1 // SPDX-License-Identifier: GPL-2.0
5 #include "space-info.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
14 * HOW DOES SPACE RESERVATION WORK
16 * If you want to know about delalloc specifically, there is a separate comment
17 * for that with the delalloc code. This comment is about how the whole system
22 * 1) space_info. This is the ultimate arbiter of how much space we can use.
23 * There's a description of the bytes_ fields with the struct declaration,
24 * refer to that for specifics on each field. Suffice it to say that for
25 * reservations we care about total_bytes - SUM(space_info->bytes_) when
26 * determining if there is space to make an allocation. There is a space_info
27 * for METADATA, SYSTEM, and DATA areas.
29 * 2) block_rsv's. These are basically buckets for every different type of
30 * metadata reservation we have. You can see the comment in the block_rsv
31 * code on the rules for each type, but generally block_rsv->reserved is how
32 * much space is accounted for in space_info->bytes_may_use.
34 * 3) btrfs_calc*_size. These are the worst case calculations we used based
35 * on the number of items we will want to modify. We have one for changing
36 * items, and one for inserting new items. Generally we use these helpers to
37 * determine the size of the block reserves, and then use the actual bytes
38 * values to adjust the space_info counters.
40 * MAKING RESERVATIONS, THE NORMAL CASE
42 * We call into either btrfs_reserve_data_bytes() or
43 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44 * num_bytes we want to reserve.
47 * space_info->bytes_may_reserve += num_bytes
50 * Call btrfs_add_reserved_bytes() which does
51 * space_info->bytes_may_reserve -= num_bytes
52 * space_info->bytes_reserved += extent_bytes
55 * Call btrfs_update_block_group() which does
56 * space_info->bytes_reserved -= extent_bytes
57 * space_info->bytes_used += extent_bytes
59 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
61 * Assume we are unable to simply make the reservation because we do not have
65 * create a reserve_ticket with ->bytes set to our reservation, add it to
66 * the tail of space_info->tickets, kick async flush thread
68 * ->handle_reserve_ticket
69 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
72 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73 * Flushes various things attempting to free up space.
75 * -> btrfs_try_granting_tickets()
76 * This is called by anything that either subtracts space from
77 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78 * space_info->total_bytes. This loops through the ->priority_tickets and
79 * then the ->tickets list checking to see if the reservation can be
80 * completed. If it can the space is added to space_info->bytes_may_use and
81 * the ticket is woken up.
84 * Check if ->bytes == 0, if it does we got our reservation and we can carry
85 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we
88 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
90 * Same as the above, except we add ourselves to the
91 * space_info->priority_tickets, and we do not use ticket->wait, we simply
92 * call flush_space() ourselves for the states that are safe for us to call
93 * without deadlocking and hope for the best.
97 * Generally speaking we will have two cases for each state, a "nice" state
98 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to
99 * reduce the locking over head on the various trees, and even to keep from
100 * doing any work at all in the case of delayed refs. Each of these delayed
101 * things however hold reservations, and so letting them run allows us to
102 * reclaim space so we can make new reservations.
104 * FLUSH_DELAYED_ITEMS
105 * Every inode has a delayed item to update the inode. Take a simple write
106 * for example, we would update the inode item at write time to update the
107 * mtime, and then again at finish_ordered_io() time in order to update the
108 * isize or bytes. We keep these delayed items to coalesce these operations
109 * into a single operation done on demand. These are an easy way to reclaim
113 * Look at the delalloc comment to get an idea of how much space is reserved
114 * for delayed allocation. We can reclaim some of this space simply by
115 * running delalloc, but usually we need to wait for ordered extents to
116 * reclaim the bulk of this space.
119 * We have a block reserve for the outstanding delayed refs space, and every
120 * delayed ref operation holds a reservation. Running these is a quick way
121 * to reclaim space, but we want to hold this until the end because COW can
122 * churn a lot and we can avoid making some extent tree modifications if we
123 * are able to delay for as long as possible.
126 * We will skip this the first time through space reservation, because of
127 * overcommit and we don't want to have a lot of useless metadata space when
128 * our worst case reservations will likely never come true.
131 * If we're freeing inodes we're likely freeing checksums, file extent
132 * items, and extent tree items. Loads of space could be freed up by these
133 * operations, however they won't be usable until the transaction commits.
136 * may_commit_transaction() is the ultimate arbiter on whether we commit the
137 * transaction or not. In order to avoid constantly churning we do all the
138 * above flushing first and then commit the transaction as the last resort.
139 * However we need to take into account things like pinned space that would
140 * be freed, plus any delayed work we may not have gotten rid of in the case
145 * Because we hold so many reservations for metadata we will allow you to
146 * reserve more space than is currently free in the currently allocate
147 * metadata space. This only happens with metadata, data does not allow
150 * You can see the current logic for when we allow overcommit in
151 * btrfs_can_overcommit(), but it only applies to unallocated space. If there
152 * is no unallocated space to be had, all reservations are kept within the
153 * free space in the allocated metadata chunks.
155 * Because of overcommitting, you generally want to use the
156 * btrfs_can_overcommit() logic for metadata allocations, as it does the right
157 * thing with or without extra unallocated space.
160 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
161 bool may_use_included)
164 return s_info->bytes_used + s_info->bytes_reserved +
165 s_info->bytes_pinned + s_info->bytes_readonly +
166 (may_use_included ? s_info->bytes_may_use : 0);
170 * after adding space to the filesystem, we need to clear the full flags
171 * on all the space infos.
173 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
175 struct list_head *head = &info->space_info;
176 struct btrfs_space_info *found;
178 list_for_each_entry(found, head, list)
182 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
185 struct btrfs_space_info *space_info;
189 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
193 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
200 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
201 INIT_LIST_HEAD(&space_info->block_groups[i]);
202 init_rwsem(&space_info->groups_sem);
203 spin_lock_init(&space_info->lock);
204 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
205 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
206 INIT_LIST_HEAD(&space_info->ro_bgs);
207 INIT_LIST_HEAD(&space_info->tickets);
208 INIT_LIST_HEAD(&space_info->priority_tickets);
210 ret = btrfs_sysfs_add_space_info_type(info, space_info);
214 list_add(&space_info->list, &info->space_info);
215 if (flags & BTRFS_BLOCK_GROUP_DATA)
216 info->data_sinfo = space_info;
221 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
223 struct btrfs_super_block *disk_super;
229 disk_super = fs_info->super_copy;
230 if (!btrfs_super_root(disk_super))
233 features = btrfs_super_incompat_flags(disk_super);
234 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
237 flags = BTRFS_BLOCK_GROUP_SYSTEM;
238 ret = create_space_info(fs_info, flags);
243 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
244 ret = create_space_info(fs_info, flags);
246 flags = BTRFS_BLOCK_GROUP_METADATA;
247 ret = create_space_info(fs_info, flags);
251 flags = BTRFS_BLOCK_GROUP_DATA;
252 ret = create_space_info(fs_info, flags);
258 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
259 u64 total_bytes, u64 bytes_used,
261 struct btrfs_space_info **space_info)
263 struct btrfs_space_info *found;
266 factor = btrfs_bg_type_to_factor(flags);
268 found = btrfs_find_space_info(info, flags);
270 spin_lock(&found->lock);
271 found->total_bytes += total_bytes;
272 found->disk_total += total_bytes * factor;
273 found->bytes_used += bytes_used;
274 found->disk_used += bytes_used * factor;
275 found->bytes_readonly += bytes_readonly;
278 btrfs_try_granting_tickets(info, found);
279 spin_unlock(&found->lock);
283 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
286 struct list_head *head = &info->space_info;
287 struct btrfs_space_info *found;
289 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
291 list_for_each_entry(found, head, list) {
292 if (found->flags & flags)
298 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
299 struct btrfs_space_info *space_info,
300 enum btrfs_reserve_flush_enum flush)
306 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
307 profile = btrfs_system_alloc_profile(fs_info);
309 profile = btrfs_metadata_alloc_profile(fs_info);
311 avail = atomic64_read(&fs_info->free_chunk_space);
314 * If we have dup, raid1 or raid10 then only half of the free
315 * space is actually usable. For raid56, the space info used
316 * doesn't include the parity drive, so we don't have to
319 factor = btrfs_bg_type_to_factor(profile);
320 avail = div_u64(avail, factor);
323 * If we aren't flushing all things, let us overcommit up to
324 * 1/2th of the space. If we can flush, don't let us overcommit
325 * too much, let it overcommit up to 1/8 of the space.
327 if (flush == BTRFS_RESERVE_FLUSH_ALL)
334 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
335 struct btrfs_space_info *space_info, u64 bytes,
336 enum btrfs_reserve_flush_enum flush)
341 /* Don't overcommit when in mixed mode */
342 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
345 used = btrfs_space_info_used(space_info, true);
346 avail = calc_available_free_space(fs_info, space_info, flush);
348 if (used + bytes < space_info->total_bytes + avail)
353 static void remove_ticket(struct btrfs_space_info *space_info,
354 struct reserve_ticket *ticket)
356 if (!list_empty(&ticket->list)) {
357 list_del_init(&ticket->list);
358 ASSERT(space_info->reclaim_size >= ticket->bytes);
359 space_info->reclaim_size -= ticket->bytes;
364 * This is for space we already have accounted in space_info->bytes_may_use, so
365 * basically when we're returning space from block_rsv's.
367 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
368 struct btrfs_space_info *space_info)
370 struct list_head *head;
371 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
373 lockdep_assert_held(&space_info->lock);
375 head = &space_info->priority_tickets;
377 while (!list_empty(head)) {
378 struct reserve_ticket *ticket;
379 u64 used = btrfs_space_info_used(space_info, true);
381 ticket = list_first_entry(head, struct reserve_ticket, list);
383 /* Check and see if our ticket can be satisified now. */
384 if ((used + ticket->bytes <= space_info->total_bytes) ||
385 btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
387 btrfs_space_info_update_bytes_may_use(fs_info,
390 remove_ticket(space_info, ticket);
392 space_info->tickets_id++;
393 wake_up(&ticket->wait);
399 if (head == &space_info->priority_tickets) {
400 head = &space_info->tickets;
401 flush = BTRFS_RESERVE_FLUSH_ALL;
406 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \
408 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
409 spin_lock(&__rsv->lock); \
410 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
411 __rsv->size, __rsv->reserved); \
412 spin_unlock(&__rsv->lock); \
415 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
416 struct btrfs_space_info *info)
418 lockdep_assert_held(&info->lock);
420 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
422 info->total_bytes - btrfs_space_info_used(info, true),
423 info->full ? "" : "not ");
425 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
426 info->total_bytes, info->bytes_used, info->bytes_pinned,
427 info->bytes_reserved, info->bytes_may_use,
428 info->bytes_readonly);
430 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
431 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
432 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
433 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
434 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
438 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
439 struct btrfs_space_info *info, u64 bytes,
440 int dump_block_groups)
442 struct btrfs_block_group *cache;
445 spin_lock(&info->lock);
446 __btrfs_dump_space_info(fs_info, info);
447 spin_unlock(&info->lock);
449 if (!dump_block_groups)
452 down_read(&info->groups_sem);
454 list_for_each_entry(cache, &info->block_groups[index], list) {
455 spin_lock(&cache->lock);
457 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
458 cache->start, cache->length, cache->used, cache->pinned,
459 cache->reserved, cache->ro ? "[readonly]" : "");
460 spin_unlock(&cache->lock);
461 btrfs_dump_free_space(cache, bytes);
463 if (++index < BTRFS_NR_RAID_TYPES)
465 up_read(&info->groups_sem);
468 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
474 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
475 nr = div64_u64(to_reclaim, bytes);
481 #define EXTENT_SIZE_PER_ITEM SZ_256K
484 * shrink metadata reservation for delalloc
486 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
487 struct btrfs_space_info *space_info,
488 u64 to_reclaim, bool wait_ordered)
490 struct btrfs_trans_handle *trans;
497 /* Calc the number of the pages we need flush for space reservation */
498 if (to_reclaim == U64_MAX) {
502 * to_reclaim is set to however much metadata we need to
503 * reclaim, but reclaiming that much data doesn't really track
504 * exactly, so increase the amount to reclaim by 2x in order to
505 * make sure we're flushing enough delalloc to hopefully reclaim
506 * some metadata reservations.
508 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
509 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
512 trans = (struct btrfs_trans_handle *)current->journal_info;
514 delalloc_bytes = percpu_counter_sum_positive(
515 &fs_info->delalloc_bytes);
516 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
517 if (delalloc_bytes == 0 && ordered_bytes == 0)
521 * If we are doing more ordered than delalloc we need to just wait on
522 * ordered extents, otherwise we'll waste time trying to flush delalloc
523 * that likely won't give us the space back we need.
525 if (ordered_bytes > delalloc_bytes)
529 while ((delalloc_bytes || ordered_bytes) && loops < 3) {
530 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
531 long nr_pages = min_t(u64, temp, LONG_MAX);
533 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
536 if (wait_ordered && !trans) {
537 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
539 time_left = schedule_timeout_killable(1);
544 spin_lock(&space_info->lock);
545 if (list_empty(&space_info->tickets) &&
546 list_empty(&space_info->priority_tickets)) {
547 spin_unlock(&space_info->lock);
550 spin_unlock(&space_info->lock);
552 delalloc_bytes = percpu_counter_sum_positive(
553 &fs_info->delalloc_bytes);
554 ordered_bytes = percpu_counter_sum_positive(
555 &fs_info->ordered_bytes);
560 * Possibly commit the transaction if its ok to
562 * @fs_info: the filesystem
563 * @space_info: space_info we are checking for commit, either data or metadata
565 * This will check to make sure that committing the transaction will actually
566 * get us somewhere and then commit the transaction if it does. Otherwise it
567 * will return -ENOSPC.
569 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
570 struct btrfs_space_info *space_info)
572 struct reserve_ticket *ticket = NULL;
573 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
574 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
575 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
576 struct btrfs_trans_handle *trans;
577 u64 reclaim_bytes = 0;
578 u64 bytes_needed = 0;
579 u64 cur_free_bytes = 0;
581 trans = (struct btrfs_trans_handle *)current->journal_info;
585 spin_lock(&space_info->lock);
586 cur_free_bytes = btrfs_space_info_used(space_info, true);
587 if (cur_free_bytes < space_info->total_bytes)
588 cur_free_bytes = space_info->total_bytes - cur_free_bytes;
592 if (!list_empty(&space_info->priority_tickets))
593 ticket = list_first_entry(&space_info->priority_tickets,
594 struct reserve_ticket, list);
595 else if (!list_empty(&space_info->tickets))
596 ticket = list_first_entry(&space_info->tickets,
597 struct reserve_ticket, list);
599 bytes_needed = ticket->bytes;
601 if (bytes_needed > cur_free_bytes)
602 bytes_needed -= cur_free_bytes;
605 spin_unlock(&space_info->lock);
610 trans = btrfs_join_transaction(fs_info->extent_root);
612 return PTR_ERR(trans);
615 * See if there is enough pinned space to make this reservation, or if
616 * we have block groups that are going to be freed, allowing us to
617 * possibly do a chunk allocation the next loop through.
619 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
620 __percpu_counter_compare(&space_info->total_bytes_pinned,
622 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
626 * See if there is some space in the delayed insertion reserve for this
627 * reservation. If the space_info's don't match (like for DATA or
628 * SYSTEM) then just go enospc, reclaiming this space won't recover any
629 * space to satisfy those reservations.
631 if (space_info != delayed_rsv->space_info)
634 spin_lock(&delayed_rsv->lock);
635 reclaim_bytes += delayed_rsv->reserved;
636 spin_unlock(&delayed_rsv->lock);
638 spin_lock(&delayed_refs_rsv->lock);
639 reclaim_bytes += delayed_refs_rsv->reserved;
640 spin_unlock(&delayed_refs_rsv->lock);
642 spin_lock(&trans_rsv->lock);
643 reclaim_bytes += trans_rsv->reserved;
644 spin_unlock(&trans_rsv->lock);
646 if (reclaim_bytes >= bytes_needed)
648 bytes_needed -= reclaim_bytes;
650 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
652 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
656 return btrfs_commit_transaction(trans);
658 btrfs_end_transaction(trans);
663 * Try to flush some data based on policy set by @state. This is only advisory
664 * and may fail for various reasons. The caller is supposed to examine the
665 * state of @space_info to detect the outcome.
667 static void flush_space(struct btrfs_fs_info *fs_info,
668 struct btrfs_space_info *space_info, u64 num_bytes,
669 enum btrfs_flush_state state)
671 struct btrfs_root *root = fs_info->extent_root;
672 struct btrfs_trans_handle *trans;
677 case FLUSH_DELAYED_ITEMS_NR:
678 case FLUSH_DELAYED_ITEMS:
679 if (state == FLUSH_DELAYED_ITEMS_NR)
680 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
684 trans = btrfs_join_transaction(root);
686 ret = PTR_ERR(trans);
689 ret = btrfs_run_delayed_items_nr(trans, nr);
690 btrfs_end_transaction(trans);
693 case FLUSH_DELALLOC_WAIT:
694 shrink_delalloc(fs_info, space_info, num_bytes,
695 state == FLUSH_DELALLOC_WAIT);
697 case FLUSH_DELAYED_REFS_NR:
698 case FLUSH_DELAYED_REFS:
699 trans = btrfs_join_transaction(root);
701 ret = PTR_ERR(trans);
704 if (state == FLUSH_DELAYED_REFS_NR)
705 nr = calc_reclaim_items_nr(fs_info, num_bytes);
708 btrfs_run_delayed_refs(trans, nr);
709 btrfs_end_transaction(trans);
712 case ALLOC_CHUNK_FORCE:
713 trans = btrfs_join_transaction(root);
715 ret = PTR_ERR(trans);
718 ret = btrfs_chunk_alloc(trans,
719 btrfs_get_alloc_profile(fs_info, space_info->flags),
720 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
722 btrfs_end_transaction(trans);
723 if (ret > 0 || ret == -ENOSPC)
726 case RUN_DELAYED_IPUTS:
728 * If we have pending delayed iputs then we could free up a
729 * bunch of pinned space, so make sure we run the iputs before
730 * we do our pinned bytes check below.
732 btrfs_run_delayed_iputs(fs_info);
733 btrfs_wait_on_delayed_iputs(fs_info);
736 ret = may_commit_transaction(fs_info, space_info);
743 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
749 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
750 struct btrfs_space_info *space_info)
755 u64 to_reclaim = space_info->reclaim_size;
757 lockdep_assert_held(&space_info->lock);
759 avail = calc_available_free_space(fs_info, space_info,
760 BTRFS_RESERVE_FLUSH_ALL);
761 used = btrfs_space_info_used(space_info, true);
764 * We may be flushing because suddenly we have less space than we had
765 * before, and now we're well over-committed based on our current free
766 * space. If that's the case add in our overage so we make sure to put
767 * appropriate pressure on the flushing state machine.
769 if (space_info->total_bytes + avail < used)
770 to_reclaim += used - (space_info->total_bytes + avail);
775 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
776 if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
777 BTRFS_RESERVE_FLUSH_ALL))
780 used = btrfs_space_info_used(space_info, true);
782 if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
783 BTRFS_RESERVE_FLUSH_ALL))
784 expected = div_factor_fine(space_info->total_bytes, 95);
786 expected = div_factor_fine(space_info->total_bytes, 90);
789 to_reclaim = used - expected;
792 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
793 space_info->bytes_reserved);
797 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
798 struct btrfs_space_info *space_info,
801 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
803 /* If we're just plain full then async reclaim just slows us down. */
804 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
807 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
810 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
811 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
814 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
815 struct btrfs_space_info *space_info,
816 struct reserve_ticket *ticket)
818 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
821 if (global_rsv->space_info != space_info)
824 spin_lock(&global_rsv->lock);
825 min_bytes = div_factor(global_rsv->size, 1);
826 if (global_rsv->reserved < min_bytes + ticket->bytes) {
827 spin_unlock(&global_rsv->lock);
830 global_rsv->reserved -= ticket->bytes;
831 remove_ticket(space_info, ticket);
833 wake_up(&ticket->wait);
834 space_info->tickets_id++;
835 if (global_rsv->reserved < global_rsv->size)
836 global_rsv->full = 0;
837 spin_unlock(&global_rsv->lock);
843 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
844 * @fs_info - fs_info for this fs
845 * @space_info - the space info we were flushing
847 * We call this when we've exhausted our flushing ability and haven't made
848 * progress in satisfying tickets. The reservation code handles tickets in
849 * order, so if there is a large ticket first and then smaller ones we could
850 * very well satisfy the smaller tickets. This will attempt to wake up any
851 * tickets in the list to catch this case.
853 * This function returns true if it was able to make progress by clearing out
854 * other tickets, or if it stumbles across a ticket that was smaller than the
857 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
858 struct btrfs_space_info *space_info)
860 struct reserve_ticket *ticket;
861 u64 tickets_id = space_info->tickets_id;
862 u64 first_ticket_bytes = 0;
864 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
865 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
866 __btrfs_dump_space_info(fs_info, space_info);
869 while (!list_empty(&space_info->tickets) &&
870 tickets_id == space_info->tickets_id) {
871 ticket = list_first_entry(&space_info->tickets,
872 struct reserve_ticket, list);
875 steal_from_global_rsv(fs_info, space_info, ticket))
879 * may_commit_transaction will avoid committing the transaction
880 * if it doesn't feel like the space reclaimed by the commit
881 * would result in the ticket succeeding. However if we have a
882 * smaller ticket in the queue it may be small enough to be
883 * satisified by committing the transaction, so if any
884 * subsequent ticket is smaller than the first ticket go ahead
885 * and send us back for another loop through the enospc flushing
888 if (first_ticket_bytes == 0)
889 first_ticket_bytes = ticket->bytes;
890 else if (first_ticket_bytes > ticket->bytes)
893 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
894 btrfs_info(fs_info, "failing ticket with %llu bytes",
897 remove_ticket(space_info, ticket);
898 ticket->error = -ENOSPC;
899 wake_up(&ticket->wait);
902 * We're just throwing tickets away, so more flushing may not
903 * trip over btrfs_try_granting_tickets, so we need to call it
904 * here to see if we can make progress with the next ticket in
907 btrfs_try_granting_tickets(fs_info, space_info);
909 return (tickets_id != space_info->tickets_id);
913 * This is for normal flushers, we can wait all goddamned day if we want to. We
914 * will loop and continuously try to flush as long as we are making progress.
915 * We count progress as clearing off tickets each time we have to loop.
917 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
919 struct btrfs_fs_info *fs_info;
920 struct btrfs_space_info *space_info;
922 enum btrfs_flush_state flush_state;
923 int commit_cycles = 0;
926 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
927 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
929 spin_lock(&space_info->lock);
930 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
932 space_info->flush = 0;
933 spin_unlock(&space_info->lock);
936 last_tickets_id = space_info->tickets_id;
937 spin_unlock(&space_info->lock);
939 flush_state = FLUSH_DELAYED_ITEMS_NR;
941 flush_space(fs_info, space_info, to_reclaim, flush_state);
942 spin_lock(&space_info->lock);
943 if (list_empty(&space_info->tickets)) {
944 space_info->flush = 0;
945 spin_unlock(&space_info->lock);
948 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
950 if (last_tickets_id == space_info->tickets_id) {
953 last_tickets_id = space_info->tickets_id;
954 flush_state = FLUSH_DELAYED_ITEMS_NR;
960 * We don't want to force a chunk allocation until we've tried
961 * pretty hard to reclaim space. Think of the case where we
962 * freed up a bunch of space and so have a lot of pinned space
963 * to reclaim. We would rather use that than possibly create a
964 * underutilized metadata chunk. So if this is our first run
965 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
966 * commit the transaction. If nothing has changed the next go
967 * around then we can force a chunk allocation.
969 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
972 if (flush_state > COMMIT_TRANS) {
974 if (commit_cycles > 2) {
975 if (maybe_fail_all_tickets(fs_info, space_info)) {
976 flush_state = FLUSH_DELAYED_ITEMS_NR;
979 space_info->flush = 0;
982 flush_state = FLUSH_DELAYED_ITEMS_NR;
985 spin_unlock(&space_info->lock);
986 } while (flush_state <= COMMIT_TRANS);
990 * FLUSH_DELALLOC_WAIT:
991 * Space is freed from flushing delalloc in one of two ways.
993 * 1) compression is on and we allocate less space than we reserved
994 * 2) we are overwriting existing space
996 * For #1 that extra space is reclaimed as soon as the delalloc pages are
997 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
998 * length to ->bytes_reserved, and subtracts the reserved space from
1001 * For #2 this is trickier. Once the ordered extent runs we will drop the
1002 * extent in the range we are overwriting, which creates a delayed ref for
1003 * that freed extent. This however is not reclaimed until the transaction
1004 * commits, thus the next stages.
1007 * If we are freeing inodes, we want to make sure all delayed iputs have
1008 * completed, because they could have been on an inode with i_nlink == 0, and
1009 * thus have been truncated and freed up space. But again this space is not
1010 * immediately re-usable, it comes in the form of a delayed ref, which must be
1011 * run and then the transaction must be committed.
1013 * FLUSH_DELAYED_REFS
1014 * The above two cases generate delayed refs that will affect
1015 * ->total_bytes_pinned. However this counter can be inconsistent with
1016 * reality if there are outstanding delayed refs. This is because we adjust
1017 * the counter based solely on the current set of delayed refs and disregard
1018 * any on-disk state which might include more refs. So for example, if we
1019 * have an extent with 2 references, but we only drop 1, we'll see that there
1020 * is a negative delayed ref count for the extent and assume that the space
1021 * will be freed, and thus increase ->total_bytes_pinned.
1023 * Running the delayed refs gives us the actual real view of what will be
1024 * freed at the transaction commit time. This stage will not actually free
1025 * space for us, it just makes sure that may_commit_transaction() has all of
1026 * the information it needs to make the right decision.
1029 * This is where we reclaim all of the pinned space generated by the previous
1030 * two stages. We will not commit the transaction if we don't think we're
1031 * likely to satisfy our request, which means if our current free space +
1032 * total_bytes_pinned < reservation we will not commit. This is why the
1033 * previous states are actually important, to make sure we know for sure
1034 * whether committing the transaction will allow us to make progress.
1037 * For data we start with alloc chunk force, however we could have been full
1038 * before, and then the transaction commit could have freed new block groups,
1039 * so if we now have space to allocate do the force chunk allocation.
1041 static const enum btrfs_flush_state data_flush_states[] = {
1042 FLUSH_DELALLOC_WAIT,
1049 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1051 struct btrfs_fs_info *fs_info;
1052 struct btrfs_space_info *space_info;
1053 u64 last_tickets_id;
1054 enum btrfs_flush_state flush_state = 0;
1056 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1057 space_info = fs_info->data_sinfo;
1059 spin_lock(&space_info->lock);
1060 if (list_empty(&space_info->tickets)) {
1061 space_info->flush = 0;
1062 spin_unlock(&space_info->lock);
1065 last_tickets_id = space_info->tickets_id;
1066 spin_unlock(&space_info->lock);
1068 while (!space_info->full) {
1069 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1070 spin_lock(&space_info->lock);
1071 if (list_empty(&space_info->tickets)) {
1072 space_info->flush = 0;
1073 spin_unlock(&space_info->lock);
1076 last_tickets_id = space_info->tickets_id;
1077 spin_unlock(&space_info->lock);
1080 while (flush_state < ARRAY_SIZE(data_flush_states)) {
1081 flush_space(fs_info, space_info, U64_MAX,
1082 data_flush_states[flush_state]);
1083 spin_lock(&space_info->lock);
1084 if (list_empty(&space_info->tickets)) {
1085 space_info->flush = 0;
1086 spin_unlock(&space_info->lock);
1090 if (last_tickets_id == space_info->tickets_id) {
1093 last_tickets_id = space_info->tickets_id;
1097 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1098 if (space_info->full) {
1099 if (maybe_fail_all_tickets(fs_info, space_info))
1102 space_info->flush = 0;
1107 spin_unlock(&space_info->lock);
1111 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1113 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1114 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1117 static const enum btrfs_flush_state priority_flush_states[] = {
1118 FLUSH_DELAYED_ITEMS_NR,
1119 FLUSH_DELAYED_ITEMS,
1123 static const enum btrfs_flush_state evict_flush_states[] = {
1124 FLUSH_DELAYED_ITEMS_NR,
1125 FLUSH_DELAYED_ITEMS,
1126 FLUSH_DELAYED_REFS_NR,
1129 FLUSH_DELALLOC_WAIT,
1134 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1135 struct btrfs_space_info *space_info,
1136 struct reserve_ticket *ticket,
1137 const enum btrfs_flush_state *states,
1143 spin_lock(&space_info->lock);
1144 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1146 spin_unlock(&space_info->lock);
1149 spin_unlock(&space_info->lock);
1153 flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1155 spin_lock(&space_info->lock);
1156 if (ticket->bytes == 0) {
1157 spin_unlock(&space_info->lock);
1160 spin_unlock(&space_info->lock);
1161 } while (flush_state < states_nr);
1164 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1165 struct btrfs_space_info *space_info,
1166 struct reserve_ticket *ticket)
1168 while (!space_info->full) {
1169 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1170 spin_lock(&space_info->lock);
1171 if (ticket->bytes == 0) {
1172 spin_unlock(&space_info->lock);
1175 spin_unlock(&space_info->lock);
1179 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1180 struct btrfs_space_info *space_info,
1181 struct reserve_ticket *ticket)
1187 spin_lock(&space_info->lock);
1188 while (ticket->bytes > 0 && ticket->error == 0) {
1189 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1192 * Delete us from the list. After we unlock the space
1193 * info, we don't want the async reclaim job to reserve
1194 * space for this ticket. If that would happen, then the
1195 * ticket's task would not known that space was reserved
1196 * despite getting an error, resulting in a space leak
1197 * (bytes_may_use counter of our space_info).
1199 remove_ticket(space_info, ticket);
1200 ticket->error = -EINTR;
1203 spin_unlock(&space_info->lock);
1207 finish_wait(&ticket->wait, &wait);
1208 spin_lock(&space_info->lock);
1210 spin_unlock(&space_info->lock);
1214 * Do the appropriate flushing and waiting for a ticket
1216 * @fs_info: the filesystem
1217 * @space_info: space info for the reservation
1218 * @ticket: ticket for the reservation
1219 * @start_ns: timestamp when the reservation started
1220 * @orig_bytes: amount of bytes originally reserved
1221 * @flush: how much we can flush
1223 * This does the work of figuring out how to flush for the ticket, waiting for
1224 * the reservation, and returning the appropriate error if there is one.
1226 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1227 struct btrfs_space_info *space_info,
1228 struct reserve_ticket *ticket,
1229 u64 start_ns, u64 orig_bytes,
1230 enum btrfs_reserve_flush_enum flush)
1235 case BTRFS_RESERVE_FLUSH_DATA:
1236 case BTRFS_RESERVE_FLUSH_ALL:
1237 case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1238 wait_reserve_ticket(fs_info, space_info, ticket);
1240 case BTRFS_RESERVE_FLUSH_LIMIT:
1241 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1242 priority_flush_states,
1243 ARRAY_SIZE(priority_flush_states));
1245 case BTRFS_RESERVE_FLUSH_EVICT:
1246 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1248 ARRAY_SIZE(evict_flush_states));
1250 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1251 priority_reclaim_data_space(fs_info, space_info, ticket);
1258 spin_lock(&space_info->lock);
1259 ret = ticket->error;
1260 if (ticket->bytes || ticket->error) {
1262 * We were a priority ticket, so we need to delete ourselves
1263 * from the list. Because we could have other priority tickets
1264 * behind us that require less space, run
1265 * btrfs_try_granting_tickets() to see if their reservations can
1268 if (!list_empty(&ticket->list)) {
1269 remove_ticket(space_info, ticket);
1270 btrfs_try_granting_tickets(fs_info, space_info);
1276 spin_unlock(&space_info->lock);
1277 ASSERT(list_empty(&ticket->list));
1279 * Check that we can't have an error set if the reservation succeeded,
1280 * as that would confuse tasks and lead them to error out without
1281 * releasing reserved space (if an error happens the expectation is that
1282 * space wasn't reserved at all).
1284 ASSERT(!(ticket->bytes == 0 && ticket->error));
1285 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1286 start_ns, flush, ticket->error);
1291 * This returns true if this flush state will go through the ordinary flushing
1294 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1296 return (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1297 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1301 * Try to reserve bytes from the block_rsv's space
1303 * @fs_info: the filesystem
1304 * @space_info: space info we want to allocate from
1305 * @orig_bytes: number of bytes we want
1306 * @flush: whether or not we can flush to make our reservation
1308 * This will reserve orig_bytes number of bytes from the space info associated
1309 * with the block_rsv. If there is not enough space it will make an attempt to
1310 * flush out space to make room. It will do this by flushing delalloc if
1311 * possible or committing the transaction. If flush is 0 then no attempts to
1312 * regain reservations will be made and this will fail if there is not enough
1315 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1316 struct btrfs_space_info *space_info, u64 orig_bytes,
1317 enum btrfs_reserve_flush_enum flush)
1319 struct work_struct *async_work;
1320 struct reserve_ticket ticket;
1324 bool pending_tickets;
1327 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1329 if (flush == BTRFS_RESERVE_FLUSH_DATA)
1330 async_work = &fs_info->async_data_reclaim_work;
1332 async_work = &fs_info->async_reclaim_work;
1334 spin_lock(&space_info->lock);
1336 used = btrfs_space_info_used(space_info, true);
1339 * We don't want NO_FLUSH allocations to jump everybody, they can
1340 * generally handle ENOSPC in a different way, so treat them the same as
1341 * normal flushers when it comes to skipping pending tickets.
1343 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1344 pending_tickets = !list_empty(&space_info->tickets) ||
1345 !list_empty(&space_info->priority_tickets);
1347 pending_tickets = !list_empty(&space_info->priority_tickets);
1350 * Carry on if we have enough space (short-circuit) OR call
1351 * can_overcommit() to ensure we can overcommit to continue.
1353 if (!pending_tickets &&
1354 ((used + orig_bytes <= space_info->total_bytes) ||
1355 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1356 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1362 * If we couldn't make a reservation then setup our reservation ticket
1363 * and kick the async worker if it's not already running.
1365 * If we are a priority flusher then we just need to add our ticket to
1366 * the list and we will do our own flushing further down.
1368 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1369 ticket.bytes = orig_bytes;
1371 space_info->reclaim_size += ticket.bytes;
1372 init_waitqueue_head(&ticket.wait);
1373 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1374 if (trace_btrfs_reserve_ticket_enabled())
1375 start_ns = ktime_get_ns();
1377 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1378 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1379 flush == BTRFS_RESERVE_FLUSH_DATA) {
1380 list_add_tail(&ticket.list, &space_info->tickets);
1381 if (!space_info->flush) {
1382 space_info->flush = 1;
1383 trace_btrfs_trigger_flush(fs_info,
1387 queue_work(system_unbound_wq, async_work);
1390 list_add_tail(&ticket.list,
1391 &space_info->priority_tickets);
1393 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1396 * We will do the space reservation dance during log replay,
1397 * which means we won't have fs_info->fs_root set, so don't do
1398 * the async reclaim as we will panic.
1400 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1401 need_do_async_reclaim(fs_info, space_info, used) &&
1402 !work_busy(&fs_info->async_reclaim_work)) {
1403 trace_btrfs_trigger_flush(fs_info, space_info->flags,
1404 orig_bytes, flush, "preempt");
1405 queue_work(system_unbound_wq,
1406 &fs_info->async_reclaim_work);
1409 spin_unlock(&space_info->lock);
1410 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1413 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1418 * Trye to reserve metadata bytes from the block_rsv's space
1420 * @root: the root we're allocating for
1421 * @block_rsv: block_rsv we're allocating for
1422 * @orig_bytes: number of bytes we want
1423 * @flush: whether or not we can flush to make our reservation
1425 * This will reserve orig_bytes number of bytes from the space info associated
1426 * with the block_rsv. If there is not enough space it will make an attempt to
1427 * flush out space to make room. It will do this by flushing delalloc if
1428 * possible or committing the transaction. If flush is 0 then no attempts to
1429 * regain reservations will be made and this will fail if there is not enough
1432 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1433 struct btrfs_block_rsv *block_rsv,
1435 enum btrfs_reserve_flush_enum flush)
1437 struct btrfs_fs_info *fs_info = root->fs_info;
1438 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1441 ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1442 if (ret == -ENOSPC &&
1443 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1444 if (block_rsv != global_rsv &&
1445 !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1448 if (ret == -ENOSPC) {
1449 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1450 block_rsv->space_info->flags,
1453 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1454 btrfs_dump_space_info(fs_info, block_rsv->space_info,
1461 * Try to reserve data bytes for an allocation
1463 * @fs_info: the filesystem
1464 * @bytes: number of bytes we need
1465 * @flush: how we are allowed to flush
1467 * This will reserve bytes from the data space info. If there is not enough
1468 * space then we will attempt to flush space as specified by flush.
1470 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1471 enum btrfs_reserve_flush_enum flush)
1473 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1476 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1477 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1478 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1480 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1481 if (ret == -ENOSPC) {
1482 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1483 data_sinfo->flags, bytes, 1);
1484 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1485 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);