btrfs: only run delayed refs once before committing
[platform/kernel/linux-rpi.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22 #include "block-group.h"
23 #include "space-info.h"
24
25 #define BTRFS_ROOT_TRANS_TAG 0
26
27 /*
28  * Transaction states and transitions
29  *
30  * No running transaction (fs tree blocks are not modified)
31  * |
32  * | To next stage:
33  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
34  * V
35  * Transaction N [[TRANS_STATE_RUNNING]]
36  * |
37  * | New trans handles can be attached to transaction N by calling all
38  * | start_transaction() variants.
39  * |
40  * | To next stage:
41  * |  Call btrfs_commit_transaction() on any trans handle attached to
42  * |  transaction N
43  * V
44  * Transaction N [[TRANS_STATE_COMMIT_START]]
45  * |
46  * | Will wait for previous running transaction to completely finish if there
47  * | is one
48  * |
49  * | Then one of the following happes:
50  * | - Wait for all other trans handle holders to release.
51  * |   The btrfs_commit_transaction() caller will do the commit work.
52  * | - Wait for current transaction to be committed by others.
53  * |   Other btrfs_commit_transaction() caller will do the commit work.
54  * |
55  * | At this stage, only btrfs_join_transaction*() variants can attach
56  * | to this running transaction.
57  * | All other variants will wait for current one to finish and attach to
58  * | transaction N+1.
59  * |
60  * | To next stage:
61  * |  Caller is chosen to commit transaction N, and all other trans handle
62  * |  haven been released.
63  * V
64  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
65  * |
66  * | The heavy lifting transaction work is started.
67  * | From running delayed refs (modifying extent tree) to creating pending
68  * | snapshots, running qgroups.
69  * | In short, modify supporting trees to reflect modifications of subvolume
70  * | trees.
71  * |
72  * | At this stage, all start_transaction() calls will wait for this
73  * | transaction to finish and attach to transaction N+1.
74  * |
75  * | To next stage:
76  * |  Until all supporting trees are updated.
77  * V
78  * Transaction N [[TRANS_STATE_UNBLOCKED]]
79  * |                                                Transaction N+1
80  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
81  * | need to write them back to disk and update     |
82  * | super blocks.                                  |
83  * |                                                |
84  * | At this stage, new transaction is allowed to   |
85  * | start.                                         |
86  * | All new start_transaction() calls will be      |
87  * | attached to transid N+1.                       |
88  * |                                                |
89  * | To next stage:                                 |
90  * |  Until all tree blocks are super blocks are    |
91  * |  written to block devices                      |
92  * V                                                |
93  * Transaction N [[TRANS_STATE_COMPLETED]]          V
94  *   All tree blocks and super blocks are written.  Transaction N+1
95  *   This transaction is finished and all its       [[TRANS_STATE_COMMIT_START]]
96  *   data structures will be cleaned up.            | Life goes on
97  */
98 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
99         [TRANS_STATE_RUNNING]           = 0U,
100         [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
101         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
102                                            __TRANS_ATTACH |
103                                            __TRANS_JOIN |
104                                            __TRANS_JOIN_NOSTART),
105         [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
106                                            __TRANS_ATTACH |
107                                            __TRANS_JOIN |
108                                            __TRANS_JOIN_NOLOCK |
109                                            __TRANS_JOIN_NOSTART),
110         [TRANS_STATE_COMPLETED]         = (__TRANS_START |
111                                            __TRANS_ATTACH |
112                                            __TRANS_JOIN |
113                                            __TRANS_JOIN_NOLOCK |
114                                            __TRANS_JOIN_NOSTART),
115 };
116
117 void btrfs_put_transaction(struct btrfs_transaction *transaction)
118 {
119         WARN_ON(refcount_read(&transaction->use_count) == 0);
120         if (refcount_dec_and_test(&transaction->use_count)) {
121                 BUG_ON(!list_empty(&transaction->list));
122                 WARN_ON(!RB_EMPTY_ROOT(
123                                 &transaction->delayed_refs.href_root.rb_root));
124                 WARN_ON(!RB_EMPTY_ROOT(
125                                 &transaction->delayed_refs.dirty_extent_root));
126                 if (transaction->delayed_refs.pending_csums)
127                         btrfs_err(transaction->fs_info,
128                                   "pending csums is %llu",
129                                   transaction->delayed_refs.pending_csums);
130                 /*
131                  * If any block groups are found in ->deleted_bgs then it's
132                  * because the transaction was aborted and a commit did not
133                  * happen (things failed before writing the new superblock
134                  * and calling btrfs_finish_extent_commit()), so we can not
135                  * discard the physical locations of the block groups.
136                  */
137                 while (!list_empty(&transaction->deleted_bgs)) {
138                         struct btrfs_block_group *cache;
139
140                         cache = list_first_entry(&transaction->deleted_bgs,
141                                                  struct btrfs_block_group,
142                                                  bg_list);
143                         list_del_init(&cache->bg_list);
144                         btrfs_unfreeze_block_group(cache);
145                         btrfs_put_block_group(cache);
146                 }
147                 WARN_ON(!list_empty(&transaction->dev_update_list));
148                 kfree(transaction);
149         }
150 }
151
152 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
153 {
154         struct btrfs_transaction *cur_trans = trans->transaction;
155         struct btrfs_fs_info *fs_info = trans->fs_info;
156         struct btrfs_root *root, *tmp;
157         struct btrfs_caching_control *caching_ctl, *next;
158
159         down_write(&fs_info->commit_root_sem);
160         list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
161                                  dirty_list) {
162                 list_del_init(&root->dirty_list);
163                 free_extent_buffer(root->commit_root);
164                 root->commit_root = btrfs_root_node(root);
165                 extent_io_tree_release(&root->dirty_log_pages);
166                 btrfs_qgroup_clean_swapped_blocks(root);
167         }
168
169         /* We can free old roots now. */
170         spin_lock(&cur_trans->dropped_roots_lock);
171         while (!list_empty(&cur_trans->dropped_roots)) {
172                 root = list_first_entry(&cur_trans->dropped_roots,
173                                         struct btrfs_root, root_list);
174                 list_del_init(&root->root_list);
175                 spin_unlock(&cur_trans->dropped_roots_lock);
176                 btrfs_free_log(trans, root);
177                 btrfs_drop_and_free_fs_root(fs_info, root);
178                 spin_lock(&cur_trans->dropped_roots_lock);
179         }
180         spin_unlock(&cur_trans->dropped_roots_lock);
181
182         /*
183          * We have to update the last_byte_to_unpin under the commit_root_sem,
184          * at the same time we swap out the commit roots.
185          *
186          * This is because we must have a real view of the last spot the caching
187          * kthreads were while caching.  Consider the following views of the
188          * extent tree for a block group
189          *
190          * commit root
191          * +----+----+----+----+----+----+----+
192          * |\\\\|    |\\\\|\\\\|    |\\\\|\\\\|
193          * +----+----+----+----+----+----+----+
194          * 0    1    2    3    4    5    6    7
195          *
196          * new commit root
197          * +----+----+----+----+----+----+----+
198          * |    |    |    |\\\\|    |    |\\\\|
199          * +----+----+----+----+----+----+----+
200          * 0    1    2    3    4    5    6    7
201          *
202          * If the cache_ctl->progress was at 3, then we are only allowed to
203          * unpin [0,1) and [2,3], because the caching thread has already
204          * processed those extents.  We are not allowed to unpin [5,6), because
205          * the caching thread will re-start it's search from 3, and thus find
206          * the hole from [4,6) to add to the free space cache.
207          */
208         spin_lock(&fs_info->block_group_cache_lock);
209         list_for_each_entry_safe(caching_ctl, next,
210                                  &fs_info->caching_block_groups, list) {
211                 struct btrfs_block_group *cache = caching_ctl->block_group;
212
213                 if (btrfs_block_group_done(cache)) {
214                         cache->last_byte_to_unpin = (u64)-1;
215                         list_del_init(&caching_ctl->list);
216                         btrfs_put_caching_control(caching_ctl);
217                 } else {
218                         cache->last_byte_to_unpin = caching_ctl->progress;
219                 }
220         }
221         spin_unlock(&fs_info->block_group_cache_lock);
222         up_write(&fs_info->commit_root_sem);
223 }
224
225 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
226                                          unsigned int type)
227 {
228         if (type & TRANS_EXTWRITERS)
229                 atomic_inc(&trans->num_extwriters);
230 }
231
232 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
233                                          unsigned int type)
234 {
235         if (type & TRANS_EXTWRITERS)
236                 atomic_dec(&trans->num_extwriters);
237 }
238
239 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
240                                           unsigned int type)
241 {
242         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
243 }
244
245 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
246 {
247         return atomic_read(&trans->num_extwriters);
248 }
249
250 /*
251  * To be called after all the new block groups attached to the transaction
252  * handle have been created (btrfs_create_pending_block_groups()).
253  */
254 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
255 {
256         struct btrfs_fs_info *fs_info = trans->fs_info;
257
258         if (!trans->chunk_bytes_reserved)
259                 return;
260
261         WARN_ON_ONCE(!list_empty(&trans->new_bgs));
262
263         btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
264                                 trans->chunk_bytes_reserved, NULL);
265         trans->chunk_bytes_reserved = 0;
266 }
267
268 /*
269  * either allocate a new transaction or hop into the existing one
270  */
271 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
272                                      unsigned int type)
273 {
274         struct btrfs_transaction *cur_trans;
275
276         spin_lock(&fs_info->trans_lock);
277 loop:
278         /* The file system has been taken offline. No new transactions. */
279         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
280                 spin_unlock(&fs_info->trans_lock);
281                 return -EROFS;
282         }
283
284         cur_trans = fs_info->running_transaction;
285         if (cur_trans) {
286                 if (TRANS_ABORTED(cur_trans)) {
287                         spin_unlock(&fs_info->trans_lock);
288                         return cur_trans->aborted;
289                 }
290                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
291                         spin_unlock(&fs_info->trans_lock);
292                         return -EBUSY;
293                 }
294                 refcount_inc(&cur_trans->use_count);
295                 atomic_inc(&cur_trans->num_writers);
296                 extwriter_counter_inc(cur_trans, type);
297                 spin_unlock(&fs_info->trans_lock);
298                 return 0;
299         }
300         spin_unlock(&fs_info->trans_lock);
301
302         /*
303          * If we are ATTACH, we just want to catch the current transaction,
304          * and commit it. If there is no transaction, just return ENOENT.
305          */
306         if (type == TRANS_ATTACH)
307                 return -ENOENT;
308
309         /*
310          * JOIN_NOLOCK only happens during the transaction commit, so
311          * it is impossible that ->running_transaction is NULL
312          */
313         BUG_ON(type == TRANS_JOIN_NOLOCK);
314
315         cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
316         if (!cur_trans)
317                 return -ENOMEM;
318
319         spin_lock(&fs_info->trans_lock);
320         if (fs_info->running_transaction) {
321                 /*
322                  * someone started a transaction after we unlocked.  Make sure
323                  * to redo the checks above
324                  */
325                 kfree(cur_trans);
326                 goto loop;
327         } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
328                 spin_unlock(&fs_info->trans_lock);
329                 kfree(cur_trans);
330                 return -EROFS;
331         }
332
333         cur_trans->fs_info = fs_info;
334         atomic_set(&cur_trans->pending_ordered, 0);
335         init_waitqueue_head(&cur_trans->pending_wait);
336         atomic_set(&cur_trans->num_writers, 1);
337         extwriter_counter_init(cur_trans, type);
338         init_waitqueue_head(&cur_trans->writer_wait);
339         init_waitqueue_head(&cur_trans->commit_wait);
340         cur_trans->state = TRANS_STATE_RUNNING;
341         /*
342          * One for this trans handle, one so it will live on until we
343          * commit the transaction.
344          */
345         refcount_set(&cur_trans->use_count, 2);
346         cur_trans->flags = 0;
347         cur_trans->start_time = ktime_get_seconds();
348
349         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
350
351         cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
352         cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
353         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
354
355         /*
356          * although the tree mod log is per file system and not per transaction,
357          * the log must never go across transaction boundaries.
358          */
359         smp_mb();
360         if (!list_empty(&fs_info->tree_mod_seq_list))
361                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
362         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
363                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
364         atomic64_set(&fs_info->tree_mod_seq, 0);
365
366         spin_lock_init(&cur_trans->delayed_refs.lock);
367
368         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
369         INIT_LIST_HEAD(&cur_trans->dev_update_list);
370         INIT_LIST_HEAD(&cur_trans->switch_commits);
371         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
372         INIT_LIST_HEAD(&cur_trans->io_bgs);
373         INIT_LIST_HEAD(&cur_trans->dropped_roots);
374         mutex_init(&cur_trans->cache_write_mutex);
375         spin_lock_init(&cur_trans->dirty_bgs_lock);
376         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
377         spin_lock_init(&cur_trans->dropped_roots_lock);
378         list_add_tail(&cur_trans->list, &fs_info->trans_list);
379         extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
380                         IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
381         extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
382                         IO_TREE_FS_PINNED_EXTENTS, NULL);
383         fs_info->generation++;
384         cur_trans->transid = fs_info->generation;
385         fs_info->running_transaction = cur_trans;
386         cur_trans->aborted = 0;
387         spin_unlock(&fs_info->trans_lock);
388
389         return 0;
390 }
391
392 /*
393  * This does all the record keeping required to make sure that a shareable root
394  * is properly recorded in a given transaction.  This is required to make sure
395  * the old root from before we joined the transaction is deleted when the
396  * transaction commits.
397  */
398 static int record_root_in_trans(struct btrfs_trans_handle *trans,
399                                struct btrfs_root *root,
400                                int force)
401 {
402         struct btrfs_fs_info *fs_info = root->fs_info;
403
404         if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
405             root->last_trans < trans->transid) || force) {
406                 WARN_ON(root == fs_info->extent_root);
407                 WARN_ON(!force && root->commit_root != root->node);
408
409                 /*
410                  * see below for IN_TRANS_SETUP usage rules
411                  * we have the reloc mutex held now, so there
412                  * is only one writer in this function
413                  */
414                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
415
416                 /* make sure readers find IN_TRANS_SETUP before
417                  * they find our root->last_trans update
418                  */
419                 smp_wmb();
420
421                 spin_lock(&fs_info->fs_roots_radix_lock);
422                 if (root->last_trans == trans->transid && !force) {
423                         spin_unlock(&fs_info->fs_roots_radix_lock);
424                         return 0;
425                 }
426                 radix_tree_tag_set(&fs_info->fs_roots_radix,
427                                    (unsigned long)root->root_key.objectid,
428                                    BTRFS_ROOT_TRANS_TAG);
429                 spin_unlock(&fs_info->fs_roots_radix_lock);
430                 root->last_trans = trans->transid;
431
432                 /* this is pretty tricky.  We don't want to
433                  * take the relocation lock in btrfs_record_root_in_trans
434                  * unless we're really doing the first setup for this root in
435                  * this transaction.
436                  *
437                  * Normally we'd use root->last_trans as a flag to decide
438                  * if we want to take the expensive mutex.
439                  *
440                  * But, we have to set root->last_trans before we
441                  * init the relocation root, otherwise, we trip over warnings
442                  * in ctree.c.  The solution used here is to flag ourselves
443                  * with root IN_TRANS_SETUP.  When this is 1, we're still
444                  * fixing up the reloc trees and everyone must wait.
445                  *
446                  * When this is zero, they can trust root->last_trans and fly
447                  * through btrfs_record_root_in_trans without having to take the
448                  * lock.  smp_wmb() makes sure that all the writes above are
449                  * done before we pop in the zero below
450                  */
451                 btrfs_init_reloc_root(trans, root);
452                 smp_mb__before_atomic();
453                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
454         }
455         return 0;
456 }
457
458
459 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
460                             struct btrfs_root *root)
461 {
462         struct btrfs_fs_info *fs_info = root->fs_info;
463         struct btrfs_transaction *cur_trans = trans->transaction;
464
465         /* Add ourselves to the transaction dropped list */
466         spin_lock(&cur_trans->dropped_roots_lock);
467         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
468         spin_unlock(&cur_trans->dropped_roots_lock);
469
470         /* Make sure we don't try to update the root at commit time */
471         spin_lock(&fs_info->fs_roots_radix_lock);
472         radix_tree_tag_clear(&fs_info->fs_roots_radix,
473                              (unsigned long)root->root_key.objectid,
474                              BTRFS_ROOT_TRANS_TAG);
475         spin_unlock(&fs_info->fs_roots_radix_lock);
476 }
477
478 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
479                                struct btrfs_root *root)
480 {
481         struct btrfs_fs_info *fs_info = root->fs_info;
482
483         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
484                 return 0;
485
486         /*
487          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
488          * and barriers
489          */
490         smp_rmb();
491         if (root->last_trans == trans->transid &&
492             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
493                 return 0;
494
495         mutex_lock(&fs_info->reloc_mutex);
496         record_root_in_trans(trans, root, 0);
497         mutex_unlock(&fs_info->reloc_mutex);
498
499         return 0;
500 }
501
502 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
503 {
504         return (trans->state >= TRANS_STATE_COMMIT_START &&
505                 trans->state < TRANS_STATE_UNBLOCKED &&
506                 !TRANS_ABORTED(trans));
507 }
508
509 /* wait for commit against the current transaction to become unblocked
510  * when this is done, it is safe to start a new transaction, but the current
511  * transaction might not be fully on disk.
512  */
513 static void wait_current_trans(struct btrfs_fs_info *fs_info)
514 {
515         struct btrfs_transaction *cur_trans;
516
517         spin_lock(&fs_info->trans_lock);
518         cur_trans = fs_info->running_transaction;
519         if (cur_trans && is_transaction_blocked(cur_trans)) {
520                 refcount_inc(&cur_trans->use_count);
521                 spin_unlock(&fs_info->trans_lock);
522
523                 wait_event(fs_info->transaction_wait,
524                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
525                            TRANS_ABORTED(cur_trans));
526                 btrfs_put_transaction(cur_trans);
527         } else {
528                 spin_unlock(&fs_info->trans_lock);
529         }
530 }
531
532 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
533 {
534         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
535                 return 0;
536
537         if (type == TRANS_START)
538                 return 1;
539
540         return 0;
541 }
542
543 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
544 {
545         struct btrfs_fs_info *fs_info = root->fs_info;
546
547         if (!fs_info->reloc_ctl ||
548             !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
549             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
550             root->reloc_root)
551                 return false;
552
553         return true;
554 }
555
556 static struct btrfs_trans_handle *
557 start_transaction(struct btrfs_root *root, unsigned int num_items,
558                   unsigned int type, enum btrfs_reserve_flush_enum flush,
559                   bool enforce_qgroups)
560 {
561         struct btrfs_fs_info *fs_info = root->fs_info;
562         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
563         struct btrfs_trans_handle *h;
564         struct btrfs_transaction *cur_trans;
565         u64 num_bytes = 0;
566         u64 qgroup_reserved = 0;
567         bool reloc_reserved = false;
568         bool do_chunk_alloc = false;
569         int ret;
570
571         /* Send isn't supposed to start transactions. */
572         ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
573
574         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
575                 return ERR_PTR(-EROFS);
576
577         if (current->journal_info) {
578                 WARN_ON(type & TRANS_EXTWRITERS);
579                 h = current->journal_info;
580                 refcount_inc(&h->use_count);
581                 WARN_ON(refcount_read(&h->use_count) > 2);
582                 h->orig_rsv = h->block_rsv;
583                 h->block_rsv = NULL;
584                 goto got_it;
585         }
586
587         /*
588          * Do the reservation before we join the transaction so we can do all
589          * the appropriate flushing if need be.
590          */
591         if (num_items && root != fs_info->chunk_root) {
592                 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
593                 u64 delayed_refs_bytes = 0;
594
595                 qgroup_reserved = num_items * fs_info->nodesize;
596                 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
597                                 enforce_qgroups);
598                 if (ret)
599                         return ERR_PTR(ret);
600
601                 /*
602                  * We want to reserve all the bytes we may need all at once, so
603                  * we only do 1 enospc flushing cycle per transaction start.  We
604                  * accomplish this by simply assuming we'll do 2 x num_items
605                  * worth of delayed refs updates in this trans handle, and
606                  * refill that amount for whatever is missing in the reserve.
607                  */
608                 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
609                 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
610                     delayed_refs_rsv->full == 0) {
611                         delayed_refs_bytes = num_bytes;
612                         num_bytes <<= 1;
613                 }
614
615                 /*
616                  * Do the reservation for the relocation root creation
617                  */
618                 if (need_reserve_reloc_root(root)) {
619                         num_bytes += fs_info->nodesize;
620                         reloc_reserved = true;
621                 }
622
623                 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
624                 if (ret)
625                         goto reserve_fail;
626                 if (delayed_refs_bytes) {
627                         btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
628                                                           delayed_refs_bytes);
629                         num_bytes -= delayed_refs_bytes;
630                 }
631
632                 if (rsv->space_info->force_alloc)
633                         do_chunk_alloc = true;
634         } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
635                    !delayed_refs_rsv->full) {
636                 /*
637                  * Some people call with btrfs_start_transaction(root, 0)
638                  * because they can be throttled, but have some other mechanism
639                  * for reserving space.  We still want these guys to refill the
640                  * delayed block_rsv so just add 1 items worth of reservation
641                  * here.
642                  */
643                 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
644                 if (ret)
645                         goto reserve_fail;
646         }
647 again:
648         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
649         if (!h) {
650                 ret = -ENOMEM;
651                 goto alloc_fail;
652         }
653
654         /*
655          * If we are JOIN_NOLOCK we're already committing a transaction and
656          * waiting on this guy, so we don't need to do the sb_start_intwrite
657          * because we're already holding a ref.  We need this because we could
658          * have raced in and did an fsync() on a file which can kick a commit
659          * and then we deadlock with somebody doing a freeze.
660          *
661          * If we are ATTACH, it means we just want to catch the current
662          * transaction and commit it, so we needn't do sb_start_intwrite(). 
663          */
664         if (type & __TRANS_FREEZABLE)
665                 sb_start_intwrite(fs_info->sb);
666
667         if (may_wait_transaction(fs_info, type))
668                 wait_current_trans(fs_info);
669
670         do {
671                 ret = join_transaction(fs_info, type);
672                 if (ret == -EBUSY) {
673                         wait_current_trans(fs_info);
674                         if (unlikely(type == TRANS_ATTACH ||
675                                      type == TRANS_JOIN_NOSTART))
676                                 ret = -ENOENT;
677                 }
678         } while (ret == -EBUSY);
679
680         if (ret < 0)
681                 goto join_fail;
682
683         cur_trans = fs_info->running_transaction;
684
685         h->transid = cur_trans->transid;
686         h->transaction = cur_trans;
687         h->root = root;
688         refcount_set(&h->use_count, 1);
689         h->fs_info = root->fs_info;
690
691         h->type = type;
692         h->can_flush_pending_bgs = true;
693         INIT_LIST_HEAD(&h->new_bgs);
694
695         smp_mb();
696         if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
697             may_wait_transaction(fs_info, type)) {
698                 current->journal_info = h;
699                 btrfs_commit_transaction(h);
700                 goto again;
701         }
702
703         if (num_bytes) {
704                 trace_btrfs_space_reservation(fs_info, "transaction",
705                                               h->transid, num_bytes, 1);
706                 h->block_rsv = &fs_info->trans_block_rsv;
707                 h->bytes_reserved = num_bytes;
708                 h->reloc_reserved = reloc_reserved;
709         }
710
711 got_it:
712         if (!current->journal_info)
713                 current->journal_info = h;
714
715         /*
716          * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
717          * ALLOC_FORCE the first run through, and then we won't allocate for
718          * anybody else who races in later.  We don't care about the return
719          * value here.
720          */
721         if (do_chunk_alloc && num_bytes) {
722                 u64 flags = h->block_rsv->space_info->flags;
723
724                 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
725                                   CHUNK_ALLOC_NO_FORCE);
726         }
727
728         /*
729          * btrfs_record_root_in_trans() needs to alloc new extents, and may
730          * call btrfs_join_transaction() while we're also starting a
731          * transaction.
732          *
733          * Thus it need to be called after current->journal_info initialized,
734          * or we can deadlock.
735          */
736         btrfs_record_root_in_trans(h, root);
737
738         return h;
739
740 join_fail:
741         if (type & __TRANS_FREEZABLE)
742                 sb_end_intwrite(fs_info->sb);
743         kmem_cache_free(btrfs_trans_handle_cachep, h);
744 alloc_fail:
745         if (num_bytes)
746                 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
747                                         num_bytes, NULL);
748 reserve_fail:
749         btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
750         return ERR_PTR(ret);
751 }
752
753 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
754                                                    unsigned int num_items)
755 {
756         return start_transaction(root, num_items, TRANS_START,
757                                  BTRFS_RESERVE_FLUSH_ALL, true);
758 }
759
760 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
761                                         struct btrfs_root *root,
762                                         unsigned int num_items)
763 {
764         return start_transaction(root, num_items, TRANS_START,
765                                  BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
766 }
767
768 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
769 {
770         return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
771                                  true);
772 }
773
774 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
775 {
776         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
777                                  BTRFS_RESERVE_NO_FLUSH, true);
778 }
779
780 /*
781  * Similar to regular join but it never starts a transaction when none is
782  * running or after waiting for the current one to finish.
783  */
784 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
785 {
786         return start_transaction(root, 0, TRANS_JOIN_NOSTART,
787                                  BTRFS_RESERVE_NO_FLUSH, true);
788 }
789
790 /*
791  * btrfs_attach_transaction() - catch the running transaction
792  *
793  * It is used when we want to commit the current the transaction, but
794  * don't want to start a new one.
795  *
796  * Note: If this function return -ENOENT, it just means there is no
797  * running transaction. But it is possible that the inactive transaction
798  * is still in the memory, not fully on disk. If you hope there is no
799  * inactive transaction in the fs when -ENOENT is returned, you should
800  * invoke
801  *     btrfs_attach_transaction_barrier()
802  */
803 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
804 {
805         return start_transaction(root, 0, TRANS_ATTACH,
806                                  BTRFS_RESERVE_NO_FLUSH, true);
807 }
808
809 /*
810  * btrfs_attach_transaction_barrier() - catch the running transaction
811  *
812  * It is similar to the above function, the difference is this one
813  * will wait for all the inactive transactions until they fully
814  * complete.
815  */
816 struct btrfs_trans_handle *
817 btrfs_attach_transaction_barrier(struct btrfs_root *root)
818 {
819         struct btrfs_trans_handle *trans;
820
821         trans = start_transaction(root, 0, TRANS_ATTACH,
822                                   BTRFS_RESERVE_NO_FLUSH, true);
823         if (trans == ERR_PTR(-ENOENT))
824                 btrfs_wait_for_commit(root->fs_info, 0);
825
826         return trans;
827 }
828
829 /* wait for a transaction commit to be fully complete */
830 static noinline void wait_for_commit(struct btrfs_transaction *commit)
831 {
832         wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
833 }
834
835 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
836 {
837         struct btrfs_transaction *cur_trans = NULL, *t;
838         int ret = 0;
839
840         if (transid) {
841                 if (transid <= fs_info->last_trans_committed)
842                         goto out;
843
844                 /* find specified transaction */
845                 spin_lock(&fs_info->trans_lock);
846                 list_for_each_entry(t, &fs_info->trans_list, list) {
847                         if (t->transid == transid) {
848                                 cur_trans = t;
849                                 refcount_inc(&cur_trans->use_count);
850                                 ret = 0;
851                                 break;
852                         }
853                         if (t->transid > transid) {
854                                 ret = 0;
855                                 break;
856                         }
857                 }
858                 spin_unlock(&fs_info->trans_lock);
859
860                 /*
861                  * The specified transaction doesn't exist, or we
862                  * raced with btrfs_commit_transaction
863                  */
864                 if (!cur_trans) {
865                         if (transid > fs_info->last_trans_committed)
866                                 ret = -EINVAL;
867                         goto out;
868                 }
869         } else {
870                 /* find newest transaction that is committing | committed */
871                 spin_lock(&fs_info->trans_lock);
872                 list_for_each_entry_reverse(t, &fs_info->trans_list,
873                                             list) {
874                         if (t->state >= TRANS_STATE_COMMIT_START) {
875                                 if (t->state == TRANS_STATE_COMPLETED)
876                                         break;
877                                 cur_trans = t;
878                                 refcount_inc(&cur_trans->use_count);
879                                 break;
880                         }
881                 }
882                 spin_unlock(&fs_info->trans_lock);
883                 if (!cur_trans)
884                         goto out;  /* nothing committing|committed */
885         }
886
887         wait_for_commit(cur_trans);
888         btrfs_put_transaction(cur_trans);
889 out:
890         return ret;
891 }
892
893 void btrfs_throttle(struct btrfs_fs_info *fs_info)
894 {
895         wait_current_trans(fs_info);
896 }
897
898 static bool should_end_transaction(struct btrfs_trans_handle *trans)
899 {
900         struct btrfs_fs_info *fs_info = trans->fs_info;
901
902         if (btrfs_check_space_for_delayed_refs(fs_info))
903                 return true;
904
905         return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
906 }
907
908 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
909 {
910         struct btrfs_transaction *cur_trans = trans->transaction;
911
912         if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
913             test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
914                 return true;
915
916         return should_end_transaction(trans);
917 }
918
919 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
920
921 {
922         struct btrfs_fs_info *fs_info = trans->fs_info;
923
924         if (!trans->block_rsv) {
925                 ASSERT(!trans->bytes_reserved);
926                 return;
927         }
928
929         if (!trans->bytes_reserved)
930                 return;
931
932         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
933         trace_btrfs_space_reservation(fs_info, "transaction",
934                                       trans->transid, trans->bytes_reserved, 0);
935         btrfs_block_rsv_release(fs_info, trans->block_rsv,
936                                 trans->bytes_reserved, NULL);
937         trans->bytes_reserved = 0;
938 }
939
940 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
941                                    int throttle)
942 {
943         struct btrfs_fs_info *info = trans->fs_info;
944         struct btrfs_transaction *cur_trans = trans->transaction;
945         int err = 0;
946
947         if (refcount_read(&trans->use_count) > 1) {
948                 refcount_dec(&trans->use_count);
949                 trans->block_rsv = trans->orig_rsv;
950                 return 0;
951         }
952
953         btrfs_trans_release_metadata(trans);
954         trans->block_rsv = NULL;
955
956         btrfs_create_pending_block_groups(trans);
957
958         btrfs_trans_release_chunk_metadata(trans);
959
960         if (trans->type & __TRANS_FREEZABLE)
961                 sb_end_intwrite(info->sb);
962
963         WARN_ON(cur_trans != info->running_transaction);
964         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
965         atomic_dec(&cur_trans->num_writers);
966         extwriter_counter_dec(cur_trans, trans->type);
967
968         cond_wake_up(&cur_trans->writer_wait);
969         btrfs_put_transaction(cur_trans);
970
971         if (current->journal_info == trans)
972                 current->journal_info = NULL;
973
974         if (throttle)
975                 btrfs_run_delayed_iputs(info);
976
977         if (TRANS_ABORTED(trans) ||
978             test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
979                 wake_up_process(info->transaction_kthread);
980                 if (TRANS_ABORTED(trans))
981                         err = trans->aborted;
982                 else
983                         err = -EROFS;
984         }
985
986         kmem_cache_free(btrfs_trans_handle_cachep, trans);
987         return err;
988 }
989
990 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
991 {
992         return __btrfs_end_transaction(trans, 0);
993 }
994
995 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
996 {
997         return __btrfs_end_transaction(trans, 1);
998 }
999
1000 /*
1001  * when btree blocks are allocated, they have some corresponding bits set for
1002  * them in one of two extent_io trees.  This is used to make sure all of
1003  * those extents are sent to disk but does not wait on them
1004  */
1005 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1006                                struct extent_io_tree *dirty_pages, int mark)
1007 {
1008         int err = 0;
1009         int werr = 0;
1010         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1011         struct extent_state *cached_state = NULL;
1012         u64 start = 0;
1013         u64 end;
1014
1015         atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1016         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1017                                       mark, &cached_state)) {
1018                 bool wait_writeback = false;
1019
1020                 err = convert_extent_bit(dirty_pages, start, end,
1021                                          EXTENT_NEED_WAIT,
1022                                          mark, &cached_state);
1023                 /*
1024                  * convert_extent_bit can return -ENOMEM, which is most of the
1025                  * time a temporary error. So when it happens, ignore the error
1026                  * and wait for writeback of this range to finish - because we
1027                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1028                  * to __btrfs_wait_marked_extents() would not know that
1029                  * writeback for this range started and therefore wouldn't
1030                  * wait for it to finish - we don't want to commit a
1031                  * superblock that points to btree nodes/leafs for which
1032                  * writeback hasn't finished yet (and without errors).
1033                  * We cleanup any entries left in the io tree when committing
1034                  * the transaction (through extent_io_tree_release()).
1035                  */
1036                 if (err == -ENOMEM) {
1037                         err = 0;
1038                         wait_writeback = true;
1039                 }
1040                 if (!err)
1041                         err = filemap_fdatawrite_range(mapping, start, end);
1042                 if (err)
1043                         werr = err;
1044                 else if (wait_writeback)
1045                         werr = filemap_fdatawait_range(mapping, start, end);
1046                 free_extent_state(cached_state);
1047                 cached_state = NULL;
1048                 cond_resched();
1049                 start = end + 1;
1050         }
1051         atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1052         return werr;
1053 }
1054
1055 /*
1056  * when btree blocks are allocated, they have some corresponding bits set for
1057  * them in one of two extent_io trees.  This is used to make sure all of
1058  * those extents are on disk for transaction or log commit.  We wait
1059  * on all the pages and clear them from the dirty pages state tree
1060  */
1061 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1062                                        struct extent_io_tree *dirty_pages)
1063 {
1064         int err = 0;
1065         int werr = 0;
1066         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1067         struct extent_state *cached_state = NULL;
1068         u64 start = 0;
1069         u64 end;
1070
1071         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1072                                       EXTENT_NEED_WAIT, &cached_state)) {
1073                 /*
1074                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1075                  * When committing the transaction, we'll remove any entries
1076                  * left in the io tree. For a log commit, we don't remove them
1077                  * after committing the log because the tree can be accessed
1078                  * concurrently - we do it only at transaction commit time when
1079                  * it's safe to do it (through extent_io_tree_release()).
1080                  */
1081                 err = clear_extent_bit(dirty_pages, start, end,
1082                                        EXTENT_NEED_WAIT, 0, 0, &cached_state);
1083                 if (err == -ENOMEM)
1084                         err = 0;
1085                 if (!err)
1086                         err = filemap_fdatawait_range(mapping, start, end);
1087                 if (err)
1088                         werr = err;
1089                 free_extent_state(cached_state);
1090                 cached_state = NULL;
1091                 cond_resched();
1092                 start = end + 1;
1093         }
1094         if (err)
1095                 werr = err;
1096         return werr;
1097 }
1098
1099 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1100                        struct extent_io_tree *dirty_pages)
1101 {
1102         bool errors = false;
1103         int err;
1104
1105         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1106         if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1107                 errors = true;
1108
1109         if (errors && !err)
1110                 err = -EIO;
1111         return err;
1112 }
1113
1114 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1115 {
1116         struct btrfs_fs_info *fs_info = log_root->fs_info;
1117         struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1118         bool errors = false;
1119         int err;
1120
1121         ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1122
1123         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1124         if ((mark & EXTENT_DIRTY) &&
1125             test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1126                 errors = true;
1127
1128         if ((mark & EXTENT_NEW) &&
1129             test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1130                 errors = true;
1131
1132         if (errors && !err)
1133                 err = -EIO;
1134         return err;
1135 }
1136
1137 /*
1138  * When btree blocks are allocated the corresponding extents are marked dirty.
1139  * This function ensures such extents are persisted on disk for transaction or
1140  * log commit.
1141  *
1142  * @trans: transaction whose dirty pages we'd like to write
1143  */
1144 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1145 {
1146         int ret;
1147         int ret2;
1148         struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1149         struct btrfs_fs_info *fs_info = trans->fs_info;
1150         struct blk_plug plug;
1151
1152         blk_start_plug(&plug);
1153         ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1154         blk_finish_plug(&plug);
1155         ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1156
1157         extent_io_tree_release(&trans->transaction->dirty_pages);
1158
1159         if (ret)
1160                 return ret;
1161         else if (ret2)
1162                 return ret2;
1163         else
1164                 return 0;
1165 }
1166
1167 /*
1168  * this is used to update the root pointer in the tree of tree roots.
1169  *
1170  * But, in the case of the extent allocation tree, updating the root
1171  * pointer may allocate blocks which may change the root of the extent
1172  * allocation tree.
1173  *
1174  * So, this loops and repeats and makes sure the cowonly root didn't
1175  * change while the root pointer was being updated in the metadata.
1176  */
1177 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1178                                struct btrfs_root *root)
1179 {
1180         int ret;
1181         u64 old_root_bytenr;
1182         u64 old_root_used;
1183         struct btrfs_fs_info *fs_info = root->fs_info;
1184         struct btrfs_root *tree_root = fs_info->tree_root;
1185
1186         old_root_used = btrfs_root_used(&root->root_item);
1187
1188         while (1) {
1189                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1190                 if (old_root_bytenr == root->node->start &&
1191                     old_root_used == btrfs_root_used(&root->root_item))
1192                         break;
1193
1194                 btrfs_set_root_node(&root->root_item, root->node);
1195                 ret = btrfs_update_root(trans, tree_root,
1196                                         &root->root_key,
1197                                         &root->root_item);
1198                 if (ret)
1199                         return ret;
1200
1201                 old_root_used = btrfs_root_used(&root->root_item);
1202         }
1203
1204         return 0;
1205 }
1206
1207 /*
1208  * update all the cowonly tree roots on disk
1209  *
1210  * The error handling in this function may not be obvious. Any of the
1211  * failures will cause the file system to go offline. We still need
1212  * to clean up the delayed refs.
1213  */
1214 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1215 {
1216         struct btrfs_fs_info *fs_info = trans->fs_info;
1217         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1218         struct list_head *io_bgs = &trans->transaction->io_bgs;
1219         struct list_head *next;
1220         struct extent_buffer *eb;
1221         int ret;
1222
1223         eb = btrfs_lock_root_node(fs_info->tree_root);
1224         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1225                               0, &eb, BTRFS_NESTING_COW);
1226         btrfs_tree_unlock(eb);
1227         free_extent_buffer(eb);
1228
1229         if (ret)
1230                 return ret;
1231
1232         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1233         if (ret)
1234                 return ret;
1235
1236         ret = btrfs_run_dev_stats(trans);
1237         if (ret)
1238                 return ret;
1239         ret = btrfs_run_dev_replace(trans);
1240         if (ret)
1241                 return ret;
1242         ret = btrfs_run_qgroups(trans);
1243         if (ret)
1244                 return ret;
1245
1246         ret = btrfs_setup_space_cache(trans);
1247         if (ret)
1248                 return ret;
1249
1250         /* run_qgroups might have added some more refs */
1251         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1252         if (ret)
1253                 return ret;
1254 again:
1255         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1256                 struct btrfs_root *root;
1257                 next = fs_info->dirty_cowonly_roots.next;
1258                 list_del_init(next);
1259                 root = list_entry(next, struct btrfs_root, dirty_list);
1260                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1261
1262                 if (root != fs_info->extent_root)
1263                         list_add_tail(&root->dirty_list,
1264                                       &trans->transaction->switch_commits);
1265                 ret = update_cowonly_root(trans, root);
1266                 if (ret)
1267                         return ret;
1268                 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1269                 if (ret)
1270                         return ret;
1271         }
1272
1273         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1274                 ret = btrfs_write_dirty_block_groups(trans);
1275                 if (ret)
1276                         return ret;
1277                 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1278                 if (ret)
1279                         return ret;
1280         }
1281
1282         if (!list_empty(&fs_info->dirty_cowonly_roots))
1283                 goto again;
1284
1285         list_add_tail(&fs_info->extent_root->dirty_list,
1286                       &trans->transaction->switch_commits);
1287
1288         /* Update dev-replace pointer once everything is committed */
1289         fs_info->dev_replace.committed_cursor_left =
1290                 fs_info->dev_replace.cursor_left_last_write_of_item;
1291
1292         return 0;
1293 }
1294
1295 /*
1296  * dead roots are old snapshots that need to be deleted.  This allocates
1297  * a dirty root struct and adds it into the list of dead roots that need to
1298  * be deleted
1299  */
1300 void btrfs_add_dead_root(struct btrfs_root *root)
1301 {
1302         struct btrfs_fs_info *fs_info = root->fs_info;
1303
1304         spin_lock(&fs_info->trans_lock);
1305         if (list_empty(&root->root_list)) {
1306                 btrfs_grab_root(root);
1307                 list_add_tail(&root->root_list, &fs_info->dead_roots);
1308         }
1309         spin_unlock(&fs_info->trans_lock);
1310 }
1311
1312 /*
1313  * update all the cowonly tree roots on disk
1314  */
1315 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1316 {
1317         struct btrfs_fs_info *fs_info = trans->fs_info;
1318         struct btrfs_root *gang[8];
1319         int i;
1320         int ret;
1321
1322         spin_lock(&fs_info->fs_roots_radix_lock);
1323         while (1) {
1324                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1325                                                  (void **)gang, 0,
1326                                                  ARRAY_SIZE(gang),
1327                                                  BTRFS_ROOT_TRANS_TAG);
1328                 if (ret == 0)
1329                         break;
1330                 for (i = 0; i < ret; i++) {
1331                         struct btrfs_root *root = gang[i];
1332                         int ret2;
1333
1334                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1335                                         (unsigned long)root->root_key.objectid,
1336                                         BTRFS_ROOT_TRANS_TAG);
1337                         spin_unlock(&fs_info->fs_roots_radix_lock);
1338
1339                         btrfs_free_log(trans, root);
1340                         btrfs_update_reloc_root(trans, root);
1341
1342                         /* see comments in should_cow_block() */
1343                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1344                         smp_mb__after_atomic();
1345
1346                         if (root->commit_root != root->node) {
1347                                 list_add_tail(&root->dirty_list,
1348                                         &trans->transaction->switch_commits);
1349                                 btrfs_set_root_node(&root->root_item,
1350                                                     root->node);
1351                         }
1352
1353                         ret2 = btrfs_update_root(trans, fs_info->tree_root,
1354                                                 &root->root_key,
1355                                                 &root->root_item);
1356                         if (ret2)
1357                                 return ret2;
1358                         spin_lock(&fs_info->fs_roots_radix_lock);
1359                         btrfs_qgroup_free_meta_all_pertrans(root);
1360                 }
1361         }
1362         spin_unlock(&fs_info->fs_roots_radix_lock);
1363         return 0;
1364 }
1365
1366 /*
1367  * defrag a given btree.
1368  * Every leaf in the btree is read and defragged.
1369  */
1370 int btrfs_defrag_root(struct btrfs_root *root)
1371 {
1372         struct btrfs_fs_info *info = root->fs_info;
1373         struct btrfs_trans_handle *trans;
1374         int ret;
1375
1376         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1377                 return 0;
1378
1379         while (1) {
1380                 trans = btrfs_start_transaction(root, 0);
1381                 if (IS_ERR(trans))
1382                         return PTR_ERR(trans);
1383
1384                 ret = btrfs_defrag_leaves(trans, root);
1385
1386                 btrfs_end_transaction(trans);
1387                 btrfs_btree_balance_dirty(info);
1388                 cond_resched();
1389
1390                 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1391                         break;
1392
1393                 if (btrfs_defrag_cancelled(info)) {
1394                         btrfs_debug(info, "defrag_root cancelled");
1395                         ret = -EAGAIN;
1396                         break;
1397                 }
1398         }
1399         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1400         return ret;
1401 }
1402
1403 /*
1404  * Do all special snapshot related qgroup dirty hack.
1405  *
1406  * Will do all needed qgroup inherit and dirty hack like switch commit
1407  * roots inside one transaction and write all btree into disk, to make
1408  * qgroup works.
1409  */
1410 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1411                                    struct btrfs_root *src,
1412                                    struct btrfs_root *parent,
1413                                    struct btrfs_qgroup_inherit *inherit,
1414                                    u64 dst_objectid)
1415 {
1416         struct btrfs_fs_info *fs_info = src->fs_info;
1417         int ret;
1418
1419         /*
1420          * Save some performance in the case that qgroups are not
1421          * enabled. If this check races with the ioctl, rescan will
1422          * kick in anyway.
1423          */
1424         if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1425                 return 0;
1426
1427         /*
1428          * Ensure dirty @src will be committed.  Or, after coming
1429          * commit_fs_roots() and switch_commit_roots(), any dirty but not
1430          * recorded root will never be updated again, causing an outdated root
1431          * item.
1432          */
1433         record_root_in_trans(trans, src, 1);
1434
1435         /*
1436          * We are going to commit transaction, see btrfs_commit_transaction()
1437          * comment for reason locking tree_log_mutex
1438          */
1439         mutex_lock(&fs_info->tree_log_mutex);
1440
1441         ret = commit_fs_roots(trans);
1442         if (ret)
1443                 goto out;
1444         ret = btrfs_qgroup_account_extents(trans);
1445         if (ret < 0)
1446                 goto out;
1447
1448         /* Now qgroup are all updated, we can inherit it to new qgroups */
1449         ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1450                                    inherit);
1451         if (ret < 0)
1452                 goto out;
1453
1454         /*
1455          * Now we do a simplified commit transaction, which will:
1456          * 1) commit all subvolume and extent tree
1457          *    To ensure all subvolume and extent tree have a valid
1458          *    commit_root to accounting later insert_dir_item()
1459          * 2) write all btree blocks onto disk
1460          *    This is to make sure later btree modification will be cowed
1461          *    Or commit_root can be populated and cause wrong qgroup numbers
1462          * In this simplified commit, we don't really care about other trees
1463          * like chunk and root tree, as they won't affect qgroup.
1464          * And we don't write super to avoid half committed status.
1465          */
1466         ret = commit_cowonly_roots(trans);
1467         if (ret)
1468                 goto out;
1469         switch_commit_roots(trans);
1470         ret = btrfs_write_and_wait_transaction(trans);
1471         if (ret)
1472                 btrfs_handle_fs_error(fs_info, ret,
1473                         "Error while writing out transaction for qgroup");
1474
1475 out:
1476         mutex_unlock(&fs_info->tree_log_mutex);
1477
1478         /*
1479          * Force parent root to be updated, as we recorded it before so its
1480          * last_trans == cur_transid.
1481          * Or it won't be committed again onto disk after later
1482          * insert_dir_item()
1483          */
1484         if (!ret)
1485                 record_root_in_trans(trans, parent, 1);
1486         return ret;
1487 }
1488
1489 /*
1490  * new snapshots need to be created at a very specific time in the
1491  * transaction commit.  This does the actual creation.
1492  *
1493  * Note:
1494  * If the error which may affect the commitment of the current transaction
1495  * happens, we should return the error number. If the error which just affect
1496  * the creation of the pending snapshots, just return 0.
1497  */
1498 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1499                                    struct btrfs_pending_snapshot *pending)
1500 {
1501
1502         struct btrfs_fs_info *fs_info = trans->fs_info;
1503         struct btrfs_key key;
1504         struct btrfs_root_item *new_root_item;
1505         struct btrfs_root *tree_root = fs_info->tree_root;
1506         struct btrfs_root *root = pending->root;
1507         struct btrfs_root *parent_root;
1508         struct btrfs_block_rsv *rsv;
1509         struct inode *parent_inode;
1510         struct btrfs_path *path;
1511         struct btrfs_dir_item *dir_item;
1512         struct dentry *dentry;
1513         struct extent_buffer *tmp;
1514         struct extent_buffer *old;
1515         struct timespec64 cur_time;
1516         int ret = 0;
1517         u64 to_reserve = 0;
1518         u64 index = 0;
1519         u64 objectid;
1520         u64 root_flags;
1521
1522         ASSERT(pending->path);
1523         path = pending->path;
1524
1525         ASSERT(pending->root_item);
1526         new_root_item = pending->root_item;
1527
1528         pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1529         if (pending->error)
1530                 goto no_free_objectid;
1531
1532         /*
1533          * Make qgroup to skip current new snapshot's qgroupid, as it is
1534          * accounted by later btrfs_qgroup_inherit().
1535          */
1536         btrfs_set_skip_qgroup(trans, objectid);
1537
1538         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1539
1540         if (to_reserve > 0) {
1541                 pending->error = btrfs_block_rsv_add(root,
1542                                                      &pending->block_rsv,
1543                                                      to_reserve,
1544                                                      BTRFS_RESERVE_NO_FLUSH);
1545                 if (pending->error)
1546                         goto clear_skip_qgroup;
1547         }
1548
1549         key.objectid = objectid;
1550         key.offset = (u64)-1;
1551         key.type = BTRFS_ROOT_ITEM_KEY;
1552
1553         rsv = trans->block_rsv;
1554         trans->block_rsv = &pending->block_rsv;
1555         trans->bytes_reserved = trans->block_rsv->reserved;
1556         trace_btrfs_space_reservation(fs_info, "transaction",
1557                                       trans->transid,
1558                                       trans->bytes_reserved, 1);
1559         dentry = pending->dentry;
1560         parent_inode = pending->dir;
1561         parent_root = BTRFS_I(parent_inode)->root;
1562         record_root_in_trans(trans, parent_root, 0);
1563
1564         cur_time = current_time(parent_inode);
1565
1566         /*
1567          * insert the directory item
1568          */
1569         ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1570         BUG_ON(ret); /* -ENOMEM */
1571
1572         /* check if there is a file/dir which has the same name. */
1573         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1574                                          btrfs_ino(BTRFS_I(parent_inode)),
1575                                          dentry->d_name.name,
1576                                          dentry->d_name.len, 0);
1577         if (dir_item != NULL && !IS_ERR(dir_item)) {
1578                 pending->error = -EEXIST;
1579                 goto dir_item_existed;
1580         } else if (IS_ERR(dir_item)) {
1581                 ret = PTR_ERR(dir_item);
1582                 btrfs_abort_transaction(trans, ret);
1583                 goto fail;
1584         }
1585         btrfs_release_path(path);
1586
1587         /*
1588          * pull in the delayed directory update
1589          * and the delayed inode item
1590          * otherwise we corrupt the FS during
1591          * snapshot
1592          */
1593         ret = btrfs_run_delayed_items(trans);
1594         if (ret) {      /* Transaction aborted */
1595                 btrfs_abort_transaction(trans, ret);
1596                 goto fail;
1597         }
1598
1599         record_root_in_trans(trans, root, 0);
1600         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1601         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1602         btrfs_check_and_init_root_item(new_root_item);
1603
1604         root_flags = btrfs_root_flags(new_root_item);
1605         if (pending->readonly)
1606                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1607         else
1608                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1609         btrfs_set_root_flags(new_root_item, root_flags);
1610
1611         btrfs_set_root_generation_v2(new_root_item,
1612                         trans->transid);
1613         generate_random_guid(new_root_item->uuid);
1614         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1615                         BTRFS_UUID_SIZE);
1616         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1617                 memset(new_root_item->received_uuid, 0,
1618                        sizeof(new_root_item->received_uuid));
1619                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1620                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1621                 btrfs_set_root_stransid(new_root_item, 0);
1622                 btrfs_set_root_rtransid(new_root_item, 0);
1623         }
1624         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1625         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1626         btrfs_set_root_otransid(new_root_item, trans->transid);
1627
1628         old = btrfs_lock_root_node(root);
1629         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1630                               BTRFS_NESTING_COW);
1631         if (ret) {
1632                 btrfs_tree_unlock(old);
1633                 free_extent_buffer(old);
1634                 btrfs_abort_transaction(trans, ret);
1635                 goto fail;
1636         }
1637
1638         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1639         /* clean up in any case */
1640         btrfs_tree_unlock(old);
1641         free_extent_buffer(old);
1642         if (ret) {
1643                 btrfs_abort_transaction(trans, ret);
1644                 goto fail;
1645         }
1646         /* see comments in should_cow_block() */
1647         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1648         smp_wmb();
1649
1650         btrfs_set_root_node(new_root_item, tmp);
1651         /* record when the snapshot was created in key.offset */
1652         key.offset = trans->transid;
1653         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1654         btrfs_tree_unlock(tmp);
1655         free_extent_buffer(tmp);
1656         if (ret) {
1657                 btrfs_abort_transaction(trans, ret);
1658                 goto fail;
1659         }
1660
1661         /*
1662          * insert root back/forward references
1663          */
1664         ret = btrfs_add_root_ref(trans, objectid,
1665                                  parent_root->root_key.objectid,
1666                                  btrfs_ino(BTRFS_I(parent_inode)), index,
1667                                  dentry->d_name.name, dentry->d_name.len);
1668         if (ret) {
1669                 btrfs_abort_transaction(trans, ret);
1670                 goto fail;
1671         }
1672
1673         key.offset = (u64)-1;
1674         pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1675         if (IS_ERR(pending->snap)) {
1676                 ret = PTR_ERR(pending->snap);
1677                 pending->snap = NULL;
1678                 btrfs_abort_transaction(trans, ret);
1679                 goto fail;
1680         }
1681
1682         ret = btrfs_reloc_post_snapshot(trans, pending);
1683         if (ret) {
1684                 btrfs_abort_transaction(trans, ret);
1685                 goto fail;
1686         }
1687
1688         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1689         if (ret) {
1690                 btrfs_abort_transaction(trans, ret);
1691                 goto fail;
1692         }
1693
1694         /*
1695          * Do special qgroup accounting for snapshot, as we do some qgroup
1696          * snapshot hack to do fast snapshot.
1697          * To co-operate with that hack, we do hack again.
1698          * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1699          */
1700         ret = qgroup_account_snapshot(trans, root, parent_root,
1701                                       pending->inherit, objectid);
1702         if (ret < 0)
1703                 goto fail;
1704
1705         ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1706                                     dentry->d_name.len, BTRFS_I(parent_inode),
1707                                     &key, BTRFS_FT_DIR, index);
1708         /* We have check then name at the beginning, so it is impossible. */
1709         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1710         if (ret) {
1711                 btrfs_abort_transaction(trans, ret);
1712                 goto fail;
1713         }
1714
1715         btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1716                                          dentry->d_name.len * 2);
1717         parent_inode->i_mtime = parent_inode->i_ctime =
1718                 current_time(parent_inode);
1719         ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1720         if (ret) {
1721                 btrfs_abort_transaction(trans, ret);
1722                 goto fail;
1723         }
1724         ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1725                                   BTRFS_UUID_KEY_SUBVOL,
1726                                   objectid);
1727         if (ret) {
1728                 btrfs_abort_transaction(trans, ret);
1729                 goto fail;
1730         }
1731         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1732                 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1733                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1734                                           objectid);
1735                 if (ret && ret != -EEXIST) {
1736                         btrfs_abort_transaction(trans, ret);
1737                         goto fail;
1738                 }
1739         }
1740
1741         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1742         if (ret) {
1743                 btrfs_abort_transaction(trans, ret);
1744                 goto fail;
1745         }
1746
1747 fail:
1748         pending->error = ret;
1749 dir_item_existed:
1750         trans->block_rsv = rsv;
1751         trans->bytes_reserved = 0;
1752 clear_skip_qgroup:
1753         btrfs_clear_skip_qgroup(trans);
1754 no_free_objectid:
1755         kfree(new_root_item);
1756         pending->root_item = NULL;
1757         btrfs_free_path(path);
1758         pending->path = NULL;
1759
1760         return ret;
1761 }
1762
1763 /*
1764  * create all the snapshots we've scheduled for creation
1765  */
1766 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1767 {
1768         struct btrfs_pending_snapshot *pending, *next;
1769         struct list_head *head = &trans->transaction->pending_snapshots;
1770         int ret = 0;
1771
1772         list_for_each_entry_safe(pending, next, head, list) {
1773                 list_del(&pending->list);
1774                 ret = create_pending_snapshot(trans, pending);
1775                 if (ret)
1776                         break;
1777         }
1778         return ret;
1779 }
1780
1781 static void update_super_roots(struct btrfs_fs_info *fs_info)
1782 {
1783         struct btrfs_root_item *root_item;
1784         struct btrfs_super_block *super;
1785
1786         super = fs_info->super_copy;
1787
1788         root_item = &fs_info->chunk_root->root_item;
1789         super->chunk_root = root_item->bytenr;
1790         super->chunk_root_generation = root_item->generation;
1791         super->chunk_root_level = root_item->level;
1792
1793         root_item = &fs_info->tree_root->root_item;
1794         super->root = root_item->bytenr;
1795         super->generation = root_item->generation;
1796         super->root_level = root_item->level;
1797         if (btrfs_test_opt(fs_info, SPACE_CACHE))
1798                 super->cache_generation = root_item->generation;
1799         else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1800                 super->cache_generation = 0;
1801         if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1802                 super->uuid_tree_generation = root_item->generation;
1803 }
1804
1805 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1806 {
1807         struct btrfs_transaction *trans;
1808         int ret = 0;
1809
1810         spin_lock(&info->trans_lock);
1811         trans = info->running_transaction;
1812         if (trans)
1813                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1814         spin_unlock(&info->trans_lock);
1815         return ret;
1816 }
1817
1818 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1819 {
1820         struct btrfs_transaction *trans;
1821         int ret = 0;
1822
1823         spin_lock(&info->trans_lock);
1824         trans = info->running_transaction;
1825         if (trans)
1826                 ret = is_transaction_blocked(trans);
1827         spin_unlock(&info->trans_lock);
1828         return ret;
1829 }
1830
1831 /*
1832  * wait for the current transaction commit to start and block subsequent
1833  * transaction joins
1834  */
1835 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1836                                             struct btrfs_transaction *trans)
1837 {
1838         wait_event(fs_info->transaction_blocked_wait,
1839                    trans->state >= TRANS_STATE_COMMIT_START ||
1840                    TRANS_ABORTED(trans));
1841 }
1842
1843 /*
1844  * wait for the current transaction to start and then become unblocked.
1845  * caller holds ref.
1846  */
1847 static void wait_current_trans_commit_start_and_unblock(
1848                                         struct btrfs_fs_info *fs_info,
1849                                         struct btrfs_transaction *trans)
1850 {
1851         wait_event(fs_info->transaction_wait,
1852                    trans->state >= TRANS_STATE_UNBLOCKED ||
1853                    TRANS_ABORTED(trans));
1854 }
1855
1856 /*
1857  * commit transactions asynchronously. once btrfs_commit_transaction_async
1858  * returns, any subsequent transaction will not be allowed to join.
1859  */
1860 struct btrfs_async_commit {
1861         struct btrfs_trans_handle *newtrans;
1862         struct work_struct work;
1863 };
1864
1865 static void do_async_commit(struct work_struct *work)
1866 {
1867         struct btrfs_async_commit *ac =
1868                 container_of(work, struct btrfs_async_commit, work);
1869
1870         /*
1871          * We've got freeze protection passed with the transaction.
1872          * Tell lockdep about it.
1873          */
1874         if (ac->newtrans->type & __TRANS_FREEZABLE)
1875                 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1876
1877         current->journal_info = ac->newtrans;
1878
1879         btrfs_commit_transaction(ac->newtrans);
1880         kfree(ac);
1881 }
1882
1883 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1884                                    int wait_for_unblock)
1885 {
1886         struct btrfs_fs_info *fs_info = trans->fs_info;
1887         struct btrfs_async_commit *ac;
1888         struct btrfs_transaction *cur_trans;
1889
1890         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1891         if (!ac)
1892                 return -ENOMEM;
1893
1894         INIT_WORK(&ac->work, do_async_commit);
1895         ac->newtrans = btrfs_join_transaction(trans->root);
1896         if (IS_ERR(ac->newtrans)) {
1897                 int err = PTR_ERR(ac->newtrans);
1898                 kfree(ac);
1899                 return err;
1900         }
1901
1902         /* take transaction reference */
1903         cur_trans = trans->transaction;
1904         refcount_inc(&cur_trans->use_count);
1905
1906         btrfs_end_transaction(trans);
1907
1908         /*
1909          * Tell lockdep we've released the freeze rwsem, since the
1910          * async commit thread will be the one to unlock it.
1911          */
1912         if (ac->newtrans->type & __TRANS_FREEZABLE)
1913                 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1914
1915         schedule_work(&ac->work);
1916
1917         /* wait for transaction to start and unblock */
1918         if (wait_for_unblock)
1919                 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1920         else
1921                 wait_current_trans_commit_start(fs_info, cur_trans);
1922
1923         if (current->journal_info == trans)
1924                 current->journal_info = NULL;
1925
1926         btrfs_put_transaction(cur_trans);
1927         return 0;
1928 }
1929
1930
1931 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1932 {
1933         struct btrfs_fs_info *fs_info = trans->fs_info;
1934         struct btrfs_transaction *cur_trans = trans->transaction;
1935
1936         WARN_ON(refcount_read(&trans->use_count) > 1);
1937
1938         btrfs_abort_transaction(trans, err);
1939
1940         spin_lock(&fs_info->trans_lock);
1941
1942         /*
1943          * If the transaction is removed from the list, it means this
1944          * transaction has been committed successfully, so it is impossible
1945          * to call the cleanup function.
1946          */
1947         BUG_ON(list_empty(&cur_trans->list));
1948
1949         list_del_init(&cur_trans->list);
1950         if (cur_trans == fs_info->running_transaction) {
1951                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1952                 spin_unlock(&fs_info->trans_lock);
1953                 wait_event(cur_trans->writer_wait,
1954                            atomic_read(&cur_trans->num_writers) == 1);
1955
1956                 spin_lock(&fs_info->trans_lock);
1957         }
1958         spin_unlock(&fs_info->trans_lock);
1959
1960         btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1961
1962         spin_lock(&fs_info->trans_lock);
1963         if (cur_trans == fs_info->running_transaction)
1964                 fs_info->running_transaction = NULL;
1965         spin_unlock(&fs_info->trans_lock);
1966
1967         if (trans->type & __TRANS_FREEZABLE)
1968                 sb_end_intwrite(fs_info->sb);
1969         btrfs_put_transaction(cur_trans);
1970         btrfs_put_transaction(cur_trans);
1971
1972         trace_btrfs_transaction_commit(trans->root);
1973
1974         if (current->journal_info == trans)
1975                 current->journal_info = NULL;
1976         btrfs_scrub_cancel(fs_info);
1977
1978         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1979 }
1980
1981 /*
1982  * Release reserved delayed ref space of all pending block groups of the
1983  * transaction and remove them from the list
1984  */
1985 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1986 {
1987        struct btrfs_fs_info *fs_info = trans->fs_info;
1988        struct btrfs_block_group *block_group, *tmp;
1989
1990        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1991                btrfs_delayed_refs_rsv_release(fs_info, 1);
1992                list_del_init(&block_group->bg_list);
1993        }
1994 }
1995
1996 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1997 {
1998         /*
1999          * We use writeback_inodes_sb here because if we used
2000          * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2001          * Currently are holding the fs freeze lock, if we do an async flush
2002          * we'll do btrfs_join_transaction() and deadlock because we need to
2003          * wait for the fs freeze lock.  Using the direct flushing we benefit
2004          * from already being in a transaction and our join_transaction doesn't
2005          * have to re-take the fs freeze lock.
2006          */
2007         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2008                 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2009         return 0;
2010 }
2011
2012 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2013 {
2014         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2015                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2016 }
2017
2018 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2019 {
2020         struct btrfs_fs_info *fs_info = trans->fs_info;
2021         struct btrfs_transaction *cur_trans = trans->transaction;
2022         struct btrfs_transaction *prev_trans = NULL;
2023         int ret;
2024
2025         ASSERT(refcount_read(&trans->use_count) == 1);
2026
2027         /*
2028          * Some places just start a transaction to commit it.  We need to make
2029          * sure that if this commit fails that the abort code actually marks the
2030          * transaction as failed, so set trans->dirty to make the abort code do
2031          * the right thing.
2032          */
2033         trans->dirty = true;
2034
2035         /* Stop the commit early if ->aborted is set */
2036         if (TRANS_ABORTED(cur_trans)) {
2037                 ret = cur_trans->aborted;
2038                 btrfs_end_transaction(trans);
2039                 return ret;
2040         }
2041
2042         btrfs_trans_release_metadata(trans);
2043         trans->block_rsv = NULL;
2044
2045         /*
2046          * We only want one transaction commit doing the flushing so we do not
2047          * waste a bunch of time on lock contention on the extent root node.
2048          */
2049         if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2050                               &cur_trans->delayed_refs.flags)) {
2051                 /*
2052                  * Make a pass through all the delayed refs we have so far.
2053                  * Any running threads may add more while we are here.
2054                  */
2055                 ret = btrfs_run_delayed_refs(trans, 0);
2056                 if (ret) {
2057                         btrfs_end_transaction(trans);
2058                         return ret;
2059                 }
2060         }
2061
2062         btrfs_create_pending_block_groups(trans);
2063
2064         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2065                 int run_it = 0;
2066
2067                 /* this mutex is also taken before trying to set
2068                  * block groups readonly.  We need to make sure
2069                  * that nobody has set a block group readonly
2070                  * after a extents from that block group have been
2071                  * allocated for cache files.  btrfs_set_block_group_ro
2072                  * will wait for the transaction to commit if it
2073                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2074                  *
2075                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2076                  * only one process starts all the block group IO.  It wouldn't
2077                  * hurt to have more than one go through, but there's no
2078                  * real advantage to it either.
2079                  */
2080                 mutex_lock(&fs_info->ro_block_group_mutex);
2081                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2082                                       &cur_trans->flags))
2083                         run_it = 1;
2084                 mutex_unlock(&fs_info->ro_block_group_mutex);
2085
2086                 if (run_it) {
2087                         ret = btrfs_start_dirty_block_groups(trans);
2088                         if (ret) {
2089                                 btrfs_end_transaction(trans);
2090                                 return ret;
2091                         }
2092                 }
2093         }
2094
2095         spin_lock(&fs_info->trans_lock);
2096         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2097                 spin_unlock(&fs_info->trans_lock);
2098                 refcount_inc(&cur_trans->use_count);
2099                 ret = btrfs_end_transaction(trans);
2100
2101                 wait_for_commit(cur_trans);
2102
2103                 if (TRANS_ABORTED(cur_trans))
2104                         ret = cur_trans->aborted;
2105
2106                 btrfs_put_transaction(cur_trans);
2107
2108                 return ret;
2109         }
2110
2111         cur_trans->state = TRANS_STATE_COMMIT_START;
2112         wake_up(&fs_info->transaction_blocked_wait);
2113
2114         if (cur_trans->list.prev != &fs_info->trans_list) {
2115                 prev_trans = list_entry(cur_trans->list.prev,
2116                                         struct btrfs_transaction, list);
2117                 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2118                         refcount_inc(&prev_trans->use_count);
2119                         spin_unlock(&fs_info->trans_lock);
2120
2121                         wait_for_commit(prev_trans);
2122                         ret = READ_ONCE(prev_trans->aborted);
2123
2124                         btrfs_put_transaction(prev_trans);
2125                         if (ret)
2126                                 goto cleanup_transaction;
2127                 } else {
2128                         spin_unlock(&fs_info->trans_lock);
2129                 }
2130         } else {
2131                 spin_unlock(&fs_info->trans_lock);
2132                 /*
2133                  * The previous transaction was aborted and was already removed
2134                  * from the list of transactions at fs_info->trans_list. So we
2135                  * abort to prevent writing a new superblock that reflects a
2136                  * corrupt state (pointing to trees with unwritten nodes/leafs).
2137                  */
2138                 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2139                         ret = -EROFS;
2140                         goto cleanup_transaction;
2141                 }
2142         }
2143
2144         extwriter_counter_dec(cur_trans, trans->type);
2145
2146         ret = btrfs_start_delalloc_flush(fs_info);
2147         if (ret)
2148                 goto cleanup_transaction;
2149
2150         ret = btrfs_run_delayed_items(trans);
2151         if (ret)
2152                 goto cleanup_transaction;
2153
2154         wait_event(cur_trans->writer_wait,
2155                    extwriter_counter_read(cur_trans) == 0);
2156
2157         /* some pending stuffs might be added after the previous flush. */
2158         ret = btrfs_run_delayed_items(trans);
2159         if (ret)
2160                 goto cleanup_transaction;
2161
2162         btrfs_wait_delalloc_flush(fs_info);
2163
2164         /*
2165          * Wait for all ordered extents started by a fast fsync that joined this
2166          * transaction. Otherwise if this transaction commits before the ordered
2167          * extents complete we lose logged data after a power failure.
2168          */
2169         wait_event(cur_trans->pending_wait,
2170                    atomic_read(&cur_trans->pending_ordered) == 0);
2171
2172         btrfs_scrub_pause(fs_info);
2173         /*
2174          * Ok now we need to make sure to block out any other joins while we
2175          * commit the transaction.  We could have started a join before setting
2176          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2177          */
2178         spin_lock(&fs_info->trans_lock);
2179         cur_trans->state = TRANS_STATE_COMMIT_DOING;
2180         spin_unlock(&fs_info->trans_lock);
2181         wait_event(cur_trans->writer_wait,
2182                    atomic_read(&cur_trans->num_writers) == 1);
2183
2184         if (TRANS_ABORTED(cur_trans)) {
2185                 ret = cur_trans->aborted;
2186                 goto scrub_continue;
2187         }
2188         /*
2189          * the reloc mutex makes sure that we stop
2190          * the balancing code from coming in and moving
2191          * extents around in the middle of the commit
2192          */
2193         mutex_lock(&fs_info->reloc_mutex);
2194
2195         /*
2196          * We needn't worry about the delayed items because we will
2197          * deal with them in create_pending_snapshot(), which is the
2198          * core function of the snapshot creation.
2199          */
2200         ret = create_pending_snapshots(trans);
2201         if (ret)
2202                 goto unlock_reloc;
2203
2204         /*
2205          * We insert the dir indexes of the snapshots and update the inode
2206          * of the snapshots' parents after the snapshot creation, so there
2207          * are some delayed items which are not dealt with. Now deal with
2208          * them.
2209          *
2210          * We needn't worry that this operation will corrupt the snapshots,
2211          * because all the tree which are snapshoted will be forced to COW
2212          * the nodes and leaves.
2213          */
2214         ret = btrfs_run_delayed_items(trans);
2215         if (ret)
2216                 goto unlock_reloc;
2217
2218         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2219         if (ret)
2220                 goto unlock_reloc;
2221
2222         /*
2223          * make sure none of the code above managed to slip in a
2224          * delayed item
2225          */
2226         btrfs_assert_delayed_root_empty(fs_info);
2227
2228         WARN_ON(cur_trans != trans->transaction);
2229
2230         /* btrfs_commit_tree_roots is responsible for getting the
2231          * various roots consistent with each other.  Every pointer
2232          * in the tree of tree roots has to point to the most up to date
2233          * root for every subvolume and other tree.  So, we have to keep
2234          * the tree logging code from jumping in and changing any
2235          * of the trees.
2236          *
2237          * At this point in the commit, there can't be any tree-log
2238          * writers, but a little lower down we drop the trans mutex
2239          * and let new people in.  By holding the tree_log_mutex
2240          * from now until after the super is written, we avoid races
2241          * with the tree-log code.
2242          */
2243         mutex_lock(&fs_info->tree_log_mutex);
2244
2245         ret = commit_fs_roots(trans);
2246         if (ret)
2247                 goto unlock_tree_log;
2248
2249         /*
2250          * Since the transaction is done, we can apply the pending changes
2251          * before the next transaction.
2252          */
2253         btrfs_apply_pending_changes(fs_info);
2254
2255         /* commit_fs_roots gets rid of all the tree log roots, it is now
2256          * safe to free the root of tree log roots
2257          */
2258         btrfs_free_log_root_tree(trans, fs_info);
2259
2260         /*
2261          * Since fs roots are all committed, we can get a quite accurate
2262          * new_roots. So let's do quota accounting.
2263          */
2264         ret = btrfs_qgroup_account_extents(trans);
2265         if (ret < 0)
2266                 goto unlock_tree_log;
2267
2268         ret = commit_cowonly_roots(trans);
2269         if (ret)
2270                 goto unlock_tree_log;
2271
2272         /*
2273          * The tasks which save the space cache and inode cache may also
2274          * update ->aborted, check it.
2275          */
2276         if (TRANS_ABORTED(cur_trans)) {
2277                 ret = cur_trans->aborted;
2278                 goto unlock_tree_log;
2279         }
2280
2281         cur_trans = fs_info->running_transaction;
2282
2283         btrfs_set_root_node(&fs_info->tree_root->root_item,
2284                             fs_info->tree_root->node);
2285         list_add_tail(&fs_info->tree_root->dirty_list,
2286                       &cur_trans->switch_commits);
2287
2288         btrfs_set_root_node(&fs_info->chunk_root->root_item,
2289                             fs_info->chunk_root->node);
2290         list_add_tail(&fs_info->chunk_root->dirty_list,
2291                       &cur_trans->switch_commits);
2292
2293         switch_commit_roots(trans);
2294
2295         ASSERT(list_empty(&cur_trans->dirty_bgs));
2296         ASSERT(list_empty(&cur_trans->io_bgs));
2297         update_super_roots(fs_info);
2298
2299         btrfs_set_super_log_root(fs_info->super_copy, 0);
2300         btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2301         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2302                sizeof(*fs_info->super_copy));
2303
2304         btrfs_commit_device_sizes(cur_trans);
2305
2306         clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2307         clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2308
2309         btrfs_trans_release_chunk_metadata(trans);
2310
2311         spin_lock(&fs_info->trans_lock);
2312         cur_trans->state = TRANS_STATE_UNBLOCKED;
2313         fs_info->running_transaction = NULL;
2314         spin_unlock(&fs_info->trans_lock);
2315         mutex_unlock(&fs_info->reloc_mutex);
2316
2317         wake_up(&fs_info->transaction_wait);
2318
2319         ret = btrfs_write_and_wait_transaction(trans);
2320         if (ret) {
2321                 btrfs_handle_fs_error(fs_info, ret,
2322                                       "Error while writing out transaction");
2323                 /*
2324                  * reloc_mutex has been unlocked, tree_log_mutex is still held
2325                  * but we can't jump to unlock_tree_log causing double unlock
2326                  */
2327                 mutex_unlock(&fs_info->tree_log_mutex);
2328                 goto scrub_continue;
2329         }
2330
2331         ret = write_all_supers(fs_info, 0);
2332         /*
2333          * the super is written, we can safely allow the tree-loggers
2334          * to go about their business
2335          */
2336         mutex_unlock(&fs_info->tree_log_mutex);
2337         if (ret)
2338                 goto scrub_continue;
2339
2340         btrfs_finish_extent_commit(trans);
2341
2342         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2343                 btrfs_clear_space_info_full(fs_info);
2344
2345         fs_info->last_trans_committed = cur_trans->transid;
2346         /*
2347          * We needn't acquire the lock here because there is no other task
2348          * which can change it.
2349          */
2350         cur_trans->state = TRANS_STATE_COMPLETED;
2351         wake_up(&cur_trans->commit_wait);
2352
2353         spin_lock(&fs_info->trans_lock);
2354         list_del_init(&cur_trans->list);
2355         spin_unlock(&fs_info->trans_lock);
2356
2357         btrfs_put_transaction(cur_trans);
2358         btrfs_put_transaction(cur_trans);
2359
2360         if (trans->type & __TRANS_FREEZABLE)
2361                 sb_end_intwrite(fs_info->sb);
2362
2363         trace_btrfs_transaction_commit(trans->root);
2364
2365         btrfs_scrub_continue(fs_info);
2366
2367         if (current->journal_info == trans)
2368                 current->journal_info = NULL;
2369
2370         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2371
2372         return ret;
2373
2374 unlock_tree_log:
2375         mutex_unlock(&fs_info->tree_log_mutex);
2376 unlock_reloc:
2377         mutex_unlock(&fs_info->reloc_mutex);
2378 scrub_continue:
2379         btrfs_scrub_continue(fs_info);
2380 cleanup_transaction:
2381         btrfs_trans_release_metadata(trans);
2382         btrfs_cleanup_pending_block_groups(trans);
2383         btrfs_trans_release_chunk_metadata(trans);
2384         trans->block_rsv = NULL;
2385         btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2386         if (current->journal_info == trans)
2387                 current->journal_info = NULL;
2388         cleanup_transaction(trans, ret);
2389
2390         return ret;
2391 }
2392
2393 /*
2394  * return < 0 if error
2395  * 0 if there are no more dead_roots at the time of call
2396  * 1 there are more to be processed, call me again
2397  *
2398  * The return value indicates there are certainly more snapshots to delete, but
2399  * if there comes a new one during processing, it may return 0. We don't mind,
2400  * because btrfs_commit_super will poke cleaner thread and it will process it a
2401  * few seconds later.
2402  */
2403 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2404 {
2405         int ret;
2406         struct btrfs_fs_info *fs_info = root->fs_info;
2407
2408         spin_lock(&fs_info->trans_lock);
2409         if (list_empty(&fs_info->dead_roots)) {
2410                 spin_unlock(&fs_info->trans_lock);
2411                 return 0;
2412         }
2413         root = list_first_entry(&fs_info->dead_roots,
2414                         struct btrfs_root, root_list);
2415         list_del_init(&root->root_list);
2416         spin_unlock(&fs_info->trans_lock);
2417
2418         btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2419
2420         btrfs_kill_all_delayed_nodes(root);
2421
2422         if (btrfs_header_backref_rev(root->node) <
2423                         BTRFS_MIXED_BACKREF_REV)
2424                 ret = btrfs_drop_snapshot(root, 0, 0);
2425         else
2426                 ret = btrfs_drop_snapshot(root, 1, 0);
2427
2428         btrfs_put_root(root);
2429         return (ret < 0) ? 0 : 1;
2430 }
2431
2432 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2433 {
2434         unsigned long prev;
2435         unsigned long bit;
2436
2437         prev = xchg(&fs_info->pending_changes, 0);
2438         if (!prev)
2439                 return;
2440
2441         bit = 1 << BTRFS_PENDING_COMMIT;
2442         if (prev & bit)
2443                 btrfs_debug(fs_info, "pending commit done");
2444         prev &= ~bit;
2445
2446         if (prev)
2447                 btrfs_warn(fs_info,
2448                         "unknown pending changes left 0x%lx, ignoring", prev);
2449 }