1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
18 #include "transaction.h"
22 #include "dev-replace.h"
24 #include "block-group.h"
25 #include "space-info.h"
28 #include "accessors.h"
29 #include "extent-tree.h"
30 #include "root-tree.h"
33 #include "uuid-tree.h"
35 #include "relocation.h"
38 static struct kmem_cache *btrfs_trans_handle_cachep;
40 #define BTRFS_ROOT_TRANS_TAG 0
43 * Transaction states and transitions
45 * No running transaction (fs tree blocks are not modified)
48 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
50 * Transaction N [[TRANS_STATE_RUNNING]]
52 * | New trans handles can be attached to transaction N by calling all
53 * | start_transaction() variants.
56 * | Call btrfs_commit_transaction() on any trans handle attached to
59 * Transaction N [[TRANS_STATE_COMMIT_START]]
61 * | Will wait for previous running transaction to completely finish if there
64 * | Then one of the following happes:
65 * | - Wait for all other trans handle holders to release.
66 * | The btrfs_commit_transaction() caller will do the commit work.
67 * | - Wait for current transaction to be committed by others.
68 * | Other btrfs_commit_transaction() caller will do the commit work.
70 * | At this stage, only btrfs_join_transaction*() variants can attach
71 * | to this running transaction.
72 * | All other variants will wait for current one to finish and attach to
76 * | Caller is chosen to commit transaction N, and all other trans handle
77 * | haven been released.
79 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
81 * | The heavy lifting transaction work is started.
82 * | From running delayed refs (modifying extent tree) to creating pending
83 * | snapshots, running qgroups.
84 * | In short, modify supporting trees to reflect modifications of subvolume
87 * | At this stage, all start_transaction() calls will wait for this
88 * | transaction to finish and attach to transaction N+1.
91 * | Until all supporting trees are updated.
93 * Transaction N [[TRANS_STATE_UNBLOCKED]]
95 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
96 * | need to write them back to disk and update |
99 * | At this stage, new transaction is allowed to |
101 * | All new start_transaction() calls will be |
102 * | attached to transid N+1. |
105 * | Until all tree blocks are super blocks are |
106 * | written to block devices |
108 * Transaction N [[TRANS_STATE_COMPLETED]] V
109 * All tree blocks and super blocks are written. Transaction N+1
110 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
111 * data structures will be cleaned up. | Life goes on
113 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
114 [TRANS_STATE_RUNNING] = 0U,
115 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
116 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
119 __TRANS_JOIN_NOSTART),
120 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
123 __TRANS_JOIN_NOLOCK |
124 __TRANS_JOIN_NOSTART),
125 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
128 __TRANS_JOIN_NOLOCK |
129 __TRANS_JOIN_NOSTART),
130 [TRANS_STATE_COMPLETED] = (__TRANS_START |
133 __TRANS_JOIN_NOLOCK |
134 __TRANS_JOIN_NOSTART),
137 void btrfs_put_transaction(struct btrfs_transaction *transaction)
139 WARN_ON(refcount_read(&transaction->use_count) == 0);
140 if (refcount_dec_and_test(&transaction->use_count)) {
141 BUG_ON(!list_empty(&transaction->list));
142 WARN_ON(!RB_EMPTY_ROOT(
143 &transaction->delayed_refs.href_root.rb_root));
144 WARN_ON(!RB_EMPTY_ROOT(
145 &transaction->delayed_refs.dirty_extent_root));
146 if (transaction->delayed_refs.pending_csums)
147 btrfs_err(transaction->fs_info,
148 "pending csums is %llu",
149 transaction->delayed_refs.pending_csums);
151 * If any block groups are found in ->deleted_bgs then it's
152 * because the transaction was aborted and a commit did not
153 * happen (things failed before writing the new superblock
154 * and calling btrfs_finish_extent_commit()), so we can not
155 * discard the physical locations of the block groups.
157 while (!list_empty(&transaction->deleted_bgs)) {
158 struct btrfs_block_group *cache;
160 cache = list_first_entry(&transaction->deleted_bgs,
161 struct btrfs_block_group,
163 list_del_init(&cache->bg_list);
164 btrfs_unfreeze_block_group(cache);
165 btrfs_put_block_group(cache);
167 WARN_ON(!list_empty(&transaction->dev_update_list));
172 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
174 struct btrfs_transaction *cur_trans = trans->transaction;
175 struct btrfs_fs_info *fs_info = trans->fs_info;
176 struct btrfs_root *root, *tmp;
179 * At this point no one can be using this transaction to modify any tree
180 * and no one can start another transaction to modify any tree either.
182 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
184 down_write(&fs_info->commit_root_sem);
186 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
187 fs_info->last_reloc_trans = trans->transid;
189 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
191 list_del_init(&root->dirty_list);
192 free_extent_buffer(root->commit_root);
193 root->commit_root = btrfs_root_node(root);
194 extent_io_tree_release(&root->dirty_log_pages);
195 btrfs_qgroup_clean_swapped_blocks(root);
198 /* We can free old roots now. */
199 spin_lock(&cur_trans->dropped_roots_lock);
200 while (!list_empty(&cur_trans->dropped_roots)) {
201 root = list_first_entry(&cur_trans->dropped_roots,
202 struct btrfs_root, root_list);
203 list_del_init(&root->root_list);
204 spin_unlock(&cur_trans->dropped_roots_lock);
205 btrfs_free_log(trans, root);
206 btrfs_drop_and_free_fs_root(fs_info, root);
207 spin_lock(&cur_trans->dropped_roots_lock);
209 spin_unlock(&cur_trans->dropped_roots_lock);
211 up_write(&fs_info->commit_root_sem);
214 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
217 if (type & TRANS_EXTWRITERS)
218 atomic_inc(&trans->num_extwriters);
221 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
224 if (type & TRANS_EXTWRITERS)
225 atomic_dec(&trans->num_extwriters);
228 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
231 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
234 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
236 return atomic_read(&trans->num_extwriters);
240 * To be called after doing the chunk btree updates right after allocating a new
241 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
242 * chunk after all chunk btree updates and after finishing the second phase of
243 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
244 * group had its chunk item insertion delayed to the second phase.
246 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
248 struct btrfs_fs_info *fs_info = trans->fs_info;
250 if (!trans->chunk_bytes_reserved)
253 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
254 trans->chunk_bytes_reserved, NULL);
255 trans->chunk_bytes_reserved = 0;
259 * either allocate a new transaction or hop into the existing one
261 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
264 struct btrfs_transaction *cur_trans;
266 spin_lock(&fs_info->trans_lock);
268 /* The file system has been taken offline. No new transactions. */
269 if (BTRFS_FS_ERROR(fs_info)) {
270 spin_unlock(&fs_info->trans_lock);
274 cur_trans = fs_info->running_transaction;
276 if (TRANS_ABORTED(cur_trans)) {
277 spin_unlock(&fs_info->trans_lock);
278 return cur_trans->aborted;
280 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
281 spin_unlock(&fs_info->trans_lock);
284 refcount_inc(&cur_trans->use_count);
285 atomic_inc(&cur_trans->num_writers);
286 extwriter_counter_inc(cur_trans, type);
287 spin_unlock(&fs_info->trans_lock);
288 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
289 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
292 spin_unlock(&fs_info->trans_lock);
295 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
296 * current transaction, and commit it. If there is no transaction, just
299 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
303 * JOIN_NOLOCK only happens during the transaction commit, so
304 * it is impossible that ->running_transaction is NULL
306 BUG_ON(type == TRANS_JOIN_NOLOCK);
308 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
312 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
313 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
315 spin_lock(&fs_info->trans_lock);
316 if (fs_info->running_transaction) {
318 * someone started a transaction after we unlocked. Make sure
319 * to redo the checks above
321 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
322 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
325 } else if (BTRFS_FS_ERROR(fs_info)) {
326 spin_unlock(&fs_info->trans_lock);
327 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
328 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
333 cur_trans->fs_info = fs_info;
334 atomic_set(&cur_trans->pending_ordered, 0);
335 init_waitqueue_head(&cur_trans->pending_wait);
336 atomic_set(&cur_trans->num_writers, 1);
337 extwriter_counter_init(cur_trans, type);
338 init_waitqueue_head(&cur_trans->writer_wait);
339 init_waitqueue_head(&cur_trans->commit_wait);
340 cur_trans->state = TRANS_STATE_RUNNING;
342 * One for this trans handle, one so it will live on until we
343 * commit the transaction.
345 refcount_set(&cur_trans->use_count, 2);
346 cur_trans->flags = 0;
347 cur_trans->start_time = ktime_get_seconds();
349 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
351 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
352 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
353 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
356 * although the tree mod log is per file system and not per transaction,
357 * the log must never go across transaction boundaries.
360 if (!list_empty(&fs_info->tree_mod_seq_list))
361 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
362 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
363 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
364 atomic64_set(&fs_info->tree_mod_seq, 0);
366 spin_lock_init(&cur_trans->delayed_refs.lock);
368 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
369 INIT_LIST_HEAD(&cur_trans->dev_update_list);
370 INIT_LIST_HEAD(&cur_trans->switch_commits);
371 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
372 INIT_LIST_HEAD(&cur_trans->io_bgs);
373 INIT_LIST_HEAD(&cur_trans->dropped_roots);
374 mutex_init(&cur_trans->cache_write_mutex);
375 spin_lock_init(&cur_trans->dirty_bgs_lock);
376 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
377 spin_lock_init(&cur_trans->dropped_roots_lock);
378 list_add_tail(&cur_trans->list, &fs_info->trans_list);
379 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
380 IO_TREE_TRANS_DIRTY_PAGES);
381 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
382 IO_TREE_FS_PINNED_EXTENTS);
383 fs_info->generation++;
384 cur_trans->transid = fs_info->generation;
385 fs_info->running_transaction = cur_trans;
386 cur_trans->aborted = 0;
387 spin_unlock(&fs_info->trans_lock);
393 * This does all the record keeping required to make sure that a shareable root
394 * is properly recorded in a given transaction. This is required to make sure
395 * the old root from before we joined the transaction is deleted when the
396 * transaction commits.
398 static int record_root_in_trans(struct btrfs_trans_handle *trans,
399 struct btrfs_root *root,
402 struct btrfs_fs_info *fs_info = root->fs_info;
405 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
406 root->last_trans < trans->transid) || force) {
407 WARN_ON(!force && root->commit_root != root->node);
410 * see below for IN_TRANS_SETUP usage rules
411 * we have the reloc mutex held now, so there
412 * is only one writer in this function
414 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
416 /* make sure readers find IN_TRANS_SETUP before
417 * they find our root->last_trans update
421 spin_lock(&fs_info->fs_roots_radix_lock);
422 if (root->last_trans == trans->transid && !force) {
423 spin_unlock(&fs_info->fs_roots_radix_lock);
426 radix_tree_tag_set(&fs_info->fs_roots_radix,
427 (unsigned long)root->root_key.objectid,
428 BTRFS_ROOT_TRANS_TAG);
429 spin_unlock(&fs_info->fs_roots_radix_lock);
430 root->last_trans = trans->transid;
432 /* this is pretty tricky. We don't want to
433 * take the relocation lock in btrfs_record_root_in_trans
434 * unless we're really doing the first setup for this root in
437 * Normally we'd use root->last_trans as a flag to decide
438 * if we want to take the expensive mutex.
440 * But, we have to set root->last_trans before we
441 * init the relocation root, otherwise, we trip over warnings
442 * in ctree.c. The solution used here is to flag ourselves
443 * with root IN_TRANS_SETUP. When this is 1, we're still
444 * fixing up the reloc trees and everyone must wait.
446 * When this is zero, they can trust root->last_trans and fly
447 * through btrfs_record_root_in_trans without having to take the
448 * lock. smp_wmb() makes sure that all the writes above are
449 * done before we pop in the zero below
451 ret = btrfs_init_reloc_root(trans, root);
452 smp_mb__before_atomic();
453 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
459 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
460 struct btrfs_root *root)
462 struct btrfs_fs_info *fs_info = root->fs_info;
463 struct btrfs_transaction *cur_trans = trans->transaction;
465 /* Add ourselves to the transaction dropped list */
466 spin_lock(&cur_trans->dropped_roots_lock);
467 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
468 spin_unlock(&cur_trans->dropped_roots_lock);
470 /* Make sure we don't try to update the root at commit time */
471 spin_lock(&fs_info->fs_roots_radix_lock);
472 radix_tree_tag_clear(&fs_info->fs_roots_radix,
473 (unsigned long)root->root_key.objectid,
474 BTRFS_ROOT_TRANS_TAG);
475 spin_unlock(&fs_info->fs_roots_radix_lock);
478 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
479 struct btrfs_root *root)
481 struct btrfs_fs_info *fs_info = root->fs_info;
484 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
488 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
492 if (root->last_trans == trans->transid &&
493 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
496 mutex_lock(&fs_info->reloc_mutex);
497 ret = record_root_in_trans(trans, root, 0);
498 mutex_unlock(&fs_info->reloc_mutex);
503 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
505 return (trans->state >= TRANS_STATE_COMMIT_START &&
506 trans->state < TRANS_STATE_UNBLOCKED &&
507 !TRANS_ABORTED(trans));
510 /* wait for commit against the current transaction to become unblocked
511 * when this is done, it is safe to start a new transaction, but the current
512 * transaction might not be fully on disk.
514 static void wait_current_trans(struct btrfs_fs_info *fs_info)
516 struct btrfs_transaction *cur_trans;
518 spin_lock(&fs_info->trans_lock);
519 cur_trans = fs_info->running_transaction;
520 if (cur_trans && is_transaction_blocked(cur_trans)) {
521 refcount_inc(&cur_trans->use_count);
522 spin_unlock(&fs_info->trans_lock);
524 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
525 wait_event(fs_info->transaction_wait,
526 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
527 TRANS_ABORTED(cur_trans));
528 btrfs_put_transaction(cur_trans);
530 spin_unlock(&fs_info->trans_lock);
534 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
536 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
539 if (type == TRANS_START)
545 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
547 struct btrfs_fs_info *fs_info = root->fs_info;
549 if (!fs_info->reloc_ctl ||
550 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
551 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
558 static struct btrfs_trans_handle *
559 start_transaction(struct btrfs_root *root, unsigned int num_items,
560 unsigned int type, enum btrfs_reserve_flush_enum flush,
561 bool enforce_qgroups)
563 struct btrfs_fs_info *fs_info = root->fs_info;
564 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
565 struct btrfs_trans_handle *h;
566 struct btrfs_transaction *cur_trans;
568 u64 qgroup_reserved = 0;
569 bool reloc_reserved = false;
570 bool do_chunk_alloc = false;
573 if (BTRFS_FS_ERROR(fs_info))
574 return ERR_PTR(-EROFS);
576 if (current->journal_info) {
577 WARN_ON(type & TRANS_EXTWRITERS);
578 h = current->journal_info;
579 refcount_inc(&h->use_count);
580 WARN_ON(refcount_read(&h->use_count) > 2);
581 h->orig_rsv = h->block_rsv;
587 * Do the reservation before we join the transaction so we can do all
588 * the appropriate flushing if need be.
590 if (num_items && root != fs_info->chunk_root) {
591 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
592 u64 delayed_refs_bytes = 0;
594 qgroup_reserved = num_items * fs_info->nodesize;
596 * Use prealloc for now, as there might be a currently running
597 * transaction that could free this reserved space prematurely
600 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
601 enforce_qgroups, false);
606 * We want to reserve all the bytes we may need all at once, so
607 * we only do 1 enospc flushing cycle per transaction start. We
608 * accomplish this by simply assuming we'll do num_items worth
609 * of delayed refs updates in this trans handle, and refill that
610 * amount for whatever is missing in the reserve.
612 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
613 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
614 !btrfs_block_rsv_full(delayed_refs_rsv)) {
615 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info,
617 num_bytes += delayed_refs_bytes;
621 * Do the reservation for the relocation root creation
623 if (need_reserve_reloc_root(root)) {
624 num_bytes += fs_info->nodesize;
625 reloc_reserved = true;
628 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
631 if (delayed_refs_bytes) {
632 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
634 num_bytes -= delayed_refs_bytes;
637 if (rsv->space_info->force_alloc)
638 do_chunk_alloc = true;
639 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
640 !btrfs_block_rsv_full(delayed_refs_rsv)) {
642 * Some people call with btrfs_start_transaction(root, 0)
643 * because they can be throttled, but have some other mechanism
644 * for reserving space. We still want these guys to refill the
645 * delayed block_rsv so just add 1 items worth of reservation
648 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
653 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
660 * If we are JOIN_NOLOCK we're already committing a transaction and
661 * waiting on this guy, so we don't need to do the sb_start_intwrite
662 * because we're already holding a ref. We need this because we could
663 * have raced in and did an fsync() on a file which can kick a commit
664 * and then we deadlock with somebody doing a freeze.
666 * If we are ATTACH, it means we just want to catch the current
667 * transaction and commit it, so we needn't do sb_start_intwrite().
669 if (type & __TRANS_FREEZABLE)
670 sb_start_intwrite(fs_info->sb);
672 if (may_wait_transaction(fs_info, type))
673 wait_current_trans(fs_info);
676 ret = join_transaction(fs_info, type);
678 wait_current_trans(fs_info);
679 if (unlikely(type == TRANS_ATTACH ||
680 type == TRANS_JOIN_NOSTART))
683 } while (ret == -EBUSY);
688 cur_trans = fs_info->running_transaction;
690 h->transid = cur_trans->transid;
691 h->transaction = cur_trans;
692 refcount_set(&h->use_count, 1);
693 h->fs_info = root->fs_info;
696 INIT_LIST_HEAD(&h->new_bgs);
699 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
700 may_wait_transaction(fs_info, type)) {
701 current->journal_info = h;
702 btrfs_commit_transaction(h);
707 trace_btrfs_space_reservation(fs_info, "transaction",
708 h->transid, num_bytes, 1);
709 h->block_rsv = &fs_info->trans_block_rsv;
710 h->bytes_reserved = num_bytes;
711 h->reloc_reserved = reloc_reserved;
715 * Now that we have found a transaction to be a part of, convert the
716 * qgroup reservation from prealloc to pertrans. A different transaction
717 * can't race in and free our pertrans out from under us.
720 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
723 if (!current->journal_info)
724 current->journal_info = h;
727 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
728 * ALLOC_FORCE the first run through, and then we won't allocate for
729 * anybody else who races in later. We don't care about the return
732 if (do_chunk_alloc && num_bytes) {
733 u64 flags = h->block_rsv->space_info->flags;
735 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
736 CHUNK_ALLOC_NO_FORCE);
740 * btrfs_record_root_in_trans() needs to alloc new extents, and may
741 * call btrfs_join_transaction() while we're also starting a
744 * Thus it need to be called after current->journal_info initialized,
745 * or we can deadlock.
747 ret = btrfs_record_root_in_trans(h, root);
750 * The transaction handle is fully initialized and linked with
751 * other structures so it needs to be ended in case of errors,
754 btrfs_end_transaction(h);
761 if (type & __TRANS_FREEZABLE)
762 sb_end_intwrite(fs_info->sb);
763 kmem_cache_free(btrfs_trans_handle_cachep, h);
766 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
769 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
773 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
774 unsigned int num_items)
776 return start_transaction(root, num_items, TRANS_START,
777 BTRFS_RESERVE_FLUSH_ALL, true);
780 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
781 struct btrfs_root *root,
782 unsigned int num_items)
784 return start_transaction(root, num_items, TRANS_START,
785 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
788 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
790 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
794 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
796 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
797 BTRFS_RESERVE_NO_FLUSH, true);
801 * Similar to regular join but it never starts a transaction when none is
802 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
803 * This is similar to btrfs_attach_transaction() but it allows the join to
804 * happen if the transaction commit already started but it's not yet in the
805 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
807 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
809 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
810 BTRFS_RESERVE_NO_FLUSH, true);
814 * btrfs_attach_transaction() - catch the running transaction
816 * It is used when we want to commit the current the transaction, but
817 * don't want to start a new one.
819 * Note: If this function return -ENOENT, it just means there is no
820 * running transaction. But it is possible that the inactive transaction
821 * is still in the memory, not fully on disk. If you hope there is no
822 * inactive transaction in the fs when -ENOENT is returned, you should
824 * btrfs_attach_transaction_barrier()
826 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
828 return start_transaction(root, 0, TRANS_ATTACH,
829 BTRFS_RESERVE_NO_FLUSH, true);
833 * btrfs_attach_transaction_barrier() - catch the running transaction
835 * It is similar to the above function, the difference is this one
836 * will wait for all the inactive transactions until they fully
839 struct btrfs_trans_handle *
840 btrfs_attach_transaction_barrier(struct btrfs_root *root)
842 struct btrfs_trans_handle *trans;
844 trans = start_transaction(root, 0, TRANS_ATTACH,
845 BTRFS_RESERVE_NO_FLUSH, true);
846 if (trans == ERR_PTR(-ENOENT)) {
849 ret = btrfs_wait_for_commit(root->fs_info, 0);
857 /* Wait for a transaction commit to reach at least the given state. */
858 static noinline void wait_for_commit(struct btrfs_transaction *commit,
859 const enum btrfs_trans_state min_state)
861 struct btrfs_fs_info *fs_info = commit->fs_info;
862 u64 transid = commit->transid;
866 * At the moment this function is called with min_state either being
867 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
869 if (min_state == TRANS_STATE_COMPLETED)
870 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
872 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
875 wait_event(commit->commit_wait, commit->state >= min_state);
877 btrfs_put_transaction(commit);
879 if (min_state < TRANS_STATE_COMPLETED)
883 * A transaction isn't really completed until all of the
884 * previous transactions are completed, but with fsync we can
885 * end up with SUPER_COMMITTED transactions before a COMPLETED
886 * transaction. Wait for those.
889 spin_lock(&fs_info->trans_lock);
890 commit = list_first_entry_or_null(&fs_info->trans_list,
891 struct btrfs_transaction,
893 if (!commit || commit->transid > transid) {
894 spin_unlock(&fs_info->trans_lock);
897 refcount_inc(&commit->use_count);
899 spin_unlock(&fs_info->trans_lock);
903 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
905 struct btrfs_transaction *cur_trans = NULL, *t;
909 if (transid <= fs_info->last_trans_committed)
912 /* find specified transaction */
913 spin_lock(&fs_info->trans_lock);
914 list_for_each_entry(t, &fs_info->trans_list, list) {
915 if (t->transid == transid) {
917 refcount_inc(&cur_trans->use_count);
921 if (t->transid > transid) {
926 spin_unlock(&fs_info->trans_lock);
929 * The specified transaction doesn't exist, or we
930 * raced with btrfs_commit_transaction
933 if (transid > fs_info->last_trans_committed)
938 /* find newest transaction that is committing | committed */
939 spin_lock(&fs_info->trans_lock);
940 list_for_each_entry_reverse(t, &fs_info->trans_list,
942 if (t->state >= TRANS_STATE_COMMIT_START) {
943 if (t->state == TRANS_STATE_COMPLETED)
946 refcount_inc(&cur_trans->use_count);
950 spin_unlock(&fs_info->trans_lock);
952 goto out; /* nothing committing|committed */
955 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
956 ret = cur_trans->aborted;
957 btrfs_put_transaction(cur_trans);
962 void btrfs_throttle(struct btrfs_fs_info *fs_info)
964 wait_current_trans(fs_info);
967 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
969 struct btrfs_transaction *cur_trans = trans->transaction;
971 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
972 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
975 if (btrfs_check_space_for_delayed_refs(trans->fs_info))
978 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
981 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
984 struct btrfs_fs_info *fs_info = trans->fs_info;
986 if (!trans->block_rsv) {
987 ASSERT(!trans->bytes_reserved);
991 if (!trans->bytes_reserved)
994 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
995 trace_btrfs_space_reservation(fs_info, "transaction",
996 trans->transid, trans->bytes_reserved, 0);
997 btrfs_block_rsv_release(fs_info, trans->block_rsv,
998 trans->bytes_reserved, NULL);
999 trans->bytes_reserved = 0;
1002 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1005 struct btrfs_fs_info *info = trans->fs_info;
1006 struct btrfs_transaction *cur_trans = trans->transaction;
1009 if (refcount_read(&trans->use_count) > 1) {
1010 refcount_dec(&trans->use_count);
1011 trans->block_rsv = trans->orig_rsv;
1015 btrfs_trans_release_metadata(trans);
1016 trans->block_rsv = NULL;
1018 btrfs_create_pending_block_groups(trans);
1020 btrfs_trans_release_chunk_metadata(trans);
1022 if (trans->type & __TRANS_FREEZABLE)
1023 sb_end_intwrite(info->sb);
1025 WARN_ON(cur_trans != info->running_transaction);
1026 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1027 atomic_dec(&cur_trans->num_writers);
1028 extwriter_counter_dec(cur_trans, trans->type);
1030 cond_wake_up(&cur_trans->writer_wait);
1032 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1033 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1035 btrfs_put_transaction(cur_trans);
1037 if (current->journal_info == trans)
1038 current->journal_info = NULL;
1041 btrfs_run_delayed_iputs(info);
1043 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1044 wake_up_process(info->transaction_kthread);
1045 if (TRANS_ABORTED(trans))
1046 err = trans->aborted;
1051 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1055 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1057 return __btrfs_end_transaction(trans, 0);
1060 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1062 return __btrfs_end_transaction(trans, 1);
1066 * when btree blocks are allocated, they have some corresponding bits set for
1067 * them in one of two extent_io trees. This is used to make sure all of
1068 * those extents are sent to disk but does not wait on them
1070 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1071 struct extent_io_tree *dirty_pages, int mark)
1075 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1076 struct extent_state *cached_state = NULL;
1080 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1081 mark, &cached_state)) {
1082 bool wait_writeback = false;
1084 err = convert_extent_bit(dirty_pages, start, end,
1086 mark, &cached_state);
1088 * convert_extent_bit can return -ENOMEM, which is most of the
1089 * time a temporary error. So when it happens, ignore the error
1090 * and wait for writeback of this range to finish - because we
1091 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1092 * to __btrfs_wait_marked_extents() would not know that
1093 * writeback for this range started and therefore wouldn't
1094 * wait for it to finish - we don't want to commit a
1095 * superblock that points to btree nodes/leafs for which
1096 * writeback hasn't finished yet (and without errors).
1097 * We cleanup any entries left in the io tree when committing
1098 * the transaction (through extent_io_tree_release()).
1100 if (err == -ENOMEM) {
1102 wait_writeback = true;
1105 err = filemap_fdatawrite_range(mapping, start, end);
1108 else if (wait_writeback)
1109 werr = filemap_fdatawait_range(mapping, start, end);
1110 free_extent_state(cached_state);
1111 cached_state = NULL;
1119 * when btree blocks are allocated, they have some corresponding bits set for
1120 * them in one of two extent_io trees. This is used to make sure all of
1121 * those extents are on disk for transaction or log commit. We wait
1122 * on all the pages and clear them from the dirty pages state tree
1124 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1125 struct extent_io_tree *dirty_pages)
1129 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1130 struct extent_state *cached_state = NULL;
1134 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1135 EXTENT_NEED_WAIT, &cached_state)) {
1137 * Ignore -ENOMEM errors returned by clear_extent_bit().
1138 * When committing the transaction, we'll remove any entries
1139 * left in the io tree. For a log commit, we don't remove them
1140 * after committing the log because the tree can be accessed
1141 * concurrently - we do it only at transaction commit time when
1142 * it's safe to do it (through extent_io_tree_release()).
1144 err = clear_extent_bit(dirty_pages, start, end,
1145 EXTENT_NEED_WAIT, &cached_state);
1149 err = filemap_fdatawait_range(mapping, start, end);
1152 free_extent_state(cached_state);
1153 cached_state = NULL;
1162 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1163 struct extent_io_tree *dirty_pages)
1165 bool errors = false;
1168 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1169 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1177 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1179 struct btrfs_fs_info *fs_info = log_root->fs_info;
1180 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1181 bool errors = false;
1184 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1186 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1187 if ((mark & EXTENT_DIRTY) &&
1188 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1191 if ((mark & EXTENT_NEW) &&
1192 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1201 * When btree blocks are allocated the corresponding extents are marked dirty.
1202 * This function ensures such extents are persisted on disk for transaction or
1205 * @trans: transaction whose dirty pages we'd like to write
1207 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1211 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1212 struct btrfs_fs_info *fs_info = trans->fs_info;
1213 struct blk_plug plug;
1215 blk_start_plug(&plug);
1216 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1217 blk_finish_plug(&plug);
1218 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1220 extent_io_tree_release(&trans->transaction->dirty_pages);
1231 * this is used to update the root pointer in the tree of tree roots.
1233 * But, in the case of the extent allocation tree, updating the root
1234 * pointer may allocate blocks which may change the root of the extent
1237 * So, this loops and repeats and makes sure the cowonly root didn't
1238 * change while the root pointer was being updated in the metadata.
1240 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1241 struct btrfs_root *root)
1244 u64 old_root_bytenr;
1246 struct btrfs_fs_info *fs_info = root->fs_info;
1247 struct btrfs_root *tree_root = fs_info->tree_root;
1249 old_root_used = btrfs_root_used(&root->root_item);
1252 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1253 if (old_root_bytenr == root->node->start &&
1254 old_root_used == btrfs_root_used(&root->root_item))
1257 btrfs_set_root_node(&root->root_item, root->node);
1258 ret = btrfs_update_root(trans, tree_root,
1264 old_root_used = btrfs_root_used(&root->root_item);
1271 * update all the cowonly tree roots on disk
1273 * The error handling in this function may not be obvious. Any of the
1274 * failures will cause the file system to go offline. We still need
1275 * to clean up the delayed refs.
1277 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1279 struct btrfs_fs_info *fs_info = trans->fs_info;
1280 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1281 struct list_head *io_bgs = &trans->transaction->io_bgs;
1282 struct list_head *next;
1283 struct extent_buffer *eb;
1287 * At this point no one can be using this transaction to modify any tree
1288 * and no one can start another transaction to modify any tree either.
1290 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1292 eb = btrfs_lock_root_node(fs_info->tree_root);
1293 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1294 0, &eb, BTRFS_NESTING_COW);
1295 btrfs_tree_unlock(eb);
1296 free_extent_buffer(eb);
1301 ret = btrfs_run_dev_stats(trans);
1304 ret = btrfs_run_dev_replace(trans);
1307 ret = btrfs_run_qgroups(trans);
1311 ret = btrfs_setup_space_cache(trans);
1316 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1317 struct btrfs_root *root;
1318 next = fs_info->dirty_cowonly_roots.next;
1319 list_del_init(next);
1320 root = list_entry(next, struct btrfs_root, dirty_list);
1321 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1323 list_add_tail(&root->dirty_list,
1324 &trans->transaction->switch_commits);
1325 ret = update_cowonly_root(trans, root);
1330 /* Now flush any delayed refs generated by updating all of the roots */
1331 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1335 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1336 ret = btrfs_write_dirty_block_groups(trans);
1341 * We're writing the dirty block groups, which could generate
1342 * delayed refs, which could generate more dirty block groups,
1343 * so we want to keep this flushing in this loop to make sure
1344 * everything gets run.
1346 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1351 if (!list_empty(&fs_info->dirty_cowonly_roots))
1354 /* Update dev-replace pointer once everything is committed */
1355 fs_info->dev_replace.committed_cursor_left =
1356 fs_info->dev_replace.cursor_left_last_write_of_item;
1362 * If we had a pending drop we need to see if there are any others left in our
1363 * dead roots list, and if not clear our bit and wake any waiters.
1365 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1368 * We put the drop in progress roots at the front of the list, so if the
1369 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1372 spin_lock(&fs_info->trans_lock);
1373 if (!list_empty(&fs_info->dead_roots)) {
1374 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1377 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1378 spin_unlock(&fs_info->trans_lock);
1382 spin_unlock(&fs_info->trans_lock);
1384 btrfs_wake_unfinished_drop(fs_info);
1388 * dead roots are old snapshots that need to be deleted. This allocates
1389 * a dirty root struct and adds it into the list of dead roots that need to
1392 void btrfs_add_dead_root(struct btrfs_root *root)
1394 struct btrfs_fs_info *fs_info = root->fs_info;
1396 spin_lock(&fs_info->trans_lock);
1397 if (list_empty(&root->root_list)) {
1398 btrfs_grab_root(root);
1400 /* We want to process the partially complete drops first. */
1401 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1402 list_add(&root->root_list, &fs_info->dead_roots);
1404 list_add_tail(&root->root_list, &fs_info->dead_roots);
1406 spin_unlock(&fs_info->trans_lock);
1410 * Update each subvolume root and its relocation root, if it exists, in the tree
1411 * of tree roots. Also free log roots if they exist.
1413 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1415 struct btrfs_fs_info *fs_info = trans->fs_info;
1416 struct btrfs_root *gang[8];
1421 * At this point no one can be using this transaction to modify any tree
1422 * and no one can start another transaction to modify any tree either.
1424 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1426 spin_lock(&fs_info->fs_roots_radix_lock);
1428 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1431 BTRFS_ROOT_TRANS_TAG);
1434 for (i = 0; i < ret; i++) {
1435 struct btrfs_root *root = gang[i];
1439 * At this point we can neither have tasks logging inodes
1440 * from a root nor trying to commit a log tree.
1442 ASSERT(atomic_read(&root->log_writers) == 0);
1443 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1444 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1446 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1447 (unsigned long)root->root_key.objectid,
1448 BTRFS_ROOT_TRANS_TAG);
1449 spin_unlock(&fs_info->fs_roots_radix_lock);
1451 btrfs_free_log(trans, root);
1452 ret2 = btrfs_update_reloc_root(trans, root);
1456 /* see comments in should_cow_block() */
1457 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1458 smp_mb__after_atomic();
1460 if (root->commit_root != root->node) {
1461 list_add_tail(&root->dirty_list,
1462 &trans->transaction->switch_commits);
1463 btrfs_set_root_node(&root->root_item,
1467 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1472 spin_lock(&fs_info->fs_roots_radix_lock);
1473 btrfs_qgroup_free_meta_all_pertrans(root);
1476 spin_unlock(&fs_info->fs_roots_radix_lock);
1481 * defrag a given btree.
1482 * Every leaf in the btree is read and defragged.
1484 int btrfs_defrag_root(struct btrfs_root *root)
1486 struct btrfs_fs_info *info = root->fs_info;
1487 struct btrfs_trans_handle *trans;
1490 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1494 trans = btrfs_start_transaction(root, 0);
1495 if (IS_ERR(trans)) {
1496 ret = PTR_ERR(trans);
1500 ret = btrfs_defrag_leaves(trans, root);
1502 btrfs_end_transaction(trans);
1503 btrfs_btree_balance_dirty(info);
1506 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1509 if (btrfs_defrag_cancelled(info)) {
1510 btrfs_debug(info, "defrag_root cancelled");
1515 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1520 * Do all special snapshot related qgroup dirty hack.
1522 * Will do all needed qgroup inherit and dirty hack like switch commit
1523 * roots inside one transaction and write all btree into disk, to make
1526 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1527 struct btrfs_root *src,
1528 struct btrfs_root *parent,
1529 struct btrfs_qgroup_inherit *inherit,
1532 struct btrfs_fs_info *fs_info = src->fs_info;
1536 * Save some performance in the case that qgroups are not
1537 * enabled. If this check races with the ioctl, rescan will
1540 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1544 * Ensure dirty @src will be committed. Or, after coming
1545 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1546 * recorded root will never be updated again, causing an outdated root
1549 ret = record_root_in_trans(trans, src, 1);
1554 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1555 * src root, so we must run the delayed refs here.
1557 * However this isn't particularly fool proof, because there's no
1558 * synchronization keeping us from changing the tree after this point
1559 * before we do the qgroup_inherit, or even from making changes while
1560 * we're doing the qgroup_inherit. But that's a problem for the future,
1561 * for now flush the delayed refs to narrow the race window where the
1562 * qgroup counters could end up wrong.
1564 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1566 btrfs_abort_transaction(trans, ret);
1570 ret = commit_fs_roots(trans);
1573 ret = btrfs_qgroup_account_extents(trans);
1577 /* Now qgroup are all updated, we can inherit it to new qgroups */
1578 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1584 * Now we do a simplified commit transaction, which will:
1585 * 1) commit all subvolume and extent tree
1586 * To ensure all subvolume and extent tree have a valid
1587 * commit_root to accounting later insert_dir_item()
1588 * 2) write all btree blocks onto disk
1589 * This is to make sure later btree modification will be cowed
1590 * Or commit_root can be populated and cause wrong qgroup numbers
1591 * In this simplified commit, we don't really care about other trees
1592 * like chunk and root tree, as they won't affect qgroup.
1593 * And we don't write super to avoid half committed status.
1595 ret = commit_cowonly_roots(trans);
1598 switch_commit_roots(trans);
1599 ret = btrfs_write_and_wait_transaction(trans);
1601 btrfs_handle_fs_error(fs_info, ret,
1602 "Error while writing out transaction for qgroup");
1606 * Force parent root to be updated, as we recorded it before so its
1607 * last_trans == cur_transid.
1608 * Or it won't be committed again onto disk after later
1612 ret = record_root_in_trans(trans, parent, 1);
1617 * new snapshots need to be created at a very specific time in the
1618 * transaction commit. This does the actual creation.
1621 * If the error which may affect the commitment of the current transaction
1622 * happens, we should return the error number. If the error which just affect
1623 * the creation of the pending snapshots, just return 0.
1625 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1626 struct btrfs_pending_snapshot *pending)
1629 struct btrfs_fs_info *fs_info = trans->fs_info;
1630 struct btrfs_key key;
1631 struct btrfs_root_item *new_root_item;
1632 struct btrfs_root *tree_root = fs_info->tree_root;
1633 struct btrfs_root *root = pending->root;
1634 struct btrfs_root *parent_root;
1635 struct btrfs_block_rsv *rsv;
1636 struct inode *parent_inode = pending->dir;
1637 struct btrfs_path *path;
1638 struct btrfs_dir_item *dir_item;
1639 struct extent_buffer *tmp;
1640 struct extent_buffer *old;
1641 struct timespec64 cur_time;
1647 unsigned int nofs_flags;
1648 struct fscrypt_name fname;
1650 ASSERT(pending->path);
1651 path = pending->path;
1653 ASSERT(pending->root_item);
1654 new_root_item = pending->root_item;
1657 * We're inside a transaction and must make sure that any potential
1658 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1661 nofs_flags = memalloc_nofs_save();
1662 pending->error = fscrypt_setup_filename(parent_inode,
1663 &pending->dentry->d_name, 0,
1665 memalloc_nofs_restore(nofs_flags);
1669 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1674 * Make qgroup to skip current new snapshot's qgroupid, as it is
1675 * accounted by later btrfs_qgroup_inherit().
1677 btrfs_set_skip_qgroup(trans, objectid);
1679 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1681 if (to_reserve > 0) {
1682 pending->error = btrfs_block_rsv_add(fs_info,
1683 &pending->block_rsv,
1685 BTRFS_RESERVE_NO_FLUSH);
1687 goto clear_skip_qgroup;
1690 key.objectid = objectid;
1691 key.offset = (u64)-1;
1692 key.type = BTRFS_ROOT_ITEM_KEY;
1694 rsv = trans->block_rsv;
1695 trans->block_rsv = &pending->block_rsv;
1696 trans->bytes_reserved = trans->block_rsv->reserved;
1697 trace_btrfs_space_reservation(fs_info, "transaction",
1699 trans->bytes_reserved, 1);
1700 parent_root = BTRFS_I(parent_inode)->root;
1701 ret = record_root_in_trans(trans, parent_root, 0);
1704 cur_time = current_time(parent_inode);
1707 * insert the directory item
1709 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1711 btrfs_abort_transaction(trans, ret);
1715 /* check if there is a file/dir which has the same name. */
1716 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1717 btrfs_ino(BTRFS_I(parent_inode)),
1718 &fname.disk_name, 0);
1719 if (dir_item != NULL && !IS_ERR(dir_item)) {
1720 pending->error = -EEXIST;
1721 goto dir_item_existed;
1722 } else if (IS_ERR(dir_item)) {
1723 ret = PTR_ERR(dir_item);
1724 btrfs_abort_transaction(trans, ret);
1727 btrfs_release_path(path);
1730 * pull in the delayed directory update
1731 * and the delayed inode item
1732 * otherwise we corrupt the FS during
1735 ret = btrfs_run_delayed_items(trans);
1736 if (ret) { /* Transaction aborted */
1737 btrfs_abort_transaction(trans, ret);
1741 ret = record_root_in_trans(trans, root, 0);
1743 btrfs_abort_transaction(trans, ret);
1746 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1747 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1748 btrfs_check_and_init_root_item(new_root_item);
1750 root_flags = btrfs_root_flags(new_root_item);
1751 if (pending->readonly)
1752 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1754 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1755 btrfs_set_root_flags(new_root_item, root_flags);
1757 btrfs_set_root_generation_v2(new_root_item,
1759 generate_random_guid(new_root_item->uuid);
1760 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1762 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1763 memset(new_root_item->received_uuid, 0,
1764 sizeof(new_root_item->received_uuid));
1765 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1766 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1767 btrfs_set_root_stransid(new_root_item, 0);
1768 btrfs_set_root_rtransid(new_root_item, 0);
1770 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1771 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1772 btrfs_set_root_otransid(new_root_item, trans->transid);
1774 old = btrfs_lock_root_node(root);
1775 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1778 btrfs_tree_unlock(old);
1779 free_extent_buffer(old);
1780 btrfs_abort_transaction(trans, ret);
1784 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1785 /* clean up in any case */
1786 btrfs_tree_unlock(old);
1787 free_extent_buffer(old);
1789 btrfs_abort_transaction(trans, ret);
1792 /* see comments in should_cow_block() */
1793 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1796 btrfs_set_root_node(new_root_item, tmp);
1797 /* record when the snapshot was created in key.offset */
1798 key.offset = trans->transid;
1799 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1800 btrfs_tree_unlock(tmp);
1801 free_extent_buffer(tmp);
1803 btrfs_abort_transaction(trans, ret);
1808 * insert root back/forward references
1810 ret = btrfs_add_root_ref(trans, objectid,
1811 parent_root->root_key.objectid,
1812 btrfs_ino(BTRFS_I(parent_inode)), index,
1815 btrfs_abort_transaction(trans, ret);
1819 key.offset = (u64)-1;
1820 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1821 if (IS_ERR(pending->snap)) {
1822 ret = PTR_ERR(pending->snap);
1823 pending->snap = NULL;
1824 btrfs_abort_transaction(trans, ret);
1828 ret = btrfs_reloc_post_snapshot(trans, pending);
1830 btrfs_abort_transaction(trans, ret);
1835 * Do special qgroup accounting for snapshot, as we do some qgroup
1836 * snapshot hack to do fast snapshot.
1837 * To co-operate with that hack, we do hack again.
1838 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1840 ret = qgroup_account_snapshot(trans, root, parent_root,
1841 pending->inherit, objectid);
1845 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1846 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1848 /* We have check then name at the beginning, so it is impossible. */
1849 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1851 btrfs_abort_transaction(trans, ret);
1855 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1856 fname.disk_name.len * 2);
1857 parent_inode->i_mtime = inode_set_ctime_current(parent_inode);
1858 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1860 btrfs_abort_transaction(trans, ret);
1863 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1864 BTRFS_UUID_KEY_SUBVOL,
1867 btrfs_abort_transaction(trans, ret);
1870 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1871 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1872 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1874 if (ret && ret != -EEXIST) {
1875 btrfs_abort_transaction(trans, ret);
1881 pending->error = ret;
1883 trans->block_rsv = rsv;
1884 trans->bytes_reserved = 0;
1886 btrfs_clear_skip_qgroup(trans);
1888 fscrypt_free_filename(&fname);
1890 kfree(new_root_item);
1891 pending->root_item = NULL;
1892 btrfs_free_path(path);
1893 pending->path = NULL;
1899 * create all the snapshots we've scheduled for creation
1901 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1903 struct btrfs_pending_snapshot *pending, *next;
1904 struct list_head *head = &trans->transaction->pending_snapshots;
1907 list_for_each_entry_safe(pending, next, head, list) {
1908 list_del(&pending->list);
1909 ret = create_pending_snapshot(trans, pending);
1916 static void update_super_roots(struct btrfs_fs_info *fs_info)
1918 struct btrfs_root_item *root_item;
1919 struct btrfs_super_block *super;
1921 super = fs_info->super_copy;
1923 root_item = &fs_info->chunk_root->root_item;
1924 super->chunk_root = root_item->bytenr;
1925 super->chunk_root_generation = root_item->generation;
1926 super->chunk_root_level = root_item->level;
1928 root_item = &fs_info->tree_root->root_item;
1929 super->root = root_item->bytenr;
1930 super->generation = root_item->generation;
1931 super->root_level = root_item->level;
1932 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1933 super->cache_generation = root_item->generation;
1934 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1935 super->cache_generation = 0;
1936 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1937 super->uuid_tree_generation = root_item->generation;
1940 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1942 struct btrfs_transaction *trans;
1945 spin_lock(&info->trans_lock);
1946 trans = info->running_transaction;
1948 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1949 spin_unlock(&info->trans_lock);
1953 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1955 struct btrfs_transaction *trans;
1958 spin_lock(&info->trans_lock);
1959 trans = info->running_transaction;
1961 ret = is_transaction_blocked(trans);
1962 spin_unlock(&info->trans_lock);
1966 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1968 struct btrfs_fs_info *fs_info = trans->fs_info;
1969 struct btrfs_transaction *cur_trans;
1971 /* Kick the transaction kthread. */
1972 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1973 wake_up_process(fs_info->transaction_kthread);
1975 /* take transaction reference */
1976 cur_trans = trans->transaction;
1977 refcount_inc(&cur_trans->use_count);
1979 btrfs_end_transaction(trans);
1982 * Wait for the current transaction commit to start and block
1983 * subsequent transaction joins
1985 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
1986 wait_event(fs_info->transaction_blocked_wait,
1987 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1988 TRANS_ABORTED(cur_trans));
1989 btrfs_put_transaction(cur_trans);
1992 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1994 struct btrfs_fs_info *fs_info = trans->fs_info;
1995 struct btrfs_transaction *cur_trans = trans->transaction;
1997 WARN_ON(refcount_read(&trans->use_count) > 1);
1999 btrfs_abort_transaction(trans, err);
2001 spin_lock(&fs_info->trans_lock);
2004 * If the transaction is removed from the list, it means this
2005 * transaction has been committed successfully, so it is impossible
2006 * to call the cleanup function.
2008 BUG_ON(list_empty(&cur_trans->list));
2010 if (cur_trans == fs_info->running_transaction) {
2011 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2012 spin_unlock(&fs_info->trans_lock);
2015 * The thread has already released the lockdep map as reader
2016 * already in btrfs_commit_transaction().
2018 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2019 wait_event(cur_trans->writer_wait,
2020 atomic_read(&cur_trans->num_writers) == 1);
2022 spin_lock(&fs_info->trans_lock);
2026 * Now that we know no one else is still using the transaction we can
2027 * remove the transaction from the list of transactions. This avoids
2028 * the transaction kthread from cleaning up the transaction while some
2029 * other task is still using it, which could result in a use-after-free
2030 * on things like log trees, as it forces the transaction kthread to
2031 * wait for this transaction to be cleaned up by us.
2033 list_del_init(&cur_trans->list);
2035 spin_unlock(&fs_info->trans_lock);
2037 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2039 spin_lock(&fs_info->trans_lock);
2040 if (cur_trans == fs_info->running_transaction)
2041 fs_info->running_transaction = NULL;
2042 spin_unlock(&fs_info->trans_lock);
2044 if (trans->type & __TRANS_FREEZABLE)
2045 sb_end_intwrite(fs_info->sb);
2046 btrfs_put_transaction(cur_trans);
2047 btrfs_put_transaction(cur_trans);
2049 trace_btrfs_transaction_commit(fs_info);
2051 if (current->journal_info == trans)
2052 current->journal_info = NULL;
2055 * If relocation is running, we can't cancel scrub because that will
2056 * result in a deadlock. Before relocating a block group, relocation
2057 * pauses scrub, then starts and commits a transaction before unpausing
2058 * scrub. If the transaction commit is being done by the relocation
2059 * task or triggered by another task and the relocation task is waiting
2060 * for the commit, and we end up here due to an error in the commit
2061 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2062 * asking for scrub to stop while having it asked to be paused higher
2063 * above in relocation code.
2065 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2066 btrfs_scrub_cancel(fs_info);
2068 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2072 * Release reserved delayed ref space of all pending block groups of the
2073 * transaction and remove them from the list
2075 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2077 struct btrfs_fs_info *fs_info = trans->fs_info;
2078 struct btrfs_block_group *block_group, *tmp;
2080 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2081 btrfs_delayed_refs_rsv_release(fs_info, 1);
2082 list_del_init(&block_group->bg_list);
2086 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2089 * We use try_to_writeback_inodes_sb() here because if we used
2090 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2091 * Currently are holding the fs freeze lock, if we do an async flush
2092 * we'll do btrfs_join_transaction() and deadlock because we need to
2093 * wait for the fs freeze lock. Using the direct flushing we benefit
2094 * from already being in a transaction and our join_transaction doesn't
2095 * have to re-take the fs freeze lock.
2097 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2098 * if it can read lock sb->s_umount. It will always be able to lock it,
2099 * except when the filesystem is being unmounted or being frozen, but in
2100 * those cases sync_filesystem() is called, which results in calling
2101 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2102 * Note that we don't call writeback_inodes_sb() directly, because it
2103 * will emit a warning if sb->s_umount is not locked.
2105 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2106 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2110 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2112 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2113 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2117 * Add a pending snapshot associated with the given transaction handle to the
2118 * respective handle. This must be called after the transaction commit started
2119 * and while holding fs_info->trans_lock.
2120 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2121 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2124 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2126 struct btrfs_transaction *cur_trans = trans->transaction;
2128 if (!trans->pending_snapshot)
2131 lockdep_assert_held(&trans->fs_info->trans_lock);
2132 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2134 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2137 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2139 fs_info->commit_stats.commit_count++;
2140 fs_info->commit_stats.last_commit_dur = interval;
2141 fs_info->commit_stats.max_commit_dur =
2142 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2143 fs_info->commit_stats.total_commit_dur += interval;
2146 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2148 struct btrfs_fs_info *fs_info = trans->fs_info;
2149 struct btrfs_transaction *cur_trans = trans->transaction;
2150 struct btrfs_transaction *prev_trans = NULL;
2155 ASSERT(refcount_read(&trans->use_count) == 1);
2156 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2158 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2160 /* Stop the commit early if ->aborted is set */
2161 if (TRANS_ABORTED(cur_trans)) {
2162 ret = cur_trans->aborted;
2163 goto lockdep_trans_commit_start_release;
2166 btrfs_trans_release_metadata(trans);
2167 trans->block_rsv = NULL;
2170 * We only want one transaction commit doing the flushing so we do not
2171 * waste a bunch of time on lock contention on the extent root node.
2173 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2174 &cur_trans->delayed_refs.flags)) {
2176 * Make a pass through all the delayed refs we have so far.
2177 * Any running threads may add more while we are here.
2179 ret = btrfs_run_delayed_refs(trans, 0);
2181 goto lockdep_trans_commit_start_release;
2184 btrfs_create_pending_block_groups(trans);
2186 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2189 /* this mutex is also taken before trying to set
2190 * block groups readonly. We need to make sure
2191 * that nobody has set a block group readonly
2192 * after a extents from that block group have been
2193 * allocated for cache files. btrfs_set_block_group_ro
2194 * will wait for the transaction to commit if it
2195 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2197 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2198 * only one process starts all the block group IO. It wouldn't
2199 * hurt to have more than one go through, but there's no
2200 * real advantage to it either.
2202 mutex_lock(&fs_info->ro_block_group_mutex);
2203 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2206 mutex_unlock(&fs_info->ro_block_group_mutex);
2209 ret = btrfs_start_dirty_block_groups(trans);
2211 goto lockdep_trans_commit_start_release;
2215 spin_lock(&fs_info->trans_lock);
2216 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2217 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2219 add_pending_snapshot(trans);
2221 spin_unlock(&fs_info->trans_lock);
2222 refcount_inc(&cur_trans->use_count);
2224 if (trans->in_fsync)
2225 want_state = TRANS_STATE_SUPER_COMMITTED;
2227 btrfs_trans_state_lockdep_release(fs_info,
2228 BTRFS_LOCKDEP_TRANS_COMMIT_START);
2229 ret = btrfs_end_transaction(trans);
2230 wait_for_commit(cur_trans, want_state);
2232 if (TRANS_ABORTED(cur_trans))
2233 ret = cur_trans->aborted;
2235 btrfs_put_transaction(cur_trans);
2240 cur_trans->state = TRANS_STATE_COMMIT_START;
2241 wake_up(&fs_info->transaction_blocked_wait);
2242 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2244 if (cur_trans->list.prev != &fs_info->trans_list) {
2245 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2247 if (trans->in_fsync)
2248 want_state = TRANS_STATE_SUPER_COMMITTED;
2250 prev_trans = list_entry(cur_trans->list.prev,
2251 struct btrfs_transaction, list);
2252 if (prev_trans->state < want_state) {
2253 refcount_inc(&prev_trans->use_count);
2254 spin_unlock(&fs_info->trans_lock);
2256 wait_for_commit(prev_trans, want_state);
2258 ret = READ_ONCE(prev_trans->aborted);
2260 btrfs_put_transaction(prev_trans);
2262 goto lockdep_release;
2264 spin_unlock(&fs_info->trans_lock);
2267 spin_unlock(&fs_info->trans_lock);
2269 * The previous transaction was aborted and was already removed
2270 * from the list of transactions at fs_info->trans_list. So we
2271 * abort to prevent writing a new superblock that reflects a
2272 * corrupt state (pointing to trees with unwritten nodes/leafs).
2274 if (BTRFS_FS_ERROR(fs_info)) {
2276 goto lockdep_release;
2281 * Get the time spent on the work done by the commit thread and not
2282 * the time spent waiting on a previous commit
2284 start_time = ktime_get_ns();
2286 extwriter_counter_dec(cur_trans, trans->type);
2288 ret = btrfs_start_delalloc_flush(fs_info);
2290 goto lockdep_release;
2292 ret = btrfs_run_delayed_items(trans);
2294 goto lockdep_release;
2297 * The thread has started/joined the transaction thus it holds the
2298 * lockdep map as a reader. It has to release it before acquiring the
2299 * lockdep map as a writer.
2301 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2302 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2303 wait_event(cur_trans->writer_wait,
2304 extwriter_counter_read(cur_trans) == 0);
2306 /* some pending stuffs might be added after the previous flush. */
2307 ret = btrfs_run_delayed_items(trans);
2309 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2310 goto cleanup_transaction;
2313 btrfs_wait_delalloc_flush(fs_info);
2316 * Wait for all ordered extents started by a fast fsync that joined this
2317 * transaction. Otherwise if this transaction commits before the ordered
2318 * extents complete we lose logged data after a power failure.
2320 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2321 wait_event(cur_trans->pending_wait,
2322 atomic_read(&cur_trans->pending_ordered) == 0);
2324 btrfs_scrub_pause(fs_info);
2326 * Ok now we need to make sure to block out any other joins while we
2327 * commit the transaction. We could have started a join before setting
2328 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2330 spin_lock(&fs_info->trans_lock);
2331 add_pending_snapshot(trans);
2332 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2333 spin_unlock(&fs_info->trans_lock);
2336 * The thread has started/joined the transaction thus it holds the
2337 * lockdep map as a reader. It has to release it before acquiring the
2338 * lockdep map as a writer.
2340 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2341 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2342 wait_event(cur_trans->writer_wait,
2343 atomic_read(&cur_trans->num_writers) == 1);
2346 * Make lockdep happy by acquiring the state locks after
2347 * btrfs_trans_num_writers is released. If we acquired the state locks
2348 * before releasing the btrfs_trans_num_writers lock then lockdep would
2349 * complain because we did not follow the reverse order unlocking rule.
2351 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2352 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2353 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2356 * We've started the commit, clear the flag in case we were triggered to
2357 * do an async commit but somebody else started before the transaction
2358 * kthread could do the work.
2360 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2362 if (TRANS_ABORTED(cur_trans)) {
2363 ret = cur_trans->aborted;
2364 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2365 goto scrub_continue;
2368 * the reloc mutex makes sure that we stop
2369 * the balancing code from coming in and moving
2370 * extents around in the middle of the commit
2372 mutex_lock(&fs_info->reloc_mutex);
2375 * We needn't worry about the delayed items because we will
2376 * deal with them in create_pending_snapshot(), which is the
2377 * core function of the snapshot creation.
2379 ret = create_pending_snapshots(trans);
2384 * We insert the dir indexes of the snapshots and update the inode
2385 * of the snapshots' parents after the snapshot creation, so there
2386 * are some delayed items which are not dealt with. Now deal with
2389 * We needn't worry that this operation will corrupt the snapshots,
2390 * because all the tree which are snapshoted will be forced to COW
2391 * the nodes and leaves.
2393 ret = btrfs_run_delayed_items(trans);
2397 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2402 * make sure none of the code above managed to slip in a
2405 btrfs_assert_delayed_root_empty(fs_info);
2407 WARN_ON(cur_trans != trans->transaction);
2409 ret = commit_fs_roots(trans);
2413 /* commit_fs_roots gets rid of all the tree log roots, it is now
2414 * safe to free the root of tree log roots
2416 btrfs_free_log_root_tree(trans, fs_info);
2419 * Since fs roots are all committed, we can get a quite accurate
2420 * new_roots. So let's do quota accounting.
2422 ret = btrfs_qgroup_account_extents(trans);
2426 ret = commit_cowonly_roots(trans);
2431 * The tasks which save the space cache and inode cache may also
2432 * update ->aborted, check it.
2434 if (TRANS_ABORTED(cur_trans)) {
2435 ret = cur_trans->aborted;
2439 cur_trans = fs_info->running_transaction;
2441 btrfs_set_root_node(&fs_info->tree_root->root_item,
2442 fs_info->tree_root->node);
2443 list_add_tail(&fs_info->tree_root->dirty_list,
2444 &cur_trans->switch_commits);
2446 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2447 fs_info->chunk_root->node);
2448 list_add_tail(&fs_info->chunk_root->dirty_list,
2449 &cur_trans->switch_commits);
2451 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2452 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2453 fs_info->block_group_root->node);
2454 list_add_tail(&fs_info->block_group_root->dirty_list,
2455 &cur_trans->switch_commits);
2458 switch_commit_roots(trans);
2460 ASSERT(list_empty(&cur_trans->dirty_bgs));
2461 ASSERT(list_empty(&cur_trans->io_bgs));
2462 update_super_roots(fs_info);
2464 btrfs_set_super_log_root(fs_info->super_copy, 0);
2465 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2466 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2467 sizeof(*fs_info->super_copy));
2469 btrfs_commit_device_sizes(cur_trans);
2471 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2472 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2474 btrfs_trans_release_chunk_metadata(trans);
2477 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2478 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2479 * make sure that before we commit our superblock, no other task can
2480 * start a new transaction and commit a log tree before we commit our
2481 * superblock. Anyone trying to commit a log tree locks this mutex before
2482 * writing its superblock.
2484 mutex_lock(&fs_info->tree_log_mutex);
2486 spin_lock(&fs_info->trans_lock);
2487 cur_trans->state = TRANS_STATE_UNBLOCKED;
2488 fs_info->running_transaction = NULL;
2489 spin_unlock(&fs_info->trans_lock);
2490 mutex_unlock(&fs_info->reloc_mutex);
2492 wake_up(&fs_info->transaction_wait);
2493 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2495 /* If we have features changed, wake up the cleaner to update sysfs. */
2496 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2497 fs_info->cleaner_kthread)
2498 wake_up_process(fs_info->cleaner_kthread);
2500 ret = btrfs_write_and_wait_transaction(trans);
2502 btrfs_handle_fs_error(fs_info, ret,
2503 "Error while writing out transaction");
2504 mutex_unlock(&fs_info->tree_log_mutex);
2505 goto scrub_continue;
2508 ret = write_all_supers(fs_info, 0);
2510 * the super is written, we can safely allow the tree-loggers
2511 * to go about their business
2513 mutex_unlock(&fs_info->tree_log_mutex);
2515 goto scrub_continue;
2518 * We needn't acquire the lock here because there is no other task
2519 * which can change it.
2521 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2522 wake_up(&cur_trans->commit_wait);
2523 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2525 btrfs_finish_extent_commit(trans);
2527 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2528 btrfs_clear_space_info_full(fs_info);
2530 fs_info->last_trans_committed = cur_trans->transid;
2532 * We needn't acquire the lock here because there is no other task
2533 * which can change it.
2535 cur_trans->state = TRANS_STATE_COMPLETED;
2536 wake_up(&cur_trans->commit_wait);
2537 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2539 spin_lock(&fs_info->trans_lock);
2540 list_del_init(&cur_trans->list);
2541 spin_unlock(&fs_info->trans_lock);
2543 btrfs_put_transaction(cur_trans);
2544 btrfs_put_transaction(cur_trans);
2546 if (trans->type & __TRANS_FREEZABLE)
2547 sb_end_intwrite(fs_info->sb);
2549 trace_btrfs_transaction_commit(fs_info);
2551 interval = ktime_get_ns() - start_time;
2553 btrfs_scrub_continue(fs_info);
2555 if (current->journal_info == trans)
2556 current->journal_info = NULL;
2558 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2560 update_commit_stats(fs_info, interval);
2565 mutex_unlock(&fs_info->reloc_mutex);
2566 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2568 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2569 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2570 btrfs_scrub_continue(fs_info);
2571 cleanup_transaction:
2572 btrfs_trans_release_metadata(trans);
2573 btrfs_cleanup_pending_block_groups(trans);
2574 btrfs_trans_release_chunk_metadata(trans);
2575 trans->block_rsv = NULL;
2576 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2577 if (current->journal_info == trans)
2578 current->journal_info = NULL;
2579 cleanup_transaction(trans, ret);
2584 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2585 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2586 goto cleanup_transaction;
2588 lockdep_trans_commit_start_release:
2589 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2590 btrfs_end_transaction(trans);
2595 * return < 0 if error
2596 * 0 if there are no more dead_roots at the time of call
2597 * 1 there are more to be processed, call me again
2599 * The return value indicates there are certainly more snapshots to delete, but
2600 * if there comes a new one during processing, it may return 0. We don't mind,
2601 * because btrfs_commit_super will poke cleaner thread and it will process it a
2602 * few seconds later.
2604 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2606 struct btrfs_root *root;
2609 spin_lock(&fs_info->trans_lock);
2610 if (list_empty(&fs_info->dead_roots)) {
2611 spin_unlock(&fs_info->trans_lock);
2614 root = list_first_entry(&fs_info->dead_roots,
2615 struct btrfs_root, root_list);
2616 list_del_init(&root->root_list);
2617 spin_unlock(&fs_info->trans_lock);
2619 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2621 btrfs_kill_all_delayed_nodes(root);
2623 if (btrfs_header_backref_rev(root->node) <
2624 BTRFS_MIXED_BACKREF_REV)
2625 ret = btrfs_drop_snapshot(root, 0, 0);
2627 ret = btrfs_drop_snapshot(root, 1, 0);
2629 btrfs_put_root(root);
2630 return (ret < 0) ? 0 : 1;
2634 * We only mark the transaction aborted and then set the file system read-only.
2635 * This will prevent new transactions from starting or trying to join this
2638 * This means that error recovery at the call site is limited to freeing
2639 * any local memory allocations and passing the error code up without
2640 * further cleanup. The transaction should complete as it normally would
2641 * in the call path but will return -EIO.
2643 * We'll complete the cleanup in btrfs_end_transaction and
2644 * btrfs_commit_transaction.
2646 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2647 const char *function,
2648 unsigned int line, int errno, bool first_hit)
2650 struct btrfs_fs_info *fs_info = trans->fs_info;
2652 WRITE_ONCE(trans->aborted, errno);
2653 WRITE_ONCE(trans->transaction->aborted, errno);
2654 if (first_hit && errno == -ENOSPC)
2655 btrfs_dump_space_info_for_trans_abort(fs_info);
2656 /* Wake up anybody who may be waiting on this transaction */
2657 wake_up(&fs_info->transaction_wait);
2658 wake_up(&fs_info->transaction_blocked_wait);
2659 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
2662 int __init btrfs_transaction_init(void)
2664 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2665 sizeof(struct btrfs_trans_handle), 0,
2666 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2667 if (!btrfs_trans_handle_cachep)
2672 void __cold btrfs_transaction_exit(void)
2674 kmem_cache_destroy(btrfs_trans_handle_cachep);