636a42620b116aa2cb8a9b12862917a7beaf1637
[platform/kernel/linux-rpi.git] / fs / btrfs / space-info.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     may_commit_transaction() is the ultimate arbiter on whether we commit the
137  *     transaction or not.  In order to avoid constantly churning we do all the
138  *     above flushing first and then commit the transaction as the last resort.
139  *     However we need to take into account things like pinned space that would
140  *     be freed, plus any delayed work we may not have gotten rid of in the case
141  *     of metadata.
142  *
143  *   FORCE_COMMIT_TRANS
144  *     For use by the preemptive flusher.  We use this to bypass the ticketing
145  *     checks in may_commit_transaction, as we have more information about the
146  *     overall state of the system and may want to commit the transaction ahead
147  *     of actual ENOSPC conditions.
148  *
149  * OVERCOMMIT
150  *
151  *   Because we hold so many reservations for metadata we will allow you to
152  *   reserve more space than is currently free in the currently allocate
153  *   metadata space.  This only happens with metadata, data does not allow
154  *   overcommitting.
155  *
156  *   You can see the current logic for when we allow overcommit in
157  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
158  *   is no unallocated space to be had, all reservations are kept within the
159  *   free space in the allocated metadata chunks.
160  *
161  *   Because of overcommitting, you generally want to use the
162  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
163  *   thing with or without extra unallocated space.
164  */
165
166 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
167                           bool may_use_included)
168 {
169         ASSERT(s_info);
170         return s_info->bytes_used + s_info->bytes_reserved +
171                 s_info->bytes_pinned + s_info->bytes_readonly +
172                 (may_use_included ? s_info->bytes_may_use : 0);
173 }
174
175 /*
176  * after adding space to the filesystem, we need to clear the full flags
177  * on all the space infos.
178  */
179 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
180 {
181         struct list_head *head = &info->space_info;
182         struct btrfs_space_info *found;
183
184         list_for_each_entry(found, head, list)
185                 found->full = 0;
186 }
187
188 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
189 {
190
191         struct btrfs_space_info *space_info;
192         int i;
193         int ret;
194
195         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
196         if (!space_info)
197                 return -ENOMEM;
198
199         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
200                                  GFP_KERNEL);
201         if (ret) {
202                 kfree(space_info);
203                 return ret;
204         }
205
206         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
207                 INIT_LIST_HEAD(&space_info->block_groups[i]);
208         init_rwsem(&space_info->groups_sem);
209         spin_lock_init(&space_info->lock);
210         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
211         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
212         INIT_LIST_HEAD(&space_info->ro_bgs);
213         INIT_LIST_HEAD(&space_info->tickets);
214         INIT_LIST_HEAD(&space_info->priority_tickets);
215
216         ret = btrfs_sysfs_add_space_info_type(info, space_info);
217         if (ret)
218                 return ret;
219
220         list_add(&space_info->list, &info->space_info);
221         if (flags & BTRFS_BLOCK_GROUP_DATA)
222                 info->data_sinfo = space_info;
223
224         return ret;
225 }
226
227 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
228 {
229         struct btrfs_super_block *disk_super;
230         u64 features;
231         u64 flags;
232         int mixed = 0;
233         int ret;
234
235         disk_super = fs_info->super_copy;
236         if (!btrfs_super_root(disk_super))
237                 return -EINVAL;
238
239         features = btrfs_super_incompat_flags(disk_super);
240         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
241                 mixed = 1;
242
243         flags = BTRFS_BLOCK_GROUP_SYSTEM;
244         ret = create_space_info(fs_info, flags);
245         if (ret)
246                 goto out;
247
248         if (mixed) {
249                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
250                 ret = create_space_info(fs_info, flags);
251         } else {
252                 flags = BTRFS_BLOCK_GROUP_METADATA;
253                 ret = create_space_info(fs_info, flags);
254                 if (ret)
255                         goto out;
256
257                 flags = BTRFS_BLOCK_GROUP_DATA;
258                 ret = create_space_info(fs_info, flags);
259         }
260 out:
261         return ret;
262 }
263
264 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
265                              u64 total_bytes, u64 bytes_used,
266                              u64 bytes_readonly,
267                              struct btrfs_space_info **space_info)
268 {
269         struct btrfs_space_info *found;
270         int factor;
271
272         factor = btrfs_bg_type_to_factor(flags);
273
274         found = btrfs_find_space_info(info, flags);
275         ASSERT(found);
276         spin_lock(&found->lock);
277         found->total_bytes += total_bytes;
278         found->disk_total += total_bytes * factor;
279         found->bytes_used += bytes_used;
280         found->disk_used += bytes_used * factor;
281         found->bytes_readonly += bytes_readonly;
282         if (total_bytes > 0)
283                 found->full = 0;
284         btrfs_try_granting_tickets(info, found);
285         spin_unlock(&found->lock);
286         *space_info = found;
287 }
288
289 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
290                                                u64 flags)
291 {
292         struct list_head *head = &info->space_info;
293         struct btrfs_space_info *found;
294
295         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
296
297         list_for_each_entry(found, head, list) {
298                 if (found->flags & flags)
299                         return found;
300         }
301         return NULL;
302 }
303
304 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
305                           struct btrfs_space_info *space_info,
306                           enum btrfs_reserve_flush_enum flush)
307 {
308         u64 profile;
309         u64 avail;
310         int factor;
311
312         if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
313                 profile = btrfs_system_alloc_profile(fs_info);
314         else
315                 profile = btrfs_metadata_alloc_profile(fs_info);
316
317         avail = atomic64_read(&fs_info->free_chunk_space);
318
319         /*
320          * If we have dup, raid1 or raid10 then only half of the free
321          * space is actually usable.  For raid56, the space info used
322          * doesn't include the parity drive, so we don't have to
323          * change the math
324          */
325         factor = btrfs_bg_type_to_factor(profile);
326         avail = div_u64(avail, factor);
327
328         /*
329          * If we aren't flushing all things, let us overcommit up to
330          * 1/2th of the space. If we can flush, don't let us overcommit
331          * too much, let it overcommit up to 1/8 of the space.
332          */
333         if (flush == BTRFS_RESERVE_FLUSH_ALL)
334                 avail >>= 3;
335         else
336                 avail >>= 1;
337         return avail;
338 }
339
340 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
341                          struct btrfs_space_info *space_info, u64 bytes,
342                          enum btrfs_reserve_flush_enum flush)
343 {
344         u64 avail;
345         u64 used;
346
347         /* Don't overcommit when in mixed mode */
348         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
349                 return 0;
350
351         used = btrfs_space_info_used(space_info, true);
352         avail = calc_available_free_space(fs_info, space_info, flush);
353
354         if (used + bytes < space_info->total_bytes + avail)
355                 return 1;
356         return 0;
357 }
358
359 static void remove_ticket(struct btrfs_space_info *space_info,
360                           struct reserve_ticket *ticket)
361 {
362         if (!list_empty(&ticket->list)) {
363                 list_del_init(&ticket->list);
364                 ASSERT(space_info->reclaim_size >= ticket->bytes);
365                 space_info->reclaim_size -= ticket->bytes;
366         }
367 }
368
369 /*
370  * This is for space we already have accounted in space_info->bytes_may_use, so
371  * basically when we're returning space from block_rsv's.
372  */
373 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
374                                 struct btrfs_space_info *space_info)
375 {
376         struct list_head *head;
377         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
378
379         lockdep_assert_held(&space_info->lock);
380
381         head = &space_info->priority_tickets;
382 again:
383         while (!list_empty(head)) {
384                 struct reserve_ticket *ticket;
385                 u64 used = btrfs_space_info_used(space_info, true);
386
387                 ticket = list_first_entry(head, struct reserve_ticket, list);
388
389                 /* Check and see if our ticket can be satisified now. */
390                 if ((used + ticket->bytes <= space_info->total_bytes) ||
391                     btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
392                                          flush)) {
393                         btrfs_space_info_update_bytes_may_use(fs_info,
394                                                               space_info,
395                                                               ticket->bytes);
396                         remove_ticket(space_info, ticket);
397                         ticket->bytes = 0;
398                         space_info->tickets_id++;
399                         wake_up(&ticket->wait);
400                 } else {
401                         break;
402                 }
403         }
404
405         if (head == &space_info->priority_tickets) {
406                 head = &space_info->tickets;
407                 flush = BTRFS_RESERVE_FLUSH_ALL;
408                 goto again;
409         }
410 }
411
412 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
413 do {                                                                    \
414         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
415         spin_lock(&__rsv->lock);                                        \
416         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
417                    __rsv->size, __rsv->reserved);                       \
418         spin_unlock(&__rsv->lock);                                      \
419 } while (0)
420
421 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
422                                     struct btrfs_space_info *info)
423 {
424         lockdep_assert_held(&info->lock);
425
426         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
427                    info->flags,
428                    info->total_bytes - btrfs_space_info_used(info, true),
429                    info->full ? "" : "not ");
430         btrfs_info(fs_info,
431                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
432                 info->total_bytes, info->bytes_used, info->bytes_pinned,
433                 info->bytes_reserved, info->bytes_may_use,
434                 info->bytes_readonly);
435
436         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
437         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
438         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
439         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
440         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
441
442 }
443
444 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
445                            struct btrfs_space_info *info, u64 bytes,
446                            int dump_block_groups)
447 {
448         struct btrfs_block_group *cache;
449         int index = 0;
450
451         spin_lock(&info->lock);
452         __btrfs_dump_space_info(fs_info, info);
453         spin_unlock(&info->lock);
454
455         if (!dump_block_groups)
456                 return;
457
458         down_read(&info->groups_sem);
459 again:
460         list_for_each_entry(cache, &info->block_groups[index], list) {
461                 spin_lock(&cache->lock);
462                 btrfs_info(fs_info,
463                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
464                         cache->start, cache->length, cache->used, cache->pinned,
465                         cache->reserved, cache->ro ? "[readonly]" : "");
466                 spin_unlock(&cache->lock);
467                 btrfs_dump_free_space(cache, bytes);
468         }
469         if (++index < BTRFS_NR_RAID_TYPES)
470                 goto again;
471         up_read(&info->groups_sem);
472 }
473
474 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
475                                         u64 to_reclaim)
476 {
477         u64 bytes;
478         u64 nr;
479
480         bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
481         nr = div64_u64(to_reclaim, bytes);
482         if (!nr)
483                 nr = 1;
484         return nr;
485 }
486
487 #define EXTENT_SIZE_PER_ITEM    SZ_256K
488
489 /*
490  * shrink metadata reservation for delalloc
491  */
492 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
493                             struct btrfs_space_info *space_info,
494                             u64 to_reclaim, bool wait_ordered)
495 {
496         struct btrfs_trans_handle *trans;
497         u64 delalloc_bytes;
498         u64 ordered_bytes;
499         u64 items;
500         long time_left;
501         int loops;
502
503         /* Calc the number of the pages we need flush for space reservation */
504         if (to_reclaim == U64_MAX) {
505                 items = U64_MAX;
506         } else {
507                 /*
508                  * to_reclaim is set to however much metadata we need to
509                  * reclaim, but reclaiming that much data doesn't really track
510                  * exactly, so increase the amount to reclaim by 2x in order to
511                  * make sure we're flushing enough delalloc to hopefully reclaim
512                  * some metadata reservations.
513                  */
514                 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
515                 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
516         }
517
518         trans = (struct btrfs_trans_handle *)current->journal_info;
519
520         delalloc_bytes = percpu_counter_sum_positive(
521                                                 &fs_info->delalloc_bytes);
522         ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
523         if (delalloc_bytes == 0 && ordered_bytes == 0)
524                 return;
525
526         /*
527          * If we are doing more ordered than delalloc we need to just wait on
528          * ordered extents, otherwise we'll waste time trying to flush delalloc
529          * that likely won't give us the space back we need.
530          */
531         if (ordered_bytes > delalloc_bytes)
532                 wait_ordered = true;
533
534         loops = 0;
535         while ((delalloc_bytes || ordered_bytes) && loops < 3) {
536                 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
537                 long nr_pages = min_t(u64, temp, LONG_MAX);
538
539                 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
540
541                 loops++;
542                 if (wait_ordered && !trans) {
543                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
544                 } else {
545                         time_left = schedule_timeout_killable(1);
546                         if (time_left)
547                                 break;
548                 }
549
550                 spin_lock(&space_info->lock);
551                 if (list_empty(&space_info->tickets) &&
552                     list_empty(&space_info->priority_tickets)) {
553                         spin_unlock(&space_info->lock);
554                         break;
555                 }
556                 spin_unlock(&space_info->lock);
557
558                 delalloc_bytes = percpu_counter_sum_positive(
559                                                 &fs_info->delalloc_bytes);
560                 ordered_bytes = percpu_counter_sum_positive(
561                                                 &fs_info->ordered_bytes);
562         }
563 }
564
565 /**
566  * Possibly commit the transaction if its ok to
567  *
568  * @fs_info:    the filesystem
569  * @space_info: space_info we are checking for commit, either data or metadata
570  *
571  * This will check to make sure that committing the transaction will actually
572  * get us somewhere and then commit the transaction if it does.  Otherwise it
573  * will return -ENOSPC.
574  */
575 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
576                                   struct btrfs_space_info *space_info)
577 {
578         struct reserve_ticket *ticket = NULL;
579         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
580         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
581         struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
582         struct btrfs_trans_handle *trans;
583         u64 reclaim_bytes = 0;
584         u64 bytes_needed = 0;
585         u64 cur_free_bytes = 0;
586
587         trans = (struct btrfs_trans_handle *)current->journal_info;
588         if (trans)
589                 return -EAGAIN;
590
591         spin_lock(&space_info->lock);
592         cur_free_bytes = btrfs_space_info_used(space_info, true);
593         if (cur_free_bytes < space_info->total_bytes)
594                 cur_free_bytes = space_info->total_bytes - cur_free_bytes;
595         else
596                 cur_free_bytes = 0;
597
598         if (!list_empty(&space_info->priority_tickets))
599                 ticket = list_first_entry(&space_info->priority_tickets,
600                                           struct reserve_ticket, list);
601         else if (!list_empty(&space_info->tickets))
602                 ticket = list_first_entry(&space_info->tickets,
603                                           struct reserve_ticket, list);
604         if (ticket)
605                 bytes_needed = ticket->bytes;
606
607         if (bytes_needed > cur_free_bytes)
608                 bytes_needed -= cur_free_bytes;
609         else
610                 bytes_needed = 0;
611         spin_unlock(&space_info->lock);
612
613         if (!bytes_needed)
614                 return 0;
615
616         trans = btrfs_join_transaction(fs_info->extent_root);
617         if (IS_ERR(trans))
618                 return PTR_ERR(trans);
619
620         /*
621          * See if there is enough pinned space to make this reservation, or if
622          * we have block groups that are going to be freed, allowing us to
623          * possibly do a chunk allocation the next loop through.
624          */
625         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
626             __percpu_counter_compare(&space_info->total_bytes_pinned,
627                                      bytes_needed,
628                                      BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
629                 goto commit;
630
631         /*
632          * See if there is some space in the delayed insertion reserve for this
633          * reservation.  If the space_info's don't match (like for DATA or
634          * SYSTEM) then just go enospc, reclaiming this space won't recover any
635          * space to satisfy those reservations.
636          */
637         if (space_info != delayed_rsv->space_info)
638                 goto enospc;
639
640         spin_lock(&delayed_rsv->lock);
641         reclaim_bytes += delayed_rsv->reserved;
642         spin_unlock(&delayed_rsv->lock);
643
644         spin_lock(&delayed_refs_rsv->lock);
645         reclaim_bytes += delayed_refs_rsv->reserved;
646         spin_unlock(&delayed_refs_rsv->lock);
647
648         spin_lock(&trans_rsv->lock);
649         reclaim_bytes += trans_rsv->reserved;
650         spin_unlock(&trans_rsv->lock);
651
652         if (reclaim_bytes >= bytes_needed)
653                 goto commit;
654         bytes_needed -= reclaim_bytes;
655
656         if (__percpu_counter_compare(&space_info->total_bytes_pinned,
657                                    bytes_needed,
658                                    BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
659                 goto enospc;
660
661 commit:
662         return btrfs_commit_transaction(trans);
663 enospc:
664         btrfs_end_transaction(trans);
665         return -ENOSPC;
666 }
667
668 /*
669  * Try to flush some data based on policy set by @state. This is only advisory
670  * and may fail for various reasons. The caller is supposed to examine the
671  * state of @space_info to detect the outcome.
672  */
673 static void flush_space(struct btrfs_fs_info *fs_info,
674                        struct btrfs_space_info *space_info, u64 num_bytes,
675                        enum btrfs_flush_state state)
676 {
677         struct btrfs_root *root = fs_info->extent_root;
678         struct btrfs_trans_handle *trans;
679         int nr;
680         int ret = 0;
681
682         switch (state) {
683         case FLUSH_DELAYED_ITEMS_NR:
684         case FLUSH_DELAYED_ITEMS:
685                 if (state == FLUSH_DELAYED_ITEMS_NR)
686                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
687                 else
688                         nr = -1;
689
690                 trans = btrfs_join_transaction(root);
691                 if (IS_ERR(trans)) {
692                         ret = PTR_ERR(trans);
693                         break;
694                 }
695                 ret = btrfs_run_delayed_items_nr(trans, nr);
696                 btrfs_end_transaction(trans);
697                 break;
698         case FLUSH_DELALLOC:
699         case FLUSH_DELALLOC_WAIT:
700                 shrink_delalloc(fs_info, space_info, num_bytes,
701                                 state == FLUSH_DELALLOC_WAIT);
702                 break;
703         case FLUSH_DELAYED_REFS_NR:
704         case FLUSH_DELAYED_REFS:
705                 trans = btrfs_join_transaction(root);
706                 if (IS_ERR(trans)) {
707                         ret = PTR_ERR(trans);
708                         break;
709                 }
710                 if (state == FLUSH_DELAYED_REFS_NR)
711                         nr = calc_reclaim_items_nr(fs_info, num_bytes);
712                 else
713                         nr = 0;
714                 btrfs_run_delayed_refs(trans, nr);
715                 btrfs_end_transaction(trans);
716                 break;
717         case ALLOC_CHUNK:
718         case ALLOC_CHUNK_FORCE:
719                 trans = btrfs_join_transaction(root);
720                 if (IS_ERR(trans)) {
721                         ret = PTR_ERR(trans);
722                         break;
723                 }
724                 ret = btrfs_chunk_alloc(trans,
725                                 btrfs_get_alloc_profile(fs_info, space_info->flags),
726                                 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
727                                         CHUNK_ALLOC_FORCE);
728                 btrfs_end_transaction(trans);
729                 if (ret > 0 || ret == -ENOSPC)
730                         ret = 0;
731                 break;
732         case RUN_DELAYED_IPUTS:
733                 /*
734                  * If we have pending delayed iputs then we could free up a
735                  * bunch of pinned space, so make sure we run the iputs before
736                  * we do our pinned bytes check below.
737                  */
738                 btrfs_run_delayed_iputs(fs_info);
739                 btrfs_wait_on_delayed_iputs(fs_info);
740                 break;
741         case COMMIT_TRANS:
742                 ret = may_commit_transaction(fs_info, space_info);
743                 break;
744         case FORCE_COMMIT_TRANS:
745                 trans = btrfs_join_transaction(root);
746                 if (IS_ERR(trans)) {
747                         ret = PTR_ERR(trans);
748                         break;
749                 }
750                 ret = btrfs_commit_transaction(trans);
751                 break;
752         default:
753                 ret = -ENOSPC;
754                 break;
755         }
756
757         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
758                                 ret);
759         return;
760 }
761
762 static inline u64
763 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
764                                  struct btrfs_space_info *space_info)
765 {
766         u64 used;
767         u64 avail;
768         u64 to_reclaim = space_info->reclaim_size;
769
770         lockdep_assert_held(&space_info->lock);
771
772         avail = calc_available_free_space(fs_info, space_info,
773                                           BTRFS_RESERVE_FLUSH_ALL);
774         used = btrfs_space_info_used(space_info, true);
775
776         /*
777          * We may be flushing because suddenly we have less space than we had
778          * before, and now we're well over-committed based on our current free
779          * space.  If that's the case add in our overage so we make sure to put
780          * appropriate pressure on the flushing state machine.
781          */
782         if (space_info->total_bytes + avail < used)
783                 to_reclaim += used - (space_info->total_bytes + avail);
784
785         return to_reclaim;
786 }
787
788 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
789                                     struct btrfs_space_info *space_info,
790                                     u64 used)
791 {
792         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
793         u64 to_reclaim, expected;
794
795         /* If we're just plain full then async reclaim just slows us down. */
796         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
797                 return false;
798
799         /*
800          * We have tickets queued, bail so we don't compete with the async
801          * flushers.
802          */
803         if (space_info->reclaim_size)
804                 return false;
805
806         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
807         if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
808                                  BTRFS_RESERVE_FLUSH_ALL))
809                 return false;
810
811         used = btrfs_space_info_used(space_info, true);
812         if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
813                                  BTRFS_RESERVE_FLUSH_ALL))
814                 expected = div_factor_fine(space_info->total_bytes, 95);
815         else
816                 expected = div_factor_fine(space_info->total_bytes, 90);
817
818         if (used > expected)
819                 to_reclaim = used - expected;
820         else
821                 to_reclaim = 0;
822         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
823                                      space_info->bytes_reserved);
824         if (!to_reclaim)
825                 return false;
826
827         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
828                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
829 }
830
831 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
832                                   struct btrfs_space_info *space_info,
833                                   struct reserve_ticket *ticket)
834 {
835         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
836         u64 min_bytes;
837
838         if (global_rsv->space_info != space_info)
839                 return false;
840
841         spin_lock(&global_rsv->lock);
842         min_bytes = div_factor(global_rsv->size, 1);
843         if (global_rsv->reserved < min_bytes + ticket->bytes) {
844                 spin_unlock(&global_rsv->lock);
845                 return false;
846         }
847         global_rsv->reserved -= ticket->bytes;
848         remove_ticket(space_info, ticket);
849         ticket->bytes = 0;
850         wake_up(&ticket->wait);
851         space_info->tickets_id++;
852         if (global_rsv->reserved < global_rsv->size)
853                 global_rsv->full = 0;
854         spin_unlock(&global_rsv->lock);
855
856         return true;
857 }
858
859 /*
860  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
861  * @fs_info - fs_info for this fs
862  * @space_info - the space info we were flushing
863  *
864  * We call this when we've exhausted our flushing ability and haven't made
865  * progress in satisfying tickets.  The reservation code handles tickets in
866  * order, so if there is a large ticket first and then smaller ones we could
867  * very well satisfy the smaller tickets.  This will attempt to wake up any
868  * tickets in the list to catch this case.
869  *
870  * This function returns true if it was able to make progress by clearing out
871  * other tickets, or if it stumbles across a ticket that was smaller than the
872  * first ticket.
873  */
874 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
875                                    struct btrfs_space_info *space_info)
876 {
877         struct reserve_ticket *ticket;
878         u64 tickets_id = space_info->tickets_id;
879         u64 first_ticket_bytes = 0;
880
881         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
882                 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
883                 __btrfs_dump_space_info(fs_info, space_info);
884         }
885
886         while (!list_empty(&space_info->tickets) &&
887                tickets_id == space_info->tickets_id) {
888                 ticket = list_first_entry(&space_info->tickets,
889                                           struct reserve_ticket, list);
890
891                 if (ticket->steal &&
892                     steal_from_global_rsv(fs_info, space_info, ticket))
893                         return true;
894
895                 /*
896                  * may_commit_transaction will avoid committing the transaction
897                  * if it doesn't feel like the space reclaimed by the commit
898                  * would result in the ticket succeeding.  However if we have a
899                  * smaller ticket in the queue it may be small enough to be
900                  * satisified by committing the transaction, so if any
901                  * subsequent ticket is smaller than the first ticket go ahead
902                  * and send us back for another loop through the enospc flushing
903                  * code.
904                  */
905                 if (first_ticket_bytes == 0)
906                         first_ticket_bytes = ticket->bytes;
907                 else if (first_ticket_bytes > ticket->bytes)
908                         return true;
909
910                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
911                         btrfs_info(fs_info, "failing ticket with %llu bytes",
912                                    ticket->bytes);
913
914                 remove_ticket(space_info, ticket);
915                 ticket->error = -ENOSPC;
916                 wake_up(&ticket->wait);
917
918                 /*
919                  * We're just throwing tickets away, so more flushing may not
920                  * trip over btrfs_try_granting_tickets, so we need to call it
921                  * here to see if we can make progress with the next ticket in
922                  * the list.
923                  */
924                 btrfs_try_granting_tickets(fs_info, space_info);
925         }
926         return (tickets_id != space_info->tickets_id);
927 }
928
929 /*
930  * This is for normal flushers, we can wait all goddamned day if we want to.  We
931  * will loop and continuously try to flush as long as we are making progress.
932  * We count progress as clearing off tickets each time we have to loop.
933  */
934 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
935 {
936         struct btrfs_fs_info *fs_info;
937         struct btrfs_space_info *space_info;
938         u64 to_reclaim;
939         enum btrfs_flush_state flush_state;
940         int commit_cycles = 0;
941         u64 last_tickets_id;
942
943         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
944         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
945
946         spin_lock(&space_info->lock);
947         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
948         if (!to_reclaim) {
949                 space_info->flush = 0;
950                 spin_unlock(&space_info->lock);
951                 return;
952         }
953         last_tickets_id = space_info->tickets_id;
954         spin_unlock(&space_info->lock);
955
956         flush_state = FLUSH_DELAYED_ITEMS_NR;
957         do {
958                 flush_space(fs_info, space_info, to_reclaim, flush_state);
959                 spin_lock(&space_info->lock);
960                 if (list_empty(&space_info->tickets)) {
961                         space_info->flush = 0;
962                         spin_unlock(&space_info->lock);
963                         return;
964                 }
965                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
966                                                               space_info);
967                 if (last_tickets_id == space_info->tickets_id) {
968                         flush_state++;
969                 } else {
970                         last_tickets_id = space_info->tickets_id;
971                         flush_state = FLUSH_DELAYED_ITEMS_NR;
972                         if (commit_cycles)
973                                 commit_cycles--;
974                 }
975
976                 /*
977                  * We don't want to force a chunk allocation until we've tried
978                  * pretty hard to reclaim space.  Think of the case where we
979                  * freed up a bunch of space and so have a lot of pinned space
980                  * to reclaim.  We would rather use that than possibly create a
981                  * underutilized metadata chunk.  So if this is our first run
982                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
983                  * commit the transaction.  If nothing has changed the next go
984                  * around then we can force a chunk allocation.
985                  */
986                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
987                         flush_state++;
988
989                 if (flush_state > COMMIT_TRANS) {
990                         commit_cycles++;
991                         if (commit_cycles > 2) {
992                                 if (maybe_fail_all_tickets(fs_info, space_info)) {
993                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
994                                         commit_cycles--;
995                                 } else {
996                                         space_info->flush = 0;
997                                 }
998                         } else {
999                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
1000                         }
1001                 }
1002                 spin_unlock(&space_info->lock);
1003         } while (flush_state <= COMMIT_TRANS);
1004 }
1005
1006 /*
1007  * This handles pre-flushing of metadata space before we get to the point that
1008  * we need to start blocking threads on tickets.  The logic here is different
1009  * from the other flush paths because it doesn't rely on tickets to tell us how
1010  * much we need to flush, instead it attempts to keep us below the 80% full
1011  * watermark of space by flushing whichever reservation pool is currently the
1012  * largest.
1013  */
1014 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1015 {
1016         struct btrfs_fs_info *fs_info;
1017         struct btrfs_space_info *space_info;
1018         struct btrfs_block_rsv *delayed_block_rsv;
1019         struct btrfs_block_rsv *delayed_refs_rsv;
1020         struct btrfs_block_rsv *global_rsv;
1021         struct btrfs_block_rsv *trans_rsv;
1022         u64 used;
1023
1024         fs_info = container_of(work, struct btrfs_fs_info,
1025                                preempt_reclaim_work);
1026         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1027         delayed_block_rsv = &fs_info->delayed_block_rsv;
1028         delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1029         global_rsv = &fs_info->global_block_rsv;
1030         trans_rsv = &fs_info->trans_block_rsv;
1031
1032         spin_lock(&space_info->lock);
1033         used = btrfs_space_info_used(space_info, true);
1034         while (need_preemptive_reclaim(fs_info, space_info, used)) {
1035                 enum btrfs_flush_state flush;
1036                 u64 delalloc_size = 0;
1037                 u64 to_reclaim, block_rsv_size;
1038                 u64 global_rsv_size = global_rsv->reserved;
1039
1040                 /*
1041                  * We don't have a precise counter for the metadata being
1042                  * reserved for delalloc, so we'll approximate it by subtracting
1043                  * out the block rsv's space from the bytes_may_use.  If that
1044                  * amount is higher than the individual reserves, then we can
1045                  * assume it's tied up in delalloc reservations.
1046                  */
1047                 block_rsv_size = global_rsv_size +
1048                         delayed_block_rsv->reserved +
1049                         delayed_refs_rsv->reserved +
1050                         trans_rsv->reserved;
1051                 if (block_rsv_size < space_info->bytes_may_use)
1052                         delalloc_size = space_info->bytes_may_use - block_rsv_size;
1053                 spin_unlock(&space_info->lock);
1054
1055                 /*
1056                  * We don't want to include the global_rsv in our calculation,
1057                  * because that's space we can't touch.  Subtract it from the
1058                  * block_rsv_size for the next checks.
1059                  */
1060                 block_rsv_size -= global_rsv_size;
1061
1062                 /*
1063                  * We really want to avoid flushing delalloc too much, as it
1064                  * could result in poor allocation patterns, so only flush it if
1065                  * it's larger than the rest of the pools combined.
1066                  */
1067                 if (delalloc_size > block_rsv_size) {
1068                         to_reclaim = delalloc_size;
1069                         flush = FLUSH_DELALLOC;
1070                 } else if (space_info->bytes_pinned >
1071                            (delayed_block_rsv->reserved +
1072                             delayed_refs_rsv->reserved)) {
1073                         to_reclaim = space_info->bytes_pinned;
1074                         flush = FORCE_COMMIT_TRANS;
1075                 } else if (delayed_block_rsv->reserved >
1076                            delayed_refs_rsv->reserved) {
1077                         to_reclaim = delayed_block_rsv->reserved;
1078                         flush = FLUSH_DELAYED_ITEMS_NR;
1079                 } else {
1080                         to_reclaim = delayed_refs_rsv->reserved;
1081                         flush = FLUSH_DELAYED_REFS_NR;
1082                 }
1083
1084                 /*
1085                  * We don't want to reclaim everything, just a portion, so scale
1086                  * down the to_reclaim by 1/4.  If it takes us down to 0,
1087                  * reclaim 1 items worth.
1088                  */
1089                 to_reclaim >>= 2;
1090                 if (!to_reclaim)
1091                         to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1092                 flush_space(fs_info, space_info, to_reclaim, flush);
1093                 cond_resched();
1094                 spin_lock(&space_info->lock);
1095                 used = btrfs_space_info_used(space_info, true);
1096         }
1097         spin_unlock(&space_info->lock);
1098 }
1099
1100 /*
1101  * FLUSH_DELALLOC_WAIT:
1102  *   Space is freed from flushing delalloc in one of two ways.
1103  *
1104  *   1) compression is on and we allocate less space than we reserved
1105  *   2) we are overwriting existing space
1106  *
1107  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1108  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1109  *   length to ->bytes_reserved, and subtracts the reserved space from
1110  *   ->bytes_may_use.
1111  *
1112  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1113  *   extent in the range we are overwriting, which creates a delayed ref for
1114  *   that freed extent.  This however is not reclaimed until the transaction
1115  *   commits, thus the next stages.
1116  *
1117  * RUN_DELAYED_IPUTS
1118  *   If we are freeing inodes, we want to make sure all delayed iputs have
1119  *   completed, because they could have been on an inode with i_nlink == 0, and
1120  *   thus have been truncated and freed up space.  But again this space is not
1121  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1122  *   run and then the transaction must be committed.
1123  *
1124  * FLUSH_DELAYED_REFS
1125  *   The above two cases generate delayed refs that will affect
1126  *   ->total_bytes_pinned.  However this counter can be inconsistent with
1127  *   reality if there are outstanding delayed refs.  This is because we adjust
1128  *   the counter based solely on the current set of delayed refs and disregard
1129  *   any on-disk state which might include more refs.  So for example, if we
1130  *   have an extent with 2 references, but we only drop 1, we'll see that there
1131  *   is a negative delayed ref count for the extent and assume that the space
1132  *   will be freed, and thus increase ->total_bytes_pinned.
1133  *
1134  *   Running the delayed refs gives us the actual real view of what will be
1135  *   freed at the transaction commit time.  This stage will not actually free
1136  *   space for us, it just makes sure that may_commit_transaction() has all of
1137  *   the information it needs to make the right decision.
1138  *
1139  * COMMIT_TRANS
1140  *   This is where we reclaim all of the pinned space generated by the previous
1141  *   two stages.  We will not commit the transaction if we don't think we're
1142  *   likely to satisfy our request, which means if our current free space +
1143  *   total_bytes_pinned < reservation we will not commit.  This is why the
1144  *   previous states are actually important, to make sure we know for sure
1145  *   whether committing the transaction will allow us to make progress.
1146  *
1147  * ALLOC_CHUNK_FORCE
1148  *   For data we start with alloc chunk force, however we could have been full
1149  *   before, and then the transaction commit could have freed new block groups,
1150  *   so if we now have space to allocate do the force chunk allocation.
1151  */
1152 static const enum btrfs_flush_state data_flush_states[] = {
1153         FLUSH_DELALLOC_WAIT,
1154         RUN_DELAYED_IPUTS,
1155         FLUSH_DELAYED_REFS,
1156         COMMIT_TRANS,
1157         ALLOC_CHUNK_FORCE,
1158 };
1159
1160 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1161 {
1162         struct btrfs_fs_info *fs_info;
1163         struct btrfs_space_info *space_info;
1164         u64 last_tickets_id;
1165         enum btrfs_flush_state flush_state = 0;
1166
1167         fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1168         space_info = fs_info->data_sinfo;
1169
1170         spin_lock(&space_info->lock);
1171         if (list_empty(&space_info->tickets)) {
1172                 space_info->flush = 0;
1173                 spin_unlock(&space_info->lock);
1174                 return;
1175         }
1176         last_tickets_id = space_info->tickets_id;
1177         spin_unlock(&space_info->lock);
1178
1179         while (!space_info->full) {
1180                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1181                 spin_lock(&space_info->lock);
1182                 if (list_empty(&space_info->tickets)) {
1183                         space_info->flush = 0;
1184                         spin_unlock(&space_info->lock);
1185                         return;
1186                 }
1187                 last_tickets_id = space_info->tickets_id;
1188                 spin_unlock(&space_info->lock);
1189         }
1190
1191         while (flush_state < ARRAY_SIZE(data_flush_states)) {
1192                 flush_space(fs_info, space_info, U64_MAX,
1193                             data_flush_states[flush_state]);
1194                 spin_lock(&space_info->lock);
1195                 if (list_empty(&space_info->tickets)) {
1196                         space_info->flush = 0;
1197                         spin_unlock(&space_info->lock);
1198                         return;
1199                 }
1200
1201                 if (last_tickets_id == space_info->tickets_id) {
1202                         flush_state++;
1203                 } else {
1204                         last_tickets_id = space_info->tickets_id;
1205                         flush_state = 0;
1206                 }
1207
1208                 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1209                         if (space_info->full) {
1210                                 if (maybe_fail_all_tickets(fs_info, space_info))
1211                                         flush_state = 0;
1212                                 else
1213                                         space_info->flush = 0;
1214                         } else {
1215                                 flush_state = 0;
1216                         }
1217                 }
1218                 spin_unlock(&space_info->lock);
1219         }
1220 }
1221
1222 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1223 {
1224         INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1225         INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1226         INIT_WORK(&fs_info->preempt_reclaim_work,
1227                   btrfs_preempt_reclaim_metadata_space);
1228 }
1229
1230 static const enum btrfs_flush_state priority_flush_states[] = {
1231         FLUSH_DELAYED_ITEMS_NR,
1232         FLUSH_DELAYED_ITEMS,
1233         ALLOC_CHUNK,
1234 };
1235
1236 static const enum btrfs_flush_state evict_flush_states[] = {
1237         FLUSH_DELAYED_ITEMS_NR,
1238         FLUSH_DELAYED_ITEMS,
1239         FLUSH_DELAYED_REFS_NR,
1240         FLUSH_DELAYED_REFS,
1241         FLUSH_DELALLOC,
1242         FLUSH_DELALLOC_WAIT,
1243         ALLOC_CHUNK,
1244         COMMIT_TRANS,
1245 };
1246
1247 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1248                                 struct btrfs_space_info *space_info,
1249                                 struct reserve_ticket *ticket,
1250                                 const enum btrfs_flush_state *states,
1251                                 int states_nr)
1252 {
1253         u64 to_reclaim;
1254         int flush_state;
1255
1256         spin_lock(&space_info->lock);
1257         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1258         if (!to_reclaim) {
1259                 spin_unlock(&space_info->lock);
1260                 return;
1261         }
1262         spin_unlock(&space_info->lock);
1263
1264         flush_state = 0;
1265         do {
1266                 flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1267                 flush_state++;
1268                 spin_lock(&space_info->lock);
1269                 if (ticket->bytes == 0) {
1270                         spin_unlock(&space_info->lock);
1271                         return;
1272                 }
1273                 spin_unlock(&space_info->lock);
1274         } while (flush_state < states_nr);
1275 }
1276
1277 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1278                                         struct btrfs_space_info *space_info,
1279                                         struct reserve_ticket *ticket)
1280 {
1281         while (!space_info->full) {
1282                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1283                 spin_lock(&space_info->lock);
1284                 if (ticket->bytes == 0) {
1285                         spin_unlock(&space_info->lock);
1286                         return;
1287                 }
1288                 spin_unlock(&space_info->lock);
1289         }
1290 }
1291
1292 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1293                                 struct btrfs_space_info *space_info,
1294                                 struct reserve_ticket *ticket)
1295
1296 {
1297         DEFINE_WAIT(wait);
1298         int ret = 0;
1299
1300         spin_lock(&space_info->lock);
1301         while (ticket->bytes > 0 && ticket->error == 0) {
1302                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1303                 if (ret) {
1304                         /*
1305                          * Delete us from the list. After we unlock the space
1306                          * info, we don't want the async reclaim job to reserve
1307                          * space for this ticket. If that would happen, then the
1308                          * ticket's task would not known that space was reserved
1309                          * despite getting an error, resulting in a space leak
1310                          * (bytes_may_use counter of our space_info).
1311                          */
1312                         remove_ticket(space_info, ticket);
1313                         ticket->error = -EINTR;
1314                         break;
1315                 }
1316                 spin_unlock(&space_info->lock);
1317
1318                 schedule();
1319
1320                 finish_wait(&ticket->wait, &wait);
1321                 spin_lock(&space_info->lock);
1322         }
1323         spin_unlock(&space_info->lock);
1324 }
1325
1326 /**
1327  * Do the appropriate flushing and waiting for a ticket
1328  *
1329  * @fs_info:    the filesystem
1330  * @space_info: space info for the reservation
1331  * @ticket:     ticket for the reservation
1332  * @start_ns:   timestamp when the reservation started
1333  * @orig_bytes: amount of bytes originally reserved
1334  * @flush:      how much we can flush
1335  *
1336  * This does the work of figuring out how to flush for the ticket, waiting for
1337  * the reservation, and returning the appropriate error if there is one.
1338  */
1339 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1340                                  struct btrfs_space_info *space_info,
1341                                  struct reserve_ticket *ticket,
1342                                  u64 start_ns, u64 orig_bytes,
1343                                  enum btrfs_reserve_flush_enum flush)
1344 {
1345         int ret;
1346
1347         switch (flush) {
1348         case BTRFS_RESERVE_FLUSH_DATA:
1349         case BTRFS_RESERVE_FLUSH_ALL:
1350         case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1351                 wait_reserve_ticket(fs_info, space_info, ticket);
1352                 break;
1353         case BTRFS_RESERVE_FLUSH_LIMIT:
1354                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1355                                                 priority_flush_states,
1356                                                 ARRAY_SIZE(priority_flush_states));
1357                 break;
1358         case BTRFS_RESERVE_FLUSH_EVICT:
1359                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1360                                                 evict_flush_states,
1361                                                 ARRAY_SIZE(evict_flush_states));
1362                 break;
1363         case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1364                 priority_reclaim_data_space(fs_info, space_info, ticket);
1365                 break;
1366         default:
1367                 ASSERT(0);
1368                 break;
1369         }
1370
1371         spin_lock(&space_info->lock);
1372         ret = ticket->error;
1373         if (ticket->bytes || ticket->error) {
1374                 /*
1375                  * We were a priority ticket, so we need to delete ourselves
1376                  * from the list.  Because we could have other priority tickets
1377                  * behind us that require less space, run
1378                  * btrfs_try_granting_tickets() to see if their reservations can
1379                  * now be made.
1380                  */
1381                 if (!list_empty(&ticket->list)) {
1382                         remove_ticket(space_info, ticket);
1383                         btrfs_try_granting_tickets(fs_info, space_info);
1384                 }
1385
1386                 if (!ret)
1387                         ret = -ENOSPC;
1388         }
1389         spin_unlock(&space_info->lock);
1390         ASSERT(list_empty(&ticket->list));
1391         /*
1392          * Check that we can't have an error set if the reservation succeeded,
1393          * as that would confuse tasks and lead them to error out without
1394          * releasing reserved space (if an error happens the expectation is that
1395          * space wasn't reserved at all).
1396          */
1397         ASSERT(!(ticket->bytes == 0 && ticket->error));
1398         trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1399                                    start_ns, flush, ticket->error);
1400         return ret;
1401 }
1402
1403 /*
1404  * This returns true if this flush state will go through the ordinary flushing
1405  * code.
1406  */
1407 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1408 {
1409         return  (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1410                 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1411 }
1412
1413 /**
1414  * Try to reserve bytes from the block_rsv's space
1415  *
1416  * @fs_info:    the filesystem
1417  * @space_info: space info we want to allocate from
1418  * @orig_bytes: number of bytes we want
1419  * @flush:      whether or not we can flush to make our reservation
1420  *
1421  * This will reserve orig_bytes number of bytes from the space info associated
1422  * with the block_rsv.  If there is not enough space it will make an attempt to
1423  * flush out space to make room.  It will do this by flushing delalloc if
1424  * possible or committing the transaction.  If flush is 0 then no attempts to
1425  * regain reservations will be made and this will fail if there is not enough
1426  * space already.
1427  */
1428 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1429                            struct btrfs_space_info *space_info, u64 orig_bytes,
1430                            enum btrfs_reserve_flush_enum flush)
1431 {
1432         struct work_struct *async_work;
1433         struct reserve_ticket ticket;
1434         u64 start_ns = 0;
1435         u64 used;
1436         int ret = 0;
1437         bool pending_tickets;
1438
1439         ASSERT(orig_bytes);
1440         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1441
1442         if (flush == BTRFS_RESERVE_FLUSH_DATA)
1443                 async_work = &fs_info->async_data_reclaim_work;
1444         else
1445                 async_work = &fs_info->async_reclaim_work;
1446
1447         spin_lock(&space_info->lock);
1448         ret = -ENOSPC;
1449         used = btrfs_space_info_used(space_info, true);
1450
1451         /*
1452          * We don't want NO_FLUSH allocations to jump everybody, they can
1453          * generally handle ENOSPC in a different way, so treat them the same as
1454          * normal flushers when it comes to skipping pending tickets.
1455          */
1456         if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1457                 pending_tickets = !list_empty(&space_info->tickets) ||
1458                         !list_empty(&space_info->priority_tickets);
1459         else
1460                 pending_tickets = !list_empty(&space_info->priority_tickets);
1461
1462         /*
1463          * Carry on if we have enough space (short-circuit) OR call
1464          * can_overcommit() to ensure we can overcommit to continue.
1465          */
1466         if (!pending_tickets &&
1467             ((used + orig_bytes <= space_info->total_bytes) ||
1468              btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1469                 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1470                                                       orig_bytes);
1471                 ret = 0;
1472         }
1473
1474         /*
1475          * If we couldn't make a reservation then setup our reservation ticket
1476          * and kick the async worker if it's not already running.
1477          *
1478          * If we are a priority flusher then we just need to add our ticket to
1479          * the list and we will do our own flushing further down.
1480          */
1481         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1482                 ticket.bytes = orig_bytes;
1483                 ticket.error = 0;
1484                 space_info->reclaim_size += ticket.bytes;
1485                 init_waitqueue_head(&ticket.wait);
1486                 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1487                 if (trace_btrfs_reserve_ticket_enabled())
1488                         start_ns = ktime_get_ns();
1489
1490                 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1491                     flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1492                     flush == BTRFS_RESERVE_FLUSH_DATA) {
1493                         list_add_tail(&ticket.list, &space_info->tickets);
1494                         if (!space_info->flush) {
1495                                 space_info->flush = 1;
1496                                 trace_btrfs_trigger_flush(fs_info,
1497                                                           space_info->flags,
1498                                                           orig_bytes, flush,
1499                                                           "enospc");
1500                                 queue_work(system_unbound_wq, async_work);
1501                         }
1502                 } else {
1503                         list_add_tail(&ticket.list,
1504                                       &space_info->priority_tickets);
1505                 }
1506         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1507                 used += orig_bytes;
1508                 /*
1509                  * We will do the space reservation dance during log replay,
1510                  * which means we won't have fs_info->fs_root set, so don't do
1511                  * the async reclaim as we will panic.
1512                  */
1513                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1514                     need_preemptive_reclaim(fs_info, space_info, used) &&
1515                     !work_busy(&fs_info->preempt_reclaim_work)) {
1516                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
1517                                                   orig_bytes, flush, "preempt");
1518                         queue_work(system_unbound_wq,
1519                                    &fs_info->preempt_reclaim_work);
1520                 }
1521         }
1522         spin_unlock(&space_info->lock);
1523         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1524                 return ret;
1525
1526         return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1527                                      orig_bytes, flush);
1528 }
1529
1530 /**
1531  * Trye to reserve metadata bytes from the block_rsv's space
1532  *
1533  * @root:       the root we're allocating for
1534  * @block_rsv:  block_rsv we're allocating for
1535  * @orig_bytes: number of bytes we want
1536  * @flush:      whether or not we can flush to make our reservation
1537  *
1538  * This will reserve orig_bytes number of bytes from the space info associated
1539  * with the block_rsv.  If there is not enough space it will make an attempt to
1540  * flush out space to make room.  It will do this by flushing delalloc if
1541  * possible or committing the transaction.  If flush is 0 then no attempts to
1542  * regain reservations will be made and this will fail if there is not enough
1543  * space already.
1544  */
1545 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1546                                  struct btrfs_block_rsv *block_rsv,
1547                                  u64 orig_bytes,
1548                                  enum btrfs_reserve_flush_enum flush)
1549 {
1550         struct btrfs_fs_info *fs_info = root->fs_info;
1551         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1552         int ret;
1553
1554         ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1555         if (ret == -ENOSPC &&
1556             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1557                 if (block_rsv != global_rsv &&
1558                     !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1559                         ret = 0;
1560         }
1561         if (ret == -ENOSPC) {
1562                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1563                                               block_rsv->space_info->flags,
1564                                               orig_bytes, 1);
1565
1566                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1567                         btrfs_dump_space_info(fs_info, block_rsv->space_info,
1568                                               orig_bytes, 0);
1569         }
1570         return ret;
1571 }
1572
1573 /**
1574  * Try to reserve data bytes for an allocation
1575  *
1576  * @fs_info: the filesystem
1577  * @bytes:   number of bytes we need
1578  * @flush:   how we are allowed to flush
1579  *
1580  * This will reserve bytes from the data space info.  If there is not enough
1581  * space then we will attempt to flush space as specified by flush.
1582  */
1583 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1584                              enum btrfs_reserve_flush_enum flush)
1585 {
1586         struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1587         int ret;
1588
1589         ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1590                flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1591         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1592
1593         ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1594         if (ret == -ENOSPC) {
1595                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1596                                               data_sinfo->flags, bytes, 1);
1597                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1598                         btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1599         }
1600         return ret;
1601 }