1 // SPDX-License-Identifier: GPL-2.0
5 #include "space-info.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
14 * HOW DOES SPACE RESERVATION WORK
16 * If you want to know about delalloc specifically, there is a separate comment
17 * for that with the delalloc code. This comment is about how the whole system
22 * 1) space_info. This is the ultimate arbiter of how much space we can use.
23 * There's a description of the bytes_ fields with the struct declaration,
24 * refer to that for specifics on each field. Suffice it to say that for
25 * reservations we care about total_bytes - SUM(space_info->bytes_) when
26 * determining if there is space to make an allocation. There is a space_info
27 * for METADATA, SYSTEM, and DATA areas.
29 * 2) block_rsv's. These are basically buckets for every different type of
30 * metadata reservation we have. You can see the comment in the block_rsv
31 * code on the rules for each type, but generally block_rsv->reserved is how
32 * much space is accounted for in space_info->bytes_may_use.
34 * 3) btrfs_calc*_size. These are the worst case calculations we used based
35 * on the number of items we will want to modify. We have one for changing
36 * items, and one for inserting new items. Generally we use these helpers to
37 * determine the size of the block reserves, and then use the actual bytes
38 * values to adjust the space_info counters.
40 * MAKING RESERVATIONS, THE NORMAL CASE
42 * We call into either btrfs_reserve_data_bytes() or
43 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44 * num_bytes we want to reserve.
47 * space_info->bytes_may_reserve += num_bytes
50 * Call btrfs_add_reserved_bytes() which does
51 * space_info->bytes_may_reserve -= num_bytes
52 * space_info->bytes_reserved += extent_bytes
55 * Call btrfs_update_block_group() which does
56 * space_info->bytes_reserved -= extent_bytes
57 * space_info->bytes_used += extent_bytes
59 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
61 * Assume we are unable to simply make the reservation because we do not have
65 * create a reserve_ticket with ->bytes set to our reservation, add it to
66 * the tail of space_info->tickets, kick async flush thread
68 * ->handle_reserve_ticket
69 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
72 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73 * Flushes various things attempting to free up space.
75 * -> btrfs_try_granting_tickets()
76 * This is called by anything that either subtracts space from
77 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78 * space_info->total_bytes. This loops through the ->priority_tickets and
79 * then the ->tickets list checking to see if the reservation can be
80 * completed. If it can the space is added to space_info->bytes_may_use and
81 * the ticket is woken up.
84 * Check if ->bytes == 0, if it does we got our reservation and we can carry
85 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we
88 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
90 * Same as the above, except we add ourselves to the
91 * space_info->priority_tickets, and we do not use ticket->wait, we simply
92 * call flush_space() ourselves for the states that are safe for us to call
93 * without deadlocking and hope for the best.
97 * Generally speaking we will have two cases for each state, a "nice" state
98 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to
99 * reduce the locking over head on the various trees, and even to keep from
100 * doing any work at all in the case of delayed refs. Each of these delayed
101 * things however hold reservations, and so letting them run allows us to
102 * reclaim space so we can make new reservations.
104 * FLUSH_DELAYED_ITEMS
105 * Every inode has a delayed item to update the inode. Take a simple write
106 * for example, we would update the inode item at write time to update the
107 * mtime, and then again at finish_ordered_io() time in order to update the
108 * isize or bytes. We keep these delayed items to coalesce these operations
109 * into a single operation done on demand. These are an easy way to reclaim
113 * Look at the delalloc comment to get an idea of how much space is reserved
114 * for delayed allocation. We can reclaim some of this space simply by
115 * running delalloc, but usually we need to wait for ordered extents to
116 * reclaim the bulk of this space.
119 * We have a block reserve for the outstanding delayed refs space, and every
120 * delayed ref operation holds a reservation. Running these is a quick way
121 * to reclaim space, but we want to hold this until the end because COW can
122 * churn a lot and we can avoid making some extent tree modifications if we
123 * are able to delay for as long as possible.
126 * We will skip this the first time through space reservation, because of
127 * overcommit and we don't want to have a lot of useless metadata space when
128 * our worst case reservations will likely never come true.
131 * If we're freeing inodes we're likely freeing checksums, file extent
132 * items, and extent tree items. Loads of space could be freed up by these
133 * operations, however they won't be usable until the transaction commits.
136 * may_commit_transaction() is the ultimate arbiter on whether we commit the
137 * transaction or not. In order to avoid constantly churning we do all the
138 * above flushing first and then commit the transaction as the last resort.
139 * However we need to take into account things like pinned space that would
140 * be freed, plus any delayed work we may not have gotten rid of in the case
144 * For use by the preemptive flusher. We use this to bypass the ticketing
145 * checks in may_commit_transaction, as we have more information about the
146 * overall state of the system and may want to commit the transaction ahead
147 * of actual ENOSPC conditions.
151 * Because we hold so many reservations for metadata we will allow you to
152 * reserve more space than is currently free in the currently allocate
153 * metadata space. This only happens with metadata, data does not allow
156 * You can see the current logic for when we allow overcommit in
157 * btrfs_can_overcommit(), but it only applies to unallocated space. If there
158 * is no unallocated space to be had, all reservations are kept within the
159 * free space in the allocated metadata chunks.
161 * Because of overcommitting, you generally want to use the
162 * btrfs_can_overcommit() logic for metadata allocations, as it does the right
163 * thing with or without extra unallocated space.
166 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
167 bool may_use_included)
170 return s_info->bytes_used + s_info->bytes_reserved +
171 s_info->bytes_pinned + s_info->bytes_readonly +
172 (may_use_included ? s_info->bytes_may_use : 0);
176 * after adding space to the filesystem, we need to clear the full flags
177 * on all the space infos.
179 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
181 struct list_head *head = &info->space_info;
182 struct btrfs_space_info *found;
184 list_for_each_entry(found, head, list)
188 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
191 struct btrfs_space_info *space_info;
195 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
199 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
206 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
207 INIT_LIST_HEAD(&space_info->block_groups[i]);
208 init_rwsem(&space_info->groups_sem);
209 spin_lock_init(&space_info->lock);
210 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
211 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
212 INIT_LIST_HEAD(&space_info->ro_bgs);
213 INIT_LIST_HEAD(&space_info->tickets);
214 INIT_LIST_HEAD(&space_info->priority_tickets);
216 ret = btrfs_sysfs_add_space_info_type(info, space_info);
220 list_add(&space_info->list, &info->space_info);
221 if (flags & BTRFS_BLOCK_GROUP_DATA)
222 info->data_sinfo = space_info;
227 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
229 struct btrfs_super_block *disk_super;
235 disk_super = fs_info->super_copy;
236 if (!btrfs_super_root(disk_super))
239 features = btrfs_super_incompat_flags(disk_super);
240 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
243 flags = BTRFS_BLOCK_GROUP_SYSTEM;
244 ret = create_space_info(fs_info, flags);
249 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
250 ret = create_space_info(fs_info, flags);
252 flags = BTRFS_BLOCK_GROUP_METADATA;
253 ret = create_space_info(fs_info, flags);
257 flags = BTRFS_BLOCK_GROUP_DATA;
258 ret = create_space_info(fs_info, flags);
264 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
265 u64 total_bytes, u64 bytes_used,
267 struct btrfs_space_info **space_info)
269 struct btrfs_space_info *found;
272 factor = btrfs_bg_type_to_factor(flags);
274 found = btrfs_find_space_info(info, flags);
276 spin_lock(&found->lock);
277 found->total_bytes += total_bytes;
278 found->disk_total += total_bytes * factor;
279 found->bytes_used += bytes_used;
280 found->disk_used += bytes_used * factor;
281 found->bytes_readonly += bytes_readonly;
284 btrfs_try_granting_tickets(info, found);
285 spin_unlock(&found->lock);
289 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
292 struct list_head *head = &info->space_info;
293 struct btrfs_space_info *found;
295 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
297 list_for_each_entry(found, head, list) {
298 if (found->flags & flags)
304 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
305 struct btrfs_space_info *space_info,
306 enum btrfs_reserve_flush_enum flush)
312 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
313 profile = btrfs_system_alloc_profile(fs_info);
315 profile = btrfs_metadata_alloc_profile(fs_info);
317 avail = atomic64_read(&fs_info->free_chunk_space);
320 * If we have dup, raid1 or raid10 then only half of the free
321 * space is actually usable. For raid56, the space info used
322 * doesn't include the parity drive, so we don't have to
325 factor = btrfs_bg_type_to_factor(profile);
326 avail = div_u64(avail, factor);
329 * If we aren't flushing all things, let us overcommit up to
330 * 1/2th of the space. If we can flush, don't let us overcommit
331 * too much, let it overcommit up to 1/8 of the space.
333 if (flush == BTRFS_RESERVE_FLUSH_ALL)
340 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
341 struct btrfs_space_info *space_info, u64 bytes,
342 enum btrfs_reserve_flush_enum flush)
347 /* Don't overcommit when in mixed mode */
348 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
351 used = btrfs_space_info_used(space_info, true);
352 avail = calc_available_free_space(fs_info, space_info, flush);
354 if (used + bytes < space_info->total_bytes + avail)
359 static void remove_ticket(struct btrfs_space_info *space_info,
360 struct reserve_ticket *ticket)
362 if (!list_empty(&ticket->list)) {
363 list_del_init(&ticket->list);
364 ASSERT(space_info->reclaim_size >= ticket->bytes);
365 space_info->reclaim_size -= ticket->bytes;
370 * This is for space we already have accounted in space_info->bytes_may_use, so
371 * basically when we're returning space from block_rsv's.
373 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
374 struct btrfs_space_info *space_info)
376 struct list_head *head;
377 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
379 lockdep_assert_held(&space_info->lock);
381 head = &space_info->priority_tickets;
383 while (!list_empty(head)) {
384 struct reserve_ticket *ticket;
385 u64 used = btrfs_space_info_used(space_info, true);
387 ticket = list_first_entry(head, struct reserve_ticket, list);
389 /* Check and see if our ticket can be satisified now. */
390 if ((used + ticket->bytes <= space_info->total_bytes) ||
391 btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
393 btrfs_space_info_update_bytes_may_use(fs_info,
396 remove_ticket(space_info, ticket);
398 space_info->tickets_id++;
399 wake_up(&ticket->wait);
405 if (head == &space_info->priority_tickets) {
406 head = &space_info->tickets;
407 flush = BTRFS_RESERVE_FLUSH_ALL;
412 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \
414 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
415 spin_lock(&__rsv->lock); \
416 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
417 __rsv->size, __rsv->reserved); \
418 spin_unlock(&__rsv->lock); \
421 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
422 struct btrfs_space_info *info)
424 lockdep_assert_held(&info->lock);
426 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
428 info->total_bytes - btrfs_space_info_used(info, true),
429 info->full ? "" : "not ");
431 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
432 info->total_bytes, info->bytes_used, info->bytes_pinned,
433 info->bytes_reserved, info->bytes_may_use,
434 info->bytes_readonly);
436 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
437 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
438 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
439 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
440 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
444 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
445 struct btrfs_space_info *info, u64 bytes,
446 int dump_block_groups)
448 struct btrfs_block_group *cache;
451 spin_lock(&info->lock);
452 __btrfs_dump_space_info(fs_info, info);
453 spin_unlock(&info->lock);
455 if (!dump_block_groups)
458 down_read(&info->groups_sem);
460 list_for_each_entry(cache, &info->block_groups[index], list) {
461 spin_lock(&cache->lock);
463 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
464 cache->start, cache->length, cache->used, cache->pinned,
465 cache->reserved, cache->ro ? "[readonly]" : "");
466 spin_unlock(&cache->lock);
467 btrfs_dump_free_space(cache, bytes);
469 if (++index < BTRFS_NR_RAID_TYPES)
471 up_read(&info->groups_sem);
474 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
480 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
481 nr = div64_u64(to_reclaim, bytes);
487 #define EXTENT_SIZE_PER_ITEM SZ_256K
490 * shrink metadata reservation for delalloc
492 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
493 struct btrfs_space_info *space_info,
494 u64 to_reclaim, bool wait_ordered)
496 struct btrfs_trans_handle *trans;
503 /* Calc the number of the pages we need flush for space reservation */
504 if (to_reclaim == U64_MAX) {
508 * to_reclaim is set to however much metadata we need to
509 * reclaim, but reclaiming that much data doesn't really track
510 * exactly, so increase the amount to reclaim by 2x in order to
511 * make sure we're flushing enough delalloc to hopefully reclaim
512 * some metadata reservations.
514 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
515 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
518 trans = (struct btrfs_trans_handle *)current->journal_info;
520 delalloc_bytes = percpu_counter_sum_positive(
521 &fs_info->delalloc_bytes);
522 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
523 if (delalloc_bytes == 0 && ordered_bytes == 0)
527 * If we are doing more ordered than delalloc we need to just wait on
528 * ordered extents, otherwise we'll waste time trying to flush delalloc
529 * that likely won't give us the space back we need.
531 if (ordered_bytes > delalloc_bytes)
535 while ((delalloc_bytes || ordered_bytes) && loops < 3) {
536 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
537 long nr_pages = min_t(u64, temp, LONG_MAX);
539 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
542 if (wait_ordered && !trans) {
543 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
545 time_left = schedule_timeout_killable(1);
550 spin_lock(&space_info->lock);
551 if (list_empty(&space_info->tickets) &&
552 list_empty(&space_info->priority_tickets)) {
553 spin_unlock(&space_info->lock);
556 spin_unlock(&space_info->lock);
558 delalloc_bytes = percpu_counter_sum_positive(
559 &fs_info->delalloc_bytes);
560 ordered_bytes = percpu_counter_sum_positive(
561 &fs_info->ordered_bytes);
566 * Possibly commit the transaction if its ok to
568 * @fs_info: the filesystem
569 * @space_info: space_info we are checking for commit, either data or metadata
571 * This will check to make sure that committing the transaction will actually
572 * get us somewhere and then commit the transaction if it does. Otherwise it
573 * will return -ENOSPC.
575 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
576 struct btrfs_space_info *space_info)
578 struct reserve_ticket *ticket = NULL;
579 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
580 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
581 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
582 struct btrfs_trans_handle *trans;
583 u64 reclaim_bytes = 0;
584 u64 bytes_needed = 0;
585 u64 cur_free_bytes = 0;
587 trans = (struct btrfs_trans_handle *)current->journal_info;
591 spin_lock(&space_info->lock);
592 cur_free_bytes = btrfs_space_info_used(space_info, true);
593 if (cur_free_bytes < space_info->total_bytes)
594 cur_free_bytes = space_info->total_bytes - cur_free_bytes;
598 if (!list_empty(&space_info->priority_tickets))
599 ticket = list_first_entry(&space_info->priority_tickets,
600 struct reserve_ticket, list);
601 else if (!list_empty(&space_info->tickets))
602 ticket = list_first_entry(&space_info->tickets,
603 struct reserve_ticket, list);
605 bytes_needed = ticket->bytes;
607 if (bytes_needed > cur_free_bytes)
608 bytes_needed -= cur_free_bytes;
611 spin_unlock(&space_info->lock);
616 trans = btrfs_join_transaction(fs_info->extent_root);
618 return PTR_ERR(trans);
621 * See if there is enough pinned space to make this reservation, or if
622 * we have block groups that are going to be freed, allowing us to
623 * possibly do a chunk allocation the next loop through.
625 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
626 __percpu_counter_compare(&space_info->total_bytes_pinned,
628 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
632 * See if there is some space in the delayed insertion reserve for this
633 * reservation. If the space_info's don't match (like for DATA or
634 * SYSTEM) then just go enospc, reclaiming this space won't recover any
635 * space to satisfy those reservations.
637 if (space_info != delayed_rsv->space_info)
640 spin_lock(&delayed_rsv->lock);
641 reclaim_bytes += delayed_rsv->reserved;
642 spin_unlock(&delayed_rsv->lock);
644 spin_lock(&delayed_refs_rsv->lock);
645 reclaim_bytes += delayed_refs_rsv->reserved;
646 spin_unlock(&delayed_refs_rsv->lock);
648 spin_lock(&trans_rsv->lock);
649 reclaim_bytes += trans_rsv->reserved;
650 spin_unlock(&trans_rsv->lock);
652 if (reclaim_bytes >= bytes_needed)
654 bytes_needed -= reclaim_bytes;
656 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
658 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
662 return btrfs_commit_transaction(trans);
664 btrfs_end_transaction(trans);
669 * Try to flush some data based on policy set by @state. This is only advisory
670 * and may fail for various reasons. The caller is supposed to examine the
671 * state of @space_info to detect the outcome.
673 static void flush_space(struct btrfs_fs_info *fs_info,
674 struct btrfs_space_info *space_info, u64 num_bytes,
675 enum btrfs_flush_state state)
677 struct btrfs_root *root = fs_info->extent_root;
678 struct btrfs_trans_handle *trans;
683 case FLUSH_DELAYED_ITEMS_NR:
684 case FLUSH_DELAYED_ITEMS:
685 if (state == FLUSH_DELAYED_ITEMS_NR)
686 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
690 trans = btrfs_join_transaction(root);
692 ret = PTR_ERR(trans);
695 ret = btrfs_run_delayed_items_nr(trans, nr);
696 btrfs_end_transaction(trans);
699 case FLUSH_DELALLOC_WAIT:
700 shrink_delalloc(fs_info, space_info, num_bytes,
701 state == FLUSH_DELALLOC_WAIT);
703 case FLUSH_DELAYED_REFS_NR:
704 case FLUSH_DELAYED_REFS:
705 trans = btrfs_join_transaction(root);
707 ret = PTR_ERR(trans);
710 if (state == FLUSH_DELAYED_REFS_NR)
711 nr = calc_reclaim_items_nr(fs_info, num_bytes);
714 btrfs_run_delayed_refs(trans, nr);
715 btrfs_end_transaction(trans);
718 case ALLOC_CHUNK_FORCE:
719 trans = btrfs_join_transaction(root);
721 ret = PTR_ERR(trans);
724 ret = btrfs_chunk_alloc(trans,
725 btrfs_get_alloc_profile(fs_info, space_info->flags),
726 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
728 btrfs_end_transaction(trans);
729 if (ret > 0 || ret == -ENOSPC)
732 case RUN_DELAYED_IPUTS:
734 * If we have pending delayed iputs then we could free up a
735 * bunch of pinned space, so make sure we run the iputs before
736 * we do our pinned bytes check below.
738 btrfs_run_delayed_iputs(fs_info);
739 btrfs_wait_on_delayed_iputs(fs_info);
742 ret = may_commit_transaction(fs_info, space_info);
744 case FORCE_COMMIT_TRANS:
745 trans = btrfs_join_transaction(root);
747 ret = PTR_ERR(trans);
750 ret = btrfs_commit_transaction(trans);
757 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
763 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
764 struct btrfs_space_info *space_info)
768 u64 to_reclaim = space_info->reclaim_size;
770 lockdep_assert_held(&space_info->lock);
772 avail = calc_available_free_space(fs_info, space_info,
773 BTRFS_RESERVE_FLUSH_ALL);
774 used = btrfs_space_info_used(space_info, true);
777 * We may be flushing because suddenly we have less space than we had
778 * before, and now we're well over-committed based on our current free
779 * space. If that's the case add in our overage so we make sure to put
780 * appropriate pressure on the flushing state machine.
782 if (space_info->total_bytes + avail < used)
783 to_reclaim += used - (space_info->total_bytes + avail);
788 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
789 struct btrfs_space_info *space_info,
792 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
793 u64 to_reclaim, expected;
795 /* If we're just plain full then async reclaim just slows us down. */
796 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
800 * We have tickets queued, bail so we don't compete with the async
803 if (space_info->reclaim_size)
806 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
807 if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
808 BTRFS_RESERVE_FLUSH_ALL))
811 used = btrfs_space_info_used(space_info, true);
812 if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
813 BTRFS_RESERVE_FLUSH_ALL))
814 expected = div_factor_fine(space_info->total_bytes, 95);
816 expected = div_factor_fine(space_info->total_bytes, 90);
819 to_reclaim = used - expected;
822 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
823 space_info->bytes_reserved);
827 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
828 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
831 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
832 struct btrfs_space_info *space_info,
833 struct reserve_ticket *ticket)
835 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
838 if (global_rsv->space_info != space_info)
841 spin_lock(&global_rsv->lock);
842 min_bytes = div_factor(global_rsv->size, 1);
843 if (global_rsv->reserved < min_bytes + ticket->bytes) {
844 spin_unlock(&global_rsv->lock);
847 global_rsv->reserved -= ticket->bytes;
848 remove_ticket(space_info, ticket);
850 wake_up(&ticket->wait);
851 space_info->tickets_id++;
852 if (global_rsv->reserved < global_rsv->size)
853 global_rsv->full = 0;
854 spin_unlock(&global_rsv->lock);
860 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
861 * @fs_info - fs_info for this fs
862 * @space_info - the space info we were flushing
864 * We call this when we've exhausted our flushing ability and haven't made
865 * progress in satisfying tickets. The reservation code handles tickets in
866 * order, so if there is a large ticket first and then smaller ones we could
867 * very well satisfy the smaller tickets. This will attempt to wake up any
868 * tickets in the list to catch this case.
870 * This function returns true if it was able to make progress by clearing out
871 * other tickets, or if it stumbles across a ticket that was smaller than the
874 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
875 struct btrfs_space_info *space_info)
877 struct reserve_ticket *ticket;
878 u64 tickets_id = space_info->tickets_id;
879 u64 first_ticket_bytes = 0;
881 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
882 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
883 __btrfs_dump_space_info(fs_info, space_info);
886 while (!list_empty(&space_info->tickets) &&
887 tickets_id == space_info->tickets_id) {
888 ticket = list_first_entry(&space_info->tickets,
889 struct reserve_ticket, list);
892 steal_from_global_rsv(fs_info, space_info, ticket))
896 * may_commit_transaction will avoid committing the transaction
897 * if it doesn't feel like the space reclaimed by the commit
898 * would result in the ticket succeeding. However if we have a
899 * smaller ticket in the queue it may be small enough to be
900 * satisified by committing the transaction, so if any
901 * subsequent ticket is smaller than the first ticket go ahead
902 * and send us back for another loop through the enospc flushing
905 if (first_ticket_bytes == 0)
906 first_ticket_bytes = ticket->bytes;
907 else if (first_ticket_bytes > ticket->bytes)
910 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
911 btrfs_info(fs_info, "failing ticket with %llu bytes",
914 remove_ticket(space_info, ticket);
915 ticket->error = -ENOSPC;
916 wake_up(&ticket->wait);
919 * We're just throwing tickets away, so more flushing may not
920 * trip over btrfs_try_granting_tickets, so we need to call it
921 * here to see if we can make progress with the next ticket in
924 btrfs_try_granting_tickets(fs_info, space_info);
926 return (tickets_id != space_info->tickets_id);
930 * This is for normal flushers, we can wait all goddamned day if we want to. We
931 * will loop and continuously try to flush as long as we are making progress.
932 * We count progress as clearing off tickets each time we have to loop.
934 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
936 struct btrfs_fs_info *fs_info;
937 struct btrfs_space_info *space_info;
939 enum btrfs_flush_state flush_state;
940 int commit_cycles = 0;
943 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
944 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
946 spin_lock(&space_info->lock);
947 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
949 space_info->flush = 0;
950 spin_unlock(&space_info->lock);
953 last_tickets_id = space_info->tickets_id;
954 spin_unlock(&space_info->lock);
956 flush_state = FLUSH_DELAYED_ITEMS_NR;
958 flush_space(fs_info, space_info, to_reclaim, flush_state);
959 spin_lock(&space_info->lock);
960 if (list_empty(&space_info->tickets)) {
961 space_info->flush = 0;
962 spin_unlock(&space_info->lock);
965 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
967 if (last_tickets_id == space_info->tickets_id) {
970 last_tickets_id = space_info->tickets_id;
971 flush_state = FLUSH_DELAYED_ITEMS_NR;
977 * We don't want to force a chunk allocation until we've tried
978 * pretty hard to reclaim space. Think of the case where we
979 * freed up a bunch of space and so have a lot of pinned space
980 * to reclaim. We would rather use that than possibly create a
981 * underutilized metadata chunk. So if this is our first run
982 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
983 * commit the transaction. If nothing has changed the next go
984 * around then we can force a chunk allocation.
986 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
989 if (flush_state > COMMIT_TRANS) {
991 if (commit_cycles > 2) {
992 if (maybe_fail_all_tickets(fs_info, space_info)) {
993 flush_state = FLUSH_DELAYED_ITEMS_NR;
996 space_info->flush = 0;
999 flush_state = FLUSH_DELAYED_ITEMS_NR;
1002 spin_unlock(&space_info->lock);
1003 } while (flush_state <= COMMIT_TRANS);
1007 * This handles pre-flushing of metadata space before we get to the point that
1008 * we need to start blocking threads on tickets. The logic here is different
1009 * from the other flush paths because it doesn't rely on tickets to tell us how
1010 * much we need to flush, instead it attempts to keep us below the 80% full
1011 * watermark of space by flushing whichever reservation pool is currently the
1014 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1016 struct btrfs_fs_info *fs_info;
1017 struct btrfs_space_info *space_info;
1018 struct btrfs_block_rsv *delayed_block_rsv;
1019 struct btrfs_block_rsv *delayed_refs_rsv;
1020 struct btrfs_block_rsv *global_rsv;
1021 struct btrfs_block_rsv *trans_rsv;
1024 fs_info = container_of(work, struct btrfs_fs_info,
1025 preempt_reclaim_work);
1026 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1027 delayed_block_rsv = &fs_info->delayed_block_rsv;
1028 delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1029 global_rsv = &fs_info->global_block_rsv;
1030 trans_rsv = &fs_info->trans_block_rsv;
1032 spin_lock(&space_info->lock);
1033 used = btrfs_space_info_used(space_info, true);
1034 while (need_preemptive_reclaim(fs_info, space_info, used)) {
1035 enum btrfs_flush_state flush;
1036 u64 delalloc_size = 0;
1037 u64 to_reclaim, block_rsv_size;
1038 u64 global_rsv_size = global_rsv->reserved;
1041 * We don't have a precise counter for the metadata being
1042 * reserved for delalloc, so we'll approximate it by subtracting
1043 * out the block rsv's space from the bytes_may_use. If that
1044 * amount is higher than the individual reserves, then we can
1045 * assume it's tied up in delalloc reservations.
1047 block_rsv_size = global_rsv_size +
1048 delayed_block_rsv->reserved +
1049 delayed_refs_rsv->reserved +
1050 trans_rsv->reserved;
1051 if (block_rsv_size < space_info->bytes_may_use)
1052 delalloc_size = space_info->bytes_may_use - block_rsv_size;
1053 spin_unlock(&space_info->lock);
1056 * We don't want to include the global_rsv in our calculation,
1057 * because that's space we can't touch. Subtract it from the
1058 * block_rsv_size for the next checks.
1060 block_rsv_size -= global_rsv_size;
1063 * We really want to avoid flushing delalloc too much, as it
1064 * could result in poor allocation patterns, so only flush it if
1065 * it's larger than the rest of the pools combined.
1067 if (delalloc_size > block_rsv_size) {
1068 to_reclaim = delalloc_size;
1069 flush = FLUSH_DELALLOC;
1070 } else if (space_info->bytes_pinned >
1071 (delayed_block_rsv->reserved +
1072 delayed_refs_rsv->reserved)) {
1073 to_reclaim = space_info->bytes_pinned;
1074 flush = FORCE_COMMIT_TRANS;
1075 } else if (delayed_block_rsv->reserved >
1076 delayed_refs_rsv->reserved) {
1077 to_reclaim = delayed_block_rsv->reserved;
1078 flush = FLUSH_DELAYED_ITEMS_NR;
1080 to_reclaim = delayed_refs_rsv->reserved;
1081 flush = FLUSH_DELAYED_REFS_NR;
1085 * We don't want to reclaim everything, just a portion, so scale
1086 * down the to_reclaim by 1/4. If it takes us down to 0,
1087 * reclaim 1 items worth.
1091 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1092 flush_space(fs_info, space_info, to_reclaim, flush);
1094 spin_lock(&space_info->lock);
1095 used = btrfs_space_info_used(space_info, true);
1097 spin_unlock(&space_info->lock);
1101 * FLUSH_DELALLOC_WAIT:
1102 * Space is freed from flushing delalloc in one of two ways.
1104 * 1) compression is on and we allocate less space than we reserved
1105 * 2) we are overwriting existing space
1107 * For #1 that extra space is reclaimed as soon as the delalloc pages are
1108 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1109 * length to ->bytes_reserved, and subtracts the reserved space from
1112 * For #2 this is trickier. Once the ordered extent runs we will drop the
1113 * extent in the range we are overwriting, which creates a delayed ref for
1114 * that freed extent. This however is not reclaimed until the transaction
1115 * commits, thus the next stages.
1118 * If we are freeing inodes, we want to make sure all delayed iputs have
1119 * completed, because they could have been on an inode with i_nlink == 0, and
1120 * thus have been truncated and freed up space. But again this space is not
1121 * immediately re-usable, it comes in the form of a delayed ref, which must be
1122 * run and then the transaction must be committed.
1124 * FLUSH_DELAYED_REFS
1125 * The above two cases generate delayed refs that will affect
1126 * ->total_bytes_pinned. However this counter can be inconsistent with
1127 * reality if there are outstanding delayed refs. This is because we adjust
1128 * the counter based solely on the current set of delayed refs and disregard
1129 * any on-disk state which might include more refs. So for example, if we
1130 * have an extent with 2 references, but we only drop 1, we'll see that there
1131 * is a negative delayed ref count for the extent and assume that the space
1132 * will be freed, and thus increase ->total_bytes_pinned.
1134 * Running the delayed refs gives us the actual real view of what will be
1135 * freed at the transaction commit time. This stage will not actually free
1136 * space for us, it just makes sure that may_commit_transaction() has all of
1137 * the information it needs to make the right decision.
1140 * This is where we reclaim all of the pinned space generated by the previous
1141 * two stages. We will not commit the transaction if we don't think we're
1142 * likely to satisfy our request, which means if our current free space +
1143 * total_bytes_pinned < reservation we will not commit. This is why the
1144 * previous states are actually important, to make sure we know for sure
1145 * whether committing the transaction will allow us to make progress.
1148 * For data we start with alloc chunk force, however we could have been full
1149 * before, and then the transaction commit could have freed new block groups,
1150 * so if we now have space to allocate do the force chunk allocation.
1152 static const enum btrfs_flush_state data_flush_states[] = {
1153 FLUSH_DELALLOC_WAIT,
1160 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1162 struct btrfs_fs_info *fs_info;
1163 struct btrfs_space_info *space_info;
1164 u64 last_tickets_id;
1165 enum btrfs_flush_state flush_state = 0;
1167 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1168 space_info = fs_info->data_sinfo;
1170 spin_lock(&space_info->lock);
1171 if (list_empty(&space_info->tickets)) {
1172 space_info->flush = 0;
1173 spin_unlock(&space_info->lock);
1176 last_tickets_id = space_info->tickets_id;
1177 spin_unlock(&space_info->lock);
1179 while (!space_info->full) {
1180 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1181 spin_lock(&space_info->lock);
1182 if (list_empty(&space_info->tickets)) {
1183 space_info->flush = 0;
1184 spin_unlock(&space_info->lock);
1187 last_tickets_id = space_info->tickets_id;
1188 spin_unlock(&space_info->lock);
1191 while (flush_state < ARRAY_SIZE(data_flush_states)) {
1192 flush_space(fs_info, space_info, U64_MAX,
1193 data_flush_states[flush_state]);
1194 spin_lock(&space_info->lock);
1195 if (list_empty(&space_info->tickets)) {
1196 space_info->flush = 0;
1197 spin_unlock(&space_info->lock);
1201 if (last_tickets_id == space_info->tickets_id) {
1204 last_tickets_id = space_info->tickets_id;
1208 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1209 if (space_info->full) {
1210 if (maybe_fail_all_tickets(fs_info, space_info))
1213 space_info->flush = 0;
1218 spin_unlock(&space_info->lock);
1222 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1224 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1225 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1226 INIT_WORK(&fs_info->preempt_reclaim_work,
1227 btrfs_preempt_reclaim_metadata_space);
1230 static const enum btrfs_flush_state priority_flush_states[] = {
1231 FLUSH_DELAYED_ITEMS_NR,
1232 FLUSH_DELAYED_ITEMS,
1236 static const enum btrfs_flush_state evict_flush_states[] = {
1237 FLUSH_DELAYED_ITEMS_NR,
1238 FLUSH_DELAYED_ITEMS,
1239 FLUSH_DELAYED_REFS_NR,
1242 FLUSH_DELALLOC_WAIT,
1247 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1248 struct btrfs_space_info *space_info,
1249 struct reserve_ticket *ticket,
1250 const enum btrfs_flush_state *states,
1256 spin_lock(&space_info->lock);
1257 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1259 spin_unlock(&space_info->lock);
1262 spin_unlock(&space_info->lock);
1266 flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1268 spin_lock(&space_info->lock);
1269 if (ticket->bytes == 0) {
1270 spin_unlock(&space_info->lock);
1273 spin_unlock(&space_info->lock);
1274 } while (flush_state < states_nr);
1277 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1278 struct btrfs_space_info *space_info,
1279 struct reserve_ticket *ticket)
1281 while (!space_info->full) {
1282 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1283 spin_lock(&space_info->lock);
1284 if (ticket->bytes == 0) {
1285 spin_unlock(&space_info->lock);
1288 spin_unlock(&space_info->lock);
1292 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1293 struct btrfs_space_info *space_info,
1294 struct reserve_ticket *ticket)
1300 spin_lock(&space_info->lock);
1301 while (ticket->bytes > 0 && ticket->error == 0) {
1302 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1305 * Delete us from the list. After we unlock the space
1306 * info, we don't want the async reclaim job to reserve
1307 * space for this ticket. If that would happen, then the
1308 * ticket's task would not known that space was reserved
1309 * despite getting an error, resulting in a space leak
1310 * (bytes_may_use counter of our space_info).
1312 remove_ticket(space_info, ticket);
1313 ticket->error = -EINTR;
1316 spin_unlock(&space_info->lock);
1320 finish_wait(&ticket->wait, &wait);
1321 spin_lock(&space_info->lock);
1323 spin_unlock(&space_info->lock);
1327 * Do the appropriate flushing and waiting for a ticket
1329 * @fs_info: the filesystem
1330 * @space_info: space info for the reservation
1331 * @ticket: ticket for the reservation
1332 * @start_ns: timestamp when the reservation started
1333 * @orig_bytes: amount of bytes originally reserved
1334 * @flush: how much we can flush
1336 * This does the work of figuring out how to flush for the ticket, waiting for
1337 * the reservation, and returning the appropriate error if there is one.
1339 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1340 struct btrfs_space_info *space_info,
1341 struct reserve_ticket *ticket,
1342 u64 start_ns, u64 orig_bytes,
1343 enum btrfs_reserve_flush_enum flush)
1348 case BTRFS_RESERVE_FLUSH_DATA:
1349 case BTRFS_RESERVE_FLUSH_ALL:
1350 case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1351 wait_reserve_ticket(fs_info, space_info, ticket);
1353 case BTRFS_RESERVE_FLUSH_LIMIT:
1354 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1355 priority_flush_states,
1356 ARRAY_SIZE(priority_flush_states));
1358 case BTRFS_RESERVE_FLUSH_EVICT:
1359 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1361 ARRAY_SIZE(evict_flush_states));
1363 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1364 priority_reclaim_data_space(fs_info, space_info, ticket);
1371 spin_lock(&space_info->lock);
1372 ret = ticket->error;
1373 if (ticket->bytes || ticket->error) {
1375 * We were a priority ticket, so we need to delete ourselves
1376 * from the list. Because we could have other priority tickets
1377 * behind us that require less space, run
1378 * btrfs_try_granting_tickets() to see if their reservations can
1381 if (!list_empty(&ticket->list)) {
1382 remove_ticket(space_info, ticket);
1383 btrfs_try_granting_tickets(fs_info, space_info);
1389 spin_unlock(&space_info->lock);
1390 ASSERT(list_empty(&ticket->list));
1392 * Check that we can't have an error set if the reservation succeeded,
1393 * as that would confuse tasks and lead them to error out without
1394 * releasing reserved space (if an error happens the expectation is that
1395 * space wasn't reserved at all).
1397 ASSERT(!(ticket->bytes == 0 && ticket->error));
1398 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1399 start_ns, flush, ticket->error);
1404 * This returns true if this flush state will go through the ordinary flushing
1407 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1409 return (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1410 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1414 * Try to reserve bytes from the block_rsv's space
1416 * @fs_info: the filesystem
1417 * @space_info: space info we want to allocate from
1418 * @orig_bytes: number of bytes we want
1419 * @flush: whether or not we can flush to make our reservation
1421 * This will reserve orig_bytes number of bytes from the space info associated
1422 * with the block_rsv. If there is not enough space it will make an attempt to
1423 * flush out space to make room. It will do this by flushing delalloc if
1424 * possible or committing the transaction. If flush is 0 then no attempts to
1425 * regain reservations will be made and this will fail if there is not enough
1428 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1429 struct btrfs_space_info *space_info, u64 orig_bytes,
1430 enum btrfs_reserve_flush_enum flush)
1432 struct work_struct *async_work;
1433 struct reserve_ticket ticket;
1437 bool pending_tickets;
1440 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1442 if (flush == BTRFS_RESERVE_FLUSH_DATA)
1443 async_work = &fs_info->async_data_reclaim_work;
1445 async_work = &fs_info->async_reclaim_work;
1447 spin_lock(&space_info->lock);
1449 used = btrfs_space_info_used(space_info, true);
1452 * We don't want NO_FLUSH allocations to jump everybody, they can
1453 * generally handle ENOSPC in a different way, so treat them the same as
1454 * normal flushers when it comes to skipping pending tickets.
1456 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1457 pending_tickets = !list_empty(&space_info->tickets) ||
1458 !list_empty(&space_info->priority_tickets);
1460 pending_tickets = !list_empty(&space_info->priority_tickets);
1463 * Carry on if we have enough space (short-circuit) OR call
1464 * can_overcommit() to ensure we can overcommit to continue.
1466 if (!pending_tickets &&
1467 ((used + orig_bytes <= space_info->total_bytes) ||
1468 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1469 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1475 * If we couldn't make a reservation then setup our reservation ticket
1476 * and kick the async worker if it's not already running.
1478 * If we are a priority flusher then we just need to add our ticket to
1479 * the list and we will do our own flushing further down.
1481 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1482 ticket.bytes = orig_bytes;
1484 space_info->reclaim_size += ticket.bytes;
1485 init_waitqueue_head(&ticket.wait);
1486 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1487 if (trace_btrfs_reserve_ticket_enabled())
1488 start_ns = ktime_get_ns();
1490 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1491 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1492 flush == BTRFS_RESERVE_FLUSH_DATA) {
1493 list_add_tail(&ticket.list, &space_info->tickets);
1494 if (!space_info->flush) {
1495 space_info->flush = 1;
1496 trace_btrfs_trigger_flush(fs_info,
1500 queue_work(system_unbound_wq, async_work);
1503 list_add_tail(&ticket.list,
1504 &space_info->priority_tickets);
1506 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1509 * We will do the space reservation dance during log replay,
1510 * which means we won't have fs_info->fs_root set, so don't do
1511 * the async reclaim as we will panic.
1513 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1514 need_preemptive_reclaim(fs_info, space_info, used) &&
1515 !work_busy(&fs_info->preempt_reclaim_work)) {
1516 trace_btrfs_trigger_flush(fs_info, space_info->flags,
1517 orig_bytes, flush, "preempt");
1518 queue_work(system_unbound_wq,
1519 &fs_info->preempt_reclaim_work);
1522 spin_unlock(&space_info->lock);
1523 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1526 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1531 * Trye to reserve metadata bytes from the block_rsv's space
1533 * @root: the root we're allocating for
1534 * @block_rsv: block_rsv we're allocating for
1535 * @orig_bytes: number of bytes we want
1536 * @flush: whether or not we can flush to make our reservation
1538 * This will reserve orig_bytes number of bytes from the space info associated
1539 * with the block_rsv. If there is not enough space it will make an attempt to
1540 * flush out space to make room. It will do this by flushing delalloc if
1541 * possible or committing the transaction. If flush is 0 then no attempts to
1542 * regain reservations will be made and this will fail if there is not enough
1545 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1546 struct btrfs_block_rsv *block_rsv,
1548 enum btrfs_reserve_flush_enum flush)
1550 struct btrfs_fs_info *fs_info = root->fs_info;
1551 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1554 ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1555 if (ret == -ENOSPC &&
1556 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1557 if (block_rsv != global_rsv &&
1558 !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1561 if (ret == -ENOSPC) {
1562 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1563 block_rsv->space_info->flags,
1566 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1567 btrfs_dump_space_info(fs_info, block_rsv->space_info,
1574 * Try to reserve data bytes for an allocation
1576 * @fs_info: the filesystem
1577 * @bytes: number of bytes we need
1578 * @flush: how we are allowed to flush
1580 * This will reserve bytes from the data space info. If there is not enough
1581 * space then we will attempt to flush space as specified by flush.
1583 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1584 enum btrfs_reserve_flush_enum flush)
1586 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1589 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1590 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1591 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1593 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1594 if (ret == -ENOSPC) {
1595 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1596 data_sinfo->flags, bytes, 1);
1597 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1598 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);