btrfs: add a trace class for dumping the current ENOSPC state
[platform/kernel/linux-rpi.git] / fs / btrfs / space-info.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     may_commit_transaction() is the ultimate arbiter on whether we commit the
137  *     transaction or not.  In order to avoid constantly churning we do all the
138  *     above flushing first and then commit the transaction as the last resort.
139  *     However we need to take into account things like pinned space that would
140  *     be freed, plus any delayed work we may not have gotten rid of in the case
141  *     of metadata.
142  *
143  *   FORCE_COMMIT_TRANS
144  *     For use by the preemptive flusher.  We use this to bypass the ticketing
145  *     checks in may_commit_transaction, as we have more information about the
146  *     overall state of the system and may want to commit the transaction ahead
147  *     of actual ENOSPC conditions.
148  *
149  * OVERCOMMIT
150  *
151  *   Because we hold so many reservations for metadata we will allow you to
152  *   reserve more space than is currently free in the currently allocate
153  *   metadata space.  This only happens with metadata, data does not allow
154  *   overcommitting.
155  *
156  *   You can see the current logic for when we allow overcommit in
157  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
158  *   is no unallocated space to be had, all reservations are kept within the
159  *   free space in the allocated metadata chunks.
160  *
161  *   Because of overcommitting, you generally want to use the
162  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
163  *   thing with or without extra unallocated space.
164  */
165
166 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
167                           bool may_use_included)
168 {
169         ASSERT(s_info);
170         return s_info->bytes_used + s_info->bytes_reserved +
171                 s_info->bytes_pinned + s_info->bytes_readonly +
172                 (may_use_included ? s_info->bytes_may_use : 0);
173 }
174
175 /*
176  * after adding space to the filesystem, we need to clear the full flags
177  * on all the space infos.
178  */
179 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
180 {
181         struct list_head *head = &info->space_info;
182         struct btrfs_space_info *found;
183
184         list_for_each_entry(found, head, list)
185                 found->full = 0;
186 }
187
188 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
189 {
190
191         struct btrfs_space_info *space_info;
192         int i;
193         int ret;
194
195         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
196         if (!space_info)
197                 return -ENOMEM;
198
199         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
200                                  GFP_KERNEL);
201         if (ret) {
202                 kfree(space_info);
203                 return ret;
204         }
205
206         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
207                 INIT_LIST_HEAD(&space_info->block_groups[i]);
208         init_rwsem(&space_info->groups_sem);
209         spin_lock_init(&space_info->lock);
210         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
211         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
212         INIT_LIST_HEAD(&space_info->ro_bgs);
213         INIT_LIST_HEAD(&space_info->tickets);
214         INIT_LIST_HEAD(&space_info->priority_tickets);
215         space_info->clamp = 1;
216
217         ret = btrfs_sysfs_add_space_info_type(info, space_info);
218         if (ret)
219                 return ret;
220
221         list_add(&space_info->list, &info->space_info);
222         if (flags & BTRFS_BLOCK_GROUP_DATA)
223                 info->data_sinfo = space_info;
224
225         return ret;
226 }
227
228 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
229 {
230         struct btrfs_super_block *disk_super;
231         u64 features;
232         u64 flags;
233         int mixed = 0;
234         int ret;
235
236         disk_super = fs_info->super_copy;
237         if (!btrfs_super_root(disk_super))
238                 return -EINVAL;
239
240         features = btrfs_super_incompat_flags(disk_super);
241         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
242                 mixed = 1;
243
244         flags = BTRFS_BLOCK_GROUP_SYSTEM;
245         ret = create_space_info(fs_info, flags);
246         if (ret)
247                 goto out;
248
249         if (mixed) {
250                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
251                 ret = create_space_info(fs_info, flags);
252         } else {
253                 flags = BTRFS_BLOCK_GROUP_METADATA;
254                 ret = create_space_info(fs_info, flags);
255                 if (ret)
256                         goto out;
257
258                 flags = BTRFS_BLOCK_GROUP_DATA;
259                 ret = create_space_info(fs_info, flags);
260         }
261 out:
262         return ret;
263 }
264
265 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
266                              u64 total_bytes, u64 bytes_used,
267                              u64 bytes_readonly,
268                              struct btrfs_space_info **space_info)
269 {
270         struct btrfs_space_info *found;
271         int factor;
272
273         factor = btrfs_bg_type_to_factor(flags);
274
275         found = btrfs_find_space_info(info, flags);
276         ASSERT(found);
277         spin_lock(&found->lock);
278         found->total_bytes += total_bytes;
279         found->disk_total += total_bytes * factor;
280         found->bytes_used += bytes_used;
281         found->disk_used += bytes_used * factor;
282         found->bytes_readonly += bytes_readonly;
283         if (total_bytes > 0)
284                 found->full = 0;
285         btrfs_try_granting_tickets(info, found);
286         spin_unlock(&found->lock);
287         *space_info = found;
288 }
289
290 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
291                                                u64 flags)
292 {
293         struct list_head *head = &info->space_info;
294         struct btrfs_space_info *found;
295
296         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
297
298         list_for_each_entry(found, head, list) {
299                 if (found->flags & flags)
300                         return found;
301         }
302         return NULL;
303 }
304
305 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
306                           struct btrfs_space_info *space_info,
307                           enum btrfs_reserve_flush_enum flush)
308 {
309         u64 profile;
310         u64 avail;
311         int factor;
312
313         if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
314                 profile = btrfs_system_alloc_profile(fs_info);
315         else
316                 profile = btrfs_metadata_alloc_profile(fs_info);
317
318         avail = atomic64_read(&fs_info->free_chunk_space);
319
320         /*
321          * If we have dup, raid1 or raid10 then only half of the free
322          * space is actually usable.  For raid56, the space info used
323          * doesn't include the parity drive, so we don't have to
324          * change the math
325          */
326         factor = btrfs_bg_type_to_factor(profile);
327         avail = div_u64(avail, factor);
328
329         /*
330          * If we aren't flushing all things, let us overcommit up to
331          * 1/2th of the space. If we can flush, don't let us overcommit
332          * too much, let it overcommit up to 1/8 of the space.
333          */
334         if (flush == BTRFS_RESERVE_FLUSH_ALL)
335                 avail >>= 3;
336         else
337                 avail >>= 1;
338         return avail;
339 }
340
341 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
342                          struct btrfs_space_info *space_info, u64 bytes,
343                          enum btrfs_reserve_flush_enum flush)
344 {
345         u64 avail;
346         u64 used;
347
348         /* Don't overcommit when in mixed mode */
349         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
350                 return 0;
351
352         used = btrfs_space_info_used(space_info, true);
353         avail = calc_available_free_space(fs_info, space_info, flush);
354
355         if (used + bytes < space_info->total_bytes + avail)
356                 return 1;
357         return 0;
358 }
359
360 static void remove_ticket(struct btrfs_space_info *space_info,
361                           struct reserve_ticket *ticket)
362 {
363         if (!list_empty(&ticket->list)) {
364                 list_del_init(&ticket->list);
365                 ASSERT(space_info->reclaim_size >= ticket->bytes);
366                 space_info->reclaim_size -= ticket->bytes;
367         }
368 }
369
370 /*
371  * This is for space we already have accounted in space_info->bytes_may_use, so
372  * basically when we're returning space from block_rsv's.
373  */
374 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
375                                 struct btrfs_space_info *space_info)
376 {
377         struct list_head *head;
378         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
379
380         lockdep_assert_held(&space_info->lock);
381
382         head = &space_info->priority_tickets;
383 again:
384         while (!list_empty(head)) {
385                 struct reserve_ticket *ticket;
386                 u64 used = btrfs_space_info_used(space_info, true);
387
388                 ticket = list_first_entry(head, struct reserve_ticket, list);
389
390                 /* Check and see if our ticket can be satisified now. */
391                 if ((used + ticket->bytes <= space_info->total_bytes) ||
392                     btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
393                                          flush)) {
394                         btrfs_space_info_update_bytes_may_use(fs_info,
395                                                               space_info,
396                                                               ticket->bytes);
397                         remove_ticket(space_info, ticket);
398                         ticket->bytes = 0;
399                         space_info->tickets_id++;
400                         wake_up(&ticket->wait);
401                 } else {
402                         break;
403                 }
404         }
405
406         if (head == &space_info->priority_tickets) {
407                 head = &space_info->tickets;
408                 flush = BTRFS_RESERVE_FLUSH_ALL;
409                 goto again;
410         }
411 }
412
413 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
414 do {                                                                    \
415         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
416         spin_lock(&__rsv->lock);                                        \
417         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
418                    __rsv->size, __rsv->reserved);                       \
419         spin_unlock(&__rsv->lock);                                      \
420 } while (0)
421
422 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
423                                     struct btrfs_space_info *info)
424 {
425         lockdep_assert_held(&info->lock);
426
427         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
428                    info->flags,
429                    info->total_bytes - btrfs_space_info_used(info, true),
430                    info->full ? "" : "not ");
431         btrfs_info(fs_info,
432                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
433                 info->total_bytes, info->bytes_used, info->bytes_pinned,
434                 info->bytes_reserved, info->bytes_may_use,
435                 info->bytes_readonly);
436
437         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
438         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
439         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
440         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
441         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
442
443 }
444
445 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
446                            struct btrfs_space_info *info, u64 bytes,
447                            int dump_block_groups)
448 {
449         struct btrfs_block_group *cache;
450         int index = 0;
451
452         spin_lock(&info->lock);
453         __btrfs_dump_space_info(fs_info, info);
454         spin_unlock(&info->lock);
455
456         if (!dump_block_groups)
457                 return;
458
459         down_read(&info->groups_sem);
460 again:
461         list_for_each_entry(cache, &info->block_groups[index], list) {
462                 spin_lock(&cache->lock);
463                 btrfs_info(fs_info,
464                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
465                         cache->start, cache->length, cache->used, cache->pinned,
466                         cache->reserved, cache->ro ? "[readonly]" : "");
467                 spin_unlock(&cache->lock);
468                 btrfs_dump_free_space(cache, bytes);
469         }
470         if (++index < BTRFS_NR_RAID_TYPES)
471                 goto again;
472         up_read(&info->groups_sem);
473 }
474
475 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
476                                         u64 to_reclaim)
477 {
478         u64 bytes;
479         u64 nr;
480
481         bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
482         nr = div64_u64(to_reclaim, bytes);
483         if (!nr)
484                 nr = 1;
485         return nr;
486 }
487
488 #define EXTENT_SIZE_PER_ITEM    SZ_256K
489
490 /*
491  * shrink metadata reservation for delalloc
492  */
493 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
494                             struct btrfs_space_info *space_info,
495                             u64 to_reclaim, bool wait_ordered)
496 {
497         struct btrfs_trans_handle *trans;
498         u64 delalloc_bytes;
499         u64 ordered_bytes;
500         u64 items;
501         long time_left;
502         int loops;
503
504         /* Calc the number of the pages we need flush for space reservation */
505         if (to_reclaim == U64_MAX) {
506                 items = U64_MAX;
507         } else {
508                 /*
509                  * to_reclaim is set to however much metadata we need to
510                  * reclaim, but reclaiming that much data doesn't really track
511                  * exactly, so increase the amount to reclaim by 2x in order to
512                  * make sure we're flushing enough delalloc to hopefully reclaim
513                  * some metadata reservations.
514                  */
515                 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
516                 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
517         }
518
519         trans = (struct btrfs_trans_handle *)current->journal_info;
520
521         delalloc_bytes = percpu_counter_sum_positive(
522                                                 &fs_info->delalloc_bytes);
523         ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
524         if (delalloc_bytes == 0 && ordered_bytes == 0)
525                 return;
526
527         /*
528          * If we are doing more ordered than delalloc we need to just wait on
529          * ordered extents, otherwise we'll waste time trying to flush delalloc
530          * that likely won't give us the space back we need.
531          */
532         if (ordered_bytes > delalloc_bytes)
533                 wait_ordered = true;
534
535         loops = 0;
536         while ((delalloc_bytes || ordered_bytes) && loops < 3) {
537                 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
538                 long nr_pages = min_t(u64, temp, LONG_MAX);
539
540                 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
541
542                 loops++;
543                 if (wait_ordered && !trans) {
544                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
545                 } else {
546                         time_left = schedule_timeout_killable(1);
547                         if (time_left)
548                                 break;
549                 }
550
551                 spin_lock(&space_info->lock);
552                 if (list_empty(&space_info->tickets) &&
553                     list_empty(&space_info->priority_tickets)) {
554                         spin_unlock(&space_info->lock);
555                         break;
556                 }
557                 spin_unlock(&space_info->lock);
558
559                 delalloc_bytes = percpu_counter_sum_positive(
560                                                 &fs_info->delalloc_bytes);
561                 ordered_bytes = percpu_counter_sum_positive(
562                                                 &fs_info->ordered_bytes);
563         }
564 }
565
566 /**
567  * Possibly commit the transaction if its ok to
568  *
569  * @fs_info:    the filesystem
570  * @space_info: space_info we are checking for commit, either data or metadata
571  *
572  * This will check to make sure that committing the transaction will actually
573  * get us somewhere and then commit the transaction if it does.  Otherwise it
574  * will return -ENOSPC.
575  */
576 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
577                                   struct btrfs_space_info *space_info)
578 {
579         struct reserve_ticket *ticket = NULL;
580         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
581         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
582         struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
583         struct btrfs_trans_handle *trans;
584         u64 reclaim_bytes = 0;
585         u64 bytes_needed = 0;
586         u64 cur_free_bytes = 0;
587
588         trans = (struct btrfs_trans_handle *)current->journal_info;
589         if (trans)
590                 return -EAGAIN;
591
592         spin_lock(&space_info->lock);
593         cur_free_bytes = btrfs_space_info_used(space_info, true);
594         if (cur_free_bytes < space_info->total_bytes)
595                 cur_free_bytes = space_info->total_bytes - cur_free_bytes;
596         else
597                 cur_free_bytes = 0;
598
599         if (!list_empty(&space_info->priority_tickets))
600                 ticket = list_first_entry(&space_info->priority_tickets,
601                                           struct reserve_ticket, list);
602         else if (!list_empty(&space_info->tickets))
603                 ticket = list_first_entry(&space_info->tickets,
604                                           struct reserve_ticket, list);
605         if (ticket)
606                 bytes_needed = ticket->bytes;
607
608         if (bytes_needed > cur_free_bytes)
609                 bytes_needed -= cur_free_bytes;
610         else
611                 bytes_needed = 0;
612         spin_unlock(&space_info->lock);
613
614         if (!bytes_needed)
615                 return 0;
616
617         trans = btrfs_join_transaction(fs_info->extent_root);
618         if (IS_ERR(trans))
619                 return PTR_ERR(trans);
620
621         /*
622          * See if there is enough pinned space to make this reservation, or if
623          * we have block groups that are going to be freed, allowing us to
624          * possibly do a chunk allocation the next loop through.
625          */
626         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
627             __percpu_counter_compare(&space_info->total_bytes_pinned,
628                                      bytes_needed,
629                                      BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
630                 goto commit;
631
632         /*
633          * See if there is some space in the delayed insertion reserve for this
634          * reservation.  If the space_info's don't match (like for DATA or
635          * SYSTEM) then just go enospc, reclaiming this space won't recover any
636          * space to satisfy those reservations.
637          */
638         if (space_info != delayed_rsv->space_info)
639                 goto enospc;
640
641         spin_lock(&delayed_rsv->lock);
642         reclaim_bytes += delayed_rsv->reserved;
643         spin_unlock(&delayed_rsv->lock);
644
645         spin_lock(&delayed_refs_rsv->lock);
646         reclaim_bytes += delayed_refs_rsv->reserved;
647         spin_unlock(&delayed_refs_rsv->lock);
648
649         spin_lock(&trans_rsv->lock);
650         reclaim_bytes += trans_rsv->reserved;
651         spin_unlock(&trans_rsv->lock);
652
653         if (reclaim_bytes >= bytes_needed)
654                 goto commit;
655         bytes_needed -= reclaim_bytes;
656
657         if (__percpu_counter_compare(&space_info->total_bytes_pinned,
658                                    bytes_needed,
659                                    BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
660                 goto enospc;
661
662 commit:
663         return btrfs_commit_transaction(trans);
664 enospc:
665         btrfs_end_transaction(trans);
666         return -ENOSPC;
667 }
668
669 /*
670  * Try to flush some data based on policy set by @state. This is only advisory
671  * and may fail for various reasons. The caller is supposed to examine the
672  * state of @space_info to detect the outcome.
673  */
674 static void flush_space(struct btrfs_fs_info *fs_info,
675                        struct btrfs_space_info *space_info, u64 num_bytes,
676                        enum btrfs_flush_state state, bool for_preempt)
677 {
678         struct btrfs_root *root = fs_info->extent_root;
679         struct btrfs_trans_handle *trans;
680         int nr;
681         int ret = 0;
682
683         switch (state) {
684         case FLUSH_DELAYED_ITEMS_NR:
685         case FLUSH_DELAYED_ITEMS:
686                 if (state == FLUSH_DELAYED_ITEMS_NR)
687                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
688                 else
689                         nr = -1;
690
691                 trans = btrfs_join_transaction(root);
692                 if (IS_ERR(trans)) {
693                         ret = PTR_ERR(trans);
694                         break;
695                 }
696                 ret = btrfs_run_delayed_items_nr(trans, nr);
697                 btrfs_end_transaction(trans);
698                 break;
699         case FLUSH_DELALLOC:
700         case FLUSH_DELALLOC_WAIT:
701                 shrink_delalloc(fs_info, space_info, num_bytes,
702                                 state == FLUSH_DELALLOC_WAIT);
703                 break;
704         case FLUSH_DELAYED_REFS_NR:
705         case FLUSH_DELAYED_REFS:
706                 trans = btrfs_join_transaction(root);
707                 if (IS_ERR(trans)) {
708                         ret = PTR_ERR(trans);
709                         break;
710                 }
711                 if (state == FLUSH_DELAYED_REFS_NR)
712                         nr = calc_reclaim_items_nr(fs_info, num_bytes);
713                 else
714                         nr = 0;
715                 btrfs_run_delayed_refs(trans, nr);
716                 btrfs_end_transaction(trans);
717                 break;
718         case ALLOC_CHUNK:
719         case ALLOC_CHUNK_FORCE:
720                 trans = btrfs_join_transaction(root);
721                 if (IS_ERR(trans)) {
722                         ret = PTR_ERR(trans);
723                         break;
724                 }
725                 ret = btrfs_chunk_alloc(trans,
726                                 btrfs_get_alloc_profile(fs_info, space_info->flags),
727                                 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
728                                         CHUNK_ALLOC_FORCE);
729                 btrfs_end_transaction(trans);
730                 if (ret > 0 || ret == -ENOSPC)
731                         ret = 0;
732                 break;
733         case RUN_DELAYED_IPUTS:
734                 /*
735                  * If we have pending delayed iputs then we could free up a
736                  * bunch of pinned space, so make sure we run the iputs before
737                  * we do our pinned bytes check below.
738                  */
739                 btrfs_run_delayed_iputs(fs_info);
740                 btrfs_wait_on_delayed_iputs(fs_info);
741                 break;
742         case COMMIT_TRANS:
743                 ret = may_commit_transaction(fs_info, space_info);
744                 break;
745         case FORCE_COMMIT_TRANS:
746                 trans = btrfs_join_transaction(root);
747                 if (IS_ERR(trans)) {
748                         ret = PTR_ERR(trans);
749                         break;
750                 }
751                 ret = btrfs_commit_transaction(trans);
752                 break;
753         default:
754                 ret = -ENOSPC;
755                 break;
756         }
757
758         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
759                                 ret, for_preempt);
760         return;
761 }
762
763 static inline u64
764 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
765                                  struct btrfs_space_info *space_info)
766 {
767         u64 used;
768         u64 avail;
769         u64 to_reclaim = space_info->reclaim_size;
770
771         lockdep_assert_held(&space_info->lock);
772
773         avail = calc_available_free_space(fs_info, space_info,
774                                           BTRFS_RESERVE_FLUSH_ALL);
775         used = btrfs_space_info_used(space_info, true);
776
777         /*
778          * We may be flushing because suddenly we have less space than we had
779          * before, and now we're well over-committed based on our current free
780          * space.  If that's the case add in our overage so we make sure to put
781          * appropriate pressure on the flushing state machine.
782          */
783         if (space_info->total_bytes + avail < used)
784                 to_reclaim += used - (space_info->total_bytes + avail);
785
786         return to_reclaim;
787 }
788
789 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
790                                     struct btrfs_space_info *space_info)
791 {
792         u64 ordered, delalloc;
793         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
794         u64 used;
795
796         /* If we're just plain full then async reclaim just slows us down. */
797         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
798                 return false;
799
800         /*
801          * We have tickets queued, bail so we don't compete with the async
802          * flushers.
803          */
804         if (space_info->reclaim_size)
805                 return false;
806
807         /*
808          * If we have over half of the free space occupied by reservations or
809          * pinned then we want to start flushing.
810          *
811          * We do not do the traditional thing here, which is to say
812          *
813          *   if (used >= ((total_bytes + avail) / 2))
814          *     return 1;
815          *
816          * because this doesn't quite work how we want.  If we had more than 50%
817          * of the space_info used by bytes_used and we had 0 available we'd just
818          * constantly run the background flusher.  Instead we want it to kick in
819          * if our reclaimable space exceeds our clamped free space.
820          *
821          * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
822          * the following:
823          *
824          * Amount of RAM        Minimum threshold       Maximum threshold
825          *
826          *        256GiB                     1GiB                  128GiB
827          *        128GiB                   512MiB                   64GiB
828          *         64GiB                   256MiB                   32GiB
829          *         32GiB                   128MiB                   16GiB
830          *         16GiB                    64MiB                    8GiB
831          *
832          * These are the range our thresholds will fall in, corresponding to how
833          * much delalloc we need for the background flusher to kick in.
834          */
835
836         thresh = calc_available_free_space(fs_info, space_info,
837                                            BTRFS_RESERVE_FLUSH_ALL);
838         thresh += (space_info->total_bytes - space_info->bytes_used -
839                    space_info->bytes_reserved - space_info->bytes_readonly);
840         thresh >>= space_info->clamp;
841
842         used = space_info->bytes_pinned;
843
844         /*
845          * If we have more ordered bytes than delalloc bytes then we're either
846          * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
847          * around.  Preemptive flushing is only useful in that it can free up
848          * space before tickets need to wait for things to finish.  In the case
849          * of ordered extents, preemptively waiting on ordered extents gets us
850          * nothing, if our reservations are tied up in ordered extents we'll
851          * simply have to slow down writers by forcing them to wait on ordered
852          * extents.
853          *
854          * In the case that ordered is larger than delalloc, only include the
855          * block reserves that we would actually be able to directly reclaim
856          * from.  In this case if we're heavy on metadata operations this will
857          * clearly be heavy enough to warrant preemptive flushing.  In the case
858          * of heavy DIO or ordered reservations, preemptive flushing will just
859          * waste time and cause us to slow down.
860          */
861         ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
862         delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
863         if (ordered >= delalloc)
864                 used += fs_info->delayed_refs_rsv.reserved +
865                         fs_info->delayed_block_rsv.reserved;
866         else
867                 used += space_info->bytes_may_use;
868
869         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
870                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
871 }
872
873 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
874                                   struct btrfs_space_info *space_info,
875                                   struct reserve_ticket *ticket)
876 {
877         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
878         u64 min_bytes;
879
880         if (global_rsv->space_info != space_info)
881                 return false;
882
883         spin_lock(&global_rsv->lock);
884         min_bytes = div_factor(global_rsv->size, 1);
885         if (global_rsv->reserved < min_bytes + ticket->bytes) {
886                 spin_unlock(&global_rsv->lock);
887                 return false;
888         }
889         global_rsv->reserved -= ticket->bytes;
890         remove_ticket(space_info, ticket);
891         ticket->bytes = 0;
892         wake_up(&ticket->wait);
893         space_info->tickets_id++;
894         if (global_rsv->reserved < global_rsv->size)
895                 global_rsv->full = 0;
896         spin_unlock(&global_rsv->lock);
897
898         return true;
899 }
900
901 /*
902  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
903  * @fs_info - fs_info for this fs
904  * @space_info - the space info we were flushing
905  *
906  * We call this when we've exhausted our flushing ability and haven't made
907  * progress in satisfying tickets.  The reservation code handles tickets in
908  * order, so if there is a large ticket first and then smaller ones we could
909  * very well satisfy the smaller tickets.  This will attempt to wake up any
910  * tickets in the list to catch this case.
911  *
912  * This function returns true if it was able to make progress by clearing out
913  * other tickets, or if it stumbles across a ticket that was smaller than the
914  * first ticket.
915  */
916 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
917                                    struct btrfs_space_info *space_info)
918 {
919         struct reserve_ticket *ticket;
920         u64 tickets_id = space_info->tickets_id;
921         u64 first_ticket_bytes = 0;
922
923         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
924                 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
925                 __btrfs_dump_space_info(fs_info, space_info);
926         }
927
928         while (!list_empty(&space_info->tickets) &&
929                tickets_id == space_info->tickets_id) {
930                 ticket = list_first_entry(&space_info->tickets,
931                                           struct reserve_ticket, list);
932
933                 if (ticket->steal &&
934                     steal_from_global_rsv(fs_info, space_info, ticket))
935                         return true;
936
937                 /*
938                  * may_commit_transaction will avoid committing the transaction
939                  * if it doesn't feel like the space reclaimed by the commit
940                  * would result in the ticket succeeding.  However if we have a
941                  * smaller ticket in the queue it may be small enough to be
942                  * satisified by committing the transaction, so if any
943                  * subsequent ticket is smaller than the first ticket go ahead
944                  * and send us back for another loop through the enospc flushing
945                  * code.
946                  */
947                 if (first_ticket_bytes == 0)
948                         first_ticket_bytes = ticket->bytes;
949                 else if (first_ticket_bytes > ticket->bytes)
950                         return true;
951
952                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
953                         btrfs_info(fs_info, "failing ticket with %llu bytes",
954                                    ticket->bytes);
955
956                 remove_ticket(space_info, ticket);
957                 ticket->error = -ENOSPC;
958                 wake_up(&ticket->wait);
959
960                 /*
961                  * We're just throwing tickets away, so more flushing may not
962                  * trip over btrfs_try_granting_tickets, so we need to call it
963                  * here to see if we can make progress with the next ticket in
964                  * the list.
965                  */
966                 btrfs_try_granting_tickets(fs_info, space_info);
967         }
968         return (tickets_id != space_info->tickets_id);
969 }
970
971 /*
972  * This is for normal flushers, we can wait all goddamned day if we want to.  We
973  * will loop and continuously try to flush as long as we are making progress.
974  * We count progress as clearing off tickets each time we have to loop.
975  */
976 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
977 {
978         struct btrfs_fs_info *fs_info;
979         struct btrfs_space_info *space_info;
980         u64 to_reclaim;
981         enum btrfs_flush_state flush_state;
982         int commit_cycles = 0;
983         u64 last_tickets_id;
984
985         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
986         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
987
988         spin_lock(&space_info->lock);
989         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
990         if (!to_reclaim) {
991                 space_info->flush = 0;
992                 spin_unlock(&space_info->lock);
993                 return;
994         }
995         last_tickets_id = space_info->tickets_id;
996         spin_unlock(&space_info->lock);
997
998         flush_state = FLUSH_DELAYED_ITEMS_NR;
999         do {
1000                 flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1001                 spin_lock(&space_info->lock);
1002                 if (list_empty(&space_info->tickets)) {
1003                         space_info->flush = 0;
1004                         spin_unlock(&space_info->lock);
1005                         return;
1006                 }
1007                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1008                                                               space_info);
1009                 if (last_tickets_id == space_info->tickets_id) {
1010                         flush_state++;
1011                 } else {
1012                         last_tickets_id = space_info->tickets_id;
1013                         flush_state = FLUSH_DELAYED_ITEMS_NR;
1014                         if (commit_cycles)
1015                                 commit_cycles--;
1016                 }
1017
1018                 /*
1019                  * We don't want to force a chunk allocation until we've tried
1020                  * pretty hard to reclaim space.  Think of the case where we
1021                  * freed up a bunch of space and so have a lot of pinned space
1022                  * to reclaim.  We would rather use that than possibly create a
1023                  * underutilized metadata chunk.  So if this is our first run
1024                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1025                  * commit the transaction.  If nothing has changed the next go
1026                  * around then we can force a chunk allocation.
1027                  */
1028                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1029                         flush_state++;
1030
1031                 if (flush_state > COMMIT_TRANS) {
1032                         commit_cycles++;
1033                         if (commit_cycles > 2) {
1034                                 if (maybe_fail_all_tickets(fs_info, space_info)) {
1035                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
1036                                         commit_cycles--;
1037                                 } else {
1038                                         space_info->flush = 0;
1039                                 }
1040                         } else {
1041                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
1042                         }
1043                 }
1044                 spin_unlock(&space_info->lock);
1045         } while (flush_state <= COMMIT_TRANS);
1046 }
1047
1048 /*
1049  * This handles pre-flushing of metadata space before we get to the point that
1050  * we need to start blocking threads on tickets.  The logic here is different
1051  * from the other flush paths because it doesn't rely on tickets to tell us how
1052  * much we need to flush, instead it attempts to keep us below the 80% full
1053  * watermark of space by flushing whichever reservation pool is currently the
1054  * largest.
1055  */
1056 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1057 {
1058         struct btrfs_fs_info *fs_info;
1059         struct btrfs_space_info *space_info;
1060         struct btrfs_block_rsv *delayed_block_rsv;
1061         struct btrfs_block_rsv *delayed_refs_rsv;
1062         struct btrfs_block_rsv *global_rsv;
1063         struct btrfs_block_rsv *trans_rsv;
1064         int loops = 0;
1065
1066         fs_info = container_of(work, struct btrfs_fs_info,
1067                                preempt_reclaim_work);
1068         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1069         delayed_block_rsv = &fs_info->delayed_block_rsv;
1070         delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1071         global_rsv = &fs_info->global_block_rsv;
1072         trans_rsv = &fs_info->trans_block_rsv;
1073
1074         spin_lock(&space_info->lock);
1075         while (need_preemptive_reclaim(fs_info, space_info)) {
1076                 enum btrfs_flush_state flush;
1077                 u64 delalloc_size = 0;
1078                 u64 to_reclaim, block_rsv_size;
1079                 u64 global_rsv_size = global_rsv->reserved;
1080
1081                 loops++;
1082
1083                 /*
1084                  * We don't have a precise counter for the metadata being
1085                  * reserved for delalloc, so we'll approximate it by subtracting
1086                  * out the block rsv's space from the bytes_may_use.  If that
1087                  * amount is higher than the individual reserves, then we can
1088                  * assume it's tied up in delalloc reservations.
1089                  */
1090                 block_rsv_size = global_rsv_size +
1091                         delayed_block_rsv->reserved +
1092                         delayed_refs_rsv->reserved +
1093                         trans_rsv->reserved;
1094                 if (block_rsv_size < space_info->bytes_may_use)
1095                         delalloc_size = space_info->bytes_may_use - block_rsv_size;
1096                 spin_unlock(&space_info->lock);
1097
1098                 /*
1099                  * We don't want to include the global_rsv in our calculation,
1100                  * because that's space we can't touch.  Subtract it from the
1101                  * block_rsv_size for the next checks.
1102                  */
1103                 block_rsv_size -= global_rsv_size;
1104
1105                 /*
1106                  * We really want to avoid flushing delalloc too much, as it
1107                  * could result in poor allocation patterns, so only flush it if
1108                  * it's larger than the rest of the pools combined.
1109                  */
1110                 if (delalloc_size > block_rsv_size) {
1111                         to_reclaim = delalloc_size;
1112                         flush = FLUSH_DELALLOC;
1113                 } else if (space_info->bytes_pinned >
1114                            (delayed_block_rsv->reserved +
1115                             delayed_refs_rsv->reserved)) {
1116                         to_reclaim = space_info->bytes_pinned;
1117                         flush = FORCE_COMMIT_TRANS;
1118                 } else if (delayed_block_rsv->reserved >
1119                            delayed_refs_rsv->reserved) {
1120                         to_reclaim = delayed_block_rsv->reserved;
1121                         flush = FLUSH_DELAYED_ITEMS_NR;
1122                 } else {
1123                         to_reclaim = delayed_refs_rsv->reserved;
1124                         flush = FLUSH_DELAYED_REFS_NR;
1125                 }
1126
1127                 /*
1128                  * We don't want to reclaim everything, just a portion, so scale
1129                  * down the to_reclaim by 1/4.  If it takes us down to 0,
1130                  * reclaim 1 items worth.
1131                  */
1132                 to_reclaim >>= 2;
1133                 if (!to_reclaim)
1134                         to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1135                 flush_space(fs_info, space_info, to_reclaim, flush, true);
1136                 cond_resched();
1137                 spin_lock(&space_info->lock);
1138         }
1139
1140         /* We only went through once, back off our clamping. */
1141         if (loops == 1 && !space_info->reclaim_size)
1142                 space_info->clamp = max(1, space_info->clamp - 1);
1143         trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1144         spin_unlock(&space_info->lock);
1145 }
1146
1147 /*
1148  * FLUSH_DELALLOC_WAIT:
1149  *   Space is freed from flushing delalloc in one of two ways.
1150  *
1151  *   1) compression is on and we allocate less space than we reserved
1152  *   2) we are overwriting existing space
1153  *
1154  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1155  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1156  *   length to ->bytes_reserved, and subtracts the reserved space from
1157  *   ->bytes_may_use.
1158  *
1159  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1160  *   extent in the range we are overwriting, which creates a delayed ref for
1161  *   that freed extent.  This however is not reclaimed until the transaction
1162  *   commits, thus the next stages.
1163  *
1164  * RUN_DELAYED_IPUTS
1165  *   If we are freeing inodes, we want to make sure all delayed iputs have
1166  *   completed, because they could have been on an inode with i_nlink == 0, and
1167  *   thus have been truncated and freed up space.  But again this space is not
1168  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1169  *   run and then the transaction must be committed.
1170  *
1171  * FLUSH_DELAYED_REFS
1172  *   The above two cases generate delayed refs that will affect
1173  *   ->total_bytes_pinned.  However this counter can be inconsistent with
1174  *   reality if there are outstanding delayed refs.  This is because we adjust
1175  *   the counter based solely on the current set of delayed refs and disregard
1176  *   any on-disk state which might include more refs.  So for example, if we
1177  *   have an extent with 2 references, but we only drop 1, we'll see that there
1178  *   is a negative delayed ref count for the extent and assume that the space
1179  *   will be freed, and thus increase ->total_bytes_pinned.
1180  *
1181  *   Running the delayed refs gives us the actual real view of what will be
1182  *   freed at the transaction commit time.  This stage will not actually free
1183  *   space for us, it just makes sure that may_commit_transaction() has all of
1184  *   the information it needs to make the right decision.
1185  *
1186  * COMMIT_TRANS
1187  *   This is where we reclaim all of the pinned space generated by the previous
1188  *   two stages.  We will not commit the transaction if we don't think we're
1189  *   likely to satisfy our request, which means if our current free space +
1190  *   total_bytes_pinned < reservation we will not commit.  This is why the
1191  *   previous states are actually important, to make sure we know for sure
1192  *   whether committing the transaction will allow us to make progress.
1193  *
1194  * ALLOC_CHUNK_FORCE
1195  *   For data we start with alloc chunk force, however we could have been full
1196  *   before, and then the transaction commit could have freed new block groups,
1197  *   so if we now have space to allocate do the force chunk allocation.
1198  */
1199 static const enum btrfs_flush_state data_flush_states[] = {
1200         FLUSH_DELALLOC_WAIT,
1201         RUN_DELAYED_IPUTS,
1202         FLUSH_DELAYED_REFS,
1203         COMMIT_TRANS,
1204         ALLOC_CHUNK_FORCE,
1205 };
1206
1207 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1208 {
1209         struct btrfs_fs_info *fs_info;
1210         struct btrfs_space_info *space_info;
1211         u64 last_tickets_id;
1212         enum btrfs_flush_state flush_state = 0;
1213
1214         fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1215         space_info = fs_info->data_sinfo;
1216
1217         spin_lock(&space_info->lock);
1218         if (list_empty(&space_info->tickets)) {
1219                 space_info->flush = 0;
1220                 spin_unlock(&space_info->lock);
1221                 return;
1222         }
1223         last_tickets_id = space_info->tickets_id;
1224         spin_unlock(&space_info->lock);
1225
1226         while (!space_info->full) {
1227                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1228                 spin_lock(&space_info->lock);
1229                 if (list_empty(&space_info->tickets)) {
1230                         space_info->flush = 0;
1231                         spin_unlock(&space_info->lock);
1232                         return;
1233                 }
1234                 last_tickets_id = space_info->tickets_id;
1235                 spin_unlock(&space_info->lock);
1236         }
1237
1238         while (flush_state < ARRAY_SIZE(data_flush_states)) {
1239                 flush_space(fs_info, space_info, U64_MAX,
1240                             data_flush_states[flush_state], false);
1241                 spin_lock(&space_info->lock);
1242                 if (list_empty(&space_info->tickets)) {
1243                         space_info->flush = 0;
1244                         spin_unlock(&space_info->lock);
1245                         return;
1246                 }
1247
1248                 if (last_tickets_id == space_info->tickets_id) {
1249                         flush_state++;
1250                 } else {
1251                         last_tickets_id = space_info->tickets_id;
1252                         flush_state = 0;
1253                 }
1254
1255                 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1256                         if (space_info->full) {
1257                                 if (maybe_fail_all_tickets(fs_info, space_info))
1258                                         flush_state = 0;
1259                                 else
1260                                         space_info->flush = 0;
1261                         } else {
1262                                 flush_state = 0;
1263                         }
1264                 }
1265                 spin_unlock(&space_info->lock);
1266         }
1267 }
1268
1269 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1270 {
1271         INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1272         INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1273         INIT_WORK(&fs_info->preempt_reclaim_work,
1274                   btrfs_preempt_reclaim_metadata_space);
1275 }
1276
1277 static const enum btrfs_flush_state priority_flush_states[] = {
1278         FLUSH_DELAYED_ITEMS_NR,
1279         FLUSH_DELAYED_ITEMS,
1280         ALLOC_CHUNK,
1281 };
1282
1283 static const enum btrfs_flush_state evict_flush_states[] = {
1284         FLUSH_DELAYED_ITEMS_NR,
1285         FLUSH_DELAYED_ITEMS,
1286         FLUSH_DELAYED_REFS_NR,
1287         FLUSH_DELAYED_REFS,
1288         FLUSH_DELALLOC,
1289         FLUSH_DELALLOC_WAIT,
1290         ALLOC_CHUNK,
1291         COMMIT_TRANS,
1292 };
1293
1294 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1295                                 struct btrfs_space_info *space_info,
1296                                 struct reserve_ticket *ticket,
1297                                 const enum btrfs_flush_state *states,
1298                                 int states_nr)
1299 {
1300         u64 to_reclaim;
1301         int flush_state;
1302
1303         spin_lock(&space_info->lock);
1304         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1305         if (!to_reclaim) {
1306                 spin_unlock(&space_info->lock);
1307                 return;
1308         }
1309         spin_unlock(&space_info->lock);
1310
1311         flush_state = 0;
1312         do {
1313                 flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1314                             false);
1315                 flush_state++;
1316                 spin_lock(&space_info->lock);
1317                 if (ticket->bytes == 0) {
1318                         spin_unlock(&space_info->lock);
1319                         return;
1320                 }
1321                 spin_unlock(&space_info->lock);
1322         } while (flush_state < states_nr);
1323 }
1324
1325 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1326                                         struct btrfs_space_info *space_info,
1327                                         struct reserve_ticket *ticket)
1328 {
1329         while (!space_info->full) {
1330                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1331                 spin_lock(&space_info->lock);
1332                 if (ticket->bytes == 0) {
1333                         spin_unlock(&space_info->lock);
1334                         return;
1335                 }
1336                 spin_unlock(&space_info->lock);
1337         }
1338 }
1339
1340 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1341                                 struct btrfs_space_info *space_info,
1342                                 struct reserve_ticket *ticket)
1343
1344 {
1345         DEFINE_WAIT(wait);
1346         int ret = 0;
1347
1348         spin_lock(&space_info->lock);
1349         while (ticket->bytes > 0 && ticket->error == 0) {
1350                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1351                 if (ret) {
1352                         /*
1353                          * Delete us from the list. After we unlock the space
1354                          * info, we don't want the async reclaim job to reserve
1355                          * space for this ticket. If that would happen, then the
1356                          * ticket's task would not known that space was reserved
1357                          * despite getting an error, resulting in a space leak
1358                          * (bytes_may_use counter of our space_info).
1359                          */
1360                         remove_ticket(space_info, ticket);
1361                         ticket->error = -EINTR;
1362                         break;
1363                 }
1364                 spin_unlock(&space_info->lock);
1365
1366                 schedule();
1367
1368                 finish_wait(&ticket->wait, &wait);
1369                 spin_lock(&space_info->lock);
1370         }
1371         spin_unlock(&space_info->lock);
1372 }
1373
1374 /**
1375  * Do the appropriate flushing and waiting for a ticket
1376  *
1377  * @fs_info:    the filesystem
1378  * @space_info: space info for the reservation
1379  * @ticket:     ticket for the reservation
1380  * @start_ns:   timestamp when the reservation started
1381  * @orig_bytes: amount of bytes originally reserved
1382  * @flush:      how much we can flush
1383  *
1384  * This does the work of figuring out how to flush for the ticket, waiting for
1385  * the reservation, and returning the appropriate error if there is one.
1386  */
1387 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1388                                  struct btrfs_space_info *space_info,
1389                                  struct reserve_ticket *ticket,
1390                                  u64 start_ns, u64 orig_bytes,
1391                                  enum btrfs_reserve_flush_enum flush)
1392 {
1393         int ret;
1394
1395         switch (flush) {
1396         case BTRFS_RESERVE_FLUSH_DATA:
1397         case BTRFS_RESERVE_FLUSH_ALL:
1398         case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1399                 wait_reserve_ticket(fs_info, space_info, ticket);
1400                 break;
1401         case BTRFS_RESERVE_FLUSH_LIMIT:
1402                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1403                                                 priority_flush_states,
1404                                                 ARRAY_SIZE(priority_flush_states));
1405                 break;
1406         case BTRFS_RESERVE_FLUSH_EVICT:
1407                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1408                                                 evict_flush_states,
1409                                                 ARRAY_SIZE(evict_flush_states));
1410                 break;
1411         case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1412                 priority_reclaim_data_space(fs_info, space_info, ticket);
1413                 break;
1414         default:
1415                 ASSERT(0);
1416                 break;
1417         }
1418
1419         spin_lock(&space_info->lock);
1420         ret = ticket->error;
1421         if (ticket->bytes || ticket->error) {
1422                 /*
1423                  * We were a priority ticket, so we need to delete ourselves
1424                  * from the list.  Because we could have other priority tickets
1425                  * behind us that require less space, run
1426                  * btrfs_try_granting_tickets() to see if their reservations can
1427                  * now be made.
1428                  */
1429                 if (!list_empty(&ticket->list)) {
1430                         remove_ticket(space_info, ticket);
1431                         btrfs_try_granting_tickets(fs_info, space_info);
1432                 }
1433
1434                 if (!ret)
1435                         ret = -ENOSPC;
1436         }
1437         spin_unlock(&space_info->lock);
1438         ASSERT(list_empty(&ticket->list));
1439         /*
1440          * Check that we can't have an error set if the reservation succeeded,
1441          * as that would confuse tasks and lead them to error out without
1442          * releasing reserved space (if an error happens the expectation is that
1443          * space wasn't reserved at all).
1444          */
1445         ASSERT(!(ticket->bytes == 0 && ticket->error));
1446         trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1447                                    start_ns, flush, ticket->error);
1448         return ret;
1449 }
1450
1451 /*
1452  * This returns true if this flush state will go through the ordinary flushing
1453  * code.
1454  */
1455 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1456 {
1457         return  (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1458                 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1459 }
1460
1461 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1462                                        struct btrfs_space_info *space_info)
1463 {
1464         u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1465         u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1466
1467         /*
1468          * If we're heavy on ordered operations then clamping won't help us.  We
1469          * need to clamp specifically to keep up with dirty'ing buffered
1470          * writers, because there's not a 1:1 correlation of writing delalloc
1471          * and freeing space, like there is with flushing delayed refs or
1472          * delayed nodes.  If we're already more ordered than delalloc then
1473          * we're keeping up, otherwise we aren't and should probably clamp.
1474          */
1475         if (ordered < delalloc)
1476                 space_info->clamp = min(space_info->clamp + 1, 8);
1477 }
1478
1479 /**
1480  * Try to reserve bytes from the block_rsv's space
1481  *
1482  * @fs_info:    the filesystem
1483  * @space_info: space info we want to allocate from
1484  * @orig_bytes: number of bytes we want
1485  * @flush:      whether or not we can flush to make our reservation
1486  *
1487  * This will reserve orig_bytes number of bytes from the space info associated
1488  * with the block_rsv.  If there is not enough space it will make an attempt to
1489  * flush out space to make room.  It will do this by flushing delalloc if
1490  * possible or committing the transaction.  If flush is 0 then no attempts to
1491  * regain reservations will be made and this will fail if there is not enough
1492  * space already.
1493  */
1494 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1495                            struct btrfs_space_info *space_info, u64 orig_bytes,
1496                            enum btrfs_reserve_flush_enum flush)
1497 {
1498         struct work_struct *async_work;
1499         struct reserve_ticket ticket;
1500         u64 start_ns = 0;
1501         u64 used;
1502         int ret = 0;
1503         bool pending_tickets;
1504
1505         ASSERT(orig_bytes);
1506         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1507
1508         if (flush == BTRFS_RESERVE_FLUSH_DATA)
1509                 async_work = &fs_info->async_data_reclaim_work;
1510         else
1511                 async_work = &fs_info->async_reclaim_work;
1512
1513         spin_lock(&space_info->lock);
1514         ret = -ENOSPC;
1515         used = btrfs_space_info_used(space_info, true);
1516
1517         /*
1518          * We don't want NO_FLUSH allocations to jump everybody, they can
1519          * generally handle ENOSPC in a different way, so treat them the same as
1520          * normal flushers when it comes to skipping pending tickets.
1521          */
1522         if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1523                 pending_tickets = !list_empty(&space_info->tickets) ||
1524                         !list_empty(&space_info->priority_tickets);
1525         else
1526                 pending_tickets = !list_empty(&space_info->priority_tickets);
1527
1528         /*
1529          * Carry on if we have enough space (short-circuit) OR call
1530          * can_overcommit() to ensure we can overcommit to continue.
1531          */
1532         if (!pending_tickets &&
1533             ((used + orig_bytes <= space_info->total_bytes) ||
1534              btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1535                 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1536                                                       orig_bytes);
1537                 ret = 0;
1538         }
1539
1540         /*
1541          * If we couldn't make a reservation then setup our reservation ticket
1542          * and kick the async worker if it's not already running.
1543          *
1544          * If we are a priority flusher then we just need to add our ticket to
1545          * the list and we will do our own flushing further down.
1546          */
1547         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1548                 ticket.bytes = orig_bytes;
1549                 ticket.error = 0;
1550                 space_info->reclaim_size += ticket.bytes;
1551                 init_waitqueue_head(&ticket.wait);
1552                 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1553                 if (trace_btrfs_reserve_ticket_enabled())
1554                         start_ns = ktime_get_ns();
1555
1556                 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1557                     flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1558                     flush == BTRFS_RESERVE_FLUSH_DATA) {
1559                         list_add_tail(&ticket.list, &space_info->tickets);
1560                         if (!space_info->flush) {
1561                                 space_info->flush = 1;
1562                                 trace_btrfs_trigger_flush(fs_info,
1563                                                           space_info->flags,
1564                                                           orig_bytes, flush,
1565                                                           "enospc");
1566                                 queue_work(system_unbound_wq, async_work);
1567                         }
1568                 } else {
1569                         list_add_tail(&ticket.list,
1570                                       &space_info->priority_tickets);
1571                 }
1572
1573                 /*
1574                  * We were forced to add a reserve ticket, so our preemptive
1575                  * flushing is unable to keep up.  Clamp down on the threshold
1576                  * for the preemptive flushing in order to keep up with the
1577                  * workload.
1578                  */
1579                 maybe_clamp_preempt(fs_info, space_info);
1580         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1581                 used += orig_bytes;
1582                 /*
1583                  * We will do the space reservation dance during log replay,
1584                  * which means we won't have fs_info->fs_root set, so don't do
1585                  * the async reclaim as we will panic.
1586                  */
1587                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1588                     need_preemptive_reclaim(fs_info, space_info) &&
1589                     !work_busy(&fs_info->preempt_reclaim_work)) {
1590                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
1591                                                   orig_bytes, flush, "preempt");
1592                         queue_work(system_unbound_wq,
1593                                    &fs_info->preempt_reclaim_work);
1594                 }
1595         }
1596         spin_unlock(&space_info->lock);
1597         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1598                 return ret;
1599
1600         return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1601                                      orig_bytes, flush);
1602 }
1603
1604 /**
1605  * Trye to reserve metadata bytes from the block_rsv's space
1606  *
1607  * @root:       the root we're allocating for
1608  * @block_rsv:  block_rsv we're allocating for
1609  * @orig_bytes: number of bytes we want
1610  * @flush:      whether or not we can flush to make our reservation
1611  *
1612  * This will reserve orig_bytes number of bytes from the space info associated
1613  * with the block_rsv.  If there is not enough space it will make an attempt to
1614  * flush out space to make room.  It will do this by flushing delalloc if
1615  * possible or committing the transaction.  If flush is 0 then no attempts to
1616  * regain reservations will be made and this will fail if there is not enough
1617  * space already.
1618  */
1619 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1620                                  struct btrfs_block_rsv *block_rsv,
1621                                  u64 orig_bytes,
1622                                  enum btrfs_reserve_flush_enum flush)
1623 {
1624         struct btrfs_fs_info *fs_info = root->fs_info;
1625         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1626         int ret;
1627
1628         ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1629         if (ret == -ENOSPC &&
1630             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1631                 if (block_rsv != global_rsv &&
1632                     !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1633                         ret = 0;
1634         }
1635         if (ret == -ENOSPC) {
1636                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1637                                               block_rsv->space_info->flags,
1638                                               orig_bytes, 1);
1639
1640                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1641                         btrfs_dump_space_info(fs_info, block_rsv->space_info,
1642                                               orig_bytes, 0);
1643         }
1644         return ret;
1645 }
1646
1647 /**
1648  * Try to reserve data bytes for an allocation
1649  *
1650  * @fs_info: the filesystem
1651  * @bytes:   number of bytes we need
1652  * @flush:   how we are allowed to flush
1653  *
1654  * This will reserve bytes from the data space info.  If there is not enough
1655  * space then we will attempt to flush space as specified by flush.
1656  */
1657 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1658                              enum btrfs_reserve_flush_enum flush)
1659 {
1660         struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1661         int ret;
1662
1663         ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1664                flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1665         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1666
1667         ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1668         if (ret == -ENOSPC) {
1669                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1670                                               data_sinfo->flags, bytes, 1);
1671                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1672                         btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1673         }
1674         return ret;
1675 }