cifs: handle when server starts supporting multichannel
[platform/kernel/linux-starfive.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "zoned.h"
27 #include "fs.h"
28 #include "accessors.h"
29 #include "extent-tree.h"
30 #include "root-tree.h"
31 #include "defrag.h"
32 #include "dir-item.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37
38 static struct kmem_cache *btrfs_trans_handle_cachep;
39
40 /*
41  * Transaction states and transitions
42  *
43  * No running transaction (fs tree blocks are not modified)
44  * |
45  * | To next stage:
46  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
47  * V
48  * Transaction N [[TRANS_STATE_RUNNING]]
49  * |
50  * | New trans handles can be attached to transaction N by calling all
51  * | start_transaction() variants.
52  * |
53  * | To next stage:
54  * |  Call btrfs_commit_transaction() on any trans handle attached to
55  * |  transaction N
56  * V
57  * Transaction N [[TRANS_STATE_COMMIT_PREP]]
58  * |
59  * | If there are simultaneous calls to btrfs_commit_transaction() one will win
60  * | the race and the rest will wait for the winner to commit the transaction.
61  * |
62  * | The winner will wait for previous running transaction to completely finish
63  * | if there is one.
64  * |
65  * Transaction N [[TRANS_STATE_COMMIT_START]]
66  * |
67  * | Then one of the following happens:
68  * | - Wait for all other trans handle holders to release.
69  * |   The btrfs_commit_transaction() caller will do the commit work.
70  * | - Wait for current transaction to be committed by others.
71  * |   Other btrfs_commit_transaction() caller will do the commit work.
72  * |
73  * | At this stage, only btrfs_join_transaction*() variants can attach
74  * | to this running transaction.
75  * | All other variants will wait for current one to finish and attach to
76  * | transaction N+1.
77  * |
78  * | To next stage:
79  * |  Caller is chosen to commit transaction N, and all other trans handle
80  * |  haven been released.
81  * V
82  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
83  * |
84  * | The heavy lifting transaction work is started.
85  * | From running delayed refs (modifying extent tree) to creating pending
86  * | snapshots, running qgroups.
87  * | In short, modify supporting trees to reflect modifications of subvolume
88  * | trees.
89  * |
90  * | At this stage, all start_transaction() calls will wait for this
91  * | transaction to finish and attach to transaction N+1.
92  * |
93  * | To next stage:
94  * |  Until all supporting trees are updated.
95  * V
96  * Transaction N [[TRANS_STATE_UNBLOCKED]]
97  * |                                                Transaction N+1
98  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
99  * | need to write them back to disk and update     |
100  * | super blocks.                                  |
101  * |                                                |
102  * | At this stage, new transaction is allowed to   |
103  * | start.                                         |
104  * | All new start_transaction() calls will be      |
105  * | attached to transid N+1.                       |
106  * |                                                |
107  * | To next stage:                                 |
108  * |  Until all tree blocks are super blocks are    |
109  * |  written to block devices                      |
110  * V                                                |
111  * Transaction N [[TRANS_STATE_COMPLETED]]          V
112  *   All tree blocks and super blocks are written.  Transaction N+1
113  *   This transaction is finished and all its       [[TRANS_STATE_COMMIT_START]]
114  *   data structures will be cleaned up.            | Life goes on
115  */
116 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
117         [TRANS_STATE_RUNNING]           = 0U,
118         [TRANS_STATE_COMMIT_PREP]       = 0U,
119         [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
120         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
121                                            __TRANS_ATTACH |
122                                            __TRANS_JOIN |
123                                            __TRANS_JOIN_NOSTART),
124         [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
125                                            __TRANS_ATTACH |
126                                            __TRANS_JOIN |
127                                            __TRANS_JOIN_NOLOCK |
128                                            __TRANS_JOIN_NOSTART),
129         [TRANS_STATE_SUPER_COMMITTED]   = (__TRANS_START |
130                                            __TRANS_ATTACH |
131                                            __TRANS_JOIN |
132                                            __TRANS_JOIN_NOLOCK |
133                                            __TRANS_JOIN_NOSTART),
134         [TRANS_STATE_COMPLETED]         = (__TRANS_START |
135                                            __TRANS_ATTACH |
136                                            __TRANS_JOIN |
137                                            __TRANS_JOIN_NOLOCK |
138                                            __TRANS_JOIN_NOSTART),
139 };
140
141 void btrfs_put_transaction(struct btrfs_transaction *transaction)
142 {
143         WARN_ON(refcount_read(&transaction->use_count) == 0);
144         if (refcount_dec_and_test(&transaction->use_count)) {
145                 BUG_ON(!list_empty(&transaction->list));
146                 WARN_ON(!RB_EMPTY_ROOT(
147                                 &transaction->delayed_refs.href_root.rb_root));
148                 WARN_ON(!RB_EMPTY_ROOT(
149                                 &transaction->delayed_refs.dirty_extent_root));
150                 if (transaction->delayed_refs.pending_csums)
151                         btrfs_err(transaction->fs_info,
152                                   "pending csums is %llu",
153                                   transaction->delayed_refs.pending_csums);
154                 /*
155                  * If any block groups are found in ->deleted_bgs then it's
156                  * because the transaction was aborted and a commit did not
157                  * happen (things failed before writing the new superblock
158                  * and calling btrfs_finish_extent_commit()), so we can not
159                  * discard the physical locations of the block groups.
160                  */
161                 while (!list_empty(&transaction->deleted_bgs)) {
162                         struct btrfs_block_group *cache;
163
164                         cache = list_first_entry(&transaction->deleted_bgs,
165                                                  struct btrfs_block_group,
166                                                  bg_list);
167                         list_del_init(&cache->bg_list);
168                         btrfs_unfreeze_block_group(cache);
169                         btrfs_put_block_group(cache);
170                 }
171                 WARN_ON(!list_empty(&transaction->dev_update_list));
172                 kfree(transaction);
173         }
174 }
175
176 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
177 {
178         struct btrfs_transaction *cur_trans = trans->transaction;
179         struct btrfs_fs_info *fs_info = trans->fs_info;
180         struct btrfs_root *root, *tmp;
181
182         /*
183          * At this point no one can be using this transaction to modify any tree
184          * and no one can start another transaction to modify any tree either.
185          */
186         ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
187
188         down_write(&fs_info->commit_root_sem);
189
190         if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
191                 fs_info->last_reloc_trans = trans->transid;
192
193         list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
194                                  dirty_list) {
195                 list_del_init(&root->dirty_list);
196                 free_extent_buffer(root->commit_root);
197                 root->commit_root = btrfs_root_node(root);
198                 extent_io_tree_release(&root->dirty_log_pages);
199                 btrfs_qgroup_clean_swapped_blocks(root);
200         }
201
202         /* We can free old roots now. */
203         spin_lock(&cur_trans->dropped_roots_lock);
204         while (!list_empty(&cur_trans->dropped_roots)) {
205                 root = list_first_entry(&cur_trans->dropped_roots,
206                                         struct btrfs_root, root_list);
207                 list_del_init(&root->root_list);
208                 spin_unlock(&cur_trans->dropped_roots_lock);
209                 btrfs_free_log(trans, root);
210                 btrfs_drop_and_free_fs_root(fs_info, root);
211                 spin_lock(&cur_trans->dropped_roots_lock);
212         }
213         spin_unlock(&cur_trans->dropped_roots_lock);
214
215         up_write(&fs_info->commit_root_sem);
216 }
217
218 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
219                                          unsigned int type)
220 {
221         if (type & TRANS_EXTWRITERS)
222                 atomic_inc(&trans->num_extwriters);
223 }
224
225 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
226                                          unsigned int type)
227 {
228         if (type & TRANS_EXTWRITERS)
229                 atomic_dec(&trans->num_extwriters);
230 }
231
232 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
233                                           unsigned int type)
234 {
235         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
236 }
237
238 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
239 {
240         return atomic_read(&trans->num_extwriters);
241 }
242
243 /*
244  * To be called after doing the chunk btree updates right after allocating a new
245  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
246  * chunk after all chunk btree updates and after finishing the second phase of
247  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
248  * group had its chunk item insertion delayed to the second phase.
249  */
250 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
251 {
252         struct btrfs_fs_info *fs_info = trans->fs_info;
253
254         if (!trans->chunk_bytes_reserved)
255                 return;
256
257         btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
258                                 trans->chunk_bytes_reserved, NULL);
259         trans->chunk_bytes_reserved = 0;
260 }
261
262 /*
263  * either allocate a new transaction or hop into the existing one
264  */
265 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
266                                      unsigned int type)
267 {
268         struct btrfs_transaction *cur_trans;
269
270         spin_lock(&fs_info->trans_lock);
271 loop:
272         /* The file system has been taken offline. No new transactions. */
273         if (BTRFS_FS_ERROR(fs_info)) {
274                 spin_unlock(&fs_info->trans_lock);
275                 return -EROFS;
276         }
277
278         cur_trans = fs_info->running_transaction;
279         if (cur_trans) {
280                 if (TRANS_ABORTED(cur_trans)) {
281                         spin_unlock(&fs_info->trans_lock);
282                         return cur_trans->aborted;
283                 }
284                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
285                         spin_unlock(&fs_info->trans_lock);
286                         return -EBUSY;
287                 }
288                 refcount_inc(&cur_trans->use_count);
289                 atomic_inc(&cur_trans->num_writers);
290                 extwriter_counter_inc(cur_trans, type);
291                 spin_unlock(&fs_info->trans_lock);
292                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
293                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
294                 return 0;
295         }
296         spin_unlock(&fs_info->trans_lock);
297
298         /*
299          * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
300          * current transaction, and commit it. If there is no transaction, just
301          * return ENOENT.
302          */
303         if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
304                 return -ENOENT;
305
306         /*
307          * JOIN_NOLOCK only happens during the transaction commit, so
308          * it is impossible that ->running_transaction is NULL
309          */
310         BUG_ON(type == TRANS_JOIN_NOLOCK);
311
312         cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
313         if (!cur_trans)
314                 return -ENOMEM;
315
316         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
317         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
318
319         spin_lock(&fs_info->trans_lock);
320         if (fs_info->running_transaction) {
321                 /*
322                  * someone started a transaction after we unlocked.  Make sure
323                  * to redo the checks above
324                  */
325                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
326                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
327                 kfree(cur_trans);
328                 goto loop;
329         } else if (BTRFS_FS_ERROR(fs_info)) {
330                 spin_unlock(&fs_info->trans_lock);
331                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
332                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
333                 kfree(cur_trans);
334                 return -EROFS;
335         }
336
337         cur_trans->fs_info = fs_info;
338         atomic_set(&cur_trans->pending_ordered, 0);
339         init_waitqueue_head(&cur_trans->pending_wait);
340         atomic_set(&cur_trans->num_writers, 1);
341         extwriter_counter_init(cur_trans, type);
342         init_waitqueue_head(&cur_trans->writer_wait);
343         init_waitqueue_head(&cur_trans->commit_wait);
344         cur_trans->state = TRANS_STATE_RUNNING;
345         /*
346          * One for this trans handle, one so it will live on until we
347          * commit the transaction.
348          */
349         refcount_set(&cur_trans->use_count, 2);
350         cur_trans->flags = 0;
351         cur_trans->start_time = ktime_get_seconds();
352
353         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
354
355         cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
356         cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
357         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
358
359         /*
360          * although the tree mod log is per file system and not per transaction,
361          * the log must never go across transaction boundaries.
362          */
363         smp_mb();
364         if (!list_empty(&fs_info->tree_mod_seq_list))
365                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
366         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
367                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
368         atomic64_set(&fs_info->tree_mod_seq, 0);
369
370         spin_lock_init(&cur_trans->delayed_refs.lock);
371
372         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
373         INIT_LIST_HEAD(&cur_trans->dev_update_list);
374         INIT_LIST_HEAD(&cur_trans->switch_commits);
375         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
376         INIT_LIST_HEAD(&cur_trans->io_bgs);
377         INIT_LIST_HEAD(&cur_trans->dropped_roots);
378         mutex_init(&cur_trans->cache_write_mutex);
379         spin_lock_init(&cur_trans->dirty_bgs_lock);
380         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
381         spin_lock_init(&cur_trans->dropped_roots_lock);
382         list_add_tail(&cur_trans->list, &fs_info->trans_list);
383         extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
384                         IO_TREE_TRANS_DIRTY_PAGES);
385         extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
386                         IO_TREE_FS_PINNED_EXTENTS);
387         fs_info->generation++;
388         cur_trans->transid = fs_info->generation;
389         fs_info->running_transaction = cur_trans;
390         cur_trans->aborted = 0;
391         spin_unlock(&fs_info->trans_lock);
392
393         return 0;
394 }
395
396 /*
397  * This does all the record keeping required to make sure that a shareable root
398  * is properly recorded in a given transaction.  This is required to make sure
399  * the old root from before we joined the transaction is deleted when the
400  * transaction commits.
401  */
402 static int record_root_in_trans(struct btrfs_trans_handle *trans,
403                                struct btrfs_root *root,
404                                int force)
405 {
406         struct btrfs_fs_info *fs_info = root->fs_info;
407         int ret = 0;
408
409         if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
410             root->last_trans < trans->transid) || force) {
411                 WARN_ON(!force && root->commit_root != root->node);
412
413                 /*
414                  * see below for IN_TRANS_SETUP usage rules
415                  * we have the reloc mutex held now, so there
416                  * is only one writer in this function
417                  */
418                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
419
420                 /* make sure readers find IN_TRANS_SETUP before
421                  * they find our root->last_trans update
422                  */
423                 smp_wmb();
424
425                 spin_lock(&fs_info->fs_roots_radix_lock);
426                 if (root->last_trans == trans->transid && !force) {
427                         spin_unlock(&fs_info->fs_roots_radix_lock);
428                         return 0;
429                 }
430                 radix_tree_tag_set(&fs_info->fs_roots_radix,
431                                    (unsigned long)root->root_key.objectid,
432                                    BTRFS_ROOT_TRANS_TAG);
433                 spin_unlock(&fs_info->fs_roots_radix_lock);
434                 root->last_trans = trans->transid;
435
436                 /* this is pretty tricky.  We don't want to
437                  * take the relocation lock in btrfs_record_root_in_trans
438                  * unless we're really doing the first setup for this root in
439                  * this transaction.
440                  *
441                  * Normally we'd use root->last_trans as a flag to decide
442                  * if we want to take the expensive mutex.
443                  *
444                  * But, we have to set root->last_trans before we
445                  * init the relocation root, otherwise, we trip over warnings
446                  * in ctree.c.  The solution used here is to flag ourselves
447                  * with root IN_TRANS_SETUP.  When this is 1, we're still
448                  * fixing up the reloc trees and everyone must wait.
449                  *
450                  * When this is zero, they can trust root->last_trans and fly
451                  * through btrfs_record_root_in_trans without having to take the
452                  * lock.  smp_wmb() makes sure that all the writes above are
453                  * done before we pop in the zero below
454                  */
455                 ret = btrfs_init_reloc_root(trans, root);
456                 smp_mb__before_atomic();
457                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
458         }
459         return ret;
460 }
461
462
463 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
464                             struct btrfs_root *root)
465 {
466         struct btrfs_fs_info *fs_info = root->fs_info;
467         struct btrfs_transaction *cur_trans = trans->transaction;
468
469         /* Add ourselves to the transaction dropped list */
470         spin_lock(&cur_trans->dropped_roots_lock);
471         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
472         spin_unlock(&cur_trans->dropped_roots_lock);
473
474         /* Make sure we don't try to update the root at commit time */
475         spin_lock(&fs_info->fs_roots_radix_lock);
476         radix_tree_tag_clear(&fs_info->fs_roots_radix,
477                              (unsigned long)root->root_key.objectid,
478                              BTRFS_ROOT_TRANS_TAG);
479         spin_unlock(&fs_info->fs_roots_radix_lock);
480 }
481
482 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
483                                struct btrfs_root *root)
484 {
485         struct btrfs_fs_info *fs_info = root->fs_info;
486         int ret;
487
488         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
489                 return 0;
490
491         /*
492          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
493          * and barriers
494          */
495         smp_rmb();
496         if (root->last_trans == trans->transid &&
497             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
498                 return 0;
499
500         mutex_lock(&fs_info->reloc_mutex);
501         ret = record_root_in_trans(trans, root, 0);
502         mutex_unlock(&fs_info->reloc_mutex);
503
504         return ret;
505 }
506
507 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
508 {
509         return (trans->state >= TRANS_STATE_COMMIT_START &&
510                 trans->state < TRANS_STATE_UNBLOCKED &&
511                 !TRANS_ABORTED(trans));
512 }
513
514 /* wait for commit against the current transaction to become unblocked
515  * when this is done, it is safe to start a new transaction, but the current
516  * transaction might not be fully on disk.
517  */
518 static void wait_current_trans(struct btrfs_fs_info *fs_info)
519 {
520         struct btrfs_transaction *cur_trans;
521
522         spin_lock(&fs_info->trans_lock);
523         cur_trans = fs_info->running_transaction;
524         if (cur_trans && is_transaction_blocked(cur_trans)) {
525                 refcount_inc(&cur_trans->use_count);
526                 spin_unlock(&fs_info->trans_lock);
527
528                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
529                 wait_event(fs_info->transaction_wait,
530                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
531                            TRANS_ABORTED(cur_trans));
532                 btrfs_put_transaction(cur_trans);
533         } else {
534                 spin_unlock(&fs_info->trans_lock);
535         }
536 }
537
538 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
539 {
540         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
541                 return 0;
542
543         if (type == TRANS_START)
544                 return 1;
545
546         return 0;
547 }
548
549 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
550 {
551         struct btrfs_fs_info *fs_info = root->fs_info;
552
553         if (!fs_info->reloc_ctl ||
554             !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
555             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
556             root->reloc_root)
557                 return false;
558
559         return true;
560 }
561
562 static struct btrfs_trans_handle *
563 start_transaction(struct btrfs_root *root, unsigned int num_items,
564                   unsigned int type, enum btrfs_reserve_flush_enum flush,
565                   bool enforce_qgroups)
566 {
567         struct btrfs_fs_info *fs_info = root->fs_info;
568         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
569         struct btrfs_trans_handle *h;
570         struct btrfs_transaction *cur_trans;
571         u64 num_bytes = 0;
572         u64 qgroup_reserved = 0;
573         bool reloc_reserved = false;
574         bool do_chunk_alloc = false;
575         int ret;
576
577         if (BTRFS_FS_ERROR(fs_info))
578                 return ERR_PTR(-EROFS);
579
580         if (current->journal_info) {
581                 WARN_ON(type & TRANS_EXTWRITERS);
582                 h = current->journal_info;
583                 refcount_inc(&h->use_count);
584                 WARN_ON(refcount_read(&h->use_count) > 2);
585                 h->orig_rsv = h->block_rsv;
586                 h->block_rsv = NULL;
587                 goto got_it;
588         }
589
590         /*
591          * Do the reservation before we join the transaction so we can do all
592          * the appropriate flushing if need be.
593          */
594         if (num_items && root != fs_info->chunk_root) {
595                 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
596                 u64 delayed_refs_bytes = 0;
597
598                 qgroup_reserved = num_items * fs_info->nodesize;
599                 /*
600                  * Use prealloc for now, as there might be a currently running
601                  * transaction that could free this reserved space prematurely
602                  * by committing.
603                  */
604                 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
605                                                          enforce_qgroups, false);
606                 if (ret)
607                         return ERR_PTR(ret);
608
609                 /*
610                  * We want to reserve all the bytes we may need all at once, so
611                  * we only do 1 enospc flushing cycle per transaction start.  We
612                  * accomplish this by simply assuming we'll do num_items worth
613                  * of delayed refs updates in this trans handle, and refill that
614                  * amount for whatever is missing in the reserve.
615                  */
616                 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
617                 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
618                     !btrfs_block_rsv_full(delayed_refs_rsv)) {
619                         delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info,
620                                                                           num_items);
621                         num_bytes += delayed_refs_bytes;
622                 }
623
624                 /*
625                  * Do the reservation for the relocation root creation
626                  */
627                 if (need_reserve_reloc_root(root)) {
628                         num_bytes += fs_info->nodesize;
629                         reloc_reserved = true;
630                 }
631
632                 ret = btrfs_reserve_metadata_bytes(fs_info, rsv, num_bytes, flush);
633                 if (ret)
634                         goto reserve_fail;
635                 if (delayed_refs_bytes) {
636                         btrfs_migrate_to_delayed_refs_rsv(fs_info, delayed_refs_bytes);
637                         num_bytes -= delayed_refs_bytes;
638                 }
639                 btrfs_block_rsv_add_bytes(rsv, num_bytes, true);
640
641                 if (rsv->space_info->force_alloc)
642                         do_chunk_alloc = true;
643         } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
644                    !btrfs_block_rsv_full(delayed_refs_rsv)) {
645                 /*
646                  * Some people call with btrfs_start_transaction(root, 0)
647                  * because they can be throttled, but have some other mechanism
648                  * for reserving space.  We still want these guys to refill the
649                  * delayed block_rsv so just add 1 items worth of reservation
650                  * here.
651                  */
652                 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
653                 if (ret)
654                         goto reserve_fail;
655         }
656 again:
657         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
658         if (!h) {
659                 ret = -ENOMEM;
660                 goto alloc_fail;
661         }
662
663         /*
664          * If we are JOIN_NOLOCK we're already committing a transaction and
665          * waiting on this guy, so we don't need to do the sb_start_intwrite
666          * because we're already holding a ref.  We need this because we could
667          * have raced in and did an fsync() on a file which can kick a commit
668          * and then we deadlock with somebody doing a freeze.
669          *
670          * If we are ATTACH, it means we just want to catch the current
671          * transaction and commit it, so we needn't do sb_start_intwrite(). 
672          */
673         if (type & __TRANS_FREEZABLE)
674                 sb_start_intwrite(fs_info->sb);
675
676         if (may_wait_transaction(fs_info, type))
677                 wait_current_trans(fs_info);
678
679         do {
680                 ret = join_transaction(fs_info, type);
681                 if (ret == -EBUSY) {
682                         wait_current_trans(fs_info);
683                         if (unlikely(type == TRANS_ATTACH ||
684                                      type == TRANS_JOIN_NOSTART))
685                                 ret = -ENOENT;
686                 }
687         } while (ret == -EBUSY);
688
689         if (ret < 0)
690                 goto join_fail;
691
692         cur_trans = fs_info->running_transaction;
693
694         h->transid = cur_trans->transid;
695         h->transaction = cur_trans;
696         refcount_set(&h->use_count, 1);
697         h->fs_info = root->fs_info;
698
699         h->type = type;
700         INIT_LIST_HEAD(&h->new_bgs);
701
702         smp_mb();
703         if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
704             may_wait_transaction(fs_info, type)) {
705                 current->journal_info = h;
706                 btrfs_commit_transaction(h);
707                 goto again;
708         }
709
710         if (num_bytes) {
711                 trace_btrfs_space_reservation(fs_info, "transaction",
712                                               h->transid, num_bytes, 1);
713                 h->block_rsv = &fs_info->trans_block_rsv;
714                 h->bytes_reserved = num_bytes;
715                 h->reloc_reserved = reloc_reserved;
716         }
717
718         /*
719          * Now that we have found a transaction to be a part of, convert the
720          * qgroup reservation from prealloc to pertrans. A different transaction
721          * can't race in and free our pertrans out from under us.
722          */
723         if (qgroup_reserved)
724                 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
725
726 got_it:
727         if (!current->journal_info)
728                 current->journal_info = h;
729
730         /*
731          * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
732          * ALLOC_FORCE the first run through, and then we won't allocate for
733          * anybody else who races in later.  We don't care about the return
734          * value here.
735          */
736         if (do_chunk_alloc && num_bytes) {
737                 u64 flags = h->block_rsv->space_info->flags;
738
739                 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
740                                   CHUNK_ALLOC_NO_FORCE);
741         }
742
743         /*
744          * btrfs_record_root_in_trans() needs to alloc new extents, and may
745          * call btrfs_join_transaction() while we're also starting a
746          * transaction.
747          *
748          * Thus it need to be called after current->journal_info initialized,
749          * or we can deadlock.
750          */
751         ret = btrfs_record_root_in_trans(h, root);
752         if (ret) {
753                 /*
754                  * The transaction handle is fully initialized and linked with
755                  * other structures so it needs to be ended in case of errors,
756                  * not just freed.
757                  */
758                 btrfs_end_transaction(h);
759                 return ERR_PTR(ret);
760         }
761
762         return h;
763
764 join_fail:
765         if (type & __TRANS_FREEZABLE)
766                 sb_end_intwrite(fs_info->sb);
767         kmem_cache_free(btrfs_trans_handle_cachep, h);
768 alloc_fail:
769         if (num_bytes)
770                 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
771                                         num_bytes, NULL);
772 reserve_fail:
773         btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
774         return ERR_PTR(ret);
775 }
776
777 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
778                                                    unsigned int num_items)
779 {
780         return start_transaction(root, num_items, TRANS_START,
781                                  BTRFS_RESERVE_FLUSH_ALL, true);
782 }
783
784 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
785                                         struct btrfs_root *root,
786                                         unsigned int num_items)
787 {
788         return start_transaction(root, num_items, TRANS_START,
789                                  BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
790 }
791
792 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
793 {
794         return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
795                                  true);
796 }
797
798 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
799 {
800         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
801                                  BTRFS_RESERVE_NO_FLUSH, true);
802 }
803
804 /*
805  * Similar to regular join but it never starts a transaction when none is
806  * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
807  * This is similar to btrfs_attach_transaction() but it allows the join to
808  * happen if the transaction commit already started but it's not yet in the
809  * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
810  */
811 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
812 {
813         return start_transaction(root, 0, TRANS_JOIN_NOSTART,
814                                  BTRFS_RESERVE_NO_FLUSH, true);
815 }
816
817 /*
818  * btrfs_attach_transaction() - catch the running transaction
819  *
820  * It is used when we want to commit the current the transaction, but
821  * don't want to start a new one.
822  *
823  * Note: If this function return -ENOENT, it just means there is no
824  * running transaction. But it is possible that the inactive transaction
825  * is still in the memory, not fully on disk. If you hope there is no
826  * inactive transaction in the fs when -ENOENT is returned, you should
827  * invoke
828  *     btrfs_attach_transaction_barrier()
829  */
830 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
831 {
832         return start_transaction(root, 0, TRANS_ATTACH,
833                                  BTRFS_RESERVE_NO_FLUSH, true);
834 }
835
836 /*
837  * btrfs_attach_transaction_barrier() - catch the running transaction
838  *
839  * It is similar to the above function, the difference is this one
840  * will wait for all the inactive transactions until they fully
841  * complete.
842  */
843 struct btrfs_trans_handle *
844 btrfs_attach_transaction_barrier(struct btrfs_root *root)
845 {
846         struct btrfs_trans_handle *trans;
847
848         trans = start_transaction(root, 0, TRANS_ATTACH,
849                                   BTRFS_RESERVE_NO_FLUSH, true);
850         if (trans == ERR_PTR(-ENOENT)) {
851                 int ret;
852
853                 ret = btrfs_wait_for_commit(root->fs_info, 0);
854                 if (ret)
855                         return ERR_PTR(ret);
856         }
857
858         return trans;
859 }
860
861 /* Wait for a transaction commit to reach at least the given state. */
862 static noinline void wait_for_commit(struct btrfs_transaction *commit,
863                                      const enum btrfs_trans_state min_state)
864 {
865         struct btrfs_fs_info *fs_info = commit->fs_info;
866         u64 transid = commit->transid;
867         bool put = false;
868
869         /*
870          * At the moment this function is called with min_state either being
871          * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
872          */
873         if (min_state == TRANS_STATE_COMPLETED)
874                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
875         else
876                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
877
878         while (1) {
879                 wait_event(commit->commit_wait, commit->state >= min_state);
880                 if (put)
881                         btrfs_put_transaction(commit);
882
883                 if (min_state < TRANS_STATE_COMPLETED)
884                         break;
885
886                 /*
887                  * A transaction isn't really completed until all of the
888                  * previous transactions are completed, but with fsync we can
889                  * end up with SUPER_COMMITTED transactions before a COMPLETED
890                  * transaction. Wait for those.
891                  */
892
893                 spin_lock(&fs_info->trans_lock);
894                 commit = list_first_entry_or_null(&fs_info->trans_list,
895                                                   struct btrfs_transaction,
896                                                   list);
897                 if (!commit || commit->transid > transid) {
898                         spin_unlock(&fs_info->trans_lock);
899                         break;
900                 }
901                 refcount_inc(&commit->use_count);
902                 put = true;
903                 spin_unlock(&fs_info->trans_lock);
904         }
905 }
906
907 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
908 {
909         struct btrfs_transaction *cur_trans = NULL, *t;
910         int ret = 0;
911
912         if (transid) {
913                 if (transid <= fs_info->last_trans_committed)
914                         goto out;
915
916                 /* find specified transaction */
917                 spin_lock(&fs_info->trans_lock);
918                 list_for_each_entry(t, &fs_info->trans_list, list) {
919                         if (t->transid == transid) {
920                                 cur_trans = t;
921                                 refcount_inc(&cur_trans->use_count);
922                                 ret = 0;
923                                 break;
924                         }
925                         if (t->transid > transid) {
926                                 ret = 0;
927                                 break;
928                         }
929                 }
930                 spin_unlock(&fs_info->trans_lock);
931
932                 /*
933                  * The specified transaction doesn't exist, or we
934                  * raced with btrfs_commit_transaction
935                  */
936                 if (!cur_trans) {
937                         if (transid > fs_info->last_trans_committed)
938                                 ret = -EINVAL;
939                         goto out;
940                 }
941         } else {
942                 /* find newest transaction that is committing | committed */
943                 spin_lock(&fs_info->trans_lock);
944                 list_for_each_entry_reverse(t, &fs_info->trans_list,
945                                             list) {
946                         if (t->state >= TRANS_STATE_COMMIT_START) {
947                                 if (t->state == TRANS_STATE_COMPLETED)
948                                         break;
949                                 cur_trans = t;
950                                 refcount_inc(&cur_trans->use_count);
951                                 break;
952                         }
953                 }
954                 spin_unlock(&fs_info->trans_lock);
955                 if (!cur_trans)
956                         goto out;  /* nothing committing|committed */
957         }
958
959         wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
960         ret = cur_trans->aborted;
961         btrfs_put_transaction(cur_trans);
962 out:
963         return ret;
964 }
965
966 void btrfs_throttle(struct btrfs_fs_info *fs_info)
967 {
968         wait_current_trans(fs_info);
969 }
970
971 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
972 {
973         struct btrfs_transaction *cur_trans = trans->transaction;
974
975         if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
976             test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
977                 return true;
978
979         if (btrfs_check_space_for_delayed_refs(trans->fs_info))
980                 return true;
981
982         return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
983 }
984
985 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
986
987 {
988         struct btrfs_fs_info *fs_info = trans->fs_info;
989
990         if (!trans->block_rsv) {
991                 ASSERT(!trans->bytes_reserved);
992                 return;
993         }
994
995         if (!trans->bytes_reserved)
996                 return;
997
998         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
999         trace_btrfs_space_reservation(fs_info, "transaction",
1000                                       trans->transid, trans->bytes_reserved, 0);
1001         btrfs_block_rsv_release(fs_info, trans->block_rsv,
1002                                 trans->bytes_reserved, NULL);
1003         trans->bytes_reserved = 0;
1004 }
1005
1006 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1007                                    int throttle)
1008 {
1009         struct btrfs_fs_info *info = trans->fs_info;
1010         struct btrfs_transaction *cur_trans = trans->transaction;
1011         int err = 0;
1012
1013         if (refcount_read(&trans->use_count) > 1) {
1014                 refcount_dec(&trans->use_count);
1015                 trans->block_rsv = trans->orig_rsv;
1016                 return 0;
1017         }
1018
1019         btrfs_trans_release_metadata(trans);
1020         trans->block_rsv = NULL;
1021
1022         btrfs_create_pending_block_groups(trans);
1023
1024         btrfs_trans_release_chunk_metadata(trans);
1025
1026         if (trans->type & __TRANS_FREEZABLE)
1027                 sb_end_intwrite(info->sb);
1028
1029         WARN_ON(cur_trans != info->running_transaction);
1030         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1031         atomic_dec(&cur_trans->num_writers);
1032         extwriter_counter_dec(cur_trans, trans->type);
1033
1034         cond_wake_up(&cur_trans->writer_wait);
1035
1036         btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1037         btrfs_lockdep_release(info, btrfs_trans_num_writers);
1038
1039         btrfs_put_transaction(cur_trans);
1040
1041         if (current->journal_info == trans)
1042                 current->journal_info = NULL;
1043
1044         if (throttle)
1045                 btrfs_run_delayed_iputs(info);
1046
1047         if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1048                 wake_up_process(info->transaction_kthread);
1049                 if (TRANS_ABORTED(trans))
1050                         err = trans->aborted;
1051                 else
1052                         err = -EROFS;
1053         }
1054
1055         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1056         return err;
1057 }
1058
1059 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1060 {
1061         return __btrfs_end_transaction(trans, 0);
1062 }
1063
1064 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1065 {
1066         return __btrfs_end_transaction(trans, 1);
1067 }
1068
1069 /*
1070  * when btree blocks are allocated, they have some corresponding bits set for
1071  * them in one of two extent_io trees.  This is used to make sure all of
1072  * those extents are sent to disk but does not wait on them
1073  */
1074 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1075                                struct extent_io_tree *dirty_pages, int mark)
1076 {
1077         int err = 0;
1078         int werr = 0;
1079         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1080         struct extent_state *cached_state = NULL;
1081         u64 start = 0;
1082         u64 end;
1083
1084         while (find_first_extent_bit(dirty_pages, start, &start, &end,
1085                                      mark, &cached_state)) {
1086                 bool wait_writeback = false;
1087
1088                 err = convert_extent_bit(dirty_pages, start, end,
1089                                          EXTENT_NEED_WAIT,
1090                                          mark, &cached_state);
1091                 /*
1092                  * convert_extent_bit can return -ENOMEM, which is most of the
1093                  * time a temporary error. So when it happens, ignore the error
1094                  * and wait for writeback of this range to finish - because we
1095                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1096                  * to __btrfs_wait_marked_extents() would not know that
1097                  * writeback for this range started and therefore wouldn't
1098                  * wait for it to finish - we don't want to commit a
1099                  * superblock that points to btree nodes/leafs for which
1100                  * writeback hasn't finished yet (and without errors).
1101                  * We cleanup any entries left in the io tree when committing
1102                  * the transaction (through extent_io_tree_release()).
1103                  */
1104                 if (err == -ENOMEM) {
1105                         err = 0;
1106                         wait_writeback = true;
1107                 }
1108                 if (!err)
1109                         err = filemap_fdatawrite_range(mapping, start, end);
1110                 if (err)
1111                         werr = err;
1112                 else if (wait_writeback)
1113                         werr = filemap_fdatawait_range(mapping, start, end);
1114                 free_extent_state(cached_state);
1115                 cached_state = NULL;
1116                 cond_resched();
1117                 start = end + 1;
1118         }
1119         return werr;
1120 }
1121
1122 /*
1123  * when btree blocks are allocated, they have some corresponding bits set for
1124  * them in one of two extent_io trees.  This is used to make sure all of
1125  * those extents are on disk for transaction or log commit.  We wait
1126  * on all the pages and clear them from the dirty pages state tree
1127  */
1128 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1129                                        struct extent_io_tree *dirty_pages)
1130 {
1131         int err = 0;
1132         int werr = 0;
1133         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1134         struct extent_state *cached_state = NULL;
1135         u64 start = 0;
1136         u64 end;
1137
1138         while (find_first_extent_bit(dirty_pages, start, &start, &end,
1139                                      EXTENT_NEED_WAIT, &cached_state)) {
1140                 /*
1141                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1142                  * When committing the transaction, we'll remove any entries
1143                  * left in the io tree. For a log commit, we don't remove them
1144                  * after committing the log because the tree can be accessed
1145                  * concurrently - we do it only at transaction commit time when
1146                  * it's safe to do it (through extent_io_tree_release()).
1147                  */
1148                 err = clear_extent_bit(dirty_pages, start, end,
1149                                        EXTENT_NEED_WAIT, &cached_state);
1150                 if (err == -ENOMEM)
1151                         err = 0;
1152                 if (!err)
1153                         err = filemap_fdatawait_range(mapping, start, end);
1154                 if (err)
1155                         werr = err;
1156                 free_extent_state(cached_state);
1157                 cached_state = NULL;
1158                 cond_resched();
1159                 start = end + 1;
1160         }
1161         if (err)
1162                 werr = err;
1163         return werr;
1164 }
1165
1166 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1167                        struct extent_io_tree *dirty_pages)
1168 {
1169         bool errors = false;
1170         int err;
1171
1172         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1173         if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1174                 errors = true;
1175
1176         if (errors && !err)
1177                 err = -EIO;
1178         return err;
1179 }
1180
1181 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1182 {
1183         struct btrfs_fs_info *fs_info = log_root->fs_info;
1184         struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1185         bool errors = false;
1186         int err;
1187
1188         ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1189
1190         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1191         if ((mark & EXTENT_DIRTY) &&
1192             test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1193                 errors = true;
1194
1195         if ((mark & EXTENT_NEW) &&
1196             test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1197                 errors = true;
1198
1199         if (errors && !err)
1200                 err = -EIO;
1201         return err;
1202 }
1203
1204 /*
1205  * When btree blocks are allocated the corresponding extents are marked dirty.
1206  * This function ensures such extents are persisted on disk for transaction or
1207  * log commit.
1208  *
1209  * @trans: transaction whose dirty pages we'd like to write
1210  */
1211 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1212 {
1213         int ret;
1214         int ret2;
1215         struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1216         struct btrfs_fs_info *fs_info = trans->fs_info;
1217         struct blk_plug plug;
1218
1219         blk_start_plug(&plug);
1220         ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1221         blk_finish_plug(&plug);
1222         ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1223
1224         extent_io_tree_release(&trans->transaction->dirty_pages);
1225
1226         if (ret)
1227                 return ret;
1228         else if (ret2)
1229                 return ret2;
1230         else
1231                 return 0;
1232 }
1233
1234 /*
1235  * this is used to update the root pointer in the tree of tree roots.
1236  *
1237  * But, in the case of the extent allocation tree, updating the root
1238  * pointer may allocate blocks which may change the root of the extent
1239  * allocation tree.
1240  *
1241  * So, this loops and repeats and makes sure the cowonly root didn't
1242  * change while the root pointer was being updated in the metadata.
1243  */
1244 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1245                                struct btrfs_root *root)
1246 {
1247         int ret;
1248         u64 old_root_bytenr;
1249         u64 old_root_used;
1250         struct btrfs_fs_info *fs_info = root->fs_info;
1251         struct btrfs_root *tree_root = fs_info->tree_root;
1252
1253         old_root_used = btrfs_root_used(&root->root_item);
1254
1255         while (1) {
1256                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1257                 if (old_root_bytenr == root->node->start &&
1258                     old_root_used == btrfs_root_used(&root->root_item))
1259                         break;
1260
1261                 btrfs_set_root_node(&root->root_item, root->node);
1262                 ret = btrfs_update_root(trans, tree_root,
1263                                         &root->root_key,
1264                                         &root->root_item);
1265                 if (ret)
1266                         return ret;
1267
1268                 old_root_used = btrfs_root_used(&root->root_item);
1269         }
1270
1271         return 0;
1272 }
1273
1274 /*
1275  * update all the cowonly tree roots on disk
1276  *
1277  * The error handling in this function may not be obvious. Any of the
1278  * failures will cause the file system to go offline. We still need
1279  * to clean up the delayed refs.
1280  */
1281 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1282 {
1283         struct btrfs_fs_info *fs_info = trans->fs_info;
1284         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1285         struct list_head *io_bgs = &trans->transaction->io_bgs;
1286         struct list_head *next;
1287         struct extent_buffer *eb;
1288         int ret;
1289
1290         /*
1291          * At this point no one can be using this transaction to modify any tree
1292          * and no one can start another transaction to modify any tree either.
1293          */
1294         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1295
1296         eb = btrfs_lock_root_node(fs_info->tree_root);
1297         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1298                               0, &eb, BTRFS_NESTING_COW);
1299         btrfs_tree_unlock(eb);
1300         free_extent_buffer(eb);
1301
1302         if (ret)
1303                 return ret;
1304
1305         ret = btrfs_run_dev_stats(trans);
1306         if (ret)
1307                 return ret;
1308         ret = btrfs_run_dev_replace(trans);
1309         if (ret)
1310                 return ret;
1311         ret = btrfs_run_qgroups(trans);
1312         if (ret)
1313                 return ret;
1314
1315         ret = btrfs_setup_space_cache(trans);
1316         if (ret)
1317                 return ret;
1318
1319 again:
1320         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1321                 struct btrfs_root *root;
1322                 next = fs_info->dirty_cowonly_roots.next;
1323                 list_del_init(next);
1324                 root = list_entry(next, struct btrfs_root, dirty_list);
1325                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1326
1327                 list_add_tail(&root->dirty_list,
1328                               &trans->transaction->switch_commits);
1329                 ret = update_cowonly_root(trans, root);
1330                 if (ret)
1331                         return ret;
1332         }
1333
1334         /* Now flush any delayed refs generated by updating all of the roots */
1335         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1336         if (ret)
1337                 return ret;
1338
1339         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1340                 ret = btrfs_write_dirty_block_groups(trans);
1341                 if (ret)
1342                         return ret;
1343
1344                 /*
1345                  * We're writing the dirty block groups, which could generate
1346                  * delayed refs, which could generate more dirty block groups,
1347                  * so we want to keep this flushing in this loop to make sure
1348                  * everything gets run.
1349                  */
1350                 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1351                 if (ret)
1352                         return ret;
1353         }
1354
1355         if (!list_empty(&fs_info->dirty_cowonly_roots))
1356                 goto again;
1357
1358         /* Update dev-replace pointer once everything is committed */
1359         fs_info->dev_replace.committed_cursor_left =
1360                 fs_info->dev_replace.cursor_left_last_write_of_item;
1361
1362         return 0;
1363 }
1364
1365 /*
1366  * If we had a pending drop we need to see if there are any others left in our
1367  * dead roots list, and if not clear our bit and wake any waiters.
1368  */
1369 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1370 {
1371         /*
1372          * We put the drop in progress roots at the front of the list, so if the
1373          * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1374          * up.
1375          */
1376         spin_lock(&fs_info->trans_lock);
1377         if (!list_empty(&fs_info->dead_roots)) {
1378                 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1379                                                            struct btrfs_root,
1380                                                            root_list);
1381                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1382                         spin_unlock(&fs_info->trans_lock);
1383                         return;
1384                 }
1385         }
1386         spin_unlock(&fs_info->trans_lock);
1387
1388         btrfs_wake_unfinished_drop(fs_info);
1389 }
1390
1391 /*
1392  * dead roots are old snapshots that need to be deleted.  This allocates
1393  * a dirty root struct and adds it into the list of dead roots that need to
1394  * be deleted
1395  */
1396 void btrfs_add_dead_root(struct btrfs_root *root)
1397 {
1398         struct btrfs_fs_info *fs_info = root->fs_info;
1399
1400         spin_lock(&fs_info->trans_lock);
1401         if (list_empty(&root->root_list)) {
1402                 btrfs_grab_root(root);
1403
1404                 /* We want to process the partially complete drops first. */
1405                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1406                         list_add(&root->root_list, &fs_info->dead_roots);
1407                 else
1408                         list_add_tail(&root->root_list, &fs_info->dead_roots);
1409         }
1410         spin_unlock(&fs_info->trans_lock);
1411 }
1412
1413 /*
1414  * Update each subvolume root and its relocation root, if it exists, in the tree
1415  * of tree roots. Also free log roots if they exist.
1416  */
1417 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1418 {
1419         struct btrfs_fs_info *fs_info = trans->fs_info;
1420         struct btrfs_root *gang[8];
1421         int i;
1422         int ret;
1423
1424         /*
1425          * At this point no one can be using this transaction to modify any tree
1426          * and no one can start another transaction to modify any tree either.
1427          */
1428         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1429
1430         spin_lock(&fs_info->fs_roots_radix_lock);
1431         while (1) {
1432                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1433                                                  (void **)gang, 0,
1434                                                  ARRAY_SIZE(gang),
1435                                                  BTRFS_ROOT_TRANS_TAG);
1436                 if (ret == 0)
1437                         break;
1438                 for (i = 0; i < ret; i++) {
1439                         struct btrfs_root *root = gang[i];
1440                         int ret2;
1441
1442                         /*
1443                          * At this point we can neither have tasks logging inodes
1444                          * from a root nor trying to commit a log tree.
1445                          */
1446                         ASSERT(atomic_read(&root->log_writers) == 0);
1447                         ASSERT(atomic_read(&root->log_commit[0]) == 0);
1448                         ASSERT(atomic_read(&root->log_commit[1]) == 0);
1449
1450                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1451                                         (unsigned long)root->root_key.objectid,
1452                                         BTRFS_ROOT_TRANS_TAG);
1453                         spin_unlock(&fs_info->fs_roots_radix_lock);
1454
1455                         btrfs_free_log(trans, root);
1456                         ret2 = btrfs_update_reloc_root(trans, root);
1457                         if (ret2)
1458                                 return ret2;
1459
1460                         /* see comments in should_cow_block() */
1461                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1462                         smp_mb__after_atomic();
1463
1464                         if (root->commit_root != root->node) {
1465                                 list_add_tail(&root->dirty_list,
1466                                         &trans->transaction->switch_commits);
1467                                 btrfs_set_root_node(&root->root_item,
1468                                                     root->node);
1469                         }
1470
1471                         ret2 = btrfs_update_root(trans, fs_info->tree_root,
1472                                                 &root->root_key,
1473                                                 &root->root_item);
1474                         if (ret2)
1475                                 return ret2;
1476                         spin_lock(&fs_info->fs_roots_radix_lock);
1477                         btrfs_qgroup_free_meta_all_pertrans(root);
1478                 }
1479         }
1480         spin_unlock(&fs_info->fs_roots_radix_lock);
1481         return 0;
1482 }
1483
1484 /*
1485  * defrag a given btree.
1486  * Every leaf in the btree is read and defragged.
1487  */
1488 int btrfs_defrag_root(struct btrfs_root *root)
1489 {
1490         struct btrfs_fs_info *info = root->fs_info;
1491         struct btrfs_trans_handle *trans;
1492         int ret;
1493
1494         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1495                 return 0;
1496
1497         while (1) {
1498                 trans = btrfs_start_transaction(root, 0);
1499                 if (IS_ERR(trans)) {
1500                         ret = PTR_ERR(trans);
1501                         break;
1502                 }
1503
1504                 ret = btrfs_defrag_leaves(trans, root);
1505
1506                 btrfs_end_transaction(trans);
1507                 btrfs_btree_balance_dirty(info);
1508                 cond_resched();
1509
1510                 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1511                         break;
1512
1513                 if (btrfs_defrag_cancelled(info)) {
1514                         btrfs_debug(info, "defrag_root cancelled");
1515                         ret = -EAGAIN;
1516                         break;
1517                 }
1518         }
1519         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1520         return ret;
1521 }
1522
1523 /*
1524  * Do all special snapshot related qgroup dirty hack.
1525  *
1526  * Will do all needed qgroup inherit and dirty hack like switch commit
1527  * roots inside one transaction and write all btree into disk, to make
1528  * qgroup works.
1529  */
1530 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1531                                    struct btrfs_root *src,
1532                                    struct btrfs_root *parent,
1533                                    struct btrfs_qgroup_inherit *inherit,
1534                                    u64 dst_objectid)
1535 {
1536         struct btrfs_fs_info *fs_info = src->fs_info;
1537         int ret;
1538
1539         /*
1540          * Save some performance in the case that qgroups are not
1541          * enabled. If this check races with the ioctl, rescan will
1542          * kick in anyway.
1543          */
1544         if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1545                 return 0;
1546
1547         /*
1548          * Ensure dirty @src will be committed.  Or, after coming
1549          * commit_fs_roots() and switch_commit_roots(), any dirty but not
1550          * recorded root will never be updated again, causing an outdated root
1551          * item.
1552          */
1553         ret = record_root_in_trans(trans, src, 1);
1554         if (ret)
1555                 return ret;
1556
1557         /*
1558          * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1559          * src root, so we must run the delayed refs here.
1560          *
1561          * However this isn't particularly fool proof, because there's no
1562          * synchronization keeping us from changing the tree after this point
1563          * before we do the qgroup_inherit, or even from making changes while
1564          * we're doing the qgroup_inherit.  But that's a problem for the future,
1565          * for now flush the delayed refs to narrow the race window where the
1566          * qgroup counters could end up wrong.
1567          */
1568         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1569         if (ret) {
1570                 btrfs_abort_transaction(trans, ret);
1571                 return ret;
1572         }
1573
1574         ret = commit_fs_roots(trans);
1575         if (ret)
1576                 goto out;
1577         ret = btrfs_qgroup_account_extents(trans);
1578         if (ret < 0)
1579                 goto out;
1580
1581         /* Now qgroup are all updated, we can inherit it to new qgroups */
1582         ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1583                                    inherit);
1584         if (ret < 0)
1585                 goto out;
1586
1587         /*
1588          * Now we do a simplified commit transaction, which will:
1589          * 1) commit all subvolume and extent tree
1590          *    To ensure all subvolume and extent tree have a valid
1591          *    commit_root to accounting later insert_dir_item()
1592          * 2) write all btree blocks onto disk
1593          *    This is to make sure later btree modification will be cowed
1594          *    Or commit_root can be populated and cause wrong qgroup numbers
1595          * In this simplified commit, we don't really care about other trees
1596          * like chunk and root tree, as they won't affect qgroup.
1597          * And we don't write super to avoid half committed status.
1598          */
1599         ret = commit_cowonly_roots(trans);
1600         if (ret)
1601                 goto out;
1602         switch_commit_roots(trans);
1603         ret = btrfs_write_and_wait_transaction(trans);
1604         if (ret)
1605                 btrfs_handle_fs_error(fs_info, ret,
1606                         "Error while writing out transaction for qgroup");
1607
1608 out:
1609         /*
1610          * Force parent root to be updated, as we recorded it before so its
1611          * last_trans == cur_transid.
1612          * Or it won't be committed again onto disk after later
1613          * insert_dir_item()
1614          */
1615         if (!ret)
1616                 ret = record_root_in_trans(trans, parent, 1);
1617         return ret;
1618 }
1619
1620 /*
1621  * new snapshots need to be created at a very specific time in the
1622  * transaction commit.  This does the actual creation.
1623  *
1624  * Note:
1625  * If the error which may affect the commitment of the current transaction
1626  * happens, we should return the error number. If the error which just affect
1627  * the creation of the pending snapshots, just return 0.
1628  */
1629 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1630                                    struct btrfs_pending_snapshot *pending)
1631 {
1632
1633         struct btrfs_fs_info *fs_info = trans->fs_info;
1634         struct btrfs_key key;
1635         struct btrfs_root_item *new_root_item;
1636         struct btrfs_root *tree_root = fs_info->tree_root;
1637         struct btrfs_root *root = pending->root;
1638         struct btrfs_root *parent_root;
1639         struct btrfs_block_rsv *rsv;
1640         struct inode *parent_inode = pending->dir;
1641         struct btrfs_path *path;
1642         struct btrfs_dir_item *dir_item;
1643         struct extent_buffer *tmp;
1644         struct extent_buffer *old;
1645         struct timespec64 cur_time;
1646         int ret = 0;
1647         u64 to_reserve = 0;
1648         u64 index = 0;
1649         u64 objectid;
1650         u64 root_flags;
1651         unsigned int nofs_flags;
1652         struct fscrypt_name fname;
1653
1654         ASSERT(pending->path);
1655         path = pending->path;
1656
1657         ASSERT(pending->root_item);
1658         new_root_item = pending->root_item;
1659
1660         /*
1661          * We're inside a transaction and must make sure that any potential
1662          * allocations with GFP_KERNEL in fscrypt won't recurse back to
1663          * filesystem.
1664          */
1665         nofs_flags = memalloc_nofs_save();
1666         pending->error = fscrypt_setup_filename(parent_inode,
1667                                                 &pending->dentry->d_name, 0,
1668                                                 &fname);
1669         memalloc_nofs_restore(nofs_flags);
1670         if (pending->error)
1671                 goto free_pending;
1672
1673         pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1674         if (pending->error)
1675                 goto free_fname;
1676
1677         /*
1678          * Make qgroup to skip current new snapshot's qgroupid, as it is
1679          * accounted by later btrfs_qgroup_inherit().
1680          */
1681         btrfs_set_skip_qgroup(trans, objectid);
1682
1683         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1684
1685         if (to_reserve > 0) {
1686                 pending->error = btrfs_block_rsv_add(fs_info,
1687                                                      &pending->block_rsv,
1688                                                      to_reserve,
1689                                                      BTRFS_RESERVE_NO_FLUSH);
1690                 if (pending->error)
1691                         goto clear_skip_qgroup;
1692         }
1693
1694         key.objectid = objectid;
1695         key.offset = (u64)-1;
1696         key.type = BTRFS_ROOT_ITEM_KEY;
1697
1698         rsv = trans->block_rsv;
1699         trans->block_rsv = &pending->block_rsv;
1700         trans->bytes_reserved = trans->block_rsv->reserved;
1701         trace_btrfs_space_reservation(fs_info, "transaction",
1702                                       trans->transid,
1703                                       trans->bytes_reserved, 1);
1704         parent_root = BTRFS_I(parent_inode)->root;
1705         ret = record_root_in_trans(trans, parent_root, 0);
1706         if (ret)
1707                 goto fail;
1708         cur_time = current_time(parent_inode);
1709
1710         /*
1711          * insert the directory item
1712          */
1713         ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1714         if (ret) {
1715                 btrfs_abort_transaction(trans, ret);
1716                 goto fail;
1717         }
1718
1719         /* check if there is a file/dir which has the same name. */
1720         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1721                                          btrfs_ino(BTRFS_I(parent_inode)),
1722                                          &fname.disk_name, 0);
1723         if (dir_item != NULL && !IS_ERR(dir_item)) {
1724                 pending->error = -EEXIST;
1725                 goto dir_item_existed;
1726         } else if (IS_ERR(dir_item)) {
1727                 ret = PTR_ERR(dir_item);
1728                 btrfs_abort_transaction(trans, ret);
1729                 goto fail;
1730         }
1731         btrfs_release_path(path);
1732
1733         /*
1734          * pull in the delayed directory update
1735          * and the delayed inode item
1736          * otherwise we corrupt the FS during
1737          * snapshot
1738          */
1739         ret = btrfs_run_delayed_items(trans);
1740         if (ret) {      /* Transaction aborted */
1741                 btrfs_abort_transaction(trans, ret);
1742                 goto fail;
1743         }
1744
1745         ret = record_root_in_trans(trans, root, 0);
1746         if (ret) {
1747                 btrfs_abort_transaction(trans, ret);
1748                 goto fail;
1749         }
1750         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1751         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1752         btrfs_check_and_init_root_item(new_root_item);
1753
1754         root_flags = btrfs_root_flags(new_root_item);
1755         if (pending->readonly)
1756                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1757         else
1758                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1759         btrfs_set_root_flags(new_root_item, root_flags);
1760
1761         btrfs_set_root_generation_v2(new_root_item,
1762                         trans->transid);
1763         generate_random_guid(new_root_item->uuid);
1764         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1765                         BTRFS_UUID_SIZE);
1766         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1767                 memset(new_root_item->received_uuid, 0,
1768                        sizeof(new_root_item->received_uuid));
1769                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1770                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1771                 btrfs_set_root_stransid(new_root_item, 0);
1772                 btrfs_set_root_rtransid(new_root_item, 0);
1773         }
1774         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1775         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1776         btrfs_set_root_otransid(new_root_item, trans->transid);
1777
1778         old = btrfs_lock_root_node(root);
1779         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1780                               BTRFS_NESTING_COW);
1781         if (ret) {
1782                 btrfs_tree_unlock(old);
1783                 free_extent_buffer(old);
1784                 btrfs_abort_transaction(trans, ret);
1785                 goto fail;
1786         }
1787
1788         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1789         /* clean up in any case */
1790         btrfs_tree_unlock(old);
1791         free_extent_buffer(old);
1792         if (ret) {
1793                 btrfs_abort_transaction(trans, ret);
1794                 goto fail;
1795         }
1796         /* see comments in should_cow_block() */
1797         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1798         smp_wmb();
1799
1800         btrfs_set_root_node(new_root_item, tmp);
1801         /* record when the snapshot was created in key.offset */
1802         key.offset = trans->transid;
1803         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1804         btrfs_tree_unlock(tmp);
1805         free_extent_buffer(tmp);
1806         if (ret) {
1807                 btrfs_abort_transaction(trans, ret);
1808                 goto fail;
1809         }
1810
1811         /*
1812          * insert root back/forward references
1813          */
1814         ret = btrfs_add_root_ref(trans, objectid,
1815                                  parent_root->root_key.objectid,
1816                                  btrfs_ino(BTRFS_I(parent_inode)), index,
1817                                  &fname.disk_name);
1818         if (ret) {
1819                 btrfs_abort_transaction(trans, ret);
1820                 goto fail;
1821         }
1822
1823         key.offset = (u64)-1;
1824         pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1825         if (IS_ERR(pending->snap)) {
1826                 ret = PTR_ERR(pending->snap);
1827                 pending->snap = NULL;
1828                 btrfs_abort_transaction(trans, ret);
1829                 goto fail;
1830         }
1831
1832         ret = btrfs_reloc_post_snapshot(trans, pending);
1833         if (ret) {
1834                 btrfs_abort_transaction(trans, ret);
1835                 goto fail;
1836         }
1837
1838         /*
1839          * Do special qgroup accounting for snapshot, as we do some qgroup
1840          * snapshot hack to do fast snapshot.
1841          * To co-operate with that hack, we do hack again.
1842          * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1843          */
1844         ret = qgroup_account_snapshot(trans, root, parent_root,
1845                                       pending->inherit, objectid);
1846         if (ret < 0)
1847                 goto fail;
1848
1849         ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1850                                     BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1851                                     index);
1852         /* We have check then name at the beginning, so it is impossible. */
1853         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1854         if (ret) {
1855                 btrfs_abort_transaction(trans, ret);
1856                 goto fail;
1857         }
1858
1859         btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1860                                                   fname.disk_name.len * 2);
1861         parent_inode->i_mtime = inode_set_ctime_current(parent_inode);
1862         ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1863         if (ret) {
1864                 btrfs_abort_transaction(trans, ret);
1865                 goto fail;
1866         }
1867         ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1868                                   BTRFS_UUID_KEY_SUBVOL,
1869                                   objectid);
1870         if (ret) {
1871                 btrfs_abort_transaction(trans, ret);
1872                 goto fail;
1873         }
1874         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1875                 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1876                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1877                                           objectid);
1878                 if (ret && ret != -EEXIST) {
1879                         btrfs_abort_transaction(trans, ret);
1880                         goto fail;
1881                 }
1882         }
1883
1884 fail:
1885         pending->error = ret;
1886 dir_item_existed:
1887         trans->block_rsv = rsv;
1888         trans->bytes_reserved = 0;
1889 clear_skip_qgroup:
1890         btrfs_clear_skip_qgroup(trans);
1891 free_fname:
1892         fscrypt_free_filename(&fname);
1893 free_pending:
1894         kfree(new_root_item);
1895         pending->root_item = NULL;
1896         btrfs_free_path(path);
1897         pending->path = NULL;
1898
1899         return ret;
1900 }
1901
1902 /*
1903  * create all the snapshots we've scheduled for creation
1904  */
1905 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1906 {
1907         struct btrfs_pending_snapshot *pending, *next;
1908         struct list_head *head = &trans->transaction->pending_snapshots;
1909         int ret = 0;
1910
1911         list_for_each_entry_safe(pending, next, head, list) {
1912                 list_del(&pending->list);
1913                 ret = create_pending_snapshot(trans, pending);
1914                 if (ret)
1915                         break;
1916         }
1917         return ret;
1918 }
1919
1920 static void update_super_roots(struct btrfs_fs_info *fs_info)
1921 {
1922         struct btrfs_root_item *root_item;
1923         struct btrfs_super_block *super;
1924
1925         super = fs_info->super_copy;
1926
1927         root_item = &fs_info->chunk_root->root_item;
1928         super->chunk_root = root_item->bytenr;
1929         super->chunk_root_generation = root_item->generation;
1930         super->chunk_root_level = root_item->level;
1931
1932         root_item = &fs_info->tree_root->root_item;
1933         super->root = root_item->bytenr;
1934         super->generation = root_item->generation;
1935         super->root_level = root_item->level;
1936         if (btrfs_test_opt(fs_info, SPACE_CACHE))
1937                 super->cache_generation = root_item->generation;
1938         else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1939                 super->cache_generation = 0;
1940         if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1941                 super->uuid_tree_generation = root_item->generation;
1942 }
1943
1944 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1945 {
1946         struct btrfs_transaction *trans;
1947         int ret = 0;
1948
1949         spin_lock(&info->trans_lock);
1950         trans = info->running_transaction;
1951         if (trans)
1952                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1953         spin_unlock(&info->trans_lock);
1954         return ret;
1955 }
1956
1957 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1958 {
1959         struct btrfs_transaction *trans;
1960         int ret = 0;
1961
1962         spin_lock(&info->trans_lock);
1963         trans = info->running_transaction;
1964         if (trans)
1965                 ret = is_transaction_blocked(trans);
1966         spin_unlock(&info->trans_lock);
1967         return ret;
1968 }
1969
1970 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1971 {
1972         struct btrfs_fs_info *fs_info = trans->fs_info;
1973         struct btrfs_transaction *cur_trans;
1974
1975         /* Kick the transaction kthread. */
1976         set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1977         wake_up_process(fs_info->transaction_kthread);
1978
1979         /* take transaction reference */
1980         cur_trans = trans->transaction;
1981         refcount_inc(&cur_trans->use_count);
1982
1983         btrfs_end_transaction(trans);
1984
1985         /*
1986          * Wait for the current transaction commit to start and block
1987          * subsequent transaction joins
1988          */
1989         btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1990         wait_event(fs_info->transaction_blocked_wait,
1991                    cur_trans->state >= TRANS_STATE_COMMIT_START ||
1992                    TRANS_ABORTED(cur_trans));
1993         btrfs_put_transaction(cur_trans);
1994 }
1995
1996 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1997 {
1998         struct btrfs_fs_info *fs_info = trans->fs_info;
1999         struct btrfs_transaction *cur_trans = trans->transaction;
2000
2001         WARN_ON(refcount_read(&trans->use_count) > 1);
2002
2003         btrfs_abort_transaction(trans, err);
2004
2005         spin_lock(&fs_info->trans_lock);
2006
2007         /*
2008          * If the transaction is removed from the list, it means this
2009          * transaction has been committed successfully, so it is impossible
2010          * to call the cleanup function.
2011          */
2012         BUG_ON(list_empty(&cur_trans->list));
2013
2014         if (cur_trans == fs_info->running_transaction) {
2015                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2016                 spin_unlock(&fs_info->trans_lock);
2017
2018                 /*
2019                  * The thread has already released the lockdep map as reader
2020                  * already in btrfs_commit_transaction().
2021                  */
2022                 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2023                 wait_event(cur_trans->writer_wait,
2024                            atomic_read(&cur_trans->num_writers) == 1);
2025
2026                 spin_lock(&fs_info->trans_lock);
2027         }
2028
2029         /*
2030          * Now that we know no one else is still using the transaction we can
2031          * remove the transaction from the list of transactions. This avoids
2032          * the transaction kthread from cleaning up the transaction while some
2033          * other task is still using it, which could result in a use-after-free
2034          * on things like log trees, as it forces the transaction kthread to
2035          * wait for this transaction to be cleaned up by us.
2036          */
2037         list_del_init(&cur_trans->list);
2038
2039         spin_unlock(&fs_info->trans_lock);
2040
2041         btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2042
2043         spin_lock(&fs_info->trans_lock);
2044         if (cur_trans == fs_info->running_transaction)
2045                 fs_info->running_transaction = NULL;
2046         spin_unlock(&fs_info->trans_lock);
2047
2048         if (trans->type & __TRANS_FREEZABLE)
2049                 sb_end_intwrite(fs_info->sb);
2050         btrfs_put_transaction(cur_trans);
2051         btrfs_put_transaction(cur_trans);
2052
2053         trace_btrfs_transaction_commit(fs_info);
2054
2055         if (current->journal_info == trans)
2056                 current->journal_info = NULL;
2057
2058         /*
2059          * If relocation is running, we can't cancel scrub because that will
2060          * result in a deadlock. Before relocating a block group, relocation
2061          * pauses scrub, then starts and commits a transaction before unpausing
2062          * scrub. If the transaction commit is being done by the relocation
2063          * task or triggered by another task and the relocation task is waiting
2064          * for the commit, and we end up here due to an error in the commit
2065          * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2066          * asking for scrub to stop while having it asked to be paused higher
2067          * above in relocation code.
2068          */
2069         if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2070                 btrfs_scrub_cancel(fs_info);
2071
2072         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2073 }
2074
2075 /*
2076  * Release reserved delayed ref space of all pending block groups of the
2077  * transaction and remove them from the list
2078  */
2079 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2080 {
2081        struct btrfs_fs_info *fs_info = trans->fs_info;
2082        struct btrfs_block_group *block_group, *tmp;
2083
2084        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2085                btrfs_delayed_refs_rsv_release(fs_info, 1);
2086                list_del_init(&block_group->bg_list);
2087        }
2088 }
2089
2090 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2091 {
2092         /*
2093          * We use try_to_writeback_inodes_sb() here because if we used
2094          * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2095          * Currently are holding the fs freeze lock, if we do an async flush
2096          * we'll do btrfs_join_transaction() and deadlock because we need to
2097          * wait for the fs freeze lock.  Using the direct flushing we benefit
2098          * from already being in a transaction and our join_transaction doesn't
2099          * have to re-take the fs freeze lock.
2100          *
2101          * Note that try_to_writeback_inodes_sb() will only trigger writeback
2102          * if it can read lock sb->s_umount. It will always be able to lock it,
2103          * except when the filesystem is being unmounted or being frozen, but in
2104          * those cases sync_filesystem() is called, which results in calling
2105          * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2106          * Note that we don't call writeback_inodes_sb() directly, because it
2107          * will emit a warning if sb->s_umount is not locked.
2108          */
2109         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2110                 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2111         return 0;
2112 }
2113
2114 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2115 {
2116         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2117                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2118 }
2119
2120 /*
2121  * Add a pending snapshot associated with the given transaction handle to the
2122  * respective handle. This must be called after the transaction commit started
2123  * and while holding fs_info->trans_lock.
2124  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2125  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2126  * returns an error.
2127  */
2128 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2129 {
2130         struct btrfs_transaction *cur_trans = trans->transaction;
2131
2132         if (!trans->pending_snapshot)
2133                 return;
2134
2135         lockdep_assert_held(&trans->fs_info->trans_lock);
2136         ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2137
2138         list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2139 }
2140
2141 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2142 {
2143         fs_info->commit_stats.commit_count++;
2144         fs_info->commit_stats.last_commit_dur = interval;
2145         fs_info->commit_stats.max_commit_dur =
2146                         max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2147         fs_info->commit_stats.total_commit_dur += interval;
2148 }
2149
2150 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2151 {
2152         struct btrfs_fs_info *fs_info = trans->fs_info;
2153         struct btrfs_transaction *cur_trans = trans->transaction;
2154         struct btrfs_transaction *prev_trans = NULL;
2155         int ret;
2156         ktime_t start_time;
2157         ktime_t interval;
2158
2159         ASSERT(refcount_read(&trans->use_count) == 1);
2160         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2161
2162         clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2163
2164         /* Stop the commit early if ->aborted is set */
2165         if (TRANS_ABORTED(cur_trans)) {
2166                 ret = cur_trans->aborted;
2167                 goto lockdep_trans_commit_start_release;
2168         }
2169
2170         btrfs_trans_release_metadata(trans);
2171         trans->block_rsv = NULL;
2172
2173         /*
2174          * We only want one transaction commit doing the flushing so we do not
2175          * waste a bunch of time on lock contention on the extent root node.
2176          */
2177         if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2178                               &cur_trans->delayed_refs.flags)) {
2179                 /*
2180                  * Make a pass through all the delayed refs we have so far.
2181                  * Any running threads may add more while we are here.
2182                  */
2183                 ret = btrfs_run_delayed_refs(trans, 0);
2184                 if (ret)
2185                         goto lockdep_trans_commit_start_release;
2186         }
2187
2188         btrfs_create_pending_block_groups(trans);
2189
2190         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2191                 int run_it = 0;
2192
2193                 /* this mutex is also taken before trying to set
2194                  * block groups readonly.  We need to make sure
2195                  * that nobody has set a block group readonly
2196                  * after a extents from that block group have been
2197                  * allocated for cache files.  btrfs_set_block_group_ro
2198                  * will wait for the transaction to commit if it
2199                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2200                  *
2201                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2202                  * only one process starts all the block group IO.  It wouldn't
2203                  * hurt to have more than one go through, but there's no
2204                  * real advantage to it either.
2205                  */
2206                 mutex_lock(&fs_info->ro_block_group_mutex);
2207                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2208                                       &cur_trans->flags))
2209                         run_it = 1;
2210                 mutex_unlock(&fs_info->ro_block_group_mutex);
2211
2212                 if (run_it) {
2213                         ret = btrfs_start_dirty_block_groups(trans);
2214                         if (ret)
2215                                 goto lockdep_trans_commit_start_release;
2216                 }
2217         }
2218
2219         spin_lock(&fs_info->trans_lock);
2220         if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2221                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2222
2223                 add_pending_snapshot(trans);
2224
2225                 spin_unlock(&fs_info->trans_lock);
2226                 refcount_inc(&cur_trans->use_count);
2227
2228                 if (trans->in_fsync)
2229                         want_state = TRANS_STATE_SUPER_COMMITTED;
2230
2231                 btrfs_trans_state_lockdep_release(fs_info,
2232                                                   BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2233                 ret = btrfs_end_transaction(trans);
2234                 wait_for_commit(cur_trans, want_state);
2235
2236                 if (TRANS_ABORTED(cur_trans))
2237                         ret = cur_trans->aborted;
2238
2239                 btrfs_put_transaction(cur_trans);
2240
2241                 return ret;
2242         }
2243
2244         cur_trans->state = TRANS_STATE_COMMIT_PREP;
2245         wake_up(&fs_info->transaction_blocked_wait);
2246         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2247
2248         if (cur_trans->list.prev != &fs_info->trans_list) {
2249                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2250
2251                 if (trans->in_fsync)
2252                         want_state = TRANS_STATE_SUPER_COMMITTED;
2253
2254                 prev_trans = list_entry(cur_trans->list.prev,
2255                                         struct btrfs_transaction, list);
2256                 if (prev_trans->state < want_state) {
2257                         refcount_inc(&prev_trans->use_count);
2258                         spin_unlock(&fs_info->trans_lock);
2259
2260                         wait_for_commit(prev_trans, want_state);
2261
2262                         ret = READ_ONCE(prev_trans->aborted);
2263
2264                         btrfs_put_transaction(prev_trans);
2265                         if (ret)
2266                                 goto lockdep_release;
2267                         spin_lock(&fs_info->trans_lock);
2268                 }
2269         } else {
2270                 /*
2271                  * The previous transaction was aborted and was already removed
2272                  * from the list of transactions at fs_info->trans_list. So we
2273                  * abort to prevent writing a new superblock that reflects a
2274                  * corrupt state (pointing to trees with unwritten nodes/leafs).
2275                  */
2276                 if (BTRFS_FS_ERROR(fs_info)) {
2277                         spin_unlock(&fs_info->trans_lock);
2278                         ret = -EROFS;
2279                         goto lockdep_release;
2280                 }
2281         }
2282
2283         cur_trans->state = TRANS_STATE_COMMIT_START;
2284         wake_up(&fs_info->transaction_blocked_wait);
2285         spin_unlock(&fs_info->trans_lock);
2286
2287         /*
2288          * Get the time spent on the work done by the commit thread and not
2289          * the time spent waiting on a previous commit
2290          */
2291         start_time = ktime_get_ns();
2292
2293         extwriter_counter_dec(cur_trans, trans->type);
2294
2295         ret = btrfs_start_delalloc_flush(fs_info);
2296         if (ret)
2297                 goto lockdep_release;
2298
2299         ret = btrfs_run_delayed_items(trans);
2300         if (ret)
2301                 goto lockdep_release;
2302
2303         /*
2304          * The thread has started/joined the transaction thus it holds the
2305          * lockdep map as a reader. It has to release it before acquiring the
2306          * lockdep map as a writer.
2307          */
2308         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2309         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2310         wait_event(cur_trans->writer_wait,
2311                    extwriter_counter_read(cur_trans) == 0);
2312
2313         /* some pending stuffs might be added after the previous flush. */
2314         ret = btrfs_run_delayed_items(trans);
2315         if (ret) {
2316                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2317                 goto cleanup_transaction;
2318         }
2319
2320         btrfs_wait_delalloc_flush(fs_info);
2321
2322         /*
2323          * Wait for all ordered extents started by a fast fsync that joined this
2324          * transaction. Otherwise if this transaction commits before the ordered
2325          * extents complete we lose logged data after a power failure.
2326          */
2327         btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2328         wait_event(cur_trans->pending_wait,
2329                    atomic_read(&cur_trans->pending_ordered) == 0);
2330
2331         btrfs_scrub_pause(fs_info);
2332         /*
2333          * Ok now we need to make sure to block out any other joins while we
2334          * commit the transaction.  We could have started a join before setting
2335          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2336          */
2337         spin_lock(&fs_info->trans_lock);
2338         add_pending_snapshot(trans);
2339         cur_trans->state = TRANS_STATE_COMMIT_DOING;
2340         spin_unlock(&fs_info->trans_lock);
2341
2342         /*
2343          * The thread has started/joined the transaction thus it holds the
2344          * lockdep map as a reader. It has to release it before acquiring the
2345          * lockdep map as a writer.
2346          */
2347         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2348         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2349         wait_event(cur_trans->writer_wait,
2350                    atomic_read(&cur_trans->num_writers) == 1);
2351
2352         /*
2353          * Make lockdep happy by acquiring the state locks after
2354          * btrfs_trans_num_writers is released. If we acquired the state locks
2355          * before releasing the btrfs_trans_num_writers lock then lockdep would
2356          * complain because we did not follow the reverse order unlocking rule.
2357          */
2358         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2359         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2360         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2361
2362         /*
2363          * We've started the commit, clear the flag in case we were triggered to
2364          * do an async commit but somebody else started before the transaction
2365          * kthread could do the work.
2366          */
2367         clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2368
2369         if (TRANS_ABORTED(cur_trans)) {
2370                 ret = cur_trans->aborted;
2371                 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2372                 goto scrub_continue;
2373         }
2374         /*
2375          * the reloc mutex makes sure that we stop
2376          * the balancing code from coming in and moving
2377          * extents around in the middle of the commit
2378          */
2379         mutex_lock(&fs_info->reloc_mutex);
2380
2381         /*
2382          * We needn't worry about the delayed items because we will
2383          * deal with them in create_pending_snapshot(), which is the
2384          * core function of the snapshot creation.
2385          */
2386         ret = create_pending_snapshots(trans);
2387         if (ret)
2388                 goto unlock_reloc;
2389
2390         /*
2391          * We insert the dir indexes of the snapshots and update the inode
2392          * of the snapshots' parents after the snapshot creation, so there
2393          * are some delayed items which are not dealt with. Now deal with
2394          * them.
2395          *
2396          * We needn't worry that this operation will corrupt the snapshots,
2397          * because all the tree which are snapshoted will be forced to COW
2398          * the nodes and leaves.
2399          */
2400         ret = btrfs_run_delayed_items(trans);
2401         if (ret)
2402                 goto unlock_reloc;
2403
2404         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2405         if (ret)
2406                 goto unlock_reloc;
2407
2408         /*
2409          * make sure none of the code above managed to slip in a
2410          * delayed item
2411          */
2412         btrfs_assert_delayed_root_empty(fs_info);
2413
2414         WARN_ON(cur_trans != trans->transaction);
2415
2416         ret = commit_fs_roots(trans);
2417         if (ret)
2418                 goto unlock_reloc;
2419
2420         /* commit_fs_roots gets rid of all the tree log roots, it is now
2421          * safe to free the root of tree log roots
2422          */
2423         btrfs_free_log_root_tree(trans, fs_info);
2424
2425         /*
2426          * Since fs roots are all committed, we can get a quite accurate
2427          * new_roots. So let's do quota accounting.
2428          */
2429         ret = btrfs_qgroup_account_extents(trans);
2430         if (ret < 0)
2431                 goto unlock_reloc;
2432
2433         ret = commit_cowonly_roots(trans);
2434         if (ret)
2435                 goto unlock_reloc;
2436
2437         /*
2438          * The tasks which save the space cache and inode cache may also
2439          * update ->aborted, check it.
2440          */
2441         if (TRANS_ABORTED(cur_trans)) {
2442                 ret = cur_trans->aborted;
2443                 goto unlock_reloc;
2444         }
2445
2446         cur_trans = fs_info->running_transaction;
2447
2448         btrfs_set_root_node(&fs_info->tree_root->root_item,
2449                             fs_info->tree_root->node);
2450         list_add_tail(&fs_info->tree_root->dirty_list,
2451                       &cur_trans->switch_commits);
2452
2453         btrfs_set_root_node(&fs_info->chunk_root->root_item,
2454                             fs_info->chunk_root->node);
2455         list_add_tail(&fs_info->chunk_root->dirty_list,
2456                       &cur_trans->switch_commits);
2457
2458         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2459                 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2460                                     fs_info->block_group_root->node);
2461                 list_add_tail(&fs_info->block_group_root->dirty_list,
2462                               &cur_trans->switch_commits);
2463         }
2464
2465         switch_commit_roots(trans);
2466
2467         ASSERT(list_empty(&cur_trans->dirty_bgs));
2468         ASSERT(list_empty(&cur_trans->io_bgs));
2469         update_super_roots(fs_info);
2470
2471         btrfs_set_super_log_root(fs_info->super_copy, 0);
2472         btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2473         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2474                sizeof(*fs_info->super_copy));
2475
2476         btrfs_commit_device_sizes(cur_trans);
2477
2478         clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2479         clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2480
2481         btrfs_trans_release_chunk_metadata(trans);
2482
2483         /*
2484          * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2485          * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2486          * make sure that before we commit our superblock, no other task can
2487          * start a new transaction and commit a log tree before we commit our
2488          * superblock. Anyone trying to commit a log tree locks this mutex before
2489          * writing its superblock.
2490          */
2491         mutex_lock(&fs_info->tree_log_mutex);
2492
2493         spin_lock(&fs_info->trans_lock);
2494         cur_trans->state = TRANS_STATE_UNBLOCKED;
2495         fs_info->running_transaction = NULL;
2496         spin_unlock(&fs_info->trans_lock);
2497         mutex_unlock(&fs_info->reloc_mutex);
2498
2499         wake_up(&fs_info->transaction_wait);
2500         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2501
2502         /* If we have features changed, wake up the cleaner to update sysfs. */
2503         if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2504             fs_info->cleaner_kthread)
2505                 wake_up_process(fs_info->cleaner_kthread);
2506
2507         ret = btrfs_write_and_wait_transaction(trans);
2508         if (ret) {
2509                 btrfs_handle_fs_error(fs_info, ret,
2510                                       "Error while writing out transaction");
2511                 mutex_unlock(&fs_info->tree_log_mutex);
2512                 goto scrub_continue;
2513         }
2514
2515         ret = write_all_supers(fs_info, 0);
2516         /*
2517          * the super is written, we can safely allow the tree-loggers
2518          * to go about their business
2519          */
2520         mutex_unlock(&fs_info->tree_log_mutex);
2521         if (ret)
2522                 goto scrub_continue;
2523
2524         /*
2525          * We needn't acquire the lock here because there is no other task
2526          * which can change it.
2527          */
2528         cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2529         wake_up(&cur_trans->commit_wait);
2530         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2531
2532         btrfs_finish_extent_commit(trans);
2533
2534         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2535                 btrfs_clear_space_info_full(fs_info);
2536
2537         fs_info->last_trans_committed = cur_trans->transid;
2538         /*
2539          * We needn't acquire the lock here because there is no other task
2540          * which can change it.
2541          */
2542         cur_trans->state = TRANS_STATE_COMPLETED;
2543         wake_up(&cur_trans->commit_wait);
2544         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2545
2546         spin_lock(&fs_info->trans_lock);
2547         list_del_init(&cur_trans->list);
2548         spin_unlock(&fs_info->trans_lock);
2549
2550         btrfs_put_transaction(cur_trans);
2551         btrfs_put_transaction(cur_trans);
2552
2553         if (trans->type & __TRANS_FREEZABLE)
2554                 sb_end_intwrite(fs_info->sb);
2555
2556         trace_btrfs_transaction_commit(fs_info);
2557
2558         interval = ktime_get_ns() - start_time;
2559
2560         btrfs_scrub_continue(fs_info);
2561
2562         if (current->journal_info == trans)
2563                 current->journal_info = NULL;
2564
2565         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2566
2567         update_commit_stats(fs_info, interval);
2568
2569         return ret;
2570
2571 unlock_reloc:
2572         mutex_unlock(&fs_info->reloc_mutex);
2573         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2574 scrub_continue:
2575         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2576         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2577         btrfs_scrub_continue(fs_info);
2578 cleanup_transaction:
2579         btrfs_trans_release_metadata(trans);
2580         btrfs_cleanup_pending_block_groups(trans);
2581         btrfs_trans_release_chunk_metadata(trans);
2582         trans->block_rsv = NULL;
2583         btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2584         if (current->journal_info == trans)
2585                 current->journal_info = NULL;
2586         cleanup_transaction(trans, ret);
2587
2588         return ret;
2589
2590 lockdep_release:
2591         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2592         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2593         goto cleanup_transaction;
2594
2595 lockdep_trans_commit_start_release:
2596         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2597         btrfs_end_transaction(trans);
2598         return ret;
2599 }
2600
2601 /*
2602  * return < 0 if error
2603  * 0 if there are no more dead_roots at the time of call
2604  * 1 there are more to be processed, call me again
2605  *
2606  * The return value indicates there are certainly more snapshots to delete, but
2607  * if there comes a new one during processing, it may return 0. We don't mind,
2608  * because btrfs_commit_super will poke cleaner thread and it will process it a
2609  * few seconds later.
2610  */
2611 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2612 {
2613         struct btrfs_root *root;
2614         int ret;
2615
2616         spin_lock(&fs_info->trans_lock);
2617         if (list_empty(&fs_info->dead_roots)) {
2618                 spin_unlock(&fs_info->trans_lock);
2619                 return 0;
2620         }
2621         root = list_first_entry(&fs_info->dead_roots,
2622                         struct btrfs_root, root_list);
2623         list_del_init(&root->root_list);
2624         spin_unlock(&fs_info->trans_lock);
2625
2626         btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2627
2628         btrfs_kill_all_delayed_nodes(root);
2629
2630         if (btrfs_header_backref_rev(root->node) <
2631                         BTRFS_MIXED_BACKREF_REV)
2632                 ret = btrfs_drop_snapshot(root, 0, 0);
2633         else
2634                 ret = btrfs_drop_snapshot(root, 1, 0);
2635
2636         btrfs_put_root(root);
2637         return (ret < 0) ? 0 : 1;
2638 }
2639
2640 /*
2641  * We only mark the transaction aborted and then set the file system read-only.
2642  * This will prevent new transactions from starting or trying to join this
2643  * one.
2644  *
2645  * This means that error recovery at the call site is limited to freeing
2646  * any local memory allocations and passing the error code up without
2647  * further cleanup. The transaction should complete as it normally would
2648  * in the call path but will return -EIO.
2649  *
2650  * We'll complete the cleanup in btrfs_end_transaction and
2651  * btrfs_commit_transaction.
2652  */
2653 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2654                                       const char *function,
2655                                       unsigned int line, int errno, bool first_hit)
2656 {
2657         struct btrfs_fs_info *fs_info = trans->fs_info;
2658
2659         WRITE_ONCE(trans->aborted, errno);
2660         WRITE_ONCE(trans->transaction->aborted, errno);
2661         if (first_hit && errno == -ENOSPC)
2662                 btrfs_dump_space_info_for_trans_abort(fs_info);
2663         /* Wake up anybody who may be waiting on this transaction */
2664         wake_up(&fs_info->transaction_wait);
2665         wake_up(&fs_info->transaction_blocked_wait);
2666         __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
2667 }
2668
2669 int __init btrfs_transaction_init(void)
2670 {
2671         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2672                         sizeof(struct btrfs_trans_handle), 0,
2673                         SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2674         if (!btrfs_trans_handle_cachep)
2675                 return -ENOMEM;
2676         return 0;
2677 }
2678
2679 void __cold btrfs_transaction_exit(void)
2680 {
2681         kmem_cache_destroy(btrfs_trans_handle_cachep);
2682 }