vfs: make fchmodat retry once on ESTALE errors
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/btrfs.h>
62
63 static const struct super_operations btrfs_super_ops;
64 static struct file_system_type btrfs_fs_type;
65
66 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
67                                       char nbuf[16])
68 {
69         char *errstr = NULL;
70
71         switch (errno) {
72         case -EIO:
73                 errstr = "IO failure";
74                 break;
75         case -ENOMEM:
76                 errstr = "Out of memory";
77                 break;
78         case -EROFS:
79                 errstr = "Readonly filesystem";
80                 break;
81         case -EEXIST:
82                 errstr = "Object already exists";
83                 break;
84         default:
85                 if (nbuf) {
86                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
87                                 errstr = nbuf;
88                 }
89                 break;
90         }
91
92         return errstr;
93 }
94
95 static void __save_error_info(struct btrfs_fs_info *fs_info)
96 {
97         /*
98          * today we only save the error info into ram.  Long term we'll
99          * also send it down to the disk
100          */
101         fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
102 }
103
104 static void save_error_info(struct btrfs_fs_info *fs_info)
105 {
106         __save_error_info(fs_info);
107 }
108
109 /* btrfs handle error by forcing the filesystem readonly */
110 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
111 {
112         struct super_block *sb = fs_info->sb;
113
114         if (sb->s_flags & MS_RDONLY)
115                 return;
116
117         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
118                 sb->s_flags |= MS_RDONLY;
119                 printk(KERN_INFO "btrfs is forced readonly\n");
120                 /*
121                  * Note that a running device replace operation is not
122                  * canceled here although there is no way to update
123                  * the progress. It would add the risk of a deadlock,
124                  * therefore the canceling is ommited. The only penalty
125                  * is that some I/O remains active until the procedure
126                  * completes. The next time when the filesystem is
127                  * mounted writeable again, the device replace
128                  * operation continues.
129                  */
130 //              WARN_ON(1);
131         }
132 }
133
134 #ifdef CONFIG_PRINTK
135 /*
136  * __btrfs_std_error decodes expected errors from the caller and
137  * invokes the approciate error response.
138  */
139 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
140                        unsigned int line, int errno, const char *fmt, ...)
141 {
142         struct super_block *sb = fs_info->sb;
143         char nbuf[16];
144         const char *errstr;
145         va_list args;
146         va_start(args, fmt);
147
148         /*
149          * Special case: if the error is EROFS, and we're already
150          * under MS_RDONLY, then it is safe here.
151          */
152         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
153                 return;
154
155         errstr = btrfs_decode_error(fs_info, errno, nbuf);
156         if (fmt) {
157                 struct va_format vaf = {
158                         .fmt = fmt,
159                         .va = &args,
160                 };
161
162                 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
163                         sb->s_id, function, line, errstr, &vaf);
164         } else {
165                 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
166                         sb->s_id, function, line, errstr);
167         }
168
169         /* Don't go through full error handling during mount */
170         if (sb->s_flags & MS_BORN) {
171                 save_error_info(fs_info);
172                 btrfs_handle_error(fs_info);
173         }
174         va_end(args);
175 }
176
177 static const char * const logtypes[] = {
178         "emergency",
179         "alert",
180         "critical",
181         "error",
182         "warning",
183         "notice",
184         "info",
185         "debug",
186 };
187
188 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
189 {
190         struct super_block *sb = fs_info->sb;
191         char lvl[4];
192         struct va_format vaf;
193         va_list args;
194         const char *type = logtypes[4];
195         int kern_level;
196
197         va_start(args, fmt);
198
199         kern_level = printk_get_level(fmt);
200         if (kern_level) {
201                 size_t size = printk_skip_level(fmt) - fmt;
202                 memcpy(lvl, fmt,  size);
203                 lvl[size] = '\0';
204                 fmt += size;
205                 type = logtypes[kern_level - '0'];
206         } else
207                 *lvl = '\0';
208
209         vaf.fmt = fmt;
210         vaf.va = &args;
211
212         printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
213
214         va_end(args);
215 }
216
217 #else
218
219 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
220                        unsigned int line, int errno, const char *fmt, ...)
221 {
222         struct super_block *sb = fs_info->sb;
223
224         /*
225          * Special case: if the error is EROFS, and we're already
226          * under MS_RDONLY, then it is safe here.
227          */
228         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
229                 return;
230
231         /* Don't go through full error handling during mount */
232         if (sb->s_flags & MS_BORN) {
233                 save_error_info(fs_info);
234                 btrfs_handle_error(fs_info);
235         }
236 }
237 #endif
238
239 /*
240  * We only mark the transaction aborted and then set the file system read-only.
241  * This will prevent new transactions from starting or trying to join this
242  * one.
243  *
244  * This means that error recovery at the call site is limited to freeing
245  * any local memory allocations and passing the error code up without
246  * further cleanup. The transaction should complete as it normally would
247  * in the call path but will return -EIO.
248  *
249  * We'll complete the cleanup in btrfs_end_transaction and
250  * btrfs_commit_transaction.
251  */
252 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
253                                struct btrfs_root *root, const char *function,
254                                unsigned int line, int errno)
255 {
256         WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted\n");
257         trans->aborted = errno;
258         /* Nothing used. The other threads that have joined this
259          * transaction may be able to continue. */
260         if (!trans->blocks_used) {
261                 char nbuf[16];
262                 const char *errstr;
263
264                 errstr = btrfs_decode_error(root->fs_info, errno, nbuf);
265                 btrfs_printk(root->fs_info,
266                              "%s:%d: Aborting unused transaction(%s).\n",
267                              function, line, errstr);
268                 return;
269         }
270         trans->transaction->aborted = errno;
271         __btrfs_std_error(root->fs_info, function, line, errno, NULL);
272 }
273 /*
274  * __btrfs_panic decodes unexpected, fatal errors from the caller,
275  * issues an alert, and either panics or BUGs, depending on mount options.
276  */
277 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
278                    unsigned int line, int errno, const char *fmt, ...)
279 {
280         char nbuf[16];
281         char *s_id = "<unknown>";
282         const char *errstr;
283         struct va_format vaf = { .fmt = fmt };
284         va_list args;
285
286         if (fs_info)
287                 s_id = fs_info->sb->s_id;
288
289         va_start(args, fmt);
290         vaf.va = &args;
291
292         errstr = btrfs_decode_error(fs_info, errno, nbuf);
293         if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
294                 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
295                         s_id, function, line, &vaf, errstr);
296
297         printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
298                s_id, function, line, &vaf, errstr);
299         va_end(args);
300         /* Caller calls BUG() */
301 }
302
303 static void btrfs_put_super(struct super_block *sb)
304 {
305         (void)close_ctree(btrfs_sb(sb)->tree_root);
306         /* FIXME: need to fix VFS to return error? */
307         /* AV: return it _where_?  ->put_super() can be triggered by any number
308          * of async events, up to and including delivery of SIGKILL to the
309          * last process that kept it busy.  Or segfault in the aforementioned
310          * process...  Whom would you report that to?
311          */
312 }
313
314 enum {
315         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
316         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
317         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
318         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
319         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
320         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
321         Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
322         Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
323         Opt_check_integrity, Opt_check_integrity_including_extent_data,
324         Opt_check_integrity_print_mask, Opt_fatal_errors,
325         Opt_err,
326 };
327
328 static match_table_t tokens = {
329         {Opt_degraded, "degraded"},
330         {Opt_subvol, "subvol=%s"},
331         {Opt_subvolid, "subvolid=%d"},
332         {Opt_device, "device=%s"},
333         {Opt_nodatasum, "nodatasum"},
334         {Opt_nodatacow, "nodatacow"},
335         {Opt_nobarrier, "nobarrier"},
336         {Opt_max_inline, "max_inline=%s"},
337         {Opt_alloc_start, "alloc_start=%s"},
338         {Opt_thread_pool, "thread_pool=%d"},
339         {Opt_compress, "compress"},
340         {Opt_compress_type, "compress=%s"},
341         {Opt_compress_force, "compress-force"},
342         {Opt_compress_force_type, "compress-force=%s"},
343         {Opt_ssd, "ssd"},
344         {Opt_ssd_spread, "ssd_spread"},
345         {Opt_nossd, "nossd"},
346         {Opt_noacl, "noacl"},
347         {Opt_notreelog, "notreelog"},
348         {Opt_flushoncommit, "flushoncommit"},
349         {Opt_ratio, "metadata_ratio=%d"},
350         {Opt_discard, "discard"},
351         {Opt_space_cache, "space_cache"},
352         {Opt_clear_cache, "clear_cache"},
353         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
354         {Opt_enospc_debug, "enospc_debug"},
355         {Opt_subvolrootid, "subvolrootid=%d"},
356         {Opt_defrag, "autodefrag"},
357         {Opt_inode_cache, "inode_cache"},
358         {Opt_no_space_cache, "nospace_cache"},
359         {Opt_recovery, "recovery"},
360         {Opt_skip_balance, "skip_balance"},
361         {Opt_check_integrity, "check_int"},
362         {Opt_check_integrity_including_extent_data, "check_int_data"},
363         {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
364         {Opt_fatal_errors, "fatal_errors=%s"},
365         {Opt_err, NULL},
366 };
367
368 /*
369  * Regular mount options parser.  Everything that is needed only when
370  * reading in a new superblock is parsed here.
371  * XXX JDM: This needs to be cleaned up for remount.
372  */
373 int btrfs_parse_options(struct btrfs_root *root, char *options)
374 {
375         struct btrfs_fs_info *info = root->fs_info;
376         substring_t args[MAX_OPT_ARGS];
377         char *p, *num, *orig = NULL;
378         u64 cache_gen;
379         int intarg;
380         int ret = 0;
381         char *compress_type;
382         bool compress_force = false;
383
384         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
385         if (cache_gen)
386                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
387
388         if (!options)
389                 goto out;
390
391         /*
392          * strsep changes the string, duplicate it because parse_options
393          * gets called twice
394          */
395         options = kstrdup(options, GFP_NOFS);
396         if (!options)
397                 return -ENOMEM;
398
399         orig = options;
400
401         while ((p = strsep(&options, ",")) != NULL) {
402                 int token;
403                 if (!*p)
404                         continue;
405
406                 token = match_token(p, tokens, args);
407                 switch (token) {
408                 case Opt_degraded:
409                         printk(KERN_INFO "btrfs: allowing degraded mounts\n");
410                         btrfs_set_opt(info->mount_opt, DEGRADED);
411                         break;
412                 case Opt_subvol:
413                 case Opt_subvolid:
414                 case Opt_subvolrootid:
415                 case Opt_device:
416                         /*
417                          * These are parsed by btrfs_parse_early_options
418                          * and can be happily ignored here.
419                          */
420                         break;
421                 case Opt_nodatasum:
422                         printk(KERN_INFO "btrfs: setting nodatasum\n");
423                         btrfs_set_opt(info->mount_opt, NODATASUM);
424                         break;
425                 case Opt_nodatacow:
426                         if (!btrfs_test_opt(root, COMPRESS) ||
427                                 !btrfs_test_opt(root, FORCE_COMPRESS)) {
428                                         printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
429                         } else {
430                                 printk(KERN_INFO "btrfs: setting nodatacow\n");
431                         }
432                         info->compress_type = BTRFS_COMPRESS_NONE;
433                         btrfs_clear_opt(info->mount_opt, COMPRESS);
434                         btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
435                         btrfs_set_opt(info->mount_opt, NODATACOW);
436                         btrfs_set_opt(info->mount_opt, NODATASUM);
437                         break;
438                 case Opt_compress_force:
439                 case Opt_compress_force_type:
440                         compress_force = true;
441                 case Opt_compress:
442                 case Opt_compress_type:
443                         if (token == Opt_compress ||
444                             token == Opt_compress_force ||
445                             strcmp(args[0].from, "zlib") == 0) {
446                                 compress_type = "zlib";
447                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
448                                 btrfs_set_opt(info->mount_opt, COMPRESS);
449                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
450                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
451                         } else if (strcmp(args[0].from, "lzo") == 0) {
452                                 compress_type = "lzo";
453                                 info->compress_type = BTRFS_COMPRESS_LZO;
454                                 btrfs_set_opt(info->mount_opt, COMPRESS);
455                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
456                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
457                                 btrfs_set_fs_incompat(info, COMPRESS_LZO);
458                         } else if (strncmp(args[0].from, "no", 2) == 0) {
459                                 compress_type = "no";
460                                 info->compress_type = BTRFS_COMPRESS_NONE;
461                                 btrfs_clear_opt(info->mount_opt, COMPRESS);
462                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
463                                 compress_force = false;
464                         } else {
465                                 ret = -EINVAL;
466                                 goto out;
467                         }
468
469                         if (compress_force) {
470                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
471                                 pr_info("btrfs: force %s compression\n",
472                                         compress_type);
473                         } else
474                                 pr_info("btrfs: use %s compression\n",
475                                         compress_type);
476                         break;
477                 case Opt_ssd:
478                         printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
479                         btrfs_set_opt(info->mount_opt, SSD);
480                         break;
481                 case Opt_ssd_spread:
482                         printk(KERN_INFO "btrfs: use spread ssd "
483                                "allocation scheme\n");
484                         btrfs_set_opt(info->mount_opt, SSD);
485                         btrfs_set_opt(info->mount_opt, SSD_SPREAD);
486                         break;
487                 case Opt_nossd:
488                         printk(KERN_INFO "btrfs: not using ssd allocation "
489                                "scheme\n");
490                         btrfs_set_opt(info->mount_opt, NOSSD);
491                         btrfs_clear_opt(info->mount_opt, SSD);
492                         btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
493                         break;
494                 case Opt_nobarrier:
495                         printk(KERN_INFO "btrfs: turning off barriers\n");
496                         btrfs_set_opt(info->mount_opt, NOBARRIER);
497                         break;
498                 case Opt_thread_pool:
499                         intarg = 0;
500                         match_int(&args[0], &intarg);
501                         if (intarg)
502                                 info->thread_pool_size = intarg;
503                         break;
504                 case Opt_max_inline:
505                         num = match_strdup(&args[0]);
506                         if (num) {
507                                 info->max_inline = memparse(num, NULL);
508                                 kfree(num);
509
510                                 if (info->max_inline) {
511                                         info->max_inline = max_t(u64,
512                                                 info->max_inline,
513                                                 root->sectorsize);
514                                 }
515                                 printk(KERN_INFO "btrfs: max_inline at %llu\n",
516                                         (unsigned long long)info->max_inline);
517                         }
518                         break;
519                 case Opt_alloc_start:
520                         num = match_strdup(&args[0]);
521                         if (num) {
522                                 info->alloc_start = memparse(num, NULL);
523                                 kfree(num);
524                                 printk(KERN_INFO
525                                         "btrfs: allocations start at %llu\n",
526                                         (unsigned long long)info->alloc_start);
527                         }
528                         break;
529                 case Opt_noacl:
530                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
531                         break;
532                 case Opt_notreelog:
533                         printk(KERN_INFO "btrfs: disabling tree log\n");
534                         btrfs_set_opt(info->mount_opt, NOTREELOG);
535                         break;
536                 case Opt_flushoncommit:
537                         printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
538                         btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
539                         break;
540                 case Opt_ratio:
541                         intarg = 0;
542                         match_int(&args[0], &intarg);
543                         if (intarg) {
544                                 info->metadata_ratio = intarg;
545                                 printk(KERN_INFO "btrfs: metadata ratio %d\n",
546                                        info->metadata_ratio);
547                         }
548                         break;
549                 case Opt_discard:
550                         btrfs_set_opt(info->mount_opt, DISCARD);
551                         break;
552                 case Opt_space_cache:
553                         btrfs_set_opt(info->mount_opt, SPACE_CACHE);
554                         break;
555                 case Opt_no_space_cache:
556                         printk(KERN_INFO "btrfs: disabling disk space caching\n");
557                         btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
558                         break;
559                 case Opt_inode_cache:
560                         printk(KERN_INFO "btrfs: enabling inode map caching\n");
561                         btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
562                         break;
563                 case Opt_clear_cache:
564                         printk(KERN_INFO "btrfs: force clearing of disk cache\n");
565                         btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
566                         break;
567                 case Opt_user_subvol_rm_allowed:
568                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
569                         break;
570                 case Opt_enospc_debug:
571                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
572                         break;
573                 case Opt_defrag:
574                         printk(KERN_INFO "btrfs: enabling auto defrag\n");
575                         btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
576                         break;
577                 case Opt_recovery:
578                         printk(KERN_INFO "btrfs: enabling auto recovery\n");
579                         btrfs_set_opt(info->mount_opt, RECOVERY);
580                         break;
581                 case Opt_skip_balance:
582                         btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
583                         break;
584 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
585                 case Opt_check_integrity_including_extent_data:
586                         printk(KERN_INFO "btrfs: enabling check integrity"
587                                " including extent data\n");
588                         btrfs_set_opt(info->mount_opt,
589                                       CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
590                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
591                         break;
592                 case Opt_check_integrity:
593                         printk(KERN_INFO "btrfs: enabling check integrity\n");
594                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
595                         break;
596                 case Opt_check_integrity_print_mask:
597                         intarg = 0;
598                         match_int(&args[0], &intarg);
599                         if (intarg) {
600                                 info->check_integrity_print_mask = intarg;
601                                 printk(KERN_INFO "btrfs:"
602                                        " check_integrity_print_mask 0x%x\n",
603                                        info->check_integrity_print_mask);
604                         }
605                         break;
606 #else
607                 case Opt_check_integrity_including_extent_data:
608                 case Opt_check_integrity:
609                 case Opt_check_integrity_print_mask:
610                         printk(KERN_ERR "btrfs: support for check_integrity*"
611                                " not compiled in!\n");
612                         ret = -EINVAL;
613                         goto out;
614 #endif
615                 case Opt_fatal_errors:
616                         if (strcmp(args[0].from, "panic") == 0)
617                                 btrfs_set_opt(info->mount_opt,
618                                               PANIC_ON_FATAL_ERROR);
619                         else if (strcmp(args[0].from, "bug") == 0)
620                                 btrfs_clear_opt(info->mount_opt,
621                                               PANIC_ON_FATAL_ERROR);
622                         else {
623                                 ret = -EINVAL;
624                                 goto out;
625                         }
626                         break;
627                 case Opt_err:
628                         printk(KERN_INFO "btrfs: unrecognized mount option "
629                                "'%s'\n", p);
630                         ret = -EINVAL;
631                         goto out;
632                 default:
633                         break;
634                 }
635         }
636 out:
637         if (!ret && btrfs_test_opt(root, SPACE_CACHE))
638                 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
639         kfree(orig);
640         return ret;
641 }
642
643 /*
644  * Parse mount options that are required early in the mount process.
645  *
646  * All other options will be parsed on much later in the mount process and
647  * only when we need to allocate a new super block.
648  */
649 static int btrfs_parse_early_options(const char *options, fmode_t flags,
650                 void *holder, char **subvol_name, u64 *subvol_objectid,
651                 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
652 {
653         substring_t args[MAX_OPT_ARGS];
654         char *device_name, *opts, *orig, *p;
655         int error = 0;
656         int intarg;
657
658         if (!options)
659                 return 0;
660
661         /*
662          * strsep changes the string, duplicate it because parse_options
663          * gets called twice
664          */
665         opts = kstrdup(options, GFP_KERNEL);
666         if (!opts)
667                 return -ENOMEM;
668         orig = opts;
669
670         while ((p = strsep(&opts, ",")) != NULL) {
671                 int token;
672                 if (!*p)
673                         continue;
674
675                 token = match_token(p, tokens, args);
676                 switch (token) {
677                 case Opt_subvol:
678                         kfree(*subvol_name);
679                         *subvol_name = match_strdup(&args[0]);
680                         break;
681                 case Opt_subvolid:
682                         intarg = 0;
683                         error = match_int(&args[0], &intarg);
684                         if (!error) {
685                                 /* we want the original fs_tree */
686                                 if (!intarg)
687                                         *subvol_objectid =
688                                                 BTRFS_FS_TREE_OBJECTID;
689                                 else
690                                         *subvol_objectid = intarg;
691                         }
692                         break;
693                 case Opt_subvolrootid:
694                         intarg = 0;
695                         error = match_int(&args[0], &intarg);
696                         if (!error) {
697                                 /* we want the original fs_tree */
698                                 if (!intarg)
699                                         *subvol_rootid =
700                                                 BTRFS_FS_TREE_OBJECTID;
701                                 else
702                                         *subvol_rootid = intarg;
703                         }
704                         break;
705                 case Opt_device:
706                         device_name = match_strdup(&args[0]);
707                         if (!device_name) {
708                                 error = -ENOMEM;
709                                 goto out;
710                         }
711                         error = btrfs_scan_one_device(device_name,
712                                         flags, holder, fs_devices);
713                         kfree(device_name);
714                         if (error)
715                                 goto out;
716                         break;
717                 default:
718                         break;
719                 }
720         }
721
722 out:
723         kfree(orig);
724         return error;
725 }
726
727 static struct dentry *get_default_root(struct super_block *sb,
728                                        u64 subvol_objectid)
729 {
730         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
731         struct btrfs_root *root = fs_info->tree_root;
732         struct btrfs_root *new_root;
733         struct btrfs_dir_item *di;
734         struct btrfs_path *path;
735         struct btrfs_key location;
736         struct inode *inode;
737         u64 dir_id;
738         int new = 0;
739
740         /*
741          * We have a specific subvol we want to mount, just setup location and
742          * go look up the root.
743          */
744         if (subvol_objectid) {
745                 location.objectid = subvol_objectid;
746                 location.type = BTRFS_ROOT_ITEM_KEY;
747                 location.offset = (u64)-1;
748                 goto find_root;
749         }
750
751         path = btrfs_alloc_path();
752         if (!path)
753                 return ERR_PTR(-ENOMEM);
754         path->leave_spinning = 1;
755
756         /*
757          * Find the "default" dir item which points to the root item that we
758          * will mount by default if we haven't been given a specific subvolume
759          * to mount.
760          */
761         dir_id = btrfs_super_root_dir(fs_info->super_copy);
762         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
763         if (IS_ERR(di)) {
764                 btrfs_free_path(path);
765                 return ERR_CAST(di);
766         }
767         if (!di) {
768                 /*
769                  * Ok the default dir item isn't there.  This is weird since
770                  * it's always been there, but don't freak out, just try and
771                  * mount to root most subvolume.
772                  */
773                 btrfs_free_path(path);
774                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
775                 new_root = fs_info->fs_root;
776                 goto setup_root;
777         }
778
779         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
780         btrfs_free_path(path);
781
782 find_root:
783         new_root = btrfs_read_fs_root_no_name(fs_info, &location);
784         if (IS_ERR(new_root))
785                 return ERR_CAST(new_root);
786
787         if (btrfs_root_refs(&new_root->root_item) == 0)
788                 return ERR_PTR(-ENOENT);
789
790         dir_id = btrfs_root_dirid(&new_root->root_item);
791 setup_root:
792         location.objectid = dir_id;
793         location.type = BTRFS_INODE_ITEM_KEY;
794         location.offset = 0;
795
796         inode = btrfs_iget(sb, &location, new_root, &new);
797         if (IS_ERR(inode))
798                 return ERR_CAST(inode);
799
800         /*
801          * If we're just mounting the root most subvol put the inode and return
802          * a reference to the dentry.  We will have already gotten a reference
803          * to the inode in btrfs_fill_super so we're good to go.
804          */
805         if (!new && sb->s_root->d_inode == inode) {
806                 iput(inode);
807                 return dget(sb->s_root);
808         }
809
810         return d_obtain_alias(inode);
811 }
812
813 static int btrfs_fill_super(struct super_block *sb,
814                             struct btrfs_fs_devices *fs_devices,
815                             void *data, int silent)
816 {
817         struct inode *inode;
818         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
819         struct btrfs_key key;
820         int err;
821
822         sb->s_maxbytes = MAX_LFS_FILESIZE;
823         sb->s_magic = BTRFS_SUPER_MAGIC;
824         sb->s_op = &btrfs_super_ops;
825         sb->s_d_op = &btrfs_dentry_operations;
826         sb->s_export_op = &btrfs_export_ops;
827         sb->s_xattr = btrfs_xattr_handlers;
828         sb->s_time_gran = 1;
829 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
830         sb->s_flags |= MS_POSIXACL;
831 #endif
832         sb->s_flags |= MS_I_VERSION;
833         err = open_ctree(sb, fs_devices, (char *)data);
834         if (err) {
835                 printk("btrfs: open_ctree failed\n");
836                 return err;
837         }
838
839         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
840         key.type = BTRFS_INODE_ITEM_KEY;
841         key.offset = 0;
842         inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
843         if (IS_ERR(inode)) {
844                 err = PTR_ERR(inode);
845                 goto fail_close;
846         }
847
848         sb->s_root = d_make_root(inode);
849         if (!sb->s_root) {
850                 err = -ENOMEM;
851                 goto fail_close;
852         }
853
854         save_mount_options(sb, data);
855         cleancache_init_fs(sb);
856         sb->s_flags |= MS_ACTIVE;
857         return 0;
858
859 fail_close:
860         close_ctree(fs_info->tree_root);
861         return err;
862 }
863
864 int btrfs_sync_fs(struct super_block *sb, int wait)
865 {
866         struct btrfs_trans_handle *trans;
867         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
868         struct btrfs_root *root = fs_info->tree_root;
869
870         trace_btrfs_sync_fs(wait);
871
872         if (!wait) {
873                 filemap_flush(fs_info->btree_inode->i_mapping);
874                 return 0;
875         }
876
877         btrfs_wait_ordered_extents(root, 0);
878
879         trans = btrfs_attach_transaction(root);
880         if (IS_ERR(trans)) {
881                 /* no transaction, don't bother */
882                 if (PTR_ERR(trans) == -ENOENT)
883                         return 0;
884                 return PTR_ERR(trans);
885         }
886         return btrfs_commit_transaction(trans, root);
887 }
888
889 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
890 {
891         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
892         struct btrfs_root *root = info->tree_root;
893         char *compress_type;
894
895         if (btrfs_test_opt(root, DEGRADED))
896                 seq_puts(seq, ",degraded");
897         if (btrfs_test_opt(root, NODATASUM))
898                 seq_puts(seq, ",nodatasum");
899         if (btrfs_test_opt(root, NODATACOW))
900                 seq_puts(seq, ",nodatacow");
901         if (btrfs_test_opt(root, NOBARRIER))
902                 seq_puts(seq, ",nobarrier");
903         if (info->max_inline != 8192 * 1024)
904                 seq_printf(seq, ",max_inline=%llu",
905                            (unsigned long long)info->max_inline);
906         if (info->alloc_start != 0)
907                 seq_printf(seq, ",alloc_start=%llu",
908                            (unsigned long long)info->alloc_start);
909         if (info->thread_pool_size !=  min_t(unsigned long,
910                                              num_online_cpus() + 2, 8))
911                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
912         if (btrfs_test_opt(root, COMPRESS)) {
913                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
914                         compress_type = "zlib";
915                 else
916                         compress_type = "lzo";
917                 if (btrfs_test_opt(root, FORCE_COMPRESS))
918                         seq_printf(seq, ",compress-force=%s", compress_type);
919                 else
920                         seq_printf(seq, ",compress=%s", compress_type);
921         }
922         if (btrfs_test_opt(root, NOSSD))
923                 seq_puts(seq, ",nossd");
924         if (btrfs_test_opt(root, SSD_SPREAD))
925                 seq_puts(seq, ",ssd_spread");
926         else if (btrfs_test_opt(root, SSD))
927                 seq_puts(seq, ",ssd");
928         if (btrfs_test_opt(root, NOTREELOG))
929                 seq_puts(seq, ",notreelog");
930         if (btrfs_test_opt(root, FLUSHONCOMMIT))
931                 seq_puts(seq, ",flushoncommit");
932         if (btrfs_test_opt(root, DISCARD))
933                 seq_puts(seq, ",discard");
934         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
935                 seq_puts(seq, ",noacl");
936         if (btrfs_test_opt(root, SPACE_CACHE))
937                 seq_puts(seq, ",space_cache");
938         else
939                 seq_puts(seq, ",nospace_cache");
940         if (btrfs_test_opt(root, CLEAR_CACHE))
941                 seq_puts(seq, ",clear_cache");
942         if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
943                 seq_puts(seq, ",user_subvol_rm_allowed");
944         if (btrfs_test_opt(root, ENOSPC_DEBUG))
945                 seq_puts(seq, ",enospc_debug");
946         if (btrfs_test_opt(root, AUTO_DEFRAG))
947                 seq_puts(seq, ",autodefrag");
948         if (btrfs_test_opt(root, INODE_MAP_CACHE))
949                 seq_puts(seq, ",inode_cache");
950         if (btrfs_test_opt(root, SKIP_BALANCE))
951                 seq_puts(seq, ",skip_balance");
952         if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
953                 seq_puts(seq, ",fatal_errors=panic");
954         return 0;
955 }
956
957 static int btrfs_test_super(struct super_block *s, void *data)
958 {
959         struct btrfs_fs_info *p = data;
960         struct btrfs_fs_info *fs_info = btrfs_sb(s);
961
962         return fs_info->fs_devices == p->fs_devices;
963 }
964
965 static int btrfs_set_super(struct super_block *s, void *data)
966 {
967         int err = set_anon_super(s, data);
968         if (!err)
969                 s->s_fs_info = data;
970         return err;
971 }
972
973 /*
974  * subvolumes are identified by ino 256
975  */
976 static inline int is_subvolume_inode(struct inode *inode)
977 {
978         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
979                 return 1;
980         return 0;
981 }
982
983 /*
984  * This will strip out the subvol=%s argument for an argument string and add
985  * subvolid=0 to make sure we get the actual tree root for path walking to the
986  * subvol we want.
987  */
988 static char *setup_root_args(char *args)
989 {
990         unsigned len = strlen(args) + 2 + 1;
991         char *src, *dst, *buf;
992
993         /*
994          * We need the same args as before, but with this substitution:
995          * s!subvol=[^,]+!subvolid=0!
996          *
997          * Since the replacement string is up to 2 bytes longer than the
998          * original, allocate strlen(args) + 2 + 1 bytes.
999          */
1000
1001         src = strstr(args, "subvol=");
1002         /* This shouldn't happen, but just in case.. */
1003         if (!src)
1004                 return NULL;
1005
1006         buf = dst = kmalloc(len, GFP_NOFS);
1007         if (!buf)
1008                 return NULL;
1009
1010         /*
1011          * If the subvol= arg is not at the start of the string,
1012          * copy whatever precedes it into buf.
1013          */
1014         if (src != args) {
1015                 *src++ = '\0';
1016                 strcpy(buf, args);
1017                 dst += strlen(args);
1018         }
1019
1020         strcpy(dst, "subvolid=0");
1021         dst += strlen("subvolid=0");
1022
1023         /*
1024          * If there is a "," after the original subvol=... string,
1025          * copy that suffix into our buffer.  Otherwise, we're done.
1026          */
1027         src = strchr(src, ',');
1028         if (src)
1029                 strcpy(dst, src);
1030
1031         return buf;
1032 }
1033
1034 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1035                                    const char *device_name, char *data)
1036 {
1037         struct dentry *root;
1038         struct vfsmount *mnt;
1039         char *newargs;
1040
1041         newargs = setup_root_args(data);
1042         if (!newargs)
1043                 return ERR_PTR(-ENOMEM);
1044         mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1045                              newargs);
1046         kfree(newargs);
1047         if (IS_ERR(mnt))
1048                 return ERR_CAST(mnt);
1049
1050         root = mount_subtree(mnt, subvol_name);
1051
1052         if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1053                 struct super_block *s = root->d_sb;
1054                 dput(root);
1055                 root = ERR_PTR(-EINVAL);
1056                 deactivate_locked_super(s);
1057                 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1058                                 subvol_name);
1059         }
1060
1061         return root;
1062 }
1063
1064 /*
1065  * Find a superblock for the given device / mount point.
1066  *
1067  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1068  *        for multiple device setup.  Make sure to keep it in sync.
1069  */
1070 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1071                 const char *device_name, void *data)
1072 {
1073         struct block_device *bdev = NULL;
1074         struct super_block *s;
1075         struct dentry *root;
1076         struct btrfs_fs_devices *fs_devices = NULL;
1077         struct btrfs_fs_info *fs_info = NULL;
1078         fmode_t mode = FMODE_READ;
1079         char *subvol_name = NULL;
1080         u64 subvol_objectid = 0;
1081         u64 subvol_rootid = 0;
1082         int error = 0;
1083
1084         if (!(flags & MS_RDONLY))
1085                 mode |= FMODE_WRITE;
1086
1087         error = btrfs_parse_early_options(data, mode, fs_type,
1088                                           &subvol_name, &subvol_objectid,
1089                                           &subvol_rootid, &fs_devices);
1090         if (error) {
1091                 kfree(subvol_name);
1092                 return ERR_PTR(error);
1093         }
1094
1095         if (subvol_name) {
1096                 root = mount_subvol(subvol_name, flags, device_name, data);
1097                 kfree(subvol_name);
1098                 return root;
1099         }
1100
1101         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1102         if (error)
1103                 return ERR_PTR(error);
1104
1105         /*
1106          * Setup a dummy root and fs_info for test/set super.  This is because
1107          * we don't actually fill this stuff out until open_ctree, but we need
1108          * it for searching for existing supers, so this lets us do that and
1109          * then open_ctree will properly initialize everything later.
1110          */
1111         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1112         if (!fs_info)
1113                 return ERR_PTR(-ENOMEM);
1114
1115         fs_info->fs_devices = fs_devices;
1116
1117         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1118         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1119         if (!fs_info->super_copy || !fs_info->super_for_commit) {
1120                 error = -ENOMEM;
1121                 goto error_fs_info;
1122         }
1123
1124         error = btrfs_open_devices(fs_devices, mode, fs_type);
1125         if (error)
1126                 goto error_fs_info;
1127
1128         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1129                 error = -EACCES;
1130                 goto error_close_devices;
1131         }
1132
1133         bdev = fs_devices->latest_bdev;
1134         s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1135                  fs_info);
1136         if (IS_ERR(s)) {
1137                 error = PTR_ERR(s);
1138                 goto error_close_devices;
1139         }
1140
1141         if (s->s_root) {
1142                 btrfs_close_devices(fs_devices);
1143                 free_fs_info(fs_info);
1144                 if ((flags ^ s->s_flags) & MS_RDONLY)
1145                         error = -EBUSY;
1146         } else {
1147                 char b[BDEVNAME_SIZE];
1148
1149                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1150                 btrfs_sb(s)->bdev_holder = fs_type;
1151                 error = btrfs_fill_super(s, fs_devices, data,
1152                                          flags & MS_SILENT ? 1 : 0);
1153         }
1154
1155         root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1156         if (IS_ERR(root))
1157                 deactivate_locked_super(s);
1158
1159         return root;
1160
1161 error_close_devices:
1162         btrfs_close_devices(fs_devices);
1163 error_fs_info:
1164         free_fs_info(fs_info);
1165         return ERR_PTR(error);
1166 }
1167
1168 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1169 {
1170         spin_lock_irq(&workers->lock);
1171         workers->max_workers = new_limit;
1172         spin_unlock_irq(&workers->lock);
1173 }
1174
1175 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1176                                      int new_pool_size, int old_pool_size)
1177 {
1178         if (new_pool_size == old_pool_size)
1179                 return;
1180
1181         fs_info->thread_pool_size = new_pool_size;
1182
1183         printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1184                old_pool_size, new_pool_size);
1185
1186         btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1187         btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1188         btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1189         btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1190         btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1191         btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1192         btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1193         btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1194         btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1195         btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1196         btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1197         btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1198         btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1199         btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
1200                               new_pool_size);
1201 }
1202
1203 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1204 {
1205         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1206         struct btrfs_root *root = fs_info->tree_root;
1207         unsigned old_flags = sb->s_flags;
1208         unsigned long old_opts = fs_info->mount_opt;
1209         unsigned long old_compress_type = fs_info->compress_type;
1210         u64 old_max_inline = fs_info->max_inline;
1211         u64 old_alloc_start = fs_info->alloc_start;
1212         int old_thread_pool_size = fs_info->thread_pool_size;
1213         unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1214         int ret;
1215
1216         ret = btrfs_parse_options(root, data);
1217         if (ret) {
1218                 ret = -EINVAL;
1219                 goto restore;
1220         }
1221
1222         btrfs_resize_thread_pool(fs_info,
1223                 fs_info->thread_pool_size, old_thread_pool_size);
1224
1225         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1226                 return 0;
1227
1228         if (*flags & MS_RDONLY) {
1229                 /*
1230                  * this also happens on 'umount -rf' or on shutdown, when
1231                  * the filesystem is busy.
1232                  */
1233                 sb->s_flags |= MS_RDONLY;
1234
1235                 btrfs_dev_replace_suspend_for_unmount(fs_info);
1236                 btrfs_scrub_cancel(fs_info);
1237
1238                 ret = btrfs_commit_super(root);
1239                 if (ret)
1240                         goto restore;
1241         } else {
1242                 if (fs_info->fs_devices->rw_devices == 0) {
1243                         ret = -EACCES;
1244                         goto restore;
1245                 }
1246
1247                 if (fs_info->fs_devices->missing_devices >
1248                      fs_info->num_tolerated_disk_barrier_failures &&
1249                     !(*flags & MS_RDONLY)) {
1250                         printk(KERN_WARNING
1251                                "Btrfs: too many missing devices, writeable remount is not allowed\n");
1252                         ret = -EACCES;
1253                         goto restore;
1254                 }
1255
1256                 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1257                         ret = -EINVAL;
1258                         goto restore;
1259                 }
1260
1261                 ret = btrfs_cleanup_fs_roots(fs_info);
1262                 if (ret)
1263                         goto restore;
1264
1265                 /* recover relocation */
1266                 ret = btrfs_recover_relocation(root);
1267                 if (ret)
1268                         goto restore;
1269
1270                 ret = btrfs_resume_balance_async(fs_info);
1271                 if (ret)
1272                         goto restore;
1273
1274                 ret = btrfs_resume_dev_replace_async(fs_info);
1275                 if (ret) {
1276                         pr_warn("btrfs: failed to resume dev_replace\n");
1277                         goto restore;
1278                 }
1279                 sb->s_flags &= ~MS_RDONLY;
1280         }
1281
1282         return 0;
1283
1284 restore:
1285         /* We've hit an error - don't reset MS_RDONLY */
1286         if (sb->s_flags & MS_RDONLY)
1287                 old_flags |= MS_RDONLY;
1288         sb->s_flags = old_flags;
1289         fs_info->mount_opt = old_opts;
1290         fs_info->compress_type = old_compress_type;
1291         fs_info->max_inline = old_max_inline;
1292         fs_info->alloc_start = old_alloc_start;
1293         btrfs_resize_thread_pool(fs_info,
1294                 old_thread_pool_size, fs_info->thread_pool_size);
1295         fs_info->metadata_ratio = old_metadata_ratio;
1296         return ret;
1297 }
1298
1299 /* Used to sort the devices by max_avail(descending sort) */
1300 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1301                                        const void *dev_info2)
1302 {
1303         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1304             ((struct btrfs_device_info *)dev_info2)->max_avail)
1305                 return -1;
1306         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1307                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1308                 return 1;
1309         else
1310         return 0;
1311 }
1312
1313 /*
1314  * sort the devices by max_avail, in which max free extent size of each device
1315  * is stored.(Descending Sort)
1316  */
1317 static inline void btrfs_descending_sort_devices(
1318                                         struct btrfs_device_info *devices,
1319                                         size_t nr_devices)
1320 {
1321         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1322              btrfs_cmp_device_free_bytes, NULL);
1323 }
1324
1325 /*
1326  * The helper to calc the free space on the devices that can be used to store
1327  * file data.
1328  */
1329 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1330 {
1331         struct btrfs_fs_info *fs_info = root->fs_info;
1332         struct btrfs_device_info *devices_info;
1333         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1334         struct btrfs_device *device;
1335         u64 skip_space;
1336         u64 type;
1337         u64 avail_space;
1338         u64 used_space;
1339         u64 min_stripe_size;
1340         int min_stripes = 1, num_stripes = 1;
1341         int i = 0, nr_devices;
1342         int ret;
1343
1344         nr_devices = fs_info->fs_devices->open_devices;
1345         BUG_ON(!nr_devices);
1346
1347         devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1348                                GFP_NOFS);
1349         if (!devices_info)
1350                 return -ENOMEM;
1351
1352         /* calc min stripe number for data space alloction */
1353         type = btrfs_get_alloc_profile(root, 1);
1354         if (type & BTRFS_BLOCK_GROUP_RAID0) {
1355                 min_stripes = 2;
1356                 num_stripes = nr_devices;
1357         } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1358                 min_stripes = 2;
1359                 num_stripes = 2;
1360         } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1361                 min_stripes = 4;
1362                 num_stripes = 4;
1363         }
1364
1365         if (type & BTRFS_BLOCK_GROUP_DUP)
1366                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1367         else
1368                 min_stripe_size = BTRFS_STRIPE_LEN;
1369
1370         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1371                 if (!device->in_fs_metadata || !device->bdev ||
1372                     device->is_tgtdev_for_dev_replace)
1373                         continue;
1374
1375                 avail_space = device->total_bytes - device->bytes_used;
1376
1377                 /* align with stripe_len */
1378                 do_div(avail_space, BTRFS_STRIPE_LEN);
1379                 avail_space *= BTRFS_STRIPE_LEN;
1380
1381                 /*
1382                  * In order to avoid overwritting the superblock on the drive,
1383                  * btrfs starts at an offset of at least 1MB when doing chunk
1384                  * allocation.
1385                  */
1386                 skip_space = 1024 * 1024;
1387
1388                 /* user can set the offset in fs_info->alloc_start. */
1389                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1390                     device->total_bytes)
1391                         skip_space = max(fs_info->alloc_start, skip_space);
1392
1393                 /*
1394                  * btrfs can not use the free space in [0, skip_space - 1],
1395                  * we must subtract it from the total. In order to implement
1396                  * it, we account the used space in this range first.
1397                  */
1398                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1399                                                      &used_space);
1400                 if (ret) {
1401                         kfree(devices_info);
1402                         return ret;
1403                 }
1404
1405                 /* calc the free space in [0, skip_space - 1] */
1406                 skip_space -= used_space;
1407
1408                 /*
1409                  * we can use the free space in [0, skip_space - 1], subtract
1410                  * it from the total.
1411                  */
1412                 if (avail_space && avail_space >= skip_space)
1413                         avail_space -= skip_space;
1414                 else
1415                         avail_space = 0;
1416
1417                 if (avail_space < min_stripe_size)
1418                         continue;
1419
1420                 devices_info[i].dev = device;
1421                 devices_info[i].max_avail = avail_space;
1422
1423                 i++;
1424         }
1425
1426         nr_devices = i;
1427
1428         btrfs_descending_sort_devices(devices_info, nr_devices);
1429
1430         i = nr_devices - 1;
1431         avail_space = 0;
1432         while (nr_devices >= min_stripes) {
1433                 if (num_stripes > nr_devices)
1434                         num_stripes = nr_devices;
1435
1436                 if (devices_info[i].max_avail >= min_stripe_size) {
1437                         int j;
1438                         u64 alloc_size;
1439
1440                         avail_space += devices_info[i].max_avail * num_stripes;
1441                         alloc_size = devices_info[i].max_avail;
1442                         for (j = i + 1 - num_stripes; j <= i; j++)
1443                                 devices_info[j].max_avail -= alloc_size;
1444                 }
1445                 i--;
1446                 nr_devices--;
1447         }
1448
1449         kfree(devices_info);
1450         *free_bytes = avail_space;
1451         return 0;
1452 }
1453
1454 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1455 {
1456         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1457         struct btrfs_super_block *disk_super = fs_info->super_copy;
1458         struct list_head *head = &fs_info->space_info;
1459         struct btrfs_space_info *found;
1460         u64 total_used = 0;
1461         u64 total_free_data = 0;
1462         int bits = dentry->d_sb->s_blocksize_bits;
1463         __be32 *fsid = (__be32 *)fs_info->fsid;
1464         int ret;
1465
1466         /* holding chunk_muext to avoid allocating new chunks */
1467         mutex_lock(&fs_info->chunk_mutex);
1468         rcu_read_lock();
1469         list_for_each_entry_rcu(found, head, list) {
1470                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1471                         total_free_data += found->disk_total - found->disk_used;
1472                         total_free_data -=
1473                                 btrfs_account_ro_block_groups_free_space(found);
1474                 }
1475
1476                 total_used += found->disk_used;
1477         }
1478         rcu_read_unlock();
1479
1480         buf->f_namelen = BTRFS_NAME_LEN;
1481         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1482         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1483         buf->f_bsize = dentry->d_sb->s_blocksize;
1484         buf->f_type = BTRFS_SUPER_MAGIC;
1485         buf->f_bavail = total_free_data;
1486         ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1487         if (ret) {
1488                 mutex_unlock(&fs_info->chunk_mutex);
1489                 return ret;
1490         }
1491         buf->f_bavail += total_free_data;
1492         buf->f_bavail = buf->f_bavail >> bits;
1493         mutex_unlock(&fs_info->chunk_mutex);
1494
1495         /* We treat it as constant endianness (it doesn't matter _which_)
1496            because we want the fsid to come out the same whether mounted
1497            on a big-endian or little-endian host */
1498         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1499         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1500         /* Mask in the root object ID too, to disambiguate subvols */
1501         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1502         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1503
1504         return 0;
1505 }
1506
1507 static void btrfs_kill_super(struct super_block *sb)
1508 {
1509         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1510         kill_anon_super(sb);
1511         free_fs_info(fs_info);
1512 }
1513
1514 static struct file_system_type btrfs_fs_type = {
1515         .owner          = THIS_MODULE,
1516         .name           = "btrfs",
1517         .mount          = btrfs_mount,
1518         .kill_sb        = btrfs_kill_super,
1519         .fs_flags       = FS_REQUIRES_DEV,
1520 };
1521
1522 /*
1523  * used by btrfsctl to scan devices when no FS is mounted
1524  */
1525 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1526                                 unsigned long arg)
1527 {
1528         struct btrfs_ioctl_vol_args *vol;
1529         struct btrfs_fs_devices *fs_devices;
1530         int ret = -ENOTTY;
1531
1532         if (!capable(CAP_SYS_ADMIN))
1533                 return -EPERM;
1534
1535         vol = memdup_user((void __user *)arg, sizeof(*vol));
1536         if (IS_ERR(vol))
1537                 return PTR_ERR(vol);
1538
1539         switch (cmd) {
1540         case BTRFS_IOC_SCAN_DEV:
1541                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1542                                             &btrfs_fs_type, &fs_devices);
1543                 break;
1544         case BTRFS_IOC_DEVICES_READY:
1545                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1546                                             &btrfs_fs_type, &fs_devices);
1547                 if (ret)
1548                         break;
1549                 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1550                 break;
1551         }
1552
1553         kfree(vol);
1554         return ret;
1555 }
1556
1557 static int btrfs_freeze(struct super_block *sb)
1558 {
1559         struct btrfs_trans_handle *trans;
1560         struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1561
1562         trans = btrfs_attach_transaction(root);
1563         if (IS_ERR(trans)) {
1564                 /* no transaction, don't bother */
1565                 if (PTR_ERR(trans) == -ENOENT)
1566                         return 0;
1567                 return PTR_ERR(trans);
1568         }
1569         return btrfs_commit_transaction(trans, root);
1570 }
1571
1572 static int btrfs_unfreeze(struct super_block *sb)
1573 {
1574         return 0;
1575 }
1576
1577 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1578 {
1579         struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1580         struct btrfs_fs_devices *cur_devices;
1581         struct btrfs_device *dev, *first_dev = NULL;
1582         struct list_head *head;
1583         struct rcu_string *name;
1584
1585         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1586         cur_devices = fs_info->fs_devices;
1587         while (cur_devices) {
1588                 head = &cur_devices->devices;
1589                 list_for_each_entry(dev, head, dev_list) {
1590                         if (dev->missing)
1591                                 continue;
1592                         if (!first_dev || dev->devid < first_dev->devid)
1593                                 first_dev = dev;
1594                 }
1595                 cur_devices = cur_devices->seed;
1596         }
1597
1598         if (first_dev) {
1599                 rcu_read_lock();
1600                 name = rcu_dereference(first_dev->name);
1601                 seq_escape(m, name->str, " \t\n\\");
1602                 rcu_read_unlock();
1603         } else {
1604                 WARN_ON(1);
1605         }
1606         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1607         return 0;
1608 }
1609
1610 static const struct super_operations btrfs_super_ops = {
1611         .drop_inode     = btrfs_drop_inode,
1612         .evict_inode    = btrfs_evict_inode,
1613         .put_super      = btrfs_put_super,
1614         .sync_fs        = btrfs_sync_fs,
1615         .show_options   = btrfs_show_options,
1616         .show_devname   = btrfs_show_devname,
1617         .write_inode    = btrfs_write_inode,
1618         .alloc_inode    = btrfs_alloc_inode,
1619         .destroy_inode  = btrfs_destroy_inode,
1620         .statfs         = btrfs_statfs,
1621         .remount_fs     = btrfs_remount,
1622         .freeze_fs      = btrfs_freeze,
1623         .unfreeze_fs    = btrfs_unfreeze,
1624 };
1625
1626 static const struct file_operations btrfs_ctl_fops = {
1627         .unlocked_ioctl  = btrfs_control_ioctl,
1628         .compat_ioctl = btrfs_control_ioctl,
1629         .owner   = THIS_MODULE,
1630         .llseek = noop_llseek,
1631 };
1632
1633 static struct miscdevice btrfs_misc = {
1634         .minor          = BTRFS_MINOR,
1635         .name           = "btrfs-control",
1636         .fops           = &btrfs_ctl_fops
1637 };
1638
1639 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1640 MODULE_ALIAS("devname:btrfs-control");
1641
1642 static int btrfs_interface_init(void)
1643 {
1644         return misc_register(&btrfs_misc);
1645 }
1646
1647 static void btrfs_interface_exit(void)
1648 {
1649         if (misc_deregister(&btrfs_misc) < 0)
1650                 printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
1651 }
1652
1653 static int __init init_btrfs_fs(void)
1654 {
1655         int err;
1656
1657         err = btrfs_init_sysfs();
1658         if (err)
1659                 return err;
1660
1661         btrfs_init_compress();
1662
1663         err = btrfs_init_cachep();
1664         if (err)
1665                 goto free_compress;
1666
1667         err = extent_io_init();
1668         if (err)
1669                 goto free_cachep;
1670
1671         err = extent_map_init();
1672         if (err)
1673                 goto free_extent_io;
1674
1675         err = ordered_data_init();
1676         if (err)
1677                 goto free_extent_map;
1678
1679         err = btrfs_delayed_inode_init();
1680         if (err)
1681                 goto free_ordered_data;
1682
1683         err = btrfs_auto_defrag_init();
1684         if (err)
1685                 goto free_delayed_inode;
1686
1687         err = btrfs_interface_init();
1688         if (err)
1689                 goto free_auto_defrag;
1690
1691         err = register_filesystem(&btrfs_fs_type);
1692         if (err)
1693                 goto unregister_ioctl;
1694
1695         btrfs_init_lockdep();
1696
1697         printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1698         return 0;
1699
1700 unregister_ioctl:
1701         btrfs_interface_exit();
1702 free_auto_defrag:
1703         btrfs_auto_defrag_exit();
1704 free_delayed_inode:
1705         btrfs_delayed_inode_exit();
1706 free_ordered_data:
1707         ordered_data_exit();
1708 free_extent_map:
1709         extent_map_exit();
1710 free_extent_io:
1711         extent_io_exit();
1712 free_cachep:
1713         btrfs_destroy_cachep();
1714 free_compress:
1715         btrfs_exit_compress();
1716         btrfs_exit_sysfs();
1717         return err;
1718 }
1719
1720 static void __exit exit_btrfs_fs(void)
1721 {
1722         btrfs_destroy_cachep();
1723         btrfs_auto_defrag_exit();
1724         btrfs_delayed_inode_exit();
1725         ordered_data_exit();
1726         extent_map_exit();
1727         extent_io_exit();
1728         btrfs_interface_exit();
1729         unregister_filesystem(&btrfs_fs_type);
1730         btrfs_exit_sysfs();
1731         btrfs_cleanup_fs_uuids();
1732         btrfs_exit_compress();
1733 }
1734
1735 module_init(init_btrfs_fs)
1736 module_exit(exit_btrfs_fs)
1737
1738 MODULE_LICENSE("GPL");