->trans_lock);
215 spin_unlock(&fs_info->trans_lock);
218 * If we are ATTACH, we just want to catch the current transaction,
219 * and commit it. If there is no transaction, just return ENOENT.
221 if (type == TRANS_ATTACH)
225 * JOIN_NOLOCK only happens during the transaction commit, so
226 * it is impossible that ->running_transaction is NULL
228 BUG_ON(type == TRANS_JOIN_NOLOCK);
230 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
234 spin_lock(&fs_info->trans_lock);
235 if (fs_info->running_transaction) {
237 * someone started a transaction after we unlocked. Make sure
238 * to redo the checks above
240 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
242 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
243 spin_unlock(&fs_info->trans_lock);
244 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
248 atomic_set(&cur_trans->num_writers, 1);
249 extwriter_counter_init(cur_trans, type);
250 init_waitqueue_head(&cur_trans->writer_wait);
251 init_waitqueue_head(&cur_trans->commit_wait);
252 init_waitqueue_head(&cur_trans->pending_wait);
253 cur_trans->state = TRANS_STATE_RUNNING;
255 * One for this trans handle, one so it will live on until we
256 * commit the transaction.
258 atomic_set(&cur_trans->use_count, 2);
259 atomic_set(&cur_trans->pending_ordered, 0);
260 cur_trans->flags = 0;
261 cur_trans->start_time = get_seconds();
263 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
265 cur_trans->delayed_refs.href_root = RB_ROOT;
266 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
267 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
270 * although the tree mod log is per file system and not per transaction,
271 * the log must never go across transaction boundaries.
274 if (!list_empty(&fs_info->tree_mod_seq_list))
275 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
276 "creating a fresh transaction\n");
277 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
278 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
279 "creating a fresh transaction\n");
280 atomic64_set(&fs_info->tree_mod_seq, 0);
282 spin_lock_init(&cur_trans->delayed_refs.lock);
284 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 INIT_LIST_HEAD(&cur_trans->switch_commits);
287 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 INIT_LIST_HEAD(&cur_trans->io_bgs);
289 INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 mutex_init(&cur_trans->cache_write_mutex);
291 cur_trans->num_dirty_bgs = 0;
292 spin_lock_init(&cur_trans->dirty_bgs_lock);
293 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 spin_lock_init(&cur_trans->dropped_roots_lock);
295 list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 extent_io_tree_init(&cur_trans->dirty_pages,
297 fs_info->btree_inode->i_mapping);
298 fs_info->generation++;
299 cur_trans->transid = fs_info->generation;
300 fs_info->running_transaction = cur_trans;
301 cur_trans->aborted = 0;
302 spin_unlock(&fs_info->trans_lock);
308 * this does all the record keeping required to make sure that a reference
309 * counted root is properly recorded in a given transaction. This is required
310 * to make sure the old root from before we joined the transaction is deleted
311 * when the transaction commits
313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 struct btrfs_root *root,
317 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
318 root->last_trans < trans->transid) || force) {
319 WARN_ON(root == root->fs_info->extent_root);
320 WARN_ON(root->commit_root != root->node);
323 * see below for IN_TRANS_SETUP usage rules
324 * we have the reloc mutex held now, so there
325 * is only one writer in this function
327 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
329 /* make sure readers find IN_TRANS_SETUP before
330 * they find our root->last_trans update
334 spin_lock(&root->fs_info->fs_roots_radix_lock);
335 if (root->last_trans == trans->transid && !force) {
336 spin_unlock(&root->fs_info->fs_roots_radix_lock);
339 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
340 (unsigned long)root->root_key.objectid,
341 BTRFS_ROOT_TRANS_TAG);
342 spin_unlock(&root->fs_info->fs_roots_radix_lock);
343 root->last_trans = trans->transid;
345 /* this is pretty tricky. We don't want to
346 * take the relocation lock in btrfs_record_root_in_trans
347 * unless we're really doing the first setup for this root in
350 * Normally we'd use root->last_trans as a flag to decide
351 * if we want to take the expensive mutex.
353 * But, we have to set root->last_trans before we
354 * init the relocation root, otherwise, we trip over warnings
355 * in ctree.c. The solution used here is to flag ourselves
356 * with root IN_TRANS_SETUP. When this is 1, we're still
357 * fixing up the reloc trees and everyone must wait.
359 * When this is zero, they can trust root->last_trans and fly
360 * through btrfs_record_root_in_trans without having to take the
361 * lock. smp_wmb() makes sure that all the writes above are
362 * done before we pop in the zero below
364 btrfs_init_reloc_root(trans, root);
365 smp_mb__before_atomic();
366 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
372 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
373 struct btrfs_root *root)
375 struct btrfs_transaction *cur_trans = trans->transaction;
377 /* Add ourselves to the transaction dropped list */
378 spin_lock(&cur_trans->dropped_roots_lock);
379 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
380 spin_unlock(&cur_trans->dropped_roots_lock);
382 /* Make sure we don't try to update the root at commit time */
383 spin_lock(&root->fs_info->fs_roots_radix_lock);
384 radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
385 (unsigned long)root->root_key.objectid,
386 BTRFS_ROOT_TRANS_TAG);
387 spin_unlock(&root->fs_info->fs_roots_radix_lock);
390 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
391 struct btrfs_root *root)
393 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
397 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
401 if (root->last_trans == trans->transid &&
402 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
405 mutex_lock(&root->fs_info->reloc_mutex);
406 record_root_in_trans(trans, root, 0);
407 mutex_unlock(&root->fs_info->reloc_mutex);
412 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
414 return (trans->state >= TRANS_STATE_BLOCKED &&
415 trans->state < TRANS_STATE_UNBLOCKED &&
419 /* wait for commit against the current transaction to become unblocked
420 * when this is done, it is safe to start a new transaction, but the current
421 * transaction might not be fully on disk.
423 static void wait_current_trans(struct btrfs_root *root)
425 struct btrfs_transaction *cur_trans;
427 spin_lock(&root->fs_info->trans_lock);
428 cur_trans = root->fs_info->running_transaction;
429 if (cur_trans && is_transaction_blocked(cur_trans)) {
430 atomic_inc(&cur_trans->use_count);
431 spin_unlock(&root->fs_info->trans_lock);
433 wait_event(root->fs_info->transaction_wait,
434 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
436 btrfs_put_transaction(cur_trans);
438 spin_unlock(&root->fs_info->trans_lock);
442 static int may_wait_transaction(struct btrfs_root *root, int type)
444 if (root->fs_info->log_root_recovering)
447 if (type == TRANS_USERSPACE)
450 if (type == TRANS_START &&
451 !atomic_read(&root->fs_info->open_ioctl_trans))
457 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
459 if (!root->fs_info->reloc_ctl ||
460 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
461 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
468 static struct btrfs_trans_handle *
469 start_transaction(struct btrfs_root *root, unsigned int num_items,
470 unsigned int type, enum btrfs_reserve_flush_enum flush)
472 struct btrfs_trans_handle *h;
473 struct btrfs_transaction *cur_trans;
475 u64 qgroup_reserved = 0;
476 bool reloc_reserved = false;
479 /* Send isn't supposed to start transactions. */
480 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
482 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
483 return ERR_PTR(-EROFS);
485 if (current->journal_info) {
486 WARN_ON(type & TRANS_EXTWRITERS);
487 h = current->journal_info;
489 WARN_ON(h->use_count > 2);
490 h->orig_rsv = h->block_rsv;
496 * Do the reservation before we join the transaction so we can do all
497 * the appropriate flushing if need be.
499 if (num_items > 0 && root != root->fs_info->chunk_root) {
500 qgroup_reserved = num_items * root->nodesize;
501 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
505 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
507 * Do the reservation for the relocation root creation
509 if (need_reserve_reloc_root(root)) {
510 num_bytes += root->nodesize;
511 reloc_reserved = true;
514 ret = btrfs_block_rsv_add(root,
515 &root->fs_info->trans_block_rsv,
521 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
528 * If we are JOIN_NOLOCK we're already committing a transaction and
529 * waiting on this guy, so we don't need to do the sb_start_intwrite
530 * because we're already holding a ref. We need this because we could
531 * have raced in and did an fsync() on a file which can kick a commit
532 * and then we deadlock with somebody doing a freeze.
534 * If we are ATTACH, it means we just want to catch the current
535 * transaction and commit it, so we needn't do sb_start_intwrite().
537 if (type & __TRANS_FREEZABLE)
538 sb_start_intwrite(root->fs_info->sb);
540 if (may_wait_transaction(root, type))
541 wait_current_trans(root);
544 ret = join_transaction(root, type);
546 wait_current_trans(root);
547 if (unlikely(type == TRANS_ATTACH))
550 } while (ret == -EBUSY);
553 /* We must get the transaction if we are JOIN_NOLOCK. */
554 BUG_ON(type == TRANS_JOIN_NOLOCK);
558 cur_trans = root->fs_info->running_transaction;
560 h->transid = cur_trans->transid;
561 h->transaction = cur_trans;
564 h->fs_info = root->fs_info;
567 h->can_flush_pending_bgs = true;
568 INIT_LIST_HEAD(&h->qgroup_ref_list);
569 INIT_LIST_HEAD(&h->new_bgs);
572 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
573 may_wait_transaction(root, type)) {
574 current->journal_info = h;
575 btrfs_commit_transaction(h, root);
580 trace_btrfs_space_reservation(root->fs_info, "transaction",
581 h->transid, num_bytes, 1);
582 h->block_rsv = &root->fs_info->trans_block_rsv;
583 h->bytes_reserved = num_bytes;
584 h->reloc_reserved = reloc_reserved;
588 btrfs_record_root_in_trans(h, root);
590 if (!current->journal_info && type != TRANS_USERSPACE)
591 current->journal_info = h;
595 if (type & __TRANS_FREEZABLE)
596 sb_end_intwrite(root->fs_info->sb);
597 kmem_cache_free(btrfs_trans_handle_cachep, h);
600 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
603 btrfs_qgroup_free_meta(root, qgroup_reserved);
607 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
608 unsigned int num_items)
610 return start_transaction(root, num_items, TRANS_START,
611 BTRFS_RESERVE_FLUSH_ALL);
613 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
614 struct btrfs_root *root,
615 unsigned int num_items,
618 struct btrfs_trans_handle *trans;
622 trans = btrfs_start_transaction(root, num_items);
623 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
626 trans = btrfs_start_transaction(root, 0);
630 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
631 ret = btrfs_cond_migrate_bytes(root->fs_info,
632 &root->fs_info->trans_block_rsv,
636 btrfs_end_transaction(trans, root);
640 trans->block_rsv = &root->fs_info->trans_block_rsv;
641 trans->bytes_reserved = num_bytes;
642 trace_btrfs_space_reservation(root->fs_info, "transaction",
643 trans->transid, num_bytes, 1);
648 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
649 struct btrfs_root *root,
650 unsigned int num_items)
652 return start_transaction(root, num_items, TRANS_START,
653 BTRFS_RESERVE_FLUSH_LIMIT);
656 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
658 return start_transaction(root, 0, TRANS_JOIN,
659 BTRFS_RESERVE_NO_FLUSH);
662 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
664 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
665 BTRFS_RESERVE_NO_FLUSH);
668 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
670 return start_transaction(root, 0, TRANS_USERSPACE,
671 BTRFS_RESERVE_NO_FLUSH);
675 * btrfs_attach_transaction() - catch the running transaction
677 * It is used when we want to commit the current the transaction, but
678 * don't want to start a new one.
680 * Note: If this function return -ENOENT, it just means there is no
681 * running transaction. But it is possible that the inactive transaction
682 * is still in the memory, not fully on disk. If you hope there is no
683 * inactive transaction in the fs when -ENOENT is returned, you should
685 * btrfs_attach_transaction_barrier()
687 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
689 return start_transaction(root, 0, TRANS_ATTACH,
690 BTRFS_RESERVE_NO_FLUSH);
694 * btrfs_attach_transaction_barrier() - catch the running transaction
696 * It is similar to the above function, the differentia is this one
697 * will wait for all the inactive transactions until they fully
700 struct btrfs_trans_handle *
701 btrfs_attach_transaction_barrier(struct btrfs_root *root)
703 struct btrfs_trans_handle *trans;
705 trans = start_transaction(root, 0, TRANS_ATTACH,
706 BTRFS_RESERVE_NO_FLUSH);
707 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
708 btrfs_wait_for_commit(root, 0);
713 /* wait for a transaction commit to be fully complete */
714 static noinline void wait_for_commit(struct btrfs_root *root,
715 struct btrfs_transaction *commit)
717 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
720 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
722 struct btrfs_transaction *cur_trans = NULL, *t;
726 if (transid <= root->fs_info->last_trans_committed)
729 /* find specified transaction */
730 spin_lock(&root->fs_info->trans_lock);
731 list_for_each_entry(t, &root->fs_info->trans_list, list) {
732 if (t->transid == transid) {
734 atomic_inc(&cur_trans->use_count);
738 if (t->transid > transid) {
743 spin_unlock(&root->fs_info->trans_lock);
746 * The specified transaction doesn't exist, or we
747 * raced with btrfs_commit_transaction
750 if (transid > root->fs_info->last_trans_committed)
755 /* find newest transaction that is committing | committed */
756 spin_lock(&root->fs_info->trans_lock);
757 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
759 if (t->state >= TRANS_STATE_COMMIT_START) {
760 if (t->state == TRANS_STATE_COMPLETED)
763 atomic_inc(&cur_trans->use_count);
767 spin_unlock(&root->fs_info->trans_lock);
769 goto out; /* nothing committing|committed */
772 wait_for_commit(root, cur_trans);
773 btrfs_put_transaction(cur_trans);
778 void btrfs_throttle(struct btrfs_root *root)
780 if (!atomic_read(&root->fs_info->open_ioctl_trans))
781 wait_current_trans(root);
784 static int should_end_transaction(struct btrfs_trans_handle *trans,
785 struct btrfs_root *root)
787 if (root->fs_info->global_block_rsv.space_info->full &&
788 btrfs_check_space_for_delayed_refs(trans, root))
791 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
794 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
795 struct btrfs_root *root)
797 struct btrfs_transaction *cur_trans = trans->transaction;
802 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
803 cur_trans->delayed_refs.flushing)
806 updates = trans->delayed_ref_updates;
807 trans->delayed_ref_updates = 0;
809 err = btrfs_run_delayed_refs(trans, root, updates * 2);
810 if (err) /* Error code will also eval true */
814 return should_end_transaction(trans, root);
817 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
818 struct btrfs_root *root, int throttle)
820 struct btrfs_transaction *cur_trans = trans->transaction;
821 struct btrfs_fs_info *info = root->fs_info;
822 u64 transid = trans->transid;
823 unsigned long cur = trans->delayed_ref_updates;
824 int lock = (trans->type != TRANS_JOIN_NOLOCK);
826 int must_run_delayed_refs = 0;
828 if (trans->use_count > 1) {
830 trans->block_rsv = trans->orig_rsv;
834 btrfs_trans_release_metadata(trans, root);
835 trans->block_rsv = NULL;
837 if (!list_empty(&trans->new_bgs))
838 btrfs_create_pending_block_groups(trans, root);
840 trans->delayed_ref_updates = 0;
842 must_run_delayed_refs =
843 btrfs_should_throttle_delayed_refs(trans, root);
844 cur = max_t(unsigned long, cur, 32);
847 * don't make the caller wait if they are from a NOLOCK
848 * or ATTACH transaction, it will deadlock with commit
850 if (must_run_delayed_refs == 1 &&
851 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
852 must_run_delayed_refs = 2;
855 btrfs_trans_release_metadata(trans, root);
856 trans->block_rsv = NULL;
858 if (!list_empty(&trans->new_bgs))
859 btrfs_create_pending_block_groups(trans, root);
861 btrfs_trans_release_chunk_metadata(trans);
863 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
864 should_end_transaction(trans, root) &&
865 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
866 spin_lock(&info->trans_lock);
867 if (cur_trans->state == TRANS_STATE_RUNNING)
868 cur_trans->state = TRANS_STATE_BLOCKED;
869 spin_unlock(&info->trans_lock);
872 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
874 return btrfs_commit_transaction(trans, root);
876 wake_up_process(info->transaction_kthread);
879 if (trans->type & __TRANS_FREEZABLE)
880 sb_end_intwrite(root->fs_info->sb);
882 WARN_ON(cur_trans != info->running_transaction);
883 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
884 atomic_dec(&cur_trans->num_writers);
885 extwriter_counter_dec(cur_trans, trans->type);
888 * Make sure counter is updated before we wake up waiters.
891 if (waitqueue_active(&cur_trans->writer_wait))
892 wake_up(&cur_trans->writer_wait);
893 btrfs_put_transaction(cur_trans);
895 if (current->journal_info == trans)
896 current->journal_info = NULL;
899 btrfs_run_delayed_iputs(root);
901 if (trans->aborted ||
902 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
903 wake_up_process(info->transaction_kthread);
906 assert_qgroups_uptodate(trans);
908 kmem_cache_free(btrfs_trans_handle_cachep, trans);
909 if (must_run_delayed_refs) {
910 btrfs_async_run_delayed_refs(root, cur, transid,
911 must_run_delayed_refs == 1);
916 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
917 struct btrfs_root *root)
919 return __btrfs_end_transaction(trans, root, 0);
922 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
923 struct btrfs_root *root)
925 return __btrfs_end_transaction(trans, root, 1);
929 * when btree blocks are allocated, they have some corresponding bits set for
930 * them in one of two extent_io trees. This is used to make sure all of
931 * those extents are sent to disk but does not wait on them
933 int btrfs_write_marked_extents(struct btrfs_root *root,
934 struct extent_io_tree *dirty_pages, int mark)
938 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
939 struct extent_state *cached_state = NULL;
943 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
944 mark, &cached_state)) {
945 bool wait_writeback = false;
947 err = convert_extent_bit(dirty_pages, start, end,
949 mark, &cached_state);
951 * convert_extent_bit can return -ENOMEM, which is most of the
952 * time a temporary error. So when it happens, ignore the error
953 * and wait for writeback of this range to finish - because we
954 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
955 * to btrfs_wait_marked_extents() would not know that writeback
956 * for this range started and therefore wouldn't wait for it to
957 * finish - we don't want to commit a superblock that points to
958 * btree nodes/leafs for which writeback hasn't finished yet
959 * (and without errors).
960 * We cleanup any entries left in the io tree when committing
961 * the transaction (through clear_btree_io_tree()).
963 if (err == -ENOMEM) {
965 wait_writeback = true;
968 err = filemap_fdatawrite_range(mapping, start, end);
971 else if (wait_writeback)
972 werr = filemap_fdatawait_range(mapping, start, end);
973 free_extent_state(cached_state);
982 * when btree blocks are allocated, they have some corresponding bits set for
983 * them in one of two extent_io trees. This is used to make sure all of
984 * those extents are on disk for transaction or log commit. We wait
985 * on all the pages and clear them from the dirty pages state tree
987 int btrfs_wait_marked_extents(struct btrfs_root *root,
988 struct extent_io_tree *dirty_pages, int mark)
992 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
993 struct extent_state *cached_state = NULL;
996 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
999 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1000 EXTENT_NEED_WAIT, &cached_state)) {
1002 * Ignore -ENOMEM errors returned by clear_extent_bit().
1003 * When committing the transaction, we'll remove any entries
1004 * left in the io tree. For a log commit, we don't remove them
1005 * after committing the log because the tree can be accessed
1006 * concurrently - we do it only at transaction commit time when
1007 * it's safe to do it (through clear_btree_io_tree()).
1009 err = clear_extent_bit(dirty_pages, start, end,
1011 0, 0, &cached_state, GFP_NOFS);
1015 err = filemap_fdatawait_range(mapping, start, end);
1018 free_extent_state(cached_state);
1019 cached_state = NULL;
1026 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1027 if ((mark & EXTENT_DIRTY) &&
1028 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
1029 &btree_ino->runtime_flags))
1032 if ((mark & EXTENT_NEW) &&
1033 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1034 &btree_ino->runtime_flags))
1037 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1038 &btree_ino->runtime_flags))
1042 if (errors && !werr)
1049 * when btree blocks are allocated, they have some corresponding bits set for
1050 * them in one of two extent_io trees. This is used to make sure all of
1051 * those extents are on disk for transaction or log commit
1053 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1054 struct extent_io_tree *dirty_pages, int mark)
1058 struct blk_plug plug;
1060 blk_start_plug(&plug);
1061 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1062 blk_finish_plug(&plug);
1063 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1072 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1073 struct btrfs_root *root)
1077 ret = btrfs_write_and_wait_marked_extents(root,
1078 &trans->transaction->dirty_pages,
1080 clear_btree_io_tree(&trans->transaction->dirty_pages);
1086 * this is used to update the root pointer in the tree of tree roots.
1088 * But, in the case of the extent allocation tree, updating the root
1089 * pointer may allocate blocks which may change the root of the extent
1092 * So, this loops and repeats and makes sure the cowonly root didn't
1093 * change while the root pointer was being updated in the metadata.
1095 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root)
1099 u64 old_root_bytenr;
1101 struct btrfs_root *tree_root = root->fs_info->tree_root;
1103 old_root_used = btrfs_root_used(&root->root_item);
1106 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1107 if (old_root_bytenr == root->node->start &&
1108 old_root_used == btrfs_root_used(&root->root_item))
1111 btrfs_set_root_node(&root->root_item, root->node);
1112 ret = btrfs_update_root(trans, tree_root,
1118 old_root_used = btrfs_root_used(&root->root_item);
1125 * update all the cowonly tree roots on disk
1127 * The error handling in this function may not be obvious. Any of the
1128 * failures will cause the file system to go offline. We still need
1129 * to clean up the delayed refs.
1131 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1132 struct btrfs_root *root)
1134 struct btrfs_fs_info *fs_info = root->fs_info;
1135 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1136 struct list_head *io_bgs = &trans->transaction->io_bgs;
1137 struct list_head *next;
1138 struct extent_buffer *eb;
1141 eb = btrfs_lock_root_node(fs_info->tree_root);
1142 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1144 btrfs_tree_unlock(eb);
1145 free_extent_buffer(eb);
1150 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1154 ret = btrfs_run_dev_stats(trans, root->fs_info);
1157 ret = btrfs_run_dev_replace(trans, root->fs_info);
1160 ret = btrfs_run_qgroups(trans, root->fs_info);
1164 ret = btrfs_setup_space_cache(trans, root);
1168 /* run_qgroups might have added some more refs */
1169 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1173 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1174 next = fs_info->dirty_cowonly_roots.next;
1175 list_del_init(next);
1176 root = list_entry(next, struct btrfs_root, dirty_list);
1177 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1179 if (root != fs_info->extent_root)
1180 list_add_tail(&root->dirty_list,
1181 &trans->transaction->switch_commits);
1182 ret = update_cowonly_root(trans, root);
1185 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1190 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1191 ret = btrfs_write_dirty_block_groups(trans, root);
1194 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1199 if (!list_empty(&fs_info->dirty_cowonly_roots))
1202 list_add_tail(&fs_info->extent_root->dirty_list,
1203 &trans->transaction->switch_commits);
1204 btrfs_after_dev_replace_commit(fs_info);
1210 * dead roots are old snapshots that need to be deleted. This allocates
1211 * a dirty root struct and adds it into the list of dead roots that need to
1214 void btrfs_add_dead_root(struct btrfs_root *root)
1216 spin_lock(&root->fs_info->trans_lock);
1217 if (list_empty(&root->root_list))
1218 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1219 spin_unlock(&root->fs_info->trans_lock);
1223 * update all the cowonly tree roots on disk
1225 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1226 struct btrfs_root *root)
1228 struct btrfs_root *gang[8];
1229 struct btrfs_fs_info *fs_info = root->fs_info;
1234 spin_lock(&fs_info->fs_roots_radix_lock);
1236 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1239 BTRFS_ROOT_TRANS_TAG);
1242 for (i = 0; i < ret; i++) {
1244 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1245 (unsigned long)root->root_key.objectid,
1246 BTRFS_ROOT_TRANS_TAG);
1247 spin_unlock(&fs_info->fs_roots_radix_lock);
1249 btrfs_free_log(trans, root);
1250 btrfs_update_reloc_root(trans, root);
1251 btrfs_orphan_commit_root(trans, root);
1253 btrfs_save_ino_cache(root, trans);
1255 /* see comments in should_cow_block() */
1256 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1257 smp_mb__after_atomic();
1259 if (root->commit_root != root->node) {
1260 list_add_tail(&root->dirty_list,
1261 &trans->transaction->switch_commits);
1262 btrfs_set_root_node(&root->root_item,
1266 err = btrfs_update_root(trans, fs_info->tree_root,
1269 spin_lock(&fs_info->fs_roots_radix_lock);
1272 btrfs_qgroup_free_meta_all(root);
1275 spin_unlock(&fs_info->fs_roots_radix_lock);
1280 * defrag a given btree.
1281 * Every leaf in the btree is read and defragged.
1283 int btrfs_defrag_root(struct btrfs_root *root)
1285 struct btrfs_fs_info *info = root->fs_info;
1286 struct btrfs_trans_handle *trans;
1289 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1293 trans = btrfs_start_transaction(root, 0);
1295 return PTR_ERR(trans);
1297 ret = btrfs_defrag_leaves(trans, root);
1299 btrfs_end_transaction(trans, root);
1300 btrfs_btree_balance_dirty(info->tree_root);
1303 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1306 if (btrfs_defrag_cancelled(root->fs_info)) {
1307 pr_debug("BTRFS: defrag_root cancelled\n");
1312 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1317 * Do all special snapshot related qgroup dirty hack.
1319 * Will do all needed qgroup inherit and dirty hack like switch commit
1320 * roots inside one transaction and write all btree into disk, to make
1323 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1324 struct btrfs_root *src,
1325 struct btrfs_root *parent,
1326 struct btrfs_qgroup_inherit *inherit,
1329 struct btrfs_fs_info *fs_info = src->fs_info;
1333 * Save some performance in the case that qgroups are not
1334 * enabled. If this check races with the ioctl, rescan will
1337 mutex_lock(&fs_info->qgroup_ioctl_lock);
1338 if (!fs_info->quota_enabled) {
1339 mutex_unlock(&fs_info->qgroup_ioctl_lock);
1342 mutex_unlock(&fs_info->qgroup_ioctl_lock);
1345 * We are going to commit transaction, see btrfs_commit_transaction()
1346 * comment for reason locking tree_log_mutex
1348 mutex_lock(&fs_info->tree_log_mutex);
1350 ret = commit_fs_roots(trans, src);
1353 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1356 ret = btrfs_qgroup_account_extents(trans, fs_info);
1360 /* Now qgroup are all updated, we can inherit it to new qgroups */
1361 ret = btrfs_qgroup_inherit(trans, fs_info,
1362 src->root_key.objectid, dst_objectid,
1368 * Now we do a simplified commit transaction, which will:
1369 * 1) commit all subvolume and extent tree
1370 * To ensure all subvolume and extent tree have a valid
1371 * commit_root to accounting later insert_dir_item()
1372 * 2) write all btree blocks onto disk
1373 * This is to make sure later btree modification will be cowed
1374 * Or commit_root can be populated and cause wrong qgroup numbers
1375 * In this simplified commit, we don't really care about other trees
1376 * like chunk and root tree, as they won't affect qgroup.
1377 * And we don't write super to avoid half committed status.
1379 ret = commit_cowonly_roots(trans, src);
1382 switch_commit_roots(trans->transaction, fs_info);
1383 ret = btrfs_write_and_wait_transaction(trans, src);
1385 btrfs_handle_fs_error(fs_info, ret,
1386 "Error while writing out transaction for qgroup");
1389 mutex_unlock(&fs_info->tree_log_mutex);
1392 * Force parent root to be updated, as we recorded it before so its
1393 * last_trans == cur_transid.
1394 * Or it won't be committed again onto disk after later
1398 record_root_in_trans(trans, parent, 1);
1403 * new snapshots need to be created at a very specific time in the
1404 * transaction commit. This does the actual creation.
1407 * If the error which may affect the commitment of the current transaction
1408 * happens, we should return the error number. If the error which just affect
1409 * the creation of the pending snapshots, just return 0.
1411 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1412 struct btrfs_fs_info *fs_info,
1413 struct btrfs_pending_snapshot *pending)
1415 struct btrfs_key key;
1416 struct btrfs_root_item *new_root_item;
1417 struct btrfs_root *tree_root = fs_info->tree_root;
1418 struct btrfs_root *root = pending->root;
1419 struct btrfs_root *parent_root;
1420 struct btrfs_block_rsv *rsv;
1421 struct inode *parent_inode;
1422 struct btrfs_path *path;
1423 struct btrfs_dir_item *dir_item;
1424 struct dentry *dentry;
1425 struct extent_buffer *tmp;
1426 struct extent_buffer *old;
1427 struct timespec cur_time;
1435 ASSERT(pending->path);
1436 path = pending->path;
1438 ASSERT(pending->root_item);
1439 new_root_item = pending->root_item;
1441 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1443 goto no_free_objectid;
1446 * Make qgroup to skip current new snapshot's qgroupid, as it is
1447 * accounted by later btrfs_qgroup_inherit().
1449 btrfs_set_skip_qgroup(trans, objectid);
1451 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1453 if (to_reserve > 0) {
1454 pending->error = btrfs_block_rsv_add(root,
1455 &pending->block_rsv,
1457 BTRFS_RESERVE_NO_FLUSH);
1459 goto clear_skip_qgroup;
1462 key.objectid = objectid;
1463 key.offset = (u64)-1;
1464 key.type = BTRFS_ROOT_ITEM_KEY;
1466 rsv = trans->block_rsv;
1467 trans->block_rsv = &pending->block_rsv;
1468 trans->bytes_reserved = trans->block_rsv->reserved;
1469 trace_btrfs_space_reservation(root->fs_info, "transaction",
1471 trans->bytes_reserved, 1);
1472 dentry = pending->dentry;
1473 parent_inode = pending->dir;
1474 parent_root = BTRFS_I(parent_inode)->root;
1475 record_root_in_trans(trans, parent_root, 0);
1477 cur_time = current_fs_time(parent_inode->i_sb);
1480 * insert the directory item
1482 ret = btrfs_set_inode_index(parent_inode, &index);
1483 BUG_ON(ret); /* -ENOMEM */
1485 /* check if there is a file/dir which has the same name. */
1486 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1487 btrfs_ino(parent_inode),
1488 dentry->d_name.name,
1489 dentry->d_name.len, 0);
1490 if (dir_item != NULL && !IS_ERR(dir_item)) {
1491 pending->error = -EEXIST;
1492 goto dir_item_existed;
1493 } else if (IS_ERR(dir_item)) {
1494 ret = PTR_ERR(dir_item);
1495 btrfs_abort_transaction(trans, ret);
1498 btrfs_release_path(path);
1501 * pull in the delayed directory update
1502 * and the delayed inode item
1503 * otherwise we corrupt the FS during
1506 ret = btrfs_run_delayed_items(trans, root);
1507 if (ret) { /* Transaction aborted */
1508 btrfs_abort_transaction(trans, ret);
1512 record_root_in_trans(trans, root, 0);
1513 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1514 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1515 btrfs_check_and_init_root_item(new_root_item);
1517 root_flags = btrfs_root_flags(new_root_item);
1518 if (pending->readonly)
1519 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1521 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1522 btrfs_set_root_flags(new_root_item, root_flags);
1524 btrfs_set_root_generation_v2(new_root_item,
1526 uuid_le_gen(&new_uuid);
1527 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1528 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1530 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1531 memset(new_root_item->received_uuid, 0,
1532 sizeof(new_root_item->received_uuid));
1533 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1534 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1535 btrfs_set_root_stransid(new_root_item, 0);
1536 btrfs_set_root_rtransid(new_root_item, 0);
1538 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1539 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1540 btrfs_set_root_otransid(new_root_item, trans->transid);
1542 old = btrfs_lock_root_node(root);
1543 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1545 btrfs_tree_unlock(old);
1546 free_extent_buffer(old);
1547 btrfs_abort_transaction(trans, ret);
1551 btrfs_set_lock_blocking(old);
1553 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1554 /* clean up in any case */
1555 btrfs_tree_unlock(old);
1556 free_extent_buffer(old);
1558 btrfs_abort_transaction(trans, ret);
1561 /* see comments in should_cow_block() */
1562 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1565 btrfs_set_root_node(new_root_item, tmp);
1566 /* record when the snapshot was created in key.offset */
1567 key.offset = trans->transid;
1568 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1569 btrfs_tree_unlock(tmp);
1570 free_extent_buffer(tmp);
1572 btrfs_abort_transaction(trans, ret);
1577 * insert root back/forward references
1579 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1580 parent_root->root_key.objectid,
1581 btrfs_ino(parent_inode), index,
1582 dentry->d_name.name, dentry->d_name.len);
1584 btrfs_abort_transaction(trans, ret);
1588 key.offset = (u64)-1;
1589 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1590 if (IS_ERR(pending->snap)) {
1591 ret = PTR_ERR(pending->snap);
1592 btrfs_abort_transaction(trans, ret);
1596 ret = btrfs_reloc_post_snapshot(trans, pending);
1598 btrfs_abort_transaction(trans, ret);
1602 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1604 btrfs_abort_transaction(trans, ret);
1609 * Do special qgroup accounting for snapshot, as we do some qgroup
1610 * snapshot hack to do fast snapshot.
1611 * To co-operate with that hack, we do hack again.
1612 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1614 ret = qgroup_account_snapshot(trans, root, parent_root,
1615 pending->inherit, objectid);
1619 ret = btrfs_insert_dir_item(trans, parent_root,
1620 dentry->d_name.name, dentry->d_name.len,
1622 BTRFS_FT_DIR, index);
1623 /* We have check then name at the beginning, so it is impossible. */
1624 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1626 btrfs_abort_transaction(trans, ret);
1630 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1631 dentry->d_name.len * 2);
1632 parent_inode->i_mtime = parent_inode->i_ctime =
1633 current_fs_time(parent_inode->i_sb);
1634 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1636 btrfs_abort_transaction(trans, ret);
1639 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1640 BTRFS_UUID_KEY_SUBVOL, objectid);
1642 btrfs_abort_transaction(trans, ret);
1645 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1646 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1647 new_root_item->received_uuid,
1648 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1650 if (ret && ret != -EEXIST) {
1651 btrfs_abort_transaction(trans, ret);
1656 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1658 btrfs_abort_transaction(trans, ret);
1663 pending->error = ret;
1665 trans->block_rsv = rsv;
1666 trans->bytes_reserved = 0;
1668 btrfs_clear_skip_qgroup(trans);
1670 kfree(new_root_item);
1671 pending->root_item = NULL;
1672 btrfs_free_path(path);
1673 pending->path = NULL;
1679 * create all the snapshots we've scheduled for creation
1681 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1682 struct btrfs_fs_info *fs_info)
1684 struct btrfs_pending_snapshot *pending, *next;
1685 struct list_head *head = &trans->transaction->pending_snapshots;
1688 list_for_each_entry_safe(pending, next, head, list) {
1689 list_del(&pending->list);
1690 ret = create_pending_snapshot(trans, fs_info, pending);
1697 static void update_super_roots(struct btrfs_root *root)
1699 struct btrfs_root_item *root_item;
1700 struct btrfs_super_block *super;
1702 super = root->fs_info->super_copy;
1704 root_item = &root->fs_info->chunk_root->root_item;
1705 super->chunk_root = root_item->bytenr;
1706 super->chunk_root_generation = root_item->generation;
1707 super->chunk_root_level = root_item->level;
1709 root_item = &root->fs_info->tree_root->root_item;
1710 super->root = root_item->bytenr;
1711 super->generation = root_item->generation;
1712 super->root_level = root_item->level;
1713 if (btrfs_test_opt(root->fs_info, SPACE_CACHE))
1714 super->cache_generation = root_item->generation;
1715 if (root->fs_info->update_uuid_tree_gen)
1716 super->uuid_tree_generation = root_item->generation;
1719 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1721 struct btrfs_transaction *trans;
1724 spin_lock(&info->trans_lock);
1725 trans = info->running_transaction;
1727 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1728 spin_unlock(&info->trans_lock);
1732 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1734 struct btrfs_transaction *trans;
1737 spin_lock(&info->trans_lock);
1738 trans = info->running_transaction;
1740 ret = is_transaction_blocked(trans);
1741 spin_unlock(&info->trans_lock);
1746 * wait for the current transaction commit to start and block subsequent
1749 static void wait_current_trans_commit_start(struct btrfs_root *root,
1750 struct btrfs_transaction *trans)
1752 wait_event(root->fs_info->transaction_blocked_wait,
1753 trans->state >= TRANS_STATE_COMMIT_START ||
1758 * wait for the current transaction to start and then become unblocked.
1761 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1762 struct btrfs_transaction *trans)
1764 wait_event(root->fs_info->transaction_wait,
1765 trans->state >= TRANS_STATE_UNBLOCKED ||
1770 * commit transactions asynchronously. once btrfs_commit_transaction_async
1771 * returns, any subsequent transaction will not be allowed to join.
1773 struct btrfs_async_commit {
1774 struct btrfs_trans_handle *newtrans;
1775 struct btrfs_root *root;
1776 struct work_struct work;
1779 static void do_async_commit(struct work_struct *work)
1781 struct btrfs_async_commit *ac =
1782 container_of(work, struct btrfs_async_commit, work);
1785 * We've got freeze protection passed with the transaction.
1786 * Tell lockdep about it.
1788 if (ac->newtrans->type & __TRANS_FREEZABLE)
1789 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1791 current->journal_info = ac->newtrans;
1793 btrfs_commit_transaction(ac->newtrans, ac->root);
1797 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1798 struct btrfs_root *root,
1799 int wait_for_unblock)
1801 struct btrfs_async_commit *ac;
1802 struct btrfs_transaction *cur_trans;
1804 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1808 INIT_WORK(&ac->work, do_async_commit);
1810 ac->newtrans = btrfs_join_transaction(root);
1811 if (IS_ERR(ac->newtrans)) {
1812 int err = PTR_ERR(ac->newtrans);
1817 /* take transaction reference */
1818 cur_trans = trans->transaction;
1819 atomic_inc(&cur_trans->use_count);
1821 btrfs_end_transaction(trans, root);
1824 * Tell lockdep we've released the freeze rwsem, since the
1825 * async commit thread will be the one to unlock it.
1827 if (ac->newtrans->type & __TRANS_FREEZABLE)
1828 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1830 schedule_work(&ac->work);
1832 /* wait for transaction to start and unblock */
1833 if (wait_for_unblock)
1834 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1836 wait_current_trans_commit_start(root, cur_trans);
1838 if (current->journal_info == trans)
1839 current->journal_info = NULL;
1841 btrfs_put_transaction(cur_trans);
1846 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root, int err)
1849 struct btrfs_transaction *cur_trans = trans->transaction;
1852 WARN_ON(trans->use_count > 1);
1854 btrfs_abort_transaction(trans, err);
1856 spin_lock(&root->fs_info->trans_lock);
1859 * If the transaction is removed from the list, it means this
1860 * transaction has been committed successfully, so it is impossible
1861 * to call the cleanup function.
1863 BUG_ON(list_empty(&cur_trans->list));
1865 list_del_init(&cur_trans->list);
1866 if (cur_trans == root->fs_info->running_transaction) {
1867 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1868 spin_unlock(&root->fs_info->trans_lock);
1869 wait_event(cur_trans->writer_wait,
1870 atomic_read(&cur_trans->num_writers) == 1);
1872 spin_lock(&root->fs_info->trans_lock);
1874 spin_unlock(&root->fs_info->trans_lock);
1876 btrfs_cleanup_one_transaction(trans->transaction, root);
1878 spin_lock(&root->fs_info->trans_lock);
1879 if (cur_trans == root->fs_info->running_transaction)
1880 root->fs_info->running_transaction = NULL;
1881 spin_unlock(&root->fs_info->trans_lock);
1883 if (trans->type & __TRANS_FREEZABLE)
1884 sb_end_intwrite(root->fs_info->sb);
1885 btrfs_put_transaction(cur_trans);
1886 btrfs_put_transaction(cur_trans);
1888 trace_btrfs_transaction_commit(root);
1890 if (current->journal_info == trans)
1891 current->journal_info = NULL;
1892 btrfs_scrub_cancel(root->fs_info);
1894 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1897 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1899 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1900 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1904 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1906 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1907 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1911 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1913 wait_event(cur_trans->pending_wait,
1914 atomic_read(&cur_trans->pending_ordered) == 0);
1917 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1918 struct btrfs_root *root)
1920 struct btrfs_transaction *cur_trans = trans->transaction;
1921 struct btrfs_transaction *prev_trans = NULL;
1922 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1925 /* Stop the commit early if ->aborted is set */
1926 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1927 ret = cur_trans->aborted;
1928 btrfs_end_transaction(trans, root);
1932 /* make a pass through all the delayed refs we have so far
1933 * any runnings procs may add more while we are here
1935 ret = btrfs_run_delayed_refs(trans, root, 0);
1937 btrfs_end_transaction(trans, root);
1941 btrfs_trans_release_metadata(trans, root);
1942 trans->block_rsv = NULL;
1944 cur_trans = trans->transaction;
1947 * set the flushing flag so procs in this transaction have to
1948 * start sending their work down.
1950 cur_trans->delayed_refs.flushing = 1;
1953 if (!list_empty(&trans->new_bgs))
1954 btrfs_create_pending_block_groups(trans, root);
1956 ret = btrfs_run_delayed_refs(trans, root, 0);
1958 btrfs_end_transaction(trans, root);
1962 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1965 /* this mutex is also taken before trying to set
1966 * block groups readonly. We need to make sure
1967 * that nobody has set a block group readonly
1968 * after a extents from that block group have been
1969 * allocated for cache files. btrfs_set_block_group_ro
1970 * will wait for the transaction to commit if it
1971 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1973 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1974 * only one process starts all the block group IO. It wouldn't
1975 * hurt to have more than one go through, but there's no
1976 * real advantage to it either.
1978 mutex_lock(&root->fs_info->ro_block_group_mutex);
1979 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1982 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1985 ret = btrfs_start_dirty_block_groups(trans, root);
1988 btrfs_end_transaction(trans, root);
1992 spin_lock(&root->fs_info->trans_lock);
1993 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1994 spin_unlock(&root->fs_info->trans_lock);
1995 atomic_inc(&cur_trans->use_count);
1996 ret = btrfs_end_transaction(trans, root);
1998 wait_for_commit(root, cur_trans);
2000 if (unlikely(cur_trans->aborted))
2001 ret = cur_trans->aborted;
2003 btrfs_put_transaction(cur_trans);
2008 cur_trans->state = TRANS_STATE_COMMIT_START;
2009 wake_up(&root->fs_info->transaction_blocked_wait);
2011 if (cur_trans->list.prev != &root->fs_info->trans_list) {
2012 prev_trans = list_entry(cur_trans->list.prev,
2013 struct btrfs_transaction, list);
2014 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2015 atomic_inc(&prev_trans->use_count);
2016 spin_unlock(&root->fs_info->trans_lock);
2018 wait_for_commit(root, prev_trans);
2019 ret = prev_trans->aborted;
2021 btrfs_put_transaction(prev_trans);
2023 goto cleanup_transaction;
2025 spin_unlock(&root->fs_info->trans_lock);
2028 spin_unlock(&root->fs_info->trans_lock);
2031 extwriter_counter_dec(cur_trans, trans->type);
2033 ret = btrfs_start_delalloc_flush(root->fs_info);
2035 goto cleanup_transaction;
2037 ret = btrfs_run_delayed_items(trans, root);
2039 goto cleanup_transaction;
2041 wait_event(cur_trans->writer_wait,
2042 extwriter_counter_read(cur_trans) == 0);
2044 /* some pending stuffs might be added after the previous flush. */
2045 ret = btrfs_run_delayed_items(trans, root);
2047 goto cleanup_transaction;
2049 btrfs_wait_delalloc_flush(root->fs_info);
2051 btrfs_wait_pending_ordered(cur_trans);
2053 btrfs_scrub_pause(root);
2055 * Ok now we need to make sure to block out any other joins while we
2056 * commit the transaction. We could have started a join before setting
2057 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2059 spin_lock(&root->fs_info->trans_lock);
2060 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2061 spin_unlock(&root->fs_info->trans_lock);
2062 wait_event(cur_trans->writer_wait,
2063 atomic_read(&cur_trans->num_writers) == 1);
2065 /* ->aborted might be set after the previous check, so check it */
2066 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2067 ret = cur_trans->aborted;
2068 goto scrub_continue;
2071 * the reloc mutex makes sure that we stop
2072 * the balancing code from coming in and moving
2073 * extents around in the middle of the commit
2075 mutex_lock(&root->fs_info->reloc_mutex);
2078 * We needn't worry about the delayed items because we will
2079 * deal with them in create_pending_snapshot(), which is the
2080 * core function of the snapshot creation.
2082 ret = create_pending_snapshots(trans, root->fs_info);
2084 mutex_unlock(&root->fs_info->reloc_mutex);
2085 goto scrub_continue;
2089 * We insert the dir indexes of the snapshots and update the inode
2090 * of the snapshots' parents after the snapshot creation, so there
2091 * are some delayed items which are not dealt with. Now deal with
2094 * We needn't worry that this operation will corrupt the snapshots,
2095 * because all the tree which are snapshoted will be forced to COW
2096 * the nodes and leaves.
2098 ret = btrfs_run_delayed_items(trans, root);
2100 mutex_unlock(&root->fs_info->reloc_mutex);
2101 goto scrub_continue;
2104 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2106 mutex_unlock(&root->fs_info->reloc_mutex);
2107 goto scrub_continue;
2110 /* Reocrd old roots for later qgroup accounting */
2111 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2113 mutex_unlock(&root->fs_info->reloc_mutex);
2114 goto scrub_continue;
2118 * make sure none of the code above managed to slip in a
2121 btrfs_assert_delayed_root_empty(root);
2123 WARN_ON(cur_trans != trans->transaction);
2125 /* btrfs_commit_tree_roots is responsible for getting the
2126 * various roots consistent with each other. Every pointer
2127 * in the tree of tree roots has to point to the most up to date
2128 * root for every subvolume and other tree. So, we have to keep
2129 * the tree logging code from jumping in and changing any
2132 * At this point in the commit, there can't be any tree-log
2133 * writers, but a little lower down we drop the trans mutex
2134 * and let new people in. By holding the tree_log_mutex
2135 * from now until after the super is written, we avoid races
2136 * with the tree-log code.
2138 mutex_lock(&root->fs_info->tree_log_mutex);
2140 ret = commit_fs_roots(trans, root);
2142 mutex_unlock(&root->fs_info->tree_log_mutex);
2143 mutex_unlock(&root->fs_info->reloc_mutex);
2144 goto scrub_continue;
2148 * Since the transaction is done, we can apply the pending changes
2149 * before the next transaction.
2151 btrfs_apply_pending_changes(root->fs_info);
2153 /* commit_fs_roots gets rid of all the tree log roots, it is now
2154 * safe to free the root of tree log roots
2156 btrfs_free_log_root_tree(trans, root->fs_info);
2159 * Since fs roots are all committed, we can get a quite accurate
2160 * new_roots. So let's do quota accounting.
2162 ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2164 mutex_unlock(&root->fs_info->tree_log_mutex);
2165 mutex_unlock(&root->fs_info->reloc_mutex);
2166 goto scrub_continue;
2169 ret = commit_cowonly_roots(trans, root);
2171 mutex_unlock(&root->fs_info->tree_log_mutex);
2172 mutex_unlock(&root->fs_info->reloc_mutex);
2173 goto scrub_continue;
2177 * The tasks which save the space cache and inode cache may also
2178 * update ->aborted, check it.
2180 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2181 ret = cur_trans->aborted;
2182 mutex_unlock(&root->fs_info->tree_log_mutex);
2183 mutex_unlock(&root->fs_info->reloc_mutex);
2184 goto scrub_continue;
2187 btrfs_prepare_extent_commit(trans, root);
2189 cur_trans = root->fs_info->running_transaction;
2191 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2192 root->fs_info->tree_root->node);
2193 list_add_tail(&root->fs_info->tree_root->dirty_list,
2194 &cur_trans->switch_commits);
2196 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2197 root->fs_info->chunk_root->node);
2198 list_add_tail(&root->fs_info->chunk_root->dirty_list,
2199 &cur_trans->switch_commits);
2201 switch_commit_roots(cur_trans, root->fs_info);
2203 assert_qgroups_uptodate(trans);
2204 ASSERT(list_empty(&cur_trans->dirty_bgs));
2205 ASSERT(list_empty(&cur_trans->io_bgs));
2206 update_super_roots(root);
2208 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2209 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2210 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2211 sizeof(*root->fs_info->super_copy));
2213 btrfs_update_commit_device_size(root->fs_info);
2214 btrfs_update_commit_device_bytes_used(root, cur_trans);
2216 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2217 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2219 btrfs_trans_release_chunk_metadata(trans);
2221 spin_lock(&root->fs_info->trans_lock);
2222 cur_trans->state = TRANS_STATE_UNBLOCKED;
2223 root->fs_info->running_transaction = NULL;
2224 spin_unlock(&root->fs_info->trans_lock);
2225 mutex_unlock(&root->fs_info->reloc_mutex);
2227 wake_up(&root->fs_info->transaction_wait);
2229 ret = btrfs_write_and_wait_transaction(trans, root);
2231 btrfs_handle_fs_error(root->fs_info, ret,
2232 "Error while writing out transaction");
2233 mutex_unlock(&root->fs_info->tree_log_mutex);
2234 goto scrub_continue;
2237 ret = write_ctree_super(trans, root, 0);
2239 mutex_unlock(&root->fs_info->tree_log_mutex);
2240 goto scrub_continue;
2244 * the super is written, we can safely allow the tree-loggers
2245 * to go about their business
2247 mutex_unlock(&root->fs_info->tree_log_mutex);
2249 btrfs_finish_extent_commit(trans, root);
2251 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2252 btrfs_clear_space_info_full(root->fs_info);
2254 root->fs_info->last_trans_committed = cur_trans->transid;
2256 * We needn't acquire the lock here because there is no other task
2257 * which can change it.
2259 cur_trans->state = TRANS_STATE_COMPLETED;
2260 wake_up(&cur_trans->commit_wait);
2262 spin_lock(&root->fs_info->trans_lock);
2263 list_del_init(&cur_trans->list);
2264 spin_unlock(&root->fs_info->trans_lock);
2266 btrfs_put_transaction(cur_trans);
2267 btrfs_put_transaction(cur_trans);
2269 if (trans->type & __TRANS_FREEZABLE)
2270 sb_end_intwrite(root->fs_info->sb);
2272 trace_btrfs_transaction_commit(root);
2274 btrfs_scrub_continue(root);
2276 if (current->journal_info == trans)
2277 current->journal_info = NULL;
2279 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2281 if (current != root->fs_info->transaction_kthread &&
2282 current != root->fs_info->cleaner_kthread)
2283 btrfs_run_delayed_iputs(root);
2288 btrfs_scrub_continue(root);
2289 cleanup_transaction:
2290 btrfs_trans_release_metadata(trans, root);
2291 btrfs_trans_release_chunk_metadata(trans);
2292 trans->block_rsv = NULL;
2293 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2294 if (current->journal_info == trans)
2295 current->journal_info = NULL;
2296 cleanup_transaction(trans, root, ret);
2302 * return < 0 if error
2303 * 0 if there are no more dead_roots at the time of call
2304 * 1 there are more to be processed, call me again
2306 * The return value indicates there are certainly more snapshots to delete, but
2307 * if there comes a new one during processing, it may return 0. We don't mind,
2308 * because btrfs_commit_super will poke cleaner thread and it will process it a
2309 * few seconds later.
2311 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2314 struct btrfs_fs_info *fs_info = root->fs_info;
2316 spin_lock(&fs_info->trans_lock);
2317 if (list_empty(&fs_info->dead_roots)) {
2318 spin_unlock(&fs_info->trans_lock);
2321 root = list_first_entry(&fs_info->dead_roots,
2322 struct btrfs_root, root_list);
2323 list_del_init(&root->root_list);
2324 spin_unlock(&fs_info->trans_lock);
2326 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2328 btrfs_kill_all_delayed_nodes(root);
2330 if (btrfs_header_backref_rev(root->node) <
2331 BTRFS_MIXED_BACKREF_REV)
2332 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2334 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2336 return (ret < 0) ? 0 : 1;
2339 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2344 prev = xchg(&fs_info->pending_changes, 0);
2348 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2350 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2353 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2355 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2358 bit = 1 << BTRFS_PENDING_COMMIT;
2360 btrfs_debug(fs_info, "pending commit done");
2365 "unknown pending changes left 0x%lx, ignoring", prev);