bb4f85c07738834b38bc1aa357612125f399620b
[platform/kernel/linux-rpi.git] / fs / btrfs / space-info.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     may_commit_transaction() is the ultimate arbiter on whether we commit the
137  *     transaction or not.  In order to avoid constantly churning we do all the
138  *     above flushing first and then commit the transaction as the last resort.
139  *     However we need to take into account things like pinned space that would
140  *     be freed, plus any delayed work we may not have gotten rid of in the case
141  *     of metadata.
142  *
143  *   FORCE_COMMIT_TRANS
144  *     For use by the preemptive flusher.  We use this to bypass the ticketing
145  *     checks in may_commit_transaction, as we have more information about the
146  *     overall state of the system and may want to commit the transaction ahead
147  *     of actual ENOSPC conditions.
148  *
149  * OVERCOMMIT
150  *
151  *   Because we hold so many reservations for metadata we will allow you to
152  *   reserve more space than is currently free in the currently allocate
153  *   metadata space.  This only happens with metadata, data does not allow
154  *   overcommitting.
155  *
156  *   You can see the current logic for when we allow overcommit in
157  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
158  *   is no unallocated space to be had, all reservations are kept within the
159  *   free space in the allocated metadata chunks.
160  *
161  *   Because of overcommitting, you generally want to use the
162  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
163  *   thing with or without extra unallocated space.
164  */
165
166 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
167                           bool may_use_included)
168 {
169         ASSERT(s_info);
170         return s_info->bytes_used + s_info->bytes_reserved +
171                 s_info->bytes_pinned + s_info->bytes_readonly +
172                 (may_use_included ? s_info->bytes_may_use : 0);
173 }
174
175 /*
176  * after adding space to the filesystem, we need to clear the full flags
177  * on all the space infos.
178  */
179 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
180 {
181         struct list_head *head = &info->space_info;
182         struct btrfs_space_info *found;
183
184         list_for_each_entry(found, head, list)
185                 found->full = 0;
186 }
187
188 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
189 {
190
191         struct btrfs_space_info *space_info;
192         int i;
193         int ret;
194
195         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
196         if (!space_info)
197                 return -ENOMEM;
198
199         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
200                                  GFP_KERNEL);
201         if (ret) {
202                 kfree(space_info);
203                 return ret;
204         }
205
206         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
207                 INIT_LIST_HEAD(&space_info->block_groups[i]);
208         init_rwsem(&space_info->groups_sem);
209         spin_lock_init(&space_info->lock);
210         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
211         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
212         INIT_LIST_HEAD(&space_info->ro_bgs);
213         INIT_LIST_HEAD(&space_info->tickets);
214         INIT_LIST_HEAD(&space_info->priority_tickets);
215         space_info->clamp = 1;
216
217         ret = btrfs_sysfs_add_space_info_type(info, space_info);
218         if (ret)
219                 return ret;
220
221         list_add(&space_info->list, &info->space_info);
222         if (flags & BTRFS_BLOCK_GROUP_DATA)
223                 info->data_sinfo = space_info;
224
225         return ret;
226 }
227
228 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
229 {
230         struct btrfs_super_block *disk_super;
231         u64 features;
232         u64 flags;
233         int mixed = 0;
234         int ret;
235
236         disk_super = fs_info->super_copy;
237         if (!btrfs_super_root(disk_super))
238                 return -EINVAL;
239
240         features = btrfs_super_incompat_flags(disk_super);
241         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
242                 mixed = 1;
243
244         flags = BTRFS_BLOCK_GROUP_SYSTEM;
245         ret = create_space_info(fs_info, flags);
246         if (ret)
247                 goto out;
248
249         if (mixed) {
250                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
251                 ret = create_space_info(fs_info, flags);
252         } else {
253                 flags = BTRFS_BLOCK_GROUP_METADATA;
254                 ret = create_space_info(fs_info, flags);
255                 if (ret)
256                         goto out;
257
258                 flags = BTRFS_BLOCK_GROUP_DATA;
259                 ret = create_space_info(fs_info, flags);
260         }
261 out:
262         return ret;
263 }
264
265 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
266                              u64 total_bytes, u64 bytes_used,
267                              u64 bytes_readonly,
268                              struct btrfs_space_info **space_info)
269 {
270         struct btrfs_space_info *found;
271         int factor;
272
273         factor = btrfs_bg_type_to_factor(flags);
274
275         found = btrfs_find_space_info(info, flags);
276         ASSERT(found);
277         spin_lock(&found->lock);
278         found->total_bytes += total_bytes;
279         found->disk_total += total_bytes * factor;
280         found->bytes_used += bytes_used;
281         found->disk_used += bytes_used * factor;
282         found->bytes_readonly += bytes_readonly;
283         if (total_bytes > 0)
284                 found->full = 0;
285         btrfs_try_granting_tickets(info, found);
286         spin_unlock(&found->lock);
287         *space_info = found;
288 }
289
290 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
291                                                u64 flags)
292 {
293         struct list_head *head = &info->space_info;
294         struct btrfs_space_info *found;
295
296         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
297
298         list_for_each_entry(found, head, list) {
299                 if (found->flags & flags)
300                         return found;
301         }
302         return NULL;
303 }
304
305 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
306                           struct btrfs_space_info *space_info,
307                           enum btrfs_reserve_flush_enum flush)
308 {
309         u64 profile;
310         u64 avail;
311         int factor;
312
313         if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
314                 profile = btrfs_system_alloc_profile(fs_info);
315         else
316                 profile = btrfs_metadata_alloc_profile(fs_info);
317
318         avail = atomic64_read(&fs_info->free_chunk_space);
319
320         /*
321          * If we have dup, raid1 or raid10 then only half of the free
322          * space is actually usable.  For raid56, the space info used
323          * doesn't include the parity drive, so we don't have to
324          * change the math
325          */
326         factor = btrfs_bg_type_to_factor(profile);
327         avail = div_u64(avail, factor);
328
329         /*
330          * If we aren't flushing all things, let us overcommit up to
331          * 1/2th of the space. If we can flush, don't let us overcommit
332          * too much, let it overcommit up to 1/8 of the space.
333          */
334         if (flush == BTRFS_RESERVE_FLUSH_ALL)
335                 avail >>= 3;
336         else
337                 avail >>= 1;
338         return avail;
339 }
340
341 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
342                          struct btrfs_space_info *space_info, u64 bytes,
343                          enum btrfs_reserve_flush_enum flush)
344 {
345         u64 avail;
346         u64 used;
347
348         /* Don't overcommit when in mixed mode */
349         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
350                 return 0;
351
352         used = btrfs_space_info_used(space_info, true);
353         avail = calc_available_free_space(fs_info, space_info, flush);
354
355         if (used + bytes < space_info->total_bytes + avail)
356                 return 1;
357         return 0;
358 }
359
360 static void remove_ticket(struct btrfs_space_info *space_info,
361                           struct reserve_ticket *ticket)
362 {
363         if (!list_empty(&ticket->list)) {
364                 list_del_init(&ticket->list);
365                 ASSERT(space_info->reclaim_size >= ticket->bytes);
366                 space_info->reclaim_size -= ticket->bytes;
367         }
368 }
369
370 /*
371  * This is for space we already have accounted in space_info->bytes_may_use, so
372  * basically when we're returning space from block_rsv's.
373  */
374 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
375                                 struct btrfs_space_info *space_info)
376 {
377         struct list_head *head;
378         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
379
380         lockdep_assert_held(&space_info->lock);
381
382         head = &space_info->priority_tickets;
383 again:
384         while (!list_empty(head)) {
385                 struct reserve_ticket *ticket;
386                 u64 used = btrfs_space_info_used(space_info, true);
387
388                 ticket = list_first_entry(head, struct reserve_ticket, list);
389
390                 /* Check and see if our ticket can be satisified now. */
391                 if ((used + ticket->bytes <= space_info->total_bytes) ||
392                     btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
393                                          flush)) {
394                         btrfs_space_info_update_bytes_may_use(fs_info,
395                                                               space_info,
396                                                               ticket->bytes);
397                         remove_ticket(space_info, ticket);
398                         ticket->bytes = 0;
399                         space_info->tickets_id++;
400                         wake_up(&ticket->wait);
401                 } else {
402                         break;
403                 }
404         }
405
406         if (head == &space_info->priority_tickets) {
407                 head = &space_info->tickets;
408                 flush = BTRFS_RESERVE_FLUSH_ALL;
409                 goto again;
410         }
411 }
412
413 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
414 do {                                                                    \
415         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
416         spin_lock(&__rsv->lock);                                        \
417         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
418                    __rsv->size, __rsv->reserved);                       \
419         spin_unlock(&__rsv->lock);                                      \
420 } while (0)
421
422 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
423                                     struct btrfs_space_info *info)
424 {
425         lockdep_assert_held(&info->lock);
426
427         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
428                    info->flags,
429                    info->total_bytes - btrfs_space_info_used(info, true),
430                    info->full ? "" : "not ");
431         btrfs_info(fs_info,
432                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
433                 info->total_bytes, info->bytes_used, info->bytes_pinned,
434                 info->bytes_reserved, info->bytes_may_use,
435                 info->bytes_readonly);
436
437         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
438         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
439         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
440         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
441         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
442
443 }
444
445 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
446                            struct btrfs_space_info *info, u64 bytes,
447                            int dump_block_groups)
448 {
449         struct btrfs_block_group *cache;
450         int index = 0;
451
452         spin_lock(&info->lock);
453         __btrfs_dump_space_info(fs_info, info);
454         spin_unlock(&info->lock);
455
456         if (!dump_block_groups)
457                 return;
458
459         down_read(&info->groups_sem);
460 again:
461         list_for_each_entry(cache, &info->block_groups[index], list) {
462                 spin_lock(&cache->lock);
463                 btrfs_info(fs_info,
464                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
465                         cache->start, cache->length, cache->used, cache->pinned,
466                         cache->reserved, cache->ro ? "[readonly]" : "");
467                 spin_unlock(&cache->lock);
468                 btrfs_dump_free_space(cache, bytes);
469         }
470         if (++index < BTRFS_NR_RAID_TYPES)
471                 goto again;
472         up_read(&info->groups_sem);
473 }
474
475 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
476                                         u64 to_reclaim)
477 {
478         u64 bytes;
479         u64 nr;
480
481         bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
482         nr = div64_u64(to_reclaim, bytes);
483         if (!nr)
484                 nr = 1;
485         return nr;
486 }
487
488 #define EXTENT_SIZE_PER_ITEM    SZ_256K
489
490 /*
491  * shrink metadata reservation for delalloc
492  */
493 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
494                             struct btrfs_space_info *space_info,
495                             u64 to_reclaim, bool wait_ordered)
496 {
497         struct btrfs_trans_handle *trans;
498         u64 delalloc_bytes;
499         u64 ordered_bytes;
500         u64 items;
501         long time_left;
502         int loops;
503
504         /* Calc the number of the pages we need flush for space reservation */
505         if (to_reclaim == U64_MAX) {
506                 items = U64_MAX;
507         } else {
508                 /*
509                  * to_reclaim is set to however much metadata we need to
510                  * reclaim, but reclaiming that much data doesn't really track
511                  * exactly, so increase the amount to reclaim by 2x in order to
512                  * make sure we're flushing enough delalloc to hopefully reclaim
513                  * some metadata reservations.
514                  */
515                 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
516                 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
517         }
518
519         trans = (struct btrfs_trans_handle *)current->journal_info;
520
521         delalloc_bytes = percpu_counter_sum_positive(
522                                                 &fs_info->delalloc_bytes);
523         ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
524         if (delalloc_bytes == 0 && ordered_bytes == 0)
525                 return;
526
527         /*
528          * If we are doing more ordered than delalloc we need to just wait on
529          * ordered extents, otherwise we'll waste time trying to flush delalloc
530          * that likely won't give us the space back we need.
531          */
532         if (ordered_bytes > delalloc_bytes)
533                 wait_ordered = true;
534
535         loops = 0;
536         while ((delalloc_bytes || ordered_bytes) && loops < 3) {
537                 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
538                 long nr_pages = min_t(u64, temp, LONG_MAX);
539
540                 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
541
542                 loops++;
543                 if (wait_ordered && !trans) {
544                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
545                 } else {
546                         time_left = schedule_timeout_killable(1);
547                         if (time_left)
548                                 break;
549                 }
550
551                 spin_lock(&space_info->lock);
552                 if (list_empty(&space_info->tickets) &&
553                     list_empty(&space_info->priority_tickets)) {
554                         spin_unlock(&space_info->lock);
555                         break;
556                 }
557                 spin_unlock(&space_info->lock);
558
559                 delalloc_bytes = percpu_counter_sum_positive(
560                                                 &fs_info->delalloc_bytes);
561                 ordered_bytes = percpu_counter_sum_positive(
562                                                 &fs_info->ordered_bytes);
563         }
564 }
565
566 /**
567  * Possibly commit the transaction if its ok to
568  *
569  * @fs_info:    the filesystem
570  * @space_info: space_info we are checking for commit, either data or metadata
571  *
572  * This will check to make sure that committing the transaction will actually
573  * get us somewhere and then commit the transaction if it does.  Otherwise it
574  * will return -ENOSPC.
575  */
576 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
577                                   struct btrfs_space_info *space_info)
578 {
579         struct reserve_ticket *ticket = NULL;
580         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
581         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
582         struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
583         struct btrfs_trans_handle *trans;
584         u64 reclaim_bytes = 0;
585         u64 bytes_needed = 0;
586         u64 cur_free_bytes = 0;
587
588         trans = (struct btrfs_trans_handle *)current->journal_info;
589         if (trans)
590                 return -EAGAIN;
591
592         spin_lock(&space_info->lock);
593         cur_free_bytes = btrfs_space_info_used(space_info, true);
594         if (cur_free_bytes < space_info->total_bytes)
595                 cur_free_bytes = space_info->total_bytes - cur_free_bytes;
596         else
597                 cur_free_bytes = 0;
598
599         if (!list_empty(&space_info->priority_tickets))
600                 ticket = list_first_entry(&space_info->priority_tickets,
601                                           struct reserve_ticket, list);
602         else if (!list_empty(&space_info->tickets))
603                 ticket = list_first_entry(&space_info->tickets,
604                                           struct reserve_ticket, list);
605         if (ticket)
606                 bytes_needed = ticket->bytes;
607
608         if (bytes_needed > cur_free_bytes)
609                 bytes_needed -= cur_free_bytes;
610         else
611                 bytes_needed = 0;
612         spin_unlock(&space_info->lock);
613
614         if (!bytes_needed)
615                 return 0;
616
617         trans = btrfs_join_transaction(fs_info->extent_root);
618         if (IS_ERR(trans))
619                 return PTR_ERR(trans);
620
621         /*
622          * See if there is enough pinned space to make this reservation, or if
623          * we have block groups that are going to be freed, allowing us to
624          * possibly do a chunk allocation the next loop through.
625          */
626         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
627             __percpu_counter_compare(&space_info->total_bytes_pinned,
628                                      bytes_needed,
629                                      BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
630                 goto commit;
631
632         /*
633          * See if there is some space in the delayed insertion reserve for this
634          * reservation.  If the space_info's don't match (like for DATA or
635          * SYSTEM) then just go enospc, reclaiming this space won't recover any
636          * space to satisfy those reservations.
637          */
638         if (space_info != delayed_rsv->space_info)
639                 goto enospc;
640
641         spin_lock(&delayed_rsv->lock);
642         reclaim_bytes += delayed_rsv->reserved;
643         spin_unlock(&delayed_rsv->lock);
644
645         spin_lock(&delayed_refs_rsv->lock);
646         reclaim_bytes += delayed_refs_rsv->reserved;
647         spin_unlock(&delayed_refs_rsv->lock);
648
649         spin_lock(&trans_rsv->lock);
650         reclaim_bytes += trans_rsv->reserved;
651         spin_unlock(&trans_rsv->lock);
652
653         if (reclaim_bytes >= bytes_needed)
654                 goto commit;
655         bytes_needed -= reclaim_bytes;
656
657         if (__percpu_counter_compare(&space_info->total_bytes_pinned,
658                                    bytes_needed,
659                                    BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
660                 goto enospc;
661
662 commit:
663         return btrfs_commit_transaction(trans);
664 enospc:
665         btrfs_end_transaction(trans);
666         return -ENOSPC;
667 }
668
669 /*
670  * Try to flush some data based on policy set by @state. This is only advisory
671  * and may fail for various reasons. The caller is supposed to examine the
672  * state of @space_info to detect the outcome.
673  */
674 static void flush_space(struct btrfs_fs_info *fs_info,
675                        struct btrfs_space_info *space_info, u64 num_bytes,
676                        enum btrfs_flush_state state, bool for_preempt)
677 {
678         struct btrfs_root *root = fs_info->extent_root;
679         struct btrfs_trans_handle *trans;
680         int nr;
681         int ret = 0;
682
683         switch (state) {
684         case FLUSH_DELAYED_ITEMS_NR:
685         case FLUSH_DELAYED_ITEMS:
686                 if (state == FLUSH_DELAYED_ITEMS_NR)
687                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
688                 else
689                         nr = -1;
690
691                 trans = btrfs_join_transaction(root);
692                 if (IS_ERR(trans)) {
693                         ret = PTR_ERR(trans);
694                         break;
695                 }
696                 ret = btrfs_run_delayed_items_nr(trans, nr);
697                 btrfs_end_transaction(trans);
698                 break;
699         case FLUSH_DELALLOC:
700         case FLUSH_DELALLOC_WAIT:
701                 shrink_delalloc(fs_info, space_info, num_bytes,
702                                 state == FLUSH_DELALLOC_WAIT);
703                 break;
704         case FLUSH_DELAYED_REFS_NR:
705         case FLUSH_DELAYED_REFS:
706                 trans = btrfs_join_transaction(root);
707                 if (IS_ERR(trans)) {
708                         ret = PTR_ERR(trans);
709                         break;
710                 }
711                 if (state == FLUSH_DELAYED_REFS_NR)
712                         nr = calc_reclaim_items_nr(fs_info, num_bytes);
713                 else
714                         nr = 0;
715                 btrfs_run_delayed_refs(trans, nr);
716                 btrfs_end_transaction(trans);
717                 break;
718         case ALLOC_CHUNK:
719         case ALLOC_CHUNK_FORCE:
720                 trans = btrfs_join_transaction(root);
721                 if (IS_ERR(trans)) {
722                         ret = PTR_ERR(trans);
723                         break;
724                 }
725                 ret = btrfs_chunk_alloc(trans,
726                                 btrfs_get_alloc_profile(fs_info, space_info->flags),
727                                 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
728                                         CHUNK_ALLOC_FORCE);
729                 btrfs_end_transaction(trans);
730                 if (ret > 0 || ret == -ENOSPC)
731                         ret = 0;
732                 break;
733         case RUN_DELAYED_IPUTS:
734                 /*
735                  * If we have pending delayed iputs then we could free up a
736                  * bunch of pinned space, so make sure we run the iputs before
737                  * we do our pinned bytes check below.
738                  */
739                 btrfs_run_delayed_iputs(fs_info);
740                 btrfs_wait_on_delayed_iputs(fs_info);
741                 break;
742         case COMMIT_TRANS:
743                 ret = may_commit_transaction(fs_info, space_info);
744                 break;
745         case FORCE_COMMIT_TRANS:
746                 trans = btrfs_join_transaction(root);
747                 if (IS_ERR(trans)) {
748                         ret = PTR_ERR(trans);
749                         break;
750                 }
751                 ret = btrfs_commit_transaction(trans);
752                 break;
753         default:
754                 ret = -ENOSPC;
755                 break;
756         }
757
758         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
759                                 ret, for_preempt);
760         return;
761 }
762
763 static inline u64
764 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
765                                  struct btrfs_space_info *space_info)
766 {
767         u64 used;
768         u64 avail;
769         u64 to_reclaim = space_info->reclaim_size;
770
771         lockdep_assert_held(&space_info->lock);
772
773         avail = calc_available_free_space(fs_info, space_info,
774                                           BTRFS_RESERVE_FLUSH_ALL);
775         used = btrfs_space_info_used(space_info, true);
776
777         /*
778          * We may be flushing because suddenly we have less space than we had
779          * before, and now we're well over-committed based on our current free
780          * space.  If that's the case add in our overage so we make sure to put
781          * appropriate pressure on the flushing state machine.
782          */
783         if (space_info->total_bytes + avail < used)
784                 to_reclaim += used - (space_info->total_bytes + avail);
785
786         return to_reclaim;
787 }
788
789 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
790                                     struct btrfs_space_info *space_info)
791 {
792         u64 ordered, delalloc;
793         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
794         u64 used;
795
796         /* If we're just plain full then async reclaim just slows us down. */
797         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
798                 return false;
799
800         /*
801          * We have tickets queued, bail so we don't compete with the async
802          * flushers.
803          */
804         if (space_info->reclaim_size)
805                 return false;
806
807         /*
808          * If we have over half of the free space occupied by reservations or
809          * pinned then we want to start flushing.
810          *
811          * We do not do the traditional thing here, which is to say
812          *
813          *   if (used >= ((total_bytes + avail) / 2))
814          *     return 1;
815          *
816          * because this doesn't quite work how we want.  If we had more than 50%
817          * of the space_info used by bytes_used and we had 0 available we'd just
818          * constantly run the background flusher.  Instead we want it to kick in
819          * if our reclaimable space exceeds our clamped free space.
820          *
821          * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
822          * the following:
823          *
824          * Amount of RAM        Minimum threshold       Maximum threshold
825          *
826          *        256GiB                     1GiB                  128GiB
827          *        128GiB                   512MiB                   64GiB
828          *         64GiB                   256MiB                   32GiB
829          *         32GiB                   128MiB                   16GiB
830          *         16GiB                    64MiB                    8GiB
831          *
832          * These are the range our thresholds will fall in, corresponding to how
833          * much delalloc we need for the background flusher to kick in.
834          */
835
836         thresh = calc_available_free_space(fs_info, space_info,
837                                            BTRFS_RESERVE_FLUSH_ALL);
838         thresh += (space_info->total_bytes - space_info->bytes_used -
839                    space_info->bytes_reserved - space_info->bytes_readonly);
840         thresh >>= space_info->clamp;
841
842         used = space_info->bytes_pinned;
843
844         /*
845          * If we have more ordered bytes than delalloc bytes then we're either
846          * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
847          * around.  Preemptive flushing is only useful in that it can free up
848          * space before tickets need to wait for things to finish.  In the case
849          * of ordered extents, preemptively waiting on ordered extents gets us
850          * nothing, if our reservations are tied up in ordered extents we'll
851          * simply have to slow down writers by forcing them to wait on ordered
852          * extents.
853          *
854          * In the case that ordered is larger than delalloc, only include the
855          * block reserves that we would actually be able to directly reclaim
856          * from.  In this case if we're heavy on metadata operations this will
857          * clearly be heavy enough to warrant preemptive flushing.  In the case
858          * of heavy DIO or ordered reservations, preemptive flushing will just
859          * waste time and cause us to slow down.
860          */
861         ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
862         delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
863         if (ordered >= delalloc)
864                 used += fs_info->delayed_refs_rsv.reserved +
865                         fs_info->delayed_block_rsv.reserved;
866         else
867                 used += space_info->bytes_may_use;
868
869         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
870                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
871 }
872
873 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
874                                   struct btrfs_space_info *space_info,
875                                   struct reserve_ticket *ticket)
876 {
877         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
878         u64 min_bytes;
879
880         if (global_rsv->space_info != space_info)
881                 return false;
882
883         spin_lock(&global_rsv->lock);
884         min_bytes = div_factor(global_rsv->size, 1);
885         if (global_rsv->reserved < min_bytes + ticket->bytes) {
886                 spin_unlock(&global_rsv->lock);
887                 return false;
888         }
889         global_rsv->reserved -= ticket->bytes;
890         remove_ticket(space_info, ticket);
891         ticket->bytes = 0;
892         wake_up(&ticket->wait);
893         space_info->tickets_id++;
894         if (global_rsv->reserved < global_rsv->size)
895                 global_rsv->full = 0;
896         spin_unlock(&global_rsv->lock);
897
898         return true;
899 }
900
901 /*
902  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
903  * @fs_info - fs_info for this fs
904  * @space_info - the space info we were flushing
905  *
906  * We call this when we've exhausted our flushing ability and haven't made
907  * progress in satisfying tickets.  The reservation code handles tickets in
908  * order, so if there is a large ticket first and then smaller ones we could
909  * very well satisfy the smaller tickets.  This will attempt to wake up any
910  * tickets in the list to catch this case.
911  *
912  * This function returns true if it was able to make progress by clearing out
913  * other tickets, or if it stumbles across a ticket that was smaller than the
914  * first ticket.
915  */
916 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
917                                    struct btrfs_space_info *space_info)
918 {
919         struct reserve_ticket *ticket;
920         u64 tickets_id = space_info->tickets_id;
921         u64 first_ticket_bytes = 0;
922
923         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
924                 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
925                 __btrfs_dump_space_info(fs_info, space_info);
926         }
927
928         while (!list_empty(&space_info->tickets) &&
929                tickets_id == space_info->tickets_id) {
930                 ticket = list_first_entry(&space_info->tickets,
931                                           struct reserve_ticket, list);
932
933                 if (ticket->steal &&
934                     steal_from_global_rsv(fs_info, space_info, ticket))
935                         return true;
936
937                 /*
938                  * may_commit_transaction will avoid committing the transaction
939                  * if it doesn't feel like the space reclaimed by the commit
940                  * would result in the ticket succeeding.  However if we have a
941                  * smaller ticket in the queue it may be small enough to be
942                  * satisified by committing the transaction, so if any
943                  * subsequent ticket is smaller than the first ticket go ahead
944                  * and send us back for another loop through the enospc flushing
945                  * code.
946                  */
947                 if (first_ticket_bytes == 0)
948                         first_ticket_bytes = ticket->bytes;
949                 else if (first_ticket_bytes > ticket->bytes)
950                         return true;
951
952                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
953                         btrfs_info(fs_info, "failing ticket with %llu bytes",
954                                    ticket->bytes);
955
956                 remove_ticket(space_info, ticket);
957                 ticket->error = -ENOSPC;
958                 wake_up(&ticket->wait);
959
960                 /*
961                  * We're just throwing tickets away, so more flushing may not
962                  * trip over btrfs_try_granting_tickets, so we need to call it
963                  * here to see if we can make progress with the next ticket in
964                  * the list.
965                  */
966                 btrfs_try_granting_tickets(fs_info, space_info);
967         }
968         return (tickets_id != space_info->tickets_id);
969 }
970
971 /*
972  * This is for normal flushers, we can wait all goddamned day if we want to.  We
973  * will loop and continuously try to flush as long as we are making progress.
974  * We count progress as clearing off tickets each time we have to loop.
975  */
976 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
977 {
978         struct btrfs_fs_info *fs_info;
979         struct btrfs_space_info *space_info;
980         u64 to_reclaim;
981         enum btrfs_flush_state flush_state;
982         int commit_cycles = 0;
983         u64 last_tickets_id;
984
985         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
986         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
987
988         spin_lock(&space_info->lock);
989         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
990         if (!to_reclaim) {
991                 space_info->flush = 0;
992                 spin_unlock(&space_info->lock);
993                 return;
994         }
995         last_tickets_id = space_info->tickets_id;
996         spin_unlock(&space_info->lock);
997
998         flush_state = FLUSH_DELAYED_ITEMS_NR;
999         do {
1000                 flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1001                 spin_lock(&space_info->lock);
1002                 if (list_empty(&space_info->tickets)) {
1003                         space_info->flush = 0;
1004                         spin_unlock(&space_info->lock);
1005                         return;
1006                 }
1007                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1008                                                               space_info);
1009                 if (last_tickets_id == space_info->tickets_id) {
1010                         flush_state++;
1011                 } else {
1012                         last_tickets_id = space_info->tickets_id;
1013                         flush_state = FLUSH_DELAYED_ITEMS_NR;
1014                         if (commit_cycles)
1015                                 commit_cycles--;
1016                 }
1017
1018                 /*
1019                  * We don't want to force a chunk allocation until we've tried
1020                  * pretty hard to reclaim space.  Think of the case where we
1021                  * freed up a bunch of space and so have a lot of pinned space
1022                  * to reclaim.  We would rather use that than possibly create a
1023                  * underutilized metadata chunk.  So if this is our first run
1024                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1025                  * commit the transaction.  If nothing has changed the next go
1026                  * around then we can force a chunk allocation.
1027                  */
1028                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1029                         flush_state++;
1030
1031                 if (flush_state > COMMIT_TRANS) {
1032                         commit_cycles++;
1033                         if (commit_cycles > 2) {
1034                                 if (maybe_fail_all_tickets(fs_info, space_info)) {
1035                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
1036                                         commit_cycles--;
1037                                 } else {
1038                                         space_info->flush = 0;
1039                                 }
1040                         } else {
1041                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
1042                         }
1043                 }
1044                 spin_unlock(&space_info->lock);
1045         } while (flush_state <= COMMIT_TRANS);
1046 }
1047
1048 /*
1049  * This handles pre-flushing of metadata space before we get to the point that
1050  * we need to start blocking threads on tickets.  The logic here is different
1051  * from the other flush paths because it doesn't rely on tickets to tell us how
1052  * much we need to flush, instead it attempts to keep us below the 80% full
1053  * watermark of space by flushing whichever reservation pool is currently the
1054  * largest.
1055  */
1056 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1057 {
1058         struct btrfs_fs_info *fs_info;
1059         struct btrfs_space_info *space_info;
1060         struct btrfs_block_rsv *delayed_block_rsv;
1061         struct btrfs_block_rsv *delayed_refs_rsv;
1062         struct btrfs_block_rsv *global_rsv;
1063         struct btrfs_block_rsv *trans_rsv;
1064         int loops = 0;
1065
1066         fs_info = container_of(work, struct btrfs_fs_info,
1067                                preempt_reclaim_work);
1068         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1069         delayed_block_rsv = &fs_info->delayed_block_rsv;
1070         delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1071         global_rsv = &fs_info->global_block_rsv;
1072         trans_rsv = &fs_info->trans_block_rsv;
1073
1074         spin_lock(&space_info->lock);
1075         while (need_preemptive_reclaim(fs_info, space_info)) {
1076                 enum btrfs_flush_state flush;
1077                 u64 delalloc_size = 0;
1078                 u64 to_reclaim, block_rsv_size;
1079                 u64 global_rsv_size = global_rsv->reserved;
1080
1081                 loops++;
1082
1083                 /*
1084                  * We don't have a precise counter for the metadata being
1085                  * reserved for delalloc, so we'll approximate it by subtracting
1086                  * out the block rsv's space from the bytes_may_use.  If that
1087                  * amount is higher than the individual reserves, then we can
1088                  * assume it's tied up in delalloc reservations.
1089                  */
1090                 block_rsv_size = global_rsv_size +
1091                         delayed_block_rsv->reserved +
1092                         delayed_refs_rsv->reserved +
1093                         trans_rsv->reserved;
1094                 if (block_rsv_size < space_info->bytes_may_use)
1095                         delalloc_size = space_info->bytes_may_use - block_rsv_size;
1096                 spin_unlock(&space_info->lock);
1097
1098                 /*
1099                  * We don't want to include the global_rsv in our calculation,
1100                  * because that's space we can't touch.  Subtract it from the
1101                  * block_rsv_size for the next checks.
1102                  */
1103                 block_rsv_size -= global_rsv_size;
1104
1105                 /*
1106                  * We really want to avoid flushing delalloc too much, as it
1107                  * could result in poor allocation patterns, so only flush it if
1108                  * it's larger than the rest of the pools combined.
1109                  */
1110                 if (delalloc_size > block_rsv_size) {
1111                         to_reclaim = delalloc_size;
1112                         flush = FLUSH_DELALLOC;
1113                 } else if (space_info->bytes_pinned >
1114                            (delayed_block_rsv->reserved +
1115                             delayed_refs_rsv->reserved)) {
1116                         to_reclaim = space_info->bytes_pinned;
1117                         flush = FORCE_COMMIT_TRANS;
1118                 } else if (delayed_block_rsv->reserved >
1119                            delayed_refs_rsv->reserved) {
1120                         to_reclaim = delayed_block_rsv->reserved;
1121                         flush = FLUSH_DELAYED_ITEMS_NR;
1122                 } else {
1123                         to_reclaim = delayed_refs_rsv->reserved;
1124                         flush = FLUSH_DELAYED_REFS_NR;
1125                 }
1126
1127                 /*
1128                  * We don't want to reclaim everything, just a portion, so scale
1129                  * down the to_reclaim by 1/4.  If it takes us down to 0,
1130                  * reclaim 1 items worth.
1131                  */
1132                 to_reclaim >>= 2;
1133                 if (!to_reclaim)
1134                         to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1135                 flush_space(fs_info, space_info, to_reclaim, flush, true);
1136                 cond_resched();
1137                 spin_lock(&space_info->lock);
1138         }
1139
1140         /* We only went through once, back off our clamping. */
1141         if (loops == 1 && !space_info->reclaim_size)
1142                 space_info->clamp = max(1, space_info->clamp - 1);
1143         spin_unlock(&space_info->lock);
1144 }
1145
1146 /*
1147  * FLUSH_DELALLOC_WAIT:
1148  *   Space is freed from flushing delalloc in one of two ways.
1149  *
1150  *   1) compression is on and we allocate less space than we reserved
1151  *   2) we are overwriting existing space
1152  *
1153  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1154  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1155  *   length to ->bytes_reserved, and subtracts the reserved space from
1156  *   ->bytes_may_use.
1157  *
1158  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1159  *   extent in the range we are overwriting, which creates a delayed ref for
1160  *   that freed extent.  This however is not reclaimed until the transaction
1161  *   commits, thus the next stages.
1162  *
1163  * RUN_DELAYED_IPUTS
1164  *   If we are freeing inodes, we want to make sure all delayed iputs have
1165  *   completed, because they could have been on an inode with i_nlink == 0, and
1166  *   thus have been truncated and freed up space.  But again this space is not
1167  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1168  *   run and then the transaction must be committed.
1169  *
1170  * FLUSH_DELAYED_REFS
1171  *   The above two cases generate delayed refs that will affect
1172  *   ->total_bytes_pinned.  However this counter can be inconsistent with
1173  *   reality if there are outstanding delayed refs.  This is because we adjust
1174  *   the counter based solely on the current set of delayed refs and disregard
1175  *   any on-disk state which might include more refs.  So for example, if we
1176  *   have an extent with 2 references, but we only drop 1, we'll see that there
1177  *   is a negative delayed ref count for the extent and assume that the space
1178  *   will be freed, and thus increase ->total_bytes_pinned.
1179  *
1180  *   Running the delayed refs gives us the actual real view of what will be
1181  *   freed at the transaction commit time.  This stage will not actually free
1182  *   space for us, it just makes sure that may_commit_transaction() has all of
1183  *   the information it needs to make the right decision.
1184  *
1185  * COMMIT_TRANS
1186  *   This is where we reclaim all of the pinned space generated by the previous
1187  *   two stages.  We will not commit the transaction if we don't think we're
1188  *   likely to satisfy our request, which means if our current free space +
1189  *   total_bytes_pinned < reservation we will not commit.  This is why the
1190  *   previous states are actually important, to make sure we know for sure
1191  *   whether committing the transaction will allow us to make progress.
1192  *
1193  * ALLOC_CHUNK_FORCE
1194  *   For data we start with alloc chunk force, however we could have been full
1195  *   before, and then the transaction commit could have freed new block groups,
1196  *   so if we now have space to allocate do the force chunk allocation.
1197  */
1198 static const enum btrfs_flush_state data_flush_states[] = {
1199         FLUSH_DELALLOC_WAIT,
1200         RUN_DELAYED_IPUTS,
1201         FLUSH_DELAYED_REFS,
1202         COMMIT_TRANS,
1203         ALLOC_CHUNK_FORCE,
1204 };
1205
1206 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1207 {
1208         struct btrfs_fs_info *fs_info;
1209         struct btrfs_space_info *space_info;
1210         u64 last_tickets_id;
1211         enum btrfs_flush_state flush_state = 0;
1212
1213         fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1214         space_info = fs_info->data_sinfo;
1215
1216         spin_lock(&space_info->lock);
1217         if (list_empty(&space_info->tickets)) {
1218                 space_info->flush = 0;
1219                 spin_unlock(&space_info->lock);
1220                 return;
1221         }
1222         last_tickets_id = space_info->tickets_id;
1223         spin_unlock(&space_info->lock);
1224
1225         while (!space_info->full) {
1226                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1227                 spin_lock(&space_info->lock);
1228                 if (list_empty(&space_info->tickets)) {
1229                         space_info->flush = 0;
1230                         spin_unlock(&space_info->lock);
1231                         return;
1232                 }
1233                 last_tickets_id = space_info->tickets_id;
1234                 spin_unlock(&space_info->lock);
1235         }
1236
1237         while (flush_state < ARRAY_SIZE(data_flush_states)) {
1238                 flush_space(fs_info, space_info, U64_MAX,
1239                             data_flush_states[flush_state], false);
1240                 spin_lock(&space_info->lock);
1241                 if (list_empty(&space_info->tickets)) {
1242                         space_info->flush = 0;
1243                         spin_unlock(&space_info->lock);
1244                         return;
1245                 }
1246
1247                 if (last_tickets_id == space_info->tickets_id) {
1248                         flush_state++;
1249                 } else {
1250                         last_tickets_id = space_info->tickets_id;
1251                         flush_state = 0;
1252                 }
1253
1254                 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1255                         if (space_info->full) {
1256                                 if (maybe_fail_all_tickets(fs_info, space_info))
1257                                         flush_state = 0;
1258                                 else
1259                                         space_info->flush = 0;
1260                         } else {
1261                                 flush_state = 0;
1262                         }
1263                 }
1264                 spin_unlock(&space_info->lock);
1265         }
1266 }
1267
1268 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1269 {
1270         INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1271         INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1272         INIT_WORK(&fs_info->preempt_reclaim_work,
1273                   btrfs_preempt_reclaim_metadata_space);
1274 }
1275
1276 static const enum btrfs_flush_state priority_flush_states[] = {
1277         FLUSH_DELAYED_ITEMS_NR,
1278         FLUSH_DELAYED_ITEMS,
1279         ALLOC_CHUNK,
1280 };
1281
1282 static const enum btrfs_flush_state evict_flush_states[] = {
1283         FLUSH_DELAYED_ITEMS_NR,
1284         FLUSH_DELAYED_ITEMS,
1285         FLUSH_DELAYED_REFS_NR,
1286         FLUSH_DELAYED_REFS,
1287         FLUSH_DELALLOC,
1288         FLUSH_DELALLOC_WAIT,
1289         ALLOC_CHUNK,
1290         COMMIT_TRANS,
1291 };
1292
1293 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1294                                 struct btrfs_space_info *space_info,
1295                                 struct reserve_ticket *ticket,
1296                                 const enum btrfs_flush_state *states,
1297                                 int states_nr)
1298 {
1299         u64 to_reclaim;
1300         int flush_state;
1301
1302         spin_lock(&space_info->lock);
1303         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1304         if (!to_reclaim) {
1305                 spin_unlock(&space_info->lock);
1306                 return;
1307         }
1308         spin_unlock(&space_info->lock);
1309
1310         flush_state = 0;
1311         do {
1312                 flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1313                             false);
1314                 flush_state++;
1315                 spin_lock(&space_info->lock);
1316                 if (ticket->bytes == 0) {
1317                         spin_unlock(&space_info->lock);
1318                         return;
1319                 }
1320                 spin_unlock(&space_info->lock);
1321         } while (flush_state < states_nr);
1322 }
1323
1324 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1325                                         struct btrfs_space_info *space_info,
1326                                         struct reserve_ticket *ticket)
1327 {
1328         while (!space_info->full) {
1329                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1330                 spin_lock(&space_info->lock);
1331                 if (ticket->bytes == 0) {
1332                         spin_unlock(&space_info->lock);
1333                         return;
1334                 }
1335                 spin_unlock(&space_info->lock);
1336         }
1337 }
1338
1339 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1340                                 struct btrfs_space_info *space_info,
1341                                 struct reserve_ticket *ticket)
1342
1343 {
1344         DEFINE_WAIT(wait);
1345         int ret = 0;
1346
1347         spin_lock(&space_info->lock);
1348         while (ticket->bytes > 0 && ticket->error == 0) {
1349                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1350                 if (ret) {
1351                         /*
1352                          * Delete us from the list. After we unlock the space
1353                          * info, we don't want the async reclaim job to reserve
1354                          * space for this ticket. If that would happen, then the
1355                          * ticket's task would not known that space was reserved
1356                          * despite getting an error, resulting in a space leak
1357                          * (bytes_may_use counter of our space_info).
1358                          */
1359                         remove_ticket(space_info, ticket);
1360                         ticket->error = -EINTR;
1361                         break;
1362                 }
1363                 spin_unlock(&space_info->lock);
1364
1365                 schedule();
1366
1367                 finish_wait(&ticket->wait, &wait);
1368                 spin_lock(&space_info->lock);
1369         }
1370         spin_unlock(&space_info->lock);
1371 }
1372
1373 /**
1374  * Do the appropriate flushing and waiting for a ticket
1375  *
1376  * @fs_info:    the filesystem
1377  * @space_info: space info for the reservation
1378  * @ticket:     ticket for the reservation
1379  * @start_ns:   timestamp when the reservation started
1380  * @orig_bytes: amount of bytes originally reserved
1381  * @flush:      how much we can flush
1382  *
1383  * This does the work of figuring out how to flush for the ticket, waiting for
1384  * the reservation, and returning the appropriate error if there is one.
1385  */
1386 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1387                                  struct btrfs_space_info *space_info,
1388                                  struct reserve_ticket *ticket,
1389                                  u64 start_ns, u64 orig_bytes,
1390                                  enum btrfs_reserve_flush_enum flush)
1391 {
1392         int ret;
1393
1394         switch (flush) {
1395         case BTRFS_RESERVE_FLUSH_DATA:
1396         case BTRFS_RESERVE_FLUSH_ALL:
1397         case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1398                 wait_reserve_ticket(fs_info, space_info, ticket);
1399                 break;
1400         case BTRFS_RESERVE_FLUSH_LIMIT:
1401                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1402                                                 priority_flush_states,
1403                                                 ARRAY_SIZE(priority_flush_states));
1404                 break;
1405         case BTRFS_RESERVE_FLUSH_EVICT:
1406                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1407                                                 evict_flush_states,
1408                                                 ARRAY_SIZE(evict_flush_states));
1409                 break;
1410         case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1411                 priority_reclaim_data_space(fs_info, space_info, ticket);
1412                 break;
1413         default:
1414                 ASSERT(0);
1415                 break;
1416         }
1417
1418         spin_lock(&space_info->lock);
1419         ret = ticket->error;
1420         if (ticket->bytes || ticket->error) {
1421                 /*
1422                  * We were a priority ticket, so we need to delete ourselves
1423                  * from the list.  Because we could have other priority tickets
1424                  * behind us that require less space, run
1425                  * btrfs_try_granting_tickets() to see if their reservations can
1426                  * now be made.
1427                  */
1428                 if (!list_empty(&ticket->list)) {
1429                         remove_ticket(space_info, ticket);
1430                         btrfs_try_granting_tickets(fs_info, space_info);
1431                 }
1432
1433                 if (!ret)
1434                         ret = -ENOSPC;
1435         }
1436         spin_unlock(&space_info->lock);
1437         ASSERT(list_empty(&ticket->list));
1438         /*
1439          * Check that we can't have an error set if the reservation succeeded,
1440          * as that would confuse tasks and lead them to error out without
1441          * releasing reserved space (if an error happens the expectation is that
1442          * space wasn't reserved at all).
1443          */
1444         ASSERT(!(ticket->bytes == 0 && ticket->error));
1445         trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1446                                    start_ns, flush, ticket->error);
1447         return ret;
1448 }
1449
1450 /*
1451  * This returns true if this flush state will go through the ordinary flushing
1452  * code.
1453  */
1454 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1455 {
1456         return  (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1457                 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1458 }
1459
1460 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1461                                        struct btrfs_space_info *space_info)
1462 {
1463         u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1464         u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1465
1466         /*
1467          * If we're heavy on ordered operations then clamping won't help us.  We
1468          * need to clamp specifically to keep up with dirty'ing buffered
1469          * writers, because there's not a 1:1 correlation of writing delalloc
1470          * and freeing space, like there is with flushing delayed refs or
1471          * delayed nodes.  If we're already more ordered than delalloc then
1472          * we're keeping up, otherwise we aren't and should probably clamp.
1473          */
1474         if (ordered < delalloc)
1475                 space_info->clamp = min(space_info->clamp + 1, 8);
1476 }
1477
1478 /**
1479  * Try to reserve bytes from the block_rsv's space
1480  *
1481  * @fs_info:    the filesystem
1482  * @space_info: space info we want to allocate from
1483  * @orig_bytes: number of bytes we want
1484  * @flush:      whether or not we can flush to make our reservation
1485  *
1486  * This will reserve orig_bytes number of bytes from the space info associated
1487  * with the block_rsv.  If there is not enough space it will make an attempt to
1488  * flush out space to make room.  It will do this by flushing delalloc if
1489  * possible or committing the transaction.  If flush is 0 then no attempts to
1490  * regain reservations will be made and this will fail if there is not enough
1491  * space already.
1492  */
1493 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1494                            struct btrfs_space_info *space_info, u64 orig_bytes,
1495                            enum btrfs_reserve_flush_enum flush)
1496 {
1497         struct work_struct *async_work;
1498         struct reserve_ticket ticket;
1499         u64 start_ns = 0;
1500         u64 used;
1501         int ret = 0;
1502         bool pending_tickets;
1503
1504         ASSERT(orig_bytes);
1505         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1506
1507         if (flush == BTRFS_RESERVE_FLUSH_DATA)
1508                 async_work = &fs_info->async_data_reclaim_work;
1509         else
1510                 async_work = &fs_info->async_reclaim_work;
1511
1512         spin_lock(&space_info->lock);
1513         ret = -ENOSPC;
1514         used = btrfs_space_info_used(space_info, true);
1515
1516         /*
1517          * We don't want NO_FLUSH allocations to jump everybody, they can
1518          * generally handle ENOSPC in a different way, so treat them the same as
1519          * normal flushers when it comes to skipping pending tickets.
1520          */
1521         if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1522                 pending_tickets = !list_empty(&space_info->tickets) ||
1523                         !list_empty(&space_info->priority_tickets);
1524         else
1525                 pending_tickets = !list_empty(&space_info->priority_tickets);
1526
1527         /*
1528          * Carry on if we have enough space (short-circuit) OR call
1529          * can_overcommit() to ensure we can overcommit to continue.
1530          */
1531         if (!pending_tickets &&
1532             ((used + orig_bytes <= space_info->total_bytes) ||
1533              btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1534                 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1535                                                       orig_bytes);
1536                 ret = 0;
1537         }
1538
1539         /*
1540          * If we couldn't make a reservation then setup our reservation ticket
1541          * and kick the async worker if it's not already running.
1542          *
1543          * If we are a priority flusher then we just need to add our ticket to
1544          * the list and we will do our own flushing further down.
1545          */
1546         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1547                 ticket.bytes = orig_bytes;
1548                 ticket.error = 0;
1549                 space_info->reclaim_size += ticket.bytes;
1550                 init_waitqueue_head(&ticket.wait);
1551                 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1552                 if (trace_btrfs_reserve_ticket_enabled())
1553                         start_ns = ktime_get_ns();
1554
1555                 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1556                     flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1557                     flush == BTRFS_RESERVE_FLUSH_DATA) {
1558                         list_add_tail(&ticket.list, &space_info->tickets);
1559                         if (!space_info->flush) {
1560                                 space_info->flush = 1;
1561                                 trace_btrfs_trigger_flush(fs_info,
1562                                                           space_info->flags,
1563                                                           orig_bytes, flush,
1564                                                           "enospc");
1565                                 queue_work(system_unbound_wq, async_work);
1566                         }
1567                 } else {
1568                         list_add_tail(&ticket.list,
1569                                       &space_info->priority_tickets);
1570                 }
1571
1572                 /*
1573                  * We were forced to add a reserve ticket, so our preemptive
1574                  * flushing is unable to keep up.  Clamp down on the threshold
1575                  * for the preemptive flushing in order to keep up with the
1576                  * workload.
1577                  */
1578                 maybe_clamp_preempt(fs_info, space_info);
1579         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1580                 used += orig_bytes;
1581                 /*
1582                  * We will do the space reservation dance during log replay,
1583                  * which means we won't have fs_info->fs_root set, so don't do
1584                  * the async reclaim as we will panic.
1585                  */
1586                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1587                     need_preemptive_reclaim(fs_info, space_info) &&
1588                     !work_busy(&fs_info->preempt_reclaim_work)) {
1589                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
1590                                                   orig_bytes, flush, "preempt");
1591                         queue_work(system_unbound_wq,
1592                                    &fs_info->preempt_reclaim_work);
1593                 }
1594         }
1595         spin_unlock(&space_info->lock);
1596         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1597                 return ret;
1598
1599         return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1600                                      orig_bytes, flush);
1601 }
1602
1603 /**
1604  * Trye to reserve metadata bytes from the block_rsv's space
1605  *
1606  * @root:       the root we're allocating for
1607  * @block_rsv:  block_rsv we're allocating for
1608  * @orig_bytes: number of bytes we want
1609  * @flush:      whether or not we can flush to make our reservation
1610  *
1611  * This will reserve orig_bytes number of bytes from the space info associated
1612  * with the block_rsv.  If there is not enough space it will make an attempt to
1613  * flush out space to make room.  It will do this by flushing delalloc if
1614  * possible or committing the transaction.  If flush is 0 then no attempts to
1615  * regain reservations will be made and this will fail if there is not enough
1616  * space already.
1617  */
1618 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1619                                  struct btrfs_block_rsv *block_rsv,
1620                                  u64 orig_bytes,
1621                                  enum btrfs_reserve_flush_enum flush)
1622 {
1623         struct btrfs_fs_info *fs_info = root->fs_info;
1624         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1625         int ret;
1626
1627         ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1628         if (ret == -ENOSPC &&
1629             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1630                 if (block_rsv != global_rsv &&
1631                     !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1632                         ret = 0;
1633         }
1634         if (ret == -ENOSPC) {
1635                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1636                                               block_rsv->space_info->flags,
1637                                               orig_bytes, 1);
1638
1639                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1640                         btrfs_dump_space_info(fs_info, block_rsv->space_info,
1641                                               orig_bytes, 0);
1642         }
1643         return ret;
1644 }
1645
1646 /**
1647  * Try to reserve data bytes for an allocation
1648  *
1649  * @fs_info: the filesystem
1650  * @bytes:   number of bytes we need
1651  * @flush:   how we are allowed to flush
1652  *
1653  * This will reserve bytes from the data space info.  If there is not enough
1654  * space then we will attempt to flush space as specified by flush.
1655  */
1656 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1657                              enum btrfs_reserve_flush_enum flush)
1658 {
1659         struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1660         int ret;
1661
1662         ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1663                flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1664         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1665
1666         ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1667         if (ret == -ENOSPC) {
1668                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1669                                               data_sinfo->flags, bytes, 1);
1670                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1671                         btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1672         }
1673         return ret;
1674 }