1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
16 #include "transaction.h"
20 #include "dev-replace.h"
22 #include "block-group.h"
23 #include "space-info.h"
25 #define BTRFS_ROOT_TRANS_TAG 0
28 * Transaction states and transitions
30 * No running transaction (fs tree blocks are not modified)
33 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35 * Transaction N [[TRANS_STATE_RUNNING]]
37 * | New trans handles can be attached to transaction N by calling all
38 * | start_transaction() variants.
41 * | Call btrfs_commit_transaction() on any trans handle attached to
44 * Transaction N [[TRANS_STATE_COMMIT_START]]
46 * | Will wait for previous running transaction to completely finish if there
49 * | Then one of the following happes:
50 * | - Wait for all other trans handle holders to release.
51 * | The btrfs_commit_transaction() caller will do the commit work.
52 * | - Wait for current transaction to be committed by others.
53 * | Other btrfs_commit_transaction() caller will do the commit work.
55 * | At this stage, only btrfs_join_transaction*() variants can attach
56 * | to this running transaction.
57 * | All other variants will wait for current one to finish and attach to
61 * | Caller is chosen to commit transaction N, and all other trans handle
62 * | haven been released.
64 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66 * | The heavy lifting transaction work is started.
67 * | From running delayed refs (modifying extent tree) to creating pending
68 * | snapshots, running qgroups.
69 * | In short, modify supporting trees to reflect modifications of subvolume
72 * | At this stage, all start_transaction() calls will wait for this
73 * | transaction to finish and attach to transaction N+1.
76 * | Until all supporting trees are updated.
78 * Transaction N [[TRANS_STATE_UNBLOCKED]]
80 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
81 * | need to write them back to disk and update |
84 * | At this stage, new transaction is allowed to |
86 * | All new start_transaction() calls will be |
87 * | attached to transid N+1. |
90 * | Until all tree blocks are super blocks are |
91 * | written to block devices |
93 * Transaction N [[TRANS_STATE_COMPLETED]] V
94 * All tree blocks and super blocks are written. Transaction N+1
95 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
96 * data structures will be cleaned up. | Life goes on
98 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
99 [TRANS_STATE_RUNNING] = 0U,
100 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
101 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
104 __TRANS_JOIN_NOSTART),
105 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
108 __TRANS_JOIN_NOLOCK |
109 __TRANS_JOIN_NOSTART),
110 [TRANS_STATE_COMPLETED] = (__TRANS_START |
113 __TRANS_JOIN_NOLOCK |
114 __TRANS_JOIN_NOSTART),
117 void btrfs_put_transaction(struct btrfs_transaction *transaction)
119 WARN_ON(refcount_read(&transaction->use_count) == 0);
120 if (refcount_dec_and_test(&transaction->use_count)) {
121 BUG_ON(!list_empty(&transaction->list));
122 WARN_ON(!RB_EMPTY_ROOT(
123 &transaction->delayed_refs.href_root.rb_root));
124 WARN_ON(!RB_EMPTY_ROOT(
125 &transaction->delayed_refs.dirty_extent_root));
126 if (transaction->delayed_refs.pending_csums)
127 btrfs_err(transaction->fs_info,
128 "pending csums is %llu",
129 transaction->delayed_refs.pending_csums);
131 * If any block groups are found in ->deleted_bgs then it's
132 * because the transaction was aborted and a commit did not
133 * happen (things failed before writing the new superblock
134 * and calling btrfs_finish_extent_commit()), so we can not
135 * discard the physical locations of the block groups.
137 while (!list_empty(&transaction->deleted_bgs)) {
138 struct btrfs_block_group *cache;
140 cache = list_first_entry(&transaction->deleted_bgs,
141 struct btrfs_block_group,
143 list_del_init(&cache->bg_list);
144 btrfs_unfreeze_block_group(cache);
145 btrfs_put_block_group(cache);
147 WARN_ON(!list_empty(&transaction->dev_update_list));
152 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
154 struct btrfs_transaction *cur_trans = trans->transaction;
155 struct btrfs_fs_info *fs_info = trans->fs_info;
156 struct btrfs_root *root, *tmp;
157 struct btrfs_caching_control *caching_ctl, *next;
159 down_write(&fs_info->commit_root_sem);
160 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
162 list_del_init(&root->dirty_list);
163 free_extent_buffer(root->commit_root);
164 root->commit_root = btrfs_root_node(root);
165 extent_io_tree_release(&root->dirty_log_pages);
166 btrfs_qgroup_clean_swapped_blocks(root);
169 /* We can free old roots now. */
170 spin_lock(&cur_trans->dropped_roots_lock);
171 while (!list_empty(&cur_trans->dropped_roots)) {
172 root = list_first_entry(&cur_trans->dropped_roots,
173 struct btrfs_root, root_list);
174 list_del_init(&root->root_list);
175 spin_unlock(&cur_trans->dropped_roots_lock);
176 btrfs_free_log(trans, root);
177 btrfs_drop_and_free_fs_root(fs_info, root);
178 spin_lock(&cur_trans->dropped_roots_lock);
180 spin_unlock(&cur_trans->dropped_roots_lock);
183 * We have to update the last_byte_to_unpin under the commit_root_sem,
184 * at the same time we swap out the commit roots.
186 * This is because we must have a real view of the last spot the caching
187 * kthreads were while caching. Consider the following views of the
188 * extent tree for a block group
191 * +----+----+----+----+----+----+----+
192 * |\\\\| |\\\\|\\\\| |\\\\|\\\\|
193 * +----+----+----+----+----+----+----+
197 * +----+----+----+----+----+----+----+
198 * | | | |\\\\| | |\\\\|
199 * +----+----+----+----+----+----+----+
202 * If the cache_ctl->progress was at 3, then we are only allowed to
203 * unpin [0,1) and [2,3], because the caching thread has already
204 * processed those extents. We are not allowed to unpin [5,6), because
205 * the caching thread will re-start it's search from 3, and thus find
206 * the hole from [4,6) to add to the free space cache.
208 spin_lock(&fs_info->block_group_cache_lock);
209 list_for_each_entry_safe(caching_ctl, next,
210 &fs_info->caching_block_groups, list) {
211 struct btrfs_block_group *cache = caching_ctl->block_group;
213 if (btrfs_block_group_done(cache)) {
214 cache->last_byte_to_unpin = (u64)-1;
215 list_del_init(&caching_ctl->list);
216 btrfs_put_caching_control(caching_ctl);
218 cache->last_byte_to_unpin = caching_ctl->progress;
221 spin_unlock(&fs_info->block_group_cache_lock);
222 up_write(&fs_info->commit_root_sem);
225 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
228 if (type & TRANS_EXTWRITERS)
229 atomic_inc(&trans->num_extwriters);
232 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
235 if (type & TRANS_EXTWRITERS)
236 atomic_dec(&trans->num_extwriters);
239 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
242 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
245 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
247 return atomic_read(&trans->num_extwriters);
251 * To be called after all the new block groups attached to the transaction
252 * handle have been created (btrfs_create_pending_block_groups()).
254 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
256 struct btrfs_fs_info *fs_info = trans->fs_info;
258 if (!trans->chunk_bytes_reserved)
261 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
263 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
264 trans->chunk_bytes_reserved, NULL);
265 trans->chunk_bytes_reserved = 0;
269 * either allocate a new transaction or hop into the existing one
271 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
274 struct btrfs_transaction *cur_trans;
276 spin_lock(&fs_info->trans_lock);
278 /* The file system has been taken offline. No new transactions. */
279 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
280 spin_unlock(&fs_info->trans_lock);
284 cur_trans = fs_info->running_transaction;
286 if (TRANS_ABORTED(cur_trans)) {
287 spin_unlock(&fs_info->trans_lock);
288 return cur_trans->aborted;
290 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
291 spin_unlock(&fs_info->trans_lock);
294 refcount_inc(&cur_trans->use_count);
295 atomic_inc(&cur_trans->num_writers);
296 extwriter_counter_inc(cur_trans, type);
297 spin_unlock(&fs_info->trans_lock);
300 spin_unlock(&fs_info->trans_lock);
303 * If we are ATTACH, we just want to catch the current transaction,
304 * and commit it. If there is no transaction, just return ENOENT.
306 if (type == TRANS_ATTACH)
310 * JOIN_NOLOCK only happens during the transaction commit, so
311 * it is impossible that ->running_transaction is NULL
313 BUG_ON(type == TRANS_JOIN_NOLOCK);
315 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
319 spin_lock(&fs_info->trans_lock);
320 if (fs_info->running_transaction) {
322 * someone started a transaction after we unlocked. Make sure
323 * to redo the checks above
327 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
328 spin_unlock(&fs_info->trans_lock);
333 cur_trans->fs_info = fs_info;
334 atomic_set(&cur_trans->pending_ordered, 0);
335 init_waitqueue_head(&cur_trans->pending_wait);
336 atomic_set(&cur_trans->num_writers, 1);
337 extwriter_counter_init(cur_trans, type);
338 init_waitqueue_head(&cur_trans->writer_wait);
339 init_waitqueue_head(&cur_trans->commit_wait);
340 cur_trans->state = TRANS_STATE_RUNNING;
342 * One for this trans handle, one so it will live on until we
343 * commit the transaction.
345 refcount_set(&cur_trans->use_count, 2);
346 cur_trans->flags = 0;
347 cur_trans->start_time = ktime_get_seconds();
349 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
351 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
352 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
353 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
356 * although the tree mod log is per file system and not per transaction,
357 * the log must never go across transaction boundaries.
360 if (!list_empty(&fs_info->tree_mod_seq_list))
361 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
362 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
363 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
364 atomic64_set(&fs_info->tree_mod_seq, 0);
366 spin_lock_init(&cur_trans->delayed_refs.lock);
368 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
369 INIT_LIST_HEAD(&cur_trans->dev_update_list);
370 INIT_LIST_HEAD(&cur_trans->switch_commits);
371 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
372 INIT_LIST_HEAD(&cur_trans->io_bgs);
373 INIT_LIST_HEAD(&cur_trans->dropped_roots);
374 mutex_init(&cur_trans->cache_write_mutex);
375 spin_lock_init(&cur_trans->dirty_bgs_lock);
376 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
377 spin_lock_init(&cur_trans->dropped_roots_lock);
378 list_add_tail(&cur_trans->list, &fs_info->trans_list);
379 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
380 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
381 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
382 IO_TREE_FS_PINNED_EXTENTS, NULL);
383 fs_info->generation++;
384 cur_trans->transid = fs_info->generation;
385 fs_info->running_transaction = cur_trans;
386 cur_trans->aborted = 0;
387 spin_unlock(&fs_info->trans_lock);
393 * This does all the record keeping required to make sure that a shareable root
394 * is properly recorded in a given transaction. This is required to make sure
395 * the old root from before we joined the transaction is deleted when the
396 * transaction commits.
398 static int record_root_in_trans(struct btrfs_trans_handle *trans,
399 struct btrfs_root *root,
402 struct btrfs_fs_info *fs_info = root->fs_info;
404 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
405 root->last_trans < trans->transid) || force) {
406 WARN_ON(root == fs_info->extent_root);
407 WARN_ON(!force && root->commit_root != root->node);
410 * see below for IN_TRANS_SETUP usage rules
411 * we have the reloc mutex held now, so there
412 * is only one writer in this function
414 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
416 /* make sure readers find IN_TRANS_SETUP before
417 * they find our root->last_trans update
421 spin_lock(&fs_info->fs_roots_radix_lock);
422 if (root->last_trans == trans->transid && !force) {
423 spin_unlock(&fs_info->fs_roots_radix_lock);
426 radix_tree_tag_set(&fs_info->fs_roots_radix,
427 (unsigned long)root->root_key.objectid,
428 BTRFS_ROOT_TRANS_TAG);
429 spin_unlock(&fs_info->fs_roots_radix_lock);
430 root->last_trans = trans->transid;
432 /* this is pretty tricky. We don't want to
433 * take the relocation lock in btrfs_record_root_in_trans
434 * unless we're really doing the first setup for this root in
437 * Normally we'd use root->last_trans as a flag to decide
438 * if we want to take the expensive mutex.
440 * But, we have to set root->last_trans before we
441 * init the relocation root, otherwise, we trip over warnings
442 * in ctree.c. The solution used here is to flag ourselves
443 * with root IN_TRANS_SETUP. When this is 1, we're still
444 * fixing up the reloc trees and everyone must wait.
446 * When this is zero, they can trust root->last_trans and fly
447 * through btrfs_record_root_in_trans without having to take the
448 * lock. smp_wmb() makes sure that all the writes above are
449 * done before we pop in the zero below
451 btrfs_init_reloc_root(trans, root);
452 smp_mb__before_atomic();
453 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
459 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
460 struct btrfs_root *root)
462 struct btrfs_fs_info *fs_info = root->fs_info;
463 struct btrfs_transaction *cur_trans = trans->transaction;
465 /* Add ourselves to the transaction dropped list */
466 spin_lock(&cur_trans->dropped_roots_lock);
467 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
468 spin_unlock(&cur_trans->dropped_roots_lock);
470 /* Make sure we don't try to update the root at commit time */
471 spin_lock(&fs_info->fs_roots_radix_lock);
472 radix_tree_tag_clear(&fs_info->fs_roots_radix,
473 (unsigned long)root->root_key.objectid,
474 BTRFS_ROOT_TRANS_TAG);
475 spin_unlock(&fs_info->fs_roots_radix_lock);
478 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
479 struct btrfs_root *root)
481 struct btrfs_fs_info *fs_info = root->fs_info;
483 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
487 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
491 if (root->last_trans == trans->transid &&
492 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
495 mutex_lock(&fs_info->reloc_mutex);
496 record_root_in_trans(trans, root, 0);
497 mutex_unlock(&fs_info->reloc_mutex);
502 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
504 return (trans->state >= TRANS_STATE_COMMIT_START &&
505 trans->state < TRANS_STATE_UNBLOCKED &&
506 !TRANS_ABORTED(trans));
509 /* wait for commit against the current transaction to become unblocked
510 * when this is done, it is safe to start a new transaction, but the current
511 * transaction might not be fully on disk.
513 static void wait_current_trans(struct btrfs_fs_info *fs_info)
515 struct btrfs_transaction *cur_trans;
517 spin_lock(&fs_info->trans_lock);
518 cur_trans = fs_info->running_transaction;
519 if (cur_trans && is_transaction_blocked(cur_trans)) {
520 refcount_inc(&cur_trans->use_count);
521 spin_unlock(&fs_info->trans_lock);
523 wait_event(fs_info->transaction_wait,
524 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
525 TRANS_ABORTED(cur_trans));
526 btrfs_put_transaction(cur_trans);
528 spin_unlock(&fs_info->trans_lock);
532 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
534 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
537 if (type == TRANS_START)
543 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
545 struct btrfs_fs_info *fs_info = root->fs_info;
547 if (!fs_info->reloc_ctl ||
548 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
549 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
556 static struct btrfs_trans_handle *
557 start_transaction(struct btrfs_root *root, unsigned int num_items,
558 unsigned int type, enum btrfs_reserve_flush_enum flush,
559 bool enforce_qgroups)
561 struct btrfs_fs_info *fs_info = root->fs_info;
562 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
563 struct btrfs_trans_handle *h;
564 struct btrfs_transaction *cur_trans;
566 u64 qgroup_reserved = 0;
567 bool reloc_reserved = false;
568 bool do_chunk_alloc = false;
571 /* Send isn't supposed to start transactions. */
572 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
574 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
575 return ERR_PTR(-EROFS);
577 if (current->journal_info) {
578 WARN_ON(type & TRANS_EXTWRITERS);
579 h = current->journal_info;
580 refcount_inc(&h->use_count);
581 WARN_ON(refcount_read(&h->use_count) > 2);
582 h->orig_rsv = h->block_rsv;
588 * Do the reservation before we join the transaction so we can do all
589 * the appropriate flushing if need be.
591 if (num_items && root != fs_info->chunk_root) {
592 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
593 u64 delayed_refs_bytes = 0;
595 qgroup_reserved = num_items * fs_info->nodesize;
596 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
602 * We want to reserve all the bytes we may need all at once, so
603 * we only do 1 enospc flushing cycle per transaction start. We
604 * accomplish this by simply assuming we'll do 2 x num_items
605 * worth of delayed refs updates in this trans handle, and
606 * refill that amount for whatever is missing in the reserve.
608 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
609 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
610 delayed_refs_rsv->full == 0) {
611 delayed_refs_bytes = num_bytes;
616 * Do the reservation for the relocation root creation
618 if (need_reserve_reloc_root(root)) {
619 num_bytes += fs_info->nodesize;
620 reloc_reserved = true;
623 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
626 if (delayed_refs_bytes) {
627 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
629 num_bytes -= delayed_refs_bytes;
632 if (rsv->space_info->force_alloc)
633 do_chunk_alloc = true;
634 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
635 !delayed_refs_rsv->full) {
637 * Some people call with btrfs_start_transaction(root, 0)
638 * because they can be throttled, but have some other mechanism
639 * for reserving space. We still want these guys to refill the
640 * delayed block_rsv so just add 1 items worth of reservation
643 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
648 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
655 * If we are JOIN_NOLOCK we're already committing a transaction and
656 * waiting on this guy, so we don't need to do the sb_start_intwrite
657 * because we're already holding a ref. We need this because we could
658 * have raced in and did an fsync() on a file which can kick a commit
659 * and then we deadlock with somebody doing a freeze.
661 * If we are ATTACH, it means we just want to catch the current
662 * transaction and commit it, so we needn't do sb_start_intwrite().
664 if (type & __TRANS_FREEZABLE)
665 sb_start_intwrite(fs_info->sb);
667 if (may_wait_transaction(fs_info, type))
668 wait_current_trans(fs_info);
671 ret = join_transaction(fs_info, type);
673 wait_current_trans(fs_info);
674 if (unlikely(type == TRANS_ATTACH ||
675 type == TRANS_JOIN_NOSTART))
678 } while (ret == -EBUSY);
683 cur_trans = fs_info->running_transaction;
685 h->transid = cur_trans->transid;
686 h->transaction = cur_trans;
688 refcount_set(&h->use_count, 1);
689 h->fs_info = root->fs_info;
692 h->can_flush_pending_bgs = true;
693 INIT_LIST_HEAD(&h->new_bgs);
696 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
697 may_wait_transaction(fs_info, type)) {
698 current->journal_info = h;
699 btrfs_commit_transaction(h);
704 trace_btrfs_space_reservation(fs_info, "transaction",
705 h->transid, num_bytes, 1);
706 h->block_rsv = &fs_info->trans_block_rsv;
707 h->bytes_reserved = num_bytes;
708 h->reloc_reserved = reloc_reserved;
712 if (!current->journal_info)
713 current->journal_info = h;
716 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
717 * ALLOC_FORCE the first run through, and then we won't allocate for
718 * anybody else who races in later. We don't care about the return
721 if (do_chunk_alloc && num_bytes) {
722 u64 flags = h->block_rsv->space_info->flags;
724 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
725 CHUNK_ALLOC_NO_FORCE);
729 * btrfs_record_root_in_trans() needs to alloc new extents, and may
730 * call btrfs_join_transaction() while we're also starting a
733 * Thus it need to be called after current->journal_info initialized,
734 * or we can deadlock.
736 btrfs_record_root_in_trans(h, root);
741 if (type & __TRANS_FREEZABLE)
742 sb_end_intwrite(fs_info->sb);
743 kmem_cache_free(btrfs_trans_handle_cachep, h);
746 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
749 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
753 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
754 unsigned int num_items)
756 return start_transaction(root, num_items, TRANS_START,
757 BTRFS_RESERVE_FLUSH_ALL, true);
760 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
761 struct btrfs_root *root,
762 unsigned int num_items)
764 return start_transaction(root, num_items, TRANS_START,
765 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
768 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
770 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
774 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
776 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
777 BTRFS_RESERVE_NO_FLUSH, true);
781 * Similar to regular join but it never starts a transaction when none is
782 * running or after waiting for the current one to finish.
784 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
786 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
787 BTRFS_RESERVE_NO_FLUSH, true);
791 * btrfs_attach_transaction() - catch the running transaction
793 * It is used when we want to commit the current the transaction, but
794 * don't want to start a new one.
796 * Note: If this function return -ENOENT, it just means there is no
797 * running transaction. But it is possible that the inactive transaction
798 * is still in the memory, not fully on disk. If you hope there is no
799 * inactive transaction in the fs when -ENOENT is returned, you should
801 * btrfs_attach_transaction_barrier()
803 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
805 return start_transaction(root, 0, TRANS_ATTACH,
806 BTRFS_RESERVE_NO_FLUSH, true);
810 * btrfs_attach_transaction_barrier() - catch the running transaction
812 * It is similar to the above function, the difference is this one
813 * will wait for all the inactive transactions until they fully
816 struct btrfs_trans_handle *
817 btrfs_attach_transaction_barrier(struct btrfs_root *root)
819 struct btrfs_trans_handle *trans;
821 trans = start_transaction(root, 0, TRANS_ATTACH,
822 BTRFS_RESERVE_NO_FLUSH, true);
823 if (trans == ERR_PTR(-ENOENT))
824 btrfs_wait_for_commit(root->fs_info, 0);
829 /* wait for a transaction commit to be fully complete */
830 static noinline void wait_for_commit(struct btrfs_transaction *commit)
832 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
835 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
837 struct btrfs_transaction *cur_trans = NULL, *t;
841 if (transid <= fs_info->last_trans_committed)
844 /* find specified transaction */
845 spin_lock(&fs_info->trans_lock);
846 list_for_each_entry(t, &fs_info->trans_list, list) {
847 if (t->transid == transid) {
849 refcount_inc(&cur_trans->use_count);
853 if (t->transid > transid) {
858 spin_unlock(&fs_info->trans_lock);
861 * The specified transaction doesn't exist, or we
862 * raced with btrfs_commit_transaction
865 if (transid > fs_info->last_trans_committed)
870 /* find newest transaction that is committing | committed */
871 spin_lock(&fs_info->trans_lock);
872 list_for_each_entry_reverse(t, &fs_info->trans_list,
874 if (t->state >= TRANS_STATE_COMMIT_START) {
875 if (t->state == TRANS_STATE_COMPLETED)
878 refcount_inc(&cur_trans->use_count);
882 spin_unlock(&fs_info->trans_lock);
884 goto out; /* nothing committing|committed */
887 wait_for_commit(cur_trans);
888 btrfs_put_transaction(cur_trans);
893 void btrfs_throttle(struct btrfs_fs_info *fs_info)
895 wait_current_trans(fs_info);
898 static bool should_end_transaction(struct btrfs_trans_handle *trans)
900 struct btrfs_fs_info *fs_info = trans->fs_info;
902 if (btrfs_check_space_for_delayed_refs(fs_info))
905 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
908 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
910 struct btrfs_transaction *cur_trans = trans->transaction;
912 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
913 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
916 return should_end_transaction(trans);
919 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
922 struct btrfs_fs_info *fs_info = trans->fs_info;
924 if (!trans->block_rsv) {
925 ASSERT(!trans->bytes_reserved);
929 if (!trans->bytes_reserved)
932 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
933 trace_btrfs_space_reservation(fs_info, "transaction",
934 trans->transid, trans->bytes_reserved, 0);
935 btrfs_block_rsv_release(fs_info, trans->block_rsv,
936 trans->bytes_reserved, NULL);
937 trans->bytes_reserved = 0;
940 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
943 struct btrfs_fs_info *info = trans->fs_info;
944 struct btrfs_transaction *cur_trans = trans->transaction;
947 if (refcount_read(&trans->use_count) > 1) {
948 refcount_dec(&trans->use_count);
949 trans->block_rsv = trans->orig_rsv;
953 btrfs_trans_release_metadata(trans);
954 trans->block_rsv = NULL;
956 btrfs_create_pending_block_groups(trans);
958 btrfs_trans_release_chunk_metadata(trans);
960 if (trans->type & __TRANS_FREEZABLE)
961 sb_end_intwrite(info->sb);
963 WARN_ON(cur_trans != info->running_transaction);
964 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
965 atomic_dec(&cur_trans->num_writers);
966 extwriter_counter_dec(cur_trans, trans->type);
968 cond_wake_up(&cur_trans->writer_wait);
969 btrfs_put_transaction(cur_trans);
971 if (current->journal_info == trans)
972 current->journal_info = NULL;
975 btrfs_run_delayed_iputs(info);
977 if (TRANS_ABORTED(trans) ||
978 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
979 wake_up_process(info->transaction_kthread);
980 if (TRANS_ABORTED(trans))
981 err = trans->aborted;
986 kmem_cache_free(btrfs_trans_handle_cachep, trans);
990 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
992 return __btrfs_end_transaction(trans, 0);
995 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
997 return __btrfs_end_transaction(trans, 1);
1001 * when btree blocks are allocated, they have some corresponding bits set for
1002 * them in one of two extent_io trees. This is used to make sure all of
1003 * those extents are sent to disk but does not wait on them
1005 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1006 struct extent_io_tree *dirty_pages, int mark)
1010 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1011 struct extent_state *cached_state = NULL;
1015 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1016 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1017 mark, &cached_state)) {
1018 bool wait_writeback = false;
1020 err = convert_extent_bit(dirty_pages, start, end,
1022 mark, &cached_state);
1024 * convert_extent_bit can return -ENOMEM, which is most of the
1025 * time a temporary error. So when it happens, ignore the error
1026 * and wait for writeback of this range to finish - because we
1027 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1028 * to __btrfs_wait_marked_extents() would not know that
1029 * writeback for this range started and therefore wouldn't
1030 * wait for it to finish - we don't want to commit a
1031 * superblock that points to btree nodes/leafs for which
1032 * writeback hasn't finished yet (and without errors).
1033 * We cleanup any entries left in the io tree when committing
1034 * the transaction (through extent_io_tree_release()).
1036 if (err == -ENOMEM) {
1038 wait_writeback = true;
1041 err = filemap_fdatawrite_range(mapping, start, end);
1044 else if (wait_writeback)
1045 werr = filemap_fdatawait_range(mapping, start, end);
1046 free_extent_state(cached_state);
1047 cached_state = NULL;
1051 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1056 * when btree blocks are allocated, they have some corresponding bits set for
1057 * them in one of two extent_io trees. This is used to make sure all of
1058 * those extents are on disk for transaction or log commit. We wait
1059 * on all the pages and clear them from the dirty pages state tree
1061 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1062 struct extent_io_tree *dirty_pages)
1066 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1067 struct extent_state *cached_state = NULL;
1071 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1072 EXTENT_NEED_WAIT, &cached_state)) {
1074 * Ignore -ENOMEM errors returned by clear_extent_bit().
1075 * When committing the transaction, we'll remove any entries
1076 * left in the io tree. For a log commit, we don't remove them
1077 * after committing the log because the tree can be accessed
1078 * concurrently - we do it only at transaction commit time when
1079 * it's safe to do it (through extent_io_tree_release()).
1081 err = clear_extent_bit(dirty_pages, start, end,
1082 EXTENT_NEED_WAIT, 0, 0, &cached_state);
1086 err = filemap_fdatawait_range(mapping, start, end);
1089 free_extent_state(cached_state);
1090 cached_state = NULL;
1099 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1100 struct extent_io_tree *dirty_pages)
1102 bool errors = false;
1105 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1106 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1114 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1116 struct btrfs_fs_info *fs_info = log_root->fs_info;
1117 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1118 bool errors = false;
1121 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1123 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1124 if ((mark & EXTENT_DIRTY) &&
1125 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1128 if ((mark & EXTENT_NEW) &&
1129 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1138 * When btree blocks are allocated the corresponding extents are marked dirty.
1139 * This function ensures such extents are persisted on disk for transaction or
1142 * @trans: transaction whose dirty pages we'd like to write
1144 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1148 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1149 struct btrfs_fs_info *fs_info = trans->fs_info;
1150 struct blk_plug plug;
1152 blk_start_plug(&plug);
1153 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1154 blk_finish_plug(&plug);
1155 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1157 extent_io_tree_release(&trans->transaction->dirty_pages);
1168 * this is used to update the root pointer in the tree of tree roots.
1170 * But, in the case of the extent allocation tree, updating the root
1171 * pointer may allocate blocks which may change the root of the extent
1174 * So, this loops and repeats and makes sure the cowonly root didn't
1175 * change while the root pointer was being updated in the metadata.
1177 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1178 struct btrfs_root *root)
1181 u64 old_root_bytenr;
1183 struct btrfs_fs_info *fs_info = root->fs_info;
1184 struct btrfs_root *tree_root = fs_info->tree_root;
1186 old_root_used = btrfs_root_used(&root->root_item);
1189 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1190 if (old_root_bytenr == root->node->start &&
1191 old_root_used == btrfs_root_used(&root->root_item))
1194 btrfs_set_root_node(&root->root_item, root->node);
1195 ret = btrfs_update_root(trans, tree_root,
1201 old_root_used = btrfs_root_used(&root->root_item);
1208 * update all the cowonly tree roots on disk
1210 * The error handling in this function may not be obvious. Any of the
1211 * failures will cause the file system to go offline. We still need
1212 * to clean up the delayed refs.
1214 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1216 struct btrfs_fs_info *fs_info = trans->fs_info;
1217 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1218 struct list_head *io_bgs = &trans->transaction->io_bgs;
1219 struct list_head *next;
1220 struct extent_buffer *eb;
1223 eb = btrfs_lock_root_node(fs_info->tree_root);
1224 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1225 0, &eb, BTRFS_NESTING_COW);
1226 btrfs_tree_unlock(eb);
1227 free_extent_buffer(eb);
1232 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1236 ret = btrfs_run_dev_stats(trans);
1239 ret = btrfs_run_dev_replace(trans);
1242 ret = btrfs_run_qgroups(trans);
1246 ret = btrfs_setup_space_cache(trans);
1250 /* run_qgroups might have added some more refs */
1251 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1255 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1256 struct btrfs_root *root;
1257 next = fs_info->dirty_cowonly_roots.next;
1258 list_del_init(next);
1259 root = list_entry(next, struct btrfs_root, dirty_list);
1260 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1262 if (root != fs_info->extent_root)
1263 list_add_tail(&root->dirty_list,
1264 &trans->transaction->switch_commits);
1265 ret = update_cowonly_root(trans, root);
1268 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1273 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1274 ret = btrfs_write_dirty_block_groups(trans);
1277 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1282 if (!list_empty(&fs_info->dirty_cowonly_roots))
1285 list_add_tail(&fs_info->extent_root->dirty_list,
1286 &trans->transaction->switch_commits);
1288 /* Update dev-replace pointer once everything is committed */
1289 fs_info->dev_replace.committed_cursor_left =
1290 fs_info->dev_replace.cursor_left_last_write_of_item;
1296 * dead roots are old snapshots that need to be deleted. This allocates
1297 * a dirty root struct and adds it into the list of dead roots that need to
1300 void btrfs_add_dead_root(struct btrfs_root *root)
1302 struct btrfs_fs_info *fs_info = root->fs_info;
1304 spin_lock(&fs_info->trans_lock);
1305 if (list_empty(&root->root_list)) {
1306 btrfs_grab_root(root);
1307 list_add_tail(&root->root_list, &fs_info->dead_roots);
1309 spin_unlock(&fs_info->trans_lock);
1313 * update all the cowonly tree roots on disk
1315 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1317 struct btrfs_fs_info *fs_info = trans->fs_info;
1318 struct btrfs_root *gang[8];
1322 spin_lock(&fs_info->fs_roots_radix_lock);
1324 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1327 BTRFS_ROOT_TRANS_TAG);
1330 for (i = 0; i < ret; i++) {
1331 struct btrfs_root *root = gang[i];
1334 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1335 (unsigned long)root->root_key.objectid,
1336 BTRFS_ROOT_TRANS_TAG);
1337 spin_unlock(&fs_info->fs_roots_radix_lock);
1339 btrfs_free_log(trans, root);
1340 btrfs_update_reloc_root(trans, root);
1342 /* see comments in should_cow_block() */
1343 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1344 smp_mb__after_atomic();
1346 if (root->commit_root != root->node) {
1347 list_add_tail(&root->dirty_list,
1348 &trans->transaction->switch_commits);
1349 btrfs_set_root_node(&root->root_item,
1353 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1358 spin_lock(&fs_info->fs_roots_radix_lock);
1359 btrfs_qgroup_free_meta_all_pertrans(root);
1362 spin_unlock(&fs_info->fs_roots_radix_lock);
1367 * defrag a given btree.
1368 * Every leaf in the btree is read and defragged.
1370 int btrfs_defrag_root(struct btrfs_root *root)
1372 struct btrfs_fs_info *info = root->fs_info;
1373 struct btrfs_trans_handle *trans;
1376 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1380 trans = btrfs_start_transaction(root, 0);
1382 return PTR_ERR(trans);
1384 ret = btrfs_defrag_leaves(trans, root);
1386 btrfs_end_transaction(trans);
1387 btrfs_btree_balance_dirty(info);
1390 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1393 if (btrfs_defrag_cancelled(info)) {
1394 btrfs_debug(info, "defrag_root cancelled");
1399 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1404 * Do all special snapshot related qgroup dirty hack.
1406 * Will do all needed qgroup inherit and dirty hack like switch commit
1407 * roots inside one transaction and write all btree into disk, to make
1410 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1411 struct btrfs_root *src,
1412 struct btrfs_root *parent,
1413 struct btrfs_qgroup_inherit *inherit,
1416 struct btrfs_fs_info *fs_info = src->fs_info;
1420 * Save some performance in the case that qgroups are not
1421 * enabled. If this check races with the ioctl, rescan will
1424 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1428 * Ensure dirty @src will be committed. Or, after coming
1429 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1430 * recorded root will never be updated again, causing an outdated root
1433 record_root_in_trans(trans, src, 1);
1436 * We are going to commit transaction, see btrfs_commit_transaction()
1437 * comment for reason locking tree_log_mutex
1439 mutex_lock(&fs_info->tree_log_mutex);
1441 ret = commit_fs_roots(trans);
1444 ret = btrfs_qgroup_account_extents(trans);
1448 /* Now qgroup are all updated, we can inherit it to new qgroups */
1449 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1455 * Now we do a simplified commit transaction, which will:
1456 * 1) commit all subvolume and extent tree
1457 * To ensure all subvolume and extent tree have a valid
1458 * commit_root to accounting later insert_dir_item()
1459 * 2) write all btree blocks onto disk
1460 * This is to make sure later btree modification will be cowed
1461 * Or commit_root can be populated and cause wrong qgroup numbers
1462 * In this simplified commit, we don't really care about other trees
1463 * like chunk and root tree, as they won't affect qgroup.
1464 * And we don't write super to avoid half committed status.
1466 ret = commit_cowonly_roots(trans);
1469 switch_commit_roots(trans);
1470 ret = btrfs_write_and_wait_transaction(trans);
1472 btrfs_handle_fs_error(fs_info, ret,
1473 "Error while writing out transaction for qgroup");
1476 mutex_unlock(&fs_info->tree_log_mutex);
1479 * Force parent root to be updated, as we recorded it before so its
1480 * last_trans == cur_transid.
1481 * Or it won't be committed again onto disk after later
1485 record_root_in_trans(trans, parent, 1);
1490 * new snapshots need to be created at a very specific time in the
1491 * transaction commit. This does the actual creation.
1494 * If the error which may affect the commitment of the current transaction
1495 * happens, we should return the error number. If the error which just affect
1496 * the creation of the pending snapshots, just return 0.
1498 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1499 struct btrfs_pending_snapshot *pending)
1502 struct btrfs_fs_info *fs_info = trans->fs_info;
1503 struct btrfs_key key;
1504 struct btrfs_root_item *new_root_item;
1505 struct btrfs_root *tree_root = fs_info->tree_root;
1506 struct btrfs_root *root = pending->root;
1507 struct btrfs_root *parent_root;
1508 struct btrfs_block_rsv *rsv;
1509 struct inode *parent_inode;
1510 struct btrfs_path *path;
1511 struct btrfs_dir_item *dir_item;
1512 struct dentry *dentry;
1513 struct extent_buffer *tmp;
1514 struct extent_buffer *old;
1515 struct timespec64 cur_time;
1522 ASSERT(pending->path);
1523 path = pending->path;
1525 ASSERT(pending->root_item);
1526 new_root_item = pending->root_item;
1528 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1530 goto no_free_objectid;
1533 * Make qgroup to skip current new snapshot's qgroupid, as it is
1534 * accounted by later btrfs_qgroup_inherit().
1536 btrfs_set_skip_qgroup(trans, objectid);
1538 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1540 if (to_reserve > 0) {
1541 pending->error = btrfs_block_rsv_add(root,
1542 &pending->block_rsv,
1544 BTRFS_RESERVE_NO_FLUSH);
1546 goto clear_skip_qgroup;
1549 key.objectid = objectid;
1550 key.offset = (u64)-1;
1551 key.type = BTRFS_ROOT_ITEM_KEY;
1553 rsv = trans->block_rsv;
1554 trans->block_rsv = &pending->block_rsv;
1555 trans->bytes_reserved = trans->block_rsv->reserved;
1556 trace_btrfs_space_reservation(fs_info, "transaction",
1558 trans->bytes_reserved, 1);
1559 dentry = pending->dentry;
1560 parent_inode = pending->dir;
1561 parent_root = BTRFS_I(parent_inode)->root;
1562 record_root_in_trans(trans, parent_root, 0);
1564 cur_time = current_time(parent_inode);
1567 * insert the directory item
1569 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1570 BUG_ON(ret); /* -ENOMEM */
1572 /* check if there is a file/dir which has the same name. */
1573 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1574 btrfs_ino(BTRFS_I(parent_inode)),
1575 dentry->d_name.name,
1576 dentry->d_name.len, 0);
1577 if (dir_item != NULL && !IS_ERR(dir_item)) {
1578 pending->error = -EEXIST;
1579 goto dir_item_existed;
1580 } else if (IS_ERR(dir_item)) {
1581 ret = PTR_ERR(dir_item);
1582 btrfs_abort_transaction(trans, ret);
1585 btrfs_release_path(path);
1588 * pull in the delayed directory update
1589 * and the delayed inode item
1590 * otherwise we corrupt the FS during
1593 ret = btrfs_run_delayed_items(trans);
1594 if (ret) { /* Transaction aborted */
1595 btrfs_abort_transaction(trans, ret);
1599 record_root_in_trans(trans, root, 0);
1600 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1601 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1602 btrfs_check_and_init_root_item(new_root_item);
1604 root_flags = btrfs_root_flags(new_root_item);
1605 if (pending->readonly)
1606 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1608 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1609 btrfs_set_root_flags(new_root_item, root_flags);
1611 btrfs_set_root_generation_v2(new_root_item,
1613 generate_random_guid(new_root_item->uuid);
1614 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1616 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1617 memset(new_root_item->received_uuid, 0,
1618 sizeof(new_root_item->received_uuid));
1619 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1620 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1621 btrfs_set_root_stransid(new_root_item, 0);
1622 btrfs_set_root_rtransid(new_root_item, 0);
1624 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1625 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1626 btrfs_set_root_otransid(new_root_item, trans->transid);
1628 old = btrfs_lock_root_node(root);
1629 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1632 btrfs_tree_unlock(old);
1633 free_extent_buffer(old);
1634 btrfs_abort_transaction(trans, ret);
1638 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1639 /* clean up in any case */
1640 btrfs_tree_unlock(old);
1641 free_extent_buffer(old);
1643 btrfs_abort_transaction(trans, ret);
1646 /* see comments in should_cow_block() */
1647 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1650 btrfs_set_root_node(new_root_item, tmp);
1651 /* record when the snapshot was created in key.offset */
1652 key.offset = trans->transid;
1653 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1654 btrfs_tree_unlock(tmp);
1655 free_extent_buffer(tmp);
1657 btrfs_abort_transaction(trans, ret);
1662 * insert root back/forward references
1664 ret = btrfs_add_root_ref(trans, objectid,
1665 parent_root->root_key.objectid,
1666 btrfs_ino(BTRFS_I(parent_inode)), index,
1667 dentry->d_name.name, dentry->d_name.len);
1669 btrfs_abort_transaction(trans, ret);
1673 key.offset = (u64)-1;
1674 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1675 if (IS_ERR(pending->snap)) {
1676 ret = PTR_ERR(pending->snap);
1677 pending->snap = NULL;
1678 btrfs_abort_transaction(trans, ret);
1682 ret = btrfs_reloc_post_snapshot(trans, pending);
1684 btrfs_abort_transaction(trans, ret);
1688 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1690 btrfs_abort_transaction(trans, ret);
1695 * Do special qgroup accounting for snapshot, as we do some qgroup
1696 * snapshot hack to do fast snapshot.
1697 * To co-operate with that hack, we do hack again.
1698 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1700 ret = qgroup_account_snapshot(trans, root, parent_root,
1701 pending->inherit, objectid);
1705 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1706 dentry->d_name.len, BTRFS_I(parent_inode),
1707 &key, BTRFS_FT_DIR, index);
1708 /* We have check then name at the beginning, so it is impossible. */
1709 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1711 btrfs_abort_transaction(trans, ret);
1715 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1716 dentry->d_name.len * 2);
1717 parent_inode->i_mtime = parent_inode->i_ctime =
1718 current_time(parent_inode);
1719 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1721 btrfs_abort_transaction(trans, ret);
1724 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1725 BTRFS_UUID_KEY_SUBVOL,
1728 btrfs_abort_transaction(trans, ret);
1731 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1732 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1733 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1735 if (ret && ret != -EEXIST) {
1736 btrfs_abort_transaction(trans, ret);
1741 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1743 btrfs_abort_transaction(trans, ret);
1748 pending->error = ret;
1750 trans->block_rsv = rsv;
1751 trans->bytes_reserved = 0;
1753 btrfs_clear_skip_qgroup(trans);
1755 kfree(new_root_item);
1756 pending->root_item = NULL;
1757 btrfs_free_path(path);
1758 pending->path = NULL;
1764 * create all the snapshots we've scheduled for creation
1766 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1768 struct btrfs_pending_snapshot *pending, *next;
1769 struct list_head *head = &trans->transaction->pending_snapshots;
1772 list_for_each_entry_safe(pending, next, head, list) {
1773 list_del(&pending->list);
1774 ret = create_pending_snapshot(trans, pending);
1781 static void update_super_roots(struct btrfs_fs_info *fs_info)
1783 struct btrfs_root_item *root_item;
1784 struct btrfs_super_block *super;
1786 super = fs_info->super_copy;
1788 root_item = &fs_info->chunk_root->root_item;
1789 super->chunk_root = root_item->bytenr;
1790 super->chunk_root_generation = root_item->generation;
1791 super->chunk_root_level = root_item->level;
1793 root_item = &fs_info->tree_root->root_item;
1794 super->root = root_item->bytenr;
1795 super->generation = root_item->generation;
1796 super->root_level = root_item->level;
1797 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1798 super->cache_generation = root_item->generation;
1799 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1800 super->cache_generation = 0;
1801 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1802 super->uuid_tree_generation = root_item->generation;
1805 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1807 struct btrfs_transaction *trans;
1810 spin_lock(&info->trans_lock);
1811 trans = info->running_transaction;
1813 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1814 spin_unlock(&info->trans_lock);
1818 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1820 struct btrfs_transaction *trans;
1823 spin_lock(&info->trans_lock);
1824 trans = info->running_transaction;
1826 ret = is_transaction_blocked(trans);
1827 spin_unlock(&info->trans_lock);
1832 * wait for the current transaction commit to start and block subsequent
1835 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1836 struct btrfs_transaction *trans)
1838 wait_event(fs_info->transaction_blocked_wait,
1839 trans->state >= TRANS_STATE_COMMIT_START ||
1840 TRANS_ABORTED(trans));
1844 * wait for the current transaction to start and then become unblocked.
1847 static void wait_current_trans_commit_start_and_unblock(
1848 struct btrfs_fs_info *fs_info,
1849 struct btrfs_transaction *trans)
1851 wait_event(fs_info->transaction_wait,
1852 trans->state >= TRANS_STATE_UNBLOCKED ||
1853 TRANS_ABORTED(trans));
1857 * commit transactions asynchronously. once btrfs_commit_transaction_async
1858 * returns, any subsequent transaction will not be allowed to join.
1860 struct btrfs_async_commit {
1861 struct btrfs_trans_handle *newtrans;
1862 struct work_struct work;
1865 static void do_async_commit(struct work_struct *work)
1867 struct btrfs_async_commit *ac =
1868 container_of(work, struct btrfs_async_commit, work);
1871 * We've got freeze protection passed with the transaction.
1872 * Tell lockdep about it.
1874 if (ac->newtrans->type & __TRANS_FREEZABLE)
1875 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1877 current->journal_info = ac->newtrans;
1879 btrfs_commit_transaction(ac->newtrans);
1883 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1884 int wait_for_unblock)
1886 struct btrfs_fs_info *fs_info = trans->fs_info;
1887 struct btrfs_async_commit *ac;
1888 struct btrfs_transaction *cur_trans;
1890 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1894 INIT_WORK(&ac->work, do_async_commit);
1895 ac->newtrans = btrfs_join_transaction(trans->root);
1896 if (IS_ERR(ac->newtrans)) {
1897 int err = PTR_ERR(ac->newtrans);
1902 /* take transaction reference */
1903 cur_trans = trans->transaction;
1904 refcount_inc(&cur_trans->use_count);
1906 btrfs_end_transaction(trans);
1909 * Tell lockdep we've released the freeze rwsem, since the
1910 * async commit thread will be the one to unlock it.
1912 if (ac->newtrans->type & __TRANS_FREEZABLE)
1913 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1915 schedule_work(&ac->work);
1917 /* wait for transaction to start and unblock */
1918 if (wait_for_unblock)
1919 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1921 wait_current_trans_commit_start(fs_info, cur_trans);
1923 if (current->journal_info == trans)
1924 current->journal_info = NULL;
1926 btrfs_put_transaction(cur_trans);
1931 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1933 struct btrfs_fs_info *fs_info = trans->fs_info;
1934 struct btrfs_transaction *cur_trans = trans->transaction;
1936 WARN_ON(refcount_read(&trans->use_count) > 1);
1938 btrfs_abort_transaction(trans, err);
1940 spin_lock(&fs_info->trans_lock);
1943 * If the transaction is removed from the list, it means this
1944 * transaction has been committed successfully, so it is impossible
1945 * to call the cleanup function.
1947 BUG_ON(list_empty(&cur_trans->list));
1949 list_del_init(&cur_trans->list);
1950 if (cur_trans == fs_info->running_transaction) {
1951 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1952 spin_unlock(&fs_info->trans_lock);
1953 wait_event(cur_trans->writer_wait,
1954 atomic_read(&cur_trans->num_writers) == 1);
1956 spin_lock(&fs_info->trans_lock);
1958 spin_unlock(&fs_info->trans_lock);
1960 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1962 spin_lock(&fs_info->trans_lock);
1963 if (cur_trans == fs_info->running_transaction)
1964 fs_info->running_transaction = NULL;
1965 spin_unlock(&fs_info->trans_lock);
1967 if (trans->type & __TRANS_FREEZABLE)
1968 sb_end_intwrite(fs_info->sb);
1969 btrfs_put_transaction(cur_trans);
1970 btrfs_put_transaction(cur_trans);
1972 trace_btrfs_transaction_commit(trans->root);
1974 if (current->journal_info == trans)
1975 current->journal_info = NULL;
1976 btrfs_scrub_cancel(fs_info);
1978 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1982 * Release reserved delayed ref space of all pending block groups of the
1983 * transaction and remove them from the list
1985 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1987 struct btrfs_fs_info *fs_info = trans->fs_info;
1988 struct btrfs_block_group *block_group, *tmp;
1990 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1991 btrfs_delayed_refs_rsv_release(fs_info, 1);
1992 list_del_init(&block_group->bg_list);
1996 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1999 * We use writeback_inodes_sb here because if we used
2000 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2001 * Currently are holding the fs freeze lock, if we do an async flush
2002 * we'll do btrfs_join_transaction() and deadlock because we need to
2003 * wait for the fs freeze lock. Using the direct flushing we benefit
2004 * from already being in a transaction and our join_transaction doesn't
2005 * have to re-take the fs freeze lock.
2007 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2008 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2012 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2014 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2015 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2018 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2020 struct btrfs_fs_info *fs_info = trans->fs_info;
2021 struct btrfs_transaction *cur_trans = trans->transaction;
2022 struct btrfs_transaction *prev_trans = NULL;
2025 ASSERT(refcount_read(&trans->use_count) == 1);
2028 * Some places just start a transaction to commit it. We need to make
2029 * sure that if this commit fails that the abort code actually marks the
2030 * transaction as failed, so set trans->dirty to make the abort code do
2033 trans->dirty = true;
2035 /* Stop the commit early if ->aborted is set */
2036 if (TRANS_ABORTED(cur_trans)) {
2037 ret = cur_trans->aborted;
2038 btrfs_end_transaction(trans);
2042 btrfs_trans_release_metadata(trans);
2043 trans->block_rsv = NULL;
2046 * We only want one transaction commit doing the flushing so we do not
2047 * waste a bunch of time on lock contention on the extent root node.
2049 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2050 &cur_trans->delayed_refs.flags)) {
2052 * Make a pass through all the delayed refs we have so far.
2053 * Any running threads may add more while we are here.
2055 ret = btrfs_run_delayed_refs(trans, 0);
2057 btrfs_end_transaction(trans);
2062 btrfs_create_pending_block_groups(trans);
2064 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2067 /* this mutex is also taken before trying to set
2068 * block groups readonly. We need to make sure
2069 * that nobody has set a block group readonly
2070 * after a extents from that block group have been
2071 * allocated for cache files. btrfs_set_block_group_ro
2072 * will wait for the transaction to commit if it
2073 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2075 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2076 * only one process starts all the block group IO. It wouldn't
2077 * hurt to have more than one go through, but there's no
2078 * real advantage to it either.
2080 mutex_lock(&fs_info->ro_block_group_mutex);
2081 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2084 mutex_unlock(&fs_info->ro_block_group_mutex);
2087 ret = btrfs_start_dirty_block_groups(trans);
2089 btrfs_end_transaction(trans);
2095 spin_lock(&fs_info->trans_lock);
2096 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2097 spin_unlock(&fs_info->trans_lock);
2098 refcount_inc(&cur_trans->use_count);
2099 ret = btrfs_end_transaction(trans);
2101 wait_for_commit(cur_trans);
2103 if (TRANS_ABORTED(cur_trans))
2104 ret = cur_trans->aborted;
2106 btrfs_put_transaction(cur_trans);
2111 cur_trans->state = TRANS_STATE_COMMIT_START;
2112 wake_up(&fs_info->transaction_blocked_wait);
2114 if (cur_trans->list.prev != &fs_info->trans_list) {
2115 prev_trans = list_entry(cur_trans->list.prev,
2116 struct btrfs_transaction, list);
2117 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2118 refcount_inc(&prev_trans->use_count);
2119 spin_unlock(&fs_info->trans_lock);
2121 wait_for_commit(prev_trans);
2122 ret = READ_ONCE(prev_trans->aborted);
2124 btrfs_put_transaction(prev_trans);
2126 goto cleanup_transaction;
2128 spin_unlock(&fs_info->trans_lock);
2131 spin_unlock(&fs_info->trans_lock);
2133 * The previous transaction was aborted and was already removed
2134 * from the list of transactions at fs_info->trans_list. So we
2135 * abort to prevent writing a new superblock that reflects a
2136 * corrupt state (pointing to trees with unwritten nodes/leafs).
2138 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2140 goto cleanup_transaction;
2144 extwriter_counter_dec(cur_trans, trans->type);
2146 ret = btrfs_start_delalloc_flush(fs_info);
2148 goto cleanup_transaction;
2150 ret = btrfs_run_delayed_items(trans);
2152 goto cleanup_transaction;
2154 wait_event(cur_trans->writer_wait,
2155 extwriter_counter_read(cur_trans) == 0);
2157 /* some pending stuffs might be added after the previous flush. */
2158 ret = btrfs_run_delayed_items(trans);
2160 goto cleanup_transaction;
2162 btrfs_wait_delalloc_flush(fs_info);
2165 * Wait for all ordered extents started by a fast fsync that joined this
2166 * transaction. Otherwise if this transaction commits before the ordered
2167 * extents complete we lose logged data after a power failure.
2169 wait_event(cur_trans->pending_wait,
2170 atomic_read(&cur_trans->pending_ordered) == 0);
2172 btrfs_scrub_pause(fs_info);
2174 * Ok now we need to make sure to block out any other joins while we
2175 * commit the transaction. We could have started a join before setting
2176 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2178 spin_lock(&fs_info->trans_lock);
2179 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2180 spin_unlock(&fs_info->trans_lock);
2181 wait_event(cur_trans->writer_wait,
2182 atomic_read(&cur_trans->num_writers) == 1);
2184 if (TRANS_ABORTED(cur_trans)) {
2185 ret = cur_trans->aborted;
2186 goto scrub_continue;
2189 * the reloc mutex makes sure that we stop
2190 * the balancing code from coming in and moving
2191 * extents around in the middle of the commit
2193 mutex_lock(&fs_info->reloc_mutex);
2196 * We needn't worry about the delayed items because we will
2197 * deal with them in create_pending_snapshot(), which is the
2198 * core function of the snapshot creation.
2200 ret = create_pending_snapshots(trans);
2205 * We insert the dir indexes of the snapshots and update the inode
2206 * of the snapshots' parents after the snapshot creation, so there
2207 * are some delayed items which are not dealt with. Now deal with
2210 * We needn't worry that this operation will corrupt the snapshots,
2211 * because all the tree which are snapshoted will be forced to COW
2212 * the nodes and leaves.
2214 ret = btrfs_run_delayed_items(trans);
2218 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2223 * make sure none of the code above managed to slip in a
2226 btrfs_assert_delayed_root_empty(fs_info);
2228 WARN_ON(cur_trans != trans->transaction);
2230 /* btrfs_commit_tree_roots is responsible for getting the
2231 * various roots consistent with each other. Every pointer
2232 * in the tree of tree roots has to point to the most up to date
2233 * root for every subvolume and other tree. So, we have to keep
2234 * the tree logging code from jumping in and changing any
2237 * At this point in the commit, there can't be any tree-log
2238 * writers, but a little lower down we drop the trans mutex
2239 * and let new people in. By holding the tree_log_mutex
2240 * from now until after the super is written, we avoid races
2241 * with the tree-log code.
2243 mutex_lock(&fs_info->tree_log_mutex);
2245 ret = commit_fs_roots(trans);
2247 goto unlock_tree_log;
2250 * Since the transaction is done, we can apply the pending changes
2251 * before the next transaction.
2253 btrfs_apply_pending_changes(fs_info);
2255 /* commit_fs_roots gets rid of all the tree log roots, it is now
2256 * safe to free the root of tree log roots
2258 btrfs_free_log_root_tree(trans, fs_info);
2261 * Since fs roots are all committed, we can get a quite accurate
2262 * new_roots. So let's do quota accounting.
2264 ret = btrfs_qgroup_account_extents(trans);
2266 goto unlock_tree_log;
2268 ret = commit_cowonly_roots(trans);
2270 goto unlock_tree_log;
2273 * The tasks which save the space cache and inode cache may also
2274 * update ->aborted, check it.
2276 if (TRANS_ABORTED(cur_trans)) {
2277 ret = cur_trans->aborted;
2278 goto unlock_tree_log;
2281 cur_trans = fs_info->running_transaction;
2283 btrfs_set_root_node(&fs_info->tree_root->root_item,
2284 fs_info->tree_root->node);
2285 list_add_tail(&fs_info->tree_root->dirty_list,
2286 &cur_trans->switch_commits);
2288 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2289 fs_info->chunk_root->node);
2290 list_add_tail(&fs_info->chunk_root->dirty_list,
2291 &cur_trans->switch_commits);
2293 switch_commit_roots(trans);
2295 ASSERT(list_empty(&cur_trans->dirty_bgs));
2296 ASSERT(list_empty(&cur_trans->io_bgs));
2297 update_super_roots(fs_info);
2299 btrfs_set_super_log_root(fs_info->super_copy, 0);
2300 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2301 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2302 sizeof(*fs_info->super_copy));
2304 btrfs_commit_device_sizes(cur_trans);
2306 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2307 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2309 btrfs_trans_release_chunk_metadata(trans);
2311 spin_lock(&fs_info->trans_lock);
2312 cur_trans->state = TRANS_STATE_UNBLOCKED;
2313 fs_info->running_transaction = NULL;
2314 spin_unlock(&fs_info->trans_lock);
2315 mutex_unlock(&fs_info->reloc_mutex);
2317 wake_up(&fs_info->transaction_wait);
2319 ret = btrfs_write_and_wait_transaction(trans);
2321 btrfs_handle_fs_error(fs_info, ret,
2322 "Error while writing out transaction");
2324 * reloc_mutex has been unlocked, tree_log_mutex is still held
2325 * but we can't jump to unlock_tree_log causing double unlock
2327 mutex_unlock(&fs_info->tree_log_mutex);
2328 goto scrub_continue;
2331 ret = write_all_supers(fs_info, 0);
2333 * the super is written, we can safely allow the tree-loggers
2334 * to go about their business
2336 mutex_unlock(&fs_info->tree_log_mutex);
2338 goto scrub_continue;
2340 btrfs_finish_extent_commit(trans);
2342 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2343 btrfs_clear_space_info_full(fs_info);
2345 fs_info->last_trans_committed = cur_trans->transid;
2347 * We needn't acquire the lock here because there is no other task
2348 * which can change it.
2350 cur_trans->state = TRANS_STATE_COMPLETED;
2351 wake_up(&cur_trans->commit_wait);
2353 spin_lock(&fs_info->trans_lock);
2354 list_del_init(&cur_trans->list);
2355 spin_unlock(&fs_info->trans_lock);
2357 btrfs_put_transaction(cur_trans);
2358 btrfs_put_transaction(cur_trans);
2360 if (trans->type & __TRANS_FREEZABLE)
2361 sb_end_intwrite(fs_info->sb);
2363 trace_btrfs_transaction_commit(trans->root);
2365 btrfs_scrub_continue(fs_info);
2367 if (current->journal_info == trans)
2368 current->journal_info = NULL;
2370 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2375 mutex_unlock(&fs_info->tree_log_mutex);
2377 mutex_unlock(&fs_info->reloc_mutex);
2379 btrfs_scrub_continue(fs_info);
2380 cleanup_transaction:
2381 btrfs_trans_release_metadata(trans);
2382 btrfs_cleanup_pending_block_groups(trans);
2383 btrfs_trans_release_chunk_metadata(trans);
2384 trans->block_rsv = NULL;
2385 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2386 if (current->journal_info == trans)
2387 current->journal_info = NULL;
2388 cleanup_transaction(trans, ret);
2394 * return < 0 if error
2395 * 0 if there are no more dead_roots at the time of call
2396 * 1 there are more to be processed, call me again
2398 * The return value indicates there are certainly more snapshots to delete, but
2399 * if there comes a new one during processing, it may return 0. We don't mind,
2400 * because btrfs_commit_super will poke cleaner thread and it will process it a
2401 * few seconds later.
2403 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2406 struct btrfs_fs_info *fs_info = root->fs_info;
2408 spin_lock(&fs_info->trans_lock);
2409 if (list_empty(&fs_info->dead_roots)) {
2410 spin_unlock(&fs_info->trans_lock);
2413 root = list_first_entry(&fs_info->dead_roots,
2414 struct btrfs_root, root_list);
2415 list_del_init(&root->root_list);
2416 spin_unlock(&fs_info->trans_lock);
2418 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2420 btrfs_kill_all_delayed_nodes(root);
2422 if (btrfs_header_backref_rev(root->node) <
2423 BTRFS_MIXED_BACKREF_REV)
2424 ret = btrfs_drop_snapshot(root, 0, 0);
2426 ret = btrfs_drop_snapshot(root, 1, 0);
2428 btrfs_put_root(root);
2429 return (ret < 0) ? 0 : 1;
2432 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2437 prev = xchg(&fs_info->pending_changes, 0);
2441 bit = 1 << BTRFS_PENDING_COMMIT;
2443 btrfs_debug(fs_info, "pending commit done");
2448 "unknown pending changes left 0x%lx, ignoring", prev);