1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
6 #include <linux/bsearch.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 #include <linux/fsverity.h>
25 #include "btrfs_inode.h"
26 #include "transaction.h"
27 #include "compression.h"
29 #include "print-tree.h"
30 #include "accessors.h"
32 #include "file-item.h"
35 #include "lru_cache.h"
38 * Maximum number of references an extent can have in order for us to attempt to
39 * issue clone operations instead of write operations. This currently exists to
40 * avoid hitting limitations of the backreference walking code (taking a lot of
41 * time and using too much memory for extents with large number of references).
43 #define SEND_MAX_EXTENT_REFS 1024
46 * A fs_path is a helper to dynamically build path names with unknown size.
47 * It reallocates the internal buffer on demand.
48 * It allows fast adding of path elements on the right side (normal path) and
49 * fast adding to the left side (reversed path). A reversed path can also be
50 * unreversed if needed.
59 unsigned short buf_len:15;
60 unsigned short reversed:1;
64 * Average path length does not exceed 200 bytes, we'll have
65 * better packing in the slab and higher chance to satisfy
66 * a allocation later during send.
71 #define FS_PATH_INLINE_SIZE \
72 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
75 /* reused for each extent */
77 struct btrfs_root *root;
84 #define SEND_MAX_NAME_CACHE_SIZE 256
87 * Limit the root_ids array of struct backref_cache_entry to 17 elements.
88 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
89 * can be satisfied from the kmalloc-192 slab, without wasting any space.
90 * The most common case is to have a single root for cloning, which corresponds
91 * to the send root. Having the user specify more than 16 clone roots is not
92 * common, and in such rare cases we simply don't use caching if the number of
93 * cloning roots that lead down to a leaf is more than 17.
95 #define SEND_MAX_BACKREF_CACHE_ROOTS 17
98 * Max number of entries in the cache.
99 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
100 * maple tree's internal nodes, is 24K.
102 #define SEND_MAX_BACKREF_CACHE_SIZE 128
105 * A backref cache entry maps a leaf to a list of IDs of roots from which the
106 * leaf is accessible and we can use for clone operations.
107 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
110 struct backref_cache_entry {
111 struct btrfs_lru_cache_entry entry;
112 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
113 /* Number of valid elements in the root_ids array. */
117 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
118 static_assert(offsetof(struct backref_cache_entry, entry) == 0);
121 * Max number of entries in the cache that stores directories that were already
122 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
123 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
124 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
126 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64
129 * Max number of entries in the cache that stores directories that were already
130 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
131 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
132 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
134 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64
137 struct file *send_filp;
143 * Whether BTRFS_SEND_A_DATA attribute was already added to current
144 * command (since protocol v2, data must be the last attribute).
147 struct page **send_buf_pages;
148 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
149 /* Protocol version compatibility requested */
152 struct btrfs_root *send_root;
153 struct btrfs_root *parent_root;
154 struct clone_root *clone_roots;
157 /* current state of the compare_tree call */
158 struct btrfs_path *left_path;
159 struct btrfs_path *right_path;
160 struct btrfs_key *cmp_key;
163 * Keep track of the generation of the last transaction that was used
164 * for relocating a block group. This is periodically checked in order
165 * to detect if a relocation happened since the last check, so that we
166 * don't operate on stale extent buffers for nodes (level >= 1) or on
167 * stale disk_bytenr values of file extent items.
169 u64 last_reloc_trans;
172 * infos of the currently processed inode. In case of deleted inodes,
173 * these are the values from the deleted inode.
180 u64 cur_inode_last_extent;
181 u64 cur_inode_next_write_offset;
183 bool cur_inode_new_gen;
184 bool cur_inode_deleted;
185 bool ignore_cur_inode;
186 bool cur_inode_needs_verity;
187 void *verity_descriptor;
191 struct list_head new_refs;
192 struct list_head deleted_refs;
194 struct btrfs_lru_cache name_cache;
197 * The inode we are currently processing. It's not NULL only when we
198 * need to issue write commands for data extents from this inode.
200 struct inode *cur_inode;
201 struct file_ra_state ra;
202 u64 page_cache_clear_start;
203 bool clean_page_cache;
206 * We process inodes by their increasing order, so if before an
207 * incremental send we reverse the parent/child relationship of
208 * directories such that a directory with a lower inode number was
209 * the parent of a directory with a higher inode number, and the one
210 * becoming the new parent got renamed too, we can't rename/move the
211 * directory with lower inode number when we finish processing it - we
212 * must process the directory with higher inode number first, then
213 * rename/move it and then rename/move the directory with lower inode
214 * number. Example follows.
216 * Tree state when the first send was performed:
228 * Tree state when the second (incremental) send is performed:
237 * The sequence of steps that lead to the second state was:
239 * mv /a/b/c/d /a/b/c2/d2
240 * mv /a/b/c /a/b/c2/d2/cc
242 * "c" has lower inode number, but we can't move it (2nd mv operation)
243 * before we move "d", which has higher inode number.
245 * So we just memorize which move/rename operations must be performed
246 * later when their respective parent is processed and moved/renamed.
249 /* Indexed by parent directory inode number. */
250 struct rb_root pending_dir_moves;
253 * Reverse index, indexed by the inode number of a directory that
254 * is waiting for the move/rename of its immediate parent before its
255 * own move/rename can be performed.
257 struct rb_root waiting_dir_moves;
260 * A directory that is going to be rm'ed might have a child directory
261 * which is in the pending directory moves index above. In this case,
262 * the directory can only be removed after the move/rename of its child
263 * is performed. Example:
283 * Sequence of steps that lead to the send snapshot:
284 * rm -f /a/b/c/foo.txt
286 * mv /a/b/c/x /a/b/YY
289 * When the child is processed, its move/rename is delayed until its
290 * parent is processed (as explained above), but all other operations
291 * like update utimes, chown, chgrp, etc, are performed and the paths
292 * that it uses for those operations must use the orphanized name of
293 * its parent (the directory we're going to rm later), so we need to
294 * memorize that name.
296 * Indexed by the inode number of the directory to be deleted.
298 struct rb_root orphan_dirs;
300 struct rb_root rbtree_new_refs;
301 struct rb_root rbtree_deleted_refs;
303 struct btrfs_lru_cache backref_cache;
304 u64 backref_cache_last_reloc_trans;
306 struct btrfs_lru_cache dir_created_cache;
307 struct btrfs_lru_cache dir_utimes_cache;
310 struct pending_dir_move {
312 struct list_head list;
316 struct list_head update_refs;
319 struct waiting_dir_move {
323 * There might be some directory that could not be removed because it
324 * was waiting for this directory inode to be moved first. Therefore
325 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
332 struct orphan_dir_info {
336 u64 last_dir_index_offset;
337 u64 dir_high_seq_ino;
340 struct name_cache_entry {
342 * The key in the entry is an inode number, and the generation matches
343 * the inode's generation.
345 struct btrfs_lru_cache_entry entry;
349 int need_later_update;
354 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
355 static_assert(offsetof(struct name_cache_entry, entry) == 0);
358 #define ADVANCE_ONLY_NEXT -1
360 enum btrfs_compare_tree_result {
361 BTRFS_COMPARE_TREE_NEW,
362 BTRFS_COMPARE_TREE_DELETED,
363 BTRFS_COMPARE_TREE_CHANGED,
364 BTRFS_COMPARE_TREE_SAME,
368 static void inconsistent_snapshot_error(struct send_ctx *sctx,
369 enum btrfs_compare_tree_result result,
372 const char *result_string;
375 case BTRFS_COMPARE_TREE_NEW:
376 result_string = "new";
378 case BTRFS_COMPARE_TREE_DELETED:
379 result_string = "deleted";
381 case BTRFS_COMPARE_TREE_CHANGED:
382 result_string = "updated";
384 case BTRFS_COMPARE_TREE_SAME:
386 result_string = "unchanged";
390 result_string = "unexpected";
393 btrfs_err(sctx->send_root->fs_info,
394 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
395 result_string, what, sctx->cmp_key->objectid,
396 sctx->send_root->root_key.objectid,
398 sctx->parent_root->root_key.objectid : 0));
402 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
404 switch (sctx->proto) {
405 case 1: return cmd <= BTRFS_SEND_C_MAX_V1;
406 case 2: return cmd <= BTRFS_SEND_C_MAX_V2;
407 case 3: return cmd <= BTRFS_SEND_C_MAX_V3;
408 default: return false;
412 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
414 static struct waiting_dir_move *
415 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
417 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
419 static int need_send_hole(struct send_ctx *sctx)
421 return (sctx->parent_root && !sctx->cur_inode_new &&
422 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
423 S_ISREG(sctx->cur_inode_mode));
426 static void fs_path_reset(struct fs_path *p)
429 p->start = p->buf + p->buf_len - 1;
439 static struct fs_path *fs_path_alloc(void)
443 p = kmalloc(sizeof(*p), GFP_KERNEL);
447 p->buf = p->inline_buf;
448 p->buf_len = FS_PATH_INLINE_SIZE;
453 static struct fs_path *fs_path_alloc_reversed(void)
465 static void fs_path_free(struct fs_path *p)
469 if (p->buf != p->inline_buf)
474 static int fs_path_len(struct fs_path *p)
476 return p->end - p->start;
479 static int fs_path_ensure_buf(struct fs_path *p, int len)
487 if (p->buf_len >= len)
490 if (len > PATH_MAX) {
495 path_len = p->end - p->start;
496 old_buf_len = p->buf_len;
499 * Allocate to the next largest kmalloc bucket size, to let
500 * the fast path happen most of the time.
502 len = kmalloc_size_roundup(len);
504 * First time the inline_buf does not suffice
506 if (p->buf == p->inline_buf) {
507 tmp_buf = kmalloc(len, GFP_KERNEL);
509 memcpy(tmp_buf, p->buf, old_buf_len);
511 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
519 tmp_buf = p->buf + old_buf_len - path_len - 1;
520 p->end = p->buf + p->buf_len - 1;
521 p->start = p->end - path_len;
522 memmove(p->start, tmp_buf, path_len + 1);
525 p->end = p->start + path_len;
530 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
536 new_len = p->end - p->start + name_len;
537 if (p->start != p->end)
539 ret = fs_path_ensure_buf(p, new_len);
544 if (p->start != p->end)
546 p->start -= name_len;
547 *prepared = p->start;
549 if (p->start != p->end)
560 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
565 ret = fs_path_prepare_for_add(p, name_len, &prepared);
568 memcpy(prepared, name, name_len);
574 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
579 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
582 memcpy(prepared, p2->start, p2->end - p2->start);
588 static int fs_path_add_from_extent_buffer(struct fs_path *p,
589 struct extent_buffer *eb,
590 unsigned long off, int len)
595 ret = fs_path_prepare_for_add(p, len, &prepared);
599 read_extent_buffer(eb, prepared, off, len);
605 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
607 p->reversed = from->reversed;
610 return fs_path_add_path(p, from);
613 static void fs_path_unreverse(struct fs_path *p)
622 len = p->end - p->start;
624 p->end = p->start + len;
625 memmove(p->start, tmp, len + 1);
629 static struct btrfs_path *alloc_path_for_send(void)
631 struct btrfs_path *path;
633 path = btrfs_alloc_path();
636 path->search_commit_root = 1;
637 path->skip_locking = 1;
638 path->need_commit_sem = 1;
642 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
648 ret = kernel_write(filp, buf + pos, len - pos, off);
659 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
661 struct btrfs_tlv_header *hdr;
662 int total_len = sizeof(*hdr) + len;
663 int left = sctx->send_max_size - sctx->send_size;
665 if (WARN_ON_ONCE(sctx->put_data))
668 if (unlikely(left < total_len))
671 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
672 put_unaligned_le16(attr, &hdr->tlv_type);
673 put_unaligned_le16(len, &hdr->tlv_len);
674 memcpy(hdr + 1, data, len);
675 sctx->send_size += total_len;
680 #define TLV_PUT_DEFINE_INT(bits) \
681 static int tlv_put_u##bits(struct send_ctx *sctx, \
682 u##bits attr, u##bits value) \
684 __le##bits __tmp = cpu_to_le##bits(value); \
685 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
688 TLV_PUT_DEFINE_INT(8)
689 TLV_PUT_DEFINE_INT(32)
690 TLV_PUT_DEFINE_INT(64)
692 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
693 const char *str, int len)
697 return tlv_put(sctx, attr, str, len);
700 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
703 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
706 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
707 struct extent_buffer *eb,
708 struct btrfs_timespec *ts)
710 struct btrfs_timespec bts;
711 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
712 return tlv_put(sctx, attr, &bts, sizeof(bts));
716 #define TLV_PUT(sctx, attrtype, data, attrlen) \
718 ret = tlv_put(sctx, attrtype, data, attrlen); \
720 goto tlv_put_failure; \
723 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
725 ret = tlv_put_u##bits(sctx, attrtype, value); \
727 goto tlv_put_failure; \
730 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
731 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
732 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
733 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
734 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
736 ret = tlv_put_string(sctx, attrtype, str, len); \
738 goto tlv_put_failure; \
740 #define TLV_PUT_PATH(sctx, attrtype, p) \
742 ret = tlv_put_string(sctx, attrtype, p->start, \
743 p->end - p->start); \
745 goto tlv_put_failure; \
747 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
749 ret = tlv_put_uuid(sctx, attrtype, uuid); \
751 goto tlv_put_failure; \
753 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
755 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
757 goto tlv_put_failure; \
760 static int send_header(struct send_ctx *sctx)
762 struct btrfs_stream_header hdr;
764 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
765 hdr.version = cpu_to_le32(sctx->proto);
766 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
771 * For each command/item we want to send to userspace, we call this function.
773 static int begin_cmd(struct send_ctx *sctx, int cmd)
775 struct btrfs_cmd_header *hdr;
777 if (WARN_ON(!sctx->send_buf))
780 BUG_ON(sctx->send_size);
782 sctx->send_size += sizeof(*hdr);
783 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
784 put_unaligned_le16(cmd, &hdr->cmd);
789 static int send_cmd(struct send_ctx *sctx)
792 struct btrfs_cmd_header *hdr;
795 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
796 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
797 put_unaligned_le32(0, &hdr->crc);
799 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
800 put_unaligned_le32(crc, &hdr->crc);
802 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
806 sctx->put_data = false;
812 * Sends a move instruction to user space
814 static int send_rename(struct send_ctx *sctx,
815 struct fs_path *from, struct fs_path *to)
817 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
820 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
822 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
826 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
827 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
829 ret = send_cmd(sctx);
837 * Sends a link instruction to user space
839 static int send_link(struct send_ctx *sctx,
840 struct fs_path *path, struct fs_path *lnk)
842 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
845 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
847 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
851 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
852 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
854 ret = send_cmd(sctx);
862 * Sends an unlink instruction to user space
864 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
866 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
869 btrfs_debug(fs_info, "send_unlink %s", path->start);
871 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
875 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
877 ret = send_cmd(sctx);
885 * Sends a rmdir instruction to user space
887 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
889 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
892 btrfs_debug(fs_info, "send_rmdir %s", path->start);
894 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
898 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
900 ret = send_cmd(sctx);
907 struct btrfs_inode_info {
919 * Helper function to retrieve some fields from an inode item.
921 static int get_inode_info(struct btrfs_root *root, u64 ino,
922 struct btrfs_inode_info *info)
925 struct btrfs_path *path;
926 struct btrfs_inode_item *ii;
927 struct btrfs_key key;
929 path = alloc_path_for_send();
934 key.type = BTRFS_INODE_ITEM_KEY;
936 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
946 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
947 struct btrfs_inode_item);
948 info->size = btrfs_inode_size(path->nodes[0], ii);
949 info->gen = btrfs_inode_generation(path->nodes[0], ii);
950 info->mode = btrfs_inode_mode(path->nodes[0], ii);
951 info->uid = btrfs_inode_uid(path->nodes[0], ii);
952 info->gid = btrfs_inode_gid(path->nodes[0], ii);
953 info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
954 info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
956 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
957 * otherwise logically split to 32/32 parts.
959 info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
962 btrfs_free_path(path);
966 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
969 struct btrfs_inode_info info = { 0 };
973 ret = get_inode_info(root, ino, &info);
978 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
983 * Helper function to iterate the entries in ONE btrfs_inode_ref or
984 * btrfs_inode_extref.
985 * The iterate callback may return a non zero value to stop iteration. This can
986 * be a negative value for error codes or 1 to simply stop it.
988 * path must point to the INODE_REF or INODE_EXTREF when called.
990 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
991 struct btrfs_key *found_key, int resolve,
992 iterate_inode_ref_t iterate, void *ctx)
994 struct extent_buffer *eb = path->nodes[0];
995 struct btrfs_inode_ref *iref;
996 struct btrfs_inode_extref *extref;
997 struct btrfs_path *tmp_path;
1001 int slot = path->slots[0];
1008 unsigned long name_off;
1009 unsigned long elem_size;
1012 p = fs_path_alloc_reversed();
1016 tmp_path = alloc_path_for_send();
1023 if (found_key->type == BTRFS_INODE_REF_KEY) {
1024 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1025 struct btrfs_inode_ref);
1026 total = btrfs_item_size(eb, slot);
1027 elem_size = sizeof(*iref);
1029 ptr = btrfs_item_ptr_offset(eb, slot);
1030 total = btrfs_item_size(eb, slot);
1031 elem_size = sizeof(*extref);
1034 while (cur < total) {
1037 if (found_key->type == BTRFS_INODE_REF_KEY) {
1038 iref = (struct btrfs_inode_ref *)(ptr + cur);
1039 name_len = btrfs_inode_ref_name_len(eb, iref);
1040 name_off = (unsigned long)(iref + 1);
1041 index = btrfs_inode_ref_index(eb, iref);
1042 dir = found_key->offset;
1044 extref = (struct btrfs_inode_extref *)(ptr + cur);
1045 name_len = btrfs_inode_extref_name_len(eb, extref);
1046 name_off = (unsigned long)&extref->name;
1047 index = btrfs_inode_extref_index(eb, extref);
1048 dir = btrfs_inode_extref_parent(eb, extref);
1052 start = btrfs_ref_to_path(root, tmp_path, name_len,
1054 p->buf, p->buf_len);
1055 if (IS_ERR(start)) {
1056 ret = PTR_ERR(start);
1059 if (start < p->buf) {
1060 /* overflow , try again with larger buffer */
1061 ret = fs_path_ensure_buf(p,
1062 p->buf_len + p->buf - start);
1065 start = btrfs_ref_to_path(root, tmp_path,
1068 p->buf, p->buf_len);
1069 if (IS_ERR(start)) {
1070 ret = PTR_ERR(start);
1073 BUG_ON(start < p->buf);
1077 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1083 cur += elem_size + name_len;
1084 ret = iterate(num, dir, index, p, ctx);
1091 btrfs_free_path(tmp_path);
1096 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1097 const char *name, int name_len,
1098 const char *data, int data_len,
1102 * Helper function to iterate the entries in ONE btrfs_dir_item.
1103 * The iterate callback may return a non zero value to stop iteration. This can
1104 * be a negative value for error codes or 1 to simply stop it.
1106 * path must point to the dir item when called.
1108 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1109 iterate_dir_item_t iterate, void *ctx)
1112 struct extent_buffer *eb;
1113 struct btrfs_dir_item *di;
1114 struct btrfs_key di_key;
1126 * Start with a small buffer (1 page). If later we end up needing more
1127 * space, which can happen for xattrs on a fs with a leaf size greater
1128 * then the page size, attempt to increase the buffer. Typically xattr
1132 buf = kmalloc(buf_len, GFP_KERNEL);
1138 eb = path->nodes[0];
1139 slot = path->slots[0];
1140 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1143 total = btrfs_item_size(eb, slot);
1146 while (cur < total) {
1147 name_len = btrfs_dir_name_len(eb, di);
1148 data_len = btrfs_dir_data_len(eb, di);
1149 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1151 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1152 if (name_len > XATTR_NAME_MAX) {
1153 ret = -ENAMETOOLONG;
1156 if (name_len + data_len >
1157 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1165 if (name_len + data_len > PATH_MAX) {
1166 ret = -ENAMETOOLONG;
1171 if (name_len + data_len > buf_len) {
1172 buf_len = name_len + data_len;
1173 if (is_vmalloc_addr(buf)) {
1177 char *tmp = krealloc(buf, buf_len,
1178 GFP_KERNEL | __GFP_NOWARN);
1185 buf = kvmalloc(buf_len, GFP_KERNEL);
1193 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1194 name_len + data_len);
1196 len = sizeof(*di) + name_len + data_len;
1197 di = (struct btrfs_dir_item *)((char *)di + len);
1200 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1217 static int __copy_first_ref(int num, u64 dir, int index,
1218 struct fs_path *p, void *ctx)
1221 struct fs_path *pt = ctx;
1223 ret = fs_path_copy(pt, p);
1227 /* we want the first only */
1232 * Retrieve the first path of an inode. If an inode has more then one
1233 * ref/hardlink, this is ignored.
1235 static int get_inode_path(struct btrfs_root *root,
1236 u64 ino, struct fs_path *path)
1239 struct btrfs_key key, found_key;
1240 struct btrfs_path *p;
1242 p = alloc_path_for_send();
1246 fs_path_reset(path);
1249 key.type = BTRFS_INODE_REF_KEY;
1252 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1259 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1260 if (found_key.objectid != ino ||
1261 (found_key.type != BTRFS_INODE_REF_KEY &&
1262 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1267 ret = iterate_inode_ref(root, p, &found_key, 1,
1268 __copy_first_ref, path);
1278 struct backref_ctx {
1279 struct send_ctx *sctx;
1281 /* number of total found references */
1285 * used for clones found in send_root. clones found behind cur_objectid
1286 * and cur_offset are not considered as allowed clones.
1291 /* may be truncated in case it's the last extent in a file */
1294 /* The bytenr the file extent item we are processing refers to. */
1296 /* The owner (root id) of the data backref for the current extent. */
1298 /* The offset of the data backref for the current extent. */
1302 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1304 u64 root = (u64)(uintptr_t)key;
1305 const struct clone_root *cr = elt;
1307 if (root < cr->root->root_key.objectid)
1309 if (root > cr->root->root_key.objectid)
1314 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1316 const struct clone_root *cr1 = e1;
1317 const struct clone_root *cr2 = e2;
1319 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1321 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1327 * Called for every backref that is found for the current extent.
1328 * Results are collected in sctx->clone_roots->ino/offset.
1330 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1333 struct backref_ctx *bctx = ctx_;
1334 struct clone_root *clone_root;
1336 /* First check if the root is in the list of accepted clone sources */
1337 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1338 bctx->sctx->clone_roots_cnt,
1339 sizeof(struct clone_root),
1340 __clone_root_cmp_bsearch);
1344 /* This is our own reference, bail out as we can't clone from it. */
1345 if (clone_root->root == bctx->sctx->send_root &&
1346 ino == bctx->cur_objectid &&
1347 offset == bctx->cur_offset)
1351 * Make sure we don't consider clones from send_root that are
1352 * behind the current inode/offset.
1354 if (clone_root->root == bctx->sctx->send_root) {
1356 * If the source inode was not yet processed we can't issue a
1357 * clone operation, as the source extent does not exist yet at
1358 * the destination of the stream.
1360 if (ino > bctx->cur_objectid)
1363 * We clone from the inode currently being sent as long as the
1364 * source extent is already processed, otherwise we could try
1365 * to clone from an extent that does not exist yet at the
1366 * destination of the stream.
1368 if (ino == bctx->cur_objectid &&
1369 offset + bctx->extent_len >
1370 bctx->sctx->cur_inode_next_write_offset)
1375 clone_root->found_ref = true;
1378 * If the given backref refers to a file extent item with a larger
1379 * number of bytes than what we found before, use the new one so that
1380 * we clone more optimally and end up doing less writes and getting
1381 * less exclusive, non-shared extents at the destination.
1383 if (num_bytes > clone_root->num_bytes) {
1384 clone_root->ino = ino;
1385 clone_root->offset = offset;
1386 clone_root->num_bytes = num_bytes;
1389 * Found a perfect candidate, so there's no need to continue
1392 if (num_bytes >= bctx->extent_len)
1393 return BTRFS_ITERATE_EXTENT_INODES_STOP;
1399 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1400 const u64 **root_ids_ret, int *root_count_ret)
1402 struct backref_ctx *bctx = ctx;
1403 struct send_ctx *sctx = bctx->sctx;
1404 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1405 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1406 struct btrfs_lru_cache_entry *raw_entry;
1407 struct backref_cache_entry *entry;
1409 if (btrfs_lru_cache_size(&sctx->backref_cache) == 0)
1413 * If relocation happened since we first filled the cache, then we must
1414 * empty the cache and can not use it, because even though we operate on
1415 * read-only roots, their leaves and nodes may have been reallocated and
1416 * now be used for different nodes/leaves of the same tree or some other
1419 * We are called from iterate_extent_inodes() while either holding a
1420 * transaction handle or holding fs_info->commit_root_sem, so no need
1421 * to take any lock here.
1423 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1424 btrfs_lru_cache_clear(&sctx->backref_cache);
1428 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1432 entry = container_of(raw_entry, struct backref_cache_entry, entry);
1433 *root_ids_ret = entry->root_ids;
1434 *root_count_ret = entry->num_roots;
1439 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1442 struct backref_ctx *bctx = ctx;
1443 struct send_ctx *sctx = bctx->sctx;
1444 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1445 struct backref_cache_entry *new_entry;
1446 struct ulist_iterator uiter;
1447 struct ulist_node *node;
1451 * We're called while holding a transaction handle or while holding
1452 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1455 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1456 /* No worries, cache is optional. */
1460 new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1461 new_entry->entry.gen = 0;
1462 new_entry->num_roots = 0;
1463 ULIST_ITER_INIT(&uiter);
1464 while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1465 const u64 root_id = node->val;
1466 struct clone_root *root;
1468 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1469 sctx->clone_roots_cnt, sizeof(struct clone_root),
1470 __clone_root_cmp_bsearch);
1474 /* Too many roots, just exit, no worries as caching is optional. */
1475 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1480 new_entry->root_ids[new_entry->num_roots] = root_id;
1481 new_entry->num_roots++;
1485 * We may have not added any roots to the new cache entry, which means
1486 * none of the roots is part of the list of roots from which we are
1487 * allowed to clone. Cache the new entry as it's still useful to avoid
1488 * backref walking to determine which roots have a path to the leaf.
1490 * Also use GFP_NOFS because we're called while holding a transaction
1491 * handle or while holding fs_info->commit_root_sem.
1493 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1495 ASSERT(ret == 0 || ret == -ENOMEM);
1497 /* Caching is optional, no worries. */
1503 * We are called from iterate_extent_inodes() while either holding a
1504 * transaction handle or holding fs_info->commit_root_sem, so no need
1505 * to take any lock here.
1507 if (btrfs_lru_cache_size(&sctx->backref_cache) == 1)
1508 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1511 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1512 const struct extent_buffer *leaf, void *ctx)
1514 const u64 refs = btrfs_extent_refs(leaf, ei);
1515 const struct backref_ctx *bctx = ctx;
1516 const struct send_ctx *sctx = bctx->sctx;
1518 if (bytenr == bctx->bytenr) {
1519 const u64 flags = btrfs_extent_flags(leaf, ei);
1521 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1525 * If we have only one reference and only the send root as a
1526 * clone source - meaning no clone roots were given in the
1527 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1528 * it's our reference and there's no point in doing backref
1529 * walking which is expensive, so exit early.
1531 if (refs == 1 && sctx->clone_roots_cnt == 1)
1536 * Backreference walking (iterate_extent_inodes() below) is currently
1537 * too expensive when an extent has a large number of references, both
1538 * in time spent and used memory. So for now just fallback to write
1539 * operations instead of clone operations when an extent has more than
1540 * a certain amount of references.
1542 if (refs > SEND_MAX_EXTENT_REFS)
1548 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1550 const struct backref_ctx *bctx = ctx;
1552 if (ino == bctx->cur_objectid &&
1553 root == bctx->backref_owner &&
1554 offset == bctx->backref_offset)
1561 * Given an inode, offset and extent item, it finds a good clone for a clone
1562 * instruction. Returns -ENOENT when none could be found. The function makes
1563 * sure that the returned clone is usable at the point where sending is at the
1564 * moment. This means, that no clones are accepted which lie behind the current
1567 * path must point to the extent item when called.
1569 static int find_extent_clone(struct send_ctx *sctx,
1570 struct btrfs_path *path,
1571 u64 ino, u64 data_offset,
1573 struct clone_root **found)
1575 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1581 struct btrfs_file_extent_item *fi;
1582 struct extent_buffer *eb = path->nodes[0];
1583 struct backref_ctx backref_ctx = { 0 };
1584 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1585 struct clone_root *cur_clone_root;
1590 * With fallocate we can get prealloc extents beyond the inode's i_size,
1591 * so we don't do anything here because clone operations can not clone
1592 * to a range beyond i_size without increasing the i_size of the
1593 * destination inode.
1595 if (data_offset >= ino_size)
1598 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1599 extent_type = btrfs_file_extent_type(eb, fi);
1600 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1603 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1607 compressed = btrfs_file_extent_compression(eb, fi);
1608 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1609 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1612 * Setup the clone roots.
1614 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1615 cur_clone_root = sctx->clone_roots + i;
1616 cur_clone_root->ino = (u64)-1;
1617 cur_clone_root->offset = 0;
1618 cur_clone_root->num_bytes = 0;
1619 cur_clone_root->found_ref = false;
1622 backref_ctx.sctx = sctx;
1623 backref_ctx.cur_objectid = ino;
1624 backref_ctx.cur_offset = data_offset;
1625 backref_ctx.bytenr = disk_byte;
1627 * Use the header owner and not the send root's id, because in case of a
1628 * snapshot we can have shared subtrees.
1630 backref_ctx.backref_owner = btrfs_header_owner(eb);
1631 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1634 * The last extent of a file may be too large due to page alignment.
1635 * We need to adjust extent_len in this case so that the checks in
1636 * iterate_backrefs() work.
1638 if (data_offset + num_bytes >= ino_size)
1639 backref_ctx.extent_len = ino_size - data_offset;
1641 backref_ctx.extent_len = num_bytes;
1644 * Now collect all backrefs.
1646 backref_walk_ctx.bytenr = disk_byte;
1647 if (compressed == BTRFS_COMPRESS_NONE)
1648 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1649 backref_walk_ctx.fs_info = fs_info;
1650 backref_walk_ctx.cache_lookup = lookup_backref_cache;
1651 backref_walk_ctx.cache_store = store_backref_cache;
1652 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1653 backref_walk_ctx.check_extent_item = check_extent_item;
1654 backref_walk_ctx.user_ctx = &backref_ctx;
1657 * If have a single clone root, then it's the send root and we can tell
1658 * the backref walking code to skip our own backref and not resolve it,
1659 * since we can not use it for cloning - the source and destination
1660 * ranges can't overlap and in case the leaf is shared through a subtree
1661 * due to snapshots, we can't use those other roots since they are not
1662 * in the list of clone roots.
1664 if (sctx->clone_roots_cnt == 1)
1665 backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1667 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1672 down_read(&fs_info->commit_root_sem);
1673 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1675 * A transaction commit for a transaction in which block group
1676 * relocation was done just happened.
1677 * The disk_bytenr of the file extent item we processed is
1678 * possibly stale, referring to the extent's location before
1679 * relocation. So act as if we haven't found any clone sources
1680 * and fallback to write commands, which will read the correct
1681 * data from the new extent location. Otherwise we will fail
1682 * below because we haven't found our own back reference or we
1683 * could be getting incorrect sources in case the old extent
1684 * was already reallocated after the relocation.
1686 up_read(&fs_info->commit_root_sem);
1689 up_read(&fs_info->commit_root_sem);
1691 btrfs_debug(fs_info,
1692 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1693 data_offset, ino, num_bytes, logical);
1695 if (!backref_ctx.found) {
1696 btrfs_debug(fs_info, "no clones found");
1700 cur_clone_root = NULL;
1701 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1702 struct clone_root *clone_root = &sctx->clone_roots[i];
1704 if (!clone_root->found_ref)
1708 * Choose the root from which we can clone more bytes, to
1709 * minimize write operations and therefore have more extent
1710 * sharing at the destination (the same as in the source).
1712 if (!cur_clone_root ||
1713 clone_root->num_bytes > cur_clone_root->num_bytes) {
1714 cur_clone_root = clone_root;
1717 * We found an optimal clone candidate (any inode from
1718 * any root is fine), so we're done.
1720 if (clone_root->num_bytes >= backref_ctx.extent_len)
1725 if (cur_clone_root) {
1726 *found = cur_clone_root;
1735 static int read_symlink(struct btrfs_root *root,
1737 struct fs_path *dest)
1740 struct btrfs_path *path;
1741 struct btrfs_key key;
1742 struct btrfs_file_extent_item *ei;
1748 path = alloc_path_for_send();
1753 key.type = BTRFS_EXTENT_DATA_KEY;
1755 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1760 * An empty symlink inode. Can happen in rare error paths when
1761 * creating a symlink (transaction committed before the inode
1762 * eviction handler removed the symlink inode items and a crash
1763 * happened in between or the subvol was snapshoted in between).
1764 * Print an informative message to dmesg/syslog so that the user
1765 * can delete the symlink.
1767 btrfs_err(root->fs_info,
1768 "Found empty symlink inode %llu at root %llu",
1769 ino, root->root_key.objectid);
1774 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1775 struct btrfs_file_extent_item);
1776 type = btrfs_file_extent_type(path->nodes[0], ei);
1777 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1779 btrfs_crit(root->fs_info,
1780 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1781 ino, btrfs_root_id(root), type);
1784 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1785 if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1787 btrfs_crit(root->fs_info,
1788 "send: found symlink extent with compression, ino %llu root %llu compression type %d",
1789 ino, btrfs_root_id(root), compression);
1793 off = btrfs_file_extent_inline_start(ei);
1794 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1796 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1799 btrfs_free_path(path);
1804 * Helper function to generate a file name that is unique in the root of
1805 * send_root and parent_root. This is used to generate names for orphan inodes.
1807 static int gen_unique_name(struct send_ctx *sctx,
1809 struct fs_path *dest)
1812 struct btrfs_path *path;
1813 struct btrfs_dir_item *di;
1818 path = alloc_path_for_send();
1823 struct fscrypt_str tmp_name;
1825 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1827 ASSERT(len < sizeof(tmp));
1828 tmp_name.name = tmp;
1829 tmp_name.len = strlen(tmp);
1831 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1832 path, BTRFS_FIRST_FREE_OBJECTID,
1834 btrfs_release_path(path);
1840 /* not unique, try again */
1845 if (!sctx->parent_root) {
1851 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1852 path, BTRFS_FIRST_FREE_OBJECTID,
1854 btrfs_release_path(path);
1860 /* not unique, try again */
1868 ret = fs_path_add(dest, tmp, strlen(tmp));
1871 btrfs_free_path(path);
1876 inode_state_no_change,
1877 inode_state_will_create,
1878 inode_state_did_create,
1879 inode_state_will_delete,
1880 inode_state_did_delete,
1883 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1884 u64 *send_gen, u64 *parent_gen)
1891 struct btrfs_inode_info info;
1893 ret = get_inode_info(sctx->send_root, ino, &info);
1894 if (ret < 0 && ret != -ENOENT)
1896 left_ret = (info.nlink == 0) ? -ENOENT : ret;
1897 left_gen = info.gen;
1899 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1901 if (!sctx->parent_root) {
1902 right_ret = -ENOENT;
1904 ret = get_inode_info(sctx->parent_root, ino, &info);
1905 if (ret < 0 && ret != -ENOENT)
1907 right_ret = (info.nlink == 0) ? -ENOENT : ret;
1908 right_gen = info.gen;
1910 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1913 if (!left_ret && !right_ret) {
1914 if (left_gen == gen && right_gen == gen) {
1915 ret = inode_state_no_change;
1916 } else if (left_gen == gen) {
1917 if (ino < sctx->send_progress)
1918 ret = inode_state_did_create;
1920 ret = inode_state_will_create;
1921 } else if (right_gen == gen) {
1922 if (ino < sctx->send_progress)
1923 ret = inode_state_did_delete;
1925 ret = inode_state_will_delete;
1929 } else if (!left_ret) {
1930 if (left_gen == gen) {
1931 if (ino < sctx->send_progress)
1932 ret = inode_state_did_create;
1934 ret = inode_state_will_create;
1938 } else if (!right_ret) {
1939 if (right_gen == gen) {
1940 if (ino < sctx->send_progress)
1941 ret = inode_state_did_delete;
1943 ret = inode_state_will_delete;
1955 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1956 u64 *send_gen, u64 *parent_gen)
1960 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1963 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1967 if (ret == inode_state_no_change ||
1968 ret == inode_state_did_create ||
1969 ret == inode_state_will_delete)
1979 * Helper function to lookup a dir item in a dir.
1981 static int lookup_dir_item_inode(struct btrfs_root *root,
1982 u64 dir, const char *name, int name_len,
1986 struct btrfs_dir_item *di;
1987 struct btrfs_key key;
1988 struct btrfs_path *path;
1989 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
1991 path = alloc_path_for_send();
1995 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
1996 if (IS_ERR_OR_NULL(di)) {
1997 ret = di ? PTR_ERR(di) : -ENOENT;
2000 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
2001 if (key.type == BTRFS_ROOT_ITEM_KEY) {
2005 *found_inode = key.objectid;
2008 btrfs_free_path(path);
2013 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2014 * generation of the parent dir and the name of the dir entry.
2016 static int get_first_ref(struct btrfs_root *root, u64 ino,
2017 u64 *dir, u64 *dir_gen, struct fs_path *name)
2020 struct btrfs_key key;
2021 struct btrfs_key found_key;
2022 struct btrfs_path *path;
2026 path = alloc_path_for_send();
2031 key.type = BTRFS_INODE_REF_KEY;
2034 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2038 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2040 if (ret || found_key.objectid != ino ||
2041 (found_key.type != BTRFS_INODE_REF_KEY &&
2042 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2047 if (found_key.type == BTRFS_INODE_REF_KEY) {
2048 struct btrfs_inode_ref *iref;
2049 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2050 struct btrfs_inode_ref);
2051 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2052 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2053 (unsigned long)(iref + 1),
2055 parent_dir = found_key.offset;
2057 struct btrfs_inode_extref *extref;
2058 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2059 struct btrfs_inode_extref);
2060 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2061 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2062 (unsigned long)&extref->name, len);
2063 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2067 btrfs_release_path(path);
2070 ret = get_inode_gen(root, parent_dir, dir_gen);
2078 btrfs_free_path(path);
2082 static int is_first_ref(struct btrfs_root *root,
2084 const char *name, int name_len)
2087 struct fs_path *tmp_name;
2090 tmp_name = fs_path_alloc();
2094 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2098 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2103 ret = !memcmp(tmp_name->start, name, name_len);
2106 fs_path_free(tmp_name);
2111 * Used by process_recorded_refs to determine if a new ref would overwrite an
2112 * already existing ref. In case it detects an overwrite, it returns the
2113 * inode/gen in who_ino/who_gen.
2114 * When an overwrite is detected, process_recorded_refs does proper orphanizing
2115 * to make sure later references to the overwritten inode are possible.
2116 * Orphanizing is however only required for the first ref of an inode.
2117 * process_recorded_refs does an additional is_first_ref check to see if
2118 * orphanizing is really required.
2120 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2121 const char *name, int name_len,
2122 u64 *who_ino, u64 *who_gen, u64 *who_mode)
2125 u64 parent_root_dir_gen;
2126 u64 other_inode = 0;
2127 struct btrfs_inode_info info;
2129 if (!sctx->parent_root)
2132 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2137 * If we have a parent root we need to verify that the parent dir was
2138 * not deleted and then re-created, if it was then we have no overwrite
2139 * and we can just unlink this entry.
2141 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2144 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2145 parent_root_dir_gen != dir_gen)
2148 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2156 * Check if the overwritten ref was already processed. If yes, the ref
2157 * was already unlinked/moved, so we can safely assume that we will not
2158 * overwrite anything at this point in time.
2160 if (other_inode > sctx->send_progress ||
2161 is_waiting_for_move(sctx, other_inode)) {
2162 ret = get_inode_info(sctx->parent_root, other_inode, &info);
2166 *who_ino = other_inode;
2167 *who_gen = info.gen;
2168 *who_mode = info.mode;
2176 * Checks if the ref was overwritten by an already processed inode. This is
2177 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2178 * thus the orphan name needs be used.
2179 * process_recorded_refs also uses it to avoid unlinking of refs that were
2182 static int did_overwrite_ref(struct send_ctx *sctx,
2183 u64 dir, u64 dir_gen,
2184 u64 ino, u64 ino_gen,
2185 const char *name, int name_len)
2190 u64 send_root_dir_gen;
2192 if (!sctx->parent_root)
2195 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2200 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2203 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2206 /* check if the ref was overwritten by another ref */
2207 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2209 if (ret == -ENOENT) {
2210 /* was never and will never be overwritten */
2212 } else if (ret < 0) {
2216 if (ow_inode == ino) {
2217 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2221 /* It's the same inode, so no overwrite happened. */
2222 if (ow_gen == ino_gen)
2227 * We know that it is or will be overwritten. Check this now.
2228 * The current inode being processed might have been the one that caused
2229 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2230 * the current inode being processed.
2232 if (ow_inode < sctx->send_progress)
2235 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2237 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2241 if (ow_gen == sctx->cur_inode_gen)
2249 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2250 * that got overwritten. This is used by process_recorded_refs to determine
2251 * if it has to use the path as returned by get_cur_path or the orphan name.
2253 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2256 struct fs_path *name = NULL;
2260 if (!sctx->parent_root)
2263 name = fs_path_alloc();
2267 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2271 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2272 name->start, fs_path_len(name));
2279 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2282 struct btrfs_lru_cache_entry *entry;
2284 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2288 return container_of(entry, struct name_cache_entry, entry);
2292 * Used by get_cur_path for each ref up to the root.
2293 * Returns 0 if it succeeded.
2294 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2295 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2296 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2297 * Returns <0 in case of error.
2299 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2303 struct fs_path *dest)
2307 struct name_cache_entry *nce;
2310 * First check if we already did a call to this function with the same
2311 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2312 * return the cached result.
2314 nce = name_cache_search(sctx, ino, gen);
2316 if (ino < sctx->send_progress && nce->need_later_update) {
2317 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2320 *parent_ino = nce->parent_ino;
2321 *parent_gen = nce->parent_gen;
2322 ret = fs_path_add(dest, nce->name, nce->name_len);
2331 * If the inode is not existent yet, add the orphan name and return 1.
2332 * This should only happen for the parent dir that we determine in
2333 * record_new_ref_if_needed().
2335 ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2340 ret = gen_unique_name(sctx, ino, gen, dest);
2348 * Depending on whether the inode was already processed or not, use
2349 * send_root or parent_root for ref lookup.
2351 if (ino < sctx->send_progress)
2352 ret = get_first_ref(sctx->send_root, ino,
2353 parent_ino, parent_gen, dest);
2355 ret = get_first_ref(sctx->parent_root, ino,
2356 parent_ino, parent_gen, dest);
2361 * Check if the ref was overwritten by an inode's ref that was processed
2362 * earlier. If yes, treat as orphan and return 1.
2364 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2365 dest->start, dest->end - dest->start);
2369 fs_path_reset(dest);
2370 ret = gen_unique_name(sctx, ino, gen, dest);
2378 * Store the result of the lookup in the name cache.
2380 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2386 nce->entry.key = ino;
2387 nce->entry.gen = gen;
2388 nce->parent_ino = *parent_ino;
2389 nce->parent_gen = *parent_gen;
2390 nce->name_len = fs_path_len(dest);
2392 strcpy(nce->name, dest->start);
2394 if (ino < sctx->send_progress)
2395 nce->need_later_update = 0;
2397 nce->need_later_update = 1;
2399 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2410 * Magic happens here. This function returns the first ref to an inode as it
2411 * would look like while receiving the stream at this point in time.
2412 * We walk the path up to the root. For every inode in between, we check if it
2413 * was already processed/sent. If yes, we continue with the parent as found
2414 * in send_root. If not, we continue with the parent as found in parent_root.
2415 * If we encounter an inode that was deleted at this point in time, we use the
2416 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2417 * that were not created yet and overwritten inodes/refs.
2419 * When do we have orphan inodes:
2420 * 1. When an inode is freshly created and thus no valid refs are available yet
2421 * 2. When a directory lost all it's refs (deleted) but still has dir items
2422 * inside which were not processed yet (pending for move/delete). If anyone
2423 * tried to get the path to the dir items, it would get a path inside that
2425 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2426 * of an unprocessed inode. If in that case the first ref would be
2427 * overwritten, the overwritten inode gets "orphanized". Later when we
2428 * process this overwritten inode, it is restored at a new place by moving
2431 * sctx->send_progress tells this function at which point in time receiving
2434 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2435 struct fs_path *dest)
2438 struct fs_path *name = NULL;
2439 u64 parent_inode = 0;
2443 name = fs_path_alloc();
2450 fs_path_reset(dest);
2452 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2453 struct waiting_dir_move *wdm;
2455 fs_path_reset(name);
2457 if (is_waiting_for_rm(sctx, ino, gen)) {
2458 ret = gen_unique_name(sctx, ino, gen, name);
2461 ret = fs_path_add_path(dest, name);
2465 wdm = get_waiting_dir_move(sctx, ino);
2466 if (wdm && wdm->orphanized) {
2467 ret = gen_unique_name(sctx, ino, gen, name);
2470 ret = get_first_ref(sctx->parent_root, ino,
2471 &parent_inode, &parent_gen, name);
2473 ret = __get_cur_name_and_parent(sctx, ino, gen,
2483 ret = fs_path_add_path(dest, name);
2494 fs_path_unreverse(dest);
2499 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2501 static int send_subvol_begin(struct send_ctx *sctx)
2504 struct btrfs_root *send_root = sctx->send_root;
2505 struct btrfs_root *parent_root = sctx->parent_root;
2506 struct btrfs_path *path;
2507 struct btrfs_key key;
2508 struct btrfs_root_ref *ref;
2509 struct extent_buffer *leaf;
2513 path = btrfs_alloc_path();
2517 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2519 btrfs_free_path(path);
2523 key.objectid = send_root->root_key.objectid;
2524 key.type = BTRFS_ROOT_BACKREF_KEY;
2527 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2536 leaf = path->nodes[0];
2537 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2538 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2539 key.objectid != send_root->root_key.objectid) {
2543 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2544 namelen = btrfs_root_ref_name_len(leaf, ref);
2545 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2546 btrfs_release_path(path);
2549 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2553 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2558 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2560 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2561 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2562 sctx->send_root->root_item.received_uuid);
2564 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2565 sctx->send_root->root_item.uuid);
2567 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2568 btrfs_root_ctransid(&sctx->send_root->root_item));
2570 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2571 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2572 parent_root->root_item.received_uuid);
2574 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2575 parent_root->root_item.uuid);
2576 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2577 btrfs_root_ctransid(&sctx->parent_root->root_item));
2580 ret = send_cmd(sctx);
2584 btrfs_free_path(path);
2589 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2591 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2595 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2597 p = fs_path_alloc();
2601 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2605 ret = get_cur_path(sctx, ino, gen, p);
2608 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2609 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2611 ret = send_cmd(sctx);
2619 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2621 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2625 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2627 p = fs_path_alloc();
2631 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2635 ret = get_cur_path(sctx, ino, gen, p);
2638 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2639 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2641 ret = send_cmd(sctx);
2649 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2651 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2655 if (sctx->proto < 2)
2658 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2660 p = fs_path_alloc();
2664 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2668 ret = get_cur_path(sctx, ino, gen, p);
2671 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2672 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2674 ret = send_cmd(sctx);
2682 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2684 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2688 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2691 p = fs_path_alloc();
2695 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2699 ret = get_cur_path(sctx, ino, gen, p);
2702 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2703 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2704 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2706 ret = send_cmd(sctx);
2714 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2716 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2718 struct fs_path *p = NULL;
2719 struct btrfs_inode_item *ii;
2720 struct btrfs_path *path = NULL;
2721 struct extent_buffer *eb;
2722 struct btrfs_key key;
2725 btrfs_debug(fs_info, "send_utimes %llu", ino);
2727 p = fs_path_alloc();
2731 path = alloc_path_for_send();
2738 key.type = BTRFS_INODE_ITEM_KEY;
2740 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2746 eb = path->nodes[0];
2747 slot = path->slots[0];
2748 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2750 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2754 ret = get_cur_path(sctx, ino, gen, p);
2757 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2758 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2759 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2760 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2761 if (sctx->proto >= 2)
2762 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2764 ret = send_cmd(sctx);
2769 btrfs_free_path(path);
2774 * If the cache is full, we can't remove entries from it and do a call to
2775 * send_utimes() for each respective inode, because we might be finishing
2776 * processing an inode that is a directory and it just got renamed, and existing
2777 * entries in the cache may refer to inodes that have the directory in their
2778 * full path - in which case we would generate outdated paths (pre-rename)
2779 * for the inodes that the cache entries point to. Instead of prunning the
2780 * cache when inserting, do it after we finish processing each inode at
2781 * finish_inode_if_needed().
2783 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2785 struct btrfs_lru_cache_entry *entry;
2788 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2792 /* Caching is optional, don't fail if we can't allocate memory. */
2793 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2795 return send_utimes(sctx, dir, gen);
2800 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2801 ASSERT(ret != -EEXIST);
2804 return send_utimes(sctx, dir, gen);
2810 static int trim_dir_utimes_cache(struct send_ctx *sctx)
2812 while (btrfs_lru_cache_size(&sctx->dir_utimes_cache) >
2813 SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2814 struct btrfs_lru_cache_entry *lru;
2817 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2818 ASSERT(lru != NULL);
2820 ret = send_utimes(sctx, lru->key, lru->gen);
2824 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2831 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2832 * a valid path yet because we did not process the refs yet. So, the inode
2833 * is created as orphan.
2835 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2837 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2841 struct btrfs_inode_info info;
2846 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2848 p = fs_path_alloc();
2852 if (ino != sctx->cur_ino) {
2853 ret = get_inode_info(sctx->send_root, ino, &info);
2860 gen = sctx->cur_inode_gen;
2861 mode = sctx->cur_inode_mode;
2862 rdev = sctx->cur_inode_rdev;
2865 if (S_ISREG(mode)) {
2866 cmd = BTRFS_SEND_C_MKFILE;
2867 } else if (S_ISDIR(mode)) {
2868 cmd = BTRFS_SEND_C_MKDIR;
2869 } else if (S_ISLNK(mode)) {
2870 cmd = BTRFS_SEND_C_SYMLINK;
2871 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2872 cmd = BTRFS_SEND_C_MKNOD;
2873 } else if (S_ISFIFO(mode)) {
2874 cmd = BTRFS_SEND_C_MKFIFO;
2875 } else if (S_ISSOCK(mode)) {
2876 cmd = BTRFS_SEND_C_MKSOCK;
2878 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2879 (int)(mode & S_IFMT));
2884 ret = begin_cmd(sctx, cmd);
2888 ret = gen_unique_name(sctx, ino, gen, p);
2892 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2893 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2895 if (S_ISLNK(mode)) {
2897 ret = read_symlink(sctx->send_root, ino, p);
2900 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2901 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2902 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2903 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2904 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2907 ret = send_cmd(sctx);
2918 static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2920 struct btrfs_lru_cache_entry *entry;
2923 /* Caching is optional, ignore any failures. */
2924 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2930 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2936 * We need some special handling for inodes that get processed before the parent
2937 * directory got created. See process_recorded_refs for details.
2938 * This function does the check if we already created the dir out of order.
2940 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2944 struct btrfs_path *path = NULL;
2945 struct btrfs_key key;
2946 struct btrfs_key found_key;
2947 struct btrfs_key di_key;
2948 struct btrfs_dir_item *di;
2950 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2953 path = alloc_path_for_send();
2958 key.type = BTRFS_DIR_INDEX_KEY;
2961 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2962 struct extent_buffer *eb = path->nodes[0];
2964 if (found_key.objectid != key.objectid ||
2965 found_key.type != key.type) {
2970 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2971 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2973 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2974 di_key.objectid < sctx->send_progress) {
2976 cache_dir_created(sctx, dir);
2980 /* Catch error found during iteration */
2984 btrfs_free_path(path);
2989 * Only creates the inode if it is:
2990 * 1. Not a directory
2991 * 2. Or a directory which was not created already due to out of order
2992 * directories. See did_create_dir and process_recorded_refs for details.
2994 static int send_create_inode_if_needed(struct send_ctx *sctx)
2998 if (S_ISDIR(sctx->cur_inode_mode)) {
2999 ret = did_create_dir(sctx, sctx->cur_ino);
3006 ret = send_create_inode(sctx, sctx->cur_ino);
3008 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
3009 cache_dir_created(sctx, sctx->cur_ino);
3014 struct recorded_ref {
3015 struct list_head list;
3017 struct fs_path *full_path;
3021 struct rb_node node;
3022 struct rb_root *root;
3025 static struct recorded_ref *recorded_ref_alloc(void)
3027 struct recorded_ref *ref;
3029 ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3032 RB_CLEAR_NODE(&ref->node);
3033 INIT_LIST_HEAD(&ref->list);
3037 static void recorded_ref_free(struct recorded_ref *ref)
3041 if (!RB_EMPTY_NODE(&ref->node))
3042 rb_erase(&ref->node, ref->root);
3043 list_del(&ref->list);
3044 fs_path_free(ref->full_path);
3048 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3050 ref->full_path = path;
3051 ref->name = (char *)kbasename(ref->full_path->start);
3052 ref->name_len = ref->full_path->end - ref->name;
3055 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3057 struct recorded_ref *new;
3059 new = recorded_ref_alloc();
3063 new->dir = ref->dir;
3064 new->dir_gen = ref->dir_gen;
3065 list_add_tail(&new->list, list);
3069 static void __free_recorded_refs(struct list_head *head)
3071 struct recorded_ref *cur;
3073 while (!list_empty(head)) {
3074 cur = list_entry(head->next, struct recorded_ref, list);
3075 recorded_ref_free(cur);
3079 static void free_recorded_refs(struct send_ctx *sctx)
3081 __free_recorded_refs(&sctx->new_refs);
3082 __free_recorded_refs(&sctx->deleted_refs);
3086 * Renames/moves a file/dir to its orphan name. Used when the first
3087 * ref of an unprocessed inode gets overwritten and for all non empty
3090 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3091 struct fs_path *path)
3094 struct fs_path *orphan;
3096 orphan = fs_path_alloc();
3100 ret = gen_unique_name(sctx, ino, gen, orphan);
3104 ret = send_rename(sctx, path, orphan);
3107 fs_path_free(orphan);
3111 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3112 u64 dir_ino, u64 dir_gen)
3114 struct rb_node **p = &sctx->orphan_dirs.rb_node;
3115 struct rb_node *parent = NULL;
3116 struct orphan_dir_info *entry, *odi;
3120 entry = rb_entry(parent, struct orphan_dir_info, node);
3121 if (dir_ino < entry->ino)
3123 else if (dir_ino > entry->ino)
3124 p = &(*p)->rb_right;
3125 else if (dir_gen < entry->gen)
3127 else if (dir_gen > entry->gen)
3128 p = &(*p)->rb_right;
3133 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3135 return ERR_PTR(-ENOMEM);
3138 odi->last_dir_index_offset = 0;
3139 odi->dir_high_seq_ino = 0;
3141 rb_link_node(&odi->node, parent, p);
3142 rb_insert_color(&odi->node, &sctx->orphan_dirs);
3146 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3147 u64 dir_ino, u64 gen)
3149 struct rb_node *n = sctx->orphan_dirs.rb_node;
3150 struct orphan_dir_info *entry;
3153 entry = rb_entry(n, struct orphan_dir_info, node);
3154 if (dir_ino < entry->ino)
3156 else if (dir_ino > entry->ino)
3158 else if (gen < entry->gen)
3160 else if (gen > entry->gen)
3168 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3170 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3175 static void free_orphan_dir_info(struct send_ctx *sctx,
3176 struct orphan_dir_info *odi)
3180 rb_erase(&odi->node, &sctx->orphan_dirs);
3185 * Returns 1 if a directory can be removed at this point in time.
3186 * We check this by iterating all dir items and checking if the inode behind
3187 * the dir item was already processed.
3189 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3193 struct btrfs_root *root = sctx->parent_root;
3194 struct btrfs_path *path;
3195 struct btrfs_key key;
3196 struct btrfs_key found_key;
3197 struct btrfs_key loc;
3198 struct btrfs_dir_item *di;
3199 struct orphan_dir_info *odi = NULL;
3200 u64 dir_high_seq_ino = 0;
3201 u64 last_dir_index_offset = 0;
3204 * Don't try to rmdir the top/root subvolume dir.
3206 if (dir == BTRFS_FIRST_FREE_OBJECTID)
3209 odi = get_orphan_dir_info(sctx, dir, dir_gen);
3210 if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3213 path = alloc_path_for_send();
3219 * Find the inode number associated with the last dir index
3220 * entry. This is very likely the inode with the highest number
3221 * of all inodes that have an entry in the directory. We can
3222 * then use it to avoid future calls to can_rmdir(), when
3223 * processing inodes with a lower number, from having to search
3224 * the parent root b+tree for dir index keys.
3227 key.type = BTRFS_DIR_INDEX_KEY;
3228 key.offset = (u64)-1;
3230 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3233 } else if (ret > 0) {
3234 /* Can't happen, the root is never empty. */
3235 ASSERT(path->slots[0] > 0);
3236 if (WARN_ON(path->slots[0] == 0)) {
3243 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3244 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3245 /* No index keys, dir can be removed. */
3250 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3251 struct btrfs_dir_item);
3252 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3253 dir_high_seq_ino = loc.objectid;
3254 if (sctx->cur_ino < dir_high_seq_ino) {
3259 btrfs_release_path(path);
3263 key.type = BTRFS_DIR_INDEX_KEY;
3264 key.offset = (odi ? odi->last_dir_index_offset : 0);
3266 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3267 struct waiting_dir_move *dm;
3269 if (found_key.objectid != key.objectid ||
3270 found_key.type != key.type)
3273 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3274 struct btrfs_dir_item);
3275 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3277 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3278 last_dir_index_offset = found_key.offset;
3280 dm = get_waiting_dir_move(sctx, loc.objectid);
3282 dm->rmdir_ino = dir;
3283 dm->rmdir_gen = dir_gen;
3288 if (loc.objectid > sctx->cur_ino) {
3297 free_orphan_dir_info(sctx, odi);
3302 btrfs_free_path(path);
3308 odi = add_orphan_dir_info(sctx, dir, dir_gen);
3310 return PTR_ERR(odi);
3315 odi->last_dir_index_offset = last_dir_index_offset;
3316 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3321 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3323 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3325 return entry != NULL;
3328 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3330 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3331 struct rb_node *parent = NULL;
3332 struct waiting_dir_move *entry, *dm;
3334 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3340 dm->orphanized = orphanized;
3344 entry = rb_entry(parent, struct waiting_dir_move, node);
3345 if (ino < entry->ino) {
3347 } else if (ino > entry->ino) {
3348 p = &(*p)->rb_right;
3355 rb_link_node(&dm->node, parent, p);
3356 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3360 static struct waiting_dir_move *
3361 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3363 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3364 struct waiting_dir_move *entry;
3367 entry = rb_entry(n, struct waiting_dir_move, node);
3368 if (ino < entry->ino)
3370 else if (ino > entry->ino)
3378 static void free_waiting_dir_move(struct send_ctx *sctx,
3379 struct waiting_dir_move *dm)
3383 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3387 static int add_pending_dir_move(struct send_ctx *sctx,
3391 struct list_head *new_refs,
3392 struct list_head *deleted_refs,
3393 const bool is_orphan)
3395 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3396 struct rb_node *parent = NULL;
3397 struct pending_dir_move *entry = NULL, *pm;
3398 struct recorded_ref *cur;
3402 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3405 pm->parent_ino = parent_ino;
3408 INIT_LIST_HEAD(&pm->list);
3409 INIT_LIST_HEAD(&pm->update_refs);
3410 RB_CLEAR_NODE(&pm->node);
3414 entry = rb_entry(parent, struct pending_dir_move, node);
3415 if (parent_ino < entry->parent_ino) {
3417 } else if (parent_ino > entry->parent_ino) {
3418 p = &(*p)->rb_right;
3425 list_for_each_entry(cur, deleted_refs, list) {
3426 ret = dup_ref(cur, &pm->update_refs);
3430 list_for_each_entry(cur, new_refs, list) {
3431 ret = dup_ref(cur, &pm->update_refs);
3436 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3441 list_add_tail(&pm->list, &entry->list);
3443 rb_link_node(&pm->node, parent, p);
3444 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3449 __free_recorded_refs(&pm->update_refs);
3455 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3458 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3459 struct pending_dir_move *entry;
3462 entry = rb_entry(n, struct pending_dir_move, node);
3463 if (parent_ino < entry->parent_ino)
3465 else if (parent_ino > entry->parent_ino)
3473 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3474 u64 ino, u64 gen, u64 *ancestor_ino)
3477 u64 parent_inode = 0;
3479 u64 start_ino = ino;
3482 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3483 fs_path_reset(name);
3485 if (is_waiting_for_rm(sctx, ino, gen))
3487 if (is_waiting_for_move(sctx, ino)) {
3488 if (*ancestor_ino == 0)
3489 *ancestor_ino = ino;
3490 ret = get_first_ref(sctx->parent_root, ino,
3491 &parent_inode, &parent_gen, name);
3493 ret = __get_cur_name_and_parent(sctx, ino, gen,
3503 if (parent_inode == start_ino) {
3505 if (*ancestor_ino == 0)
3506 *ancestor_ino = ino;
3515 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3517 struct fs_path *from_path = NULL;
3518 struct fs_path *to_path = NULL;
3519 struct fs_path *name = NULL;
3520 u64 orig_progress = sctx->send_progress;
3521 struct recorded_ref *cur;
3522 u64 parent_ino, parent_gen;
3523 struct waiting_dir_move *dm = NULL;
3530 name = fs_path_alloc();
3531 from_path = fs_path_alloc();
3532 if (!name || !from_path) {
3537 dm = get_waiting_dir_move(sctx, pm->ino);
3539 rmdir_ino = dm->rmdir_ino;
3540 rmdir_gen = dm->rmdir_gen;
3541 is_orphan = dm->orphanized;
3542 free_waiting_dir_move(sctx, dm);
3545 ret = gen_unique_name(sctx, pm->ino,
3546 pm->gen, from_path);
3548 ret = get_first_ref(sctx->parent_root, pm->ino,
3549 &parent_ino, &parent_gen, name);
3552 ret = get_cur_path(sctx, parent_ino, parent_gen,
3556 ret = fs_path_add_path(from_path, name);
3561 sctx->send_progress = sctx->cur_ino + 1;
3562 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3566 LIST_HEAD(deleted_refs);
3567 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3568 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3569 &pm->update_refs, &deleted_refs,
3574 dm = get_waiting_dir_move(sctx, pm->ino);
3576 dm->rmdir_ino = rmdir_ino;
3577 dm->rmdir_gen = rmdir_gen;
3581 fs_path_reset(name);
3584 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3588 ret = send_rename(sctx, from_path, to_path);
3593 struct orphan_dir_info *odi;
3596 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3598 /* already deleted */
3603 ret = can_rmdir(sctx, rmdir_ino, gen);
3609 name = fs_path_alloc();
3614 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3617 ret = send_rmdir(sctx, name);
3623 ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3628 * After rename/move, need to update the utimes of both new parent(s)
3629 * and old parent(s).
3631 list_for_each_entry(cur, &pm->update_refs, list) {
3633 * The parent inode might have been deleted in the send snapshot
3635 ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3636 if (ret == -ENOENT) {
3643 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3650 fs_path_free(from_path);
3651 fs_path_free(to_path);
3652 sctx->send_progress = orig_progress;
3657 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3659 if (!list_empty(&m->list))
3661 if (!RB_EMPTY_NODE(&m->node))
3662 rb_erase(&m->node, &sctx->pending_dir_moves);
3663 __free_recorded_refs(&m->update_refs);
3667 static void tail_append_pending_moves(struct send_ctx *sctx,
3668 struct pending_dir_move *moves,
3669 struct list_head *stack)
3671 if (list_empty(&moves->list)) {
3672 list_add_tail(&moves->list, stack);
3675 list_splice_init(&moves->list, &list);
3676 list_add_tail(&moves->list, stack);
3677 list_splice_tail(&list, stack);
3679 if (!RB_EMPTY_NODE(&moves->node)) {
3680 rb_erase(&moves->node, &sctx->pending_dir_moves);
3681 RB_CLEAR_NODE(&moves->node);
3685 static int apply_children_dir_moves(struct send_ctx *sctx)
3687 struct pending_dir_move *pm;
3688 struct list_head stack;
3689 u64 parent_ino = sctx->cur_ino;
3692 pm = get_pending_dir_moves(sctx, parent_ino);
3696 INIT_LIST_HEAD(&stack);
3697 tail_append_pending_moves(sctx, pm, &stack);
3699 while (!list_empty(&stack)) {
3700 pm = list_first_entry(&stack, struct pending_dir_move, list);
3701 parent_ino = pm->ino;
3702 ret = apply_dir_move(sctx, pm);
3703 free_pending_move(sctx, pm);
3706 pm = get_pending_dir_moves(sctx, parent_ino);
3708 tail_append_pending_moves(sctx, pm, &stack);
3713 while (!list_empty(&stack)) {
3714 pm = list_first_entry(&stack, struct pending_dir_move, list);
3715 free_pending_move(sctx, pm);
3721 * We might need to delay a directory rename even when no ancestor directory
3722 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3723 * renamed. This happens when we rename a directory to the old name (the name
3724 * in the parent root) of some other unrelated directory that got its rename
3725 * delayed due to some ancestor with higher number that got renamed.
3731 * |---- a/ (ino 257)
3732 * | |---- file (ino 260)
3734 * |---- b/ (ino 258)
3735 * |---- c/ (ino 259)
3739 * |---- a/ (ino 258)
3740 * |---- x/ (ino 259)
3741 * |---- y/ (ino 257)
3742 * |----- file (ino 260)
3744 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3745 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3746 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3749 * 1 - rename 259 from 'c' to 'x'
3750 * 2 - rename 257 from 'a' to 'x/y'
3751 * 3 - rename 258 from 'b' to 'a'
3753 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3754 * be done right away and < 0 on error.
3756 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3757 struct recorded_ref *parent_ref,
3758 const bool is_orphan)
3760 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3761 struct btrfs_path *path;
3762 struct btrfs_key key;
3763 struct btrfs_key di_key;
3764 struct btrfs_dir_item *di;
3768 struct waiting_dir_move *wdm;
3770 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3773 path = alloc_path_for_send();
3777 key.objectid = parent_ref->dir;
3778 key.type = BTRFS_DIR_ITEM_KEY;
3779 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3781 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3784 } else if (ret > 0) {
3789 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3790 parent_ref->name_len);
3796 * di_key.objectid has the number of the inode that has a dentry in the
3797 * parent directory with the same name that sctx->cur_ino is being
3798 * renamed to. We need to check if that inode is in the send root as
3799 * well and if it is currently marked as an inode with a pending rename,
3800 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3801 * that it happens after that other inode is renamed.
3803 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3804 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3809 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3812 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3819 /* Different inode, no need to delay the rename of sctx->cur_ino */
3820 if (right_gen != left_gen) {
3825 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3826 if (wdm && !wdm->orphanized) {
3827 ret = add_pending_dir_move(sctx,
3829 sctx->cur_inode_gen,
3832 &sctx->deleted_refs,
3838 btrfs_free_path(path);
3843 * Check if inode ino2, or any of its ancestors, is inode ino1.
3844 * Return 1 if true, 0 if false and < 0 on error.
3846 static int check_ino_in_path(struct btrfs_root *root,
3851 struct fs_path *fs_path)
3856 return ino1_gen == ino2_gen;
3858 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3863 fs_path_reset(fs_path);
3864 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3868 return parent_gen == ino1_gen;
3875 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3876 * possible path (in case ino2 is not a directory and has multiple hard links).
3877 * Return 1 if true, 0 if false and < 0 on error.
3879 static int is_ancestor(struct btrfs_root *root,
3883 struct fs_path *fs_path)
3885 bool free_fs_path = false;
3888 struct btrfs_path *path = NULL;
3889 struct btrfs_key key;
3892 fs_path = fs_path_alloc();
3895 free_fs_path = true;
3898 path = alloc_path_for_send();
3904 key.objectid = ino2;
3905 key.type = BTRFS_INODE_REF_KEY;
3908 btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3909 struct extent_buffer *leaf = path->nodes[0];
3910 int slot = path->slots[0];
3914 if (key.objectid != ino2)
3916 if (key.type != BTRFS_INODE_REF_KEY &&
3917 key.type != BTRFS_INODE_EXTREF_KEY)
3920 item_size = btrfs_item_size(leaf, slot);
3921 while (cur_offset < item_size) {
3925 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3927 struct btrfs_inode_extref *extref;
3929 ptr = btrfs_item_ptr_offset(leaf, slot);
3930 extref = (struct btrfs_inode_extref *)
3932 parent = btrfs_inode_extref_parent(leaf,
3934 cur_offset += sizeof(*extref);
3935 cur_offset += btrfs_inode_extref_name_len(leaf,
3938 parent = key.offset;
3939 cur_offset = item_size;
3942 ret = get_inode_gen(root, parent, &parent_gen);
3945 ret = check_ino_in_path(root, ino1, ino1_gen,
3946 parent, parent_gen, fs_path);
3956 btrfs_free_path(path);
3958 fs_path_free(fs_path);
3962 static int wait_for_parent_move(struct send_ctx *sctx,
3963 struct recorded_ref *parent_ref,
3964 const bool is_orphan)
3967 u64 ino = parent_ref->dir;
3968 u64 ino_gen = parent_ref->dir_gen;
3969 u64 parent_ino_before, parent_ino_after;
3970 struct fs_path *path_before = NULL;
3971 struct fs_path *path_after = NULL;
3974 path_after = fs_path_alloc();
3975 path_before = fs_path_alloc();
3976 if (!path_after || !path_before) {
3982 * Our current directory inode may not yet be renamed/moved because some
3983 * ancestor (immediate or not) has to be renamed/moved first. So find if
3984 * such ancestor exists and make sure our own rename/move happens after
3985 * that ancestor is processed to avoid path build infinite loops (done
3986 * at get_cur_path()).
3988 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3989 u64 parent_ino_after_gen;
3991 if (is_waiting_for_move(sctx, ino)) {
3993 * If the current inode is an ancestor of ino in the
3994 * parent root, we need to delay the rename of the
3995 * current inode, otherwise don't delayed the rename
3996 * because we can end up with a circular dependency
3997 * of renames, resulting in some directories never
3998 * getting the respective rename operations issued in
3999 * the send stream or getting into infinite path build
4002 ret = is_ancestor(sctx->parent_root,
4003 sctx->cur_ino, sctx->cur_inode_gen,
4009 fs_path_reset(path_before);
4010 fs_path_reset(path_after);
4012 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4013 &parent_ino_after_gen, path_after);
4016 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4018 if (ret < 0 && ret != -ENOENT) {
4020 } else if (ret == -ENOENT) {
4025 len1 = fs_path_len(path_before);
4026 len2 = fs_path_len(path_after);
4027 if (ino > sctx->cur_ino &&
4028 (parent_ino_before != parent_ino_after || len1 != len2 ||
4029 memcmp(path_before->start, path_after->start, len1))) {
4032 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4035 if (ino_gen == parent_ino_gen) {
4040 ino = parent_ino_after;
4041 ino_gen = parent_ino_after_gen;
4045 fs_path_free(path_before);
4046 fs_path_free(path_after);
4049 ret = add_pending_dir_move(sctx,
4051 sctx->cur_inode_gen,
4054 &sctx->deleted_refs,
4063 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4066 struct fs_path *new_path;
4069 * Our reference's name member points to its full_path member string, so
4070 * we use here a new path.
4072 new_path = fs_path_alloc();
4076 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4078 fs_path_free(new_path);
4081 ret = fs_path_add(new_path, ref->name, ref->name_len);
4083 fs_path_free(new_path);
4087 fs_path_free(ref->full_path);
4088 set_ref_path(ref, new_path);
4094 * When processing the new references for an inode we may orphanize an existing
4095 * directory inode because its old name conflicts with one of the new references
4096 * of the current inode. Later, when processing another new reference of our
4097 * inode, we might need to orphanize another inode, but the path we have in the
4098 * reference reflects the pre-orphanization name of the directory we previously
4099 * orphanized. For example:
4101 * parent snapshot looks like:
4104 * |----- f1 (ino 257)
4105 * |----- f2 (ino 258)
4106 * |----- d1/ (ino 259)
4107 * |----- d2/ (ino 260)
4109 * send snapshot looks like:
4112 * |----- d1 (ino 258)
4113 * |----- f2/ (ino 259)
4114 * |----- f2_link/ (ino 260)
4115 * | |----- f1 (ino 257)
4117 * |----- d2 (ino 258)
4119 * When processing inode 257 we compute the name for inode 259 as "d1", and we
4120 * cache it in the name cache. Later when we start processing inode 258, when
4121 * collecting all its new references we set a full path of "d1/d2" for its new
4122 * reference with name "d2". When we start processing the new references we
4123 * start by processing the new reference with name "d1", and this results in
4124 * orphanizing inode 259, since its old reference causes a conflict. Then we
4125 * move on the next new reference, with name "d2", and we find out we must
4126 * orphanize inode 260, as its old reference conflicts with ours - but for the
4127 * orphanization we use a source path corresponding to the path we stored in the
4128 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4129 * receiver fail since the path component "d1/" no longer exists, it was renamed
4130 * to "o259-6-0/" when processing the previous new reference. So in this case we
4131 * must recompute the path in the new reference and use it for the new
4132 * orphanization operation.
4134 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4139 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4143 fs_path_reset(ref->full_path);
4144 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4148 ret = fs_path_add(ref->full_path, name, ref->name_len);
4152 /* Update the reference's base name pointer. */
4153 set_ref_path(ref, ref->full_path);
4160 * This does all the move/link/unlink/rmdir magic.
4162 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4164 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4166 struct recorded_ref *cur;
4167 struct recorded_ref *cur2;
4168 struct list_head check_dirs;
4169 struct fs_path *valid_path = NULL;
4173 int did_overwrite = 0;
4175 u64 last_dir_ino_rm = 0;
4176 bool can_rename = true;
4177 bool orphanized_dir = false;
4178 bool orphanized_ancestor = false;
4180 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4183 * This should never happen as the root dir always has the same ref
4184 * which is always '..'
4186 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
4187 INIT_LIST_HEAD(&check_dirs);
4189 valid_path = fs_path_alloc();
4196 * First, check if the first ref of the current inode was overwritten
4197 * before. If yes, we know that the current inode was already orphanized
4198 * and thus use the orphan name. If not, we can use get_cur_path to
4199 * get the path of the first ref as it would like while receiving at
4200 * this point in time.
4201 * New inodes are always orphan at the beginning, so force to use the
4202 * orphan name in this case.
4203 * The first ref is stored in valid_path and will be updated if it
4204 * gets moved around.
4206 if (!sctx->cur_inode_new) {
4207 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4208 sctx->cur_inode_gen);
4214 if (sctx->cur_inode_new || did_overwrite) {
4215 ret = gen_unique_name(sctx, sctx->cur_ino,
4216 sctx->cur_inode_gen, valid_path);
4221 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4228 * Before doing any rename and link operations, do a first pass on the
4229 * new references to orphanize any unprocessed inodes that may have a
4230 * reference that conflicts with one of the new references of the current
4231 * inode. This needs to happen first because a new reference may conflict
4232 * with the old reference of a parent directory, so we must make sure
4233 * that the path used for link and rename commands don't use an
4234 * orphanized name when an ancestor was not yet orphanized.
4241 * |----- testdir/ (ino 259)
4242 * | |----- a (ino 257)
4244 * |----- b (ino 258)
4249 * |----- testdir_2/ (ino 259)
4250 * | |----- a (ino 260)
4252 * |----- testdir (ino 257)
4253 * |----- b (ino 257)
4254 * |----- b2 (ino 258)
4256 * Processing the new reference for inode 257 with name "b" may happen
4257 * before processing the new reference with name "testdir". If so, we
4258 * must make sure that by the time we send a link command to create the
4259 * hard link "b", inode 259 was already orphanized, since the generated
4260 * path in "valid_path" already contains the orphanized name for 259.
4261 * We are processing inode 257, so only later when processing 259 we do
4262 * the rename operation to change its temporary (orphanized) name to
4265 list_for_each_entry(cur, &sctx->new_refs, list) {
4266 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4269 if (ret == inode_state_will_create)
4273 * Check if this new ref would overwrite the first ref of another
4274 * unprocessed inode. If yes, orphanize the overwritten inode.
4275 * If we find an overwritten ref that is not the first ref,
4278 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4279 cur->name, cur->name_len,
4280 &ow_inode, &ow_gen, &ow_mode);
4284 ret = is_first_ref(sctx->parent_root,
4285 ow_inode, cur->dir, cur->name,
4290 struct name_cache_entry *nce;
4291 struct waiting_dir_move *wdm;
4293 if (orphanized_dir) {
4294 ret = refresh_ref_path(sctx, cur);
4299 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4303 if (S_ISDIR(ow_mode))
4304 orphanized_dir = true;
4307 * If ow_inode has its rename operation delayed
4308 * make sure that its orphanized name is used in
4309 * the source path when performing its rename
4312 wdm = get_waiting_dir_move(sctx, ow_inode);
4314 wdm->orphanized = true;
4317 * Make sure we clear our orphanized inode's
4318 * name from the name cache. This is because the
4319 * inode ow_inode might be an ancestor of some
4320 * other inode that will be orphanized as well
4321 * later and has an inode number greater than
4322 * sctx->send_progress. We need to prevent
4323 * future name lookups from using the old name
4324 * and get instead the orphan name.
4326 nce = name_cache_search(sctx, ow_inode, ow_gen);
4328 btrfs_lru_cache_remove(&sctx->name_cache,
4332 * ow_inode might currently be an ancestor of
4333 * cur_ino, therefore compute valid_path (the
4334 * current path of cur_ino) again because it
4335 * might contain the pre-orphanization name of
4336 * ow_inode, which is no longer valid.
4338 ret = is_ancestor(sctx->parent_root,
4340 sctx->cur_ino, NULL);
4342 orphanized_ancestor = true;
4343 fs_path_reset(valid_path);
4344 ret = get_cur_path(sctx, sctx->cur_ino,
4345 sctx->cur_inode_gen,
4352 * If we previously orphanized a directory that
4353 * collided with a new reference that we already
4354 * processed, recompute the current path because
4355 * that directory may be part of the path.
4357 if (orphanized_dir) {
4358 ret = refresh_ref_path(sctx, cur);
4362 ret = send_unlink(sctx, cur->full_path);
4370 list_for_each_entry(cur, &sctx->new_refs, list) {
4372 * We may have refs where the parent directory does not exist
4373 * yet. This happens if the parent directories inum is higher
4374 * than the current inum. To handle this case, we create the
4375 * parent directory out of order. But we need to check if this
4376 * did already happen before due to other refs in the same dir.
4378 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4381 if (ret == inode_state_will_create) {
4384 * First check if any of the current inodes refs did
4385 * already create the dir.
4387 list_for_each_entry(cur2, &sctx->new_refs, list) {
4390 if (cur2->dir == cur->dir) {
4397 * If that did not happen, check if a previous inode
4398 * did already create the dir.
4401 ret = did_create_dir(sctx, cur->dir);
4405 ret = send_create_inode(sctx, cur->dir);
4408 cache_dir_created(sctx, cur->dir);
4412 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4413 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4422 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4424 ret = wait_for_parent_move(sctx, cur, is_orphan);
4434 * link/move the ref to the new place. If we have an orphan
4435 * inode, move it and update valid_path. If not, link or move
4436 * it depending on the inode mode.
4438 if (is_orphan && can_rename) {
4439 ret = send_rename(sctx, valid_path, cur->full_path);
4443 ret = fs_path_copy(valid_path, cur->full_path);
4446 } else if (can_rename) {
4447 if (S_ISDIR(sctx->cur_inode_mode)) {
4449 * Dirs can't be linked, so move it. For moved
4450 * dirs, we always have one new and one deleted
4451 * ref. The deleted ref is ignored later.
4453 ret = send_rename(sctx, valid_path,
4456 ret = fs_path_copy(valid_path,
4462 * We might have previously orphanized an inode
4463 * which is an ancestor of our current inode,
4464 * so our reference's full path, which was
4465 * computed before any such orphanizations, must
4468 if (orphanized_dir) {
4469 ret = update_ref_path(sctx, cur);
4473 ret = send_link(sctx, cur->full_path,
4479 ret = dup_ref(cur, &check_dirs);
4484 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4486 * Check if we can already rmdir the directory. If not,
4487 * orphanize it. For every dir item inside that gets deleted
4488 * later, we do this check again and rmdir it then if possible.
4489 * See the use of check_dirs for more details.
4491 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4495 ret = send_rmdir(sctx, valid_path);
4498 } else if (!is_orphan) {
4499 ret = orphanize_inode(sctx, sctx->cur_ino,
4500 sctx->cur_inode_gen, valid_path);
4506 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4507 ret = dup_ref(cur, &check_dirs);
4511 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4512 !list_empty(&sctx->deleted_refs)) {
4514 * We have a moved dir. Add the old parent to check_dirs
4516 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4518 ret = dup_ref(cur, &check_dirs);
4521 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4523 * We have a non dir inode. Go through all deleted refs and
4524 * unlink them if they were not already overwritten by other
4527 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4528 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4529 sctx->cur_ino, sctx->cur_inode_gen,
4530 cur->name, cur->name_len);
4535 * If we orphanized any ancestor before, we need
4536 * to recompute the full path for deleted names,
4537 * since any such path was computed before we
4538 * processed any references and orphanized any
4541 if (orphanized_ancestor) {
4542 ret = update_ref_path(sctx, cur);
4546 ret = send_unlink(sctx, cur->full_path);
4550 ret = dup_ref(cur, &check_dirs);
4555 * If the inode is still orphan, unlink the orphan. This may
4556 * happen when a previous inode did overwrite the first ref
4557 * of this inode and no new refs were added for the current
4558 * inode. Unlinking does not mean that the inode is deleted in
4559 * all cases. There may still be links to this inode in other
4563 ret = send_unlink(sctx, valid_path);
4570 * We did collect all parent dirs where cur_inode was once located. We
4571 * now go through all these dirs and check if they are pending for
4572 * deletion and if it's finally possible to perform the rmdir now.
4573 * We also update the inode stats of the parent dirs here.
4575 list_for_each_entry(cur, &check_dirs, list) {
4577 * In case we had refs into dirs that were not processed yet,
4578 * we don't need to do the utime and rmdir logic for these dirs.
4579 * The dir will be processed later.
4581 if (cur->dir > sctx->cur_ino)
4584 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4588 if (ret == inode_state_did_create ||
4589 ret == inode_state_no_change) {
4590 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4593 } else if (ret == inode_state_did_delete &&
4594 cur->dir != last_dir_ino_rm) {
4595 ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4599 ret = get_cur_path(sctx, cur->dir,
4600 cur->dir_gen, valid_path);
4603 ret = send_rmdir(sctx, valid_path);
4606 last_dir_ino_rm = cur->dir;
4614 __free_recorded_refs(&check_dirs);
4615 free_recorded_refs(sctx);
4616 fs_path_free(valid_path);
4620 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4622 const struct recorded_ref *data = k;
4623 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4626 if (data->dir > ref->dir)
4628 if (data->dir < ref->dir)
4630 if (data->dir_gen > ref->dir_gen)
4632 if (data->dir_gen < ref->dir_gen)
4634 if (data->name_len > ref->name_len)
4636 if (data->name_len < ref->name_len)
4638 result = strcmp(data->name, ref->name);
4646 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4648 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4650 return rbtree_ref_comp(entry, parent) < 0;
4653 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4654 struct fs_path *name, u64 dir, u64 dir_gen,
4655 struct send_ctx *sctx)
4658 struct fs_path *path = NULL;
4659 struct recorded_ref *ref = NULL;
4661 path = fs_path_alloc();
4667 ref = recorded_ref_alloc();
4673 ret = get_cur_path(sctx, dir, dir_gen, path);
4676 ret = fs_path_add_path(path, name);
4681 ref->dir_gen = dir_gen;
4682 set_ref_path(ref, path);
4683 list_add_tail(&ref->list, refs);
4684 rb_add(&ref->node, root, rbtree_ref_less);
4688 if (path && (!ref || !ref->full_path))
4690 recorded_ref_free(ref);
4695 static int record_new_ref_if_needed(int num, u64 dir, int index,
4696 struct fs_path *name, void *ctx)
4699 struct send_ctx *sctx = ctx;
4700 struct rb_node *node = NULL;
4701 struct recorded_ref data;
4702 struct recorded_ref *ref;
4705 ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4710 data.dir_gen = dir_gen;
4711 set_ref_path(&data, name);
4712 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4714 ref = rb_entry(node, struct recorded_ref, node);
4715 recorded_ref_free(ref);
4717 ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4718 &sctx->new_refs, name, dir, dir_gen,
4725 static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4726 struct fs_path *name, void *ctx)
4729 struct send_ctx *sctx = ctx;
4730 struct rb_node *node = NULL;
4731 struct recorded_ref data;
4732 struct recorded_ref *ref;
4735 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4740 data.dir_gen = dir_gen;
4741 set_ref_path(&data, name);
4742 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4744 ref = rb_entry(node, struct recorded_ref, node);
4745 recorded_ref_free(ref);
4747 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4748 &sctx->deleted_refs, name, dir,
4755 static int record_new_ref(struct send_ctx *sctx)
4759 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4760 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4769 static int record_deleted_ref(struct send_ctx *sctx)
4773 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4774 sctx->cmp_key, 0, record_deleted_ref_if_needed,
4784 static int record_changed_ref(struct send_ctx *sctx)
4788 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4789 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4792 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4793 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4803 * Record and process all refs at once. Needed when an inode changes the
4804 * generation number, which means that it was deleted and recreated.
4806 static int process_all_refs(struct send_ctx *sctx,
4807 enum btrfs_compare_tree_result cmd)
4811 struct btrfs_root *root;
4812 struct btrfs_path *path;
4813 struct btrfs_key key;
4814 struct btrfs_key found_key;
4815 iterate_inode_ref_t cb;
4816 int pending_move = 0;
4818 path = alloc_path_for_send();
4822 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4823 root = sctx->send_root;
4824 cb = record_new_ref_if_needed;
4825 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4826 root = sctx->parent_root;
4827 cb = record_deleted_ref_if_needed;
4829 btrfs_err(sctx->send_root->fs_info,
4830 "Wrong command %d in process_all_refs", cmd);
4835 key.objectid = sctx->cmp_key->objectid;
4836 key.type = BTRFS_INODE_REF_KEY;
4838 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4839 if (found_key.objectid != key.objectid ||
4840 (found_key.type != BTRFS_INODE_REF_KEY &&
4841 found_key.type != BTRFS_INODE_EXTREF_KEY))
4844 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4848 /* Catch error found during iteration */
4853 btrfs_release_path(path);
4856 * We don't actually care about pending_move as we are simply
4857 * re-creating this inode and will be rename'ing it into place once we
4858 * rename the parent directory.
4860 ret = process_recorded_refs(sctx, &pending_move);
4862 btrfs_free_path(path);
4866 static int send_set_xattr(struct send_ctx *sctx,
4867 struct fs_path *path,
4868 const char *name, int name_len,
4869 const char *data, int data_len)
4873 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4877 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4878 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4879 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4881 ret = send_cmd(sctx);
4888 static int send_remove_xattr(struct send_ctx *sctx,
4889 struct fs_path *path,
4890 const char *name, int name_len)
4894 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4898 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4899 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4901 ret = send_cmd(sctx);
4908 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4909 const char *name, int name_len, const char *data,
4910 int data_len, void *ctx)
4913 struct send_ctx *sctx = ctx;
4915 struct posix_acl_xattr_header dummy_acl;
4917 /* Capabilities are emitted by finish_inode_if_needed */
4918 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4921 p = fs_path_alloc();
4926 * This hack is needed because empty acls are stored as zero byte
4927 * data in xattrs. Problem with that is, that receiving these zero byte
4928 * acls will fail later. To fix this, we send a dummy acl list that
4929 * only contains the version number and no entries.
4931 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4932 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4933 if (data_len == 0) {
4934 dummy_acl.a_version =
4935 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4936 data = (char *)&dummy_acl;
4937 data_len = sizeof(dummy_acl);
4941 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4945 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4952 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4953 const char *name, int name_len,
4954 const char *data, int data_len, void *ctx)
4957 struct send_ctx *sctx = ctx;
4960 p = fs_path_alloc();
4964 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4968 ret = send_remove_xattr(sctx, p, name, name_len);
4975 static int process_new_xattr(struct send_ctx *sctx)
4979 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4980 __process_new_xattr, sctx);
4985 static int process_deleted_xattr(struct send_ctx *sctx)
4987 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4988 __process_deleted_xattr, sctx);
4991 struct find_xattr_ctx {
4999 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
5000 int name_len, const char *data, int data_len, void *vctx)
5002 struct find_xattr_ctx *ctx = vctx;
5004 if (name_len == ctx->name_len &&
5005 strncmp(name, ctx->name, name_len) == 0) {
5006 ctx->found_idx = num;
5007 ctx->found_data_len = data_len;
5008 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
5009 if (!ctx->found_data)
5016 static int find_xattr(struct btrfs_root *root,
5017 struct btrfs_path *path,
5018 struct btrfs_key *key,
5019 const char *name, int name_len,
5020 char **data, int *data_len)
5023 struct find_xattr_ctx ctx;
5026 ctx.name_len = name_len;
5028 ctx.found_data = NULL;
5029 ctx.found_data_len = 0;
5031 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5035 if (ctx.found_idx == -1)
5038 *data = ctx.found_data;
5039 *data_len = ctx.found_data_len;
5041 kfree(ctx.found_data);
5043 return ctx.found_idx;
5047 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5048 const char *name, int name_len,
5049 const char *data, int data_len,
5053 struct send_ctx *sctx = ctx;
5054 char *found_data = NULL;
5055 int found_data_len = 0;
5057 ret = find_xattr(sctx->parent_root, sctx->right_path,
5058 sctx->cmp_key, name, name_len, &found_data,
5060 if (ret == -ENOENT) {
5061 ret = __process_new_xattr(num, di_key, name, name_len, data,
5063 } else if (ret >= 0) {
5064 if (data_len != found_data_len ||
5065 memcmp(data, found_data, data_len)) {
5066 ret = __process_new_xattr(num, di_key, name, name_len,
5067 data, data_len, ctx);
5077 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5078 const char *name, int name_len,
5079 const char *data, int data_len,
5083 struct send_ctx *sctx = ctx;
5085 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5086 name, name_len, NULL, NULL);
5088 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5096 static int process_changed_xattr(struct send_ctx *sctx)
5100 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5101 __process_changed_new_xattr, sctx);
5104 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5105 __process_changed_deleted_xattr, sctx);
5111 static int process_all_new_xattrs(struct send_ctx *sctx)
5115 struct btrfs_root *root;
5116 struct btrfs_path *path;
5117 struct btrfs_key key;
5118 struct btrfs_key found_key;
5120 path = alloc_path_for_send();
5124 root = sctx->send_root;
5126 key.objectid = sctx->cmp_key->objectid;
5127 key.type = BTRFS_XATTR_ITEM_KEY;
5129 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5130 if (found_key.objectid != key.objectid ||
5131 found_key.type != key.type) {
5136 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5140 /* Catch error found during iteration */
5144 btrfs_free_path(path);
5148 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5149 struct fsverity_descriptor *desc)
5153 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5157 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5158 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5159 le8_to_cpu(desc->hash_algorithm));
5160 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5161 1U << le8_to_cpu(desc->log_blocksize));
5162 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5163 le8_to_cpu(desc->salt_size));
5164 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5165 le32_to_cpu(desc->sig_size));
5167 ret = send_cmd(sctx);
5174 static int process_verity(struct send_ctx *sctx)
5177 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5178 struct inode *inode;
5181 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root);
5183 return PTR_ERR(inode);
5185 ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5189 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5193 if (!sctx->verity_descriptor) {
5194 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5196 if (!sctx->verity_descriptor) {
5202 ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5206 p = fs_path_alloc();
5211 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5215 ret = send_verity(sctx, p, sctx->verity_descriptor);
5226 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5228 return sctx->send_max_size - SZ_16K;
5231 static int put_data_header(struct send_ctx *sctx, u32 len)
5233 if (WARN_ON_ONCE(sctx->put_data))
5235 sctx->put_data = true;
5236 if (sctx->proto >= 2) {
5238 * Since v2, the data attribute header doesn't include a length,
5239 * it is implicitly to the end of the command.
5241 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5243 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5244 sctx->send_size += sizeof(__le16);
5246 struct btrfs_tlv_header *hdr;
5248 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5250 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5251 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5252 put_unaligned_le16(len, &hdr->tlv_len);
5253 sctx->send_size += sizeof(*hdr);
5258 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5260 struct btrfs_root *root = sctx->send_root;
5261 struct btrfs_fs_info *fs_info = root->fs_info;
5263 pgoff_t index = offset >> PAGE_SHIFT;
5265 unsigned pg_offset = offset_in_page(offset);
5268 ret = put_data_header(sctx, len);
5272 last_index = (offset + len - 1) >> PAGE_SHIFT;
5274 while (index <= last_index) {
5275 unsigned cur_len = min_t(unsigned, len,
5276 PAGE_SIZE - pg_offset);
5278 page = find_lock_page(sctx->cur_inode->i_mapping, index);
5280 page_cache_sync_readahead(sctx->cur_inode->i_mapping,
5281 &sctx->ra, NULL, index,
5282 last_index + 1 - index);
5284 page = find_or_create_page(sctx->cur_inode->i_mapping,
5292 if (PageReadahead(page))
5293 page_cache_async_readahead(sctx->cur_inode->i_mapping,
5294 &sctx->ra, NULL, page_folio(page),
5295 index, last_index + 1 - index);
5297 if (!PageUptodate(page)) {
5298 btrfs_read_folio(NULL, page_folio(page));
5300 if (!PageUptodate(page)) {
5303 "send: IO error at offset %llu for inode %llu root %llu",
5304 page_offset(page), sctx->cur_ino,
5305 sctx->send_root->root_key.objectid);
5312 memcpy_from_page(sctx->send_buf + sctx->send_size, page,
5313 pg_offset, cur_len);
5319 sctx->send_size += cur_len;
5326 * Read some bytes from the current inode/file and send a write command to
5329 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5331 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5335 p = fs_path_alloc();
5339 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5341 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5345 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5349 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5350 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5351 ret = put_file_data(sctx, offset, len);
5355 ret = send_cmd(sctx);
5364 * Send a clone command to user space.
5366 static int send_clone(struct send_ctx *sctx,
5367 u64 offset, u32 len,
5368 struct clone_root *clone_root)
5374 btrfs_debug(sctx->send_root->fs_info,
5375 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5376 offset, len, clone_root->root->root_key.objectid,
5377 clone_root->ino, clone_root->offset);
5379 p = fs_path_alloc();
5383 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5387 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5391 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5392 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5393 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5395 if (clone_root->root == sctx->send_root) {
5396 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5399 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5401 ret = get_inode_path(clone_root->root, clone_root->ino, p);
5407 * If the parent we're using has a received_uuid set then use that as
5408 * our clone source as that is what we will look for when doing a
5411 * This covers the case that we create a snapshot off of a received
5412 * subvolume and then use that as the parent and try to receive on a
5415 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5416 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5417 clone_root->root->root_item.received_uuid);
5419 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5420 clone_root->root->root_item.uuid);
5421 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5422 btrfs_root_ctransid(&clone_root->root->root_item));
5423 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5424 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5425 clone_root->offset);
5427 ret = send_cmd(sctx);
5436 * Send an update extent command to user space.
5438 static int send_update_extent(struct send_ctx *sctx,
5439 u64 offset, u32 len)
5444 p = fs_path_alloc();
5448 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5452 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5456 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5457 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5458 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5460 ret = send_cmd(sctx);
5468 static int send_hole(struct send_ctx *sctx, u64 end)
5470 struct fs_path *p = NULL;
5471 u64 read_size = max_send_read_size(sctx);
5472 u64 offset = sctx->cur_inode_last_extent;
5476 * A hole that starts at EOF or beyond it. Since we do not yet support
5477 * fallocate (for extent preallocation and hole punching), sending a
5478 * write of zeroes starting at EOF or beyond would later require issuing
5479 * a truncate operation which would undo the write and achieve nothing.
5481 if (offset >= sctx->cur_inode_size)
5485 * Don't go beyond the inode's i_size due to prealloc extents that start
5488 end = min_t(u64, end, sctx->cur_inode_size);
5490 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5491 return send_update_extent(sctx, offset, end - offset);
5493 p = fs_path_alloc();
5496 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5498 goto tlv_put_failure;
5499 while (offset < end) {
5500 u64 len = min(end - offset, read_size);
5502 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5505 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5506 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5507 ret = put_data_header(sctx, len);
5510 memset(sctx->send_buf + sctx->send_size, 0, len);
5511 sctx->send_size += len;
5512 ret = send_cmd(sctx);
5517 sctx->cur_inode_next_write_offset = offset;
5523 static int send_encoded_inline_extent(struct send_ctx *sctx,
5524 struct btrfs_path *path, u64 offset,
5527 struct btrfs_root *root = sctx->send_root;
5528 struct btrfs_fs_info *fs_info = root->fs_info;
5529 struct inode *inode;
5530 struct fs_path *fspath;
5531 struct extent_buffer *leaf = path->nodes[0];
5532 struct btrfs_key key;
5533 struct btrfs_file_extent_item *ei;
5538 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5540 return PTR_ERR(inode);
5542 fspath = fs_path_alloc();
5548 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5552 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5556 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5557 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5558 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5559 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5561 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5562 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5563 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5564 min(key.offset + ram_bytes - offset, len));
5565 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5566 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5567 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5568 btrfs_file_extent_compression(leaf, ei));
5571 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5573 ret = put_data_header(sctx, inline_size);
5576 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5577 btrfs_file_extent_inline_start(ei), inline_size);
5578 sctx->send_size += inline_size;
5580 ret = send_cmd(sctx);
5584 fs_path_free(fspath);
5589 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5590 u64 offset, u64 len)
5592 struct btrfs_root *root = sctx->send_root;
5593 struct btrfs_fs_info *fs_info = root->fs_info;
5594 struct inode *inode;
5595 struct fs_path *fspath;
5596 struct extent_buffer *leaf = path->nodes[0];
5597 struct btrfs_key key;
5598 struct btrfs_file_extent_item *ei;
5599 u64 disk_bytenr, disk_num_bytes;
5601 struct btrfs_cmd_header *hdr;
5605 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5607 return PTR_ERR(inode);
5609 fspath = fs_path_alloc();
5615 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5619 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5623 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5624 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5625 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5626 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5628 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5629 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5630 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5631 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5633 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5634 btrfs_file_extent_ram_bytes(leaf, ei));
5635 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5636 offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5637 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5638 btrfs_file_extent_compression(leaf, ei));
5641 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5642 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5644 ret = put_data_header(sctx, disk_num_bytes);
5649 * We want to do I/O directly into the send buffer, so get the next page
5650 * boundary in the send buffer. This means that there may be a gap
5651 * between the beginning of the command and the file data.
5653 data_offset = PAGE_ALIGN(sctx->send_size);
5654 if (data_offset > sctx->send_max_size ||
5655 sctx->send_max_size - data_offset < disk_num_bytes) {
5661 * Note that send_buf is a mapping of send_buf_pages, so this is really
5662 * reading into send_buf.
5664 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5665 disk_bytenr, disk_num_bytes,
5666 sctx->send_buf_pages +
5667 (data_offset >> PAGE_SHIFT));
5671 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5672 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5674 crc = btrfs_crc32c(0, sctx->send_buf, sctx->send_size);
5675 crc = btrfs_crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5676 hdr->crc = cpu_to_le32(crc);
5678 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5681 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5682 disk_num_bytes, &sctx->send_off);
5684 sctx->send_size = 0;
5685 sctx->put_data = false;
5689 fs_path_free(fspath);
5694 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5695 const u64 offset, const u64 len)
5697 const u64 end = offset + len;
5698 struct extent_buffer *leaf = path->nodes[0];
5699 struct btrfs_file_extent_item *ei;
5700 u64 read_size = max_send_read_size(sctx);
5703 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5704 return send_update_extent(sctx, offset, len);
5706 ei = btrfs_item_ptr(leaf, path->slots[0],
5707 struct btrfs_file_extent_item);
5708 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5709 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5710 bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5711 BTRFS_FILE_EXTENT_INLINE);
5714 * Send the compressed extent unless the compressed data is
5715 * larger than the decompressed data. This can happen if we're
5716 * not sending the entire extent, either because it has been
5717 * partially overwritten/truncated or because this is a part of
5718 * the extent that we couldn't clone in clone_range().
5721 btrfs_file_extent_inline_item_len(leaf,
5722 path->slots[0]) <= len) {
5723 return send_encoded_inline_extent(sctx, path, offset,
5725 } else if (!is_inline &&
5726 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5727 return send_encoded_extent(sctx, path, offset, len);
5731 if (sctx->cur_inode == NULL) {
5732 struct btrfs_root *root = sctx->send_root;
5734 sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root);
5735 if (IS_ERR(sctx->cur_inode)) {
5736 int err = PTR_ERR(sctx->cur_inode);
5738 sctx->cur_inode = NULL;
5741 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5742 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5745 * It's very likely there are no pages from this inode in the page
5746 * cache, so after reading extents and sending their data, we clean
5747 * the page cache to avoid trashing the page cache (adding pressure
5748 * to the page cache and forcing eviction of other data more useful
5749 * for applications).
5751 * We decide if we should clean the page cache simply by checking
5752 * if the inode's mapping nrpages is 0 when we first open it, and
5753 * not by using something like filemap_range_has_page() before
5754 * reading an extent because when we ask the readahead code to
5755 * read a given file range, it may (and almost always does) read
5756 * pages from beyond that range (see the documentation for
5757 * page_cache_sync_readahead()), so it would not be reliable,
5758 * because after reading the first extent future calls to
5759 * filemap_range_has_page() would return true because the readahead
5760 * on the previous extent resulted in reading pages of the current
5763 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5764 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5767 while (sent < len) {
5768 u64 size = min(len - sent, read_size);
5771 ret = send_write(sctx, offset + sent, size);
5777 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5779 * Always operate only on ranges that are a multiple of the page
5780 * size. This is not only to prevent zeroing parts of a page in
5781 * the case of subpage sector size, but also to guarantee we evict
5782 * pages, as passing a range that is smaller than page size does
5783 * not evict the respective page (only zeroes part of its content).
5785 * Always start from the end offset of the last range cleared.
5786 * This is because the readahead code may (and very often does)
5787 * reads pages beyond the range we request for readahead. So if
5788 * we have an extent layout like this:
5790 * [ extent A ] [ extent B ] [ extent C ]
5792 * When we ask page_cache_sync_readahead() to read extent A, it
5793 * may also trigger reads for pages of extent B. If we are doing
5794 * an incremental send and extent B has not changed between the
5795 * parent and send snapshots, some or all of its pages may end
5796 * up being read and placed in the page cache. So when truncating
5797 * the page cache we always start from the end offset of the
5798 * previously processed extent up to the end of the current
5801 truncate_inode_pages_range(&sctx->cur_inode->i_data,
5802 sctx->page_cache_clear_start,
5804 sctx->page_cache_clear_start = end;
5811 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5812 * found, call send_set_xattr function to emit it.
5814 * Return 0 if there isn't a capability, or when the capability was emitted
5815 * successfully, or < 0 if an error occurred.
5817 static int send_capabilities(struct send_ctx *sctx)
5819 struct fs_path *fspath = NULL;
5820 struct btrfs_path *path;
5821 struct btrfs_dir_item *di;
5822 struct extent_buffer *leaf;
5823 unsigned long data_ptr;
5828 path = alloc_path_for_send();
5832 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5833 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5835 /* There is no xattr for this inode */
5837 } else if (IS_ERR(di)) {
5842 leaf = path->nodes[0];
5843 buf_len = btrfs_dir_data_len(leaf, di);
5845 fspath = fs_path_alloc();
5846 buf = kmalloc(buf_len, GFP_KERNEL);
5847 if (!fspath || !buf) {
5852 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5856 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5857 read_extent_buffer(leaf, buf, data_ptr, buf_len);
5859 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5860 strlen(XATTR_NAME_CAPS), buf, buf_len);
5863 fs_path_free(fspath);
5864 btrfs_free_path(path);
5868 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5869 struct clone_root *clone_root, const u64 disk_byte,
5870 u64 data_offset, u64 offset, u64 len)
5872 struct btrfs_path *path;
5873 struct btrfs_key key;
5875 struct btrfs_inode_info info;
5876 u64 clone_src_i_size = 0;
5879 * Prevent cloning from a zero offset with a length matching the sector
5880 * size because in some scenarios this will make the receiver fail.
5882 * For example, if in the source filesystem the extent at offset 0
5883 * has a length of sectorsize and it was written using direct IO, then
5884 * it can never be an inline extent (even if compression is enabled).
5885 * Then this extent can be cloned in the original filesystem to a non
5886 * zero file offset, but it may not be possible to clone in the
5887 * destination filesystem because it can be inlined due to compression
5888 * on the destination filesystem (as the receiver's write operations are
5889 * always done using buffered IO). The same happens when the original
5890 * filesystem does not have compression enabled but the destination
5893 if (clone_root->offset == 0 &&
5894 len == sctx->send_root->fs_info->sectorsize)
5895 return send_extent_data(sctx, dst_path, offset, len);
5897 path = alloc_path_for_send();
5902 * There are inodes that have extents that lie behind its i_size. Don't
5903 * accept clones from these extents.
5905 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5906 btrfs_release_path(path);
5909 clone_src_i_size = info.size;
5912 * We can't send a clone operation for the entire range if we find
5913 * extent items in the respective range in the source file that
5914 * refer to different extents or if we find holes.
5915 * So check for that and do a mix of clone and regular write/copy
5916 * operations if needed.
5920 * mkfs.btrfs -f /dev/sda
5921 * mount /dev/sda /mnt
5922 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5923 * cp --reflink=always /mnt/foo /mnt/bar
5924 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5925 * btrfs subvolume snapshot -r /mnt /mnt/snap
5927 * If when we send the snapshot and we are processing file bar (which
5928 * has a higher inode number than foo) we blindly send a clone operation
5929 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5930 * a file bar that matches the content of file foo - iow, doesn't match
5931 * the content from bar in the original filesystem.
5933 key.objectid = clone_root->ino;
5934 key.type = BTRFS_EXTENT_DATA_KEY;
5935 key.offset = clone_root->offset;
5936 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5939 if (ret > 0 && path->slots[0] > 0) {
5940 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5941 if (key.objectid == clone_root->ino &&
5942 key.type == BTRFS_EXTENT_DATA_KEY)
5947 struct extent_buffer *leaf = path->nodes[0];
5948 int slot = path->slots[0];
5949 struct btrfs_file_extent_item *ei;
5953 u64 clone_data_offset;
5954 bool crossed_src_i_size = false;
5956 if (slot >= btrfs_header_nritems(leaf)) {
5957 ret = btrfs_next_leaf(clone_root->root, path);
5965 btrfs_item_key_to_cpu(leaf, &key, slot);
5968 * We might have an implicit trailing hole (NO_HOLES feature
5969 * enabled). We deal with it after leaving this loop.
5971 if (key.objectid != clone_root->ino ||
5972 key.type != BTRFS_EXTENT_DATA_KEY)
5975 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5976 type = btrfs_file_extent_type(leaf, ei);
5977 if (type == BTRFS_FILE_EXTENT_INLINE) {
5978 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5979 ext_len = PAGE_ALIGN(ext_len);
5981 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5984 if (key.offset + ext_len <= clone_root->offset)
5987 if (key.offset > clone_root->offset) {
5988 /* Implicit hole, NO_HOLES feature enabled. */
5989 u64 hole_len = key.offset - clone_root->offset;
5993 ret = send_extent_data(sctx, dst_path, offset,
6002 clone_root->offset += hole_len;
6003 data_offset += hole_len;
6006 if (key.offset >= clone_root->offset + len)
6009 if (key.offset >= clone_src_i_size)
6012 if (key.offset + ext_len > clone_src_i_size) {
6013 ext_len = clone_src_i_size - key.offset;
6014 crossed_src_i_size = true;
6017 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6018 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6019 clone_root->offset = key.offset;
6020 if (clone_data_offset < data_offset &&
6021 clone_data_offset + ext_len > data_offset) {
6024 extent_offset = data_offset - clone_data_offset;
6025 ext_len -= extent_offset;
6026 clone_data_offset += extent_offset;
6027 clone_root->offset += extent_offset;
6031 clone_len = min_t(u64, ext_len, len);
6033 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6034 clone_data_offset == data_offset) {
6035 const u64 src_end = clone_root->offset + clone_len;
6036 const u64 sectorsize = SZ_64K;
6039 * We can't clone the last block, when its size is not
6040 * sector size aligned, into the middle of a file. If we
6041 * do so, the receiver will get a failure (-EINVAL) when
6042 * trying to clone or will silently corrupt the data in
6043 * the destination file if it's on a kernel without the
6044 * fix introduced by commit ac765f83f1397646
6045 * ("Btrfs: fix data corruption due to cloning of eof
6048 * So issue a clone of the aligned down range plus a
6049 * regular write for the eof block, if we hit that case.
6051 * Also, we use the maximum possible sector size, 64K,
6052 * because we don't know what's the sector size of the
6053 * filesystem that receives the stream, so we have to
6054 * assume the largest possible sector size.
6056 if (src_end == clone_src_i_size &&
6057 !IS_ALIGNED(src_end, sectorsize) &&
6058 offset + clone_len < sctx->cur_inode_size) {
6061 slen = ALIGN_DOWN(src_end - clone_root->offset,
6064 ret = send_clone(sctx, offset, slen,
6069 ret = send_extent_data(sctx, dst_path,
6073 ret = send_clone(sctx, offset, clone_len,
6076 } else if (crossed_src_i_size && clone_len < len) {
6078 * If we are at i_size of the clone source inode and we
6079 * can not clone from it, terminate the loop. This is
6080 * to avoid sending two write operations, one with a
6081 * length matching clone_len and the final one after
6082 * this loop with a length of len - clone_len.
6084 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6085 * was passed to the send ioctl), this helps avoid
6086 * sending an encoded write for an offset that is not
6087 * sector size aligned, in case the i_size of the source
6088 * inode is not sector size aligned. That will make the
6089 * receiver fallback to decompression of the data and
6090 * writing it using regular buffered IO, therefore while
6091 * not incorrect, it's not optimal due decompression and
6092 * possible re-compression at the receiver.
6096 ret = send_extent_data(sctx, dst_path, offset,
6106 offset += clone_len;
6107 clone_root->offset += clone_len;
6110 * If we are cloning from the file we are currently processing,
6111 * and using the send root as the clone root, we must stop once
6112 * the current clone offset reaches the current eof of the file
6113 * at the receiver, otherwise we would issue an invalid clone
6114 * operation (source range going beyond eof) and cause the
6115 * receiver to fail. So if we reach the current eof, bail out
6116 * and fallback to a regular write.
6118 if (clone_root->root == sctx->send_root &&
6119 clone_root->ino == sctx->cur_ino &&
6120 clone_root->offset >= sctx->cur_inode_next_write_offset)
6123 data_offset += clone_len;
6129 ret = send_extent_data(sctx, dst_path, offset, len);
6133 btrfs_free_path(path);
6137 static int send_write_or_clone(struct send_ctx *sctx,
6138 struct btrfs_path *path,
6139 struct btrfs_key *key,
6140 struct clone_root *clone_root)
6143 u64 offset = key->offset;
6145 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
6147 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6151 if (clone_root && IS_ALIGNED(end, bs)) {
6152 struct btrfs_file_extent_item *ei;
6156 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6157 struct btrfs_file_extent_item);
6158 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6159 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6160 ret = clone_range(sctx, path, clone_root, disk_byte,
6161 data_offset, offset, end - offset);
6163 ret = send_extent_data(sctx, path, offset, end - offset);
6165 sctx->cur_inode_next_write_offset = end;
6169 static int is_extent_unchanged(struct send_ctx *sctx,
6170 struct btrfs_path *left_path,
6171 struct btrfs_key *ekey)
6174 struct btrfs_key key;
6175 struct btrfs_path *path = NULL;
6176 struct extent_buffer *eb;
6178 struct btrfs_key found_key;
6179 struct btrfs_file_extent_item *ei;
6184 u64 left_offset_fixed;
6192 path = alloc_path_for_send();
6196 eb = left_path->nodes[0];
6197 slot = left_path->slots[0];
6198 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6199 left_type = btrfs_file_extent_type(eb, ei);
6201 if (left_type != BTRFS_FILE_EXTENT_REG) {
6205 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6206 left_len = btrfs_file_extent_num_bytes(eb, ei);
6207 left_offset = btrfs_file_extent_offset(eb, ei);
6208 left_gen = btrfs_file_extent_generation(eb, ei);
6211 * Following comments will refer to these graphics. L is the left
6212 * extents which we are checking at the moment. 1-8 are the right
6213 * extents that we iterate.
6216 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6219 * |--1--|-2b-|...(same as above)
6221 * Alternative situation. Happens on files where extents got split.
6223 * |-----------7-----------|-6-|
6225 * Alternative situation. Happens on files which got larger.
6228 * Nothing follows after 8.
6231 key.objectid = ekey->objectid;
6232 key.type = BTRFS_EXTENT_DATA_KEY;
6233 key.offset = ekey->offset;
6234 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6243 * Handle special case where the right side has no extents at all.
6245 eb = path->nodes[0];
6246 slot = path->slots[0];
6247 btrfs_item_key_to_cpu(eb, &found_key, slot);
6248 if (found_key.objectid != key.objectid ||
6249 found_key.type != key.type) {
6250 /* If we're a hole then just pretend nothing changed */
6251 ret = (left_disknr) ? 0 : 1;
6256 * We're now on 2a, 2b or 7.
6259 while (key.offset < ekey->offset + left_len) {
6260 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6261 right_type = btrfs_file_extent_type(eb, ei);
6262 if (right_type != BTRFS_FILE_EXTENT_REG &&
6263 right_type != BTRFS_FILE_EXTENT_INLINE) {
6268 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6269 right_len = btrfs_file_extent_ram_bytes(eb, ei);
6270 right_len = PAGE_ALIGN(right_len);
6272 right_len = btrfs_file_extent_num_bytes(eb, ei);
6276 * Are we at extent 8? If yes, we know the extent is changed.
6277 * This may only happen on the first iteration.
6279 if (found_key.offset + right_len <= ekey->offset) {
6280 /* If we're a hole just pretend nothing changed */
6281 ret = (left_disknr) ? 0 : 1;
6286 * We just wanted to see if when we have an inline extent, what
6287 * follows it is a regular extent (wanted to check the above
6288 * condition for inline extents too). This should normally not
6289 * happen but it's possible for example when we have an inline
6290 * compressed extent representing data with a size matching
6291 * the page size (currently the same as sector size).
6293 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6298 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6299 right_offset = btrfs_file_extent_offset(eb, ei);
6300 right_gen = btrfs_file_extent_generation(eb, ei);
6302 left_offset_fixed = left_offset;
6303 if (key.offset < ekey->offset) {
6304 /* Fix the right offset for 2a and 7. */
6305 right_offset += ekey->offset - key.offset;
6307 /* Fix the left offset for all behind 2a and 2b */
6308 left_offset_fixed += key.offset - ekey->offset;
6312 * Check if we have the same extent.
6314 if (left_disknr != right_disknr ||
6315 left_offset_fixed != right_offset ||
6316 left_gen != right_gen) {
6322 * Go to the next extent.
6324 ret = btrfs_next_item(sctx->parent_root, path);
6328 eb = path->nodes[0];
6329 slot = path->slots[0];
6330 btrfs_item_key_to_cpu(eb, &found_key, slot);
6332 if (ret || found_key.objectid != key.objectid ||
6333 found_key.type != key.type) {
6334 key.offset += right_len;
6337 if (found_key.offset != key.offset + right_len) {
6345 * We're now behind the left extent (treat as unchanged) or at the end
6346 * of the right side (treat as changed).
6348 if (key.offset >= ekey->offset + left_len)
6355 btrfs_free_path(path);
6359 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6361 struct btrfs_path *path;
6362 struct btrfs_root *root = sctx->send_root;
6363 struct btrfs_key key;
6366 path = alloc_path_for_send();
6370 sctx->cur_inode_last_extent = 0;
6372 key.objectid = sctx->cur_ino;
6373 key.type = BTRFS_EXTENT_DATA_KEY;
6374 key.offset = offset;
6375 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6379 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6380 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6383 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6385 btrfs_free_path(path);
6389 static int range_is_hole_in_parent(struct send_ctx *sctx,
6393 struct btrfs_path *path;
6394 struct btrfs_key key;
6395 struct btrfs_root *root = sctx->parent_root;
6396 u64 search_start = start;
6399 path = alloc_path_for_send();
6403 key.objectid = sctx->cur_ino;
6404 key.type = BTRFS_EXTENT_DATA_KEY;
6405 key.offset = search_start;
6406 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6409 if (ret > 0 && path->slots[0] > 0)
6412 while (search_start < end) {
6413 struct extent_buffer *leaf = path->nodes[0];
6414 int slot = path->slots[0];
6415 struct btrfs_file_extent_item *fi;
6418 if (slot >= btrfs_header_nritems(leaf)) {
6419 ret = btrfs_next_leaf(root, path);
6427 btrfs_item_key_to_cpu(leaf, &key, slot);
6428 if (key.objectid < sctx->cur_ino ||
6429 key.type < BTRFS_EXTENT_DATA_KEY)
6431 if (key.objectid > sctx->cur_ino ||
6432 key.type > BTRFS_EXTENT_DATA_KEY ||
6436 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6437 extent_end = btrfs_file_extent_end(path);
6438 if (extent_end <= start)
6440 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6441 search_start = extent_end;
6451 btrfs_free_path(path);
6455 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6456 struct btrfs_key *key)
6460 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6463 if (sctx->cur_inode_last_extent == (u64)-1) {
6464 ret = get_last_extent(sctx, key->offset - 1);
6469 if (path->slots[0] == 0 &&
6470 sctx->cur_inode_last_extent < key->offset) {
6472 * We might have skipped entire leafs that contained only
6473 * file extent items for our current inode. These leafs have
6474 * a generation number smaller (older) than the one in the
6475 * current leaf and the leaf our last extent came from, and
6476 * are located between these 2 leafs.
6478 ret = get_last_extent(sctx, key->offset - 1);
6483 if (sctx->cur_inode_last_extent < key->offset) {
6484 ret = range_is_hole_in_parent(sctx,
6485 sctx->cur_inode_last_extent,
6490 ret = send_hole(sctx, key->offset);
6494 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6498 static int process_extent(struct send_ctx *sctx,
6499 struct btrfs_path *path,
6500 struct btrfs_key *key)
6502 struct clone_root *found_clone = NULL;
6505 if (S_ISLNK(sctx->cur_inode_mode))
6508 if (sctx->parent_root && !sctx->cur_inode_new) {
6509 ret = is_extent_unchanged(sctx, path, key);
6517 struct btrfs_file_extent_item *ei;
6520 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6521 struct btrfs_file_extent_item);
6522 type = btrfs_file_extent_type(path->nodes[0], ei);
6523 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6524 type == BTRFS_FILE_EXTENT_REG) {
6526 * The send spec does not have a prealloc command yet,
6527 * so just leave a hole for prealloc'ed extents until
6528 * we have enough commands queued up to justify rev'ing
6531 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6536 /* Have a hole, just skip it. */
6537 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6544 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6545 sctx->cur_inode_size, &found_clone);
6546 if (ret != -ENOENT && ret < 0)
6549 ret = send_write_or_clone(sctx, path, key, found_clone);
6553 ret = maybe_send_hole(sctx, path, key);
6558 static int process_all_extents(struct send_ctx *sctx)
6562 struct btrfs_root *root;
6563 struct btrfs_path *path;
6564 struct btrfs_key key;
6565 struct btrfs_key found_key;
6567 root = sctx->send_root;
6568 path = alloc_path_for_send();
6572 key.objectid = sctx->cmp_key->objectid;
6573 key.type = BTRFS_EXTENT_DATA_KEY;
6575 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6576 if (found_key.objectid != key.objectid ||
6577 found_key.type != key.type) {
6582 ret = process_extent(sctx, path, &found_key);
6586 /* Catch error found during iteration */
6590 btrfs_free_path(path);
6594 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6596 int *refs_processed)
6600 if (sctx->cur_ino == 0)
6602 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6603 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6605 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6608 ret = process_recorded_refs(sctx, pending_move);
6612 *refs_processed = 1;
6617 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6620 struct btrfs_inode_info info;
6631 bool need_fileattr = false;
6632 int need_truncate = 1;
6633 int pending_move = 0;
6634 int refs_processed = 0;
6636 if (sctx->ignore_cur_inode)
6639 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6645 * We have processed the refs and thus need to advance send_progress.
6646 * Now, calls to get_cur_xxx will take the updated refs of the current
6647 * inode into account.
6649 * On the other hand, if our current inode is a directory and couldn't
6650 * be moved/renamed because its parent was renamed/moved too and it has
6651 * a higher inode number, we can only move/rename our current inode
6652 * after we moved/renamed its parent. Therefore in this case operate on
6653 * the old path (pre move/rename) of our current inode, and the
6654 * move/rename will be performed later.
6656 if (refs_processed && !pending_move)
6657 sctx->send_progress = sctx->cur_ino + 1;
6659 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6661 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6663 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6666 left_mode = info.mode;
6667 left_uid = info.uid;
6668 left_gid = info.gid;
6669 left_fileattr = info.fileattr;
6671 if (!sctx->parent_root || sctx->cur_inode_new) {
6673 if (!S_ISLNK(sctx->cur_inode_mode))
6675 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6680 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6683 old_size = info.size;
6684 right_mode = info.mode;
6685 right_uid = info.uid;
6686 right_gid = info.gid;
6687 right_fileattr = info.fileattr;
6689 if (left_uid != right_uid || left_gid != right_gid)
6691 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6693 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6694 need_fileattr = true;
6695 if ((old_size == sctx->cur_inode_size) ||
6696 (sctx->cur_inode_size > old_size &&
6697 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6701 if (S_ISREG(sctx->cur_inode_mode)) {
6702 if (need_send_hole(sctx)) {
6703 if (sctx->cur_inode_last_extent == (u64)-1 ||
6704 sctx->cur_inode_last_extent <
6705 sctx->cur_inode_size) {
6706 ret = get_last_extent(sctx, (u64)-1);
6710 if (sctx->cur_inode_last_extent <
6711 sctx->cur_inode_size) {
6712 ret = send_hole(sctx, sctx->cur_inode_size);
6717 if (need_truncate) {
6718 ret = send_truncate(sctx, sctx->cur_ino,
6719 sctx->cur_inode_gen,
6720 sctx->cur_inode_size);
6727 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6728 left_uid, left_gid);
6733 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6738 if (need_fileattr) {
6739 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6745 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6746 && sctx->cur_inode_needs_verity) {
6747 ret = process_verity(sctx);
6752 ret = send_capabilities(sctx);
6757 * If other directory inodes depended on our current directory
6758 * inode's move/rename, now do their move/rename operations.
6760 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6761 ret = apply_children_dir_moves(sctx);
6765 * Need to send that every time, no matter if it actually
6766 * changed between the two trees as we have done changes to
6767 * the inode before. If our inode is a directory and it's
6768 * waiting to be moved/renamed, we will send its utimes when
6769 * it's moved/renamed, therefore we don't need to do it here.
6771 sctx->send_progress = sctx->cur_ino + 1;
6774 * If the current inode is a non-empty directory, delay issuing
6775 * the utimes command for it, as it's very likely we have inodes
6776 * with an higher number inside it. We want to issue the utimes
6777 * command only after adding all dentries to it.
6779 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6780 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6782 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6790 ret = trim_dir_utimes_cache(sctx);
6795 static void close_current_inode(struct send_ctx *sctx)
6799 if (sctx->cur_inode == NULL)
6802 i_size = i_size_read(sctx->cur_inode);
6805 * If we are doing an incremental send, we may have extents between the
6806 * last processed extent and the i_size that have not been processed
6807 * because they haven't changed but we may have read some of their pages
6808 * through readahead, see the comments at send_extent_data().
6810 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6811 truncate_inode_pages_range(&sctx->cur_inode->i_data,
6812 sctx->page_cache_clear_start,
6813 round_up(i_size, PAGE_SIZE) - 1);
6815 iput(sctx->cur_inode);
6816 sctx->cur_inode = NULL;
6819 static int changed_inode(struct send_ctx *sctx,
6820 enum btrfs_compare_tree_result result)
6823 struct btrfs_key *key = sctx->cmp_key;
6824 struct btrfs_inode_item *left_ii = NULL;
6825 struct btrfs_inode_item *right_ii = NULL;
6829 close_current_inode(sctx);
6831 sctx->cur_ino = key->objectid;
6832 sctx->cur_inode_new_gen = false;
6833 sctx->cur_inode_last_extent = (u64)-1;
6834 sctx->cur_inode_next_write_offset = 0;
6835 sctx->ignore_cur_inode = false;
6838 * Set send_progress to current inode. This will tell all get_cur_xxx
6839 * functions that the current inode's refs are not updated yet. Later,
6840 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6842 sctx->send_progress = sctx->cur_ino;
6844 if (result == BTRFS_COMPARE_TREE_NEW ||
6845 result == BTRFS_COMPARE_TREE_CHANGED) {
6846 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6847 sctx->left_path->slots[0],
6848 struct btrfs_inode_item);
6849 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6852 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6853 sctx->right_path->slots[0],
6854 struct btrfs_inode_item);
6855 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6858 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6859 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6860 sctx->right_path->slots[0],
6861 struct btrfs_inode_item);
6863 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6867 * The cur_ino = root dir case is special here. We can't treat
6868 * the inode as deleted+reused because it would generate a
6869 * stream that tries to delete/mkdir the root dir.
6871 if (left_gen != right_gen &&
6872 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6873 sctx->cur_inode_new_gen = true;
6877 * Normally we do not find inodes with a link count of zero (orphans)
6878 * because the most common case is to create a snapshot and use it
6879 * for a send operation. However other less common use cases involve
6880 * using a subvolume and send it after turning it to RO mode just
6881 * after deleting all hard links of a file while holding an open
6882 * file descriptor against it or turning a RO snapshot into RW mode,
6883 * keep an open file descriptor against a file, delete it and then
6884 * turn the snapshot back to RO mode before using it for a send
6885 * operation. The former is what the receiver operation does.
6886 * Therefore, if we want to send these snapshots soon after they're
6887 * received, we need to handle orphan inodes as well. Moreover, orphans
6888 * can appear not only in the send snapshot but also in the parent
6889 * snapshot. Here are several cases:
6891 * Case 1: BTRFS_COMPARE_TREE_NEW
6892 * | send snapshot | action
6893 * --------------------------------
6894 * nlink | 0 | ignore
6896 * Case 2: BTRFS_COMPARE_TREE_DELETED
6897 * | parent snapshot | action
6898 * ----------------------------------
6899 * nlink | 0 | as usual
6900 * Note: No unlinks will be sent because there're no paths for it.
6902 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6903 * | | parent snapshot | send snapshot | action
6904 * -----------------------------------------------------------------------
6905 * subcase 1 | nlink | 0 | 0 | ignore
6906 * subcase 2 | nlink | >0 | 0 | new_gen(deletion)
6907 * subcase 3 | nlink | 0 | >0 | new_gen(creation)
6910 if (result == BTRFS_COMPARE_TREE_NEW) {
6911 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6912 sctx->ignore_cur_inode = true;
6915 sctx->cur_inode_gen = left_gen;
6916 sctx->cur_inode_new = true;
6917 sctx->cur_inode_deleted = false;
6918 sctx->cur_inode_size = btrfs_inode_size(
6919 sctx->left_path->nodes[0], left_ii);
6920 sctx->cur_inode_mode = btrfs_inode_mode(
6921 sctx->left_path->nodes[0], left_ii);
6922 sctx->cur_inode_rdev = btrfs_inode_rdev(
6923 sctx->left_path->nodes[0], left_ii);
6924 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6925 ret = send_create_inode_if_needed(sctx);
6926 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6927 sctx->cur_inode_gen = right_gen;
6928 sctx->cur_inode_new = false;
6929 sctx->cur_inode_deleted = true;
6930 sctx->cur_inode_size = btrfs_inode_size(
6931 sctx->right_path->nodes[0], right_ii);
6932 sctx->cur_inode_mode = btrfs_inode_mode(
6933 sctx->right_path->nodes[0], right_ii);
6934 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6935 u32 new_nlinks, old_nlinks;
6937 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6938 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6939 if (new_nlinks == 0 && old_nlinks == 0) {
6940 sctx->ignore_cur_inode = true;
6942 } else if (new_nlinks == 0 || old_nlinks == 0) {
6943 sctx->cur_inode_new_gen = 1;
6946 * We need to do some special handling in case the inode was
6947 * reported as changed with a changed generation number. This
6948 * means that the original inode was deleted and new inode
6949 * reused the same inum. So we have to treat the old inode as
6950 * deleted and the new one as new.
6952 if (sctx->cur_inode_new_gen) {
6954 * First, process the inode as if it was deleted.
6956 if (old_nlinks > 0) {
6957 sctx->cur_inode_gen = right_gen;
6958 sctx->cur_inode_new = false;
6959 sctx->cur_inode_deleted = true;
6960 sctx->cur_inode_size = btrfs_inode_size(
6961 sctx->right_path->nodes[0], right_ii);
6962 sctx->cur_inode_mode = btrfs_inode_mode(
6963 sctx->right_path->nodes[0], right_ii);
6964 ret = process_all_refs(sctx,
6965 BTRFS_COMPARE_TREE_DELETED);
6971 * Now process the inode as if it was new.
6973 if (new_nlinks > 0) {
6974 sctx->cur_inode_gen = left_gen;
6975 sctx->cur_inode_new = true;
6976 sctx->cur_inode_deleted = false;
6977 sctx->cur_inode_size = btrfs_inode_size(
6978 sctx->left_path->nodes[0],
6980 sctx->cur_inode_mode = btrfs_inode_mode(
6981 sctx->left_path->nodes[0],
6983 sctx->cur_inode_rdev = btrfs_inode_rdev(
6984 sctx->left_path->nodes[0],
6986 ret = send_create_inode_if_needed(sctx);
6990 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6994 * Advance send_progress now as we did not get
6995 * into process_recorded_refs_if_needed in the
6998 sctx->send_progress = sctx->cur_ino + 1;
7001 * Now process all extents and xattrs of the
7002 * inode as if they were all new.
7004 ret = process_all_extents(sctx);
7007 ret = process_all_new_xattrs(sctx);
7012 sctx->cur_inode_gen = left_gen;
7013 sctx->cur_inode_new = false;
7014 sctx->cur_inode_new_gen = false;
7015 sctx->cur_inode_deleted = false;
7016 sctx->cur_inode_size = btrfs_inode_size(
7017 sctx->left_path->nodes[0], left_ii);
7018 sctx->cur_inode_mode = btrfs_inode_mode(
7019 sctx->left_path->nodes[0], left_ii);
7028 * We have to process new refs before deleted refs, but compare_trees gives us
7029 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7030 * first and later process them in process_recorded_refs.
7031 * For the cur_inode_new_gen case, we skip recording completely because
7032 * changed_inode did already initiate processing of refs. The reason for this is
7033 * that in this case, compare_tree actually compares the refs of 2 different
7034 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7035 * refs of the right tree as deleted and all refs of the left tree as new.
7037 static int changed_ref(struct send_ctx *sctx,
7038 enum btrfs_compare_tree_result result)
7042 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7043 inconsistent_snapshot_error(sctx, result, "reference");
7047 if (!sctx->cur_inode_new_gen &&
7048 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7049 if (result == BTRFS_COMPARE_TREE_NEW)
7050 ret = record_new_ref(sctx);
7051 else if (result == BTRFS_COMPARE_TREE_DELETED)
7052 ret = record_deleted_ref(sctx);
7053 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7054 ret = record_changed_ref(sctx);
7061 * Process new/deleted/changed xattrs. We skip processing in the
7062 * cur_inode_new_gen case because changed_inode did already initiate processing
7063 * of xattrs. The reason is the same as in changed_ref
7065 static int changed_xattr(struct send_ctx *sctx,
7066 enum btrfs_compare_tree_result result)
7070 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7071 inconsistent_snapshot_error(sctx, result, "xattr");
7075 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7076 if (result == BTRFS_COMPARE_TREE_NEW)
7077 ret = process_new_xattr(sctx);
7078 else if (result == BTRFS_COMPARE_TREE_DELETED)
7079 ret = process_deleted_xattr(sctx);
7080 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7081 ret = process_changed_xattr(sctx);
7088 * Process new/deleted/changed extents. We skip processing in the
7089 * cur_inode_new_gen case because changed_inode did already initiate processing
7090 * of extents. The reason is the same as in changed_ref
7092 static int changed_extent(struct send_ctx *sctx,
7093 enum btrfs_compare_tree_result result)
7098 * We have found an extent item that changed without the inode item
7099 * having changed. This can happen either after relocation (where the
7100 * disk_bytenr of an extent item is replaced at
7101 * relocation.c:replace_file_extents()) or after deduplication into a
7102 * file in both the parent and send snapshots (where an extent item can
7103 * get modified or replaced with a new one). Note that deduplication
7104 * updates the inode item, but it only changes the iversion (sequence
7105 * field in the inode item) of the inode, so if a file is deduplicated
7106 * the same amount of times in both the parent and send snapshots, its
7107 * iversion becomes the same in both snapshots, whence the inode item is
7108 * the same on both snapshots.
7110 if (sctx->cur_ino != sctx->cmp_key->objectid)
7113 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7114 if (result != BTRFS_COMPARE_TREE_DELETED)
7115 ret = process_extent(sctx, sctx->left_path,
7122 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7126 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7127 if (result == BTRFS_COMPARE_TREE_NEW)
7128 sctx->cur_inode_needs_verity = true;
7133 static int dir_changed(struct send_ctx *sctx, u64 dir)
7135 u64 orig_gen, new_gen;
7138 ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7142 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7146 return (orig_gen != new_gen) ? 1 : 0;
7149 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7150 struct btrfs_key *key)
7152 struct btrfs_inode_extref *extref;
7153 struct extent_buffer *leaf;
7154 u64 dirid = 0, last_dirid = 0;
7161 /* Easy case, just check this one dirid */
7162 if (key->type == BTRFS_INODE_REF_KEY) {
7163 dirid = key->offset;
7165 ret = dir_changed(sctx, dirid);
7169 leaf = path->nodes[0];
7170 item_size = btrfs_item_size(leaf, path->slots[0]);
7171 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7172 while (cur_offset < item_size) {
7173 extref = (struct btrfs_inode_extref *)(ptr +
7175 dirid = btrfs_inode_extref_parent(leaf, extref);
7176 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7177 cur_offset += ref_name_len + sizeof(*extref);
7178 if (dirid == last_dirid)
7180 ret = dir_changed(sctx, dirid);
7190 * Updates compare related fields in sctx and simply forwards to the actual
7191 * changed_xxx functions.
7193 static int changed_cb(struct btrfs_path *left_path,
7194 struct btrfs_path *right_path,
7195 struct btrfs_key *key,
7196 enum btrfs_compare_tree_result result,
7197 struct send_ctx *sctx)
7202 * We can not hold the commit root semaphore here. This is because in
7203 * the case of sending and receiving to the same filesystem, using a
7204 * pipe, could result in a deadlock:
7206 * 1) The task running send blocks on the pipe because it's full;
7208 * 2) The task running receive, which is the only consumer of the pipe,
7209 * is waiting for a transaction commit (for example due to a space
7210 * reservation when doing a write or triggering a transaction commit
7211 * when creating a subvolume);
7213 * 3) The transaction is waiting to write lock the commit root semaphore,
7214 * but can not acquire it since it's being held at 1).
7216 * Down this call chain we write to the pipe through kernel_write().
7217 * The same type of problem can also happen when sending to a file that
7218 * is stored in the same filesystem - when reserving space for a write
7219 * into the file, we can trigger a transaction commit.
7221 * Our caller has supplied us with clones of leaves from the send and
7222 * parent roots, so we're safe here from a concurrent relocation and
7223 * further reallocation of metadata extents while we are here. Below we
7224 * also assert that the leaves are clones.
7226 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7229 * We always have a send root, so left_path is never NULL. We will not
7230 * have a leaf when we have reached the end of the send root but have
7231 * not yet reached the end of the parent root.
7233 if (left_path->nodes[0])
7234 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7235 &left_path->nodes[0]->bflags));
7237 * When doing a full send we don't have a parent root, so right_path is
7238 * NULL. When doing an incremental send, we may have reached the end of
7239 * the parent root already, so we don't have a leaf at right_path.
7241 if (right_path && right_path->nodes[0])
7242 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7243 &right_path->nodes[0]->bflags));
7245 if (result == BTRFS_COMPARE_TREE_SAME) {
7246 if (key->type == BTRFS_INODE_REF_KEY ||
7247 key->type == BTRFS_INODE_EXTREF_KEY) {
7248 ret = compare_refs(sctx, left_path, key);
7253 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7254 return maybe_send_hole(sctx, left_path, key);
7258 result = BTRFS_COMPARE_TREE_CHANGED;
7262 sctx->left_path = left_path;
7263 sctx->right_path = right_path;
7264 sctx->cmp_key = key;
7266 ret = finish_inode_if_needed(sctx, 0);
7270 /* Ignore non-FS objects */
7271 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7272 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7275 if (key->type == BTRFS_INODE_ITEM_KEY) {
7276 ret = changed_inode(sctx, result);
7277 } else if (!sctx->ignore_cur_inode) {
7278 if (key->type == BTRFS_INODE_REF_KEY ||
7279 key->type == BTRFS_INODE_EXTREF_KEY)
7280 ret = changed_ref(sctx, result);
7281 else if (key->type == BTRFS_XATTR_ITEM_KEY)
7282 ret = changed_xattr(sctx, result);
7283 else if (key->type == BTRFS_EXTENT_DATA_KEY)
7284 ret = changed_extent(sctx, result);
7285 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7287 ret = changed_verity(sctx, result);
7294 static int search_key_again(const struct send_ctx *sctx,
7295 struct btrfs_root *root,
7296 struct btrfs_path *path,
7297 const struct btrfs_key *key)
7301 if (!path->need_commit_sem)
7302 lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7305 * Roots used for send operations are readonly and no one can add,
7306 * update or remove keys from them, so we should be able to find our
7307 * key again. The only exception is deduplication, which can operate on
7308 * readonly roots and add, update or remove keys to/from them - but at
7309 * the moment we don't allow it to run in parallel with send.
7311 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7314 btrfs_print_tree(path->nodes[path->lowest_level], false);
7315 btrfs_err(root->fs_info,
7316 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7317 key->objectid, key->type, key->offset,
7318 (root == sctx->parent_root ? "parent" : "send"),
7319 root->root_key.objectid, path->lowest_level,
7320 path->slots[path->lowest_level]);
7327 static int full_send_tree(struct send_ctx *sctx)
7330 struct btrfs_root *send_root = sctx->send_root;
7331 struct btrfs_key key;
7332 struct btrfs_fs_info *fs_info = send_root->fs_info;
7333 struct btrfs_path *path;
7335 path = alloc_path_for_send();
7338 path->reada = READA_FORWARD_ALWAYS;
7340 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7341 key.type = BTRFS_INODE_ITEM_KEY;
7344 down_read(&fs_info->commit_root_sem);
7345 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7346 up_read(&fs_info->commit_root_sem);
7348 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7355 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7357 ret = changed_cb(path, NULL, &key,
7358 BTRFS_COMPARE_TREE_NEW, sctx);
7362 down_read(&fs_info->commit_root_sem);
7363 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7364 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7365 up_read(&fs_info->commit_root_sem);
7367 * A transaction used for relocating a block group was
7368 * committed or is about to finish its commit. Release
7369 * our path (leaf) and restart the search, so that we
7370 * avoid operating on any file extent items that are
7371 * stale, with a disk_bytenr that reflects a pre
7372 * relocation value. This way we avoid as much as
7373 * possible to fallback to regular writes when checking
7374 * if we can clone file ranges.
7376 btrfs_release_path(path);
7377 ret = search_key_again(sctx, send_root, path, &key);
7381 up_read(&fs_info->commit_root_sem);
7384 ret = btrfs_next_item(send_root, path);
7394 ret = finish_inode_if_needed(sctx, 1);
7397 btrfs_free_path(path);
7401 static int replace_node_with_clone(struct btrfs_path *path, int level)
7403 struct extent_buffer *clone;
7405 clone = btrfs_clone_extent_buffer(path->nodes[level]);
7409 free_extent_buffer(path->nodes[level]);
7410 path->nodes[level] = clone;
7415 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7417 struct extent_buffer *eb;
7418 struct extent_buffer *parent = path->nodes[*level];
7419 int slot = path->slots[*level];
7420 const int nritems = btrfs_header_nritems(parent);
7424 lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7426 BUG_ON(*level == 0);
7427 eb = btrfs_read_node_slot(parent, slot);
7432 * Trigger readahead for the next leaves we will process, so that it is
7433 * very likely that when we need them they are already in memory and we
7434 * will not block on disk IO. For nodes we only do readahead for one,
7435 * since the time window between processing nodes is typically larger.
7437 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7439 for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7440 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7441 btrfs_readahead_node_child(parent, slot);
7442 reada_done += eb->fs_info->nodesize;
7446 path->nodes[*level - 1] = eb;
7447 path->slots[*level - 1] = 0;
7451 return replace_node_with_clone(path, 0);
7456 static int tree_move_next_or_upnext(struct btrfs_path *path,
7457 int *level, int root_level)
7461 nritems = btrfs_header_nritems(path->nodes[*level]);
7463 path->slots[*level]++;
7465 while (path->slots[*level] >= nritems) {
7466 if (*level == root_level) {
7467 path->slots[*level] = nritems - 1;
7472 path->slots[*level] = 0;
7473 free_extent_buffer(path->nodes[*level]);
7474 path->nodes[*level] = NULL;
7476 path->slots[*level]++;
7478 nritems = btrfs_header_nritems(path->nodes[*level]);
7485 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7488 static int tree_advance(struct btrfs_path *path,
7489 int *level, int root_level,
7491 struct btrfs_key *key,
7496 if (*level == 0 || !allow_down) {
7497 ret = tree_move_next_or_upnext(path, level, root_level);
7499 ret = tree_move_down(path, level, reada_min_gen);
7503 * Even if we have reached the end of a tree, ret is -1, update the key
7504 * anyway, so that in case we need to restart due to a block group
7505 * relocation, we can assert that the last key of the root node still
7506 * exists in the tree.
7509 btrfs_item_key_to_cpu(path->nodes[*level], key,
7510 path->slots[*level]);
7512 btrfs_node_key_to_cpu(path->nodes[*level], key,
7513 path->slots[*level]);
7518 static int tree_compare_item(struct btrfs_path *left_path,
7519 struct btrfs_path *right_path,
7524 unsigned long off1, off2;
7526 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7527 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7531 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7532 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7533 right_path->slots[0]);
7535 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7537 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7544 * A transaction used for relocating a block group was committed or is about to
7545 * finish its commit. Release our paths and restart the search, so that we are
7546 * not using stale extent buffers:
7548 * 1) For levels > 0, we are only holding references of extent buffers, without
7549 * any locks on them, which does not prevent them from having been relocated
7550 * and reallocated after the last time we released the commit root semaphore.
7551 * The exception are the root nodes, for which we always have a clone, see
7552 * the comment at btrfs_compare_trees();
7554 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7555 * we are safe from the concurrent relocation and reallocation. However they
7556 * can have file extent items with a pre relocation disk_bytenr value, so we
7557 * restart the start from the current commit roots and clone the new leaves so
7558 * that we get the post relocation disk_bytenr values. Not doing so, could
7559 * make us clone the wrong data in case there are new extents using the old
7560 * disk_bytenr that happen to be shared.
7562 static int restart_after_relocation(struct btrfs_path *left_path,
7563 struct btrfs_path *right_path,
7564 const struct btrfs_key *left_key,
7565 const struct btrfs_key *right_key,
7568 const struct send_ctx *sctx)
7573 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7575 btrfs_release_path(left_path);
7576 btrfs_release_path(right_path);
7579 * Since keys can not be added or removed to/from our roots because they
7580 * are readonly and we do not allow deduplication to run in parallel
7581 * (which can add, remove or change keys), the layout of the trees should
7584 left_path->lowest_level = left_level;
7585 ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7589 right_path->lowest_level = right_level;
7590 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7595 * If the lowest level nodes are leaves, clone them so that they can be
7596 * safely used by changed_cb() while not under the protection of the
7597 * commit root semaphore, even if relocation and reallocation happens in
7600 if (left_level == 0) {
7601 ret = replace_node_with_clone(left_path, 0);
7606 if (right_level == 0) {
7607 ret = replace_node_with_clone(right_path, 0);
7613 * Now clone the root nodes (unless they happen to be the leaves we have
7614 * already cloned). This is to protect against concurrent snapshotting of
7615 * the send and parent roots (see the comment at btrfs_compare_trees()).
7617 root_level = btrfs_header_level(sctx->send_root->commit_root);
7618 if (root_level > 0) {
7619 ret = replace_node_with_clone(left_path, root_level);
7624 root_level = btrfs_header_level(sctx->parent_root->commit_root);
7625 if (root_level > 0) {
7626 ret = replace_node_with_clone(right_path, root_level);
7635 * This function compares two trees and calls the provided callback for
7636 * every changed/new/deleted item it finds.
7637 * If shared tree blocks are encountered, whole subtrees are skipped, making
7638 * the compare pretty fast on snapshotted subvolumes.
7640 * This currently works on commit roots only. As commit roots are read only,
7641 * we don't do any locking. The commit roots are protected with transactions.
7642 * Transactions are ended and rejoined when a commit is tried in between.
7644 * This function checks for modifications done to the trees while comparing.
7645 * If it detects a change, it aborts immediately.
7647 static int btrfs_compare_trees(struct btrfs_root *left_root,
7648 struct btrfs_root *right_root, struct send_ctx *sctx)
7650 struct btrfs_fs_info *fs_info = left_root->fs_info;
7653 struct btrfs_path *left_path = NULL;
7654 struct btrfs_path *right_path = NULL;
7655 struct btrfs_key left_key;
7656 struct btrfs_key right_key;
7657 char *tmp_buf = NULL;
7658 int left_root_level;
7659 int right_root_level;
7662 int left_end_reached = 0;
7663 int right_end_reached = 0;
7664 int advance_left = 0;
7665 int advance_right = 0;
7672 left_path = btrfs_alloc_path();
7677 right_path = btrfs_alloc_path();
7683 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7689 left_path->search_commit_root = 1;
7690 left_path->skip_locking = 1;
7691 right_path->search_commit_root = 1;
7692 right_path->skip_locking = 1;
7695 * Strategy: Go to the first items of both trees. Then do
7697 * If both trees are at level 0
7698 * Compare keys of current items
7699 * If left < right treat left item as new, advance left tree
7701 * If left > right treat right item as deleted, advance right tree
7703 * If left == right do deep compare of items, treat as changed if
7704 * needed, advance both trees and repeat
7705 * If both trees are at the same level but not at level 0
7706 * Compare keys of current nodes/leafs
7707 * If left < right advance left tree and repeat
7708 * If left > right advance right tree and repeat
7709 * If left == right compare blockptrs of the next nodes/leafs
7710 * If they match advance both trees but stay at the same level
7712 * If they don't match advance both trees while allowing to go
7714 * If tree levels are different
7715 * Advance the tree that needs it and repeat
7717 * Advancing a tree means:
7718 * If we are at level 0, try to go to the next slot. If that's not
7719 * possible, go one level up and repeat. Stop when we found a level
7720 * where we could go to the next slot. We may at this point be on a
7723 * If we are not at level 0 and not on shared tree blocks, go one
7726 * If we are not at level 0 and on shared tree blocks, go one slot to
7727 * the right if possible or go up and right.
7730 down_read(&fs_info->commit_root_sem);
7731 left_level = btrfs_header_level(left_root->commit_root);
7732 left_root_level = left_level;
7734 * We clone the root node of the send and parent roots to prevent races
7735 * with snapshot creation of these roots. Snapshot creation COWs the
7736 * root node of a tree, so after the transaction is committed the old
7737 * extent can be reallocated while this send operation is still ongoing.
7738 * So we clone them, under the commit root semaphore, to be race free.
7740 left_path->nodes[left_level] =
7741 btrfs_clone_extent_buffer(left_root->commit_root);
7742 if (!left_path->nodes[left_level]) {
7747 right_level = btrfs_header_level(right_root->commit_root);
7748 right_root_level = right_level;
7749 right_path->nodes[right_level] =
7750 btrfs_clone_extent_buffer(right_root->commit_root);
7751 if (!right_path->nodes[right_level]) {
7756 * Our right root is the parent root, while the left root is the "send"
7757 * root. We know that all new nodes/leaves in the left root must have
7758 * a generation greater than the right root's generation, so we trigger
7759 * readahead for those nodes and leaves of the left root, as we know we
7760 * will need to read them at some point.
7762 reada_min_gen = btrfs_header_generation(right_root->commit_root);
7764 if (left_level == 0)
7765 btrfs_item_key_to_cpu(left_path->nodes[left_level],
7766 &left_key, left_path->slots[left_level]);
7768 btrfs_node_key_to_cpu(left_path->nodes[left_level],
7769 &left_key, left_path->slots[left_level]);
7770 if (right_level == 0)
7771 btrfs_item_key_to_cpu(right_path->nodes[right_level],
7772 &right_key, right_path->slots[right_level]);
7774 btrfs_node_key_to_cpu(right_path->nodes[right_level],
7775 &right_key, right_path->slots[right_level]);
7777 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7780 if (need_resched() ||
7781 rwsem_is_contended(&fs_info->commit_root_sem)) {
7782 up_read(&fs_info->commit_root_sem);
7784 down_read(&fs_info->commit_root_sem);
7787 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7788 ret = restart_after_relocation(left_path, right_path,
7789 &left_key, &right_key,
7790 left_level, right_level,
7794 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7797 if (advance_left && !left_end_reached) {
7798 ret = tree_advance(left_path, &left_level,
7800 advance_left != ADVANCE_ONLY_NEXT,
7801 &left_key, reada_min_gen);
7803 left_end_reached = ADVANCE;
7808 if (advance_right && !right_end_reached) {
7809 ret = tree_advance(right_path, &right_level,
7811 advance_right != ADVANCE_ONLY_NEXT,
7812 &right_key, reada_min_gen);
7814 right_end_reached = ADVANCE;
7820 if (left_end_reached && right_end_reached) {
7823 } else if (left_end_reached) {
7824 if (right_level == 0) {
7825 up_read(&fs_info->commit_root_sem);
7826 ret = changed_cb(left_path, right_path,
7828 BTRFS_COMPARE_TREE_DELETED,
7832 down_read(&fs_info->commit_root_sem);
7834 advance_right = ADVANCE;
7836 } else if (right_end_reached) {
7837 if (left_level == 0) {
7838 up_read(&fs_info->commit_root_sem);
7839 ret = changed_cb(left_path, right_path,
7841 BTRFS_COMPARE_TREE_NEW,
7845 down_read(&fs_info->commit_root_sem);
7847 advance_left = ADVANCE;
7851 if (left_level == 0 && right_level == 0) {
7852 up_read(&fs_info->commit_root_sem);
7853 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7855 ret = changed_cb(left_path, right_path,
7857 BTRFS_COMPARE_TREE_NEW,
7859 advance_left = ADVANCE;
7860 } else if (cmp > 0) {
7861 ret = changed_cb(left_path, right_path,
7863 BTRFS_COMPARE_TREE_DELETED,
7865 advance_right = ADVANCE;
7867 enum btrfs_compare_tree_result result;
7869 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7870 ret = tree_compare_item(left_path, right_path,
7873 result = BTRFS_COMPARE_TREE_CHANGED;
7875 result = BTRFS_COMPARE_TREE_SAME;
7876 ret = changed_cb(left_path, right_path,
7877 &left_key, result, sctx);
7878 advance_left = ADVANCE;
7879 advance_right = ADVANCE;
7884 down_read(&fs_info->commit_root_sem);
7885 } else if (left_level == right_level) {
7886 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7888 advance_left = ADVANCE;
7889 } else if (cmp > 0) {
7890 advance_right = ADVANCE;
7892 left_blockptr = btrfs_node_blockptr(
7893 left_path->nodes[left_level],
7894 left_path->slots[left_level]);
7895 right_blockptr = btrfs_node_blockptr(
7896 right_path->nodes[right_level],
7897 right_path->slots[right_level]);
7898 left_gen = btrfs_node_ptr_generation(
7899 left_path->nodes[left_level],
7900 left_path->slots[left_level]);
7901 right_gen = btrfs_node_ptr_generation(
7902 right_path->nodes[right_level],
7903 right_path->slots[right_level]);
7904 if (left_blockptr == right_blockptr &&
7905 left_gen == right_gen) {
7907 * As we're on a shared block, don't
7908 * allow to go deeper.
7910 advance_left = ADVANCE_ONLY_NEXT;
7911 advance_right = ADVANCE_ONLY_NEXT;
7913 advance_left = ADVANCE;
7914 advance_right = ADVANCE;
7917 } else if (left_level < right_level) {
7918 advance_right = ADVANCE;
7920 advance_left = ADVANCE;
7925 up_read(&fs_info->commit_root_sem);
7927 btrfs_free_path(left_path);
7928 btrfs_free_path(right_path);
7933 static int send_subvol(struct send_ctx *sctx)
7937 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7938 ret = send_header(sctx);
7943 ret = send_subvol_begin(sctx);
7947 if (sctx->parent_root) {
7948 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7951 ret = finish_inode_if_needed(sctx, 1);
7955 ret = full_send_tree(sctx);
7961 free_recorded_refs(sctx);
7966 * If orphan cleanup did remove any orphans from a root, it means the tree
7967 * was modified and therefore the commit root is not the same as the current
7968 * root anymore. This is a problem, because send uses the commit root and
7969 * therefore can see inode items that don't exist in the current root anymore,
7970 * and for example make calls to btrfs_iget, which will do tree lookups based
7971 * on the current root and not on the commit root. Those lookups will fail,
7972 * returning a -ESTALE error, and making send fail with that error. So make
7973 * sure a send does not see any orphans we have just removed, and that it will
7974 * see the same inodes regardless of whether a transaction commit happened
7975 * before it started (meaning that the commit root will be the same as the
7976 * current root) or not.
7978 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7981 struct btrfs_trans_handle *trans = NULL;
7984 if (sctx->parent_root &&
7985 sctx->parent_root->node != sctx->parent_root->commit_root)
7988 for (i = 0; i < sctx->clone_roots_cnt; i++)
7989 if (sctx->clone_roots[i].root->node !=
7990 sctx->clone_roots[i].root->commit_root)
7994 return btrfs_end_transaction(trans);
7999 /* Use any root, all fs roots will get their commit roots updated. */
8001 trans = btrfs_join_transaction(sctx->send_root);
8003 return PTR_ERR(trans);
8007 return btrfs_commit_transaction(trans);
8011 * Make sure any existing dellaloc is flushed for any root used by a send
8012 * operation so that we do not miss any data and we do not race with writeback
8013 * finishing and changing a tree while send is using the tree. This could
8014 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8015 * a send operation then uses the subvolume.
8016 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8018 static int flush_delalloc_roots(struct send_ctx *sctx)
8020 struct btrfs_root *root = sctx->parent_root;
8025 ret = btrfs_start_delalloc_snapshot(root, false);
8028 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8031 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8032 root = sctx->clone_roots[i].root;
8033 ret = btrfs_start_delalloc_snapshot(root, false);
8036 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8042 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8044 spin_lock(&root->root_item_lock);
8045 root->send_in_progress--;
8047 * Not much left to do, we don't know why it's unbalanced and
8048 * can't blindly reset it to 0.
8050 if (root->send_in_progress < 0)
8051 btrfs_err(root->fs_info,
8052 "send_in_progress unbalanced %d root %llu",
8053 root->send_in_progress, root->root_key.objectid);
8054 spin_unlock(&root->root_item_lock);
8057 static void dedupe_in_progress_warn(const struct btrfs_root *root)
8059 btrfs_warn_rl(root->fs_info,
8060 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8061 root->root_key.objectid, root->dedupe_in_progress);
8064 long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg)
8067 struct btrfs_root *send_root = BTRFS_I(inode)->root;
8068 struct btrfs_fs_info *fs_info = send_root->fs_info;
8069 struct btrfs_root *clone_root;
8070 struct send_ctx *sctx = NULL;
8072 u64 *clone_sources_tmp = NULL;
8073 int clone_sources_to_rollback = 0;
8075 int sort_clone_roots = 0;
8076 struct btrfs_lru_cache_entry *entry;
8077 struct btrfs_lru_cache_entry *tmp;
8079 if (!capable(CAP_SYS_ADMIN))
8083 * The subvolume must remain read-only during send, protect against
8084 * making it RW. This also protects against deletion.
8086 spin_lock(&send_root->root_item_lock);
8087 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
8088 dedupe_in_progress_warn(send_root);
8089 spin_unlock(&send_root->root_item_lock);
8092 send_root->send_in_progress++;
8093 spin_unlock(&send_root->root_item_lock);
8096 * Userspace tools do the checks and warn the user if it's
8099 if (!btrfs_root_readonly(send_root)) {
8105 * Check that we don't overflow at later allocations, we request
8106 * clone_sources_count + 1 items, and compare to unsigned long inside
8107 * access_ok. Also set an upper limit for allocation size so this can't
8108 * easily exhaust memory. Max number of clone sources is about 200K.
8110 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8115 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8120 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8126 INIT_LIST_HEAD(&sctx->new_refs);
8127 INIT_LIST_HEAD(&sctx->deleted_refs);
8129 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8130 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8131 btrfs_lru_cache_init(&sctx->dir_created_cache,
8132 SEND_MAX_DIR_CREATED_CACHE_SIZE);
8134 * This cache is periodically trimmed to a fixed size elsewhere, see
8135 * cache_dir_utimes() and trim_dir_utimes_cache().
8137 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8139 sctx->pending_dir_moves = RB_ROOT;
8140 sctx->waiting_dir_moves = RB_ROOT;
8141 sctx->orphan_dirs = RB_ROOT;
8142 sctx->rbtree_new_refs = RB_ROOT;
8143 sctx->rbtree_deleted_refs = RB_ROOT;
8145 sctx->flags = arg->flags;
8147 if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8148 if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8152 /* Zero means "use the highest version" */
8153 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8157 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8162 sctx->send_filp = fget(arg->send_fd);
8163 if (!sctx->send_filp) {
8168 sctx->send_root = send_root;
8170 * Unlikely but possible, if the subvolume is marked for deletion but
8171 * is slow to remove the directory entry, send can still be started
8173 if (btrfs_root_dead(sctx->send_root)) {
8178 sctx->clone_roots_cnt = arg->clone_sources_count;
8180 if (sctx->proto >= 2) {
8181 u32 send_buf_num_pages;
8183 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8184 sctx->send_buf = vmalloc(sctx->send_max_size);
8185 if (!sctx->send_buf) {
8189 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8190 sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8191 sizeof(*sctx->send_buf_pages),
8193 if (!sctx->send_buf_pages) {
8197 for (i = 0; i < send_buf_num_pages; i++) {
8198 sctx->send_buf_pages[i] =
8199 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8202 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8203 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8205 if (!sctx->send_buf) {
8210 sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
8211 arg->clone_sources_count + 1,
8213 if (!sctx->clone_roots) {
8218 alloc_size = array_size(sizeof(*arg->clone_sources),
8219 arg->clone_sources_count);
8221 if (arg->clone_sources_count) {
8222 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8223 if (!clone_sources_tmp) {
8228 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8235 for (i = 0; i < arg->clone_sources_count; i++) {
8236 clone_root = btrfs_get_fs_root(fs_info,
8237 clone_sources_tmp[i], true);
8238 if (IS_ERR(clone_root)) {
8239 ret = PTR_ERR(clone_root);
8242 spin_lock(&clone_root->root_item_lock);
8243 if (!btrfs_root_readonly(clone_root) ||
8244 btrfs_root_dead(clone_root)) {
8245 spin_unlock(&clone_root->root_item_lock);
8246 btrfs_put_root(clone_root);
8250 if (clone_root->dedupe_in_progress) {
8251 dedupe_in_progress_warn(clone_root);
8252 spin_unlock(&clone_root->root_item_lock);
8253 btrfs_put_root(clone_root);
8257 clone_root->send_in_progress++;
8258 spin_unlock(&clone_root->root_item_lock);
8260 sctx->clone_roots[i].root = clone_root;
8261 clone_sources_to_rollback = i + 1;
8263 kvfree(clone_sources_tmp);
8264 clone_sources_tmp = NULL;
8267 if (arg->parent_root) {
8268 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8270 if (IS_ERR(sctx->parent_root)) {
8271 ret = PTR_ERR(sctx->parent_root);
8275 spin_lock(&sctx->parent_root->root_item_lock);
8276 sctx->parent_root->send_in_progress++;
8277 if (!btrfs_root_readonly(sctx->parent_root) ||
8278 btrfs_root_dead(sctx->parent_root)) {
8279 spin_unlock(&sctx->parent_root->root_item_lock);
8283 if (sctx->parent_root->dedupe_in_progress) {
8284 dedupe_in_progress_warn(sctx->parent_root);
8285 spin_unlock(&sctx->parent_root->root_item_lock);
8289 spin_unlock(&sctx->parent_root->root_item_lock);
8293 * Clones from send_root are allowed, but only if the clone source
8294 * is behind the current send position. This is checked while searching
8295 * for possible clone sources.
8297 sctx->clone_roots[sctx->clone_roots_cnt++].root =
8298 btrfs_grab_root(sctx->send_root);
8300 /* We do a bsearch later */
8301 sort(sctx->clone_roots, sctx->clone_roots_cnt,
8302 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8304 sort_clone_roots = 1;
8306 ret = flush_delalloc_roots(sctx);
8310 ret = ensure_commit_roots_uptodate(sctx);
8314 ret = send_subvol(sctx);
8318 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8319 ret = send_utimes(sctx, entry->key, entry->gen);
8322 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8325 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8326 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8329 ret = send_cmd(sctx);
8335 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8336 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8338 struct pending_dir_move *pm;
8340 n = rb_first(&sctx->pending_dir_moves);
8341 pm = rb_entry(n, struct pending_dir_move, node);
8342 while (!list_empty(&pm->list)) {
8343 struct pending_dir_move *pm2;
8345 pm2 = list_first_entry(&pm->list,
8346 struct pending_dir_move, list);
8347 free_pending_move(sctx, pm2);
8349 free_pending_move(sctx, pm);
8352 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8353 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8355 struct waiting_dir_move *dm;
8357 n = rb_first(&sctx->waiting_dir_moves);
8358 dm = rb_entry(n, struct waiting_dir_move, node);
8359 rb_erase(&dm->node, &sctx->waiting_dir_moves);
8363 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8364 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8366 struct orphan_dir_info *odi;
8368 n = rb_first(&sctx->orphan_dirs);
8369 odi = rb_entry(n, struct orphan_dir_info, node);
8370 free_orphan_dir_info(sctx, odi);
8373 if (sort_clone_roots) {
8374 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8375 btrfs_root_dec_send_in_progress(
8376 sctx->clone_roots[i].root);
8377 btrfs_put_root(sctx->clone_roots[i].root);
8380 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8381 btrfs_root_dec_send_in_progress(
8382 sctx->clone_roots[i].root);
8383 btrfs_put_root(sctx->clone_roots[i].root);
8386 btrfs_root_dec_send_in_progress(send_root);
8388 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8389 btrfs_root_dec_send_in_progress(sctx->parent_root);
8390 btrfs_put_root(sctx->parent_root);
8393 kvfree(clone_sources_tmp);
8396 if (sctx->send_filp)
8397 fput(sctx->send_filp);
8399 kvfree(sctx->clone_roots);
8400 kfree(sctx->send_buf_pages);
8401 kvfree(sctx->send_buf);
8402 kvfree(sctx->verity_descriptor);
8404 close_current_inode(sctx);
8406 btrfs_lru_cache_clear(&sctx->name_cache);
8407 btrfs_lru_cache_clear(&sctx->backref_cache);
8408 btrfs_lru_cache_clear(&sctx->dir_created_cache);
8409 btrfs_lru_cache_clear(&sctx->dir_utimes_cache);