1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
18 #include "transaction.h"
22 #include "dev-replace.h"
24 #include "block-group.h"
25 #include "space-info.h"
28 #include "accessors.h"
29 #include "extent-tree.h"
30 #include "root-tree.h"
33 #include "uuid-tree.h"
35 #include "relocation.h"
38 static struct kmem_cache *btrfs_trans_handle_cachep;
40 #define BTRFS_ROOT_TRANS_TAG 0
43 * Transaction states and transitions
45 * No running transaction (fs tree blocks are not modified)
48 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
50 * Transaction N [[TRANS_STATE_RUNNING]]
52 * | New trans handles can be attached to transaction N by calling all
53 * | start_transaction() variants.
56 * | Call btrfs_commit_transaction() on any trans handle attached to
59 * Transaction N [[TRANS_STATE_COMMIT_START]]
61 * | Will wait for previous running transaction to completely finish if there
64 * | Then one of the following happes:
65 * | - Wait for all other trans handle holders to release.
66 * | The btrfs_commit_transaction() caller will do the commit work.
67 * | - Wait for current transaction to be committed by others.
68 * | Other btrfs_commit_transaction() caller will do the commit work.
70 * | At this stage, only btrfs_join_transaction*() variants can attach
71 * | to this running transaction.
72 * | All other variants will wait for current one to finish and attach to
76 * | Caller is chosen to commit transaction N, and all other trans handle
77 * | haven been released.
79 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
81 * | The heavy lifting transaction work is started.
82 * | From running delayed refs (modifying extent tree) to creating pending
83 * | snapshots, running qgroups.
84 * | In short, modify supporting trees to reflect modifications of subvolume
87 * | At this stage, all start_transaction() calls will wait for this
88 * | transaction to finish and attach to transaction N+1.
91 * | Until all supporting trees are updated.
93 * Transaction N [[TRANS_STATE_UNBLOCKED]]
95 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
96 * | need to write them back to disk and update |
99 * | At this stage, new transaction is allowed to |
101 * | All new start_transaction() calls will be |
102 * | attached to transid N+1. |
105 * | Until all tree blocks are super blocks are |
106 * | written to block devices |
108 * Transaction N [[TRANS_STATE_COMPLETED]] V
109 * All tree blocks and super blocks are written. Transaction N+1
110 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
111 * data structures will be cleaned up. | Life goes on
113 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
114 [TRANS_STATE_RUNNING] = 0U,
115 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
116 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
119 __TRANS_JOIN_NOSTART),
120 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
123 __TRANS_JOIN_NOLOCK |
124 __TRANS_JOIN_NOSTART),
125 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
128 __TRANS_JOIN_NOLOCK |
129 __TRANS_JOIN_NOSTART),
130 [TRANS_STATE_COMPLETED] = (__TRANS_START |
133 __TRANS_JOIN_NOLOCK |
134 __TRANS_JOIN_NOSTART),
137 void btrfs_put_transaction(struct btrfs_transaction *transaction)
139 WARN_ON(refcount_read(&transaction->use_count) == 0);
140 if (refcount_dec_and_test(&transaction->use_count)) {
141 BUG_ON(!list_empty(&transaction->list));
142 WARN_ON(!RB_EMPTY_ROOT(
143 &transaction->delayed_refs.href_root.rb_root));
144 WARN_ON(!RB_EMPTY_ROOT(
145 &transaction->delayed_refs.dirty_extent_root));
146 if (transaction->delayed_refs.pending_csums)
147 btrfs_err(transaction->fs_info,
148 "pending csums is %llu",
149 transaction->delayed_refs.pending_csums);
151 * If any block groups are found in ->deleted_bgs then it's
152 * because the transaction was aborted and a commit did not
153 * happen (things failed before writing the new superblock
154 * and calling btrfs_finish_extent_commit()), so we can not
155 * discard the physical locations of the block groups.
157 while (!list_empty(&transaction->deleted_bgs)) {
158 struct btrfs_block_group *cache;
160 cache = list_first_entry(&transaction->deleted_bgs,
161 struct btrfs_block_group,
163 list_del_init(&cache->bg_list);
164 btrfs_unfreeze_block_group(cache);
165 btrfs_put_block_group(cache);
167 WARN_ON(!list_empty(&transaction->dev_update_list));
172 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
174 struct btrfs_transaction *cur_trans = trans->transaction;
175 struct btrfs_fs_info *fs_info = trans->fs_info;
176 struct btrfs_root *root, *tmp;
179 * At this point no one can be using this transaction to modify any tree
180 * and no one can start another transaction to modify any tree either.
182 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
184 down_write(&fs_info->commit_root_sem);
186 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
187 fs_info->last_reloc_trans = trans->transid;
189 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
191 list_del_init(&root->dirty_list);
192 free_extent_buffer(root->commit_root);
193 root->commit_root = btrfs_root_node(root);
194 extent_io_tree_release(&root->dirty_log_pages);
195 btrfs_qgroup_clean_swapped_blocks(root);
198 /* We can free old roots now. */
199 spin_lock(&cur_trans->dropped_roots_lock);
200 while (!list_empty(&cur_trans->dropped_roots)) {
201 root = list_first_entry(&cur_trans->dropped_roots,
202 struct btrfs_root, root_list);
203 list_del_init(&root->root_list);
204 spin_unlock(&cur_trans->dropped_roots_lock);
205 btrfs_free_log(trans, root);
206 btrfs_drop_and_free_fs_root(fs_info, root);
207 spin_lock(&cur_trans->dropped_roots_lock);
209 spin_unlock(&cur_trans->dropped_roots_lock);
211 up_write(&fs_info->commit_root_sem);
214 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
217 if (type & TRANS_EXTWRITERS)
218 atomic_inc(&trans->num_extwriters);
221 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
224 if (type & TRANS_EXTWRITERS)
225 atomic_dec(&trans->num_extwriters);
228 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
231 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
234 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
236 return atomic_read(&trans->num_extwriters);
240 * To be called after doing the chunk btree updates right after allocating a new
241 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
242 * chunk after all chunk btree updates and after finishing the second phase of
243 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
244 * group had its chunk item insertion delayed to the second phase.
246 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
248 struct btrfs_fs_info *fs_info = trans->fs_info;
250 if (!trans->chunk_bytes_reserved)
253 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
254 trans->chunk_bytes_reserved, NULL);
255 trans->chunk_bytes_reserved = 0;
259 * either allocate a new transaction or hop into the existing one
261 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
264 struct btrfs_transaction *cur_trans;
266 spin_lock(&fs_info->trans_lock);
268 /* The file system has been taken offline. No new transactions. */
269 if (BTRFS_FS_ERROR(fs_info)) {
270 spin_unlock(&fs_info->trans_lock);
274 cur_trans = fs_info->running_transaction;
276 if (TRANS_ABORTED(cur_trans)) {
277 spin_unlock(&fs_info->trans_lock);
278 return cur_trans->aborted;
280 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
281 spin_unlock(&fs_info->trans_lock);
284 refcount_inc(&cur_trans->use_count);
285 atomic_inc(&cur_trans->num_writers);
286 extwriter_counter_inc(cur_trans, type);
287 spin_unlock(&fs_info->trans_lock);
288 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
289 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
292 spin_unlock(&fs_info->trans_lock);
295 * If we are ATTACH, we just want to catch the current transaction,
296 * and commit it. If there is no transaction, just return ENOENT.
298 if (type == TRANS_ATTACH)
302 * JOIN_NOLOCK only happens during the transaction commit, so
303 * it is impossible that ->running_transaction is NULL
305 BUG_ON(type == TRANS_JOIN_NOLOCK);
307 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
311 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
312 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
314 spin_lock(&fs_info->trans_lock);
315 if (fs_info->running_transaction) {
317 * someone started a transaction after we unlocked. Make sure
318 * to redo the checks above
320 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
321 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
324 } else if (BTRFS_FS_ERROR(fs_info)) {
325 spin_unlock(&fs_info->trans_lock);
326 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
327 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
332 cur_trans->fs_info = fs_info;
333 atomic_set(&cur_trans->pending_ordered, 0);
334 init_waitqueue_head(&cur_trans->pending_wait);
335 atomic_set(&cur_trans->num_writers, 1);
336 extwriter_counter_init(cur_trans, type);
337 init_waitqueue_head(&cur_trans->writer_wait);
338 init_waitqueue_head(&cur_trans->commit_wait);
339 cur_trans->state = TRANS_STATE_RUNNING;
341 * One for this trans handle, one so it will live on until we
342 * commit the transaction.
344 refcount_set(&cur_trans->use_count, 2);
345 cur_trans->flags = 0;
346 cur_trans->start_time = ktime_get_seconds();
348 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
350 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
351 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
352 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
355 * although the tree mod log is per file system and not per transaction,
356 * the log must never go across transaction boundaries.
359 if (!list_empty(&fs_info->tree_mod_seq_list))
360 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
361 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
362 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
363 atomic64_set(&fs_info->tree_mod_seq, 0);
365 spin_lock_init(&cur_trans->delayed_refs.lock);
367 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
368 INIT_LIST_HEAD(&cur_trans->dev_update_list);
369 INIT_LIST_HEAD(&cur_trans->switch_commits);
370 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
371 INIT_LIST_HEAD(&cur_trans->io_bgs);
372 INIT_LIST_HEAD(&cur_trans->dropped_roots);
373 mutex_init(&cur_trans->cache_write_mutex);
374 spin_lock_init(&cur_trans->dirty_bgs_lock);
375 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
376 spin_lock_init(&cur_trans->dropped_roots_lock);
377 list_add_tail(&cur_trans->list, &fs_info->trans_list);
378 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
379 IO_TREE_TRANS_DIRTY_PAGES);
380 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
381 IO_TREE_FS_PINNED_EXTENTS);
382 fs_info->generation++;
383 cur_trans->transid = fs_info->generation;
384 fs_info->running_transaction = cur_trans;
385 cur_trans->aborted = 0;
386 spin_unlock(&fs_info->trans_lock);
392 * This does all the record keeping required to make sure that a shareable root
393 * is properly recorded in a given transaction. This is required to make sure
394 * the old root from before we joined the transaction is deleted when the
395 * transaction commits.
397 static int record_root_in_trans(struct btrfs_trans_handle *trans,
398 struct btrfs_root *root,
401 struct btrfs_fs_info *fs_info = root->fs_info;
404 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
405 root->last_trans < trans->transid) || force) {
406 WARN_ON(!force && root->commit_root != root->node);
409 * see below for IN_TRANS_SETUP usage rules
410 * we have the reloc mutex held now, so there
411 * is only one writer in this function
413 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
415 /* make sure readers find IN_TRANS_SETUP before
416 * they find our root->last_trans update
420 spin_lock(&fs_info->fs_roots_radix_lock);
421 if (root->last_trans == trans->transid && !force) {
422 spin_unlock(&fs_info->fs_roots_radix_lock);
425 radix_tree_tag_set(&fs_info->fs_roots_radix,
426 (unsigned long)root->root_key.objectid,
427 BTRFS_ROOT_TRANS_TAG);
428 spin_unlock(&fs_info->fs_roots_radix_lock);
429 root->last_trans = trans->transid;
431 /* this is pretty tricky. We don't want to
432 * take the relocation lock in btrfs_record_root_in_trans
433 * unless we're really doing the first setup for this root in
436 * Normally we'd use root->last_trans as a flag to decide
437 * if we want to take the expensive mutex.
439 * But, we have to set root->last_trans before we
440 * init the relocation root, otherwise, we trip over warnings
441 * in ctree.c. The solution used here is to flag ourselves
442 * with root IN_TRANS_SETUP. When this is 1, we're still
443 * fixing up the reloc trees and everyone must wait.
445 * When this is zero, they can trust root->last_trans and fly
446 * through btrfs_record_root_in_trans without having to take the
447 * lock. smp_wmb() makes sure that all the writes above are
448 * done before we pop in the zero below
450 ret = btrfs_init_reloc_root(trans, root);
451 smp_mb__before_atomic();
452 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
458 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
459 struct btrfs_root *root)
461 struct btrfs_fs_info *fs_info = root->fs_info;
462 struct btrfs_transaction *cur_trans = trans->transaction;
464 /* Add ourselves to the transaction dropped list */
465 spin_lock(&cur_trans->dropped_roots_lock);
466 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
467 spin_unlock(&cur_trans->dropped_roots_lock);
469 /* Make sure we don't try to update the root at commit time */
470 spin_lock(&fs_info->fs_roots_radix_lock);
471 radix_tree_tag_clear(&fs_info->fs_roots_radix,
472 (unsigned long)root->root_key.objectid,
473 BTRFS_ROOT_TRANS_TAG);
474 spin_unlock(&fs_info->fs_roots_radix_lock);
477 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
478 struct btrfs_root *root)
480 struct btrfs_fs_info *fs_info = root->fs_info;
483 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
487 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
491 if (root->last_trans == trans->transid &&
492 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
495 mutex_lock(&fs_info->reloc_mutex);
496 ret = record_root_in_trans(trans, root, 0);
497 mutex_unlock(&fs_info->reloc_mutex);
502 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
504 return (trans->state >= TRANS_STATE_COMMIT_START &&
505 trans->state < TRANS_STATE_UNBLOCKED &&
506 !TRANS_ABORTED(trans));
509 /* wait for commit against the current transaction to become unblocked
510 * when this is done, it is safe to start a new transaction, but the current
511 * transaction might not be fully on disk.
513 static void wait_current_trans(struct btrfs_fs_info *fs_info)
515 struct btrfs_transaction *cur_trans;
517 spin_lock(&fs_info->trans_lock);
518 cur_trans = fs_info->running_transaction;
519 if (cur_trans && is_transaction_blocked(cur_trans)) {
520 refcount_inc(&cur_trans->use_count);
521 spin_unlock(&fs_info->trans_lock);
523 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
524 wait_event(fs_info->transaction_wait,
525 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
526 TRANS_ABORTED(cur_trans));
527 btrfs_put_transaction(cur_trans);
529 spin_unlock(&fs_info->trans_lock);
533 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
535 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
538 if (type == TRANS_START)
544 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
546 struct btrfs_fs_info *fs_info = root->fs_info;
548 if (!fs_info->reloc_ctl ||
549 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
550 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
557 static struct btrfs_trans_handle *
558 start_transaction(struct btrfs_root *root, unsigned int num_items,
559 unsigned int type, enum btrfs_reserve_flush_enum flush,
560 bool enforce_qgroups)
562 struct btrfs_fs_info *fs_info = root->fs_info;
563 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
564 struct btrfs_trans_handle *h;
565 struct btrfs_transaction *cur_trans;
567 u64 qgroup_reserved = 0;
568 bool reloc_reserved = false;
569 bool do_chunk_alloc = false;
572 if (BTRFS_FS_ERROR(fs_info))
573 return ERR_PTR(-EROFS);
575 if (current->journal_info) {
576 WARN_ON(type & TRANS_EXTWRITERS);
577 h = current->journal_info;
578 refcount_inc(&h->use_count);
579 WARN_ON(refcount_read(&h->use_count) > 2);
580 h->orig_rsv = h->block_rsv;
586 * Do the reservation before we join the transaction so we can do all
587 * the appropriate flushing if need be.
589 if (num_items && root != fs_info->chunk_root) {
590 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
591 u64 delayed_refs_bytes = 0;
593 qgroup_reserved = num_items * fs_info->nodesize;
594 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
600 * We want to reserve all the bytes we may need all at once, so
601 * we only do 1 enospc flushing cycle per transaction start. We
602 * accomplish this by simply assuming we'll do num_items worth
603 * of delayed refs updates in this trans handle, and refill that
604 * amount for whatever is missing in the reserve.
606 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
607 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
608 !btrfs_block_rsv_full(delayed_refs_rsv)) {
609 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info,
611 num_bytes += delayed_refs_bytes;
615 * Do the reservation for the relocation root creation
617 if (need_reserve_reloc_root(root)) {
618 num_bytes += fs_info->nodesize;
619 reloc_reserved = true;
622 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
625 if (delayed_refs_bytes) {
626 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
628 num_bytes -= delayed_refs_bytes;
631 if (rsv->space_info->force_alloc)
632 do_chunk_alloc = true;
633 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
634 !btrfs_block_rsv_full(delayed_refs_rsv)) {
636 * Some people call with btrfs_start_transaction(root, 0)
637 * because they can be throttled, but have some other mechanism
638 * for reserving space. We still want these guys to refill the
639 * delayed block_rsv so just add 1 items worth of reservation
642 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
647 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
654 * If we are JOIN_NOLOCK we're already committing a transaction and
655 * waiting on this guy, so we don't need to do the sb_start_intwrite
656 * because we're already holding a ref. We need this because we could
657 * have raced in and did an fsync() on a file which can kick a commit
658 * and then we deadlock with somebody doing a freeze.
660 * If we are ATTACH, it means we just want to catch the current
661 * transaction and commit it, so we needn't do sb_start_intwrite().
663 if (type & __TRANS_FREEZABLE)
664 sb_start_intwrite(fs_info->sb);
666 if (may_wait_transaction(fs_info, type))
667 wait_current_trans(fs_info);
670 ret = join_transaction(fs_info, type);
672 wait_current_trans(fs_info);
673 if (unlikely(type == TRANS_ATTACH ||
674 type == TRANS_JOIN_NOSTART))
677 } while (ret == -EBUSY);
682 cur_trans = fs_info->running_transaction;
684 h->transid = cur_trans->transid;
685 h->transaction = cur_trans;
686 refcount_set(&h->use_count, 1);
687 h->fs_info = root->fs_info;
690 INIT_LIST_HEAD(&h->new_bgs);
693 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
694 may_wait_transaction(fs_info, type)) {
695 current->journal_info = h;
696 btrfs_commit_transaction(h);
701 trace_btrfs_space_reservation(fs_info, "transaction",
702 h->transid, num_bytes, 1);
703 h->block_rsv = &fs_info->trans_block_rsv;
704 h->bytes_reserved = num_bytes;
705 h->reloc_reserved = reloc_reserved;
709 if (!current->journal_info)
710 current->journal_info = h;
713 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
714 * ALLOC_FORCE the first run through, and then we won't allocate for
715 * anybody else who races in later. We don't care about the return
718 if (do_chunk_alloc && num_bytes) {
719 u64 flags = h->block_rsv->space_info->flags;
721 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
722 CHUNK_ALLOC_NO_FORCE);
726 * btrfs_record_root_in_trans() needs to alloc new extents, and may
727 * call btrfs_join_transaction() while we're also starting a
730 * Thus it need to be called after current->journal_info initialized,
731 * or we can deadlock.
733 ret = btrfs_record_root_in_trans(h, root);
736 * The transaction handle is fully initialized and linked with
737 * other structures so it needs to be ended in case of errors,
740 btrfs_end_transaction(h);
747 if (type & __TRANS_FREEZABLE)
748 sb_end_intwrite(fs_info->sb);
749 kmem_cache_free(btrfs_trans_handle_cachep, h);
752 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
755 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
759 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
760 unsigned int num_items)
762 return start_transaction(root, num_items, TRANS_START,
763 BTRFS_RESERVE_FLUSH_ALL, true);
766 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
767 struct btrfs_root *root,
768 unsigned int num_items)
770 return start_transaction(root, num_items, TRANS_START,
771 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
774 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
776 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
780 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
782 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
783 BTRFS_RESERVE_NO_FLUSH, true);
787 * Similar to regular join but it never starts a transaction when none is
788 * running or after waiting for the current one to finish.
790 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
792 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
793 BTRFS_RESERVE_NO_FLUSH, true);
797 * btrfs_attach_transaction() - catch the running transaction
799 * It is used when we want to commit the current the transaction, but
800 * don't want to start a new one.
802 * Note: If this function return -ENOENT, it just means there is no
803 * running transaction. But it is possible that the inactive transaction
804 * is still in the memory, not fully on disk. If you hope there is no
805 * inactive transaction in the fs when -ENOENT is returned, you should
807 * btrfs_attach_transaction_barrier()
809 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
811 return start_transaction(root, 0, TRANS_ATTACH,
812 BTRFS_RESERVE_NO_FLUSH, true);
816 * btrfs_attach_transaction_barrier() - catch the running transaction
818 * It is similar to the above function, the difference is this one
819 * will wait for all the inactive transactions until they fully
822 struct btrfs_trans_handle *
823 btrfs_attach_transaction_barrier(struct btrfs_root *root)
825 struct btrfs_trans_handle *trans;
827 trans = start_transaction(root, 0, TRANS_ATTACH,
828 BTRFS_RESERVE_NO_FLUSH, true);
829 if (trans == ERR_PTR(-ENOENT)) {
832 ret = btrfs_wait_for_commit(root->fs_info, 0);
840 /* Wait for a transaction commit to reach at least the given state. */
841 static noinline void wait_for_commit(struct btrfs_transaction *commit,
842 const enum btrfs_trans_state min_state)
844 struct btrfs_fs_info *fs_info = commit->fs_info;
845 u64 transid = commit->transid;
849 * At the moment this function is called with min_state either being
850 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
852 if (min_state == TRANS_STATE_COMPLETED)
853 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
855 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
858 wait_event(commit->commit_wait, commit->state >= min_state);
860 btrfs_put_transaction(commit);
862 if (min_state < TRANS_STATE_COMPLETED)
866 * A transaction isn't really completed until all of the
867 * previous transactions are completed, but with fsync we can
868 * end up with SUPER_COMMITTED transactions before a COMPLETED
869 * transaction. Wait for those.
872 spin_lock(&fs_info->trans_lock);
873 commit = list_first_entry_or_null(&fs_info->trans_list,
874 struct btrfs_transaction,
876 if (!commit || commit->transid > transid) {
877 spin_unlock(&fs_info->trans_lock);
880 refcount_inc(&commit->use_count);
882 spin_unlock(&fs_info->trans_lock);
886 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
888 struct btrfs_transaction *cur_trans = NULL, *t;
892 if (transid <= fs_info->last_trans_committed)
895 /* find specified transaction */
896 spin_lock(&fs_info->trans_lock);
897 list_for_each_entry(t, &fs_info->trans_list, list) {
898 if (t->transid == transid) {
900 refcount_inc(&cur_trans->use_count);
904 if (t->transid > transid) {
909 spin_unlock(&fs_info->trans_lock);
912 * The specified transaction doesn't exist, or we
913 * raced with btrfs_commit_transaction
916 if (transid > fs_info->last_trans_committed)
921 /* find newest transaction that is committing | committed */
922 spin_lock(&fs_info->trans_lock);
923 list_for_each_entry_reverse(t, &fs_info->trans_list,
925 if (t->state >= TRANS_STATE_COMMIT_START) {
926 if (t->state == TRANS_STATE_COMPLETED)
929 refcount_inc(&cur_trans->use_count);
933 spin_unlock(&fs_info->trans_lock);
935 goto out; /* nothing committing|committed */
938 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
939 ret = cur_trans->aborted;
940 btrfs_put_transaction(cur_trans);
945 void btrfs_throttle(struct btrfs_fs_info *fs_info)
947 wait_current_trans(fs_info);
950 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
952 struct btrfs_transaction *cur_trans = trans->transaction;
954 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
955 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
958 if (btrfs_check_space_for_delayed_refs(trans->fs_info))
961 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
964 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
967 struct btrfs_fs_info *fs_info = trans->fs_info;
969 if (!trans->block_rsv) {
970 ASSERT(!trans->bytes_reserved);
974 if (!trans->bytes_reserved)
977 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
978 trace_btrfs_space_reservation(fs_info, "transaction",
979 trans->transid, trans->bytes_reserved, 0);
980 btrfs_block_rsv_release(fs_info, trans->block_rsv,
981 trans->bytes_reserved, NULL);
982 trans->bytes_reserved = 0;
985 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
988 struct btrfs_fs_info *info = trans->fs_info;
989 struct btrfs_transaction *cur_trans = trans->transaction;
992 if (refcount_read(&trans->use_count) > 1) {
993 refcount_dec(&trans->use_count);
994 trans->block_rsv = trans->orig_rsv;
998 btrfs_trans_release_metadata(trans);
999 trans->block_rsv = NULL;
1001 btrfs_create_pending_block_groups(trans);
1003 btrfs_trans_release_chunk_metadata(trans);
1005 if (trans->type & __TRANS_FREEZABLE)
1006 sb_end_intwrite(info->sb);
1008 WARN_ON(cur_trans != info->running_transaction);
1009 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1010 atomic_dec(&cur_trans->num_writers);
1011 extwriter_counter_dec(cur_trans, trans->type);
1013 cond_wake_up(&cur_trans->writer_wait);
1015 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1016 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1018 btrfs_put_transaction(cur_trans);
1020 if (current->journal_info == trans)
1021 current->journal_info = NULL;
1024 btrfs_run_delayed_iputs(info);
1026 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1027 wake_up_process(info->transaction_kthread);
1028 if (TRANS_ABORTED(trans))
1029 err = trans->aborted;
1034 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1038 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1040 return __btrfs_end_transaction(trans, 0);
1043 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1045 return __btrfs_end_transaction(trans, 1);
1049 * when btree blocks are allocated, they have some corresponding bits set for
1050 * them in one of two extent_io trees. This is used to make sure all of
1051 * those extents are sent to disk but does not wait on them
1053 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1054 struct extent_io_tree *dirty_pages, int mark)
1058 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1059 struct extent_state *cached_state = NULL;
1063 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1064 mark, &cached_state)) {
1065 bool wait_writeback = false;
1067 err = convert_extent_bit(dirty_pages, start, end,
1069 mark, &cached_state);
1071 * convert_extent_bit can return -ENOMEM, which is most of the
1072 * time a temporary error. So when it happens, ignore the error
1073 * and wait for writeback of this range to finish - because we
1074 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1075 * to __btrfs_wait_marked_extents() would not know that
1076 * writeback for this range started and therefore wouldn't
1077 * wait for it to finish - we don't want to commit a
1078 * superblock that points to btree nodes/leafs for which
1079 * writeback hasn't finished yet (and without errors).
1080 * We cleanup any entries left in the io tree when committing
1081 * the transaction (through extent_io_tree_release()).
1083 if (err == -ENOMEM) {
1085 wait_writeback = true;
1088 err = filemap_fdatawrite_range(mapping, start, end);
1091 else if (wait_writeback)
1092 werr = filemap_fdatawait_range(mapping, start, end);
1093 free_extent_state(cached_state);
1094 cached_state = NULL;
1102 * when btree blocks are allocated, they have some corresponding bits set for
1103 * them in one of two extent_io trees. This is used to make sure all of
1104 * those extents are on disk for transaction or log commit. We wait
1105 * on all the pages and clear them from the dirty pages state tree
1107 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1108 struct extent_io_tree *dirty_pages)
1112 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1113 struct extent_state *cached_state = NULL;
1117 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1118 EXTENT_NEED_WAIT, &cached_state)) {
1120 * Ignore -ENOMEM errors returned by clear_extent_bit().
1121 * When committing the transaction, we'll remove any entries
1122 * left in the io tree. For a log commit, we don't remove them
1123 * after committing the log because the tree can be accessed
1124 * concurrently - we do it only at transaction commit time when
1125 * it's safe to do it (through extent_io_tree_release()).
1127 err = clear_extent_bit(dirty_pages, start, end,
1128 EXTENT_NEED_WAIT, &cached_state);
1132 err = filemap_fdatawait_range(mapping, start, end);
1135 free_extent_state(cached_state);
1136 cached_state = NULL;
1145 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1146 struct extent_io_tree *dirty_pages)
1148 bool errors = false;
1151 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1152 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1160 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1162 struct btrfs_fs_info *fs_info = log_root->fs_info;
1163 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1164 bool errors = false;
1167 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1169 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1170 if ((mark & EXTENT_DIRTY) &&
1171 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1174 if ((mark & EXTENT_NEW) &&
1175 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1184 * When btree blocks are allocated the corresponding extents are marked dirty.
1185 * This function ensures such extents are persisted on disk for transaction or
1188 * @trans: transaction whose dirty pages we'd like to write
1190 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1194 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1195 struct btrfs_fs_info *fs_info = trans->fs_info;
1196 struct blk_plug plug;
1198 blk_start_plug(&plug);
1199 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1200 blk_finish_plug(&plug);
1201 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1203 extent_io_tree_release(&trans->transaction->dirty_pages);
1214 * this is used to update the root pointer in the tree of tree roots.
1216 * But, in the case of the extent allocation tree, updating the root
1217 * pointer may allocate blocks which may change the root of the extent
1220 * So, this loops and repeats and makes sure the cowonly root didn't
1221 * change while the root pointer was being updated in the metadata.
1223 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1224 struct btrfs_root *root)
1227 u64 old_root_bytenr;
1229 struct btrfs_fs_info *fs_info = root->fs_info;
1230 struct btrfs_root *tree_root = fs_info->tree_root;
1232 old_root_used = btrfs_root_used(&root->root_item);
1235 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1236 if (old_root_bytenr == root->node->start &&
1237 old_root_used == btrfs_root_used(&root->root_item))
1240 btrfs_set_root_node(&root->root_item, root->node);
1241 ret = btrfs_update_root(trans, tree_root,
1247 old_root_used = btrfs_root_used(&root->root_item);
1254 * update all the cowonly tree roots on disk
1256 * The error handling in this function may not be obvious. Any of the
1257 * failures will cause the file system to go offline. We still need
1258 * to clean up the delayed refs.
1260 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1262 struct btrfs_fs_info *fs_info = trans->fs_info;
1263 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1264 struct list_head *io_bgs = &trans->transaction->io_bgs;
1265 struct list_head *next;
1266 struct extent_buffer *eb;
1270 * At this point no one can be using this transaction to modify any tree
1271 * and no one can start another transaction to modify any tree either.
1273 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1275 eb = btrfs_lock_root_node(fs_info->tree_root);
1276 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1277 0, &eb, BTRFS_NESTING_COW);
1278 btrfs_tree_unlock(eb);
1279 free_extent_buffer(eb);
1284 ret = btrfs_run_dev_stats(trans);
1287 ret = btrfs_run_dev_replace(trans);
1290 ret = btrfs_run_qgroups(trans);
1294 ret = btrfs_setup_space_cache(trans);
1299 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1300 struct btrfs_root *root;
1301 next = fs_info->dirty_cowonly_roots.next;
1302 list_del_init(next);
1303 root = list_entry(next, struct btrfs_root, dirty_list);
1304 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1306 list_add_tail(&root->dirty_list,
1307 &trans->transaction->switch_commits);
1308 ret = update_cowonly_root(trans, root);
1313 /* Now flush any delayed refs generated by updating all of the roots */
1314 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1318 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1319 ret = btrfs_write_dirty_block_groups(trans);
1324 * We're writing the dirty block groups, which could generate
1325 * delayed refs, which could generate more dirty block groups,
1326 * so we want to keep this flushing in this loop to make sure
1327 * everything gets run.
1329 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1334 if (!list_empty(&fs_info->dirty_cowonly_roots))
1337 /* Update dev-replace pointer once everything is committed */
1338 fs_info->dev_replace.committed_cursor_left =
1339 fs_info->dev_replace.cursor_left_last_write_of_item;
1345 * If we had a pending drop we need to see if there are any others left in our
1346 * dead roots list, and if not clear our bit and wake any waiters.
1348 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1351 * We put the drop in progress roots at the front of the list, so if the
1352 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1355 spin_lock(&fs_info->trans_lock);
1356 if (!list_empty(&fs_info->dead_roots)) {
1357 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1360 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1361 spin_unlock(&fs_info->trans_lock);
1365 spin_unlock(&fs_info->trans_lock);
1367 btrfs_wake_unfinished_drop(fs_info);
1371 * dead roots are old snapshots that need to be deleted. This allocates
1372 * a dirty root struct and adds it into the list of dead roots that need to
1375 void btrfs_add_dead_root(struct btrfs_root *root)
1377 struct btrfs_fs_info *fs_info = root->fs_info;
1379 spin_lock(&fs_info->trans_lock);
1380 if (list_empty(&root->root_list)) {
1381 btrfs_grab_root(root);
1383 /* We want to process the partially complete drops first. */
1384 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1385 list_add(&root->root_list, &fs_info->dead_roots);
1387 list_add_tail(&root->root_list, &fs_info->dead_roots);
1389 spin_unlock(&fs_info->trans_lock);
1393 * Update each subvolume root and its relocation root, if it exists, in the tree
1394 * of tree roots. Also free log roots if they exist.
1396 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1398 struct btrfs_fs_info *fs_info = trans->fs_info;
1399 struct btrfs_root *gang[8];
1404 * At this point no one can be using this transaction to modify any tree
1405 * and no one can start another transaction to modify any tree either.
1407 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1409 spin_lock(&fs_info->fs_roots_radix_lock);
1411 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1414 BTRFS_ROOT_TRANS_TAG);
1417 for (i = 0; i < ret; i++) {
1418 struct btrfs_root *root = gang[i];
1422 * At this point we can neither have tasks logging inodes
1423 * from a root nor trying to commit a log tree.
1425 ASSERT(atomic_read(&root->log_writers) == 0);
1426 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1427 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1429 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1430 (unsigned long)root->root_key.objectid,
1431 BTRFS_ROOT_TRANS_TAG);
1432 spin_unlock(&fs_info->fs_roots_radix_lock);
1434 btrfs_free_log(trans, root);
1435 ret2 = btrfs_update_reloc_root(trans, root);
1439 /* see comments in should_cow_block() */
1440 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1441 smp_mb__after_atomic();
1443 if (root->commit_root != root->node) {
1444 list_add_tail(&root->dirty_list,
1445 &trans->transaction->switch_commits);
1446 btrfs_set_root_node(&root->root_item,
1450 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1455 spin_lock(&fs_info->fs_roots_radix_lock);
1456 btrfs_qgroup_free_meta_all_pertrans(root);
1459 spin_unlock(&fs_info->fs_roots_radix_lock);
1464 * defrag a given btree.
1465 * Every leaf in the btree is read and defragged.
1467 int btrfs_defrag_root(struct btrfs_root *root)
1469 struct btrfs_fs_info *info = root->fs_info;
1470 struct btrfs_trans_handle *trans;
1473 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1477 trans = btrfs_start_transaction(root, 0);
1478 if (IS_ERR(trans)) {
1479 ret = PTR_ERR(trans);
1483 ret = btrfs_defrag_leaves(trans, root);
1485 btrfs_end_transaction(trans);
1486 btrfs_btree_balance_dirty(info);
1489 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1492 if (btrfs_defrag_cancelled(info)) {
1493 btrfs_debug(info, "defrag_root cancelled");
1498 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1503 * Do all special snapshot related qgroup dirty hack.
1505 * Will do all needed qgroup inherit and dirty hack like switch commit
1506 * roots inside one transaction and write all btree into disk, to make
1509 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1510 struct btrfs_root *src,
1511 struct btrfs_root *parent,
1512 struct btrfs_qgroup_inherit *inherit,
1515 struct btrfs_fs_info *fs_info = src->fs_info;
1519 * Save some performance in the case that qgroups are not
1520 * enabled. If this check races with the ioctl, rescan will
1523 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1527 * Ensure dirty @src will be committed. Or, after coming
1528 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1529 * recorded root will never be updated again, causing an outdated root
1532 ret = record_root_in_trans(trans, src, 1);
1537 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1538 * src root, so we must run the delayed refs here.
1540 * However this isn't particularly fool proof, because there's no
1541 * synchronization keeping us from changing the tree after this point
1542 * before we do the qgroup_inherit, or even from making changes while
1543 * we're doing the qgroup_inherit. But that's a problem for the future,
1544 * for now flush the delayed refs to narrow the race window where the
1545 * qgroup counters could end up wrong.
1547 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1549 btrfs_abort_transaction(trans, ret);
1553 ret = commit_fs_roots(trans);
1556 ret = btrfs_qgroup_account_extents(trans);
1560 /* Now qgroup are all updated, we can inherit it to new qgroups */
1561 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1567 * Now we do a simplified commit transaction, which will:
1568 * 1) commit all subvolume and extent tree
1569 * To ensure all subvolume and extent tree have a valid
1570 * commit_root to accounting later insert_dir_item()
1571 * 2) write all btree blocks onto disk
1572 * This is to make sure later btree modification will be cowed
1573 * Or commit_root can be populated and cause wrong qgroup numbers
1574 * In this simplified commit, we don't really care about other trees
1575 * like chunk and root tree, as they won't affect qgroup.
1576 * And we don't write super to avoid half committed status.
1578 ret = commit_cowonly_roots(trans);
1581 switch_commit_roots(trans);
1582 ret = btrfs_write_and_wait_transaction(trans);
1584 btrfs_handle_fs_error(fs_info, ret,
1585 "Error while writing out transaction for qgroup");
1589 * Force parent root to be updated, as we recorded it before so its
1590 * last_trans == cur_transid.
1591 * Or it won't be committed again onto disk after later
1595 ret = record_root_in_trans(trans, parent, 1);
1600 * new snapshots need to be created at a very specific time in the
1601 * transaction commit. This does the actual creation.
1604 * If the error which may affect the commitment of the current transaction
1605 * happens, we should return the error number. If the error which just affect
1606 * the creation of the pending snapshots, just return 0.
1608 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1609 struct btrfs_pending_snapshot *pending)
1612 struct btrfs_fs_info *fs_info = trans->fs_info;
1613 struct btrfs_key key;
1614 struct btrfs_root_item *new_root_item;
1615 struct btrfs_root *tree_root = fs_info->tree_root;
1616 struct btrfs_root *root = pending->root;
1617 struct btrfs_root *parent_root;
1618 struct btrfs_block_rsv *rsv;
1619 struct inode *parent_inode = pending->dir;
1620 struct btrfs_path *path;
1621 struct btrfs_dir_item *dir_item;
1622 struct extent_buffer *tmp;
1623 struct extent_buffer *old;
1624 struct timespec64 cur_time;
1630 unsigned int nofs_flags;
1631 struct fscrypt_name fname;
1633 ASSERT(pending->path);
1634 path = pending->path;
1636 ASSERT(pending->root_item);
1637 new_root_item = pending->root_item;
1640 * We're inside a transaction and must make sure that any potential
1641 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1644 nofs_flags = memalloc_nofs_save();
1645 pending->error = fscrypt_setup_filename(parent_inode,
1646 &pending->dentry->d_name, 0,
1648 memalloc_nofs_restore(nofs_flags);
1652 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1657 * Make qgroup to skip current new snapshot's qgroupid, as it is
1658 * accounted by later btrfs_qgroup_inherit().
1660 btrfs_set_skip_qgroup(trans, objectid);
1662 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1664 if (to_reserve > 0) {
1665 pending->error = btrfs_block_rsv_add(fs_info,
1666 &pending->block_rsv,
1668 BTRFS_RESERVE_NO_FLUSH);
1670 goto clear_skip_qgroup;
1673 key.objectid = objectid;
1674 key.offset = (u64)-1;
1675 key.type = BTRFS_ROOT_ITEM_KEY;
1677 rsv = trans->block_rsv;
1678 trans->block_rsv = &pending->block_rsv;
1679 trans->bytes_reserved = trans->block_rsv->reserved;
1680 trace_btrfs_space_reservation(fs_info, "transaction",
1682 trans->bytes_reserved, 1);
1683 parent_root = BTRFS_I(parent_inode)->root;
1684 ret = record_root_in_trans(trans, parent_root, 0);
1687 cur_time = current_time(parent_inode);
1690 * insert the directory item
1692 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1694 btrfs_abort_transaction(trans, ret);
1698 /* check if there is a file/dir which has the same name. */
1699 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1700 btrfs_ino(BTRFS_I(parent_inode)),
1701 &fname.disk_name, 0);
1702 if (dir_item != NULL && !IS_ERR(dir_item)) {
1703 pending->error = -EEXIST;
1704 goto dir_item_existed;
1705 } else if (IS_ERR(dir_item)) {
1706 ret = PTR_ERR(dir_item);
1707 btrfs_abort_transaction(trans, ret);
1710 btrfs_release_path(path);
1713 * pull in the delayed directory update
1714 * and the delayed inode item
1715 * otherwise we corrupt the FS during
1718 ret = btrfs_run_delayed_items(trans);
1719 if (ret) { /* Transaction aborted */
1720 btrfs_abort_transaction(trans, ret);
1724 ret = record_root_in_trans(trans, root, 0);
1726 btrfs_abort_transaction(trans, ret);
1729 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1730 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1731 btrfs_check_and_init_root_item(new_root_item);
1733 root_flags = btrfs_root_flags(new_root_item);
1734 if (pending->readonly)
1735 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1737 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1738 btrfs_set_root_flags(new_root_item, root_flags);
1740 btrfs_set_root_generation_v2(new_root_item,
1742 generate_random_guid(new_root_item->uuid);
1743 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1745 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1746 memset(new_root_item->received_uuid, 0,
1747 sizeof(new_root_item->received_uuid));
1748 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1749 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1750 btrfs_set_root_stransid(new_root_item, 0);
1751 btrfs_set_root_rtransid(new_root_item, 0);
1753 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1754 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1755 btrfs_set_root_otransid(new_root_item, trans->transid);
1757 old = btrfs_lock_root_node(root);
1758 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1761 btrfs_tree_unlock(old);
1762 free_extent_buffer(old);
1763 btrfs_abort_transaction(trans, ret);
1767 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1768 /* clean up in any case */
1769 btrfs_tree_unlock(old);
1770 free_extent_buffer(old);
1772 btrfs_abort_transaction(trans, ret);
1775 /* see comments in should_cow_block() */
1776 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1779 btrfs_set_root_node(new_root_item, tmp);
1780 /* record when the snapshot was created in key.offset */
1781 key.offset = trans->transid;
1782 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1783 btrfs_tree_unlock(tmp);
1784 free_extent_buffer(tmp);
1786 btrfs_abort_transaction(trans, ret);
1791 * insert root back/forward references
1793 ret = btrfs_add_root_ref(trans, objectid,
1794 parent_root->root_key.objectid,
1795 btrfs_ino(BTRFS_I(parent_inode)), index,
1798 btrfs_abort_transaction(trans, ret);
1802 key.offset = (u64)-1;
1803 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1804 if (IS_ERR(pending->snap)) {
1805 ret = PTR_ERR(pending->snap);
1806 pending->snap = NULL;
1807 btrfs_abort_transaction(trans, ret);
1811 ret = btrfs_reloc_post_snapshot(trans, pending);
1813 btrfs_abort_transaction(trans, ret);
1818 * Do special qgroup accounting for snapshot, as we do some qgroup
1819 * snapshot hack to do fast snapshot.
1820 * To co-operate with that hack, we do hack again.
1821 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1823 ret = qgroup_account_snapshot(trans, root, parent_root,
1824 pending->inherit, objectid);
1828 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1829 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1831 /* We have check then name at the beginning, so it is impossible. */
1832 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1834 btrfs_abort_transaction(trans, ret);
1838 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1839 fname.disk_name.len * 2);
1840 parent_inode->i_mtime = current_time(parent_inode);
1841 parent_inode->i_ctime = parent_inode->i_mtime;
1842 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1844 btrfs_abort_transaction(trans, ret);
1847 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1848 BTRFS_UUID_KEY_SUBVOL,
1851 btrfs_abort_transaction(trans, ret);
1854 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1855 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1856 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1858 if (ret && ret != -EEXIST) {
1859 btrfs_abort_transaction(trans, ret);
1865 pending->error = ret;
1867 trans->block_rsv = rsv;
1868 trans->bytes_reserved = 0;
1870 btrfs_clear_skip_qgroup(trans);
1872 fscrypt_free_filename(&fname);
1874 kfree(new_root_item);
1875 pending->root_item = NULL;
1876 btrfs_free_path(path);
1877 pending->path = NULL;
1883 * create all the snapshots we've scheduled for creation
1885 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1887 struct btrfs_pending_snapshot *pending, *next;
1888 struct list_head *head = &trans->transaction->pending_snapshots;
1891 list_for_each_entry_safe(pending, next, head, list) {
1892 list_del(&pending->list);
1893 ret = create_pending_snapshot(trans, pending);
1900 static void update_super_roots(struct btrfs_fs_info *fs_info)
1902 struct btrfs_root_item *root_item;
1903 struct btrfs_super_block *super;
1905 super = fs_info->super_copy;
1907 root_item = &fs_info->chunk_root->root_item;
1908 super->chunk_root = root_item->bytenr;
1909 super->chunk_root_generation = root_item->generation;
1910 super->chunk_root_level = root_item->level;
1912 root_item = &fs_info->tree_root->root_item;
1913 super->root = root_item->bytenr;
1914 super->generation = root_item->generation;
1915 super->root_level = root_item->level;
1916 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1917 super->cache_generation = root_item->generation;
1918 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1919 super->cache_generation = 0;
1920 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1921 super->uuid_tree_generation = root_item->generation;
1924 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1926 struct btrfs_transaction *trans;
1929 spin_lock(&info->trans_lock);
1930 trans = info->running_transaction;
1932 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1933 spin_unlock(&info->trans_lock);
1937 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1939 struct btrfs_transaction *trans;
1942 spin_lock(&info->trans_lock);
1943 trans = info->running_transaction;
1945 ret = is_transaction_blocked(trans);
1946 spin_unlock(&info->trans_lock);
1950 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1952 struct btrfs_fs_info *fs_info = trans->fs_info;
1953 struct btrfs_transaction *cur_trans;
1955 /* Kick the transaction kthread. */
1956 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1957 wake_up_process(fs_info->transaction_kthread);
1959 /* take transaction reference */
1960 cur_trans = trans->transaction;
1961 refcount_inc(&cur_trans->use_count);
1963 btrfs_end_transaction(trans);
1966 * Wait for the current transaction commit to start and block
1967 * subsequent transaction joins
1969 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
1970 wait_event(fs_info->transaction_blocked_wait,
1971 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1972 TRANS_ABORTED(cur_trans));
1973 btrfs_put_transaction(cur_trans);
1976 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1978 struct btrfs_fs_info *fs_info = trans->fs_info;
1979 struct btrfs_transaction *cur_trans = trans->transaction;
1981 WARN_ON(refcount_read(&trans->use_count) > 1);
1983 btrfs_abort_transaction(trans, err);
1985 spin_lock(&fs_info->trans_lock);
1988 * If the transaction is removed from the list, it means this
1989 * transaction has been committed successfully, so it is impossible
1990 * to call the cleanup function.
1992 BUG_ON(list_empty(&cur_trans->list));
1994 if (cur_trans == fs_info->running_transaction) {
1995 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1996 spin_unlock(&fs_info->trans_lock);
1999 * The thread has already released the lockdep map as reader
2000 * already in btrfs_commit_transaction().
2002 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2003 wait_event(cur_trans->writer_wait,
2004 atomic_read(&cur_trans->num_writers) == 1);
2006 spin_lock(&fs_info->trans_lock);
2010 * Now that we know no one else is still using the transaction we can
2011 * remove the transaction from the list of transactions. This avoids
2012 * the transaction kthread from cleaning up the transaction while some
2013 * other task is still using it, which could result in a use-after-free
2014 * on things like log trees, as it forces the transaction kthread to
2015 * wait for this transaction to be cleaned up by us.
2017 list_del_init(&cur_trans->list);
2019 spin_unlock(&fs_info->trans_lock);
2021 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2023 spin_lock(&fs_info->trans_lock);
2024 if (cur_trans == fs_info->running_transaction)
2025 fs_info->running_transaction = NULL;
2026 spin_unlock(&fs_info->trans_lock);
2028 if (trans->type & __TRANS_FREEZABLE)
2029 sb_end_intwrite(fs_info->sb);
2030 btrfs_put_transaction(cur_trans);
2031 btrfs_put_transaction(cur_trans);
2033 trace_btrfs_transaction_commit(fs_info);
2035 if (current->journal_info == trans)
2036 current->journal_info = NULL;
2039 * If relocation is running, we can't cancel scrub because that will
2040 * result in a deadlock. Before relocating a block group, relocation
2041 * pauses scrub, then starts and commits a transaction before unpausing
2042 * scrub. If the transaction commit is being done by the relocation
2043 * task or triggered by another task and the relocation task is waiting
2044 * for the commit, and we end up here due to an error in the commit
2045 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2046 * asking for scrub to stop while having it asked to be paused higher
2047 * above in relocation code.
2049 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2050 btrfs_scrub_cancel(fs_info);
2052 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2056 * Release reserved delayed ref space of all pending block groups of the
2057 * transaction and remove them from the list
2059 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2061 struct btrfs_fs_info *fs_info = trans->fs_info;
2062 struct btrfs_block_group *block_group, *tmp;
2064 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2065 btrfs_delayed_refs_rsv_release(fs_info, 1);
2066 list_del_init(&block_group->bg_list);
2070 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2073 * We use try_to_writeback_inodes_sb() here because if we used
2074 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2075 * Currently are holding the fs freeze lock, if we do an async flush
2076 * we'll do btrfs_join_transaction() and deadlock because we need to
2077 * wait for the fs freeze lock. Using the direct flushing we benefit
2078 * from already being in a transaction and our join_transaction doesn't
2079 * have to re-take the fs freeze lock.
2081 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2082 * if it can read lock sb->s_umount. It will always be able to lock it,
2083 * except when the filesystem is being unmounted or being frozen, but in
2084 * those cases sync_filesystem() is called, which results in calling
2085 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2086 * Note that we don't call writeback_inodes_sb() directly, because it
2087 * will emit a warning if sb->s_umount is not locked.
2089 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2090 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2094 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2096 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2097 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2101 * Add a pending snapshot associated with the given transaction handle to the
2102 * respective handle. This must be called after the transaction commit started
2103 * and while holding fs_info->trans_lock.
2104 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2105 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2108 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2110 struct btrfs_transaction *cur_trans = trans->transaction;
2112 if (!trans->pending_snapshot)
2115 lockdep_assert_held(&trans->fs_info->trans_lock);
2116 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2118 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2121 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2123 fs_info->commit_stats.commit_count++;
2124 fs_info->commit_stats.last_commit_dur = interval;
2125 fs_info->commit_stats.max_commit_dur =
2126 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2127 fs_info->commit_stats.total_commit_dur += interval;
2130 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2132 struct btrfs_fs_info *fs_info = trans->fs_info;
2133 struct btrfs_transaction *cur_trans = trans->transaction;
2134 struct btrfs_transaction *prev_trans = NULL;
2139 ASSERT(refcount_read(&trans->use_count) == 1);
2140 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2142 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2144 /* Stop the commit early if ->aborted is set */
2145 if (TRANS_ABORTED(cur_trans)) {
2146 ret = cur_trans->aborted;
2147 goto lockdep_trans_commit_start_release;
2150 btrfs_trans_release_metadata(trans);
2151 trans->block_rsv = NULL;
2154 * We only want one transaction commit doing the flushing so we do not
2155 * waste a bunch of time on lock contention on the extent root node.
2157 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2158 &cur_trans->delayed_refs.flags)) {
2160 * Make a pass through all the delayed refs we have so far.
2161 * Any running threads may add more while we are here.
2163 ret = btrfs_run_delayed_refs(trans, 0);
2165 goto lockdep_trans_commit_start_release;
2168 btrfs_create_pending_block_groups(trans);
2170 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2173 /* this mutex is also taken before trying to set
2174 * block groups readonly. We need to make sure
2175 * that nobody has set a block group readonly
2176 * after a extents from that block group have been
2177 * allocated for cache files. btrfs_set_block_group_ro
2178 * will wait for the transaction to commit if it
2179 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2181 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2182 * only one process starts all the block group IO. It wouldn't
2183 * hurt to have more than one go through, but there's no
2184 * real advantage to it either.
2186 mutex_lock(&fs_info->ro_block_group_mutex);
2187 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2190 mutex_unlock(&fs_info->ro_block_group_mutex);
2193 ret = btrfs_start_dirty_block_groups(trans);
2195 goto lockdep_trans_commit_start_release;
2199 spin_lock(&fs_info->trans_lock);
2200 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2201 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2203 add_pending_snapshot(trans);
2205 spin_unlock(&fs_info->trans_lock);
2206 refcount_inc(&cur_trans->use_count);
2208 if (trans->in_fsync)
2209 want_state = TRANS_STATE_SUPER_COMMITTED;
2211 btrfs_trans_state_lockdep_release(fs_info,
2212 BTRFS_LOCKDEP_TRANS_COMMIT_START);
2213 ret = btrfs_end_transaction(trans);
2214 wait_for_commit(cur_trans, want_state);
2216 if (TRANS_ABORTED(cur_trans))
2217 ret = cur_trans->aborted;
2219 btrfs_put_transaction(cur_trans);
2224 cur_trans->state = TRANS_STATE_COMMIT_START;
2225 wake_up(&fs_info->transaction_blocked_wait);
2226 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2228 if (cur_trans->list.prev != &fs_info->trans_list) {
2229 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2231 if (trans->in_fsync)
2232 want_state = TRANS_STATE_SUPER_COMMITTED;
2234 prev_trans = list_entry(cur_trans->list.prev,
2235 struct btrfs_transaction, list);
2236 if (prev_trans->state < want_state) {
2237 refcount_inc(&prev_trans->use_count);
2238 spin_unlock(&fs_info->trans_lock);
2240 wait_for_commit(prev_trans, want_state);
2242 ret = READ_ONCE(prev_trans->aborted);
2244 btrfs_put_transaction(prev_trans);
2246 goto lockdep_release;
2248 spin_unlock(&fs_info->trans_lock);
2251 spin_unlock(&fs_info->trans_lock);
2253 * The previous transaction was aborted and was already removed
2254 * from the list of transactions at fs_info->trans_list. So we
2255 * abort to prevent writing a new superblock that reflects a
2256 * corrupt state (pointing to trees with unwritten nodes/leafs).
2258 if (BTRFS_FS_ERROR(fs_info)) {
2260 goto lockdep_release;
2265 * Get the time spent on the work done by the commit thread and not
2266 * the time spent waiting on a previous commit
2268 start_time = ktime_get_ns();
2270 extwriter_counter_dec(cur_trans, trans->type);
2272 ret = btrfs_start_delalloc_flush(fs_info);
2274 goto lockdep_release;
2276 ret = btrfs_run_delayed_items(trans);
2278 goto lockdep_release;
2281 * The thread has started/joined the transaction thus it holds the
2282 * lockdep map as a reader. It has to release it before acquiring the
2283 * lockdep map as a writer.
2285 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2286 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2287 wait_event(cur_trans->writer_wait,
2288 extwriter_counter_read(cur_trans) == 0);
2290 /* some pending stuffs might be added after the previous flush. */
2291 ret = btrfs_run_delayed_items(trans);
2293 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2294 goto cleanup_transaction;
2297 btrfs_wait_delalloc_flush(fs_info);
2300 * Wait for all ordered extents started by a fast fsync that joined this
2301 * transaction. Otherwise if this transaction commits before the ordered
2302 * extents complete we lose logged data after a power failure.
2304 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2305 wait_event(cur_trans->pending_wait,
2306 atomic_read(&cur_trans->pending_ordered) == 0);
2308 btrfs_scrub_pause(fs_info);
2310 * Ok now we need to make sure to block out any other joins while we
2311 * commit the transaction. We could have started a join before setting
2312 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2314 spin_lock(&fs_info->trans_lock);
2315 add_pending_snapshot(trans);
2316 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2317 spin_unlock(&fs_info->trans_lock);
2320 * The thread has started/joined the transaction thus it holds the
2321 * lockdep map as a reader. It has to release it before acquiring the
2322 * lockdep map as a writer.
2324 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2325 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2326 wait_event(cur_trans->writer_wait,
2327 atomic_read(&cur_trans->num_writers) == 1);
2330 * Make lockdep happy by acquiring the state locks after
2331 * btrfs_trans_num_writers is released. If we acquired the state locks
2332 * before releasing the btrfs_trans_num_writers lock then lockdep would
2333 * complain because we did not follow the reverse order unlocking rule.
2335 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2336 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2337 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2340 * We've started the commit, clear the flag in case we were triggered to
2341 * do an async commit but somebody else started before the transaction
2342 * kthread could do the work.
2344 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2346 if (TRANS_ABORTED(cur_trans)) {
2347 ret = cur_trans->aborted;
2348 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2349 goto scrub_continue;
2352 * the reloc mutex makes sure that we stop
2353 * the balancing code from coming in and moving
2354 * extents around in the middle of the commit
2356 mutex_lock(&fs_info->reloc_mutex);
2359 * We needn't worry about the delayed items because we will
2360 * deal with them in create_pending_snapshot(), which is the
2361 * core function of the snapshot creation.
2363 ret = create_pending_snapshots(trans);
2368 * We insert the dir indexes of the snapshots and update the inode
2369 * of the snapshots' parents after the snapshot creation, so there
2370 * are some delayed items which are not dealt with. Now deal with
2373 * We needn't worry that this operation will corrupt the snapshots,
2374 * because all the tree which are snapshoted will be forced to COW
2375 * the nodes and leaves.
2377 ret = btrfs_run_delayed_items(trans);
2381 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2386 * make sure none of the code above managed to slip in a
2389 btrfs_assert_delayed_root_empty(fs_info);
2391 WARN_ON(cur_trans != trans->transaction);
2393 ret = commit_fs_roots(trans);
2397 /* commit_fs_roots gets rid of all the tree log roots, it is now
2398 * safe to free the root of tree log roots
2400 btrfs_free_log_root_tree(trans, fs_info);
2403 * Since fs roots are all committed, we can get a quite accurate
2404 * new_roots. So let's do quota accounting.
2406 ret = btrfs_qgroup_account_extents(trans);
2410 ret = commit_cowonly_roots(trans);
2415 * The tasks which save the space cache and inode cache may also
2416 * update ->aborted, check it.
2418 if (TRANS_ABORTED(cur_trans)) {
2419 ret = cur_trans->aborted;
2423 cur_trans = fs_info->running_transaction;
2425 btrfs_set_root_node(&fs_info->tree_root->root_item,
2426 fs_info->tree_root->node);
2427 list_add_tail(&fs_info->tree_root->dirty_list,
2428 &cur_trans->switch_commits);
2430 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2431 fs_info->chunk_root->node);
2432 list_add_tail(&fs_info->chunk_root->dirty_list,
2433 &cur_trans->switch_commits);
2435 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2436 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2437 fs_info->block_group_root->node);
2438 list_add_tail(&fs_info->block_group_root->dirty_list,
2439 &cur_trans->switch_commits);
2442 switch_commit_roots(trans);
2444 ASSERT(list_empty(&cur_trans->dirty_bgs));
2445 ASSERT(list_empty(&cur_trans->io_bgs));
2446 update_super_roots(fs_info);
2448 btrfs_set_super_log_root(fs_info->super_copy, 0);
2449 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2450 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2451 sizeof(*fs_info->super_copy));
2453 btrfs_commit_device_sizes(cur_trans);
2455 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2456 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2458 btrfs_trans_release_chunk_metadata(trans);
2461 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2462 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2463 * make sure that before we commit our superblock, no other task can
2464 * start a new transaction and commit a log tree before we commit our
2465 * superblock. Anyone trying to commit a log tree locks this mutex before
2466 * writing its superblock.
2468 mutex_lock(&fs_info->tree_log_mutex);
2470 spin_lock(&fs_info->trans_lock);
2471 cur_trans->state = TRANS_STATE_UNBLOCKED;
2472 fs_info->running_transaction = NULL;
2473 spin_unlock(&fs_info->trans_lock);
2474 mutex_unlock(&fs_info->reloc_mutex);
2476 wake_up(&fs_info->transaction_wait);
2477 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2479 /* If we have features changed, wake up the cleaner to update sysfs. */
2480 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2481 fs_info->cleaner_kthread)
2482 wake_up_process(fs_info->cleaner_kthread);
2484 ret = btrfs_write_and_wait_transaction(trans);
2486 btrfs_handle_fs_error(fs_info, ret,
2487 "Error while writing out transaction");
2488 mutex_unlock(&fs_info->tree_log_mutex);
2489 goto scrub_continue;
2492 ret = write_all_supers(fs_info, 0);
2494 * the super is written, we can safely allow the tree-loggers
2495 * to go about their business
2497 mutex_unlock(&fs_info->tree_log_mutex);
2499 goto scrub_continue;
2502 * We needn't acquire the lock here because there is no other task
2503 * which can change it.
2505 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2506 wake_up(&cur_trans->commit_wait);
2507 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2509 btrfs_finish_extent_commit(trans);
2511 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2512 btrfs_clear_space_info_full(fs_info);
2514 fs_info->last_trans_committed = cur_trans->transid;
2516 * We needn't acquire the lock here because there is no other task
2517 * which can change it.
2519 cur_trans->state = TRANS_STATE_COMPLETED;
2520 wake_up(&cur_trans->commit_wait);
2521 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2523 spin_lock(&fs_info->trans_lock);
2524 list_del_init(&cur_trans->list);
2525 spin_unlock(&fs_info->trans_lock);
2527 btrfs_put_transaction(cur_trans);
2528 btrfs_put_transaction(cur_trans);
2530 if (trans->type & __TRANS_FREEZABLE)
2531 sb_end_intwrite(fs_info->sb);
2533 trace_btrfs_transaction_commit(fs_info);
2535 interval = ktime_get_ns() - start_time;
2537 btrfs_scrub_continue(fs_info);
2539 if (current->journal_info == trans)
2540 current->journal_info = NULL;
2542 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2544 update_commit_stats(fs_info, interval);
2549 mutex_unlock(&fs_info->reloc_mutex);
2550 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2552 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2553 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2554 btrfs_scrub_continue(fs_info);
2555 cleanup_transaction:
2556 btrfs_trans_release_metadata(trans);
2557 btrfs_cleanup_pending_block_groups(trans);
2558 btrfs_trans_release_chunk_metadata(trans);
2559 trans->block_rsv = NULL;
2560 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2561 if (current->journal_info == trans)
2562 current->journal_info = NULL;
2563 cleanup_transaction(trans, ret);
2568 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2569 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2570 goto cleanup_transaction;
2572 lockdep_trans_commit_start_release:
2573 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2574 btrfs_end_transaction(trans);
2579 * return < 0 if error
2580 * 0 if there are no more dead_roots at the time of call
2581 * 1 there are more to be processed, call me again
2583 * The return value indicates there are certainly more snapshots to delete, but
2584 * if there comes a new one during processing, it may return 0. We don't mind,
2585 * because btrfs_commit_super will poke cleaner thread and it will process it a
2586 * few seconds later.
2588 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2590 struct btrfs_root *root;
2593 spin_lock(&fs_info->trans_lock);
2594 if (list_empty(&fs_info->dead_roots)) {
2595 spin_unlock(&fs_info->trans_lock);
2598 root = list_first_entry(&fs_info->dead_roots,
2599 struct btrfs_root, root_list);
2600 list_del_init(&root->root_list);
2601 spin_unlock(&fs_info->trans_lock);
2603 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2605 btrfs_kill_all_delayed_nodes(root);
2607 if (btrfs_header_backref_rev(root->node) <
2608 BTRFS_MIXED_BACKREF_REV)
2609 ret = btrfs_drop_snapshot(root, 0, 0);
2611 ret = btrfs_drop_snapshot(root, 1, 0);
2613 btrfs_put_root(root);
2614 return (ret < 0) ? 0 : 1;
2618 * We only mark the transaction aborted and then set the file system read-only.
2619 * This will prevent new transactions from starting or trying to join this
2622 * This means that error recovery at the call site is limited to freeing
2623 * any local memory allocations and passing the error code up without
2624 * further cleanup. The transaction should complete as it normally would
2625 * in the call path but will return -EIO.
2627 * We'll complete the cleanup in btrfs_end_transaction and
2628 * btrfs_commit_transaction.
2630 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2631 const char *function,
2632 unsigned int line, int errno, bool first_hit)
2634 struct btrfs_fs_info *fs_info = trans->fs_info;
2636 WRITE_ONCE(trans->aborted, errno);
2637 WRITE_ONCE(trans->transaction->aborted, errno);
2638 if (first_hit && errno == -ENOSPC)
2639 btrfs_dump_space_info_for_trans_abort(fs_info);
2640 /* Wake up anybody who may be waiting on this transaction */
2641 wake_up(&fs_info->transaction_wait);
2642 wake_up(&fs_info->transaction_blocked_wait);
2643 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
2646 int __init btrfs_transaction_init(void)
2648 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2649 sizeof(struct btrfs_trans_handle), 0,
2650 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2651 if (!btrfs_trans_handle_cachep)
2656 void __cold btrfs_transaction_exit(void)
2658 kmem_cache_destroy(btrfs_trans_handle_cachep);