Merge tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
[platform/kernel/linux-starfive.git] / fs / btrfs / space-info.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     This will commit the transaction.  Historically we had a lot of logic
137  *     surrounding whether or not we'd commit the transaction, but this waits born
138  *     out of a pre-tickets era where we could end up committing the transaction
139  *     thousands of times in a row without making progress.  Now thanks to our
140  *     ticketing system we know if we're not making progress and can error
141  *     everybody out after a few commits rather than burning the disk hoping for
142  *     a different answer.
143  *
144  * OVERCOMMIT
145  *
146  *   Because we hold so many reservations for metadata we will allow you to
147  *   reserve more space than is currently free in the currently allocate
148  *   metadata space.  This only happens with metadata, data does not allow
149  *   overcommitting.
150  *
151  *   You can see the current logic for when we allow overcommit in
152  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
153  *   is no unallocated space to be had, all reservations are kept within the
154  *   free space in the allocated metadata chunks.
155  *
156  *   Because of overcommitting, you generally want to use the
157  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
158  *   thing with or without extra unallocated space.
159  */
160
161 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
162                           bool may_use_included)
163 {
164         ASSERT(s_info);
165         return s_info->bytes_used + s_info->bytes_reserved +
166                 s_info->bytes_pinned + s_info->bytes_readonly +
167                 s_info->bytes_zone_unusable +
168                 (may_use_included ? s_info->bytes_may_use : 0);
169 }
170
171 /*
172  * after adding space to the filesystem, we need to clear the full flags
173  * on all the space infos.
174  */
175 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
176 {
177         struct list_head *head = &info->space_info;
178         struct btrfs_space_info *found;
179
180         list_for_each_entry(found, head, list)
181                 found->full = 0;
182 }
183
184 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
185 {
186
187         struct btrfs_space_info *space_info;
188         int i;
189         int ret;
190
191         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
192         if (!space_info)
193                 return -ENOMEM;
194
195         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
196                 INIT_LIST_HEAD(&space_info->block_groups[i]);
197         init_rwsem(&space_info->groups_sem);
198         spin_lock_init(&space_info->lock);
199         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
200         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
201         INIT_LIST_HEAD(&space_info->ro_bgs);
202         INIT_LIST_HEAD(&space_info->tickets);
203         INIT_LIST_HEAD(&space_info->priority_tickets);
204         space_info->clamp = 1;
205
206         ret = btrfs_sysfs_add_space_info_type(info, space_info);
207         if (ret)
208                 return ret;
209
210         list_add(&space_info->list, &info->space_info);
211         if (flags & BTRFS_BLOCK_GROUP_DATA)
212                 info->data_sinfo = space_info;
213
214         return ret;
215 }
216
217 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
218 {
219         struct btrfs_super_block *disk_super;
220         u64 features;
221         u64 flags;
222         int mixed = 0;
223         int ret;
224
225         disk_super = fs_info->super_copy;
226         if (!btrfs_super_root(disk_super))
227                 return -EINVAL;
228
229         features = btrfs_super_incompat_flags(disk_super);
230         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
231                 mixed = 1;
232
233         flags = BTRFS_BLOCK_GROUP_SYSTEM;
234         ret = create_space_info(fs_info, flags);
235         if (ret)
236                 goto out;
237
238         if (mixed) {
239                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
240                 ret = create_space_info(fs_info, flags);
241         } else {
242                 flags = BTRFS_BLOCK_GROUP_METADATA;
243                 ret = create_space_info(fs_info, flags);
244                 if (ret)
245                         goto out;
246
247                 flags = BTRFS_BLOCK_GROUP_DATA;
248                 ret = create_space_info(fs_info, flags);
249         }
250 out:
251         return ret;
252 }
253
254 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
255                              u64 total_bytes, u64 bytes_used,
256                              u64 bytes_readonly, u64 bytes_zone_unusable,
257                              struct btrfs_space_info **space_info)
258 {
259         struct btrfs_space_info *found;
260         int factor;
261
262         factor = btrfs_bg_type_to_factor(flags);
263
264         found = btrfs_find_space_info(info, flags);
265         ASSERT(found);
266         spin_lock(&found->lock);
267         found->total_bytes += total_bytes;
268         found->disk_total += total_bytes * factor;
269         found->bytes_used += bytes_used;
270         found->disk_used += bytes_used * factor;
271         found->bytes_readonly += bytes_readonly;
272         found->bytes_zone_unusable += bytes_zone_unusable;
273         if (total_bytes > 0)
274                 found->full = 0;
275         btrfs_try_granting_tickets(info, found);
276         spin_unlock(&found->lock);
277         *space_info = found;
278 }
279
280 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
281                                                u64 flags)
282 {
283         struct list_head *head = &info->space_info;
284         struct btrfs_space_info *found;
285
286         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
287
288         list_for_each_entry(found, head, list) {
289                 if (found->flags & flags)
290                         return found;
291         }
292         return NULL;
293 }
294
295 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
296                           struct btrfs_space_info *space_info,
297                           enum btrfs_reserve_flush_enum flush)
298 {
299         u64 profile;
300         u64 avail;
301         int factor;
302
303         if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
304                 profile = btrfs_system_alloc_profile(fs_info);
305         else
306                 profile = btrfs_metadata_alloc_profile(fs_info);
307
308         avail = atomic64_read(&fs_info->free_chunk_space);
309
310         /*
311          * If we have dup, raid1 or raid10 then only half of the free
312          * space is actually usable.  For raid56, the space info used
313          * doesn't include the parity drive, so we don't have to
314          * change the math
315          */
316         factor = btrfs_bg_type_to_factor(profile);
317         avail = div_u64(avail, factor);
318
319         /*
320          * If we aren't flushing all things, let us overcommit up to
321          * 1/2th of the space. If we can flush, don't let us overcommit
322          * too much, let it overcommit up to 1/8 of the space.
323          */
324         if (flush == BTRFS_RESERVE_FLUSH_ALL)
325                 avail >>= 3;
326         else
327                 avail >>= 1;
328         return avail;
329 }
330
331 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
332                          struct btrfs_space_info *space_info, u64 bytes,
333                          enum btrfs_reserve_flush_enum flush)
334 {
335         u64 avail;
336         u64 used;
337
338         /* Don't overcommit when in mixed mode */
339         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
340                 return 0;
341
342         used = btrfs_space_info_used(space_info, true);
343         avail = calc_available_free_space(fs_info, space_info, flush);
344
345         if (used + bytes < space_info->total_bytes + avail)
346                 return 1;
347         return 0;
348 }
349
350 static void remove_ticket(struct btrfs_space_info *space_info,
351                           struct reserve_ticket *ticket)
352 {
353         if (!list_empty(&ticket->list)) {
354                 list_del_init(&ticket->list);
355                 ASSERT(space_info->reclaim_size >= ticket->bytes);
356                 space_info->reclaim_size -= ticket->bytes;
357         }
358 }
359
360 /*
361  * This is for space we already have accounted in space_info->bytes_may_use, so
362  * basically when we're returning space from block_rsv's.
363  */
364 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
365                                 struct btrfs_space_info *space_info)
366 {
367         struct list_head *head;
368         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
369
370         lockdep_assert_held(&space_info->lock);
371
372         head = &space_info->priority_tickets;
373 again:
374         while (!list_empty(head)) {
375                 struct reserve_ticket *ticket;
376                 u64 used = btrfs_space_info_used(space_info, true);
377
378                 ticket = list_first_entry(head, struct reserve_ticket, list);
379
380                 /* Check and see if our ticket can be satisfied now. */
381                 if ((used + ticket->bytes <= space_info->total_bytes) ||
382                     btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
383                                          flush)) {
384                         btrfs_space_info_update_bytes_may_use(fs_info,
385                                                               space_info,
386                                                               ticket->bytes);
387                         remove_ticket(space_info, ticket);
388                         ticket->bytes = 0;
389                         space_info->tickets_id++;
390                         wake_up(&ticket->wait);
391                 } else {
392                         break;
393                 }
394         }
395
396         if (head == &space_info->priority_tickets) {
397                 head = &space_info->tickets;
398                 flush = BTRFS_RESERVE_FLUSH_ALL;
399                 goto again;
400         }
401 }
402
403 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
404 do {                                                                    \
405         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
406         spin_lock(&__rsv->lock);                                        \
407         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
408                    __rsv->size, __rsv->reserved);                       \
409         spin_unlock(&__rsv->lock);                                      \
410 } while (0)
411
412 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
413                                     struct btrfs_space_info *info)
414 {
415         lockdep_assert_held(&info->lock);
416
417         /* The free space could be negative in case of overcommit */
418         btrfs_info(fs_info, "space_info %llu has %lld free, is %sfull",
419                    info->flags,
420                    (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
421                    info->full ? "" : "not ");
422         btrfs_info(fs_info,
423                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
424                 info->total_bytes, info->bytes_used, info->bytes_pinned,
425                 info->bytes_reserved, info->bytes_may_use,
426                 info->bytes_readonly, info->bytes_zone_unusable);
427
428         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
429         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
430         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
431         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
432         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
433
434 }
435
436 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
437                            struct btrfs_space_info *info, u64 bytes,
438                            int dump_block_groups)
439 {
440         struct btrfs_block_group *cache;
441         int index = 0;
442
443         spin_lock(&info->lock);
444         __btrfs_dump_space_info(fs_info, info);
445         spin_unlock(&info->lock);
446
447         if (!dump_block_groups)
448                 return;
449
450         down_read(&info->groups_sem);
451 again:
452         list_for_each_entry(cache, &info->block_groups[index], list) {
453                 spin_lock(&cache->lock);
454                 btrfs_info(fs_info,
455                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
456                         cache->start, cache->length, cache->used, cache->pinned,
457                         cache->reserved, cache->zone_unusable,
458                         cache->ro ? "[readonly]" : "");
459                 spin_unlock(&cache->lock);
460                 btrfs_dump_free_space(cache, bytes);
461         }
462         if (++index < BTRFS_NR_RAID_TYPES)
463                 goto again;
464         up_read(&info->groups_sem);
465 }
466
467 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
468                                         u64 to_reclaim)
469 {
470         u64 bytes;
471         u64 nr;
472
473         bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
474         nr = div64_u64(to_reclaim, bytes);
475         if (!nr)
476                 nr = 1;
477         return nr;
478 }
479
480 #define EXTENT_SIZE_PER_ITEM    SZ_256K
481
482 /*
483  * shrink metadata reservation for delalloc
484  */
485 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
486                             struct btrfs_space_info *space_info,
487                             u64 to_reclaim, bool wait_ordered,
488                             bool for_preempt)
489 {
490         struct btrfs_trans_handle *trans;
491         u64 delalloc_bytes;
492         u64 ordered_bytes;
493         u64 items;
494         long time_left;
495         int loops;
496
497         delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
498         ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
499         if (delalloc_bytes == 0 && ordered_bytes == 0)
500                 return;
501
502         /* Calc the number of the pages we need flush for space reservation */
503         if (to_reclaim == U64_MAX) {
504                 items = U64_MAX;
505         } else {
506                 /*
507                  * to_reclaim is set to however much metadata we need to
508                  * reclaim, but reclaiming that much data doesn't really track
509                  * exactly.  What we really want to do is reclaim full inode's
510                  * worth of reservations, however that's not available to us
511                  * here.  We will take a fraction of the delalloc bytes for our
512                  * flushing loops and hope for the best.  Delalloc will expand
513                  * the amount we write to cover an entire dirty extent, which
514                  * will reclaim the metadata reservation for that range.  If
515                  * it's not enough subsequent flush stages will be more
516                  * aggressive.
517                  */
518                 to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
519                 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
520         }
521
522         trans = (struct btrfs_trans_handle *)current->journal_info;
523
524         /*
525          * If we are doing more ordered than delalloc we need to just wait on
526          * ordered extents, otherwise we'll waste time trying to flush delalloc
527          * that likely won't give us the space back we need.
528          */
529         if (ordered_bytes > delalloc_bytes && !for_preempt)
530                 wait_ordered = true;
531
532         loops = 0;
533         while ((delalloc_bytes || ordered_bytes) && loops < 3) {
534                 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
535                 long nr_pages = min_t(u64, temp, LONG_MAX);
536                 int async_pages;
537
538                 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
539
540                 /*
541                  * We need to make sure any outstanding async pages are now
542                  * processed before we continue.  This is because things like
543                  * sync_inode() try to be smart and skip writing if the inode is
544                  * marked clean.  We don't use filemap_fwrite for flushing
545                  * because we want to control how many pages we write out at a
546                  * time, thus this is the only safe way to make sure we've
547                  * waited for outstanding compressed workers to have started
548                  * their jobs and thus have ordered extents set up properly.
549                  *
550                  * This exists because we do not want to wait for each
551                  * individual inode to finish its async work, we simply want to
552                  * start the IO on everybody, and then come back here and wait
553                  * for all of the async work to catch up.  Once we're done with
554                  * that we know we'll have ordered extents for everything and we
555                  * can decide if we wait for that or not.
556                  *
557                  * If we choose to replace this in the future, make absolutely
558                  * sure that the proper waiting is being done in the async case,
559                  * as there have been bugs in that area before.
560                  */
561                 async_pages = atomic_read(&fs_info->async_delalloc_pages);
562                 if (!async_pages)
563                         goto skip_async;
564
565                 /*
566                  * We don't want to wait forever, if we wrote less pages in this
567                  * loop than we have outstanding, only wait for that number of
568                  * pages, otherwise we can wait for all async pages to finish
569                  * before continuing.
570                  */
571                 if (async_pages > nr_pages)
572                         async_pages -= nr_pages;
573                 else
574                         async_pages = 0;
575                 wait_event(fs_info->async_submit_wait,
576                            atomic_read(&fs_info->async_delalloc_pages) <=
577                            async_pages);
578 skip_async:
579                 loops++;
580                 if (wait_ordered && !trans) {
581                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
582                 } else {
583                         time_left = schedule_timeout_killable(1);
584                         if (time_left)
585                                 break;
586                 }
587
588                 /*
589                  * If we are for preemption we just want a one-shot of delalloc
590                  * flushing so we can stop flushing if we decide we don't need
591                  * to anymore.
592                  */
593                 if (for_preempt)
594                         break;
595
596                 spin_lock(&space_info->lock);
597                 if (list_empty(&space_info->tickets) &&
598                     list_empty(&space_info->priority_tickets)) {
599                         spin_unlock(&space_info->lock);
600                         break;
601                 }
602                 spin_unlock(&space_info->lock);
603
604                 delalloc_bytes = percpu_counter_sum_positive(
605                                                 &fs_info->delalloc_bytes);
606                 ordered_bytes = percpu_counter_sum_positive(
607                                                 &fs_info->ordered_bytes);
608         }
609 }
610
611 /*
612  * Try to flush some data based on policy set by @state. This is only advisory
613  * and may fail for various reasons. The caller is supposed to examine the
614  * state of @space_info to detect the outcome.
615  */
616 static void flush_space(struct btrfs_fs_info *fs_info,
617                        struct btrfs_space_info *space_info, u64 num_bytes,
618                        enum btrfs_flush_state state, bool for_preempt)
619 {
620         struct btrfs_root *root = fs_info->tree_root;
621         struct btrfs_trans_handle *trans;
622         int nr;
623         int ret = 0;
624
625         switch (state) {
626         case FLUSH_DELAYED_ITEMS_NR:
627         case FLUSH_DELAYED_ITEMS:
628                 if (state == FLUSH_DELAYED_ITEMS_NR)
629                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
630                 else
631                         nr = -1;
632
633                 trans = btrfs_join_transaction(root);
634                 if (IS_ERR(trans)) {
635                         ret = PTR_ERR(trans);
636                         break;
637                 }
638                 ret = btrfs_run_delayed_items_nr(trans, nr);
639                 btrfs_end_transaction(trans);
640                 break;
641         case FLUSH_DELALLOC:
642         case FLUSH_DELALLOC_WAIT:
643         case FLUSH_DELALLOC_FULL:
644                 if (state == FLUSH_DELALLOC_FULL)
645                         num_bytes = U64_MAX;
646                 shrink_delalloc(fs_info, space_info, num_bytes,
647                                 state != FLUSH_DELALLOC, for_preempt);
648                 break;
649         case FLUSH_DELAYED_REFS_NR:
650         case FLUSH_DELAYED_REFS:
651                 trans = btrfs_join_transaction(root);
652                 if (IS_ERR(trans)) {
653                         ret = PTR_ERR(trans);
654                         break;
655                 }
656                 if (state == FLUSH_DELAYED_REFS_NR)
657                         nr = calc_reclaim_items_nr(fs_info, num_bytes);
658                 else
659                         nr = 0;
660                 btrfs_run_delayed_refs(trans, nr);
661                 btrfs_end_transaction(trans);
662                 break;
663         case ALLOC_CHUNK:
664         case ALLOC_CHUNK_FORCE:
665                 trans = btrfs_join_transaction(root);
666                 if (IS_ERR(trans)) {
667                         ret = PTR_ERR(trans);
668                         break;
669                 }
670                 ret = btrfs_chunk_alloc(trans,
671                                 btrfs_get_alloc_profile(fs_info, space_info->flags),
672                                 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
673                                         CHUNK_ALLOC_FORCE);
674                 btrfs_end_transaction(trans);
675                 if (ret > 0 || ret == -ENOSPC)
676                         ret = 0;
677                 break;
678         case RUN_DELAYED_IPUTS:
679                 /*
680                  * If we have pending delayed iputs then we could free up a
681                  * bunch of pinned space, so make sure we run the iputs before
682                  * we do our pinned bytes check below.
683                  */
684                 btrfs_run_delayed_iputs(fs_info);
685                 btrfs_wait_on_delayed_iputs(fs_info);
686                 break;
687         case COMMIT_TRANS:
688                 ASSERT(current->journal_info == NULL);
689                 trans = btrfs_join_transaction(root);
690                 if (IS_ERR(trans)) {
691                         ret = PTR_ERR(trans);
692                         break;
693                 }
694                 ret = btrfs_commit_transaction(trans);
695                 break;
696         default:
697                 ret = -ENOSPC;
698                 break;
699         }
700
701         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
702                                 ret, for_preempt);
703         return;
704 }
705
706 static inline u64
707 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
708                                  struct btrfs_space_info *space_info)
709 {
710         u64 used;
711         u64 avail;
712         u64 to_reclaim = space_info->reclaim_size;
713
714         lockdep_assert_held(&space_info->lock);
715
716         avail = calc_available_free_space(fs_info, space_info,
717                                           BTRFS_RESERVE_FLUSH_ALL);
718         used = btrfs_space_info_used(space_info, true);
719
720         /*
721          * We may be flushing because suddenly we have less space than we had
722          * before, and now we're well over-committed based on our current free
723          * space.  If that's the case add in our overage so we make sure to put
724          * appropriate pressure on the flushing state machine.
725          */
726         if (space_info->total_bytes + avail < used)
727                 to_reclaim += used - (space_info->total_bytes + avail);
728
729         return to_reclaim;
730 }
731
732 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
733                                     struct btrfs_space_info *space_info)
734 {
735         u64 global_rsv_size = fs_info->global_block_rsv.reserved;
736         u64 ordered, delalloc;
737         u64 thresh = div_factor_fine(space_info->total_bytes, 90);
738         u64 used;
739
740         lockdep_assert_held(&space_info->lock);
741
742         /* If we're just plain full then async reclaim just slows us down. */
743         if ((space_info->bytes_used + space_info->bytes_reserved +
744              global_rsv_size) >= thresh)
745                 return false;
746
747         used = space_info->bytes_may_use + space_info->bytes_pinned;
748
749         /* The total flushable belongs to the global rsv, don't flush. */
750         if (global_rsv_size >= used)
751                 return false;
752
753         /*
754          * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
755          * that devoted to other reservations then there's no sense in flushing,
756          * we don't have a lot of things that need flushing.
757          */
758         if (used - global_rsv_size <= SZ_128M)
759                 return false;
760
761         /*
762          * We have tickets queued, bail so we don't compete with the async
763          * flushers.
764          */
765         if (space_info->reclaim_size)
766                 return false;
767
768         /*
769          * If we have over half of the free space occupied by reservations or
770          * pinned then we want to start flushing.
771          *
772          * We do not do the traditional thing here, which is to say
773          *
774          *   if (used >= ((total_bytes + avail) / 2))
775          *     return 1;
776          *
777          * because this doesn't quite work how we want.  If we had more than 50%
778          * of the space_info used by bytes_used and we had 0 available we'd just
779          * constantly run the background flusher.  Instead we want it to kick in
780          * if our reclaimable space exceeds our clamped free space.
781          *
782          * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
783          * the following:
784          *
785          * Amount of RAM        Minimum threshold       Maximum threshold
786          *
787          *        256GiB                     1GiB                  128GiB
788          *        128GiB                   512MiB                   64GiB
789          *         64GiB                   256MiB                   32GiB
790          *         32GiB                   128MiB                   16GiB
791          *         16GiB                    64MiB                    8GiB
792          *
793          * These are the range our thresholds will fall in, corresponding to how
794          * much delalloc we need for the background flusher to kick in.
795          */
796
797         thresh = calc_available_free_space(fs_info, space_info,
798                                            BTRFS_RESERVE_FLUSH_ALL);
799         used = space_info->bytes_used + space_info->bytes_reserved +
800                space_info->bytes_readonly + global_rsv_size;
801         if (used < space_info->total_bytes)
802                 thresh += space_info->total_bytes - used;
803         thresh >>= space_info->clamp;
804
805         used = space_info->bytes_pinned;
806
807         /*
808          * If we have more ordered bytes than delalloc bytes then we're either
809          * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
810          * around.  Preemptive flushing is only useful in that it can free up
811          * space before tickets need to wait for things to finish.  In the case
812          * of ordered extents, preemptively waiting on ordered extents gets us
813          * nothing, if our reservations are tied up in ordered extents we'll
814          * simply have to slow down writers by forcing them to wait on ordered
815          * extents.
816          *
817          * In the case that ordered is larger than delalloc, only include the
818          * block reserves that we would actually be able to directly reclaim
819          * from.  In this case if we're heavy on metadata operations this will
820          * clearly be heavy enough to warrant preemptive flushing.  In the case
821          * of heavy DIO or ordered reservations, preemptive flushing will just
822          * waste time and cause us to slow down.
823          *
824          * We want to make sure we truly are maxed out on ordered however, so
825          * cut ordered in half, and if it's still higher than delalloc then we
826          * can keep flushing.  This is to avoid the case where we start
827          * flushing, and now delalloc == ordered and we stop preemptively
828          * flushing when we could still have several gigs of delalloc to flush.
829          */
830         ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
831         delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
832         if (ordered >= delalloc)
833                 used += fs_info->delayed_refs_rsv.reserved +
834                         fs_info->delayed_block_rsv.reserved;
835         else
836                 used += space_info->bytes_may_use - global_rsv_size;
837
838         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
839                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
840 }
841
842 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
843                                   struct btrfs_space_info *space_info,
844                                   struct reserve_ticket *ticket)
845 {
846         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
847         u64 min_bytes;
848
849         if (!ticket->steal)
850                 return false;
851
852         if (global_rsv->space_info != space_info)
853                 return false;
854
855         spin_lock(&global_rsv->lock);
856         min_bytes = div_factor(global_rsv->size, 1);
857         if (global_rsv->reserved < min_bytes + ticket->bytes) {
858                 spin_unlock(&global_rsv->lock);
859                 return false;
860         }
861         global_rsv->reserved -= ticket->bytes;
862         remove_ticket(space_info, ticket);
863         ticket->bytes = 0;
864         wake_up(&ticket->wait);
865         space_info->tickets_id++;
866         if (global_rsv->reserved < global_rsv->size)
867                 global_rsv->full = 0;
868         spin_unlock(&global_rsv->lock);
869
870         return true;
871 }
872
873 /*
874  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
875  * @fs_info - fs_info for this fs
876  * @space_info - the space info we were flushing
877  *
878  * We call this when we've exhausted our flushing ability and haven't made
879  * progress in satisfying tickets.  The reservation code handles tickets in
880  * order, so if there is a large ticket first and then smaller ones we could
881  * very well satisfy the smaller tickets.  This will attempt to wake up any
882  * tickets in the list to catch this case.
883  *
884  * This function returns true if it was able to make progress by clearing out
885  * other tickets, or if it stumbles across a ticket that was smaller than the
886  * first ticket.
887  */
888 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
889                                    struct btrfs_space_info *space_info)
890 {
891         struct reserve_ticket *ticket;
892         u64 tickets_id = space_info->tickets_id;
893         const bool aborted = BTRFS_FS_ERROR(fs_info);
894
895         trace_btrfs_fail_all_tickets(fs_info, space_info);
896
897         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
898                 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
899                 __btrfs_dump_space_info(fs_info, space_info);
900         }
901
902         while (!list_empty(&space_info->tickets) &&
903                tickets_id == space_info->tickets_id) {
904                 ticket = list_first_entry(&space_info->tickets,
905                                           struct reserve_ticket, list);
906
907                 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
908                         return true;
909
910                 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
911                         btrfs_info(fs_info, "failing ticket with %llu bytes",
912                                    ticket->bytes);
913
914                 remove_ticket(space_info, ticket);
915                 if (aborted)
916                         ticket->error = -EIO;
917                 else
918                         ticket->error = -ENOSPC;
919                 wake_up(&ticket->wait);
920
921                 /*
922                  * We're just throwing tickets away, so more flushing may not
923                  * trip over btrfs_try_granting_tickets, so we need to call it
924                  * here to see if we can make progress with the next ticket in
925                  * the list.
926                  */
927                 if (!aborted)
928                         btrfs_try_granting_tickets(fs_info, space_info);
929         }
930         return (tickets_id != space_info->tickets_id);
931 }
932
933 /*
934  * This is for normal flushers, we can wait all goddamned day if we want to.  We
935  * will loop and continuously try to flush as long as we are making progress.
936  * We count progress as clearing off tickets each time we have to loop.
937  */
938 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
939 {
940         struct btrfs_fs_info *fs_info;
941         struct btrfs_space_info *space_info;
942         u64 to_reclaim;
943         enum btrfs_flush_state flush_state;
944         int commit_cycles = 0;
945         u64 last_tickets_id;
946
947         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
948         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
949
950         spin_lock(&space_info->lock);
951         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
952         if (!to_reclaim) {
953                 space_info->flush = 0;
954                 spin_unlock(&space_info->lock);
955                 return;
956         }
957         last_tickets_id = space_info->tickets_id;
958         spin_unlock(&space_info->lock);
959
960         flush_state = FLUSH_DELAYED_ITEMS_NR;
961         do {
962                 flush_space(fs_info, space_info, to_reclaim, flush_state, false);
963                 spin_lock(&space_info->lock);
964                 if (list_empty(&space_info->tickets)) {
965                         space_info->flush = 0;
966                         spin_unlock(&space_info->lock);
967                         return;
968                 }
969                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
970                                                               space_info);
971                 if (last_tickets_id == space_info->tickets_id) {
972                         flush_state++;
973                 } else {
974                         last_tickets_id = space_info->tickets_id;
975                         flush_state = FLUSH_DELAYED_ITEMS_NR;
976                         if (commit_cycles)
977                                 commit_cycles--;
978                 }
979
980                 /*
981                  * We do not want to empty the system of delalloc unless we're
982                  * under heavy pressure, so allow one trip through the flushing
983                  * logic before we start doing a FLUSH_DELALLOC_FULL.
984                  */
985                 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
986                         flush_state++;
987
988                 /*
989                  * We don't want to force a chunk allocation until we've tried
990                  * pretty hard to reclaim space.  Think of the case where we
991                  * freed up a bunch of space and so have a lot of pinned space
992                  * to reclaim.  We would rather use that than possibly create a
993                  * underutilized metadata chunk.  So if this is our first run
994                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
995                  * commit the transaction.  If nothing has changed the next go
996                  * around then we can force a chunk allocation.
997                  */
998                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
999                         flush_state++;
1000
1001                 if (flush_state > COMMIT_TRANS) {
1002                         commit_cycles++;
1003                         if (commit_cycles > 2) {
1004                                 if (maybe_fail_all_tickets(fs_info, space_info)) {
1005                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
1006                                         commit_cycles--;
1007                                 } else {
1008                                         space_info->flush = 0;
1009                                 }
1010                         } else {
1011                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
1012                         }
1013                 }
1014                 spin_unlock(&space_info->lock);
1015         } while (flush_state <= COMMIT_TRANS);
1016 }
1017
1018 /*
1019  * This handles pre-flushing of metadata space before we get to the point that
1020  * we need to start blocking threads on tickets.  The logic here is different
1021  * from the other flush paths because it doesn't rely on tickets to tell us how
1022  * much we need to flush, instead it attempts to keep us below the 80% full
1023  * watermark of space by flushing whichever reservation pool is currently the
1024  * largest.
1025  */
1026 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1027 {
1028         struct btrfs_fs_info *fs_info;
1029         struct btrfs_space_info *space_info;
1030         struct btrfs_block_rsv *delayed_block_rsv;
1031         struct btrfs_block_rsv *delayed_refs_rsv;
1032         struct btrfs_block_rsv *global_rsv;
1033         struct btrfs_block_rsv *trans_rsv;
1034         int loops = 0;
1035
1036         fs_info = container_of(work, struct btrfs_fs_info,
1037                                preempt_reclaim_work);
1038         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1039         delayed_block_rsv = &fs_info->delayed_block_rsv;
1040         delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1041         global_rsv = &fs_info->global_block_rsv;
1042         trans_rsv = &fs_info->trans_block_rsv;
1043
1044         spin_lock(&space_info->lock);
1045         while (need_preemptive_reclaim(fs_info, space_info)) {
1046                 enum btrfs_flush_state flush;
1047                 u64 delalloc_size = 0;
1048                 u64 to_reclaim, block_rsv_size;
1049                 u64 global_rsv_size = global_rsv->reserved;
1050
1051                 loops++;
1052
1053                 /*
1054                  * We don't have a precise counter for the metadata being
1055                  * reserved for delalloc, so we'll approximate it by subtracting
1056                  * out the block rsv's space from the bytes_may_use.  If that
1057                  * amount is higher than the individual reserves, then we can
1058                  * assume it's tied up in delalloc reservations.
1059                  */
1060                 block_rsv_size = global_rsv_size +
1061                         delayed_block_rsv->reserved +
1062                         delayed_refs_rsv->reserved +
1063                         trans_rsv->reserved;
1064                 if (block_rsv_size < space_info->bytes_may_use)
1065                         delalloc_size = space_info->bytes_may_use - block_rsv_size;
1066
1067                 /*
1068                  * We don't want to include the global_rsv in our calculation,
1069                  * because that's space we can't touch.  Subtract it from the
1070                  * block_rsv_size for the next checks.
1071                  */
1072                 block_rsv_size -= global_rsv_size;
1073
1074                 /*
1075                  * We really want to avoid flushing delalloc too much, as it
1076                  * could result in poor allocation patterns, so only flush it if
1077                  * it's larger than the rest of the pools combined.
1078                  */
1079                 if (delalloc_size > block_rsv_size) {
1080                         to_reclaim = delalloc_size;
1081                         flush = FLUSH_DELALLOC;
1082                 } else if (space_info->bytes_pinned >
1083                            (delayed_block_rsv->reserved +
1084                             delayed_refs_rsv->reserved)) {
1085                         to_reclaim = space_info->bytes_pinned;
1086                         flush = COMMIT_TRANS;
1087                 } else if (delayed_block_rsv->reserved >
1088                            delayed_refs_rsv->reserved) {
1089                         to_reclaim = delayed_block_rsv->reserved;
1090                         flush = FLUSH_DELAYED_ITEMS_NR;
1091                 } else {
1092                         to_reclaim = delayed_refs_rsv->reserved;
1093                         flush = FLUSH_DELAYED_REFS_NR;
1094                 }
1095
1096                 spin_unlock(&space_info->lock);
1097
1098                 /*
1099                  * We don't want to reclaim everything, just a portion, so scale
1100                  * down the to_reclaim by 1/4.  If it takes us down to 0,
1101                  * reclaim 1 items worth.
1102                  */
1103                 to_reclaim >>= 2;
1104                 if (!to_reclaim)
1105                         to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1106                 flush_space(fs_info, space_info, to_reclaim, flush, true);
1107                 cond_resched();
1108                 spin_lock(&space_info->lock);
1109         }
1110
1111         /* We only went through once, back off our clamping. */
1112         if (loops == 1 && !space_info->reclaim_size)
1113                 space_info->clamp = max(1, space_info->clamp - 1);
1114         trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1115         spin_unlock(&space_info->lock);
1116 }
1117
1118 /*
1119  * FLUSH_DELALLOC_WAIT:
1120  *   Space is freed from flushing delalloc in one of two ways.
1121  *
1122  *   1) compression is on and we allocate less space than we reserved
1123  *   2) we are overwriting existing space
1124  *
1125  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1126  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1127  *   length to ->bytes_reserved, and subtracts the reserved space from
1128  *   ->bytes_may_use.
1129  *
1130  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1131  *   extent in the range we are overwriting, which creates a delayed ref for
1132  *   that freed extent.  This however is not reclaimed until the transaction
1133  *   commits, thus the next stages.
1134  *
1135  * RUN_DELAYED_IPUTS
1136  *   If we are freeing inodes, we want to make sure all delayed iputs have
1137  *   completed, because they could have been on an inode with i_nlink == 0, and
1138  *   thus have been truncated and freed up space.  But again this space is not
1139  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1140  *   run and then the transaction must be committed.
1141  *
1142  * COMMIT_TRANS
1143  *   This is where we reclaim all of the pinned space generated by running the
1144  *   iputs
1145  *
1146  * ALLOC_CHUNK_FORCE
1147  *   For data we start with alloc chunk force, however we could have been full
1148  *   before, and then the transaction commit could have freed new block groups,
1149  *   so if we now have space to allocate do the force chunk allocation.
1150  */
1151 static const enum btrfs_flush_state data_flush_states[] = {
1152         FLUSH_DELALLOC_FULL,
1153         RUN_DELAYED_IPUTS,
1154         COMMIT_TRANS,
1155         ALLOC_CHUNK_FORCE,
1156 };
1157
1158 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1159 {
1160         struct btrfs_fs_info *fs_info;
1161         struct btrfs_space_info *space_info;
1162         u64 last_tickets_id;
1163         enum btrfs_flush_state flush_state = 0;
1164
1165         fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1166         space_info = fs_info->data_sinfo;
1167
1168         spin_lock(&space_info->lock);
1169         if (list_empty(&space_info->tickets)) {
1170                 space_info->flush = 0;
1171                 spin_unlock(&space_info->lock);
1172                 return;
1173         }
1174         last_tickets_id = space_info->tickets_id;
1175         spin_unlock(&space_info->lock);
1176
1177         while (!space_info->full) {
1178                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1179                 spin_lock(&space_info->lock);
1180                 if (list_empty(&space_info->tickets)) {
1181                         space_info->flush = 0;
1182                         spin_unlock(&space_info->lock);
1183                         return;
1184                 }
1185
1186                 /* Something happened, fail everything and bail. */
1187                 if (BTRFS_FS_ERROR(fs_info))
1188                         goto aborted_fs;
1189                 last_tickets_id = space_info->tickets_id;
1190                 spin_unlock(&space_info->lock);
1191         }
1192
1193         while (flush_state < ARRAY_SIZE(data_flush_states)) {
1194                 flush_space(fs_info, space_info, U64_MAX,
1195                             data_flush_states[flush_state], false);
1196                 spin_lock(&space_info->lock);
1197                 if (list_empty(&space_info->tickets)) {
1198                         space_info->flush = 0;
1199                         spin_unlock(&space_info->lock);
1200                         return;
1201                 }
1202
1203                 if (last_tickets_id == space_info->tickets_id) {
1204                         flush_state++;
1205                 } else {
1206                         last_tickets_id = space_info->tickets_id;
1207                         flush_state = 0;
1208                 }
1209
1210                 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1211                         if (space_info->full) {
1212                                 if (maybe_fail_all_tickets(fs_info, space_info))
1213                                         flush_state = 0;
1214                                 else
1215                                         space_info->flush = 0;
1216                         } else {
1217                                 flush_state = 0;
1218                         }
1219
1220                         /* Something happened, fail everything and bail. */
1221                         if (BTRFS_FS_ERROR(fs_info))
1222                                 goto aborted_fs;
1223
1224                 }
1225                 spin_unlock(&space_info->lock);
1226         }
1227         return;
1228
1229 aborted_fs:
1230         maybe_fail_all_tickets(fs_info, space_info);
1231         space_info->flush = 0;
1232         spin_unlock(&space_info->lock);
1233 }
1234
1235 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1236 {
1237         INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1238         INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1239         INIT_WORK(&fs_info->preempt_reclaim_work,
1240                   btrfs_preempt_reclaim_metadata_space);
1241 }
1242
1243 static const enum btrfs_flush_state priority_flush_states[] = {
1244         FLUSH_DELAYED_ITEMS_NR,
1245         FLUSH_DELAYED_ITEMS,
1246         ALLOC_CHUNK,
1247 };
1248
1249 static const enum btrfs_flush_state evict_flush_states[] = {
1250         FLUSH_DELAYED_ITEMS_NR,
1251         FLUSH_DELAYED_ITEMS,
1252         FLUSH_DELAYED_REFS_NR,
1253         FLUSH_DELAYED_REFS,
1254         FLUSH_DELALLOC,
1255         FLUSH_DELALLOC_WAIT,
1256         FLUSH_DELALLOC_FULL,
1257         ALLOC_CHUNK,
1258         COMMIT_TRANS,
1259 };
1260
1261 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1262                                 struct btrfs_space_info *space_info,
1263                                 struct reserve_ticket *ticket,
1264                                 const enum btrfs_flush_state *states,
1265                                 int states_nr)
1266 {
1267         u64 to_reclaim;
1268         int flush_state = 0;
1269
1270         spin_lock(&space_info->lock);
1271         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1272         /*
1273          * This is the priority reclaim path, so to_reclaim could be >0 still
1274          * because we may have only satisified the priority tickets and still
1275          * left non priority tickets on the list.  We would then have
1276          * to_reclaim but ->bytes == 0.
1277          */
1278         if (ticket->bytes == 0) {
1279                 spin_unlock(&space_info->lock);
1280                 return;
1281         }
1282
1283         while (flush_state < states_nr) {
1284                 spin_unlock(&space_info->lock);
1285                 flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1286                             false);
1287                 flush_state++;
1288                 spin_lock(&space_info->lock);
1289                 if (ticket->bytes == 0) {
1290                         spin_unlock(&space_info->lock);
1291                         return;
1292                 }
1293         }
1294
1295         /* Attempt to steal from the global rsv if we can. */
1296         if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1297                 ticket->error = -ENOSPC;
1298                 remove_ticket(space_info, ticket);
1299         }
1300
1301         /*
1302          * We must run try_granting_tickets here because we could be a large
1303          * ticket in front of a smaller ticket that can now be satisfied with
1304          * the available space.
1305          */
1306         btrfs_try_granting_tickets(fs_info, space_info);
1307         spin_unlock(&space_info->lock);
1308 }
1309
1310 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1311                                         struct btrfs_space_info *space_info,
1312                                         struct reserve_ticket *ticket)
1313 {
1314         spin_lock(&space_info->lock);
1315
1316         /* We could have been granted before we got here. */
1317         if (ticket->bytes == 0) {
1318                 spin_unlock(&space_info->lock);
1319                 return;
1320         }
1321
1322         while (!space_info->full) {
1323                 spin_unlock(&space_info->lock);
1324                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1325                 spin_lock(&space_info->lock);
1326                 if (ticket->bytes == 0) {
1327                         spin_unlock(&space_info->lock);
1328                         return;
1329                 }
1330         }
1331
1332         ticket->error = -ENOSPC;
1333         remove_ticket(space_info, ticket);
1334         btrfs_try_granting_tickets(fs_info, space_info);
1335         spin_unlock(&space_info->lock);
1336 }
1337
1338 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1339                                 struct btrfs_space_info *space_info,
1340                                 struct reserve_ticket *ticket)
1341
1342 {
1343         DEFINE_WAIT(wait);
1344         int ret = 0;
1345
1346         spin_lock(&space_info->lock);
1347         while (ticket->bytes > 0 && ticket->error == 0) {
1348                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1349                 if (ret) {
1350                         /*
1351                          * Delete us from the list. After we unlock the space
1352                          * info, we don't want the async reclaim job to reserve
1353                          * space for this ticket. If that would happen, then the
1354                          * ticket's task would not known that space was reserved
1355                          * despite getting an error, resulting in a space leak
1356                          * (bytes_may_use counter of our space_info).
1357                          */
1358                         remove_ticket(space_info, ticket);
1359                         ticket->error = -EINTR;
1360                         break;
1361                 }
1362                 spin_unlock(&space_info->lock);
1363
1364                 schedule();
1365
1366                 finish_wait(&ticket->wait, &wait);
1367                 spin_lock(&space_info->lock);
1368         }
1369         spin_unlock(&space_info->lock);
1370 }
1371
1372 /**
1373  * Do the appropriate flushing and waiting for a ticket
1374  *
1375  * @fs_info:    the filesystem
1376  * @space_info: space info for the reservation
1377  * @ticket:     ticket for the reservation
1378  * @start_ns:   timestamp when the reservation started
1379  * @orig_bytes: amount of bytes originally reserved
1380  * @flush:      how much we can flush
1381  *
1382  * This does the work of figuring out how to flush for the ticket, waiting for
1383  * the reservation, and returning the appropriate error if there is one.
1384  */
1385 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1386                                  struct btrfs_space_info *space_info,
1387                                  struct reserve_ticket *ticket,
1388                                  u64 start_ns, u64 orig_bytes,
1389                                  enum btrfs_reserve_flush_enum flush)
1390 {
1391         int ret;
1392
1393         switch (flush) {
1394         case BTRFS_RESERVE_FLUSH_DATA:
1395         case BTRFS_RESERVE_FLUSH_ALL:
1396         case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1397                 wait_reserve_ticket(fs_info, space_info, ticket);
1398                 break;
1399         case BTRFS_RESERVE_FLUSH_LIMIT:
1400                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1401                                                 priority_flush_states,
1402                                                 ARRAY_SIZE(priority_flush_states));
1403                 break;
1404         case BTRFS_RESERVE_FLUSH_EVICT:
1405                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1406                                                 evict_flush_states,
1407                                                 ARRAY_SIZE(evict_flush_states));
1408                 break;
1409         case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1410                 priority_reclaim_data_space(fs_info, space_info, ticket);
1411                 break;
1412         default:
1413                 ASSERT(0);
1414                 break;
1415         }
1416
1417         ret = ticket->error;
1418         ASSERT(list_empty(&ticket->list));
1419         /*
1420          * Check that we can't have an error set if the reservation succeeded,
1421          * as that would confuse tasks and lead them to error out without
1422          * releasing reserved space (if an error happens the expectation is that
1423          * space wasn't reserved at all).
1424          */
1425         ASSERT(!(ticket->bytes == 0 && ticket->error));
1426         trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1427                                    start_ns, flush, ticket->error);
1428         return ret;
1429 }
1430
1431 /*
1432  * This returns true if this flush state will go through the ordinary flushing
1433  * code.
1434  */
1435 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1436 {
1437         return  (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1438                 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1439 }
1440
1441 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1442                                        struct btrfs_space_info *space_info)
1443 {
1444         u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1445         u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1446
1447         /*
1448          * If we're heavy on ordered operations then clamping won't help us.  We
1449          * need to clamp specifically to keep up with dirty'ing buffered
1450          * writers, because there's not a 1:1 correlation of writing delalloc
1451          * and freeing space, like there is with flushing delayed refs or
1452          * delayed nodes.  If we're already more ordered than delalloc then
1453          * we're keeping up, otherwise we aren't and should probably clamp.
1454          */
1455         if (ordered < delalloc)
1456                 space_info->clamp = min(space_info->clamp + 1, 8);
1457 }
1458
1459 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1460 {
1461         return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1462                 flush == BTRFS_RESERVE_FLUSH_EVICT);
1463 }
1464
1465 /**
1466  * Try to reserve bytes from the block_rsv's space
1467  *
1468  * @fs_info:    the filesystem
1469  * @space_info: space info we want to allocate from
1470  * @orig_bytes: number of bytes we want
1471  * @flush:      whether or not we can flush to make our reservation
1472  *
1473  * This will reserve orig_bytes number of bytes from the space info associated
1474  * with the block_rsv.  If there is not enough space it will make an attempt to
1475  * flush out space to make room.  It will do this by flushing delalloc if
1476  * possible or committing the transaction.  If flush is 0 then no attempts to
1477  * regain reservations will be made and this will fail if there is not enough
1478  * space already.
1479  */
1480 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1481                            struct btrfs_space_info *space_info, u64 orig_bytes,
1482                            enum btrfs_reserve_flush_enum flush)
1483 {
1484         struct work_struct *async_work;
1485         struct reserve_ticket ticket;
1486         u64 start_ns = 0;
1487         u64 used;
1488         int ret = 0;
1489         bool pending_tickets;
1490
1491         ASSERT(orig_bytes);
1492         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1493
1494         if (flush == BTRFS_RESERVE_FLUSH_DATA)
1495                 async_work = &fs_info->async_data_reclaim_work;
1496         else
1497                 async_work = &fs_info->async_reclaim_work;
1498
1499         spin_lock(&space_info->lock);
1500         ret = -ENOSPC;
1501         used = btrfs_space_info_used(space_info, true);
1502
1503         /*
1504          * We don't want NO_FLUSH allocations to jump everybody, they can
1505          * generally handle ENOSPC in a different way, so treat them the same as
1506          * normal flushers when it comes to skipping pending tickets.
1507          */
1508         if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1509                 pending_tickets = !list_empty(&space_info->tickets) ||
1510                         !list_empty(&space_info->priority_tickets);
1511         else
1512                 pending_tickets = !list_empty(&space_info->priority_tickets);
1513
1514         /*
1515          * Carry on if we have enough space (short-circuit) OR call
1516          * can_overcommit() to ensure we can overcommit to continue.
1517          */
1518         if (!pending_tickets &&
1519             ((used + orig_bytes <= space_info->total_bytes) ||
1520              btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1521                 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1522                                                       orig_bytes);
1523                 ret = 0;
1524         }
1525
1526         /*
1527          * If we couldn't make a reservation then setup our reservation ticket
1528          * and kick the async worker if it's not already running.
1529          *
1530          * If we are a priority flusher then we just need to add our ticket to
1531          * the list and we will do our own flushing further down.
1532          */
1533         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1534                 ticket.bytes = orig_bytes;
1535                 ticket.error = 0;
1536                 space_info->reclaim_size += ticket.bytes;
1537                 init_waitqueue_head(&ticket.wait);
1538                 ticket.steal = can_steal(flush);
1539                 if (trace_btrfs_reserve_ticket_enabled())
1540                         start_ns = ktime_get_ns();
1541
1542                 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1543                     flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1544                     flush == BTRFS_RESERVE_FLUSH_DATA) {
1545                         list_add_tail(&ticket.list, &space_info->tickets);
1546                         if (!space_info->flush) {
1547                                 /*
1548                                  * We were forced to add a reserve ticket, so
1549                                  * our preemptive flushing is unable to keep
1550                                  * up.  Clamp down on the threshold for the
1551                                  * preemptive flushing in order to keep up with
1552                                  * the workload.
1553                                  */
1554                                 maybe_clamp_preempt(fs_info, space_info);
1555
1556                                 space_info->flush = 1;
1557                                 trace_btrfs_trigger_flush(fs_info,
1558                                                           space_info->flags,
1559                                                           orig_bytes, flush,
1560                                                           "enospc");
1561                                 queue_work(system_unbound_wq, async_work);
1562                         }
1563                 } else {
1564                         list_add_tail(&ticket.list,
1565                                       &space_info->priority_tickets);
1566                 }
1567         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1568                 used += orig_bytes;
1569                 /*
1570                  * We will do the space reservation dance during log replay,
1571                  * which means we won't have fs_info->fs_root set, so don't do
1572                  * the async reclaim as we will panic.
1573                  */
1574                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1575                     !work_busy(&fs_info->preempt_reclaim_work) &&
1576                     need_preemptive_reclaim(fs_info, space_info)) {
1577                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
1578                                                   orig_bytes, flush, "preempt");
1579                         queue_work(system_unbound_wq,
1580                                    &fs_info->preempt_reclaim_work);
1581                 }
1582         }
1583         spin_unlock(&space_info->lock);
1584         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1585                 return ret;
1586
1587         return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1588                                      orig_bytes, flush);
1589 }
1590
1591 /**
1592  * Trye to reserve metadata bytes from the block_rsv's space
1593  *
1594  * @fs_info:    the filesystem
1595  * @block_rsv:  block_rsv we're allocating for
1596  * @orig_bytes: number of bytes we want
1597  * @flush:      whether or not we can flush to make our reservation
1598  *
1599  * This will reserve orig_bytes number of bytes from the space info associated
1600  * with the block_rsv.  If there is not enough space it will make an attempt to
1601  * flush out space to make room.  It will do this by flushing delalloc if
1602  * possible or committing the transaction.  If flush is 0 then no attempts to
1603  * regain reservations will be made and this will fail if there is not enough
1604  * space already.
1605  */
1606 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1607                                  struct btrfs_block_rsv *block_rsv,
1608                                  u64 orig_bytes,
1609                                  enum btrfs_reserve_flush_enum flush)
1610 {
1611         int ret;
1612
1613         ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1614         if (ret == -ENOSPC) {
1615                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1616                                               block_rsv->space_info->flags,
1617                                               orig_bytes, 1);
1618
1619                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1620                         btrfs_dump_space_info(fs_info, block_rsv->space_info,
1621                                               orig_bytes, 0);
1622         }
1623         return ret;
1624 }
1625
1626 /**
1627  * Try to reserve data bytes for an allocation
1628  *
1629  * @fs_info: the filesystem
1630  * @bytes:   number of bytes we need
1631  * @flush:   how we are allowed to flush
1632  *
1633  * This will reserve bytes from the data space info.  If there is not enough
1634  * space then we will attempt to flush space as specified by flush.
1635  */
1636 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1637                              enum btrfs_reserve_flush_enum flush)
1638 {
1639         struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1640         int ret;
1641
1642         ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1643                flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1644         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1645
1646         ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1647         if (ret == -ENOSPC) {
1648                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1649                                               data_sinfo->flags, bytes, 1);
1650                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1651                         btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1652         }
1653         return ret;
1654 }