btrfs: fix race between quota disable and quota assign ioctls
[platform/kernel/linux-rpi.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22 #include "block-group.h"
23 #include "space-info.h"
24 #include "zoned.h"
25
26 #define BTRFS_ROOT_TRANS_TAG 0
27
28 /*
29  * Transaction states and transitions
30  *
31  * No running transaction (fs tree blocks are not modified)
32  * |
33  * | To next stage:
34  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35  * V
36  * Transaction N [[TRANS_STATE_RUNNING]]
37  * |
38  * | New trans handles can be attached to transaction N by calling all
39  * | start_transaction() variants.
40  * |
41  * | To next stage:
42  * |  Call btrfs_commit_transaction() on any trans handle attached to
43  * |  transaction N
44  * V
45  * Transaction N [[TRANS_STATE_COMMIT_START]]
46  * |
47  * | Will wait for previous running transaction to completely finish if there
48  * | is one
49  * |
50  * | Then one of the following happes:
51  * | - Wait for all other trans handle holders to release.
52  * |   The btrfs_commit_transaction() caller will do the commit work.
53  * | - Wait for current transaction to be committed by others.
54  * |   Other btrfs_commit_transaction() caller will do the commit work.
55  * |
56  * | At this stage, only btrfs_join_transaction*() variants can attach
57  * | to this running transaction.
58  * | All other variants will wait for current one to finish and attach to
59  * | transaction N+1.
60  * |
61  * | To next stage:
62  * |  Caller is chosen to commit transaction N, and all other trans handle
63  * |  haven been released.
64  * V
65  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66  * |
67  * | The heavy lifting transaction work is started.
68  * | From running delayed refs (modifying extent tree) to creating pending
69  * | snapshots, running qgroups.
70  * | In short, modify supporting trees to reflect modifications of subvolume
71  * | trees.
72  * |
73  * | At this stage, all start_transaction() calls will wait for this
74  * | transaction to finish and attach to transaction N+1.
75  * |
76  * | To next stage:
77  * |  Until all supporting trees are updated.
78  * V
79  * Transaction N [[TRANS_STATE_UNBLOCKED]]
80  * |                                                Transaction N+1
81  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
82  * | need to write them back to disk and update     |
83  * | super blocks.                                  |
84  * |                                                |
85  * | At this stage, new transaction is allowed to   |
86  * | start.                                         |
87  * | All new start_transaction() calls will be      |
88  * | attached to transid N+1.                       |
89  * |                                                |
90  * | To next stage:                                 |
91  * |  Until all tree blocks are super blocks are    |
92  * |  written to block devices                      |
93  * V                                                |
94  * Transaction N [[TRANS_STATE_COMPLETED]]          V
95  *   All tree blocks and super blocks are written.  Transaction N+1
96  *   This transaction is finished and all its       [[TRANS_STATE_COMMIT_START]]
97  *   data structures will be cleaned up.            | Life goes on
98  */
99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100         [TRANS_STATE_RUNNING]           = 0U,
101         [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
102         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
103                                            __TRANS_ATTACH |
104                                            __TRANS_JOIN |
105                                            __TRANS_JOIN_NOSTART),
106         [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
107                                            __TRANS_ATTACH |
108                                            __TRANS_JOIN |
109                                            __TRANS_JOIN_NOLOCK |
110                                            __TRANS_JOIN_NOSTART),
111         [TRANS_STATE_SUPER_COMMITTED]   = (__TRANS_START |
112                                            __TRANS_ATTACH |
113                                            __TRANS_JOIN |
114                                            __TRANS_JOIN_NOLOCK |
115                                            __TRANS_JOIN_NOSTART),
116         [TRANS_STATE_COMPLETED]         = (__TRANS_START |
117                                            __TRANS_ATTACH |
118                                            __TRANS_JOIN |
119                                            __TRANS_JOIN_NOLOCK |
120                                            __TRANS_JOIN_NOSTART),
121 };
122
123 void btrfs_put_transaction(struct btrfs_transaction *transaction)
124 {
125         WARN_ON(refcount_read(&transaction->use_count) == 0);
126         if (refcount_dec_and_test(&transaction->use_count)) {
127                 BUG_ON(!list_empty(&transaction->list));
128                 WARN_ON(!RB_EMPTY_ROOT(
129                                 &transaction->delayed_refs.href_root.rb_root));
130                 WARN_ON(!RB_EMPTY_ROOT(
131                                 &transaction->delayed_refs.dirty_extent_root));
132                 if (transaction->delayed_refs.pending_csums)
133                         btrfs_err(transaction->fs_info,
134                                   "pending csums is %llu",
135                                   transaction->delayed_refs.pending_csums);
136                 /*
137                  * If any block groups are found in ->deleted_bgs then it's
138                  * because the transaction was aborted and a commit did not
139                  * happen (things failed before writing the new superblock
140                  * and calling btrfs_finish_extent_commit()), so we can not
141                  * discard the physical locations of the block groups.
142                  */
143                 while (!list_empty(&transaction->deleted_bgs)) {
144                         struct btrfs_block_group *cache;
145
146                         cache = list_first_entry(&transaction->deleted_bgs,
147                                                  struct btrfs_block_group,
148                                                  bg_list);
149                         list_del_init(&cache->bg_list);
150                         btrfs_unfreeze_block_group(cache);
151                         btrfs_put_block_group(cache);
152                 }
153                 WARN_ON(!list_empty(&transaction->dev_update_list));
154                 kfree(transaction);
155         }
156 }
157
158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
159 {
160         struct btrfs_transaction *cur_trans = trans->transaction;
161         struct btrfs_fs_info *fs_info = trans->fs_info;
162         struct btrfs_root *root, *tmp;
163         struct btrfs_caching_control *caching_ctl, *next;
164
165         down_write(&fs_info->commit_root_sem);
166
167         if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
168                 fs_info->last_reloc_trans = trans->transid;
169
170         list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
171                                  dirty_list) {
172                 list_del_init(&root->dirty_list);
173                 free_extent_buffer(root->commit_root);
174                 root->commit_root = btrfs_root_node(root);
175                 extent_io_tree_release(&root->dirty_log_pages);
176                 btrfs_qgroup_clean_swapped_blocks(root);
177         }
178
179         /* We can free old roots now. */
180         spin_lock(&cur_trans->dropped_roots_lock);
181         while (!list_empty(&cur_trans->dropped_roots)) {
182                 root = list_first_entry(&cur_trans->dropped_roots,
183                                         struct btrfs_root, root_list);
184                 list_del_init(&root->root_list);
185                 spin_unlock(&cur_trans->dropped_roots_lock);
186                 btrfs_free_log(trans, root);
187                 btrfs_drop_and_free_fs_root(fs_info, root);
188                 spin_lock(&cur_trans->dropped_roots_lock);
189         }
190         spin_unlock(&cur_trans->dropped_roots_lock);
191
192         /*
193          * We have to update the last_byte_to_unpin under the commit_root_sem,
194          * at the same time we swap out the commit roots.
195          *
196          * This is because we must have a real view of the last spot the caching
197          * kthreads were while caching.  Consider the following views of the
198          * extent tree for a block group
199          *
200          * commit root
201          * +----+----+----+----+----+----+----+
202          * |\\\\|    |\\\\|\\\\|    |\\\\|\\\\|
203          * +----+----+----+----+----+----+----+
204          * 0    1    2    3    4    5    6    7
205          *
206          * new commit root
207          * +----+----+----+----+----+----+----+
208          * |    |    |    |\\\\|    |    |\\\\|
209          * +----+----+----+----+----+----+----+
210          * 0    1    2    3    4    5    6    7
211          *
212          * If the cache_ctl->progress was at 3, then we are only allowed to
213          * unpin [0,1) and [2,3], because the caching thread has already
214          * processed those extents.  We are not allowed to unpin [5,6), because
215          * the caching thread will re-start it's search from 3, and thus find
216          * the hole from [4,6) to add to the free space cache.
217          */
218         spin_lock(&fs_info->block_group_cache_lock);
219         list_for_each_entry_safe(caching_ctl, next,
220                                  &fs_info->caching_block_groups, list) {
221                 struct btrfs_block_group *cache = caching_ctl->block_group;
222
223                 if (btrfs_block_group_done(cache)) {
224                         cache->last_byte_to_unpin = (u64)-1;
225                         list_del_init(&caching_ctl->list);
226                         btrfs_put_caching_control(caching_ctl);
227                 } else {
228                         cache->last_byte_to_unpin = caching_ctl->progress;
229                 }
230         }
231         spin_unlock(&fs_info->block_group_cache_lock);
232         up_write(&fs_info->commit_root_sem);
233 }
234
235 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
236                                          unsigned int type)
237 {
238         if (type & TRANS_EXTWRITERS)
239                 atomic_inc(&trans->num_extwriters);
240 }
241
242 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
243                                          unsigned int type)
244 {
245         if (type & TRANS_EXTWRITERS)
246                 atomic_dec(&trans->num_extwriters);
247 }
248
249 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
250                                           unsigned int type)
251 {
252         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
253 }
254
255 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
256 {
257         return atomic_read(&trans->num_extwriters);
258 }
259
260 /*
261  * To be called after doing the chunk btree updates right after allocating a new
262  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
263  * chunk after all chunk btree updates and after finishing the second phase of
264  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
265  * group had its chunk item insertion delayed to the second phase.
266  */
267 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
268 {
269         struct btrfs_fs_info *fs_info = trans->fs_info;
270
271         if (!trans->chunk_bytes_reserved)
272                 return;
273
274         btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
275                                 trans->chunk_bytes_reserved, NULL);
276         trans->chunk_bytes_reserved = 0;
277 }
278
279 /*
280  * either allocate a new transaction or hop into the existing one
281  */
282 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
283                                      unsigned int type)
284 {
285         struct btrfs_transaction *cur_trans;
286
287         spin_lock(&fs_info->trans_lock);
288 loop:
289         /* The file system has been taken offline. No new transactions. */
290         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
291                 spin_unlock(&fs_info->trans_lock);
292                 return -EROFS;
293         }
294
295         cur_trans = fs_info->running_transaction;
296         if (cur_trans) {
297                 if (TRANS_ABORTED(cur_trans)) {
298                         spin_unlock(&fs_info->trans_lock);
299                         return cur_trans->aborted;
300                 }
301                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
302                         spin_unlock(&fs_info->trans_lock);
303                         return -EBUSY;
304                 }
305                 refcount_inc(&cur_trans->use_count);
306                 atomic_inc(&cur_trans->num_writers);
307                 extwriter_counter_inc(cur_trans, type);
308                 spin_unlock(&fs_info->trans_lock);
309                 return 0;
310         }
311         spin_unlock(&fs_info->trans_lock);
312
313         /*
314          * If we are ATTACH, we just want to catch the current transaction,
315          * and commit it. If there is no transaction, just return ENOENT.
316          */
317         if (type == TRANS_ATTACH)
318                 return -ENOENT;
319
320         /*
321          * JOIN_NOLOCK only happens during the transaction commit, so
322          * it is impossible that ->running_transaction is NULL
323          */
324         BUG_ON(type == TRANS_JOIN_NOLOCK);
325
326         cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
327         if (!cur_trans)
328                 return -ENOMEM;
329
330         spin_lock(&fs_info->trans_lock);
331         if (fs_info->running_transaction) {
332                 /*
333                  * someone started a transaction after we unlocked.  Make sure
334                  * to redo the checks above
335                  */
336                 kfree(cur_trans);
337                 goto loop;
338         } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
339                 spin_unlock(&fs_info->trans_lock);
340                 kfree(cur_trans);
341                 return -EROFS;
342         }
343
344         cur_trans->fs_info = fs_info;
345         atomic_set(&cur_trans->pending_ordered, 0);
346         init_waitqueue_head(&cur_trans->pending_wait);
347         atomic_set(&cur_trans->num_writers, 1);
348         extwriter_counter_init(cur_trans, type);
349         init_waitqueue_head(&cur_trans->writer_wait);
350         init_waitqueue_head(&cur_trans->commit_wait);
351         cur_trans->state = TRANS_STATE_RUNNING;
352         /*
353          * One for this trans handle, one so it will live on until we
354          * commit the transaction.
355          */
356         refcount_set(&cur_trans->use_count, 2);
357         cur_trans->flags = 0;
358         cur_trans->start_time = ktime_get_seconds();
359
360         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
361
362         cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
363         cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
364         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
365
366         /*
367          * although the tree mod log is per file system and not per transaction,
368          * the log must never go across transaction boundaries.
369          */
370         smp_mb();
371         if (!list_empty(&fs_info->tree_mod_seq_list))
372                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
373         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
374                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
375         atomic64_set(&fs_info->tree_mod_seq, 0);
376
377         spin_lock_init(&cur_trans->delayed_refs.lock);
378
379         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
380         INIT_LIST_HEAD(&cur_trans->dev_update_list);
381         INIT_LIST_HEAD(&cur_trans->switch_commits);
382         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
383         INIT_LIST_HEAD(&cur_trans->io_bgs);
384         INIT_LIST_HEAD(&cur_trans->dropped_roots);
385         mutex_init(&cur_trans->cache_write_mutex);
386         spin_lock_init(&cur_trans->dirty_bgs_lock);
387         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
388         spin_lock_init(&cur_trans->dropped_roots_lock);
389         INIT_LIST_HEAD(&cur_trans->releasing_ebs);
390         spin_lock_init(&cur_trans->releasing_ebs_lock);
391         list_add_tail(&cur_trans->list, &fs_info->trans_list);
392         extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
393                         IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
394         extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
395                         IO_TREE_FS_PINNED_EXTENTS, NULL);
396         fs_info->generation++;
397         cur_trans->transid = fs_info->generation;
398         fs_info->running_transaction = cur_trans;
399         cur_trans->aborted = 0;
400         spin_unlock(&fs_info->trans_lock);
401
402         return 0;
403 }
404
405 /*
406  * This does all the record keeping required to make sure that a shareable root
407  * is properly recorded in a given transaction.  This is required to make sure
408  * the old root from before we joined the transaction is deleted when the
409  * transaction commits.
410  */
411 static int record_root_in_trans(struct btrfs_trans_handle *trans,
412                                struct btrfs_root *root,
413                                int force)
414 {
415         struct btrfs_fs_info *fs_info = root->fs_info;
416         int ret = 0;
417
418         if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
419             root->last_trans < trans->transid) || force) {
420                 WARN_ON(root == fs_info->extent_root);
421                 WARN_ON(!force && root->commit_root != root->node);
422
423                 /*
424                  * see below for IN_TRANS_SETUP usage rules
425                  * we have the reloc mutex held now, so there
426                  * is only one writer in this function
427                  */
428                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
429
430                 /* make sure readers find IN_TRANS_SETUP before
431                  * they find our root->last_trans update
432                  */
433                 smp_wmb();
434
435                 spin_lock(&fs_info->fs_roots_radix_lock);
436                 if (root->last_trans == trans->transid && !force) {
437                         spin_unlock(&fs_info->fs_roots_radix_lock);
438                         return 0;
439                 }
440                 radix_tree_tag_set(&fs_info->fs_roots_radix,
441                                    (unsigned long)root->root_key.objectid,
442                                    BTRFS_ROOT_TRANS_TAG);
443                 spin_unlock(&fs_info->fs_roots_radix_lock);
444                 root->last_trans = trans->transid;
445
446                 /* this is pretty tricky.  We don't want to
447                  * take the relocation lock in btrfs_record_root_in_trans
448                  * unless we're really doing the first setup for this root in
449                  * this transaction.
450                  *
451                  * Normally we'd use root->last_trans as a flag to decide
452                  * if we want to take the expensive mutex.
453                  *
454                  * But, we have to set root->last_trans before we
455                  * init the relocation root, otherwise, we trip over warnings
456                  * in ctree.c.  The solution used here is to flag ourselves
457                  * with root IN_TRANS_SETUP.  When this is 1, we're still
458                  * fixing up the reloc trees and everyone must wait.
459                  *
460                  * When this is zero, they can trust root->last_trans and fly
461                  * through btrfs_record_root_in_trans without having to take the
462                  * lock.  smp_wmb() makes sure that all the writes above are
463                  * done before we pop in the zero below
464                  */
465                 ret = btrfs_init_reloc_root(trans, root);
466                 smp_mb__before_atomic();
467                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
468         }
469         return ret;
470 }
471
472
473 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
474                             struct btrfs_root *root)
475 {
476         struct btrfs_fs_info *fs_info = root->fs_info;
477         struct btrfs_transaction *cur_trans = trans->transaction;
478
479         /* Add ourselves to the transaction dropped list */
480         spin_lock(&cur_trans->dropped_roots_lock);
481         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
482         spin_unlock(&cur_trans->dropped_roots_lock);
483
484         /* Make sure we don't try to update the root at commit time */
485         spin_lock(&fs_info->fs_roots_radix_lock);
486         radix_tree_tag_clear(&fs_info->fs_roots_radix,
487                              (unsigned long)root->root_key.objectid,
488                              BTRFS_ROOT_TRANS_TAG);
489         spin_unlock(&fs_info->fs_roots_radix_lock);
490 }
491
492 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
493                                struct btrfs_root *root)
494 {
495         struct btrfs_fs_info *fs_info = root->fs_info;
496         int ret;
497
498         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
499                 return 0;
500
501         /*
502          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
503          * and barriers
504          */
505         smp_rmb();
506         if (root->last_trans == trans->transid &&
507             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
508                 return 0;
509
510         mutex_lock(&fs_info->reloc_mutex);
511         ret = record_root_in_trans(trans, root, 0);
512         mutex_unlock(&fs_info->reloc_mutex);
513
514         return ret;
515 }
516
517 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
518 {
519         return (trans->state >= TRANS_STATE_COMMIT_START &&
520                 trans->state < TRANS_STATE_UNBLOCKED &&
521                 !TRANS_ABORTED(trans));
522 }
523
524 /* wait for commit against the current transaction to become unblocked
525  * when this is done, it is safe to start a new transaction, but the current
526  * transaction might not be fully on disk.
527  */
528 static void wait_current_trans(struct btrfs_fs_info *fs_info)
529 {
530         struct btrfs_transaction *cur_trans;
531
532         spin_lock(&fs_info->trans_lock);
533         cur_trans = fs_info->running_transaction;
534         if (cur_trans && is_transaction_blocked(cur_trans)) {
535                 refcount_inc(&cur_trans->use_count);
536                 spin_unlock(&fs_info->trans_lock);
537
538                 wait_event(fs_info->transaction_wait,
539                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
540                            TRANS_ABORTED(cur_trans));
541                 btrfs_put_transaction(cur_trans);
542         } else {
543                 spin_unlock(&fs_info->trans_lock);
544         }
545 }
546
547 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
548 {
549         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
550                 return 0;
551
552         if (type == TRANS_START)
553                 return 1;
554
555         return 0;
556 }
557
558 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
559 {
560         struct btrfs_fs_info *fs_info = root->fs_info;
561
562         if (!fs_info->reloc_ctl ||
563             !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
564             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
565             root->reloc_root)
566                 return false;
567
568         return true;
569 }
570
571 static struct btrfs_trans_handle *
572 start_transaction(struct btrfs_root *root, unsigned int num_items,
573                   unsigned int type, enum btrfs_reserve_flush_enum flush,
574                   bool enforce_qgroups)
575 {
576         struct btrfs_fs_info *fs_info = root->fs_info;
577         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
578         struct btrfs_trans_handle *h;
579         struct btrfs_transaction *cur_trans;
580         u64 num_bytes = 0;
581         u64 qgroup_reserved = 0;
582         bool reloc_reserved = false;
583         bool do_chunk_alloc = false;
584         int ret;
585
586         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
587                 return ERR_PTR(-EROFS);
588
589         if (current->journal_info) {
590                 WARN_ON(type & TRANS_EXTWRITERS);
591                 h = current->journal_info;
592                 refcount_inc(&h->use_count);
593                 WARN_ON(refcount_read(&h->use_count) > 2);
594                 h->orig_rsv = h->block_rsv;
595                 h->block_rsv = NULL;
596                 goto got_it;
597         }
598
599         /*
600          * Do the reservation before we join the transaction so we can do all
601          * the appropriate flushing if need be.
602          */
603         if (num_items && root != fs_info->chunk_root) {
604                 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
605                 u64 delayed_refs_bytes = 0;
606
607                 qgroup_reserved = num_items * fs_info->nodesize;
608                 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
609                                 enforce_qgroups);
610                 if (ret)
611                         return ERR_PTR(ret);
612
613                 /*
614                  * We want to reserve all the bytes we may need all at once, so
615                  * we only do 1 enospc flushing cycle per transaction start.  We
616                  * accomplish this by simply assuming we'll do 2 x num_items
617                  * worth of delayed refs updates in this trans handle, and
618                  * refill that amount for whatever is missing in the reserve.
619                  */
620                 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
621                 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
622                     delayed_refs_rsv->full == 0) {
623                         delayed_refs_bytes = num_bytes;
624                         num_bytes <<= 1;
625                 }
626
627                 /*
628                  * Do the reservation for the relocation root creation
629                  */
630                 if (need_reserve_reloc_root(root)) {
631                         num_bytes += fs_info->nodesize;
632                         reloc_reserved = true;
633                 }
634
635                 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
636                 if (ret)
637                         goto reserve_fail;
638                 if (delayed_refs_bytes) {
639                         btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
640                                                           delayed_refs_bytes);
641                         num_bytes -= delayed_refs_bytes;
642                 }
643
644                 if (rsv->space_info->force_alloc)
645                         do_chunk_alloc = true;
646         } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
647                    !delayed_refs_rsv->full) {
648                 /*
649                  * Some people call with btrfs_start_transaction(root, 0)
650                  * because they can be throttled, but have some other mechanism
651                  * for reserving space.  We still want these guys to refill the
652                  * delayed block_rsv so just add 1 items worth of reservation
653                  * here.
654                  */
655                 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
656                 if (ret)
657                         goto reserve_fail;
658         }
659 again:
660         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
661         if (!h) {
662                 ret = -ENOMEM;
663                 goto alloc_fail;
664         }
665
666         /*
667          * If we are JOIN_NOLOCK we're already committing a transaction and
668          * waiting on this guy, so we don't need to do the sb_start_intwrite
669          * because we're already holding a ref.  We need this because we could
670          * have raced in and did an fsync() on a file which can kick a commit
671          * and then we deadlock with somebody doing a freeze.
672          *
673          * If we are ATTACH, it means we just want to catch the current
674          * transaction and commit it, so we needn't do sb_start_intwrite(). 
675          */
676         if (type & __TRANS_FREEZABLE)
677                 sb_start_intwrite(fs_info->sb);
678
679         if (may_wait_transaction(fs_info, type))
680                 wait_current_trans(fs_info);
681
682         do {
683                 ret = join_transaction(fs_info, type);
684                 if (ret == -EBUSY) {
685                         wait_current_trans(fs_info);
686                         if (unlikely(type == TRANS_ATTACH ||
687                                      type == TRANS_JOIN_NOSTART))
688                                 ret = -ENOENT;
689                 }
690         } while (ret == -EBUSY);
691
692         if (ret < 0)
693                 goto join_fail;
694
695         cur_trans = fs_info->running_transaction;
696
697         h->transid = cur_trans->transid;
698         h->transaction = cur_trans;
699         h->root = root;
700         refcount_set(&h->use_count, 1);
701         h->fs_info = root->fs_info;
702
703         h->type = type;
704         INIT_LIST_HEAD(&h->new_bgs);
705
706         smp_mb();
707         if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
708             may_wait_transaction(fs_info, type)) {
709                 current->journal_info = h;
710                 btrfs_commit_transaction(h);
711                 goto again;
712         }
713
714         if (num_bytes) {
715                 trace_btrfs_space_reservation(fs_info, "transaction",
716                                               h->transid, num_bytes, 1);
717                 h->block_rsv = &fs_info->trans_block_rsv;
718                 h->bytes_reserved = num_bytes;
719                 h->reloc_reserved = reloc_reserved;
720         }
721
722 got_it:
723         if (!current->journal_info)
724                 current->journal_info = h;
725
726         /*
727          * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
728          * ALLOC_FORCE the first run through, and then we won't allocate for
729          * anybody else who races in later.  We don't care about the return
730          * value here.
731          */
732         if (do_chunk_alloc && num_bytes) {
733                 u64 flags = h->block_rsv->space_info->flags;
734
735                 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
736                                   CHUNK_ALLOC_NO_FORCE);
737         }
738
739         /*
740          * btrfs_record_root_in_trans() needs to alloc new extents, and may
741          * call btrfs_join_transaction() while we're also starting a
742          * transaction.
743          *
744          * Thus it need to be called after current->journal_info initialized,
745          * or we can deadlock.
746          */
747         ret = btrfs_record_root_in_trans(h, root);
748         if (ret) {
749                 /*
750                  * The transaction handle is fully initialized and linked with
751                  * other structures so it needs to be ended in case of errors,
752                  * not just freed.
753                  */
754                 btrfs_end_transaction(h);
755                 return ERR_PTR(ret);
756         }
757
758         return h;
759
760 join_fail:
761         if (type & __TRANS_FREEZABLE)
762                 sb_end_intwrite(fs_info->sb);
763         kmem_cache_free(btrfs_trans_handle_cachep, h);
764 alloc_fail:
765         if (num_bytes)
766                 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
767                                         num_bytes, NULL);
768 reserve_fail:
769         btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
770         return ERR_PTR(ret);
771 }
772
773 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
774                                                    unsigned int num_items)
775 {
776         return start_transaction(root, num_items, TRANS_START,
777                                  BTRFS_RESERVE_FLUSH_ALL, true);
778 }
779
780 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
781                                         struct btrfs_root *root,
782                                         unsigned int num_items)
783 {
784         return start_transaction(root, num_items, TRANS_START,
785                                  BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
786 }
787
788 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
789 {
790         return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
791                                  true);
792 }
793
794 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
795 {
796         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
797                                  BTRFS_RESERVE_NO_FLUSH, true);
798 }
799
800 /*
801  * Similar to regular join but it never starts a transaction when none is
802  * running or after waiting for the current one to finish.
803  */
804 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
805 {
806         return start_transaction(root, 0, TRANS_JOIN_NOSTART,
807                                  BTRFS_RESERVE_NO_FLUSH, true);
808 }
809
810 /*
811  * btrfs_attach_transaction() - catch the running transaction
812  *
813  * It is used when we want to commit the current the transaction, but
814  * don't want to start a new one.
815  *
816  * Note: If this function return -ENOENT, it just means there is no
817  * running transaction. But it is possible that the inactive transaction
818  * is still in the memory, not fully on disk. If you hope there is no
819  * inactive transaction in the fs when -ENOENT is returned, you should
820  * invoke
821  *     btrfs_attach_transaction_barrier()
822  */
823 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
824 {
825         return start_transaction(root, 0, TRANS_ATTACH,
826                                  BTRFS_RESERVE_NO_FLUSH, true);
827 }
828
829 /*
830  * btrfs_attach_transaction_barrier() - catch the running transaction
831  *
832  * It is similar to the above function, the difference is this one
833  * will wait for all the inactive transactions until they fully
834  * complete.
835  */
836 struct btrfs_trans_handle *
837 btrfs_attach_transaction_barrier(struct btrfs_root *root)
838 {
839         struct btrfs_trans_handle *trans;
840
841         trans = start_transaction(root, 0, TRANS_ATTACH,
842                                   BTRFS_RESERVE_NO_FLUSH, true);
843         if (trans == ERR_PTR(-ENOENT))
844                 btrfs_wait_for_commit(root->fs_info, 0);
845
846         return trans;
847 }
848
849 /* Wait for a transaction commit to reach at least the given state. */
850 static noinline void wait_for_commit(struct btrfs_transaction *commit,
851                                      const enum btrfs_trans_state min_state)
852 {
853         struct btrfs_fs_info *fs_info = commit->fs_info;
854         u64 transid = commit->transid;
855         bool put = false;
856
857         while (1) {
858                 wait_event(commit->commit_wait, commit->state >= min_state);
859                 if (put)
860                         btrfs_put_transaction(commit);
861
862                 if (min_state < TRANS_STATE_COMPLETED)
863                         break;
864
865                 /*
866                  * A transaction isn't really completed until all of the
867                  * previous transactions are completed, but with fsync we can
868                  * end up with SUPER_COMMITTED transactions before a COMPLETED
869                  * transaction. Wait for those.
870                  */
871
872                 spin_lock(&fs_info->trans_lock);
873                 commit = list_first_entry_or_null(&fs_info->trans_list,
874                                                   struct btrfs_transaction,
875                                                   list);
876                 if (!commit || commit->transid > transid) {
877                         spin_unlock(&fs_info->trans_lock);
878                         break;
879                 }
880                 refcount_inc(&commit->use_count);
881                 put = true;
882                 spin_unlock(&fs_info->trans_lock);
883         }
884 }
885
886 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
887 {
888         struct btrfs_transaction *cur_trans = NULL, *t;
889         int ret = 0;
890
891         if (transid) {
892                 if (transid <= fs_info->last_trans_committed)
893                         goto out;
894
895                 /* find specified transaction */
896                 spin_lock(&fs_info->trans_lock);
897                 list_for_each_entry(t, &fs_info->trans_list, list) {
898                         if (t->transid == transid) {
899                                 cur_trans = t;
900                                 refcount_inc(&cur_trans->use_count);
901                                 ret = 0;
902                                 break;
903                         }
904                         if (t->transid > transid) {
905                                 ret = 0;
906                                 break;
907                         }
908                 }
909                 spin_unlock(&fs_info->trans_lock);
910
911                 /*
912                  * The specified transaction doesn't exist, or we
913                  * raced with btrfs_commit_transaction
914                  */
915                 if (!cur_trans) {
916                         if (transid > fs_info->last_trans_committed)
917                                 ret = -EINVAL;
918                         goto out;
919                 }
920         } else {
921                 /* find newest transaction that is committing | committed */
922                 spin_lock(&fs_info->trans_lock);
923                 list_for_each_entry_reverse(t, &fs_info->trans_list,
924                                             list) {
925                         if (t->state >= TRANS_STATE_COMMIT_START) {
926                                 if (t->state == TRANS_STATE_COMPLETED)
927                                         break;
928                                 cur_trans = t;
929                                 refcount_inc(&cur_trans->use_count);
930                                 break;
931                         }
932                 }
933                 spin_unlock(&fs_info->trans_lock);
934                 if (!cur_trans)
935                         goto out;  /* nothing committing|committed */
936         }
937
938         wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
939         btrfs_put_transaction(cur_trans);
940 out:
941         return ret;
942 }
943
944 void btrfs_throttle(struct btrfs_fs_info *fs_info)
945 {
946         wait_current_trans(fs_info);
947 }
948
949 static bool should_end_transaction(struct btrfs_trans_handle *trans)
950 {
951         struct btrfs_fs_info *fs_info = trans->fs_info;
952
953         if (btrfs_check_space_for_delayed_refs(fs_info))
954                 return true;
955
956         return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
957 }
958
959 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
960 {
961         struct btrfs_transaction *cur_trans = trans->transaction;
962
963         if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
964             test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
965                 return true;
966
967         return should_end_transaction(trans);
968 }
969
970 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
971
972 {
973         struct btrfs_fs_info *fs_info = trans->fs_info;
974
975         if (!trans->block_rsv) {
976                 ASSERT(!trans->bytes_reserved);
977                 return;
978         }
979
980         if (!trans->bytes_reserved)
981                 return;
982
983         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
984         trace_btrfs_space_reservation(fs_info, "transaction",
985                                       trans->transid, trans->bytes_reserved, 0);
986         btrfs_block_rsv_release(fs_info, trans->block_rsv,
987                                 trans->bytes_reserved, NULL);
988         trans->bytes_reserved = 0;
989 }
990
991 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
992                                    int throttle)
993 {
994         struct btrfs_fs_info *info = trans->fs_info;
995         struct btrfs_transaction *cur_trans = trans->transaction;
996         int err = 0;
997
998         if (refcount_read(&trans->use_count) > 1) {
999                 refcount_dec(&trans->use_count);
1000                 trans->block_rsv = trans->orig_rsv;
1001                 return 0;
1002         }
1003
1004         btrfs_trans_release_metadata(trans);
1005         trans->block_rsv = NULL;
1006
1007         btrfs_create_pending_block_groups(trans);
1008
1009         btrfs_trans_release_chunk_metadata(trans);
1010
1011         if (trans->type & __TRANS_FREEZABLE)
1012                 sb_end_intwrite(info->sb);
1013
1014         WARN_ON(cur_trans != info->running_transaction);
1015         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1016         atomic_dec(&cur_trans->num_writers);
1017         extwriter_counter_dec(cur_trans, trans->type);
1018
1019         cond_wake_up(&cur_trans->writer_wait);
1020         btrfs_put_transaction(cur_trans);
1021
1022         if (current->journal_info == trans)
1023                 current->journal_info = NULL;
1024
1025         if (throttle)
1026                 btrfs_run_delayed_iputs(info);
1027
1028         if (TRANS_ABORTED(trans) ||
1029             test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
1030                 wake_up_process(info->transaction_kthread);
1031                 if (TRANS_ABORTED(trans))
1032                         err = trans->aborted;
1033                 else
1034                         err = -EROFS;
1035         }
1036
1037         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1038         return err;
1039 }
1040
1041 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1042 {
1043         return __btrfs_end_transaction(trans, 0);
1044 }
1045
1046 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1047 {
1048         return __btrfs_end_transaction(trans, 1);
1049 }
1050
1051 /*
1052  * when btree blocks are allocated, they have some corresponding bits set for
1053  * them in one of two extent_io trees.  This is used to make sure all of
1054  * those extents are sent to disk but does not wait on them
1055  */
1056 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1057                                struct extent_io_tree *dirty_pages, int mark)
1058 {
1059         int err = 0;
1060         int werr = 0;
1061         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1062         struct extent_state *cached_state = NULL;
1063         u64 start = 0;
1064         u64 end;
1065
1066         atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1067         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1068                                       mark, &cached_state)) {
1069                 bool wait_writeback = false;
1070
1071                 err = convert_extent_bit(dirty_pages, start, end,
1072                                          EXTENT_NEED_WAIT,
1073                                          mark, &cached_state);
1074                 /*
1075                  * convert_extent_bit can return -ENOMEM, which is most of the
1076                  * time a temporary error. So when it happens, ignore the error
1077                  * and wait for writeback of this range to finish - because we
1078                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1079                  * to __btrfs_wait_marked_extents() would not know that
1080                  * writeback for this range started and therefore wouldn't
1081                  * wait for it to finish - we don't want to commit a
1082                  * superblock that points to btree nodes/leafs for which
1083                  * writeback hasn't finished yet (and without errors).
1084                  * We cleanup any entries left in the io tree when committing
1085                  * the transaction (through extent_io_tree_release()).
1086                  */
1087                 if (err == -ENOMEM) {
1088                         err = 0;
1089                         wait_writeback = true;
1090                 }
1091                 if (!err)
1092                         err = filemap_fdatawrite_range(mapping, start, end);
1093                 if (err)
1094                         werr = err;
1095                 else if (wait_writeback)
1096                         werr = filemap_fdatawait_range(mapping, start, end);
1097                 free_extent_state(cached_state);
1098                 cached_state = NULL;
1099                 cond_resched();
1100                 start = end + 1;
1101         }
1102         atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1103         return werr;
1104 }
1105
1106 /*
1107  * when btree blocks are allocated, they have some corresponding bits set for
1108  * them in one of two extent_io trees.  This is used to make sure all of
1109  * those extents are on disk for transaction or log commit.  We wait
1110  * on all the pages and clear them from the dirty pages state tree
1111  */
1112 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1113                                        struct extent_io_tree *dirty_pages)
1114 {
1115         int err = 0;
1116         int werr = 0;
1117         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1118         struct extent_state *cached_state = NULL;
1119         u64 start = 0;
1120         u64 end;
1121
1122         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1123                                       EXTENT_NEED_WAIT, &cached_state)) {
1124                 /*
1125                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1126                  * When committing the transaction, we'll remove any entries
1127                  * left in the io tree. For a log commit, we don't remove them
1128                  * after committing the log because the tree can be accessed
1129                  * concurrently - we do it only at transaction commit time when
1130                  * it's safe to do it (through extent_io_tree_release()).
1131                  */
1132                 err = clear_extent_bit(dirty_pages, start, end,
1133                                        EXTENT_NEED_WAIT, 0, 0, &cached_state);
1134                 if (err == -ENOMEM)
1135                         err = 0;
1136                 if (!err)
1137                         err = filemap_fdatawait_range(mapping, start, end);
1138                 if (err)
1139                         werr = err;
1140                 free_extent_state(cached_state);
1141                 cached_state = NULL;
1142                 cond_resched();
1143                 start = end + 1;
1144         }
1145         if (err)
1146                 werr = err;
1147         return werr;
1148 }
1149
1150 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1151                        struct extent_io_tree *dirty_pages)
1152 {
1153         bool errors = false;
1154         int err;
1155
1156         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1157         if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1158                 errors = true;
1159
1160         if (errors && !err)
1161                 err = -EIO;
1162         return err;
1163 }
1164
1165 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1166 {
1167         struct btrfs_fs_info *fs_info = log_root->fs_info;
1168         struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1169         bool errors = false;
1170         int err;
1171
1172         ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1173
1174         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1175         if ((mark & EXTENT_DIRTY) &&
1176             test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1177                 errors = true;
1178
1179         if ((mark & EXTENT_NEW) &&
1180             test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1181                 errors = true;
1182
1183         if (errors && !err)
1184                 err = -EIO;
1185         return err;
1186 }
1187
1188 /*
1189  * When btree blocks are allocated the corresponding extents are marked dirty.
1190  * This function ensures such extents are persisted on disk for transaction or
1191  * log commit.
1192  *
1193  * @trans: transaction whose dirty pages we'd like to write
1194  */
1195 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1196 {
1197         int ret;
1198         int ret2;
1199         struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1200         struct btrfs_fs_info *fs_info = trans->fs_info;
1201         struct blk_plug plug;
1202
1203         blk_start_plug(&plug);
1204         ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1205         blk_finish_plug(&plug);
1206         ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1207
1208         extent_io_tree_release(&trans->transaction->dirty_pages);
1209
1210         if (ret)
1211                 return ret;
1212         else if (ret2)
1213                 return ret2;
1214         else
1215                 return 0;
1216 }
1217
1218 /*
1219  * this is used to update the root pointer in the tree of tree roots.
1220  *
1221  * But, in the case of the extent allocation tree, updating the root
1222  * pointer may allocate blocks which may change the root of the extent
1223  * allocation tree.
1224  *
1225  * So, this loops and repeats and makes sure the cowonly root didn't
1226  * change while the root pointer was being updated in the metadata.
1227  */
1228 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1229                                struct btrfs_root *root)
1230 {
1231         int ret;
1232         u64 old_root_bytenr;
1233         u64 old_root_used;
1234         struct btrfs_fs_info *fs_info = root->fs_info;
1235         struct btrfs_root *tree_root = fs_info->tree_root;
1236
1237         old_root_used = btrfs_root_used(&root->root_item);
1238
1239         while (1) {
1240                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1241                 if (old_root_bytenr == root->node->start &&
1242                     old_root_used == btrfs_root_used(&root->root_item))
1243                         break;
1244
1245                 btrfs_set_root_node(&root->root_item, root->node);
1246                 ret = btrfs_update_root(trans, tree_root,
1247                                         &root->root_key,
1248                                         &root->root_item);
1249                 if (ret)
1250                         return ret;
1251
1252                 old_root_used = btrfs_root_used(&root->root_item);
1253         }
1254
1255         return 0;
1256 }
1257
1258 /*
1259  * update all the cowonly tree roots on disk
1260  *
1261  * The error handling in this function may not be obvious. Any of the
1262  * failures will cause the file system to go offline. We still need
1263  * to clean up the delayed refs.
1264  */
1265 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1266 {
1267         struct btrfs_fs_info *fs_info = trans->fs_info;
1268         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1269         struct list_head *io_bgs = &trans->transaction->io_bgs;
1270         struct list_head *next;
1271         struct extent_buffer *eb;
1272         int ret;
1273
1274         eb = btrfs_lock_root_node(fs_info->tree_root);
1275         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1276                               0, &eb, BTRFS_NESTING_COW);
1277         btrfs_tree_unlock(eb);
1278         free_extent_buffer(eb);
1279
1280         if (ret)
1281                 return ret;
1282
1283         ret = btrfs_run_dev_stats(trans);
1284         if (ret)
1285                 return ret;
1286         ret = btrfs_run_dev_replace(trans);
1287         if (ret)
1288                 return ret;
1289         ret = btrfs_run_qgroups(trans);
1290         if (ret)
1291                 return ret;
1292
1293         ret = btrfs_setup_space_cache(trans);
1294         if (ret)
1295                 return ret;
1296
1297 again:
1298         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1299                 struct btrfs_root *root;
1300                 next = fs_info->dirty_cowonly_roots.next;
1301                 list_del_init(next);
1302                 root = list_entry(next, struct btrfs_root, dirty_list);
1303                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1304
1305                 if (root != fs_info->extent_root)
1306                         list_add_tail(&root->dirty_list,
1307                                       &trans->transaction->switch_commits);
1308                 ret = update_cowonly_root(trans, root);
1309                 if (ret)
1310                         return ret;
1311         }
1312
1313         /* Now flush any delayed refs generated by updating all of the roots */
1314         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1315         if (ret)
1316                 return ret;
1317
1318         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1319                 ret = btrfs_write_dirty_block_groups(trans);
1320                 if (ret)
1321                         return ret;
1322
1323                 /*
1324                  * We're writing the dirty block groups, which could generate
1325                  * delayed refs, which could generate more dirty block groups,
1326                  * so we want to keep this flushing in this loop to make sure
1327                  * everything gets run.
1328                  */
1329                 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1330                 if (ret)
1331                         return ret;
1332         }
1333
1334         if (!list_empty(&fs_info->dirty_cowonly_roots))
1335                 goto again;
1336
1337         list_add_tail(&fs_info->extent_root->dirty_list,
1338                       &trans->transaction->switch_commits);
1339
1340         /* Update dev-replace pointer once everything is committed */
1341         fs_info->dev_replace.committed_cursor_left =
1342                 fs_info->dev_replace.cursor_left_last_write_of_item;
1343
1344         return 0;
1345 }
1346
1347 /*
1348  * If we had a pending drop we need to see if there are any others left in our
1349  * dead roots list, and if not clear our bit and wake any waiters.
1350  */
1351 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1352 {
1353         /*
1354          * We put the drop in progress roots at the front of the list, so if the
1355          * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1356          * up.
1357          */
1358         spin_lock(&fs_info->trans_lock);
1359         if (!list_empty(&fs_info->dead_roots)) {
1360                 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1361                                                            struct btrfs_root,
1362                                                            root_list);
1363                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1364                         spin_unlock(&fs_info->trans_lock);
1365                         return;
1366                 }
1367         }
1368         spin_unlock(&fs_info->trans_lock);
1369
1370         btrfs_wake_unfinished_drop(fs_info);
1371 }
1372
1373 /*
1374  * dead roots are old snapshots that need to be deleted.  This allocates
1375  * a dirty root struct and adds it into the list of dead roots that need to
1376  * be deleted
1377  */
1378 void btrfs_add_dead_root(struct btrfs_root *root)
1379 {
1380         struct btrfs_fs_info *fs_info = root->fs_info;
1381
1382         spin_lock(&fs_info->trans_lock);
1383         if (list_empty(&root->root_list)) {
1384                 btrfs_grab_root(root);
1385
1386                 /* We want to process the partially complete drops first. */
1387                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1388                         list_add(&root->root_list, &fs_info->dead_roots);
1389                 else
1390                         list_add_tail(&root->root_list, &fs_info->dead_roots);
1391         }
1392         spin_unlock(&fs_info->trans_lock);
1393 }
1394
1395 /*
1396  * update all the cowonly tree roots on disk
1397  */
1398 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1399 {
1400         struct btrfs_fs_info *fs_info = trans->fs_info;
1401         struct btrfs_root *gang[8];
1402         int i;
1403         int ret;
1404
1405         spin_lock(&fs_info->fs_roots_radix_lock);
1406         while (1) {
1407                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1408                                                  (void **)gang, 0,
1409                                                  ARRAY_SIZE(gang),
1410                                                  BTRFS_ROOT_TRANS_TAG);
1411                 if (ret == 0)
1412                         break;
1413                 for (i = 0; i < ret; i++) {
1414                         struct btrfs_root *root = gang[i];
1415                         int ret2;
1416
1417                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1418                                         (unsigned long)root->root_key.objectid,
1419                                         BTRFS_ROOT_TRANS_TAG);
1420                         spin_unlock(&fs_info->fs_roots_radix_lock);
1421
1422                         btrfs_free_log(trans, root);
1423                         ret2 = btrfs_update_reloc_root(trans, root);
1424                         if (ret2)
1425                                 return ret2;
1426
1427                         /* see comments in should_cow_block() */
1428                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1429                         smp_mb__after_atomic();
1430
1431                         if (root->commit_root != root->node) {
1432                                 list_add_tail(&root->dirty_list,
1433                                         &trans->transaction->switch_commits);
1434                                 btrfs_set_root_node(&root->root_item,
1435                                                     root->node);
1436                         }
1437
1438                         ret2 = btrfs_update_root(trans, fs_info->tree_root,
1439                                                 &root->root_key,
1440                                                 &root->root_item);
1441                         if (ret2)
1442                                 return ret2;
1443                         spin_lock(&fs_info->fs_roots_radix_lock);
1444                         btrfs_qgroup_free_meta_all_pertrans(root);
1445                 }
1446         }
1447         spin_unlock(&fs_info->fs_roots_radix_lock);
1448         return 0;
1449 }
1450
1451 /*
1452  * defrag a given btree.
1453  * Every leaf in the btree is read and defragged.
1454  */
1455 int btrfs_defrag_root(struct btrfs_root *root)
1456 {
1457         struct btrfs_fs_info *info = root->fs_info;
1458         struct btrfs_trans_handle *trans;
1459         int ret;
1460
1461         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1462                 return 0;
1463
1464         while (1) {
1465                 trans = btrfs_start_transaction(root, 0);
1466                 if (IS_ERR(trans)) {
1467                         ret = PTR_ERR(trans);
1468                         break;
1469                 }
1470
1471                 ret = btrfs_defrag_leaves(trans, root);
1472
1473                 btrfs_end_transaction(trans);
1474                 btrfs_btree_balance_dirty(info);
1475                 cond_resched();
1476
1477                 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1478                         break;
1479
1480                 if (btrfs_defrag_cancelled(info)) {
1481                         btrfs_debug(info, "defrag_root cancelled");
1482                         ret = -EAGAIN;
1483                         break;
1484                 }
1485         }
1486         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1487         return ret;
1488 }
1489
1490 /*
1491  * Do all special snapshot related qgroup dirty hack.
1492  *
1493  * Will do all needed qgroup inherit and dirty hack like switch commit
1494  * roots inside one transaction and write all btree into disk, to make
1495  * qgroup works.
1496  */
1497 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1498                                    struct btrfs_root *src,
1499                                    struct btrfs_root *parent,
1500                                    struct btrfs_qgroup_inherit *inherit,
1501                                    u64 dst_objectid)
1502 {
1503         struct btrfs_fs_info *fs_info = src->fs_info;
1504         int ret;
1505
1506         /*
1507          * Save some performance in the case that qgroups are not
1508          * enabled. If this check races with the ioctl, rescan will
1509          * kick in anyway.
1510          */
1511         if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1512                 return 0;
1513
1514         /*
1515          * Ensure dirty @src will be committed.  Or, after coming
1516          * commit_fs_roots() and switch_commit_roots(), any dirty but not
1517          * recorded root will never be updated again, causing an outdated root
1518          * item.
1519          */
1520         ret = record_root_in_trans(trans, src, 1);
1521         if (ret)
1522                 return ret;
1523
1524         /*
1525          * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1526          * src root, so we must run the delayed refs here.
1527          *
1528          * However this isn't particularly fool proof, because there's no
1529          * synchronization keeping us from changing the tree after this point
1530          * before we do the qgroup_inherit, or even from making changes while
1531          * we're doing the qgroup_inherit.  But that's a problem for the future,
1532          * for now flush the delayed refs to narrow the race window where the
1533          * qgroup counters could end up wrong.
1534          */
1535         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1536         if (ret) {
1537                 btrfs_abort_transaction(trans, ret);
1538                 return ret;
1539         }
1540
1541         /*
1542          * We are going to commit transaction, see btrfs_commit_transaction()
1543          * comment for reason locking tree_log_mutex
1544          */
1545         mutex_lock(&fs_info->tree_log_mutex);
1546
1547         ret = commit_fs_roots(trans);
1548         if (ret)
1549                 goto out;
1550         ret = btrfs_qgroup_account_extents(trans);
1551         if (ret < 0)
1552                 goto out;
1553
1554         /* Now qgroup are all updated, we can inherit it to new qgroups */
1555         ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1556                                    inherit);
1557         if (ret < 0)
1558                 goto out;
1559
1560         /*
1561          * Now we do a simplified commit transaction, which will:
1562          * 1) commit all subvolume and extent tree
1563          *    To ensure all subvolume and extent tree have a valid
1564          *    commit_root to accounting later insert_dir_item()
1565          * 2) write all btree blocks onto disk
1566          *    This is to make sure later btree modification will be cowed
1567          *    Or commit_root can be populated and cause wrong qgroup numbers
1568          * In this simplified commit, we don't really care about other trees
1569          * like chunk and root tree, as they won't affect qgroup.
1570          * And we don't write super to avoid half committed status.
1571          */
1572         ret = commit_cowonly_roots(trans);
1573         if (ret)
1574                 goto out;
1575         switch_commit_roots(trans);
1576         ret = btrfs_write_and_wait_transaction(trans);
1577         if (ret)
1578                 btrfs_handle_fs_error(fs_info, ret,
1579                         "Error while writing out transaction for qgroup");
1580
1581 out:
1582         mutex_unlock(&fs_info->tree_log_mutex);
1583
1584         /*
1585          * Force parent root to be updated, as we recorded it before so its
1586          * last_trans == cur_transid.
1587          * Or it won't be committed again onto disk after later
1588          * insert_dir_item()
1589          */
1590         if (!ret)
1591                 ret = record_root_in_trans(trans, parent, 1);
1592         return ret;
1593 }
1594
1595 /*
1596  * new snapshots need to be created at a very specific time in the
1597  * transaction commit.  This does the actual creation.
1598  *
1599  * Note:
1600  * If the error which may affect the commitment of the current transaction
1601  * happens, we should return the error number. If the error which just affect
1602  * the creation of the pending snapshots, just return 0.
1603  */
1604 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1605                                    struct btrfs_pending_snapshot *pending)
1606 {
1607
1608         struct btrfs_fs_info *fs_info = trans->fs_info;
1609         struct btrfs_key key;
1610         struct btrfs_root_item *new_root_item;
1611         struct btrfs_root *tree_root = fs_info->tree_root;
1612         struct btrfs_root *root = pending->root;
1613         struct btrfs_root *parent_root;
1614         struct btrfs_block_rsv *rsv;
1615         struct inode *parent_inode;
1616         struct btrfs_path *path;
1617         struct btrfs_dir_item *dir_item;
1618         struct dentry *dentry;
1619         struct extent_buffer *tmp;
1620         struct extent_buffer *old;
1621         struct timespec64 cur_time;
1622         int ret = 0;
1623         u64 to_reserve = 0;
1624         u64 index = 0;
1625         u64 objectid;
1626         u64 root_flags;
1627
1628         ASSERT(pending->path);
1629         path = pending->path;
1630
1631         ASSERT(pending->root_item);
1632         new_root_item = pending->root_item;
1633
1634         pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1635         if (pending->error)
1636                 goto no_free_objectid;
1637
1638         /*
1639          * Make qgroup to skip current new snapshot's qgroupid, as it is
1640          * accounted by later btrfs_qgroup_inherit().
1641          */
1642         btrfs_set_skip_qgroup(trans, objectid);
1643
1644         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1645
1646         if (to_reserve > 0) {
1647                 pending->error = btrfs_block_rsv_add(root,
1648                                                      &pending->block_rsv,
1649                                                      to_reserve,
1650                                                      BTRFS_RESERVE_NO_FLUSH);
1651                 if (pending->error)
1652                         goto clear_skip_qgroup;
1653         }
1654
1655         key.objectid = objectid;
1656         key.offset = (u64)-1;
1657         key.type = BTRFS_ROOT_ITEM_KEY;
1658
1659         rsv = trans->block_rsv;
1660         trans->block_rsv = &pending->block_rsv;
1661         trans->bytes_reserved = trans->block_rsv->reserved;
1662         trace_btrfs_space_reservation(fs_info, "transaction",
1663                                       trans->transid,
1664                                       trans->bytes_reserved, 1);
1665         dentry = pending->dentry;
1666         parent_inode = pending->dir;
1667         parent_root = BTRFS_I(parent_inode)->root;
1668         ret = record_root_in_trans(trans, parent_root, 0);
1669         if (ret)
1670                 goto fail;
1671         cur_time = current_time(parent_inode);
1672
1673         /*
1674          * insert the directory item
1675          */
1676         ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1677         BUG_ON(ret); /* -ENOMEM */
1678
1679         /* check if there is a file/dir which has the same name. */
1680         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1681                                          btrfs_ino(BTRFS_I(parent_inode)),
1682                                          dentry->d_name.name,
1683                                          dentry->d_name.len, 0);
1684         if (dir_item != NULL && !IS_ERR(dir_item)) {
1685                 pending->error = -EEXIST;
1686                 goto dir_item_existed;
1687         } else if (IS_ERR(dir_item)) {
1688                 ret = PTR_ERR(dir_item);
1689                 btrfs_abort_transaction(trans, ret);
1690                 goto fail;
1691         }
1692         btrfs_release_path(path);
1693
1694         /*
1695          * pull in the delayed directory update
1696          * and the delayed inode item
1697          * otherwise we corrupt the FS during
1698          * snapshot
1699          */
1700         ret = btrfs_run_delayed_items(trans);
1701         if (ret) {      /* Transaction aborted */
1702                 btrfs_abort_transaction(trans, ret);
1703                 goto fail;
1704         }
1705
1706         ret = record_root_in_trans(trans, root, 0);
1707         if (ret) {
1708                 btrfs_abort_transaction(trans, ret);
1709                 goto fail;
1710         }
1711         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1712         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1713         btrfs_check_and_init_root_item(new_root_item);
1714
1715         root_flags = btrfs_root_flags(new_root_item);
1716         if (pending->readonly)
1717                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1718         else
1719                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1720         btrfs_set_root_flags(new_root_item, root_flags);
1721
1722         btrfs_set_root_generation_v2(new_root_item,
1723                         trans->transid);
1724         generate_random_guid(new_root_item->uuid);
1725         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1726                         BTRFS_UUID_SIZE);
1727         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1728                 memset(new_root_item->received_uuid, 0,
1729                        sizeof(new_root_item->received_uuid));
1730                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1731                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1732                 btrfs_set_root_stransid(new_root_item, 0);
1733                 btrfs_set_root_rtransid(new_root_item, 0);
1734         }
1735         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1736         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1737         btrfs_set_root_otransid(new_root_item, trans->transid);
1738
1739         old = btrfs_lock_root_node(root);
1740         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1741                               BTRFS_NESTING_COW);
1742         if (ret) {
1743                 btrfs_tree_unlock(old);
1744                 free_extent_buffer(old);
1745                 btrfs_abort_transaction(trans, ret);
1746                 goto fail;
1747         }
1748
1749         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1750         /* clean up in any case */
1751         btrfs_tree_unlock(old);
1752         free_extent_buffer(old);
1753         if (ret) {
1754                 btrfs_abort_transaction(trans, ret);
1755                 goto fail;
1756         }
1757         /* see comments in should_cow_block() */
1758         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1759         smp_wmb();
1760
1761         btrfs_set_root_node(new_root_item, tmp);
1762         /* record when the snapshot was created in key.offset */
1763         key.offset = trans->transid;
1764         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1765         btrfs_tree_unlock(tmp);
1766         free_extent_buffer(tmp);
1767         if (ret) {
1768                 btrfs_abort_transaction(trans, ret);
1769                 goto fail;
1770         }
1771
1772         /*
1773          * insert root back/forward references
1774          */
1775         ret = btrfs_add_root_ref(trans, objectid,
1776                                  parent_root->root_key.objectid,
1777                                  btrfs_ino(BTRFS_I(parent_inode)), index,
1778                                  dentry->d_name.name, dentry->d_name.len);
1779         if (ret) {
1780                 btrfs_abort_transaction(trans, ret);
1781                 goto fail;
1782         }
1783
1784         key.offset = (u64)-1;
1785         pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1786         if (IS_ERR(pending->snap)) {
1787                 ret = PTR_ERR(pending->snap);
1788                 pending->snap = NULL;
1789                 btrfs_abort_transaction(trans, ret);
1790                 goto fail;
1791         }
1792
1793         ret = btrfs_reloc_post_snapshot(trans, pending);
1794         if (ret) {
1795                 btrfs_abort_transaction(trans, ret);
1796                 goto fail;
1797         }
1798
1799         /*
1800          * Do special qgroup accounting for snapshot, as we do some qgroup
1801          * snapshot hack to do fast snapshot.
1802          * To co-operate with that hack, we do hack again.
1803          * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1804          */
1805         ret = qgroup_account_snapshot(trans, root, parent_root,
1806                                       pending->inherit, objectid);
1807         if (ret < 0)
1808                 goto fail;
1809
1810         ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1811                                     dentry->d_name.len, BTRFS_I(parent_inode),
1812                                     &key, BTRFS_FT_DIR, index);
1813         /* We have check then name at the beginning, so it is impossible. */
1814         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1815         if (ret) {
1816                 btrfs_abort_transaction(trans, ret);
1817                 goto fail;
1818         }
1819
1820         btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1821                                          dentry->d_name.len * 2);
1822         parent_inode->i_mtime = parent_inode->i_ctime =
1823                 current_time(parent_inode);
1824         ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1825         if (ret) {
1826                 btrfs_abort_transaction(trans, ret);
1827                 goto fail;
1828         }
1829         ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1830                                   BTRFS_UUID_KEY_SUBVOL,
1831                                   objectid);
1832         if (ret) {
1833                 btrfs_abort_transaction(trans, ret);
1834                 goto fail;
1835         }
1836         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1837                 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1838                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1839                                           objectid);
1840                 if (ret && ret != -EEXIST) {
1841                         btrfs_abort_transaction(trans, ret);
1842                         goto fail;
1843                 }
1844         }
1845
1846 fail:
1847         pending->error = ret;
1848 dir_item_existed:
1849         trans->block_rsv = rsv;
1850         trans->bytes_reserved = 0;
1851 clear_skip_qgroup:
1852         btrfs_clear_skip_qgroup(trans);
1853 no_free_objectid:
1854         kfree(new_root_item);
1855         pending->root_item = NULL;
1856         btrfs_free_path(path);
1857         pending->path = NULL;
1858
1859         return ret;
1860 }
1861
1862 /*
1863  * create all the snapshots we've scheduled for creation
1864  */
1865 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1866 {
1867         struct btrfs_pending_snapshot *pending, *next;
1868         struct list_head *head = &trans->transaction->pending_snapshots;
1869         int ret = 0;
1870
1871         list_for_each_entry_safe(pending, next, head, list) {
1872                 list_del(&pending->list);
1873                 ret = create_pending_snapshot(trans, pending);
1874                 if (ret)
1875                         break;
1876         }
1877         return ret;
1878 }
1879
1880 static void update_super_roots(struct btrfs_fs_info *fs_info)
1881 {
1882         struct btrfs_root_item *root_item;
1883         struct btrfs_super_block *super;
1884
1885         super = fs_info->super_copy;
1886
1887         root_item = &fs_info->chunk_root->root_item;
1888         super->chunk_root = root_item->bytenr;
1889         super->chunk_root_generation = root_item->generation;
1890         super->chunk_root_level = root_item->level;
1891
1892         root_item = &fs_info->tree_root->root_item;
1893         super->root = root_item->bytenr;
1894         super->generation = root_item->generation;
1895         super->root_level = root_item->level;
1896         if (btrfs_test_opt(fs_info, SPACE_CACHE))
1897                 super->cache_generation = root_item->generation;
1898         else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1899                 super->cache_generation = 0;
1900         if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1901                 super->uuid_tree_generation = root_item->generation;
1902 }
1903
1904 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1905 {
1906         struct btrfs_transaction *trans;
1907         int ret = 0;
1908
1909         spin_lock(&info->trans_lock);
1910         trans = info->running_transaction;
1911         if (trans)
1912                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1913         spin_unlock(&info->trans_lock);
1914         return ret;
1915 }
1916
1917 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1918 {
1919         struct btrfs_transaction *trans;
1920         int ret = 0;
1921
1922         spin_lock(&info->trans_lock);
1923         trans = info->running_transaction;
1924         if (trans)
1925                 ret = is_transaction_blocked(trans);
1926         spin_unlock(&info->trans_lock);
1927         return ret;
1928 }
1929
1930 /*
1931  * commit transactions asynchronously. once btrfs_commit_transaction_async
1932  * returns, any subsequent transaction will not be allowed to join.
1933  */
1934 struct btrfs_async_commit {
1935         struct btrfs_trans_handle *newtrans;
1936         struct work_struct work;
1937 };
1938
1939 static void do_async_commit(struct work_struct *work)
1940 {
1941         struct btrfs_async_commit *ac =
1942                 container_of(work, struct btrfs_async_commit, work);
1943
1944         /*
1945          * We've got freeze protection passed with the transaction.
1946          * Tell lockdep about it.
1947          */
1948         if (ac->newtrans->type & __TRANS_FREEZABLE)
1949                 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1950
1951         current->journal_info = ac->newtrans;
1952
1953         btrfs_commit_transaction(ac->newtrans);
1954         kfree(ac);
1955 }
1956
1957 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1958 {
1959         struct btrfs_fs_info *fs_info = trans->fs_info;
1960         struct btrfs_async_commit *ac;
1961         struct btrfs_transaction *cur_trans;
1962
1963         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1964         if (!ac)
1965                 return -ENOMEM;
1966
1967         INIT_WORK(&ac->work, do_async_commit);
1968         ac->newtrans = btrfs_join_transaction(trans->root);
1969         if (IS_ERR(ac->newtrans)) {
1970                 int err = PTR_ERR(ac->newtrans);
1971                 kfree(ac);
1972                 return err;
1973         }
1974
1975         /* take transaction reference */
1976         cur_trans = trans->transaction;
1977         refcount_inc(&cur_trans->use_count);
1978
1979         btrfs_end_transaction(trans);
1980
1981         /*
1982          * Tell lockdep we've released the freeze rwsem, since the
1983          * async commit thread will be the one to unlock it.
1984          */
1985         if (ac->newtrans->type & __TRANS_FREEZABLE)
1986                 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1987
1988         schedule_work(&ac->work);
1989         /*
1990          * Wait for the current transaction commit to start and block
1991          * subsequent transaction joins
1992          */
1993         wait_event(fs_info->transaction_blocked_wait,
1994                    cur_trans->state >= TRANS_STATE_COMMIT_START ||
1995                    TRANS_ABORTED(cur_trans));
1996         if (current->journal_info == trans)
1997                 current->journal_info = NULL;
1998
1999         btrfs_put_transaction(cur_trans);
2000         return 0;
2001 }
2002
2003
2004 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2005 {
2006         struct btrfs_fs_info *fs_info = trans->fs_info;
2007         struct btrfs_transaction *cur_trans = trans->transaction;
2008
2009         WARN_ON(refcount_read(&trans->use_count) > 1);
2010
2011         btrfs_abort_transaction(trans, err);
2012
2013         spin_lock(&fs_info->trans_lock);
2014
2015         /*
2016          * If the transaction is removed from the list, it means this
2017          * transaction has been committed successfully, so it is impossible
2018          * to call the cleanup function.
2019          */
2020         BUG_ON(list_empty(&cur_trans->list));
2021
2022         if (cur_trans == fs_info->running_transaction) {
2023                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2024                 spin_unlock(&fs_info->trans_lock);
2025                 wait_event(cur_trans->writer_wait,
2026                            atomic_read(&cur_trans->num_writers) == 1);
2027
2028                 spin_lock(&fs_info->trans_lock);
2029         }
2030
2031         /*
2032          * Now that we know no one else is still using the transaction we can
2033          * remove the transaction from the list of transactions. This avoids
2034          * the transaction kthread from cleaning up the transaction while some
2035          * other task is still using it, which could result in a use-after-free
2036          * on things like log trees, as it forces the transaction kthread to
2037          * wait for this transaction to be cleaned up by us.
2038          */
2039         list_del_init(&cur_trans->list);
2040
2041         spin_unlock(&fs_info->trans_lock);
2042
2043         btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2044
2045         spin_lock(&fs_info->trans_lock);
2046         if (cur_trans == fs_info->running_transaction)
2047                 fs_info->running_transaction = NULL;
2048         spin_unlock(&fs_info->trans_lock);
2049
2050         if (trans->type & __TRANS_FREEZABLE)
2051                 sb_end_intwrite(fs_info->sb);
2052         btrfs_put_transaction(cur_trans);
2053         btrfs_put_transaction(cur_trans);
2054
2055         trace_btrfs_transaction_commit(trans->root);
2056
2057         if (current->journal_info == trans)
2058                 current->journal_info = NULL;
2059         btrfs_scrub_cancel(fs_info);
2060
2061         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2062 }
2063
2064 /*
2065  * Release reserved delayed ref space of all pending block groups of the
2066  * transaction and remove them from the list
2067  */
2068 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2069 {
2070        struct btrfs_fs_info *fs_info = trans->fs_info;
2071        struct btrfs_block_group *block_group, *tmp;
2072
2073        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2074                btrfs_delayed_refs_rsv_release(fs_info, 1);
2075                list_del_init(&block_group->bg_list);
2076        }
2077 }
2078
2079 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2080 {
2081         /*
2082          * We use try_to_writeback_inodes_sb() here because if we used
2083          * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2084          * Currently are holding the fs freeze lock, if we do an async flush
2085          * we'll do btrfs_join_transaction() and deadlock because we need to
2086          * wait for the fs freeze lock.  Using the direct flushing we benefit
2087          * from already being in a transaction and our join_transaction doesn't
2088          * have to re-take the fs freeze lock.
2089          *
2090          * Note that try_to_writeback_inodes_sb() will only trigger writeback
2091          * if it can read lock sb->s_umount. It will always be able to lock it,
2092          * except when the filesystem is being unmounted or being frozen, but in
2093          * those cases sync_filesystem() is called, which results in calling
2094          * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2095          * Note that we don't call writeback_inodes_sb() directly, because it
2096          * will emit a warning if sb->s_umount is not locked.
2097          */
2098         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2099                 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2100         return 0;
2101 }
2102
2103 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2104 {
2105         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2106                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2107 }
2108
2109 /*
2110  * Add a pending snapshot associated with the given transaction handle to the
2111  * respective handle. This must be called after the transaction commit started
2112  * and while holding fs_info->trans_lock.
2113  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2114  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2115  * returns an error.
2116  */
2117 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2118 {
2119         struct btrfs_transaction *cur_trans = trans->transaction;
2120
2121         if (!trans->pending_snapshot)
2122                 return;
2123
2124         lockdep_assert_held(&trans->fs_info->trans_lock);
2125         ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2126
2127         list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2128 }
2129
2130 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2131 {
2132         struct btrfs_fs_info *fs_info = trans->fs_info;
2133         struct btrfs_transaction *cur_trans = trans->transaction;
2134         struct btrfs_transaction *prev_trans = NULL;
2135         int ret;
2136
2137         ASSERT(refcount_read(&trans->use_count) == 1);
2138
2139         /* Stop the commit early if ->aborted is set */
2140         if (TRANS_ABORTED(cur_trans)) {
2141                 ret = cur_trans->aborted;
2142                 btrfs_end_transaction(trans);
2143                 return ret;
2144         }
2145
2146         btrfs_trans_release_metadata(trans);
2147         trans->block_rsv = NULL;
2148
2149         /*
2150          * We only want one transaction commit doing the flushing so we do not
2151          * waste a bunch of time on lock contention on the extent root node.
2152          */
2153         if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2154                               &cur_trans->delayed_refs.flags)) {
2155                 /*
2156                  * Make a pass through all the delayed refs we have so far.
2157                  * Any running threads may add more while we are here.
2158                  */
2159                 ret = btrfs_run_delayed_refs(trans, 0);
2160                 if (ret) {
2161                         btrfs_end_transaction(trans);
2162                         return ret;
2163                 }
2164         }
2165
2166         btrfs_create_pending_block_groups(trans);
2167
2168         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2169                 int run_it = 0;
2170
2171                 /* this mutex is also taken before trying to set
2172                  * block groups readonly.  We need to make sure
2173                  * that nobody has set a block group readonly
2174                  * after a extents from that block group have been
2175                  * allocated for cache files.  btrfs_set_block_group_ro
2176                  * will wait for the transaction to commit if it
2177                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2178                  *
2179                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2180                  * only one process starts all the block group IO.  It wouldn't
2181                  * hurt to have more than one go through, but there's no
2182                  * real advantage to it either.
2183                  */
2184                 mutex_lock(&fs_info->ro_block_group_mutex);
2185                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2186                                       &cur_trans->flags))
2187                         run_it = 1;
2188                 mutex_unlock(&fs_info->ro_block_group_mutex);
2189
2190                 if (run_it) {
2191                         ret = btrfs_start_dirty_block_groups(trans);
2192                         if (ret) {
2193                                 btrfs_end_transaction(trans);
2194                                 return ret;
2195                         }
2196                 }
2197         }
2198
2199         spin_lock(&fs_info->trans_lock);
2200         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2201                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2202
2203                 add_pending_snapshot(trans);
2204
2205                 spin_unlock(&fs_info->trans_lock);
2206                 refcount_inc(&cur_trans->use_count);
2207
2208                 if (trans->in_fsync)
2209                         want_state = TRANS_STATE_SUPER_COMMITTED;
2210                 ret = btrfs_end_transaction(trans);
2211                 wait_for_commit(cur_trans, want_state);
2212
2213                 if (TRANS_ABORTED(cur_trans))
2214                         ret = cur_trans->aborted;
2215
2216                 btrfs_put_transaction(cur_trans);
2217
2218                 return ret;
2219         }
2220
2221         cur_trans->state = TRANS_STATE_COMMIT_START;
2222         wake_up(&fs_info->transaction_blocked_wait);
2223
2224         if (cur_trans->list.prev != &fs_info->trans_list) {
2225                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2226
2227                 if (trans->in_fsync)
2228                         want_state = TRANS_STATE_SUPER_COMMITTED;
2229
2230                 prev_trans = list_entry(cur_trans->list.prev,
2231                                         struct btrfs_transaction, list);
2232                 if (prev_trans->state < want_state) {
2233                         refcount_inc(&prev_trans->use_count);
2234                         spin_unlock(&fs_info->trans_lock);
2235
2236                         wait_for_commit(prev_trans, want_state);
2237
2238                         ret = READ_ONCE(prev_trans->aborted);
2239
2240                         btrfs_put_transaction(prev_trans);
2241                         if (ret)
2242                                 goto cleanup_transaction;
2243                 } else {
2244                         spin_unlock(&fs_info->trans_lock);
2245                 }
2246         } else {
2247                 spin_unlock(&fs_info->trans_lock);
2248                 /*
2249                  * The previous transaction was aborted and was already removed
2250                  * from the list of transactions at fs_info->trans_list. So we
2251                  * abort to prevent writing a new superblock that reflects a
2252                  * corrupt state (pointing to trees with unwritten nodes/leafs).
2253                  */
2254                 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2255                         ret = -EROFS;
2256                         goto cleanup_transaction;
2257                 }
2258         }
2259
2260         extwriter_counter_dec(cur_trans, trans->type);
2261
2262         ret = btrfs_start_delalloc_flush(fs_info);
2263         if (ret)
2264                 goto cleanup_transaction;
2265
2266         ret = btrfs_run_delayed_items(trans);
2267         if (ret)
2268                 goto cleanup_transaction;
2269
2270         wait_event(cur_trans->writer_wait,
2271                    extwriter_counter_read(cur_trans) == 0);
2272
2273         /* some pending stuffs might be added after the previous flush. */
2274         ret = btrfs_run_delayed_items(trans);
2275         if (ret)
2276                 goto cleanup_transaction;
2277
2278         btrfs_wait_delalloc_flush(fs_info);
2279
2280         /*
2281          * Wait for all ordered extents started by a fast fsync that joined this
2282          * transaction. Otherwise if this transaction commits before the ordered
2283          * extents complete we lose logged data after a power failure.
2284          */
2285         wait_event(cur_trans->pending_wait,
2286                    atomic_read(&cur_trans->pending_ordered) == 0);
2287
2288         btrfs_scrub_pause(fs_info);
2289         /*
2290          * Ok now we need to make sure to block out any other joins while we
2291          * commit the transaction.  We could have started a join before setting
2292          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2293          */
2294         spin_lock(&fs_info->trans_lock);
2295         add_pending_snapshot(trans);
2296         cur_trans->state = TRANS_STATE_COMMIT_DOING;
2297         spin_unlock(&fs_info->trans_lock);
2298         wait_event(cur_trans->writer_wait,
2299                    atomic_read(&cur_trans->num_writers) == 1);
2300
2301         if (TRANS_ABORTED(cur_trans)) {
2302                 ret = cur_trans->aborted;
2303                 goto scrub_continue;
2304         }
2305         /*
2306          * the reloc mutex makes sure that we stop
2307          * the balancing code from coming in and moving
2308          * extents around in the middle of the commit
2309          */
2310         mutex_lock(&fs_info->reloc_mutex);
2311
2312         /*
2313          * We needn't worry about the delayed items because we will
2314          * deal with them in create_pending_snapshot(), which is the
2315          * core function of the snapshot creation.
2316          */
2317         ret = create_pending_snapshots(trans);
2318         if (ret)
2319                 goto unlock_reloc;
2320
2321         /*
2322          * We insert the dir indexes of the snapshots and update the inode
2323          * of the snapshots' parents after the snapshot creation, so there
2324          * are some delayed items which are not dealt with. Now deal with
2325          * them.
2326          *
2327          * We needn't worry that this operation will corrupt the snapshots,
2328          * because all the tree which are snapshoted will be forced to COW
2329          * the nodes and leaves.
2330          */
2331         ret = btrfs_run_delayed_items(trans);
2332         if (ret)
2333                 goto unlock_reloc;
2334
2335         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2336         if (ret)
2337                 goto unlock_reloc;
2338
2339         /*
2340          * make sure none of the code above managed to slip in a
2341          * delayed item
2342          */
2343         btrfs_assert_delayed_root_empty(fs_info);
2344
2345         WARN_ON(cur_trans != trans->transaction);
2346
2347         /* btrfs_commit_tree_roots is responsible for getting the
2348          * various roots consistent with each other.  Every pointer
2349          * in the tree of tree roots has to point to the most up to date
2350          * root for every subvolume and other tree.  So, we have to keep
2351          * the tree logging code from jumping in and changing any
2352          * of the trees.
2353          *
2354          * At this point in the commit, there can't be any tree-log
2355          * writers, but a little lower down we drop the trans mutex
2356          * and let new people in.  By holding the tree_log_mutex
2357          * from now until after the super is written, we avoid races
2358          * with the tree-log code.
2359          */
2360         mutex_lock(&fs_info->tree_log_mutex);
2361
2362         ret = commit_fs_roots(trans);
2363         if (ret)
2364                 goto unlock_tree_log;
2365
2366         /*
2367          * Since the transaction is done, we can apply the pending changes
2368          * before the next transaction.
2369          */
2370         btrfs_apply_pending_changes(fs_info);
2371
2372         /* commit_fs_roots gets rid of all the tree log roots, it is now
2373          * safe to free the root of tree log roots
2374          */
2375         btrfs_free_log_root_tree(trans, fs_info);
2376
2377         /*
2378          * Since fs roots are all committed, we can get a quite accurate
2379          * new_roots. So let's do quota accounting.
2380          */
2381         ret = btrfs_qgroup_account_extents(trans);
2382         if (ret < 0)
2383                 goto unlock_tree_log;
2384
2385         ret = commit_cowonly_roots(trans);
2386         if (ret)
2387                 goto unlock_tree_log;
2388
2389         /*
2390          * The tasks which save the space cache and inode cache may also
2391          * update ->aborted, check it.
2392          */
2393         if (TRANS_ABORTED(cur_trans)) {
2394                 ret = cur_trans->aborted;
2395                 goto unlock_tree_log;
2396         }
2397
2398         cur_trans = fs_info->running_transaction;
2399
2400         btrfs_set_root_node(&fs_info->tree_root->root_item,
2401                             fs_info->tree_root->node);
2402         list_add_tail(&fs_info->tree_root->dirty_list,
2403                       &cur_trans->switch_commits);
2404
2405         btrfs_set_root_node(&fs_info->chunk_root->root_item,
2406                             fs_info->chunk_root->node);
2407         list_add_tail(&fs_info->chunk_root->dirty_list,
2408                       &cur_trans->switch_commits);
2409
2410         switch_commit_roots(trans);
2411
2412         ASSERT(list_empty(&cur_trans->dirty_bgs));
2413         ASSERT(list_empty(&cur_trans->io_bgs));
2414         update_super_roots(fs_info);
2415
2416         btrfs_set_super_log_root(fs_info->super_copy, 0);
2417         btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2418         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2419                sizeof(*fs_info->super_copy));
2420
2421         btrfs_commit_device_sizes(cur_trans);
2422
2423         clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2424         clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2425
2426         btrfs_trans_release_chunk_metadata(trans);
2427
2428         spin_lock(&fs_info->trans_lock);
2429         cur_trans->state = TRANS_STATE_UNBLOCKED;
2430         fs_info->running_transaction = NULL;
2431         spin_unlock(&fs_info->trans_lock);
2432         mutex_unlock(&fs_info->reloc_mutex);
2433
2434         wake_up(&fs_info->transaction_wait);
2435
2436         ret = btrfs_write_and_wait_transaction(trans);
2437         if (ret) {
2438                 btrfs_handle_fs_error(fs_info, ret,
2439                                       "Error while writing out transaction");
2440                 /*
2441                  * reloc_mutex has been unlocked, tree_log_mutex is still held
2442                  * but we can't jump to unlock_tree_log causing double unlock
2443                  */
2444                 mutex_unlock(&fs_info->tree_log_mutex);
2445                 goto scrub_continue;
2446         }
2447
2448         /*
2449          * At this point, we should have written all the tree blocks allocated
2450          * in this transaction. So it's now safe to free the redirtyied extent
2451          * buffers.
2452          */
2453         btrfs_free_redirty_list(cur_trans);
2454
2455         ret = write_all_supers(fs_info, 0);
2456         /*
2457          * the super is written, we can safely allow the tree-loggers
2458          * to go about their business
2459          */
2460         mutex_unlock(&fs_info->tree_log_mutex);
2461         if (ret)
2462                 goto scrub_continue;
2463
2464         /*
2465          * We needn't acquire the lock here because there is no other task
2466          * which can change it.
2467          */
2468         cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2469         wake_up(&cur_trans->commit_wait);
2470
2471         btrfs_finish_extent_commit(trans);
2472
2473         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2474                 btrfs_clear_space_info_full(fs_info);
2475
2476         fs_info->last_trans_committed = cur_trans->transid;
2477         /*
2478          * We needn't acquire the lock here because there is no other task
2479          * which can change it.
2480          */
2481         cur_trans->state = TRANS_STATE_COMPLETED;
2482         wake_up(&cur_trans->commit_wait);
2483
2484         spin_lock(&fs_info->trans_lock);
2485         list_del_init(&cur_trans->list);
2486         spin_unlock(&fs_info->trans_lock);
2487
2488         btrfs_put_transaction(cur_trans);
2489         btrfs_put_transaction(cur_trans);
2490
2491         if (trans->type & __TRANS_FREEZABLE)
2492                 sb_end_intwrite(fs_info->sb);
2493
2494         trace_btrfs_transaction_commit(trans->root);
2495
2496         btrfs_scrub_continue(fs_info);
2497
2498         if (current->journal_info == trans)
2499                 current->journal_info = NULL;
2500
2501         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2502
2503         return ret;
2504
2505 unlock_tree_log:
2506         mutex_unlock(&fs_info->tree_log_mutex);
2507 unlock_reloc:
2508         mutex_unlock(&fs_info->reloc_mutex);
2509 scrub_continue:
2510         btrfs_scrub_continue(fs_info);
2511 cleanup_transaction:
2512         btrfs_trans_release_metadata(trans);
2513         btrfs_cleanup_pending_block_groups(trans);
2514         btrfs_trans_release_chunk_metadata(trans);
2515         trans->block_rsv = NULL;
2516         btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2517         if (current->journal_info == trans)
2518                 current->journal_info = NULL;
2519         cleanup_transaction(trans, ret);
2520
2521         return ret;
2522 }
2523
2524 /*
2525  * return < 0 if error
2526  * 0 if there are no more dead_roots at the time of call
2527  * 1 there are more to be processed, call me again
2528  *
2529  * The return value indicates there are certainly more snapshots to delete, but
2530  * if there comes a new one during processing, it may return 0. We don't mind,
2531  * because btrfs_commit_super will poke cleaner thread and it will process it a
2532  * few seconds later.
2533  */
2534 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2535 {
2536         int ret;
2537         struct btrfs_fs_info *fs_info = root->fs_info;
2538
2539         spin_lock(&fs_info->trans_lock);
2540         if (list_empty(&fs_info->dead_roots)) {
2541                 spin_unlock(&fs_info->trans_lock);
2542                 return 0;
2543         }
2544         root = list_first_entry(&fs_info->dead_roots,
2545                         struct btrfs_root, root_list);
2546         list_del_init(&root->root_list);
2547         spin_unlock(&fs_info->trans_lock);
2548
2549         btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2550
2551         btrfs_kill_all_delayed_nodes(root);
2552
2553         if (btrfs_header_backref_rev(root->node) <
2554                         BTRFS_MIXED_BACKREF_REV)
2555                 ret = btrfs_drop_snapshot(root, 0, 0);
2556         else
2557                 ret = btrfs_drop_snapshot(root, 1, 0);
2558
2559         btrfs_put_root(root);
2560         return (ret < 0) ? 0 : 1;
2561 }
2562
2563 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2564 {
2565         unsigned long prev;
2566         unsigned long bit;
2567
2568         prev = xchg(&fs_info->pending_changes, 0);
2569         if (!prev)
2570                 return;
2571
2572         bit = 1 << BTRFS_PENDING_COMMIT;
2573         if (prev & bit)
2574                 btrfs_debug(fs_info, "pending commit done");
2575         prev &= ~bit;
2576
2577         if (prev)
2578                 btrfs_warn(fs_info,
2579                         "unknown pending changes left 0x%lx, ignoring", prev);
2580 }