2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
24 #include "ordered-data.h"
25 #include "transaction.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
39 * Future enhancements:
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
42 * - track and record media errors, throw out bad devices
43 * - add a mode to also read unallocated space
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
67 struct scrub_block *sblock;
69 struct btrfs_device *dev;
70 u64 flags; /* extent flags */
74 u64 physical_for_dev_replace;
77 unsigned int mirror_num:8;
78 unsigned int have_csum:1;
79 unsigned int io_error:1;
81 u8 csum[BTRFS_CSUM_SIZE];
86 struct scrub_ctx *sctx;
87 struct btrfs_device *dev;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
95 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
99 struct btrfs_work work;
103 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
105 atomic_t outstanding_pages;
106 atomic_t ref_count; /* free mem on transition to zero */
107 struct scrub_ctx *sctx;
109 unsigned int header_error:1;
110 unsigned int checksum_error:1;
111 unsigned int no_io_error_seen:1;
112 unsigned int generation_error:1; /* also sets header_error */
116 struct scrub_wr_ctx {
117 struct scrub_bio *wr_curr_bio;
118 struct btrfs_device *tgtdev;
119 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120 atomic_t flush_all_writes;
121 struct mutex wr_lock;
125 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
126 struct btrfs_root *dev_root;
129 atomic_t bios_in_flight;
130 atomic_t workers_pending;
131 spinlock_t list_lock;
132 wait_queue_head_t list_wait;
134 struct list_head csum_list;
137 int pages_per_rd_bio;
143 struct scrub_wr_ctx wr_ctx;
148 struct btrfs_scrub_progress stat;
149 spinlock_t stat_lock;
152 struct scrub_fixup_nodatasum {
153 struct scrub_ctx *sctx;
154 struct btrfs_device *dev;
156 struct btrfs_root *root;
157 struct btrfs_work work;
161 struct scrub_copy_nocow_ctx {
162 struct scrub_ctx *sctx;
166 u64 physical_for_dev_replace;
167 struct btrfs_work work;
170 struct scrub_warning {
171 struct btrfs_path *path;
172 u64 extent_item_size;
178 struct btrfs_device *dev;
184 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
185 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
186 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
187 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
188 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
189 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
190 struct btrfs_fs_info *fs_info,
191 struct scrub_block *original_sblock,
192 u64 length, u64 logical,
193 struct scrub_block *sblocks_for_recheck);
194 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
195 struct scrub_block *sblock, int is_metadata,
196 int have_csum, u8 *csum, u64 generation,
198 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
199 struct scrub_block *sblock,
200 int is_metadata, int have_csum,
201 const u8 *csum, u64 generation,
203 static void scrub_complete_bio_end_io(struct bio *bio, int err);
204 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
205 struct scrub_block *sblock_good,
207 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
208 struct scrub_block *sblock_good,
209 int page_num, int force_write);
210 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
211 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
213 static int scrub_checksum_data(struct scrub_block *sblock);
214 static int scrub_checksum_tree_block(struct scrub_block *sblock);
215 static int scrub_checksum_super(struct scrub_block *sblock);
216 static void scrub_block_get(struct scrub_block *sblock);
217 static void scrub_block_put(struct scrub_block *sblock);
218 static void scrub_page_get(struct scrub_page *spage);
219 static void scrub_page_put(struct scrub_page *spage);
220 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
221 struct scrub_page *spage);
222 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
223 u64 physical, struct btrfs_device *dev, u64 flags,
224 u64 gen, int mirror_num, u8 *csum, int force,
225 u64 physical_for_dev_replace);
226 static void scrub_bio_end_io(struct bio *bio, int err);
227 static void scrub_bio_end_io_worker(struct btrfs_work *work);
228 static void scrub_block_complete(struct scrub_block *sblock);
229 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
230 u64 extent_logical, u64 extent_len,
231 u64 *extent_physical,
232 struct btrfs_device **extent_dev,
233 int *extent_mirror_num);
234 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
235 struct scrub_wr_ctx *wr_ctx,
236 struct btrfs_fs_info *fs_info,
237 struct btrfs_device *dev,
239 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
240 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
241 struct scrub_page *spage);
242 static void scrub_wr_submit(struct scrub_ctx *sctx);
243 static void scrub_wr_bio_end_io(struct bio *bio, int err);
244 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
245 static int write_page_nocow(struct scrub_ctx *sctx,
246 u64 physical_for_dev_replace, struct page *page);
247 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
249 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
250 int mirror_num, u64 physical_for_dev_replace);
251 static void copy_nocow_pages_worker(struct btrfs_work *work);
254 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
256 atomic_inc(&sctx->bios_in_flight);
259 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
261 atomic_dec(&sctx->bios_in_flight);
262 wake_up(&sctx->list_wait);
266 * used for workers that require transaction commits (i.e., for the
269 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
271 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
274 * increment scrubs_running to prevent cancel requests from
275 * completing as long as a worker is running. we must also
276 * increment scrubs_paused to prevent deadlocking on pause
277 * requests used for transactions commits (as the worker uses a
278 * transaction context). it is safe to regard the worker
279 * as paused for all matters practical. effectively, we only
280 * avoid cancellation requests from completing.
282 mutex_lock(&fs_info->scrub_lock);
283 atomic_inc(&fs_info->scrubs_running);
284 atomic_inc(&fs_info->scrubs_paused);
285 mutex_unlock(&fs_info->scrub_lock);
286 atomic_inc(&sctx->workers_pending);
289 /* used for workers that require transaction commits */
290 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
292 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
295 * see scrub_pending_trans_workers_inc() why we're pretending
296 * to be paused in the scrub counters
298 mutex_lock(&fs_info->scrub_lock);
299 atomic_dec(&fs_info->scrubs_running);
300 atomic_dec(&fs_info->scrubs_paused);
301 mutex_unlock(&fs_info->scrub_lock);
302 atomic_dec(&sctx->workers_pending);
303 wake_up(&fs_info->scrub_pause_wait);
304 wake_up(&sctx->list_wait);
307 static void scrub_free_csums(struct scrub_ctx *sctx)
309 while (!list_empty(&sctx->csum_list)) {
310 struct btrfs_ordered_sum *sum;
311 sum = list_first_entry(&sctx->csum_list,
312 struct btrfs_ordered_sum, list);
313 list_del(&sum->list);
318 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
325 scrub_free_wr_ctx(&sctx->wr_ctx);
327 /* this can happen when scrub is cancelled */
328 if (sctx->curr != -1) {
329 struct scrub_bio *sbio = sctx->bios[sctx->curr];
331 for (i = 0; i < sbio->page_count; i++) {
332 WARN_ON(!sbio->pagev[i]->page);
333 scrub_block_put(sbio->pagev[i]->sblock);
338 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
339 struct scrub_bio *sbio = sctx->bios[i];
346 scrub_free_csums(sctx);
350 static noinline_for_stack
351 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
353 struct scrub_ctx *sctx;
355 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
356 int pages_per_rd_bio;
360 * the setting of pages_per_rd_bio is correct for scrub but might
361 * be wrong for the dev_replace code where we might read from
362 * different devices in the initial huge bios. However, that
363 * code is able to correctly handle the case when adding a page
367 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
368 bio_get_nr_vecs(dev->bdev));
370 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
371 sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
374 sctx->is_dev_replace = is_dev_replace;
375 sctx->pages_per_rd_bio = pages_per_rd_bio;
377 sctx->dev_root = dev->dev_root;
378 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
379 struct scrub_bio *sbio;
381 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
384 sctx->bios[i] = sbio;
388 sbio->page_count = 0;
389 sbio->work.func = scrub_bio_end_io_worker;
391 if (i != SCRUB_BIOS_PER_SCTX - 1)
392 sctx->bios[i]->next_free = i + 1;
394 sctx->bios[i]->next_free = -1;
396 sctx->first_free = 0;
397 sctx->nodesize = dev->dev_root->nodesize;
398 sctx->leafsize = dev->dev_root->leafsize;
399 sctx->sectorsize = dev->dev_root->sectorsize;
400 atomic_set(&sctx->bios_in_flight, 0);
401 atomic_set(&sctx->workers_pending, 0);
402 atomic_set(&sctx->cancel_req, 0);
403 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
404 INIT_LIST_HEAD(&sctx->csum_list);
406 spin_lock_init(&sctx->list_lock);
407 spin_lock_init(&sctx->stat_lock);
408 init_waitqueue_head(&sctx->list_wait);
410 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
411 fs_info->dev_replace.tgtdev, is_dev_replace);
413 scrub_free_ctx(sctx);
419 scrub_free_ctx(sctx);
420 return ERR_PTR(-ENOMEM);
423 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
430 struct extent_buffer *eb;
431 struct btrfs_inode_item *inode_item;
432 struct scrub_warning *swarn = warn_ctx;
433 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
434 struct inode_fs_paths *ipath = NULL;
435 struct btrfs_root *local_root;
436 struct btrfs_key root_key;
438 root_key.objectid = root;
439 root_key.type = BTRFS_ROOT_ITEM_KEY;
440 root_key.offset = (u64)-1;
441 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
442 if (IS_ERR(local_root)) {
443 ret = PTR_ERR(local_root);
447 ret = inode_item_info(inum, 0, local_root, swarn->path);
449 btrfs_release_path(swarn->path);
453 eb = swarn->path->nodes[0];
454 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
455 struct btrfs_inode_item);
456 isize = btrfs_inode_size(eb, inode_item);
457 nlink = btrfs_inode_nlink(eb, inode_item);
458 btrfs_release_path(swarn->path);
460 ipath = init_ipath(4096, local_root, swarn->path);
462 ret = PTR_ERR(ipath);
466 ret = paths_from_inode(inum, ipath);
472 * we deliberately ignore the bit ipath might have been too small to
473 * hold all of the paths here
475 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
476 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
477 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
478 "length %llu, links %u (path: %s)\n", swarn->errstr,
479 swarn->logical, rcu_str_deref(swarn->dev->name),
480 (unsigned long long)swarn->sector, root, inum, offset,
481 min(isize - offset, (u64)PAGE_SIZE), nlink,
482 (char *)(unsigned long)ipath->fspath->val[i]);
488 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
489 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
490 "resolving failed with ret=%d\n", swarn->errstr,
491 swarn->logical, rcu_str_deref(swarn->dev->name),
492 (unsigned long long)swarn->sector, root, inum, offset, ret);
498 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
500 struct btrfs_device *dev;
501 struct btrfs_fs_info *fs_info;
502 struct btrfs_path *path;
503 struct btrfs_key found_key;
504 struct extent_buffer *eb;
505 struct btrfs_extent_item *ei;
506 struct scrub_warning swarn;
507 unsigned long ptr = 0;
513 const int bufsize = 4096;
516 WARN_ON(sblock->page_count < 1);
517 dev = sblock->pagev[0]->dev;
518 fs_info = sblock->sctx->dev_root->fs_info;
520 path = btrfs_alloc_path();
522 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
523 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
524 swarn.sector = (sblock->pagev[0]->physical) >> 9;
525 swarn.logical = sblock->pagev[0]->logical;
526 swarn.errstr = errstr;
528 swarn.msg_bufsize = bufsize;
529 swarn.scratch_bufsize = bufsize;
531 if (!path || !swarn.scratch_buf || !swarn.msg_buf)
534 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
539 extent_item_pos = swarn.logical - found_key.objectid;
540 swarn.extent_item_size = found_key.offset;
543 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
544 item_size = btrfs_item_size_nr(eb, path->slots[0]);
546 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
548 ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
549 &ref_root, &ref_level);
550 printk_in_rcu(KERN_WARNING
551 "btrfs: %s at logical %llu on dev %s, "
552 "sector %llu: metadata %s (level %d) in tree "
553 "%llu\n", errstr, swarn.logical,
554 rcu_str_deref(dev->name),
555 (unsigned long long)swarn.sector,
556 ref_level ? "node" : "leaf",
557 ret < 0 ? -1 : ref_level,
558 ret < 0 ? -1 : ref_root);
560 btrfs_release_path(path);
562 btrfs_release_path(path);
565 iterate_extent_inodes(fs_info, found_key.objectid,
567 scrub_print_warning_inode, &swarn);
571 btrfs_free_path(path);
572 kfree(swarn.scratch_buf);
573 kfree(swarn.msg_buf);
576 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
578 struct page *page = NULL;
580 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
583 struct btrfs_key key;
584 struct inode *inode = NULL;
585 struct btrfs_fs_info *fs_info;
586 u64 end = offset + PAGE_SIZE - 1;
587 struct btrfs_root *local_root;
591 key.type = BTRFS_ROOT_ITEM_KEY;
592 key.offset = (u64)-1;
594 fs_info = fixup->root->fs_info;
595 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
597 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
598 if (IS_ERR(local_root)) {
599 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
600 return PTR_ERR(local_root);
603 key.type = BTRFS_INODE_ITEM_KEY;
606 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
607 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
609 return PTR_ERR(inode);
611 index = offset >> PAGE_CACHE_SHIFT;
613 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
619 if (PageUptodate(page)) {
620 if (PageDirty(page)) {
622 * we need to write the data to the defect sector. the
623 * data that was in that sector is not in memory,
624 * because the page was modified. we must not write the
625 * modified page to that sector.
627 * TODO: what could be done here: wait for the delalloc
628 * runner to write out that page (might involve
629 * COW) and see whether the sector is still
630 * referenced afterwards.
632 * For the meantime, we'll treat this error
633 * incorrectable, although there is a chance that a
634 * later scrub will find the bad sector again and that
635 * there's no dirty page in memory, then.
640 fs_info = BTRFS_I(inode)->root->fs_info;
641 ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
642 fixup->logical, page,
648 * we need to get good data first. the general readpage path
649 * will call repair_io_failure for us, we just have to make
650 * sure we read the bad mirror.
652 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
653 EXTENT_DAMAGED, GFP_NOFS);
655 /* set_extent_bits should give proper error */
662 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
665 wait_on_page_locked(page);
667 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
668 end, EXTENT_DAMAGED, 0, NULL);
670 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
671 EXTENT_DAMAGED, GFP_NOFS);
683 if (ret == 0 && corrected) {
685 * we only need to call readpage for one of the inodes belonging
686 * to this extent. so make iterate_extent_inodes stop
694 static void scrub_fixup_nodatasum(struct btrfs_work *work)
697 struct scrub_fixup_nodatasum *fixup;
698 struct scrub_ctx *sctx;
699 struct btrfs_trans_handle *trans = NULL;
700 struct btrfs_fs_info *fs_info;
701 struct btrfs_path *path;
702 int uncorrectable = 0;
704 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
706 fs_info = fixup->root->fs_info;
708 path = btrfs_alloc_path();
710 spin_lock(&sctx->stat_lock);
711 ++sctx->stat.malloc_errors;
712 spin_unlock(&sctx->stat_lock);
717 trans = btrfs_join_transaction(fixup->root);
724 * the idea is to trigger a regular read through the standard path. we
725 * read a page from the (failed) logical address by specifying the
726 * corresponding copynum of the failed sector. thus, that readpage is
728 * that is the point where on-the-fly error correction will kick in
729 * (once it's finished) and rewrite the failed sector if a good copy
732 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
733 path, scrub_fixup_readpage,
741 spin_lock(&sctx->stat_lock);
742 ++sctx->stat.corrected_errors;
743 spin_unlock(&sctx->stat_lock);
746 if (trans && !IS_ERR(trans))
747 btrfs_end_transaction(trans, fixup->root);
749 spin_lock(&sctx->stat_lock);
750 ++sctx->stat.uncorrectable_errors;
751 spin_unlock(&sctx->stat_lock);
752 btrfs_dev_replace_stats_inc(
753 &sctx->dev_root->fs_info->dev_replace.
754 num_uncorrectable_read_errors);
755 printk_ratelimited_in_rcu(KERN_ERR
756 "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
757 fixup->logical, rcu_str_deref(fixup->dev->name));
760 btrfs_free_path(path);
763 scrub_pending_trans_workers_dec(sctx);
767 * scrub_handle_errored_block gets called when either verification of the
768 * pages failed or the bio failed to read, e.g. with EIO. In the latter
769 * case, this function handles all pages in the bio, even though only one
771 * The goal of this function is to repair the errored block by using the
772 * contents of one of the mirrors.
774 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
776 struct scrub_ctx *sctx = sblock_to_check->sctx;
777 struct btrfs_device *dev;
778 struct btrfs_fs_info *fs_info;
782 unsigned int failed_mirror_index;
783 unsigned int is_metadata;
784 unsigned int have_csum;
786 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
787 struct scrub_block *sblock_bad;
792 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
793 DEFAULT_RATELIMIT_BURST);
795 BUG_ON(sblock_to_check->page_count < 1);
796 fs_info = sctx->dev_root->fs_info;
797 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
799 * if we find an error in a super block, we just report it.
800 * They will get written with the next transaction commit
803 spin_lock(&sctx->stat_lock);
804 ++sctx->stat.super_errors;
805 spin_unlock(&sctx->stat_lock);
808 length = sblock_to_check->page_count * PAGE_SIZE;
809 logical = sblock_to_check->pagev[0]->logical;
810 generation = sblock_to_check->pagev[0]->generation;
811 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
812 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
813 is_metadata = !(sblock_to_check->pagev[0]->flags &
814 BTRFS_EXTENT_FLAG_DATA);
815 have_csum = sblock_to_check->pagev[0]->have_csum;
816 csum = sblock_to_check->pagev[0]->csum;
817 dev = sblock_to_check->pagev[0]->dev;
819 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
820 sblocks_for_recheck = NULL;
825 * read all mirrors one after the other. This includes to
826 * re-read the extent or metadata block that failed (that was
827 * the cause that this fixup code is called) another time,
828 * page by page this time in order to know which pages
829 * caused I/O errors and which ones are good (for all mirrors).
830 * It is the goal to handle the situation when more than one
831 * mirror contains I/O errors, but the errors do not
832 * overlap, i.e. the data can be repaired by selecting the
833 * pages from those mirrors without I/O error on the
834 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
835 * would be that mirror #1 has an I/O error on the first page,
836 * the second page is good, and mirror #2 has an I/O error on
837 * the second page, but the first page is good.
838 * Then the first page of the first mirror can be repaired by
839 * taking the first page of the second mirror, and the
840 * second page of the second mirror can be repaired by
841 * copying the contents of the 2nd page of the 1st mirror.
842 * One more note: if the pages of one mirror contain I/O
843 * errors, the checksum cannot be verified. In order to get
844 * the best data for repairing, the first attempt is to find
845 * a mirror without I/O errors and with a validated checksum.
846 * Only if this is not possible, the pages are picked from
847 * mirrors with I/O errors without considering the checksum.
848 * If the latter is the case, at the end, the checksum of the
849 * repaired area is verified in order to correctly maintain
853 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
854 sizeof(*sblocks_for_recheck),
856 if (!sblocks_for_recheck) {
857 spin_lock(&sctx->stat_lock);
858 sctx->stat.malloc_errors++;
859 sctx->stat.read_errors++;
860 sctx->stat.uncorrectable_errors++;
861 spin_unlock(&sctx->stat_lock);
862 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
866 /* setup the context, map the logical blocks and alloc the pages */
867 ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
868 logical, sblocks_for_recheck);
870 spin_lock(&sctx->stat_lock);
871 sctx->stat.read_errors++;
872 sctx->stat.uncorrectable_errors++;
873 spin_unlock(&sctx->stat_lock);
874 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
877 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
878 sblock_bad = sblocks_for_recheck + failed_mirror_index;
880 /* build and submit the bios for the failed mirror, check checksums */
881 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
882 csum, generation, sctx->csum_size);
884 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
885 sblock_bad->no_io_error_seen) {
887 * the error disappeared after reading page by page, or
888 * the area was part of a huge bio and other parts of the
889 * bio caused I/O errors, or the block layer merged several
890 * read requests into one and the error is caused by a
891 * different bio (usually one of the two latter cases is
894 spin_lock(&sctx->stat_lock);
895 sctx->stat.unverified_errors++;
896 spin_unlock(&sctx->stat_lock);
898 if (sctx->is_dev_replace)
899 scrub_write_block_to_dev_replace(sblock_bad);
903 if (!sblock_bad->no_io_error_seen) {
904 spin_lock(&sctx->stat_lock);
905 sctx->stat.read_errors++;
906 spin_unlock(&sctx->stat_lock);
907 if (__ratelimit(&_rs))
908 scrub_print_warning("i/o error", sblock_to_check);
909 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
910 } else if (sblock_bad->checksum_error) {
911 spin_lock(&sctx->stat_lock);
912 sctx->stat.csum_errors++;
913 spin_unlock(&sctx->stat_lock);
914 if (__ratelimit(&_rs))
915 scrub_print_warning("checksum error", sblock_to_check);
916 btrfs_dev_stat_inc_and_print(dev,
917 BTRFS_DEV_STAT_CORRUPTION_ERRS);
918 } else if (sblock_bad->header_error) {
919 spin_lock(&sctx->stat_lock);
920 sctx->stat.verify_errors++;
921 spin_unlock(&sctx->stat_lock);
922 if (__ratelimit(&_rs))
923 scrub_print_warning("checksum/header error",
925 if (sblock_bad->generation_error)
926 btrfs_dev_stat_inc_and_print(dev,
927 BTRFS_DEV_STAT_GENERATION_ERRS);
929 btrfs_dev_stat_inc_and_print(dev,
930 BTRFS_DEV_STAT_CORRUPTION_ERRS);
933 if (sctx->readonly && !sctx->is_dev_replace)
934 goto did_not_correct_error;
936 if (!is_metadata && !have_csum) {
937 struct scrub_fixup_nodatasum *fixup_nodatasum;
940 WARN_ON(sctx->is_dev_replace);
943 * !is_metadata and !have_csum, this means that the data
944 * might not be COW'ed, that it might be modified
945 * concurrently. The general strategy to work on the
946 * commit root does not help in the case when COW is not
949 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
950 if (!fixup_nodatasum)
951 goto did_not_correct_error;
952 fixup_nodatasum->sctx = sctx;
953 fixup_nodatasum->dev = dev;
954 fixup_nodatasum->logical = logical;
955 fixup_nodatasum->root = fs_info->extent_root;
956 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
957 scrub_pending_trans_workers_inc(sctx);
958 fixup_nodatasum->work.func = scrub_fixup_nodatasum;
959 btrfs_queue_worker(&fs_info->scrub_workers,
960 &fixup_nodatasum->work);
965 * now build and submit the bios for the other mirrors, check
967 * First try to pick the mirror which is completely without I/O
968 * errors and also does not have a checksum error.
969 * If one is found, and if a checksum is present, the full block
970 * that is known to contain an error is rewritten. Afterwards
971 * the block is known to be corrected.
972 * If a mirror is found which is completely correct, and no
973 * checksum is present, only those pages are rewritten that had
974 * an I/O error in the block to be repaired, since it cannot be
975 * determined, which copy of the other pages is better (and it
976 * could happen otherwise that a correct page would be
977 * overwritten by a bad one).
979 for (mirror_index = 0;
980 mirror_index < BTRFS_MAX_MIRRORS &&
981 sblocks_for_recheck[mirror_index].page_count > 0;
983 struct scrub_block *sblock_other;
985 if (mirror_index == failed_mirror_index)
987 sblock_other = sblocks_for_recheck + mirror_index;
989 /* build and submit the bios, check checksums */
990 scrub_recheck_block(fs_info, sblock_other, is_metadata,
991 have_csum, csum, generation,
994 if (!sblock_other->header_error &&
995 !sblock_other->checksum_error &&
996 sblock_other->no_io_error_seen) {
997 if (sctx->is_dev_replace) {
998 scrub_write_block_to_dev_replace(sblock_other);
1000 int force_write = is_metadata || have_csum;
1002 ret = scrub_repair_block_from_good_copy(
1003 sblock_bad, sblock_other,
1007 goto corrected_error;
1012 * for dev_replace, pick good pages and write to the target device.
1014 if (sctx->is_dev_replace) {
1016 for (page_num = 0; page_num < sblock_bad->page_count;
1021 for (mirror_index = 0;
1022 mirror_index < BTRFS_MAX_MIRRORS &&
1023 sblocks_for_recheck[mirror_index].page_count > 0;
1025 struct scrub_block *sblock_other =
1026 sblocks_for_recheck + mirror_index;
1027 struct scrub_page *page_other =
1028 sblock_other->pagev[page_num];
1030 if (!page_other->io_error) {
1031 ret = scrub_write_page_to_dev_replace(
1032 sblock_other, page_num);
1034 /* succeeded for this page */
1038 btrfs_dev_replace_stats_inc(
1040 fs_info->dev_replace.
1048 * did not find a mirror to fetch the page
1049 * from. scrub_write_page_to_dev_replace()
1050 * handles this case (page->io_error), by
1051 * filling the block with zeros before
1052 * submitting the write request
1055 ret = scrub_write_page_to_dev_replace(
1056 sblock_bad, page_num);
1058 btrfs_dev_replace_stats_inc(
1059 &sctx->dev_root->fs_info->
1060 dev_replace.num_write_errors);
1068 * for regular scrub, repair those pages that are errored.
1069 * In case of I/O errors in the area that is supposed to be
1070 * repaired, continue by picking good copies of those pages.
1071 * Select the good pages from mirrors to rewrite bad pages from
1072 * the area to fix. Afterwards verify the checksum of the block
1073 * that is supposed to be repaired. This verification step is
1074 * only done for the purpose of statistic counting and for the
1075 * final scrub report, whether errors remain.
1076 * A perfect algorithm could make use of the checksum and try
1077 * all possible combinations of pages from the different mirrors
1078 * until the checksum verification succeeds. For example, when
1079 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1080 * of mirror #2 is readable but the final checksum test fails,
1081 * then the 2nd page of mirror #3 could be tried, whether now
1082 * the final checksum succeedes. But this would be a rare
1083 * exception and is therefore not implemented. At least it is
1084 * avoided that the good copy is overwritten.
1085 * A more useful improvement would be to pick the sectors
1086 * without I/O error based on sector sizes (512 bytes on legacy
1087 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1088 * mirror could be repaired by taking 512 byte of a different
1089 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1090 * area are unreadable.
1093 /* can only fix I/O errors from here on */
1094 if (sblock_bad->no_io_error_seen)
1095 goto did_not_correct_error;
1098 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1099 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1101 if (!page_bad->io_error)
1104 for (mirror_index = 0;
1105 mirror_index < BTRFS_MAX_MIRRORS &&
1106 sblocks_for_recheck[mirror_index].page_count > 0;
1108 struct scrub_block *sblock_other = sblocks_for_recheck +
1110 struct scrub_page *page_other = sblock_other->pagev[
1113 if (!page_other->io_error) {
1114 ret = scrub_repair_page_from_good_copy(
1115 sblock_bad, sblock_other, page_num, 0);
1117 page_bad->io_error = 0;
1118 break; /* succeeded for this page */
1123 if (page_bad->io_error) {
1124 /* did not find a mirror to copy the page from */
1130 if (is_metadata || have_csum) {
1132 * need to verify the checksum now that all
1133 * sectors on disk are repaired (the write
1134 * request for data to be repaired is on its way).
1135 * Just be lazy and use scrub_recheck_block()
1136 * which re-reads the data before the checksum
1137 * is verified, but most likely the data comes out
1138 * of the page cache.
1140 scrub_recheck_block(fs_info, sblock_bad,
1141 is_metadata, have_csum, csum,
1142 generation, sctx->csum_size);
1143 if (!sblock_bad->header_error &&
1144 !sblock_bad->checksum_error &&
1145 sblock_bad->no_io_error_seen)
1146 goto corrected_error;
1148 goto did_not_correct_error;
1151 spin_lock(&sctx->stat_lock);
1152 sctx->stat.corrected_errors++;
1153 spin_unlock(&sctx->stat_lock);
1154 printk_ratelimited_in_rcu(KERN_ERR
1155 "btrfs: fixed up error at logical %llu on dev %s\n",
1156 logical, rcu_str_deref(dev->name));
1159 did_not_correct_error:
1160 spin_lock(&sctx->stat_lock);
1161 sctx->stat.uncorrectable_errors++;
1162 spin_unlock(&sctx->stat_lock);
1163 printk_ratelimited_in_rcu(KERN_ERR
1164 "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
1165 logical, rcu_str_deref(dev->name));
1169 if (sblocks_for_recheck) {
1170 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1172 struct scrub_block *sblock = sblocks_for_recheck +
1176 for (page_index = 0; page_index < sblock->page_count;
1178 sblock->pagev[page_index]->sblock = NULL;
1179 scrub_page_put(sblock->pagev[page_index]);
1182 kfree(sblocks_for_recheck);
1188 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1189 struct btrfs_fs_info *fs_info,
1190 struct scrub_block *original_sblock,
1191 u64 length, u64 logical,
1192 struct scrub_block *sblocks_for_recheck)
1199 * note: the two members ref_count and outstanding_pages
1200 * are not used (and not set) in the blocks that are used for
1201 * the recheck procedure
1205 while (length > 0) {
1206 u64 sublen = min_t(u64, length, PAGE_SIZE);
1207 u64 mapped_length = sublen;
1208 struct btrfs_bio *bbio = NULL;
1211 * with a length of PAGE_SIZE, each returned stripe
1212 * represents one mirror
1214 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1215 &mapped_length, &bbio, 0);
1216 if (ret || !bbio || mapped_length < sublen) {
1221 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1222 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1224 struct scrub_block *sblock;
1225 struct scrub_page *page;
1227 if (mirror_index >= BTRFS_MAX_MIRRORS)
1230 sblock = sblocks_for_recheck + mirror_index;
1231 sblock->sctx = sctx;
1232 page = kzalloc(sizeof(*page), GFP_NOFS);
1235 spin_lock(&sctx->stat_lock);
1236 sctx->stat.malloc_errors++;
1237 spin_unlock(&sctx->stat_lock);
1241 scrub_page_get(page);
1242 sblock->pagev[page_index] = page;
1243 page->logical = logical;
1244 page->physical = bbio->stripes[mirror_index].physical;
1245 BUG_ON(page_index >= original_sblock->page_count);
1246 page->physical_for_dev_replace =
1247 original_sblock->pagev[page_index]->
1248 physical_for_dev_replace;
1249 /* for missing devices, dev->bdev is NULL */
1250 page->dev = bbio->stripes[mirror_index].dev;
1251 page->mirror_num = mirror_index + 1;
1252 sblock->page_count++;
1253 page->page = alloc_page(GFP_NOFS);
1267 * this function will check the on disk data for checksum errors, header
1268 * errors and read I/O errors. If any I/O errors happen, the exact pages
1269 * which are errored are marked as being bad. The goal is to enable scrub
1270 * to take those pages that are not errored from all the mirrors so that
1271 * the pages that are errored in the just handled mirror can be repaired.
1273 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1274 struct scrub_block *sblock, int is_metadata,
1275 int have_csum, u8 *csum, u64 generation,
1280 sblock->no_io_error_seen = 1;
1281 sblock->header_error = 0;
1282 sblock->checksum_error = 0;
1284 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1286 struct scrub_page *page = sblock->pagev[page_num];
1287 DECLARE_COMPLETION_ONSTACK(complete);
1289 if (page->dev->bdev == NULL) {
1291 sblock->no_io_error_seen = 0;
1295 WARN_ON(!page->page);
1296 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1299 sblock->no_io_error_seen = 0;
1302 bio->bi_bdev = page->dev->bdev;
1303 bio->bi_sector = page->physical >> 9;
1304 bio->bi_end_io = scrub_complete_bio_end_io;
1305 bio->bi_private = &complete;
1307 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1308 btrfsic_submit_bio(READ, bio);
1310 /* this will also unplug the queue */
1311 wait_for_completion(&complete);
1313 page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1314 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1315 sblock->no_io_error_seen = 0;
1319 if (sblock->no_io_error_seen)
1320 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1321 have_csum, csum, generation,
1327 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1328 struct scrub_block *sblock,
1329 int is_metadata, int have_csum,
1330 const u8 *csum, u64 generation,
1334 u8 calculated_csum[BTRFS_CSUM_SIZE];
1336 void *mapped_buffer;
1338 WARN_ON(!sblock->pagev[0]->page);
1340 struct btrfs_header *h;
1342 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1343 h = (struct btrfs_header *)mapped_buffer;
1345 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1346 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1347 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1349 sblock->header_error = 1;
1350 } else if (generation != btrfs_stack_header_generation(h)) {
1351 sblock->header_error = 1;
1352 sblock->generation_error = 1;
1359 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1362 for (page_num = 0;;) {
1363 if (page_num == 0 && is_metadata)
1364 crc = btrfs_csum_data(
1365 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1366 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1368 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1370 kunmap_atomic(mapped_buffer);
1372 if (page_num >= sblock->page_count)
1374 WARN_ON(!sblock->pagev[page_num]->page);
1376 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1379 btrfs_csum_final(crc, calculated_csum);
1380 if (memcmp(calculated_csum, csum, csum_size))
1381 sblock->checksum_error = 1;
1384 static void scrub_complete_bio_end_io(struct bio *bio, int err)
1386 complete((struct completion *)bio->bi_private);
1389 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1390 struct scrub_block *sblock_good,
1396 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1399 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1410 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1411 struct scrub_block *sblock_good,
1412 int page_num, int force_write)
1414 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1415 struct scrub_page *page_good = sblock_good->pagev[page_num];
1417 BUG_ON(page_bad->page == NULL);
1418 BUG_ON(page_good->page == NULL);
1419 if (force_write || sblock_bad->header_error ||
1420 sblock_bad->checksum_error || page_bad->io_error) {
1423 DECLARE_COMPLETION_ONSTACK(complete);
1425 if (!page_bad->dev->bdev) {
1426 printk_ratelimited(KERN_WARNING
1427 "btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n");
1431 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1434 bio->bi_bdev = page_bad->dev->bdev;
1435 bio->bi_sector = page_bad->physical >> 9;
1436 bio->bi_end_io = scrub_complete_bio_end_io;
1437 bio->bi_private = &complete;
1439 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1440 if (PAGE_SIZE != ret) {
1444 btrfsic_submit_bio(WRITE, bio);
1446 /* this will also unplug the queue */
1447 wait_for_completion(&complete);
1448 if (!bio_flagged(bio, BIO_UPTODATE)) {
1449 btrfs_dev_stat_inc_and_print(page_bad->dev,
1450 BTRFS_DEV_STAT_WRITE_ERRS);
1451 btrfs_dev_replace_stats_inc(
1452 &sblock_bad->sctx->dev_root->fs_info->
1453 dev_replace.num_write_errors);
1463 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1467 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1470 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1472 btrfs_dev_replace_stats_inc(
1473 &sblock->sctx->dev_root->fs_info->dev_replace.
1478 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1481 struct scrub_page *spage = sblock->pagev[page_num];
1483 BUG_ON(spage->page == NULL);
1484 if (spage->io_error) {
1485 void *mapped_buffer = kmap_atomic(spage->page);
1487 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1488 flush_dcache_page(spage->page);
1489 kunmap_atomic(mapped_buffer);
1491 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1494 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1495 struct scrub_page *spage)
1497 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1498 struct scrub_bio *sbio;
1501 mutex_lock(&wr_ctx->wr_lock);
1503 if (!wr_ctx->wr_curr_bio) {
1504 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1506 if (!wr_ctx->wr_curr_bio) {
1507 mutex_unlock(&wr_ctx->wr_lock);
1510 wr_ctx->wr_curr_bio->sctx = sctx;
1511 wr_ctx->wr_curr_bio->page_count = 0;
1513 sbio = wr_ctx->wr_curr_bio;
1514 if (sbio->page_count == 0) {
1517 sbio->physical = spage->physical_for_dev_replace;
1518 sbio->logical = spage->logical;
1519 sbio->dev = wr_ctx->tgtdev;
1522 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1524 mutex_unlock(&wr_ctx->wr_lock);
1530 bio->bi_private = sbio;
1531 bio->bi_end_io = scrub_wr_bio_end_io;
1532 bio->bi_bdev = sbio->dev->bdev;
1533 bio->bi_sector = sbio->physical >> 9;
1535 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1536 spage->physical_for_dev_replace ||
1537 sbio->logical + sbio->page_count * PAGE_SIZE !=
1539 scrub_wr_submit(sctx);
1543 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1544 if (ret != PAGE_SIZE) {
1545 if (sbio->page_count < 1) {
1548 mutex_unlock(&wr_ctx->wr_lock);
1551 scrub_wr_submit(sctx);
1555 sbio->pagev[sbio->page_count] = spage;
1556 scrub_page_get(spage);
1558 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1559 scrub_wr_submit(sctx);
1560 mutex_unlock(&wr_ctx->wr_lock);
1565 static void scrub_wr_submit(struct scrub_ctx *sctx)
1567 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1568 struct scrub_bio *sbio;
1570 if (!wr_ctx->wr_curr_bio)
1573 sbio = wr_ctx->wr_curr_bio;
1574 wr_ctx->wr_curr_bio = NULL;
1575 WARN_ON(!sbio->bio->bi_bdev);
1576 scrub_pending_bio_inc(sctx);
1577 /* process all writes in a single worker thread. Then the block layer
1578 * orders the requests before sending them to the driver which
1579 * doubled the write performance on spinning disks when measured
1581 btrfsic_submit_bio(WRITE, sbio->bio);
1584 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1586 struct scrub_bio *sbio = bio->bi_private;
1587 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1592 sbio->work.func = scrub_wr_bio_end_io_worker;
1593 btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work);
1596 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1598 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1599 struct scrub_ctx *sctx = sbio->sctx;
1602 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1604 struct btrfs_dev_replace *dev_replace =
1605 &sbio->sctx->dev_root->fs_info->dev_replace;
1607 for (i = 0; i < sbio->page_count; i++) {
1608 struct scrub_page *spage = sbio->pagev[i];
1610 spage->io_error = 1;
1611 btrfs_dev_replace_stats_inc(&dev_replace->
1616 for (i = 0; i < sbio->page_count; i++)
1617 scrub_page_put(sbio->pagev[i]);
1621 scrub_pending_bio_dec(sctx);
1624 static int scrub_checksum(struct scrub_block *sblock)
1629 WARN_ON(sblock->page_count < 1);
1630 flags = sblock->pagev[0]->flags;
1632 if (flags & BTRFS_EXTENT_FLAG_DATA)
1633 ret = scrub_checksum_data(sblock);
1634 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1635 ret = scrub_checksum_tree_block(sblock);
1636 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1637 (void)scrub_checksum_super(sblock);
1641 scrub_handle_errored_block(sblock);
1646 static int scrub_checksum_data(struct scrub_block *sblock)
1648 struct scrub_ctx *sctx = sblock->sctx;
1649 u8 csum[BTRFS_CSUM_SIZE];
1658 BUG_ON(sblock->page_count < 1);
1659 if (!sblock->pagev[0]->have_csum)
1662 on_disk_csum = sblock->pagev[0]->csum;
1663 page = sblock->pagev[0]->page;
1664 buffer = kmap_atomic(page);
1666 len = sctx->sectorsize;
1669 u64 l = min_t(u64, len, PAGE_SIZE);
1671 crc = btrfs_csum_data(buffer, crc, l);
1672 kunmap_atomic(buffer);
1677 BUG_ON(index >= sblock->page_count);
1678 BUG_ON(!sblock->pagev[index]->page);
1679 page = sblock->pagev[index]->page;
1680 buffer = kmap_atomic(page);
1683 btrfs_csum_final(crc, csum);
1684 if (memcmp(csum, on_disk_csum, sctx->csum_size))
1690 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1692 struct scrub_ctx *sctx = sblock->sctx;
1693 struct btrfs_header *h;
1694 struct btrfs_root *root = sctx->dev_root;
1695 struct btrfs_fs_info *fs_info = root->fs_info;
1696 u8 calculated_csum[BTRFS_CSUM_SIZE];
1697 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1699 void *mapped_buffer;
1708 BUG_ON(sblock->page_count < 1);
1709 page = sblock->pagev[0]->page;
1710 mapped_buffer = kmap_atomic(page);
1711 h = (struct btrfs_header *)mapped_buffer;
1712 memcpy(on_disk_csum, h->csum, sctx->csum_size);
1715 * we don't use the getter functions here, as we
1716 * a) don't have an extent buffer and
1717 * b) the page is already kmapped
1720 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1723 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1726 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1729 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1733 WARN_ON(sctx->nodesize != sctx->leafsize);
1734 len = sctx->nodesize - BTRFS_CSUM_SIZE;
1735 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1736 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1739 u64 l = min_t(u64, len, mapped_size);
1741 crc = btrfs_csum_data(p, crc, l);
1742 kunmap_atomic(mapped_buffer);
1747 BUG_ON(index >= sblock->page_count);
1748 BUG_ON(!sblock->pagev[index]->page);
1749 page = sblock->pagev[index]->page;
1750 mapped_buffer = kmap_atomic(page);
1751 mapped_size = PAGE_SIZE;
1755 btrfs_csum_final(crc, calculated_csum);
1756 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1759 return fail || crc_fail;
1762 static int scrub_checksum_super(struct scrub_block *sblock)
1764 struct btrfs_super_block *s;
1765 struct scrub_ctx *sctx = sblock->sctx;
1766 struct btrfs_root *root = sctx->dev_root;
1767 struct btrfs_fs_info *fs_info = root->fs_info;
1768 u8 calculated_csum[BTRFS_CSUM_SIZE];
1769 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1771 void *mapped_buffer;
1780 BUG_ON(sblock->page_count < 1);
1781 page = sblock->pagev[0]->page;
1782 mapped_buffer = kmap_atomic(page);
1783 s = (struct btrfs_super_block *)mapped_buffer;
1784 memcpy(on_disk_csum, s->csum, sctx->csum_size);
1786 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1789 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1792 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1795 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1796 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1797 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1800 u64 l = min_t(u64, len, mapped_size);
1802 crc = btrfs_csum_data(p, crc, l);
1803 kunmap_atomic(mapped_buffer);
1808 BUG_ON(index >= sblock->page_count);
1809 BUG_ON(!sblock->pagev[index]->page);
1810 page = sblock->pagev[index]->page;
1811 mapped_buffer = kmap_atomic(page);
1812 mapped_size = PAGE_SIZE;
1816 btrfs_csum_final(crc, calculated_csum);
1817 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1820 if (fail_cor + fail_gen) {
1822 * if we find an error in a super block, we just report it.
1823 * They will get written with the next transaction commit
1826 spin_lock(&sctx->stat_lock);
1827 ++sctx->stat.super_errors;
1828 spin_unlock(&sctx->stat_lock);
1830 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1831 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1833 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1834 BTRFS_DEV_STAT_GENERATION_ERRS);
1837 return fail_cor + fail_gen;
1840 static void scrub_block_get(struct scrub_block *sblock)
1842 atomic_inc(&sblock->ref_count);
1845 static void scrub_block_put(struct scrub_block *sblock)
1847 if (atomic_dec_and_test(&sblock->ref_count)) {
1850 for (i = 0; i < sblock->page_count; i++)
1851 scrub_page_put(sblock->pagev[i]);
1856 static void scrub_page_get(struct scrub_page *spage)
1858 atomic_inc(&spage->ref_count);
1861 static void scrub_page_put(struct scrub_page *spage)
1863 if (atomic_dec_and_test(&spage->ref_count)) {
1865 __free_page(spage->page);
1870 static void scrub_submit(struct scrub_ctx *sctx)
1872 struct scrub_bio *sbio;
1874 if (sctx->curr == -1)
1877 sbio = sctx->bios[sctx->curr];
1879 scrub_pending_bio_inc(sctx);
1881 if (!sbio->bio->bi_bdev) {
1883 * this case should not happen. If btrfs_map_block() is
1884 * wrong, it could happen for dev-replace operations on
1885 * missing devices when no mirrors are available, but in
1886 * this case it should already fail the mount.
1887 * This case is handled correctly (but _very_ slowly).
1889 printk_ratelimited(KERN_WARNING
1890 "btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n");
1891 bio_endio(sbio->bio, -EIO);
1893 btrfsic_submit_bio(READ, sbio->bio);
1897 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1898 struct scrub_page *spage)
1900 struct scrub_block *sblock = spage->sblock;
1901 struct scrub_bio *sbio;
1906 * grab a fresh bio or wait for one to become available
1908 while (sctx->curr == -1) {
1909 spin_lock(&sctx->list_lock);
1910 sctx->curr = sctx->first_free;
1911 if (sctx->curr != -1) {
1912 sctx->first_free = sctx->bios[sctx->curr]->next_free;
1913 sctx->bios[sctx->curr]->next_free = -1;
1914 sctx->bios[sctx->curr]->page_count = 0;
1915 spin_unlock(&sctx->list_lock);
1917 spin_unlock(&sctx->list_lock);
1918 wait_event(sctx->list_wait, sctx->first_free != -1);
1921 sbio = sctx->bios[sctx->curr];
1922 if (sbio->page_count == 0) {
1925 sbio->physical = spage->physical;
1926 sbio->logical = spage->logical;
1927 sbio->dev = spage->dev;
1930 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1936 bio->bi_private = sbio;
1937 bio->bi_end_io = scrub_bio_end_io;
1938 bio->bi_bdev = sbio->dev->bdev;
1939 bio->bi_sector = sbio->physical >> 9;
1941 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1943 sbio->logical + sbio->page_count * PAGE_SIZE !=
1945 sbio->dev != spage->dev) {
1950 sbio->pagev[sbio->page_count] = spage;
1951 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1952 if (ret != PAGE_SIZE) {
1953 if (sbio->page_count < 1) {
1962 scrub_block_get(sblock); /* one for the page added to the bio */
1963 atomic_inc(&sblock->outstanding_pages);
1965 if (sbio->page_count == sctx->pages_per_rd_bio)
1971 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1972 u64 physical, struct btrfs_device *dev, u64 flags,
1973 u64 gen, int mirror_num, u8 *csum, int force,
1974 u64 physical_for_dev_replace)
1976 struct scrub_block *sblock;
1979 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1981 spin_lock(&sctx->stat_lock);
1982 sctx->stat.malloc_errors++;
1983 spin_unlock(&sctx->stat_lock);
1987 /* one ref inside this function, plus one for each page added to
1989 atomic_set(&sblock->ref_count, 1);
1990 sblock->sctx = sctx;
1991 sblock->no_io_error_seen = 1;
1993 for (index = 0; len > 0; index++) {
1994 struct scrub_page *spage;
1995 u64 l = min_t(u64, len, PAGE_SIZE);
1997 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2000 spin_lock(&sctx->stat_lock);
2001 sctx->stat.malloc_errors++;
2002 spin_unlock(&sctx->stat_lock);
2003 scrub_block_put(sblock);
2006 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2007 scrub_page_get(spage);
2008 sblock->pagev[index] = spage;
2009 spage->sblock = sblock;
2011 spage->flags = flags;
2012 spage->generation = gen;
2013 spage->logical = logical;
2014 spage->physical = physical;
2015 spage->physical_for_dev_replace = physical_for_dev_replace;
2016 spage->mirror_num = mirror_num;
2018 spage->have_csum = 1;
2019 memcpy(spage->csum, csum, sctx->csum_size);
2021 spage->have_csum = 0;
2023 sblock->page_count++;
2024 spage->page = alloc_page(GFP_NOFS);
2030 physical_for_dev_replace += l;
2033 WARN_ON(sblock->page_count == 0);
2034 for (index = 0; index < sblock->page_count; index++) {
2035 struct scrub_page *spage = sblock->pagev[index];
2038 ret = scrub_add_page_to_rd_bio(sctx, spage);
2040 scrub_block_put(sblock);
2048 /* last one frees, either here or in bio completion for last page */
2049 scrub_block_put(sblock);
2053 static void scrub_bio_end_io(struct bio *bio, int err)
2055 struct scrub_bio *sbio = bio->bi_private;
2056 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2061 btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
2064 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2066 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2067 struct scrub_ctx *sctx = sbio->sctx;
2070 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2072 for (i = 0; i < sbio->page_count; i++) {
2073 struct scrub_page *spage = sbio->pagev[i];
2075 spage->io_error = 1;
2076 spage->sblock->no_io_error_seen = 0;
2080 /* now complete the scrub_block items that have all pages completed */
2081 for (i = 0; i < sbio->page_count; i++) {
2082 struct scrub_page *spage = sbio->pagev[i];
2083 struct scrub_block *sblock = spage->sblock;
2085 if (atomic_dec_and_test(&sblock->outstanding_pages))
2086 scrub_block_complete(sblock);
2087 scrub_block_put(sblock);
2092 spin_lock(&sctx->list_lock);
2093 sbio->next_free = sctx->first_free;
2094 sctx->first_free = sbio->index;
2095 spin_unlock(&sctx->list_lock);
2097 if (sctx->is_dev_replace &&
2098 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2099 mutex_lock(&sctx->wr_ctx.wr_lock);
2100 scrub_wr_submit(sctx);
2101 mutex_unlock(&sctx->wr_ctx.wr_lock);
2104 scrub_pending_bio_dec(sctx);
2107 static void scrub_block_complete(struct scrub_block *sblock)
2109 if (!sblock->no_io_error_seen) {
2110 scrub_handle_errored_block(sblock);
2113 * if has checksum error, write via repair mechanism in
2114 * dev replace case, otherwise write here in dev replace
2117 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2118 scrub_write_block_to_dev_replace(sblock);
2122 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2125 struct btrfs_ordered_sum *sum = NULL;
2126 unsigned long index;
2127 unsigned long num_sectors;
2129 while (!list_empty(&sctx->csum_list)) {
2130 sum = list_first_entry(&sctx->csum_list,
2131 struct btrfs_ordered_sum, list);
2132 if (sum->bytenr > logical)
2134 if (sum->bytenr + sum->len > logical)
2137 ++sctx->stat.csum_discards;
2138 list_del(&sum->list);
2145 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2146 num_sectors = sum->len / sctx->sectorsize;
2147 memcpy(csum, sum->sums + index, sctx->csum_size);
2148 if (index == num_sectors - 1) {
2149 list_del(&sum->list);
2155 /* scrub extent tries to collect up to 64 kB for each bio */
2156 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2157 u64 physical, struct btrfs_device *dev, u64 flags,
2158 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2161 u8 csum[BTRFS_CSUM_SIZE];
2164 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2165 blocksize = sctx->sectorsize;
2166 spin_lock(&sctx->stat_lock);
2167 sctx->stat.data_extents_scrubbed++;
2168 sctx->stat.data_bytes_scrubbed += len;
2169 spin_unlock(&sctx->stat_lock);
2170 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2171 WARN_ON(sctx->nodesize != sctx->leafsize);
2172 blocksize = sctx->nodesize;
2173 spin_lock(&sctx->stat_lock);
2174 sctx->stat.tree_extents_scrubbed++;
2175 sctx->stat.tree_bytes_scrubbed += len;
2176 spin_unlock(&sctx->stat_lock);
2178 blocksize = sctx->sectorsize;
2183 u64 l = min_t(u64, len, blocksize);
2186 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2187 /* push csums to sbio */
2188 have_csum = scrub_find_csum(sctx, logical, l, csum);
2190 ++sctx->stat.no_csum;
2191 if (sctx->is_dev_replace && !have_csum) {
2192 ret = copy_nocow_pages(sctx, logical, l,
2194 physical_for_dev_replace);
2195 goto behind_scrub_pages;
2198 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2199 mirror_num, have_csum ? csum : NULL, 0,
2200 physical_for_dev_replace);
2207 physical_for_dev_replace += l;
2212 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2213 struct map_lookup *map,
2214 struct btrfs_device *scrub_dev,
2215 int num, u64 base, u64 length,
2218 struct btrfs_path *path;
2219 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2220 struct btrfs_root *root = fs_info->extent_root;
2221 struct btrfs_root *csum_root = fs_info->csum_root;
2222 struct btrfs_extent_item *extent;
2223 struct blk_plug plug;
2228 struct extent_buffer *l;
2229 struct btrfs_key key;
2235 struct reada_control *reada1;
2236 struct reada_control *reada2;
2237 struct btrfs_key key_start;
2238 struct btrfs_key key_end;
2239 u64 increment = map->stripe_len;
2242 u64 extent_physical;
2244 struct btrfs_device *extent_dev;
2245 int extent_mirror_num;
2248 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2249 BTRFS_BLOCK_GROUP_RAID6)) {
2250 if (num >= nr_data_stripes(map)) {
2257 do_div(nstripes, map->stripe_len);
2258 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2259 offset = map->stripe_len * num;
2260 increment = map->stripe_len * map->num_stripes;
2262 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2263 int factor = map->num_stripes / map->sub_stripes;
2264 offset = map->stripe_len * (num / map->sub_stripes);
2265 increment = map->stripe_len * factor;
2266 mirror_num = num % map->sub_stripes + 1;
2267 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2268 increment = map->stripe_len;
2269 mirror_num = num % map->num_stripes + 1;
2270 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2271 increment = map->stripe_len;
2272 mirror_num = num % map->num_stripes + 1;
2274 increment = map->stripe_len;
2278 path = btrfs_alloc_path();
2283 * work on commit root. The related disk blocks are static as
2284 * long as COW is applied. This means, it is save to rewrite
2285 * them to repair disk errors without any race conditions
2287 path->search_commit_root = 1;
2288 path->skip_locking = 1;
2291 * trigger the readahead for extent tree csum tree and wait for
2292 * completion. During readahead, the scrub is officially paused
2293 * to not hold off transaction commits
2295 logical = base + offset;
2297 wait_event(sctx->list_wait,
2298 atomic_read(&sctx->bios_in_flight) == 0);
2299 atomic_inc(&fs_info->scrubs_paused);
2300 wake_up(&fs_info->scrub_pause_wait);
2302 /* FIXME it might be better to start readahead at commit root */
2303 key_start.objectid = logical;
2304 key_start.type = BTRFS_EXTENT_ITEM_KEY;
2305 key_start.offset = (u64)0;
2306 key_end.objectid = base + offset + nstripes * increment;
2307 key_end.type = BTRFS_METADATA_ITEM_KEY;
2308 key_end.offset = (u64)-1;
2309 reada1 = btrfs_reada_add(root, &key_start, &key_end);
2311 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2312 key_start.type = BTRFS_EXTENT_CSUM_KEY;
2313 key_start.offset = logical;
2314 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2315 key_end.type = BTRFS_EXTENT_CSUM_KEY;
2316 key_end.offset = base + offset + nstripes * increment;
2317 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2319 if (!IS_ERR(reada1))
2320 btrfs_reada_wait(reada1);
2321 if (!IS_ERR(reada2))
2322 btrfs_reada_wait(reada2);
2324 mutex_lock(&fs_info->scrub_lock);
2325 while (atomic_read(&fs_info->scrub_pause_req)) {
2326 mutex_unlock(&fs_info->scrub_lock);
2327 wait_event(fs_info->scrub_pause_wait,
2328 atomic_read(&fs_info->scrub_pause_req) == 0);
2329 mutex_lock(&fs_info->scrub_lock);
2331 atomic_dec(&fs_info->scrubs_paused);
2332 mutex_unlock(&fs_info->scrub_lock);
2333 wake_up(&fs_info->scrub_pause_wait);
2336 * collect all data csums for the stripe to avoid seeking during
2337 * the scrub. This might currently (crc32) end up to be about 1MB
2339 blk_start_plug(&plug);
2342 * now find all extents for each stripe and scrub them
2344 logical = base + offset;
2345 physical = map->stripes[num].physical;
2346 logic_end = logical + increment * nstripes;
2348 while (logical < logic_end) {
2352 if (atomic_read(&fs_info->scrub_cancel_req) ||
2353 atomic_read(&sctx->cancel_req)) {
2358 * check to see if we have to pause
2360 if (atomic_read(&fs_info->scrub_pause_req)) {
2361 /* push queued extents */
2362 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2364 mutex_lock(&sctx->wr_ctx.wr_lock);
2365 scrub_wr_submit(sctx);
2366 mutex_unlock(&sctx->wr_ctx.wr_lock);
2367 wait_event(sctx->list_wait,
2368 atomic_read(&sctx->bios_in_flight) == 0);
2369 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2370 atomic_inc(&fs_info->scrubs_paused);
2371 wake_up(&fs_info->scrub_pause_wait);
2372 mutex_lock(&fs_info->scrub_lock);
2373 while (atomic_read(&fs_info->scrub_pause_req)) {
2374 mutex_unlock(&fs_info->scrub_lock);
2375 wait_event(fs_info->scrub_pause_wait,
2376 atomic_read(&fs_info->scrub_pause_req) == 0);
2377 mutex_lock(&fs_info->scrub_lock);
2379 atomic_dec(&fs_info->scrubs_paused);
2380 mutex_unlock(&fs_info->scrub_lock);
2381 wake_up(&fs_info->scrub_pause_wait);
2384 key.objectid = logical;
2385 key.type = BTRFS_EXTENT_ITEM_KEY;
2386 key.offset = (u64)-1;
2388 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2393 ret = btrfs_previous_item(root, path, 0,
2394 BTRFS_EXTENT_ITEM_KEY);
2398 /* there's no smaller item, so stick with the
2400 btrfs_release_path(path);
2401 ret = btrfs_search_slot(NULL, root, &key,
2413 slot = path->slots[0];
2414 if (slot >= btrfs_header_nritems(l)) {
2415 ret = btrfs_next_leaf(root, path);
2424 btrfs_item_key_to_cpu(l, &key, slot);
2426 if (key.type == BTRFS_METADATA_ITEM_KEY)
2427 bytes = root->leafsize;
2431 if (key.objectid + bytes <= logical)
2434 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2435 key.type != BTRFS_METADATA_ITEM_KEY)
2438 if (key.objectid >= logical + map->stripe_len) {
2439 /* out of this device extent */
2440 if (key.objectid >= logic_end)
2445 extent = btrfs_item_ptr(l, slot,
2446 struct btrfs_extent_item);
2447 flags = btrfs_extent_flags(l, extent);
2448 generation = btrfs_extent_generation(l, extent);
2450 if (key.objectid < logical &&
2451 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2453 "btrfs scrub: tree block %llu spanning "
2454 "stripes, ignored. logical=%llu\n",
2455 key.objectid, logical);
2460 extent_logical = key.objectid;
2464 * trim extent to this stripe
2466 if (extent_logical < logical) {
2467 extent_len -= logical - extent_logical;
2468 extent_logical = logical;
2470 if (extent_logical + extent_len >
2471 logical + map->stripe_len) {
2472 extent_len = logical + map->stripe_len -
2476 extent_physical = extent_logical - logical + physical;
2477 extent_dev = scrub_dev;
2478 extent_mirror_num = mirror_num;
2480 scrub_remap_extent(fs_info, extent_logical,
2481 extent_len, &extent_physical,
2483 &extent_mirror_num);
2485 ret = btrfs_lookup_csums_range(csum_root, logical,
2486 logical + map->stripe_len - 1,
2487 &sctx->csum_list, 1);
2491 ret = scrub_extent(sctx, extent_logical, extent_len,
2492 extent_physical, extent_dev, flags,
2493 generation, extent_mirror_num,
2494 extent_logical - logical + physical);
2498 scrub_free_csums(sctx);
2499 if (extent_logical + extent_len <
2500 key.objectid + bytes) {
2501 logical += increment;
2502 physical += map->stripe_len;
2504 if (logical < key.objectid + bytes) {
2509 if (logical >= logic_end) {
2517 btrfs_release_path(path);
2518 logical += increment;
2519 physical += map->stripe_len;
2520 spin_lock(&sctx->stat_lock);
2522 sctx->stat.last_physical = map->stripes[num].physical +
2525 sctx->stat.last_physical = physical;
2526 spin_unlock(&sctx->stat_lock);
2531 /* push queued extents */
2533 mutex_lock(&sctx->wr_ctx.wr_lock);
2534 scrub_wr_submit(sctx);
2535 mutex_unlock(&sctx->wr_ctx.wr_lock);
2537 blk_finish_plug(&plug);
2538 btrfs_free_path(path);
2539 return ret < 0 ? ret : 0;
2542 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2543 struct btrfs_device *scrub_dev,
2544 u64 chunk_tree, u64 chunk_objectid,
2545 u64 chunk_offset, u64 length,
2546 u64 dev_offset, int is_dev_replace)
2548 struct btrfs_mapping_tree *map_tree =
2549 &sctx->dev_root->fs_info->mapping_tree;
2550 struct map_lookup *map;
2551 struct extent_map *em;
2555 read_lock(&map_tree->map_tree.lock);
2556 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2557 read_unlock(&map_tree->map_tree.lock);
2562 map = (struct map_lookup *)em->bdev;
2563 if (em->start != chunk_offset)
2566 if (em->len < length)
2569 for (i = 0; i < map->num_stripes; ++i) {
2570 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2571 map->stripes[i].physical == dev_offset) {
2572 ret = scrub_stripe(sctx, map, scrub_dev, i,
2573 chunk_offset, length,
2580 free_extent_map(em);
2585 static noinline_for_stack
2586 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2587 struct btrfs_device *scrub_dev, u64 start, u64 end,
2590 struct btrfs_dev_extent *dev_extent = NULL;
2591 struct btrfs_path *path;
2592 struct btrfs_root *root = sctx->dev_root;
2593 struct btrfs_fs_info *fs_info = root->fs_info;
2600 struct extent_buffer *l;
2601 struct btrfs_key key;
2602 struct btrfs_key found_key;
2603 struct btrfs_block_group_cache *cache;
2604 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2606 path = btrfs_alloc_path();
2611 path->search_commit_root = 1;
2612 path->skip_locking = 1;
2614 key.objectid = scrub_dev->devid;
2616 key.type = BTRFS_DEV_EXTENT_KEY;
2619 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2623 if (path->slots[0] >=
2624 btrfs_header_nritems(path->nodes[0])) {
2625 ret = btrfs_next_leaf(root, path);
2632 slot = path->slots[0];
2634 btrfs_item_key_to_cpu(l, &found_key, slot);
2636 if (found_key.objectid != scrub_dev->devid)
2639 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2642 if (found_key.offset >= end)
2645 if (found_key.offset < key.offset)
2648 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2649 length = btrfs_dev_extent_length(l, dev_extent);
2651 if (found_key.offset + length <= start) {
2652 key.offset = found_key.offset + length;
2653 btrfs_release_path(path);
2657 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2658 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2659 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2662 * get a reference on the corresponding block group to prevent
2663 * the chunk from going away while we scrub it
2665 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2670 dev_replace->cursor_right = found_key.offset + length;
2671 dev_replace->cursor_left = found_key.offset;
2672 dev_replace->item_needs_writeback = 1;
2673 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2674 chunk_offset, length, found_key.offset,
2678 * flush, submit all pending read and write bios, afterwards
2680 * Note that in the dev replace case, a read request causes
2681 * write requests that are submitted in the read completion
2682 * worker. Therefore in the current situation, it is required
2683 * that all write requests are flushed, so that all read and
2684 * write requests are really completed when bios_in_flight
2687 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2689 mutex_lock(&sctx->wr_ctx.wr_lock);
2690 scrub_wr_submit(sctx);
2691 mutex_unlock(&sctx->wr_ctx.wr_lock);
2693 wait_event(sctx->list_wait,
2694 atomic_read(&sctx->bios_in_flight) == 0);
2695 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2696 atomic_inc(&fs_info->scrubs_paused);
2697 wake_up(&fs_info->scrub_pause_wait);
2698 wait_event(sctx->list_wait,
2699 atomic_read(&sctx->workers_pending) == 0);
2701 mutex_lock(&fs_info->scrub_lock);
2702 while (atomic_read(&fs_info->scrub_pause_req)) {
2703 mutex_unlock(&fs_info->scrub_lock);
2704 wait_event(fs_info->scrub_pause_wait,
2705 atomic_read(&fs_info->scrub_pause_req) == 0);
2706 mutex_lock(&fs_info->scrub_lock);
2708 atomic_dec(&fs_info->scrubs_paused);
2709 mutex_unlock(&fs_info->scrub_lock);
2710 wake_up(&fs_info->scrub_pause_wait);
2712 dev_replace->cursor_left = dev_replace->cursor_right;
2713 dev_replace->item_needs_writeback = 1;
2714 btrfs_put_block_group(cache);
2717 if (is_dev_replace &&
2718 atomic64_read(&dev_replace->num_write_errors) > 0) {
2722 if (sctx->stat.malloc_errors > 0) {
2727 key.offset = found_key.offset + length;
2728 btrfs_release_path(path);
2731 btrfs_free_path(path);
2734 * ret can still be 1 from search_slot or next_leaf,
2735 * that's not an error
2737 return ret < 0 ? ret : 0;
2740 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2741 struct btrfs_device *scrub_dev)
2747 struct btrfs_root *root = sctx->dev_root;
2749 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2752 gen = root->fs_info->last_trans_committed;
2754 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2755 bytenr = btrfs_sb_offset(i);
2756 if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2759 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2760 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2765 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2771 * get a reference count on fs_info->scrub_workers. start worker if necessary
2773 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2778 mutex_lock(&fs_info->scrub_lock);
2779 if (fs_info->scrub_workers_refcnt == 0) {
2781 btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1,
2782 &fs_info->generic_worker);
2784 btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2785 fs_info->thread_pool_size,
2786 &fs_info->generic_worker);
2787 fs_info->scrub_workers.idle_thresh = 4;
2788 ret = btrfs_start_workers(&fs_info->scrub_workers);
2791 btrfs_init_workers(&fs_info->scrub_wr_completion_workers,
2793 fs_info->thread_pool_size,
2794 &fs_info->generic_worker);
2795 fs_info->scrub_wr_completion_workers.idle_thresh = 2;
2796 ret = btrfs_start_workers(
2797 &fs_info->scrub_wr_completion_workers);
2800 btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1,
2801 &fs_info->generic_worker);
2802 ret = btrfs_start_workers(&fs_info->scrub_nocow_workers);
2806 ++fs_info->scrub_workers_refcnt;
2808 mutex_unlock(&fs_info->scrub_lock);
2813 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2815 mutex_lock(&fs_info->scrub_lock);
2816 if (--fs_info->scrub_workers_refcnt == 0) {
2817 btrfs_stop_workers(&fs_info->scrub_workers);
2818 btrfs_stop_workers(&fs_info->scrub_wr_completion_workers);
2819 btrfs_stop_workers(&fs_info->scrub_nocow_workers);
2821 WARN_ON(fs_info->scrub_workers_refcnt < 0);
2822 mutex_unlock(&fs_info->scrub_lock);
2825 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2826 u64 end, struct btrfs_scrub_progress *progress,
2827 int readonly, int is_dev_replace)
2829 struct scrub_ctx *sctx;
2831 struct btrfs_device *dev;
2833 if (btrfs_fs_closing(fs_info))
2837 * check some assumptions
2839 if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2841 "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2842 fs_info->chunk_root->nodesize,
2843 fs_info->chunk_root->leafsize);
2847 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2849 * in this case scrub is unable to calculate the checksum
2850 * the way scrub is implemented. Do not handle this
2851 * situation at all because it won't ever happen.
2854 "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2855 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2859 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2860 /* not supported for data w/o checksums */
2862 "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails\n",
2863 fs_info->chunk_root->sectorsize, PAGE_SIZE);
2867 if (fs_info->chunk_root->nodesize >
2868 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2869 fs_info->chunk_root->sectorsize >
2870 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2872 * would exhaust the array bounds of pagev member in
2873 * struct scrub_block
2875 pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n",
2876 fs_info->chunk_root->nodesize,
2877 SCRUB_MAX_PAGES_PER_BLOCK,
2878 fs_info->chunk_root->sectorsize,
2879 SCRUB_MAX_PAGES_PER_BLOCK);
2883 ret = scrub_workers_get(fs_info, is_dev_replace);
2887 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2888 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2889 if (!dev || (dev->missing && !is_dev_replace)) {
2890 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2891 scrub_workers_put(fs_info);
2894 mutex_lock(&fs_info->scrub_lock);
2896 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2897 mutex_unlock(&fs_info->scrub_lock);
2898 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2899 scrub_workers_put(fs_info);
2903 btrfs_dev_replace_lock(&fs_info->dev_replace);
2904 if (dev->scrub_device ||
2906 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2907 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2908 mutex_unlock(&fs_info->scrub_lock);
2909 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2910 scrub_workers_put(fs_info);
2911 return -EINPROGRESS;
2913 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2914 sctx = scrub_setup_ctx(dev, is_dev_replace);
2916 mutex_unlock(&fs_info->scrub_lock);
2917 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2918 scrub_workers_put(fs_info);
2919 return PTR_ERR(sctx);
2921 sctx->readonly = readonly;
2922 dev->scrub_device = sctx;
2924 atomic_inc(&fs_info->scrubs_running);
2925 mutex_unlock(&fs_info->scrub_lock);
2926 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2928 if (!is_dev_replace) {
2929 down_read(&fs_info->scrub_super_lock);
2930 ret = scrub_supers(sctx, dev);
2931 up_read(&fs_info->scrub_super_lock);
2935 ret = scrub_enumerate_chunks(sctx, dev, start, end,
2938 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2939 atomic_dec(&fs_info->scrubs_running);
2940 wake_up(&fs_info->scrub_pause_wait);
2942 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
2945 memcpy(progress, &sctx->stat, sizeof(*progress));
2947 mutex_lock(&fs_info->scrub_lock);
2948 dev->scrub_device = NULL;
2949 mutex_unlock(&fs_info->scrub_lock);
2951 scrub_free_ctx(sctx);
2952 scrub_workers_put(fs_info);
2957 void btrfs_scrub_pause(struct btrfs_root *root)
2959 struct btrfs_fs_info *fs_info = root->fs_info;
2961 mutex_lock(&fs_info->scrub_lock);
2962 atomic_inc(&fs_info->scrub_pause_req);
2963 while (atomic_read(&fs_info->scrubs_paused) !=
2964 atomic_read(&fs_info->scrubs_running)) {
2965 mutex_unlock(&fs_info->scrub_lock);
2966 wait_event(fs_info->scrub_pause_wait,
2967 atomic_read(&fs_info->scrubs_paused) ==
2968 atomic_read(&fs_info->scrubs_running));
2969 mutex_lock(&fs_info->scrub_lock);
2971 mutex_unlock(&fs_info->scrub_lock);
2974 void btrfs_scrub_continue(struct btrfs_root *root)
2976 struct btrfs_fs_info *fs_info = root->fs_info;
2978 atomic_dec(&fs_info->scrub_pause_req);
2979 wake_up(&fs_info->scrub_pause_wait);
2982 void btrfs_scrub_pause_super(struct btrfs_root *root)
2984 down_write(&root->fs_info->scrub_super_lock);
2987 void btrfs_scrub_continue_super(struct btrfs_root *root)
2989 up_write(&root->fs_info->scrub_super_lock);
2992 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2994 mutex_lock(&fs_info->scrub_lock);
2995 if (!atomic_read(&fs_info->scrubs_running)) {
2996 mutex_unlock(&fs_info->scrub_lock);
3000 atomic_inc(&fs_info->scrub_cancel_req);
3001 while (atomic_read(&fs_info->scrubs_running)) {
3002 mutex_unlock(&fs_info->scrub_lock);
3003 wait_event(fs_info->scrub_pause_wait,
3004 atomic_read(&fs_info->scrubs_running) == 0);
3005 mutex_lock(&fs_info->scrub_lock);
3007 atomic_dec(&fs_info->scrub_cancel_req);
3008 mutex_unlock(&fs_info->scrub_lock);
3013 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3014 struct btrfs_device *dev)
3016 struct scrub_ctx *sctx;
3018 mutex_lock(&fs_info->scrub_lock);
3019 sctx = dev->scrub_device;
3021 mutex_unlock(&fs_info->scrub_lock);
3024 atomic_inc(&sctx->cancel_req);
3025 while (dev->scrub_device) {
3026 mutex_unlock(&fs_info->scrub_lock);
3027 wait_event(fs_info->scrub_pause_wait,
3028 dev->scrub_device == NULL);
3029 mutex_lock(&fs_info->scrub_lock);
3031 mutex_unlock(&fs_info->scrub_lock);
3036 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3037 struct btrfs_scrub_progress *progress)
3039 struct btrfs_device *dev;
3040 struct scrub_ctx *sctx = NULL;
3042 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3043 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3045 sctx = dev->scrub_device;
3047 memcpy(progress, &sctx->stat, sizeof(*progress));
3048 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3050 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3053 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3054 u64 extent_logical, u64 extent_len,
3055 u64 *extent_physical,
3056 struct btrfs_device **extent_dev,
3057 int *extent_mirror_num)
3060 struct btrfs_bio *bbio = NULL;
3063 mapped_length = extent_len;
3064 ret = btrfs_map_block(fs_info, READ, extent_logical,
3065 &mapped_length, &bbio, 0);
3066 if (ret || !bbio || mapped_length < extent_len ||
3067 !bbio->stripes[0].dev->bdev) {
3072 *extent_physical = bbio->stripes[0].physical;
3073 *extent_mirror_num = bbio->mirror_num;
3074 *extent_dev = bbio->stripes[0].dev;
3078 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3079 struct scrub_wr_ctx *wr_ctx,
3080 struct btrfs_fs_info *fs_info,
3081 struct btrfs_device *dev,
3084 WARN_ON(wr_ctx->wr_curr_bio != NULL);
3086 mutex_init(&wr_ctx->wr_lock);
3087 wr_ctx->wr_curr_bio = NULL;
3088 if (!is_dev_replace)
3091 WARN_ON(!dev->bdev);
3092 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3093 bio_get_nr_vecs(dev->bdev));
3094 wr_ctx->tgtdev = dev;
3095 atomic_set(&wr_ctx->flush_all_writes, 0);
3099 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3101 mutex_lock(&wr_ctx->wr_lock);
3102 kfree(wr_ctx->wr_curr_bio);
3103 wr_ctx->wr_curr_bio = NULL;
3104 mutex_unlock(&wr_ctx->wr_lock);
3107 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3108 int mirror_num, u64 physical_for_dev_replace)
3110 struct scrub_copy_nocow_ctx *nocow_ctx;
3111 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3113 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3115 spin_lock(&sctx->stat_lock);
3116 sctx->stat.malloc_errors++;
3117 spin_unlock(&sctx->stat_lock);
3121 scrub_pending_trans_workers_inc(sctx);
3123 nocow_ctx->sctx = sctx;
3124 nocow_ctx->logical = logical;
3125 nocow_ctx->len = len;
3126 nocow_ctx->mirror_num = mirror_num;
3127 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3128 nocow_ctx->work.func = copy_nocow_pages_worker;
3129 btrfs_queue_worker(&fs_info->scrub_nocow_workers,
3135 static void copy_nocow_pages_worker(struct btrfs_work *work)
3137 struct scrub_copy_nocow_ctx *nocow_ctx =
3138 container_of(work, struct scrub_copy_nocow_ctx, work);
3139 struct scrub_ctx *sctx = nocow_ctx->sctx;
3140 u64 logical = nocow_ctx->logical;
3141 u64 len = nocow_ctx->len;
3142 int mirror_num = nocow_ctx->mirror_num;
3143 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3145 struct btrfs_trans_handle *trans = NULL;
3146 struct btrfs_fs_info *fs_info;
3147 struct btrfs_path *path;
3148 struct btrfs_root *root;
3149 int not_written = 0;
3151 fs_info = sctx->dev_root->fs_info;
3152 root = fs_info->extent_root;
3154 path = btrfs_alloc_path();
3156 spin_lock(&sctx->stat_lock);
3157 sctx->stat.malloc_errors++;
3158 spin_unlock(&sctx->stat_lock);
3163 trans = btrfs_join_transaction(root);
3164 if (IS_ERR(trans)) {
3169 ret = iterate_inodes_from_logical(logical, fs_info, path,
3170 copy_nocow_pages_for_inode,
3172 if (ret != 0 && ret != -ENOENT) {
3173 pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d\n",
3174 logical, physical_for_dev_replace, len, mirror_num,
3181 if (trans && !IS_ERR(trans))
3182 btrfs_end_transaction(trans, root);
3184 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3185 num_uncorrectable_read_errors);
3187 btrfs_free_path(path);
3190 scrub_pending_trans_workers_dec(sctx);
3193 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, void *ctx)
3195 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3196 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3197 struct btrfs_key key;
3198 struct inode *inode;
3200 struct btrfs_root *local_root;
3201 u64 physical_for_dev_replace;
3203 unsigned long index;
3208 key.objectid = root;
3209 key.type = BTRFS_ROOT_ITEM_KEY;
3210 key.offset = (u64)-1;
3212 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3214 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3215 if (IS_ERR(local_root)) {
3216 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3217 return PTR_ERR(local_root);
3220 key.type = BTRFS_INODE_ITEM_KEY;
3221 key.objectid = inum;
3223 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3224 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3226 return PTR_ERR(inode);
3228 /* Avoid truncate/dio/punch hole.. */
3229 mutex_lock(&inode->i_mutex);
3230 inode_dio_wait(inode);
3233 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3234 len = nocow_ctx->len;
3235 while (len >= PAGE_CACHE_SIZE) {
3236 index = offset >> PAGE_CACHE_SHIFT;
3238 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3240 pr_err("find_or_create_page() failed\n");
3245 if (PageUptodate(page)) {
3246 if (PageDirty(page))
3249 ClearPageError(page);
3250 err = extent_read_full_page(&BTRFS_I(inode)->
3252 page, btrfs_get_extent,
3253 nocow_ctx->mirror_num);
3261 * If the page has been remove from the page cache,
3262 * the data on it is meaningless, because it may be
3263 * old one, the new data may be written into the new
3264 * page in the page cache.
3266 if (page->mapping != inode->i_mapping) {
3267 page_cache_release(page);
3270 if (!PageUptodate(page)) {
3275 err = write_page_nocow(nocow_ctx->sctx,
3276 physical_for_dev_replace, page);
3281 page_cache_release(page);
3286 offset += PAGE_CACHE_SIZE;
3287 physical_for_dev_replace += PAGE_CACHE_SIZE;
3288 len -= PAGE_CACHE_SIZE;
3291 mutex_unlock(&inode->i_mutex);
3296 static int write_page_nocow(struct scrub_ctx *sctx,
3297 u64 physical_for_dev_replace, struct page *page)
3300 struct btrfs_device *dev;
3302 DECLARE_COMPLETION_ONSTACK(compl);
3304 dev = sctx->wr_ctx.tgtdev;
3308 printk_ratelimited(KERN_WARNING
3309 "btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3312 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3314 spin_lock(&sctx->stat_lock);
3315 sctx->stat.malloc_errors++;
3316 spin_unlock(&sctx->stat_lock);
3319 bio->bi_private = &compl;
3320 bio->bi_end_io = scrub_complete_bio_end_io;
3322 bio->bi_sector = physical_for_dev_replace >> 9;
3323 bio->bi_bdev = dev->bdev;
3324 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3325 if (ret != PAGE_CACHE_SIZE) {
3328 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3331 btrfsic_submit_bio(WRITE_SYNC, bio);
3332 wait_for_completion(&compl);
3334 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
3335 goto leave_with_eio;