fat (exportfs): rebuild inode if ilookup() fails
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / btrfs / scrub.c
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45
46 struct scrub_block;
47 struct scrub_ctx;
48
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO  32      /* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO  32      /* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX     64      /* 8MB per device in flight */
58
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK       16      /* 64k per node/leaf/sector */
65
66 struct scrub_page {
67         struct scrub_block      *sblock;
68         struct page             *page;
69         struct btrfs_device     *dev;
70         u64                     flags;  /* extent flags */
71         u64                     generation;
72         u64                     logical;
73         u64                     physical;
74         u64                     physical_for_dev_replace;
75         atomic_t                ref_count;
76         struct {
77                 unsigned int    mirror_num:8;
78                 unsigned int    have_csum:1;
79                 unsigned int    io_error:1;
80         };
81         u8                      csum[BTRFS_CSUM_SIZE];
82 };
83
84 struct scrub_bio {
85         int                     index;
86         struct scrub_ctx        *sctx;
87         struct btrfs_device     *dev;
88         struct bio              *bio;
89         int                     err;
90         u64                     logical;
91         u64                     physical;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93         struct scrub_page       *pagev[SCRUB_PAGES_PER_WR_BIO];
94 #else
95         struct scrub_page       *pagev[SCRUB_PAGES_PER_RD_BIO];
96 #endif
97         int                     page_count;
98         int                     next_free;
99         struct btrfs_work       work;
100 };
101
102 struct scrub_block {
103         struct scrub_page       *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104         int                     page_count;
105         atomic_t                outstanding_pages;
106         atomic_t                ref_count; /* free mem on transition to zero */
107         struct scrub_ctx        *sctx;
108         struct {
109                 unsigned int    header_error:1;
110                 unsigned int    checksum_error:1;
111                 unsigned int    no_io_error_seen:1;
112                 unsigned int    generation_error:1; /* also sets header_error */
113         };
114 };
115
116 struct scrub_wr_ctx {
117         struct scrub_bio *wr_curr_bio;
118         struct btrfs_device *tgtdev;
119         int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120         atomic_t flush_all_writes;
121         struct mutex wr_lock;
122 };
123
124 struct scrub_ctx {
125         struct scrub_bio        *bios[SCRUB_BIOS_PER_SCTX];
126         struct btrfs_root       *dev_root;
127         int                     first_free;
128         int                     curr;
129         atomic_t                bios_in_flight;
130         atomic_t                workers_pending;
131         spinlock_t              list_lock;
132         wait_queue_head_t       list_wait;
133         u16                     csum_size;
134         struct list_head        csum_list;
135         atomic_t                cancel_req;
136         int                     readonly;
137         int                     pages_per_rd_bio;
138         u32                     sectorsize;
139         u32                     nodesize;
140         u32                     leafsize;
141
142         int                     is_dev_replace;
143         struct scrub_wr_ctx     wr_ctx;
144
145         /*
146          * statistics
147          */
148         struct btrfs_scrub_progress stat;
149         spinlock_t              stat_lock;
150 };
151
152 struct scrub_fixup_nodatasum {
153         struct scrub_ctx        *sctx;
154         struct btrfs_device     *dev;
155         u64                     logical;
156         struct btrfs_root       *root;
157         struct btrfs_work       work;
158         int                     mirror_num;
159 };
160
161 struct scrub_copy_nocow_ctx {
162         struct scrub_ctx        *sctx;
163         u64                     logical;
164         u64                     len;
165         int                     mirror_num;
166         u64                     physical_for_dev_replace;
167         struct btrfs_work       work;
168 };
169
170 struct scrub_warning {
171         struct btrfs_path       *path;
172         u64                     extent_item_size;
173         char                    *scratch_buf;
174         char                    *msg_buf;
175         const char              *errstr;
176         sector_t                sector;
177         u64                     logical;
178         struct btrfs_device     *dev;
179         int                     msg_bufsize;
180         int                     scratch_bufsize;
181 };
182
183
184 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
185 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
186 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
187 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
188 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
189 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
190                                      struct btrfs_fs_info *fs_info,
191                                      struct scrub_block *original_sblock,
192                                      u64 length, u64 logical,
193                                      struct scrub_block *sblocks_for_recheck);
194 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
195                                 struct scrub_block *sblock, int is_metadata,
196                                 int have_csum, u8 *csum, u64 generation,
197                                 u16 csum_size);
198 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
199                                          struct scrub_block *sblock,
200                                          int is_metadata, int have_csum,
201                                          const u8 *csum, u64 generation,
202                                          u16 csum_size);
203 static void scrub_complete_bio_end_io(struct bio *bio, int err);
204 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
205                                              struct scrub_block *sblock_good,
206                                              int force_write);
207 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
208                                             struct scrub_block *sblock_good,
209                                             int page_num, int force_write);
210 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
211 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
212                                            int page_num);
213 static int scrub_checksum_data(struct scrub_block *sblock);
214 static int scrub_checksum_tree_block(struct scrub_block *sblock);
215 static int scrub_checksum_super(struct scrub_block *sblock);
216 static void scrub_block_get(struct scrub_block *sblock);
217 static void scrub_block_put(struct scrub_block *sblock);
218 static void scrub_page_get(struct scrub_page *spage);
219 static void scrub_page_put(struct scrub_page *spage);
220 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
221                                     struct scrub_page *spage);
222 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
223                        u64 physical, struct btrfs_device *dev, u64 flags,
224                        u64 gen, int mirror_num, u8 *csum, int force,
225                        u64 physical_for_dev_replace);
226 static void scrub_bio_end_io(struct bio *bio, int err);
227 static void scrub_bio_end_io_worker(struct btrfs_work *work);
228 static void scrub_block_complete(struct scrub_block *sblock);
229 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
230                                u64 extent_logical, u64 extent_len,
231                                u64 *extent_physical,
232                                struct btrfs_device **extent_dev,
233                                int *extent_mirror_num);
234 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
235                               struct scrub_wr_ctx *wr_ctx,
236                               struct btrfs_fs_info *fs_info,
237                               struct btrfs_device *dev,
238                               int is_dev_replace);
239 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
240 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
241                                     struct scrub_page *spage);
242 static void scrub_wr_submit(struct scrub_ctx *sctx);
243 static void scrub_wr_bio_end_io(struct bio *bio, int err);
244 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
245 static int write_page_nocow(struct scrub_ctx *sctx,
246                             u64 physical_for_dev_replace, struct page *page);
247 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
248                                       void *ctx);
249 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
250                             int mirror_num, u64 physical_for_dev_replace);
251 static void copy_nocow_pages_worker(struct btrfs_work *work);
252
253
254 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
255 {
256         atomic_inc(&sctx->bios_in_flight);
257 }
258
259 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
260 {
261         atomic_dec(&sctx->bios_in_flight);
262         wake_up(&sctx->list_wait);
263 }
264
265 /*
266  * used for workers that require transaction commits (i.e., for the
267  * NOCOW case)
268  */
269 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
270 {
271         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
272
273         /*
274          * increment scrubs_running to prevent cancel requests from
275          * completing as long as a worker is running. we must also
276          * increment scrubs_paused to prevent deadlocking on pause
277          * requests used for transactions commits (as the worker uses a
278          * transaction context). it is safe to regard the worker
279          * as paused for all matters practical. effectively, we only
280          * avoid cancellation requests from completing.
281          */
282         mutex_lock(&fs_info->scrub_lock);
283         atomic_inc(&fs_info->scrubs_running);
284         atomic_inc(&fs_info->scrubs_paused);
285         mutex_unlock(&fs_info->scrub_lock);
286         atomic_inc(&sctx->workers_pending);
287 }
288
289 /* used for workers that require transaction commits */
290 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
291 {
292         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
293
294         /*
295          * see scrub_pending_trans_workers_inc() why we're pretending
296          * to be paused in the scrub counters
297          */
298         mutex_lock(&fs_info->scrub_lock);
299         atomic_dec(&fs_info->scrubs_running);
300         atomic_dec(&fs_info->scrubs_paused);
301         mutex_unlock(&fs_info->scrub_lock);
302         atomic_dec(&sctx->workers_pending);
303         wake_up(&fs_info->scrub_pause_wait);
304         wake_up(&sctx->list_wait);
305 }
306
307 static void scrub_free_csums(struct scrub_ctx *sctx)
308 {
309         while (!list_empty(&sctx->csum_list)) {
310                 struct btrfs_ordered_sum *sum;
311                 sum = list_first_entry(&sctx->csum_list,
312                                        struct btrfs_ordered_sum, list);
313                 list_del(&sum->list);
314                 kfree(sum);
315         }
316 }
317
318 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
319 {
320         int i;
321
322         if (!sctx)
323                 return;
324
325         scrub_free_wr_ctx(&sctx->wr_ctx);
326
327         /* this can happen when scrub is cancelled */
328         if (sctx->curr != -1) {
329                 struct scrub_bio *sbio = sctx->bios[sctx->curr];
330
331                 for (i = 0; i < sbio->page_count; i++) {
332                         WARN_ON(!sbio->pagev[i]->page);
333                         scrub_block_put(sbio->pagev[i]->sblock);
334                 }
335                 bio_put(sbio->bio);
336         }
337
338         for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
339                 struct scrub_bio *sbio = sctx->bios[i];
340
341                 if (!sbio)
342                         break;
343                 kfree(sbio);
344         }
345
346         scrub_free_csums(sctx);
347         kfree(sctx);
348 }
349
350 static noinline_for_stack
351 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
352 {
353         struct scrub_ctx *sctx;
354         int             i;
355         struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
356         int pages_per_rd_bio;
357         int ret;
358
359         /*
360          * the setting of pages_per_rd_bio is correct for scrub but might
361          * be wrong for the dev_replace code where we might read from
362          * different devices in the initial huge bios. However, that
363          * code is able to correctly handle the case when adding a page
364          * to a bio fails.
365          */
366         if (dev->bdev)
367                 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
368                                          bio_get_nr_vecs(dev->bdev));
369         else
370                 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
371         sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
372         if (!sctx)
373                 goto nomem;
374         sctx->is_dev_replace = is_dev_replace;
375         sctx->pages_per_rd_bio = pages_per_rd_bio;
376         sctx->curr = -1;
377         sctx->dev_root = dev->dev_root;
378         for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
379                 struct scrub_bio *sbio;
380
381                 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
382                 if (!sbio)
383                         goto nomem;
384                 sctx->bios[i] = sbio;
385
386                 sbio->index = i;
387                 sbio->sctx = sctx;
388                 sbio->page_count = 0;
389                 sbio->work.func = scrub_bio_end_io_worker;
390
391                 if (i != SCRUB_BIOS_PER_SCTX - 1)
392                         sctx->bios[i]->next_free = i + 1;
393                 else
394                         sctx->bios[i]->next_free = -1;
395         }
396         sctx->first_free = 0;
397         sctx->nodesize = dev->dev_root->nodesize;
398         sctx->leafsize = dev->dev_root->leafsize;
399         sctx->sectorsize = dev->dev_root->sectorsize;
400         atomic_set(&sctx->bios_in_flight, 0);
401         atomic_set(&sctx->workers_pending, 0);
402         atomic_set(&sctx->cancel_req, 0);
403         sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
404         INIT_LIST_HEAD(&sctx->csum_list);
405
406         spin_lock_init(&sctx->list_lock);
407         spin_lock_init(&sctx->stat_lock);
408         init_waitqueue_head(&sctx->list_wait);
409
410         ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
411                                  fs_info->dev_replace.tgtdev, is_dev_replace);
412         if (ret) {
413                 scrub_free_ctx(sctx);
414                 return ERR_PTR(ret);
415         }
416         return sctx;
417
418 nomem:
419         scrub_free_ctx(sctx);
420         return ERR_PTR(-ENOMEM);
421 }
422
423 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
424                                      void *warn_ctx)
425 {
426         u64 isize;
427         u32 nlink;
428         int ret;
429         int i;
430         struct extent_buffer *eb;
431         struct btrfs_inode_item *inode_item;
432         struct scrub_warning *swarn = warn_ctx;
433         struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
434         struct inode_fs_paths *ipath = NULL;
435         struct btrfs_root *local_root;
436         struct btrfs_key root_key;
437
438         root_key.objectid = root;
439         root_key.type = BTRFS_ROOT_ITEM_KEY;
440         root_key.offset = (u64)-1;
441         local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
442         if (IS_ERR(local_root)) {
443                 ret = PTR_ERR(local_root);
444                 goto err;
445         }
446
447         ret = inode_item_info(inum, 0, local_root, swarn->path);
448         if (ret) {
449                 btrfs_release_path(swarn->path);
450                 goto err;
451         }
452
453         eb = swarn->path->nodes[0];
454         inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
455                                         struct btrfs_inode_item);
456         isize = btrfs_inode_size(eb, inode_item);
457         nlink = btrfs_inode_nlink(eb, inode_item);
458         btrfs_release_path(swarn->path);
459
460         ipath = init_ipath(4096, local_root, swarn->path);
461         if (IS_ERR(ipath)) {
462                 ret = PTR_ERR(ipath);
463                 ipath = NULL;
464                 goto err;
465         }
466         ret = paths_from_inode(inum, ipath);
467
468         if (ret < 0)
469                 goto err;
470
471         /*
472          * we deliberately ignore the bit ipath might have been too small to
473          * hold all of the paths here
474          */
475         for (i = 0; i < ipath->fspath->elem_cnt; ++i)
476                 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
477                         "%s, sector %llu, root %llu, inode %llu, offset %llu, "
478                         "length %llu, links %u (path: %s)\n", swarn->errstr,
479                         swarn->logical, rcu_str_deref(swarn->dev->name),
480                         (unsigned long long)swarn->sector, root, inum, offset,
481                         min(isize - offset, (u64)PAGE_SIZE), nlink,
482                         (char *)(unsigned long)ipath->fspath->val[i]);
483
484         free_ipath(ipath);
485         return 0;
486
487 err:
488         printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
489                 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
490                 "resolving failed with ret=%d\n", swarn->errstr,
491                 swarn->logical, rcu_str_deref(swarn->dev->name),
492                 (unsigned long long)swarn->sector, root, inum, offset, ret);
493
494         free_ipath(ipath);
495         return 0;
496 }
497
498 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
499 {
500         struct btrfs_device *dev;
501         struct btrfs_fs_info *fs_info;
502         struct btrfs_path *path;
503         struct btrfs_key found_key;
504         struct extent_buffer *eb;
505         struct btrfs_extent_item *ei;
506         struct scrub_warning swarn;
507         unsigned long ptr = 0;
508         u64 extent_item_pos;
509         u64 flags = 0;
510         u64 ref_root;
511         u32 item_size;
512         u8 ref_level;
513         const int bufsize = 4096;
514         int ret;
515
516         WARN_ON(sblock->page_count < 1);
517         dev = sblock->pagev[0]->dev;
518         fs_info = sblock->sctx->dev_root->fs_info;
519
520         path = btrfs_alloc_path();
521
522         swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
523         swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
524         swarn.sector = (sblock->pagev[0]->physical) >> 9;
525         swarn.logical = sblock->pagev[0]->logical;
526         swarn.errstr = errstr;
527         swarn.dev = NULL;
528         swarn.msg_bufsize = bufsize;
529         swarn.scratch_bufsize = bufsize;
530
531         if (!path || !swarn.scratch_buf || !swarn.msg_buf)
532                 goto out;
533
534         ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
535                                   &flags);
536         if (ret < 0)
537                 goto out;
538
539         extent_item_pos = swarn.logical - found_key.objectid;
540         swarn.extent_item_size = found_key.offset;
541
542         eb = path->nodes[0];
543         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
544         item_size = btrfs_item_size_nr(eb, path->slots[0]);
545
546         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
547                 do {
548                         ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
549                                                         &ref_root, &ref_level);
550                         printk_in_rcu(KERN_WARNING
551                                 "btrfs: %s at logical %llu on dev %s, "
552                                 "sector %llu: metadata %s (level %d) in tree "
553                                 "%llu\n", errstr, swarn.logical,
554                                 rcu_str_deref(dev->name),
555                                 (unsigned long long)swarn.sector,
556                                 ref_level ? "node" : "leaf",
557                                 ret < 0 ? -1 : ref_level,
558                                 ret < 0 ? -1 : ref_root);
559                 } while (ret != 1);
560                 btrfs_release_path(path);
561         } else {
562                 btrfs_release_path(path);
563                 swarn.path = path;
564                 swarn.dev = dev;
565                 iterate_extent_inodes(fs_info, found_key.objectid,
566                                         extent_item_pos, 1,
567                                         scrub_print_warning_inode, &swarn);
568         }
569
570 out:
571         btrfs_free_path(path);
572         kfree(swarn.scratch_buf);
573         kfree(swarn.msg_buf);
574 }
575
576 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
577 {
578         struct page *page = NULL;
579         unsigned long index;
580         struct scrub_fixup_nodatasum *fixup = fixup_ctx;
581         int ret;
582         int corrected = 0;
583         struct btrfs_key key;
584         struct inode *inode = NULL;
585         struct btrfs_fs_info *fs_info;
586         u64 end = offset + PAGE_SIZE - 1;
587         struct btrfs_root *local_root;
588         int srcu_index;
589
590         key.objectid = root;
591         key.type = BTRFS_ROOT_ITEM_KEY;
592         key.offset = (u64)-1;
593
594         fs_info = fixup->root->fs_info;
595         srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
596
597         local_root = btrfs_read_fs_root_no_name(fs_info, &key);
598         if (IS_ERR(local_root)) {
599                 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
600                 return PTR_ERR(local_root);
601         }
602
603         key.type = BTRFS_INODE_ITEM_KEY;
604         key.objectid = inum;
605         key.offset = 0;
606         inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
607         srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
608         if (IS_ERR(inode))
609                 return PTR_ERR(inode);
610
611         index = offset >> PAGE_CACHE_SHIFT;
612
613         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
614         if (!page) {
615                 ret = -ENOMEM;
616                 goto out;
617         }
618
619         if (PageUptodate(page)) {
620                 if (PageDirty(page)) {
621                         /*
622                          * we need to write the data to the defect sector. the
623                          * data that was in that sector is not in memory,
624                          * because the page was modified. we must not write the
625                          * modified page to that sector.
626                          *
627                          * TODO: what could be done here: wait for the delalloc
628                          *       runner to write out that page (might involve
629                          *       COW) and see whether the sector is still
630                          *       referenced afterwards.
631                          *
632                          * For the meantime, we'll treat this error
633                          * incorrectable, although there is a chance that a
634                          * later scrub will find the bad sector again and that
635                          * there's no dirty page in memory, then.
636                          */
637                         ret = -EIO;
638                         goto out;
639                 }
640                 fs_info = BTRFS_I(inode)->root->fs_info;
641                 ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
642                                         fixup->logical, page,
643                                         fixup->mirror_num);
644                 unlock_page(page);
645                 corrected = !ret;
646         } else {
647                 /*
648                  * we need to get good data first. the general readpage path
649                  * will call repair_io_failure for us, we just have to make
650                  * sure we read the bad mirror.
651                  */
652                 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
653                                         EXTENT_DAMAGED, GFP_NOFS);
654                 if (ret) {
655                         /* set_extent_bits should give proper error */
656                         WARN_ON(ret > 0);
657                         if (ret > 0)
658                                 ret = -EFAULT;
659                         goto out;
660                 }
661
662                 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
663                                                 btrfs_get_extent,
664                                                 fixup->mirror_num);
665                 wait_on_page_locked(page);
666
667                 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
668                                                 end, EXTENT_DAMAGED, 0, NULL);
669                 if (!corrected)
670                         clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
671                                                 EXTENT_DAMAGED, GFP_NOFS);
672         }
673
674 out:
675         if (page)
676                 put_page(page);
677         if (inode)
678                 iput(inode);
679
680         if (ret < 0)
681                 return ret;
682
683         if (ret == 0 && corrected) {
684                 /*
685                  * we only need to call readpage for one of the inodes belonging
686                  * to this extent. so make iterate_extent_inodes stop
687                  */
688                 return 1;
689         }
690
691         return -EIO;
692 }
693
694 static void scrub_fixup_nodatasum(struct btrfs_work *work)
695 {
696         int ret;
697         struct scrub_fixup_nodatasum *fixup;
698         struct scrub_ctx *sctx;
699         struct btrfs_trans_handle *trans = NULL;
700         struct btrfs_fs_info *fs_info;
701         struct btrfs_path *path;
702         int uncorrectable = 0;
703
704         fixup = container_of(work, struct scrub_fixup_nodatasum, work);
705         sctx = fixup->sctx;
706         fs_info = fixup->root->fs_info;
707
708         path = btrfs_alloc_path();
709         if (!path) {
710                 spin_lock(&sctx->stat_lock);
711                 ++sctx->stat.malloc_errors;
712                 spin_unlock(&sctx->stat_lock);
713                 uncorrectable = 1;
714                 goto out;
715         }
716
717         trans = btrfs_join_transaction(fixup->root);
718         if (IS_ERR(trans)) {
719                 uncorrectable = 1;
720                 goto out;
721         }
722
723         /*
724          * the idea is to trigger a regular read through the standard path. we
725          * read a page from the (failed) logical address by specifying the
726          * corresponding copynum of the failed sector. thus, that readpage is
727          * expected to fail.
728          * that is the point where on-the-fly error correction will kick in
729          * (once it's finished) and rewrite the failed sector if a good copy
730          * can be found.
731          */
732         ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
733                                                 path, scrub_fixup_readpage,
734                                                 fixup);
735         if (ret < 0) {
736                 uncorrectable = 1;
737                 goto out;
738         }
739         WARN_ON(ret != 1);
740
741         spin_lock(&sctx->stat_lock);
742         ++sctx->stat.corrected_errors;
743         spin_unlock(&sctx->stat_lock);
744
745 out:
746         if (trans && !IS_ERR(trans))
747                 btrfs_end_transaction(trans, fixup->root);
748         if (uncorrectable) {
749                 spin_lock(&sctx->stat_lock);
750                 ++sctx->stat.uncorrectable_errors;
751                 spin_unlock(&sctx->stat_lock);
752                 btrfs_dev_replace_stats_inc(
753                         &sctx->dev_root->fs_info->dev_replace.
754                         num_uncorrectable_read_errors);
755                 printk_ratelimited_in_rcu(KERN_ERR
756                         "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
757                         (unsigned long long)fixup->logical,
758                         rcu_str_deref(fixup->dev->name));
759         }
760
761         btrfs_free_path(path);
762         kfree(fixup);
763
764         scrub_pending_trans_workers_dec(sctx);
765 }
766
767 /*
768  * scrub_handle_errored_block gets called when either verification of the
769  * pages failed or the bio failed to read, e.g. with EIO. In the latter
770  * case, this function handles all pages in the bio, even though only one
771  * may be bad.
772  * The goal of this function is to repair the errored block by using the
773  * contents of one of the mirrors.
774  */
775 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
776 {
777         struct scrub_ctx *sctx = sblock_to_check->sctx;
778         struct btrfs_device *dev;
779         struct btrfs_fs_info *fs_info;
780         u64 length;
781         u64 logical;
782         u64 generation;
783         unsigned int failed_mirror_index;
784         unsigned int is_metadata;
785         unsigned int have_csum;
786         u8 *csum;
787         struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
788         struct scrub_block *sblock_bad;
789         int ret;
790         int mirror_index;
791         int page_num;
792         int success;
793         static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
794                                       DEFAULT_RATELIMIT_BURST);
795
796         BUG_ON(sblock_to_check->page_count < 1);
797         fs_info = sctx->dev_root->fs_info;
798         if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
799                 /*
800                  * if we find an error in a super block, we just report it.
801                  * They will get written with the next transaction commit
802                  * anyway
803                  */
804                 spin_lock(&sctx->stat_lock);
805                 ++sctx->stat.super_errors;
806                 spin_unlock(&sctx->stat_lock);
807                 return 0;
808         }
809         length = sblock_to_check->page_count * PAGE_SIZE;
810         logical = sblock_to_check->pagev[0]->logical;
811         generation = sblock_to_check->pagev[0]->generation;
812         BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
813         failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
814         is_metadata = !(sblock_to_check->pagev[0]->flags &
815                         BTRFS_EXTENT_FLAG_DATA);
816         have_csum = sblock_to_check->pagev[0]->have_csum;
817         csum = sblock_to_check->pagev[0]->csum;
818         dev = sblock_to_check->pagev[0]->dev;
819
820         if (sctx->is_dev_replace && !is_metadata && !have_csum) {
821                 sblocks_for_recheck = NULL;
822                 goto nodatasum_case;
823         }
824
825         /*
826          * read all mirrors one after the other. This includes to
827          * re-read the extent or metadata block that failed (that was
828          * the cause that this fixup code is called) another time,
829          * page by page this time in order to know which pages
830          * caused I/O errors and which ones are good (for all mirrors).
831          * It is the goal to handle the situation when more than one
832          * mirror contains I/O errors, but the errors do not
833          * overlap, i.e. the data can be repaired by selecting the
834          * pages from those mirrors without I/O error on the
835          * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
836          * would be that mirror #1 has an I/O error on the first page,
837          * the second page is good, and mirror #2 has an I/O error on
838          * the second page, but the first page is good.
839          * Then the first page of the first mirror can be repaired by
840          * taking the first page of the second mirror, and the
841          * second page of the second mirror can be repaired by
842          * copying the contents of the 2nd page of the 1st mirror.
843          * One more note: if the pages of one mirror contain I/O
844          * errors, the checksum cannot be verified. In order to get
845          * the best data for repairing, the first attempt is to find
846          * a mirror without I/O errors and with a validated checksum.
847          * Only if this is not possible, the pages are picked from
848          * mirrors with I/O errors without considering the checksum.
849          * If the latter is the case, at the end, the checksum of the
850          * repaired area is verified in order to correctly maintain
851          * the statistics.
852          */
853
854         sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
855                                      sizeof(*sblocks_for_recheck),
856                                      GFP_NOFS);
857         if (!sblocks_for_recheck) {
858                 spin_lock(&sctx->stat_lock);
859                 sctx->stat.malloc_errors++;
860                 sctx->stat.read_errors++;
861                 sctx->stat.uncorrectable_errors++;
862                 spin_unlock(&sctx->stat_lock);
863                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
864                 goto out;
865         }
866
867         /* setup the context, map the logical blocks and alloc the pages */
868         ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
869                                         logical, sblocks_for_recheck);
870         if (ret) {
871                 spin_lock(&sctx->stat_lock);
872                 sctx->stat.read_errors++;
873                 sctx->stat.uncorrectable_errors++;
874                 spin_unlock(&sctx->stat_lock);
875                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
876                 goto out;
877         }
878         BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
879         sblock_bad = sblocks_for_recheck + failed_mirror_index;
880
881         /* build and submit the bios for the failed mirror, check checksums */
882         scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
883                             csum, generation, sctx->csum_size);
884
885         if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
886             sblock_bad->no_io_error_seen) {
887                 /*
888                  * the error disappeared after reading page by page, or
889                  * the area was part of a huge bio and other parts of the
890                  * bio caused I/O errors, or the block layer merged several
891                  * read requests into one and the error is caused by a
892                  * different bio (usually one of the two latter cases is
893                  * the cause)
894                  */
895                 spin_lock(&sctx->stat_lock);
896                 sctx->stat.unverified_errors++;
897                 spin_unlock(&sctx->stat_lock);
898
899                 if (sctx->is_dev_replace)
900                         scrub_write_block_to_dev_replace(sblock_bad);
901                 goto out;
902         }
903
904         if (!sblock_bad->no_io_error_seen) {
905                 spin_lock(&sctx->stat_lock);
906                 sctx->stat.read_errors++;
907                 spin_unlock(&sctx->stat_lock);
908                 if (__ratelimit(&_rs))
909                         scrub_print_warning("i/o error", sblock_to_check);
910                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
911         } else if (sblock_bad->checksum_error) {
912                 spin_lock(&sctx->stat_lock);
913                 sctx->stat.csum_errors++;
914                 spin_unlock(&sctx->stat_lock);
915                 if (__ratelimit(&_rs))
916                         scrub_print_warning("checksum error", sblock_to_check);
917                 btrfs_dev_stat_inc_and_print(dev,
918                                              BTRFS_DEV_STAT_CORRUPTION_ERRS);
919         } else if (sblock_bad->header_error) {
920                 spin_lock(&sctx->stat_lock);
921                 sctx->stat.verify_errors++;
922                 spin_unlock(&sctx->stat_lock);
923                 if (__ratelimit(&_rs))
924                         scrub_print_warning("checksum/header error",
925                                             sblock_to_check);
926                 if (sblock_bad->generation_error)
927                         btrfs_dev_stat_inc_and_print(dev,
928                                 BTRFS_DEV_STAT_GENERATION_ERRS);
929                 else
930                         btrfs_dev_stat_inc_and_print(dev,
931                                 BTRFS_DEV_STAT_CORRUPTION_ERRS);
932         }
933
934         if (sctx->readonly && !sctx->is_dev_replace)
935                 goto did_not_correct_error;
936
937         if (!is_metadata && !have_csum) {
938                 struct scrub_fixup_nodatasum *fixup_nodatasum;
939
940 nodatasum_case:
941                 WARN_ON(sctx->is_dev_replace);
942
943                 /*
944                  * !is_metadata and !have_csum, this means that the data
945                  * might not be COW'ed, that it might be modified
946                  * concurrently. The general strategy to work on the
947                  * commit root does not help in the case when COW is not
948                  * used.
949                  */
950                 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
951                 if (!fixup_nodatasum)
952                         goto did_not_correct_error;
953                 fixup_nodatasum->sctx = sctx;
954                 fixup_nodatasum->dev = dev;
955                 fixup_nodatasum->logical = logical;
956                 fixup_nodatasum->root = fs_info->extent_root;
957                 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
958                 scrub_pending_trans_workers_inc(sctx);
959                 fixup_nodatasum->work.func = scrub_fixup_nodatasum;
960                 btrfs_queue_worker(&fs_info->scrub_workers,
961                                    &fixup_nodatasum->work);
962                 goto out;
963         }
964
965         /*
966          * now build and submit the bios for the other mirrors, check
967          * checksums.
968          * First try to pick the mirror which is completely without I/O
969          * errors and also does not have a checksum error.
970          * If one is found, and if a checksum is present, the full block
971          * that is known to contain an error is rewritten. Afterwards
972          * the block is known to be corrected.
973          * If a mirror is found which is completely correct, and no
974          * checksum is present, only those pages are rewritten that had
975          * an I/O error in the block to be repaired, since it cannot be
976          * determined, which copy of the other pages is better (and it
977          * could happen otherwise that a correct page would be
978          * overwritten by a bad one).
979          */
980         for (mirror_index = 0;
981              mirror_index < BTRFS_MAX_MIRRORS &&
982              sblocks_for_recheck[mirror_index].page_count > 0;
983              mirror_index++) {
984                 struct scrub_block *sblock_other;
985
986                 if (mirror_index == failed_mirror_index)
987                         continue;
988                 sblock_other = sblocks_for_recheck + mirror_index;
989
990                 /* build and submit the bios, check checksums */
991                 scrub_recheck_block(fs_info, sblock_other, is_metadata,
992                                     have_csum, csum, generation,
993                                     sctx->csum_size);
994
995                 if (!sblock_other->header_error &&
996                     !sblock_other->checksum_error &&
997                     sblock_other->no_io_error_seen) {
998                         if (sctx->is_dev_replace) {
999                                 scrub_write_block_to_dev_replace(sblock_other);
1000                         } else {
1001                                 int force_write = is_metadata || have_csum;
1002
1003                                 ret = scrub_repair_block_from_good_copy(
1004                                                 sblock_bad, sblock_other,
1005                                                 force_write);
1006                         }
1007                         if (0 == ret)
1008                                 goto corrected_error;
1009                 }
1010         }
1011
1012         /*
1013          * for dev_replace, pick good pages and write to the target device.
1014          */
1015         if (sctx->is_dev_replace) {
1016                 success = 1;
1017                 for (page_num = 0; page_num < sblock_bad->page_count;
1018                      page_num++) {
1019                         int sub_success;
1020
1021                         sub_success = 0;
1022                         for (mirror_index = 0;
1023                              mirror_index < BTRFS_MAX_MIRRORS &&
1024                              sblocks_for_recheck[mirror_index].page_count > 0;
1025                              mirror_index++) {
1026                                 struct scrub_block *sblock_other =
1027                                         sblocks_for_recheck + mirror_index;
1028                                 struct scrub_page *page_other =
1029                                         sblock_other->pagev[page_num];
1030
1031                                 if (!page_other->io_error) {
1032                                         ret = scrub_write_page_to_dev_replace(
1033                                                         sblock_other, page_num);
1034                                         if (ret == 0) {
1035                                                 /* succeeded for this page */
1036                                                 sub_success = 1;
1037                                                 break;
1038                                         } else {
1039                                                 btrfs_dev_replace_stats_inc(
1040                                                         &sctx->dev_root->
1041                                                         fs_info->dev_replace.
1042                                                         num_write_errors);
1043                                         }
1044                                 }
1045                         }
1046
1047                         if (!sub_success) {
1048                                 /*
1049                                  * did not find a mirror to fetch the page
1050                                  * from. scrub_write_page_to_dev_replace()
1051                                  * handles this case (page->io_error), by
1052                                  * filling the block with zeros before
1053                                  * submitting the write request
1054                                  */
1055                                 success = 0;
1056                                 ret = scrub_write_page_to_dev_replace(
1057                                                 sblock_bad, page_num);
1058                                 if (ret)
1059                                         btrfs_dev_replace_stats_inc(
1060                                                 &sctx->dev_root->fs_info->
1061                                                 dev_replace.num_write_errors);
1062                         }
1063                 }
1064
1065                 goto out;
1066         }
1067
1068         /*
1069          * for regular scrub, repair those pages that are errored.
1070          * In case of I/O errors in the area that is supposed to be
1071          * repaired, continue by picking good copies of those pages.
1072          * Select the good pages from mirrors to rewrite bad pages from
1073          * the area to fix. Afterwards verify the checksum of the block
1074          * that is supposed to be repaired. This verification step is
1075          * only done for the purpose of statistic counting and for the
1076          * final scrub report, whether errors remain.
1077          * A perfect algorithm could make use of the checksum and try
1078          * all possible combinations of pages from the different mirrors
1079          * until the checksum verification succeeds. For example, when
1080          * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1081          * of mirror #2 is readable but the final checksum test fails,
1082          * then the 2nd page of mirror #3 could be tried, whether now
1083          * the final checksum succeedes. But this would be a rare
1084          * exception and is therefore not implemented. At least it is
1085          * avoided that the good copy is overwritten.
1086          * A more useful improvement would be to pick the sectors
1087          * without I/O error based on sector sizes (512 bytes on legacy
1088          * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1089          * mirror could be repaired by taking 512 byte of a different
1090          * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1091          * area are unreadable.
1092          */
1093
1094         /* can only fix I/O errors from here on */
1095         if (sblock_bad->no_io_error_seen)
1096                 goto did_not_correct_error;
1097
1098         success = 1;
1099         for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1100                 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1101
1102                 if (!page_bad->io_error)
1103                         continue;
1104
1105                 for (mirror_index = 0;
1106                      mirror_index < BTRFS_MAX_MIRRORS &&
1107                      sblocks_for_recheck[mirror_index].page_count > 0;
1108                      mirror_index++) {
1109                         struct scrub_block *sblock_other = sblocks_for_recheck +
1110                                                            mirror_index;
1111                         struct scrub_page *page_other = sblock_other->pagev[
1112                                                         page_num];
1113
1114                         if (!page_other->io_error) {
1115                                 ret = scrub_repair_page_from_good_copy(
1116                                         sblock_bad, sblock_other, page_num, 0);
1117                                 if (0 == ret) {
1118                                         page_bad->io_error = 0;
1119                                         break; /* succeeded for this page */
1120                                 }
1121                         }
1122                 }
1123
1124                 if (page_bad->io_error) {
1125                         /* did not find a mirror to copy the page from */
1126                         success = 0;
1127                 }
1128         }
1129
1130         if (success) {
1131                 if (is_metadata || have_csum) {
1132                         /*
1133                          * need to verify the checksum now that all
1134                          * sectors on disk are repaired (the write
1135                          * request for data to be repaired is on its way).
1136                          * Just be lazy and use scrub_recheck_block()
1137                          * which re-reads the data before the checksum
1138                          * is verified, but most likely the data comes out
1139                          * of the page cache.
1140                          */
1141                         scrub_recheck_block(fs_info, sblock_bad,
1142                                             is_metadata, have_csum, csum,
1143                                             generation, sctx->csum_size);
1144                         if (!sblock_bad->header_error &&
1145                             !sblock_bad->checksum_error &&
1146                             sblock_bad->no_io_error_seen)
1147                                 goto corrected_error;
1148                         else
1149                                 goto did_not_correct_error;
1150                 } else {
1151 corrected_error:
1152                         spin_lock(&sctx->stat_lock);
1153                         sctx->stat.corrected_errors++;
1154                         spin_unlock(&sctx->stat_lock);
1155                         printk_ratelimited_in_rcu(KERN_ERR
1156                                 "btrfs: fixed up error at logical %llu on dev %s\n",
1157                                 (unsigned long long)logical,
1158                                 rcu_str_deref(dev->name));
1159                 }
1160         } else {
1161 did_not_correct_error:
1162                 spin_lock(&sctx->stat_lock);
1163                 sctx->stat.uncorrectable_errors++;
1164                 spin_unlock(&sctx->stat_lock);
1165                 printk_ratelimited_in_rcu(KERN_ERR
1166                         "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
1167                         (unsigned long long)logical,
1168                         rcu_str_deref(dev->name));
1169         }
1170
1171 out:
1172         if (sblocks_for_recheck) {
1173                 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1174                      mirror_index++) {
1175                         struct scrub_block *sblock = sblocks_for_recheck +
1176                                                      mirror_index;
1177                         int page_index;
1178
1179                         for (page_index = 0; page_index < sblock->page_count;
1180                              page_index++) {
1181                                 sblock->pagev[page_index]->sblock = NULL;
1182                                 scrub_page_put(sblock->pagev[page_index]);
1183                         }
1184                 }
1185                 kfree(sblocks_for_recheck);
1186         }
1187
1188         return 0;
1189 }
1190
1191 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1192                                      struct btrfs_fs_info *fs_info,
1193                                      struct scrub_block *original_sblock,
1194                                      u64 length, u64 logical,
1195                                      struct scrub_block *sblocks_for_recheck)
1196 {
1197         int page_index;
1198         int mirror_index;
1199         int ret;
1200
1201         /*
1202          * note: the two members ref_count and outstanding_pages
1203          * are not used (and not set) in the blocks that are used for
1204          * the recheck procedure
1205          */
1206
1207         page_index = 0;
1208         while (length > 0) {
1209                 u64 sublen = min_t(u64, length, PAGE_SIZE);
1210                 u64 mapped_length = sublen;
1211                 struct btrfs_bio *bbio = NULL;
1212
1213                 /*
1214                  * with a length of PAGE_SIZE, each returned stripe
1215                  * represents one mirror
1216                  */
1217                 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1218                                       &mapped_length, &bbio, 0);
1219                 if (ret || !bbio || mapped_length < sublen) {
1220                         kfree(bbio);
1221                         return -EIO;
1222                 }
1223
1224                 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1225                 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1226                      mirror_index++) {
1227                         struct scrub_block *sblock;
1228                         struct scrub_page *page;
1229
1230                         if (mirror_index >= BTRFS_MAX_MIRRORS)
1231                                 continue;
1232
1233                         sblock = sblocks_for_recheck + mirror_index;
1234                         sblock->sctx = sctx;
1235                         page = kzalloc(sizeof(*page), GFP_NOFS);
1236                         if (!page) {
1237 leave_nomem:
1238                                 spin_lock(&sctx->stat_lock);
1239                                 sctx->stat.malloc_errors++;
1240                                 spin_unlock(&sctx->stat_lock);
1241                                 kfree(bbio);
1242                                 return -ENOMEM;
1243                         }
1244                         scrub_page_get(page);
1245                         sblock->pagev[page_index] = page;
1246                         page->logical = logical;
1247                         page->physical = bbio->stripes[mirror_index].physical;
1248                         BUG_ON(page_index >= original_sblock->page_count);
1249                         page->physical_for_dev_replace =
1250                                 original_sblock->pagev[page_index]->
1251                                 physical_for_dev_replace;
1252                         /* for missing devices, dev->bdev is NULL */
1253                         page->dev = bbio->stripes[mirror_index].dev;
1254                         page->mirror_num = mirror_index + 1;
1255                         sblock->page_count++;
1256                         page->page = alloc_page(GFP_NOFS);
1257                         if (!page->page)
1258                                 goto leave_nomem;
1259                 }
1260                 kfree(bbio);
1261                 length -= sublen;
1262                 logical += sublen;
1263                 page_index++;
1264         }
1265
1266         return 0;
1267 }
1268
1269 /*
1270  * this function will check the on disk data for checksum errors, header
1271  * errors and read I/O errors. If any I/O errors happen, the exact pages
1272  * which are errored are marked as being bad. The goal is to enable scrub
1273  * to take those pages that are not errored from all the mirrors so that
1274  * the pages that are errored in the just handled mirror can be repaired.
1275  */
1276 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1277                                 struct scrub_block *sblock, int is_metadata,
1278                                 int have_csum, u8 *csum, u64 generation,
1279                                 u16 csum_size)
1280 {
1281         int page_num;
1282
1283         sblock->no_io_error_seen = 1;
1284         sblock->header_error = 0;
1285         sblock->checksum_error = 0;
1286
1287         for (page_num = 0; page_num < sblock->page_count; page_num++) {
1288                 struct bio *bio;
1289                 struct scrub_page *page = sblock->pagev[page_num];
1290                 DECLARE_COMPLETION_ONSTACK(complete);
1291
1292                 if (page->dev->bdev == NULL) {
1293                         page->io_error = 1;
1294                         sblock->no_io_error_seen = 0;
1295                         continue;
1296                 }
1297
1298                 WARN_ON(!page->page);
1299                 bio = bio_alloc(GFP_NOFS, 1);
1300                 if (!bio) {
1301                         page->io_error = 1;
1302                         sblock->no_io_error_seen = 0;
1303                         continue;
1304                 }
1305                 bio->bi_bdev = page->dev->bdev;
1306                 bio->bi_sector = page->physical >> 9;
1307                 bio->bi_end_io = scrub_complete_bio_end_io;
1308                 bio->bi_private = &complete;
1309
1310                 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1311                 btrfsic_submit_bio(READ, bio);
1312
1313                 /* this will also unplug the queue */
1314                 wait_for_completion(&complete);
1315
1316                 page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1317                 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1318                         sblock->no_io_error_seen = 0;
1319                 bio_put(bio);
1320         }
1321
1322         if (sblock->no_io_error_seen)
1323                 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1324                                              have_csum, csum, generation,
1325                                              csum_size);
1326
1327         return;
1328 }
1329
1330 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1331                                          struct scrub_block *sblock,
1332                                          int is_metadata, int have_csum,
1333                                          const u8 *csum, u64 generation,
1334                                          u16 csum_size)
1335 {
1336         int page_num;
1337         u8 calculated_csum[BTRFS_CSUM_SIZE];
1338         u32 crc = ~(u32)0;
1339         struct btrfs_root *root = fs_info->extent_root;
1340         void *mapped_buffer;
1341
1342         WARN_ON(!sblock->pagev[0]->page);
1343         if (is_metadata) {
1344                 struct btrfs_header *h;
1345
1346                 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1347                 h = (struct btrfs_header *)mapped_buffer;
1348
1349                 if (sblock->pagev[0]->logical != le64_to_cpu(h->bytenr) ||
1350                     memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1351                     memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1352                            BTRFS_UUID_SIZE)) {
1353                         sblock->header_error = 1;
1354                 } else if (generation != le64_to_cpu(h->generation)) {
1355                         sblock->header_error = 1;
1356                         sblock->generation_error = 1;
1357                 }
1358                 csum = h->csum;
1359         } else {
1360                 if (!have_csum)
1361                         return;
1362
1363                 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1364         }
1365
1366         for (page_num = 0;;) {
1367                 if (page_num == 0 && is_metadata)
1368                         crc = btrfs_csum_data(root,
1369                                 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1370                                 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1371                 else
1372                         crc = btrfs_csum_data(root, mapped_buffer, crc,
1373                                               PAGE_SIZE);
1374
1375                 kunmap_atomic(mapped_buffer);
1376                 page_num++;
1377                 if (page_num >= sblock->page_count)
1378                         break;
1379                 WARN_ON(!sblock->pagev[page_num]->page);
1380
1381                 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1382         }
1383
1384         btrfs_csum_final(crc, calculated_csum);
1385         if (memcmp(calculated_csum, csum, csum_size))
1386                 sblock->checksum_error = 1;
1387 }
1388
1389 static void scrub_complete_bio_end_io(struct bio *bio, int err)
1390 {
1391         complete((struct completion *)bio->bi_private);
1392 }
1393
1394 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1395                                              struct scrub_block *sblock_good,
1396                                              int force_write)
1397 {
1398         int page_num;
1399         int ret = 0;
1400
1401         for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1402                 int ret_sub;
1403
1404                 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1405                                                            sblock_good,
1406                                                            page_num,
1407                                                            force_write);
1408                 if (ret_sub)
1409                         ret = ret_sub;
1410         }
1411
1412         return ret;
1413 }
1414
1415 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1416                                             struct scrub_block *sblock_good,
1417                                             int page_num, int force_write)
1418 {
1419         struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1420         struct scrub_page *page_good = sblock_good->pagev[page_num];
1421
1422         BUG_ON(page_bad->page == NULL);
1423         BUG_ON(page_good->page == NULL);
1424         if (force_write || sblock_bad->header_error ||
1425             sblock_bad->checksum_error || page_bad->io_error) {
1426                 struct bio *bio;
1427                 int ret;
1428                 DECLARE_COMPLETION_ONSTACK(complete);
1429
1430                 if (!page_bad->dev->bdev) {
1431                         printk_ratelimited(KERN_WARNING
1432                                 "btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n");
1433                         return -EIO;
1434                 }
1435
1436                 bio = bio_alloc(GFP_NOFS, 1);
1437                 if (!bio)
1438                         return -EIO;
1439                 bio->bi_bdev = page_bad->dev->bdev;
1440                 bio->bi_sector = page_bad->physical >> 9;
1441                 bio->bi_end_io = scrub_complete_bio_end_io;
1442                 bio->bi_private = &complete;
1443
1444                 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1445                 if (PAGE_SIZE != ret) {
1446                         bio_put(bio);
1447                         return -EIO;
1448                 }
1449                 btrfsic_submit_bio(WRITE, bio);
1450
1451                 /* this will also unplug the queue */
1452                 wait_for_completion(&complete);
1453                 if (!bio_flagged(bio, BIO_UPTODATE)) {
1454                         btrfs_dev_stat_inc_and_print(page_bad->dev,
1455                                 BTRFS_DEV_STAT_WRITE_ERRS);
1456                         btrfs_dev_replace_stats_inc(
1457                                 &sblock_bad->sctx->dev_root->fs_info->
1458                                 dev_replace.num_write_errors);
1459                         bio_put(bio);
1460                         return -EIO;
1461                 }
1462                 bio_put(bio);
1463         }
1464
1465         return 0;
1466 }
1467
1468 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1469 {
1470         int page_num;
1471
1472         for (page_num = 0; page_num < sblock->page_count; page_num++) {
1473                 int ret;
1474
1475                 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1476                 if (ret)
1477                         btrfs_dev_replace_stats_inc(
1478                                 &sblock->sctx->dev_root->fs_info->dev_replace.
1479                                 num_write_errors);
1480         }
1481 }
1482
1483 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1484                                            int page_num)
1485 {
1486         struct scrub_page *spage = sblock->pagev[page_num];
1487
1488         BUG_ON(spage->page == NULL);
1489         if (spage->io_error) {
1490                 void *mapped_buffer = kmap_atomic(spage->page);
1491
1492                 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1493                 flush_dcache_page(spage->page);
1494                 kunmap_atomic(mapped_buffer);
1495         }
1496         return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1497 }
1498
1499 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1500                                     struct scrub_page *spage)
1501 {
1502         struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1503         struct scrub_bio *sbio;
1504         int ret;
1505
1506         mutex_lock(&wr_ctx->wr_lock);
1507 again:
1508         if (!wr_ctx->wr_curr_bio) {
1509                 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1510                                               GFP_NOFS);
1511                 if (!wr_ctx->wr_curr_bio) {
1512                         mutex_unlock(&wr_ctx->wr_lock);
1513                         return -ENOMEM;
1514                 }
1515                 wr_ctx->wr_curr_bio->sctx = sctx;
1516                 wr_ctx->wr_curr_bio->page_count = 0;
1517         }
1518         sbio = wr_ctx->wr_curr_bio;
1519         if (sbio->page_count == 0) {
1520                 struct bio *bio;
1521
1522                 sbio->physical = spage->physical_for_dev_replace;
1523                 sbio->logical = spage->logical;
1524                 sbio->dev = wr_ctx->tgtdev;
1525                 bio = sbio->bio;
1526                 if (!bio) {
1527                         bio = bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1528                         if (!bio) {
1529                                 mutex_unlock(&wr_ctx->wr_lock);
1530                                 return -ENOMEM;
1531                         }
1532                         sbio->bio = bio;
1533                 }
1534
1535                 bio->bi_private = sbio;
1536                 bio->bi_end_io = scrub_wr_bio_end_io;
1537                 bio->bi_bdev = sbio->dev->bdev;
1538                 bio->bi_sector = sbio->physical >> 9;
1539                 sbio->err = 0;
1540         } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1541                    spage->physical_for_dev_replace ||
1542                    sbio->logical + sbio->page_count * PAGE_SIZE !=
1543                    spage->logical) {
1544                 scrub_wr_submit(sctx);
1545                 goto again;
1546         }
1547
1548         ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1549         if (ret != PAGE_SIZE) {
1550                 if (sbio->page_count < 1) {
1551                         bio_put(sbio->bio);
1552                         sbio->bio = NULL;
1553                         mutex_unlock(&wr_ctx->wr_lock);
1554                         return -EIO;
1555                 }
1556                 scrub_wr_submit(sctx);
1557                 goto again;
1558         }
1559
1560         sbio->pagev[sbio->page_count] = spage;
1561         scrub_page_get(spage);
1562         sbio->page_count++;
1563         if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1564                 scrub_wr_submit(sctx);
1565         mutex_unlock(&wr_ctx->wr_lock);
1566
1567         return 0;
1568 }
1569
1570 static void scrub_wr_submit(struct scrub_ctx *sctx)
1571 {
1572         struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1573         struct scrub_bio *sbio;
1574
1575         if (!wr_ctx->wr_curr_bio)
1576                 return;
1577
1578         sbio = wr_ctx->wr_curr_bio;
1579         wr_ctx->wr_curr_bio = NULL;
1580         WARN_ON(!sbio->bio->bi_bdev);
1581         scrub_pending_bio_inc(sctx);
1582         /* process all writes in a single worker thread. Then the block layer
1583          * orders the requests before sending them to the driver which
1584          * doubled the write performance on spinning disks when measured
1585          * with Linux 3.5 */
1586         btrfsic_submit_bio(WRITE, sbio->bio);
1587 }
1588
1589 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1590 {
1591         struct scrub_bio *sbio = bio->bi_private;
1592         struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1593
1594         sbio->err = err;
1595         sbio->bio = bio;
1596
1597         sbio->work.func = scrub_wr_bio_end_io_worker;
1598         btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work);
1599 }
1600
1601 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1602 {
1603         struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1604         struct scrub_ctx *sctx = sbio->sctx;
1605         int i;
1606
1607         WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1608         if (sbio->err) {
1609                 struct btrfs_dev_replace *dev_replace =
1610                         &sbio->sctx->dev_root->fs_info->dev_replace;
1611
1612                 for (i = 0; i < sbio->page_count; i++) {
1613                         struct scrub_page *spage = sbio->pagev[i];
1614
1615                         spage->io_error = 1;
1616                         btrfs_dev_replace_stats_inc(&dev_replace->
1617                                                     num_write_errors);
1618                 }
1619         }
1620
1621         for (i = 0; i < sbio->page_count; i++)
1622                 scrub_page_put(sbio->pagev[i]);
1623
1624         bio_put(sbio->bio);
1625         kfree(sbio);
1626         scrub_pending_bio_dec(sctx);
1627 }
1628
1629 static int scrub_checksum(struct scrub_block *sblock)
1630 {
1631         u64 flags;
1632         int ret;
1633
1634         WARN_ON(sblock->page_count < 1);
1635         flags = sblock->pagev[0]->flags;
1636         ret = 0;
1637         if (flags & BTRFS_EXTENT_FLAG_DATA)
1638                 ret = scrub_checksum_data(sblock);
1639         else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1640                 ret = scrub_checksum_tree_block(sblock);
1641         else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1642                 (void)scrub_checksum_super(sblock);
1643         else
1644                 WARN_ON(1);
1645         if (ret)
1646                 scrub_handle_errored_block(sblock);
1647
1648         return ret;
1649 }
1650
1651 static int scrub_checksum_data(struct scrub_block *sblock)
1652 {
1653         struct scrub_ctx *sctx = sblock->sctx;
1654         u8 csum[BTRFS_CSUM_SIZE];
1655         u8 *on_disk_csum;
1656         struct page *page;
1657         void *buffer;
1658         u32 crc = ~(u32)0;
1659         int fail = 0;
1660         struct btrfs_root *root = sctx->dev_root;
1661         u64 len;
1662         int index;
1663
1664         BUG_ON(sblock->page_count < 1);
1665         if (!sblock->pagev[0]->have_csum)
1666                 return 0;
1667
1668         on_disk_csum = sblock->pagev[0]->csum;
1669         page = sblock->pagev[0]->page;
1670         buffer = kmap_atomic(page);
1671
1672         len = sctx->sectorsize;
1673         index = 0;
1674         for (;;) {
1675                 u64 l = min_t(u64, len, PAGE_SIZE);
1676
1677                 crc = btrfs_csum_data(root, buffer, crc, l);
1678                 kunmap_atomic(buffer);
1679                 len -= l;
1680                 if (len == 0)
1681                         break;
1682                 index++;
1683                 BUG_ON(index >= sblock->page_count);
1684                 BUG_ON(!sblock->pagev[index]->page);
1685                 page = sblock->pagev[index]->page;
1686                 buffer = kmap_atomic(page);
1687         }
1688
1689         btrfs_csum_final(crc, csum);
1690         if (memcmp(csum, on_disk_csum, sctx->csum_size))
1691                 fail = 1;
1692
1693         return fail;
1694 }
1695
1696 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1697 {
1698         struct scrub_ctx *sctx = sblock->sctx;
1699         struct btrfs_header *h;
1700         struct btrfs_root *root = sctx->dev_root;
1701         struct btrfs_fs_info *fs_info = root->fs_info;
1702         u8 calculated_csum[BTRFS_CSUM_SIZE];
1703         u8 on_disk_csum[BTRFS_CSUM_SIZE];
1704         struct page *page;
1705         void *mapped_buffer;
1706         u64 mapped_size;
1707         void *p;
1708         u32 crc = ~(u32)0;
1709         int fail = 0;
1710         int crc_fail = 0;
1711         u64 len;
1712         int index;
1713
1714         BUG_ON(sblock->page_count < 1);
1715         page = sblock->pagev[0]->page;
1716         mapped_buffer = kmap_atomic(page);
1717         h = (struct btrfs_header *)mapped_buffer;
1718         memcpy(on_disk_csum, h->csum, sctx->csum_size);
1719
1720         /*
1721          * we don't use the getter functions here, as we
1722          * a) don't have an extent buffer and
1723          * b) the page is already kmapped
1724          */
1725
1726         if (sblock->pagev[0]->logical != le64_to_cpu(h->bytenr))
1727                 ++fail;
1728
1729         if (sblock->pagev[0]->generation != le64_to_cpu(h->generation))
1730                 ++fail;
1731
1732         if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1733                 ++fail;
1734
1735         if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1736                    BTRFS_UUID_SIZE))
1737                 ++fail;
1738
1739         WARN_ON(sctx->nodesize != sctx->leafsize);
1740         len = sctx->nodesize - BTRFS_CSUM_SIZE;
1741         mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1742         p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1743         index = 0;
1744         for (;;) {
1745                 u64 l = min_t(u64, len, mapped_size);
1746
1747                 crc = btrfs_csum_data(root, p, crc, l);
1748                 kunmap_atomic(mapped_buffer);
1749                 len -= l;
1750                 if (len == 0)
1751                         break;
1752                 index++;
1753                 BUG_ON(index >= sblock->page_count);
1754                 BUG_ON(!sblock->pagev[index]->page);
1755                 page = sblock->pagev[index]->page;
1756                 mapped_buffer = kmap_atomic(page);
1757                 mapped_size = PAGE_SIZE;
1758                 p = mapped_buffer;
1759         }
1760
1761         btrfs_csum_final(crc, calculated_csum);
1762         if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1763                 ++crc_fail;
1764
1765         return fail || crc_fail;
1766 }
1767
1768 static int scrub_checksum_super(struct scrub_block *sblock)
1769 {
1770         struct btrfs_super_block *s;
1771         struct scrub_ctx *sctx = sblock->sctx;
1772         struct btrfs_root *root = sctx->dev_root;
1773         struct btrfs_fs_info *fs_info = root->fs_info;
1774         u8 calculated_csum[BTRFS_CSUM_SIZE];
1775         u8 on_disk_csum[BTRFS_CSUM_SIZE];
1776         struct page *page;
1777         void *mapped_buffer;
1778         u64 mapped_size;
1779         void *p;
1780         u32 crc = ~(u32)0;
1781         int fail_gen = 0;
1782         int fail_cor = 0;
1783         u64 len;
1784         int index;
1785
1786         BUG_ON(sblock->page_count < 1);
1787         page = sblock->pagev[0]->page;
1788         mapped_buffer = kmap_atomic(page);
1789         s = (struct btrfs_super_block *)mapped_buffer;
1790         memcpy(on_disk_csum, s->csum, sctx->csum_size);
1791
1792         if (sblock->pagev[0]->logical != le64_to_cpu(s->bytenr))
1793                 ++fail_cor;
1794
1795         if (sblock->pagev[0]->generation != le64_to_cpu(s->generation))
1796                 ++fail_gen;
1797
1798         if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1799                 ++fail_cor;
1800
1801         len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1802         mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1803         p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1804         index = 0;
1805         for (;;) {
1806                 u64 l = min_t(u64, len, mapped_size);
1807
1808                 crc = btrfs_csum_data(root, p, crc, l);
1809                 kunmap_atomic(mapped_buffer);
1810                 len -= l;
1811                 if (len == 0)
1812                         break;
1813                 index++;
1814                 BUG_ON(index >= sblock->page_count);
1815                 BUG_ON(!sblock->pagev[index]->page);
1816                 page = sblock->pagev[index]->page;
1817                 mapped_buffer = kmap_atomic(page);
1818                 mapped_size = PAGE_SIZE;
1819                 p = mapped_buffer;
1820         }
1821
1822         btrfs_csum_final(crc, calculated_csum);
1823         if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1824                 ++fail_cor;
1825
1826         if (fail_cor + fail_gen) {
1827                 /*
1828                  * if we find an error in a super block, we just report it.
1829                  * They will get written with the next transaction commit
1830                  * anyway
1831                  */
1832                 spin_lock(&sctx->stat_lock);
1833                 ++sctx->stat.super_errors;
1834                 spin_unlock(&sctx->stat_lock);
1835                 if (fail_cor)
1836                         btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1837                                 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1838                 else
1839                         btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1840                                 BTRFS_DEV_STAT_GENERATION_ERRS);
1841         }
1842
1843         return fail_cor + fail_gen;
1844 }
1845
1846 static void scrub_block_get(struct scrub_block *sblock)
1847 {
1848         atomic_inc(&sblock->ref_count);
1849 }
1850
1851 static void scrub_block_put(struct scrub_block *sblock)
1852 {
1853         if (atomic_dec_and_test(&sblock->ref_count)) {
1854                 int i;
1855
1856                 for (i = 0; i < sblock->page_count; i++)
1857                         scrub_page_put(sblock->pagev[i]);
1858                 kfree(sblock);
1859         }
1860 }
1861
1862 static void scrub_page_get(struct scrub_page *spage)
1863 {
1864         atomic_inc(&spage->ref_count);
1865 }
1866
1867 static void scrub_page_put(struct scrub_page *spage)
1868 {
1869         if (atomic_dec_and_test(&spage->ref_count)) {
1870                 if (spage->page)
1871                         __free_page(spage->page);
1872                 kfree(spage);
1873         }
1874 }
1875
1876 static void scrub_submit(struct scrub_ctx *sctx)
1877 {
1878         struct scrub_bio *sbio;
1879
1880         if (sctx->curr == -1)
1881                 return;
1882
1883         sbio = sctx->bios[sctx->curr];
1884         sctx->curr = -1;
1885         scrub_pending_bio_inc(sctx);
1886
1887         if (!sbio->bio->bi_bdev) {
1888                 /*
1889                  * this case should not happen. If btrfs_map_block() is
1890                  * wrong, it could happen for dev-replace operations on
1891                  * missing devices when no mirrors are available, but in
1892                  * this case it should already fail the mount.
1893                  * This case is handled correctly (but _very_ slowly).
1894                  */
1895                 printk_ratelimited(KERN_WARNING
1896                         "btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n");
1897                 bio_endio(sbio->bio, -EIO);
1898         } else {
1899                 btrfsic_submit_bio(READ, sbio->bio);
1900         }
1901 }
1902
1903 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1904                                     struct scrub_page *spage)
1905 {
1906         struct scrub_block *sblock = spage->sblock;
1907         struct scrub_bio *sbio;
1908         int ret;
1909
1910 again:
1911         /*
1912          * grab a fresh bio or wait for one to become available
1913          */
1914         while (sctx->curr == -1) {
1915                 spin_lock(&sctx->list_lock);
1916                 sctx->curr = sctx->first_free;
1917                 if (sctx->curr != -1) {
1918                         sctx->first_free = sctx->bios[sctx->curr]->next_free;
1919                         sctx->bios[sctx->curr]->next_free = -1;
1920                         sctx->bios[sctx->curr]->page_count = 0;
1921                         spin_unlock(&sctx->list_lock);
1922                 } else {
1923                         spin_unlock(&sctx->list_lock);
1924                         wait_event(sctx->list_wait, sctx->first_free != -1);
1925                 }
1926         }
1927         sbio = sctx->bios[sctx->curr];
1928         if (sbio->page_count == 0) {
1929                 struct bio *bio;
1930
1931                 sbio->physical = spage->physical;
1932                 sbio->logical = spage->logical;
1933                 sbio->dev = spage->dev;
1934                 bio = sbio->bio;
1935                 if (!bio) {
1936                         bio = bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1937                         if (!bio)
1938                                 return -ENOMEM;
1939                         sbio->bio = bio;
1940                 }
1941
1942                 bio->bi_private = sbio;
1943                 bio->bi_end_io = scrub_bio_end_io;
1944                 bio->bi_bdev = sbio->dev->bdev;
1945                 bio->bi_sector = sbio->physical >> 9;
1946                 sbio->err = 0;
1947         } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1948                    spage->physical ||
1949                    sbio->logical + sbio->page_count * PAGE_SIZE !=
1950                    spage->logical ||
1951                    sbio->dev != spage->dev) {
1952                 scrub_submit(sctx);
1953                 goto again;
1954         }
1955
1956         sbio->pagev[sbio->page_count] = spage;
1957         ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1958         if (ret != PAGE_SIZE) {
1959                 if (sbio->page_count < 1) {
1960                         bio_put(sbio->bio);
1961                         sbio->bio = NULL;
1962                         return -EIO;
1963                 }
1964                 scrub_submit(sctx);
1965                 goto again;
1966         }
1967
1968         scrub_block_get(sblock); /* one for the page added to the bio */
1969         atomic_inc(&sblock->outstanding_pages);
1970         sbio->page_count++;
1971         if (sbio->page_count == sctx->pages_per_rd_bio)
1972                 scrub_submit(sctx);
1973
1974         return 0;
1975 }
1976
1977 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1978                        u64 physical, struct btrfs_device *dev, u64 flags,
1979                        u64 gen, int mirror_num, u8 *csum, int force,
1980                        u64 physical_for_dev_replace)
1981 {
1982         struct scrub_block *sblock;
1983         int index;
1984
1985         sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1986         if (!sblock) {
1987                 spin_lock(&sctx->stat_lock);
1988                 sctx->stat.malloc_errors++;
1989                 spin_unlock(&sctx->stat_lock);
1990                 return -ENOMEM;
1991         }
1992
1993         /* one ref inside this function, plus one for each page added to
1994          * a bio later on */
1995         atomic_set(&sblock->ref_count, 1);
1996         sblock->sctx = sctx;
1997         sblock->no_io_error_seen = 1;
1998
1999         for (index = 0; len > 0; index++) {
2000                 struct scrub_page *spage;
2001                 u64 l = min_t(u64, len, PAGE_SIZE);
2002
2003                 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2004                 if (!spage) {
2005 leave_nomem:
2006                         spin_lock(&sctx->stat_lock);
2007                         sctx->stat.malloc_errors++;
2008                         spin_unlock(&sctx->stat_lock);
2009                         scrub_block_put(sblock);
2010                         return -ENOMEM;
2011                 }
2012                 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2013                 scrub_page_get(spage);
2014                 sblock->pagev[index] = spage;
2015                 spage->sblock = sblock;
2016                 spage->dev = dev;
2017                 spage->flags = flags;
2018                 spage->generation = gen;
2019                 spage->logical = logical;
2020                 spage->physical = physical;
2021                 spage->physical_for_dev_replace = physical_for_dev_replace;
2022                 spage->mirror_num = mirror_num;
2023                 if (csum) {
2024                         spage->have_csum = 1;
2025                         memcpy(spage->csum, csum, sctx->csum_size);
2026                 } else {
2027                         spage->have_csum = 0;
2028                 }
2029                 sblock->page_count++;
2030                 spage->page = alloc_page(GFP_NOFS);
2031                 if (!spage->page)
2032                         goto leave_nomem;
2033                 len -= l;
2034                 logical += l;
2035                 physical += l;
2036                 physical_for_dev_replace += l;
2037         }
2038
2039         WARN_ON(sblock->page_count == 0);
2040         for (index = 0; index < sblock->page_count; index++) {
2041                 struct scrub_page *spage = sblock->pagev[index];
2042                 int ret;
2043
2044                 ret = scrub_add_page_to_rd_bio(sctx, spage);
2045                 if (ret) {
2046                         scrub_block_put(sblock);
2047                         return ret;
2048                 }
2049         }
2050
2051         if (force)
2052                 scrub_submit(sctx);
2053
2054         /* last one frees, either here or in bio completion for last page */
2055         scrub_block_put(sblock);
2056         return 0;
2057 }
2058
2059 static void scrub_bio_end_io(struct bio *bio, int err)
2060 {
2061         struct scrub_bio *sbio = bio->bi_private;
2062         struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2063
2064         sbio->err = err;
2065         sbio->bio = bio;
2066
2067         btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
2068 }
2069
2070 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2071 {
2072         struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2073         struct scrub_ctx *sctx = sbio->sctx;
2074         int i;
2075
2076         BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2077         if (sbio->err) {
2078                 for (i = 0; i < sbio->page_count; i++) {
2079                         struct scrub_page *spage = sbio->pagev[i];
2080
2081                         spage->io_error = 1;
2082                         spage->sblock->no_io_error_seen = 0;
2083                 }
2084         }
2085
2086         /* now complete the scrub_block items that have all pages completed */
2087         for (i = 0; i < sbio->page_count; i++) {
2088                 struct scrub_page *spage = sbio->pagev[i];
2089                 struct scrub_block *sblock = spage->sblock;
2090
2091                 if (atomic_dec_and_test(&sblock->outstanding_pages))
2092                         scrub_block_complete(sblock);
2093                 scrub_block_put(sblock);
2094         }
2095
2096         bio_put(sbio->bio);
2097         sbio->bio = NULL;
2098         spin_lock(&sctx->list_lock);
2099         sbio->next_free = sctx->first_free;
2100         sctx->first_free = sbio->index;
2101         spin_unlock(&sctx->list_lock);
2102
2103         if (sctx->is_dev_replace &&
2104             atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2105                 mutex_lock(&sctx->wr_ctx.wr_lock);
2106                 scrub_wr_submit(sctx);
2107                 mutex_unlock(&sctx->wr_ctx.wr_lock);
2108         }
2109
2110         scrub_pending_bio_dec(sctx);
2111 }
2112
2113 static void scrub_block_complete(struct scrub_block *sblock)
2114 {
2115         if (!sblock->no_io_error_seen) {
2116                 scrub_handle_errored_block(sblock);
2117         } else {
2118                 /*
2119                  * if has checksum error, write via repair mechanism in
2120                  * dev replace case, otherwise write here in dev replace
2121                  * case.
2122                  */
2123                 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2124                         scrub_write_block_to_dev_replace(sblock);
2125         }
2126 }
2127
2128 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2129                            u8 *csum)
2130 {
2131         struct btrfs_ordered_sum *sum = NULL;
2132         int ret = 0;
2133         unsigned long i;
2134         unsigned long num_sectors;
2135
2136         while (!list_empty(&sctx->csum_list)) {
2137                 sum = list_first_entry(&sctx->csum_list,
2138                                        struct btrfs_ordered_sum, list);
2139                 if (sum->bytenr > logical)
2140                         return 0;
2141                 if (sum->bytenr + sum->len > logical)
2142                         break;
2143
2144                 ++sctx->stat.csum_discards;
2145                 list_del(&sum->list);
2146                 kfree(sum);
2147                 sum = NULL;
2148         }
2149         if (!sum)
2150                 return 0;
2151
2152         num_sectors = sum->len / sctx->sectorsize;
2153         for (i = 0; i < num_sectors; ++i) {
2154                 if (sum->sums[i].bytenr == logical) {
2155                         memcpy(csum, &sum->sums[i].sum, sctx->csum_size);
2156                         ret = 1;
2157                         break;
2158                 }
2159         }
2160         if (ret && i == num_sectors - 1) {
2161                 list_del(&sum->list);
2162                 kfree(sum);
2163         }
2164         return ret;
2165 }
2166
2167 /* scrub extent tries to collect up to 64 kB for each bio */
2168 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2169                         u64 physical, struct btrfs_device *dev, u64 flags,
2170                         u64 gen, int mirror_num, u64 physical_for_dev_replace)
2171 {
2172         int ret;
2173         u8 csum[BTRFS_CSUM_SIZE];
2174         u32 blocksize;
2175
2176         if (flags & BTRFS_EXTENT_FLAG_DATA) {
2177                 blocksize = sctx->sectorsize;
2178                 spin_lock(&sctx->stat_lock);
2179                 sctx->stat.data_extents_scrubbed++;
2180                 sctx->stat.data_bytes_scrubbed += len;
2181                 spin_unlock(&sctx->stat_lock);
2182         } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2183                 WARN_ON(sctx->nodesize != sctx->leafsize);
2184                 blocksize = sctx->nodesize;
2185                 spin_lock(&sctx->stat_lock);
2186                 sctx->stat.tree_extents_scrubbed++;
2187                 sctx->stat.tree_bytes_scrubbed += len;
2188                 spin_unlock(&sctx->stat_lock);
2189         } else {
2190                 blocksize = sctx->sectorsize;
2191                 WARN_ON(1);
2192         }
2193
2194         while (len) {
2195                 u64 l = min_t(u64, len, blocksize);
2196                 int have_csum = 0;
2197
2198                 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2199                         /* push csums to sbio */
2200                         have_csum = scrub_find_csum(sctx, logical, l, csum);
2201                         if (have_csum == 0)
2202                                 ++sctx->stat.no_csum;
2203                         if (sctx->is_dev_replace && !have_csum) {
2204                                 ret = copy_nocow_pages(sctx, logical, l,
2205                                                        mirror_num,
2206                                                       physical_for_dev_replace);
2207                                 goto behind_scrub_pages;
2208                         }
2209                 }
2210                 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2211                                   mirror_num, have_csum ? csum : NULL, 0,
2212                                   physical_for_dev_replace);
2213 behind_scrub_pages:
2214                 if (ret)
2215                         return ret;
2216                 len -= l;
2217                 logical += l;
2218                 physical += l;
2219                 physical_for_dev_replace += l;
2220         }
2221         return 0;
2222 }
2223
2224 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2225                                            struct map_lookup *map,
2226                                            struct btrfs_device *scrub_dev,
2227                                            int num, u64 base, u64 length,
2228                                            int is_dev_replace)
2229 {
2230         struct btrfs_path *path;
2231         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2232         struct btrfs_root *root = fs_info->extent_root;
2233         struct btrfs_root *csum_root = fs_info->csum_root;
2234         struct btrfs_extent_item *extent;
2235         struct blk_plug plug;
2236         u64 flags;
2237         int ret;
2238         int slot;
2239         int i;
2240         u64 nstripes;
2241         struct extent_buffer *l;
2242         struct btrfs_key key;
2243         u64 physical;
2244         u64 logical;
2245         u64 generation;
2246         int mirror_num;
2247         struct reada_control *reada1;
2248         struct reada_control *reada2;
2249         struct btrfs_key key_start;
2250         struct btrfs_key key_end;
2251         u64 increment = map->stripe_len;
2252         u64 offset;
2253         u64 extent_logical;
2254         u64 extent_physical;
2255         u64 extent_len;
2256         struct btrfs_device *extent_dev;
2257         int extent_mirror_num;
2258
2259         if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2260                          BTRFS_BLOCK_GROUP_RAID6)) {
2261                 if (num >= nr_data_stripes(map)) {
2262                         return 0;
2263                 }
2264         }
2265
2266         nstripes = length;
2267         offset = 0;
2268         do_div(nstripes, map->stripe_len);
2269         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2270                 offset = map->stripe_len * num;
2271                 increment = map->stripe_len * map->num_stripes;
2272                 mirror_num = 1;
2273         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2274                 int factor = map->num_stripes / map->sub_stripes;
2275                 offset = map->stripe_len * (num / map->sub_stripes);
2276                 increment = map->stripe_len * factor;
2277                 mirror_num = num % map->sub_stripes + 1;
2278         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2279                 increment = map->stripe_len;
2280                 mirror_num = num % map->num_stripes + 1;
2281         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2282                 increment = map->stripe_len;
2283                 mirror_num = num % map->num_stripes + 1;
2284         } else {
2285                 increment = map->stripe_len;
2286                 mirror_num = 1;
2287         }
2288
2289         path = btrfs_alloc_path();
2290         if (!path)
2291                 return -ENOMEM;
2292
2293         /*
2294          * work on commit root. The related disk blocks are static as
2295          * long as COW is applied. This means, it is save to rewrite
2296          * them to repair disk errors without any race conditions
2297          */
2298         path->search_commit_root = 1;
2299         path->skip_locking = 1;
2300
2301         /*
2302          * trigger the readahead for extent tree csum tree and wait for
2303          * completion. During readahead, the scrub is officially paused
2304          * to not hold off transaction commits
2305          */
2306         logical = base + offset;
2307
2308         wait_event(sctx->list_wait,
2309                    atomic_read(&sctx->bios_in_flight) == 0);
2310         atomic_inc(&fs_info->scrubs_paused);
2311         wake_up(&fs_info->scrub_pause_wait);
2312
2313         /* FIXME it might be better to start readahead at commit root */
2314         key_start.objectid = logical;
2315         key_start.type = BTRFS_EXTENT_ITEM_KEY;
2316         key_start.offset = (u64)0;
2317         key_end.objectid = base + offset + nstripes * increment;
2318         key_end.type = BTRFS_EXTENT_ITEM_KEY;
2319         key_end.offset = (u64)0;
2320         reada1 = btrfs_reada_add(root, &key_start, &key_end);
2321
2322         key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2323         key_start.type = BTRFS_EXTENT_CSUM_KEY;
2324         key_start.offset = logical;
2325         key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2326         key_end.type = BTRFS_EXTENT_CSUM_KEY;
2327         key_end.offset = base + offset + nstripes * increment;
2328         reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2329
2330         if (!IS_ERR(reada1))
2331                 btrfs_reada_wait(reada1);
2332         if (!IS_ERR(reada2))
2333                 btrfs_reada_wait(reada2);
2334
2335         mutex_lock(&fs_info->scrub_lock);
2336         while (atomic_read(&fs_info->scrub_pause_req)) {
2337                 mutex_unlock(&fs_info->scrub_lock);
2338                 wait_event(fs_info->scrub_pause_wait,
2339                    atomic_read(&fs_info->scrub_pause_req) == 0);
2340                 mutex_lock(&fs_info->scrub_lock);
2341         }
2342         atomic_dec(&fs_info->scrubs_paused);
2343         mutex_unlock(&fs_info->scrub_lock);
2344         wake_up(&fs_info->scrub_pause_wait);
2345
2346         /*
2347          * collect all data csums for the stripe to avoid seeking during
2348          * the scrub. This might currently (crc32) end up to be about 1MB
2349          */
2350         blk_start_plug(&plug);
2351
2352         /*
2353          * now find all extents for each stripe and scrub them
2354          */
2355         logical = base + offset;
2356         physical = map->stripes[num].physical;
2357         ret = 0;
2358         for (i = 0; i < nstripes; ++i) {
2359                 /*
2360                  * canceled?
2361                  */
2362                 if (atomic_read(&fs_info->scrub_cancel_req) ||
2363                     atomic_read(&sctx->cancel_req)) {
2364                         ret = -ECANCELED;
2365                         goto out;
2366                 }
2367                 /*
2368                  * check to see if we have to pause
2369                  */
2370                 if (atomic_read(&fs_info->scrub_pause_req)) {
2371                         /* push queued extents */
2372                         atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2373                         scrub_submit(sctx);
2374                         mutex_lock(&sctx->wr_ctx.wr_lock);
2375                         scrub_wr_submit(sctx);
2376                         mutex_unlock(&sctx->wr_ctx.wr_lock);
2377                         wait_event(sctx->list_wait,
2378                                    atomic_read(&sctx->bios_in_flight) == 0);
2379                         atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2380                         atomic_inc(&fs_info->scrubs_paused);
2381                         wake_up(&fs_info->scrub_pause_wait);
2382                         mutex_lock(&fs_info->scrub_lock);
2383                         while (atomic_read(&fs_info->scrub_pause_req)) {
2384                                 mutex_unlock(&fs_info->scrub_lock);
2385                                 wait_event(fs_info->scrub_pause_wait,
2386                                    atomic_read(&fs_info->scrub_pause_req) == 0);
2387                                 mutex_lock(&fs_info->scrub_lock);
2388                         }
2389                         atomic_dec(&fs_info->scrubs_paused);
2390                         mutex_unlock(&fs_info->scrub_lock);
2391                         wake_up(&fs_info->scrub_pause_wait);
2392                 }
2393
2394                 ret = btrfs_lookup_csums_range(csum_root, logical,
2395                                                logical + map->stripe_len - 1,
2396                                                &sctx->csum_list, 1);
2397                 if (ret)
2398                         goto out;
2399
2400                 key.objectid = logical;
2401                 key.type = BTRFS_EXTENT_ITEM_KEY;
2402                 key.offset = (u64)0;
2403
2404                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2405                 if (ret < 0)
2406                         goto out;
2407                 if (ret > 0) {
2408                         ret = btrfs_previous_item(root, path, 0,
2409                                                   BTRFS_EXTENT_ITEM_KEY);
2410                         if (ret < 0)
2411                                 goto out;
2412                         if (ret > 0) {
2413                                 /* there's no smaller item, so stick with the
2414                                  * larger one */
2415                                 btrfs_release_path(path);
2416                                 ret = btrfs_search_slot(NULL, root, &key,
2417                                                         path, 0, 0);
2418                                 if (ret < 0)
2419                                         goto out;
2420                         }
2421                 }
2422
2423                 while (1) {
2424                         l = path->nodes[0];
2425                         slot = path->slots[0];
2426                         if (slot >= btrfs_header_nritems(l)) {
2427                                 ret = btrfs_next_leaf(root, path);
2428                                 if (ret == 0)
2429                                         continue;
2430                                 if (ret < 0)
2431                                         goto out;
2432
2433                                 break;
2434                         }
2435                         btrfs_item_key_to_cpu(l, &key, slot);
2436
2437                         if (key.objectid + key.offset <= logical)
2438                                 goto next;
2439
2440                         if (key.objectid >= logical + map->stripe_len)
2441                                 break;
2442
2443                         if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
2444                                 goto next;
2445
2446                         extent = btrfs_item_ptr(l, slot,
2447                                                 struct btrfs_extent_item);
2448                         flags = btrfs_extent_flags(l, extent);
2449                         generation = btrfs_extent_generation(l, extent);
2450
2451                         if (key.objectid < logical &&
2452                             (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2453                                 printk(KERN_ERR
2454                                        "btrfs scrub: tree block %llu spanning "
2455                                        "stripes, ignored. logical=%llu\n",
2456                                        (unsigned long long)key.objectid,
2457                                        (unsigned long long)logical);
2458                                 goto next;
2459                         }
2460
2461                         /*
2462                          * trim extent to this stripe
2463                          */
2464                         if (key.objectid < logical) {
2465                                 key.offset -= logical - key.objectid;
2466                                 key.objectid = logical;
2467                         }
2468                         if (key.objectid + key.offset >
2469                             logical + map->stripe_len) {
2470                                 key.offset = logical + map->stripe_len -
2471                                              key.objectid;
2472                         }
2473
2474                         extent_logical = key.objectid;
2475                         extent_physical = key.objectid - logical + physical;
2476                         extent_len = key.offset;
2477                         extent_dev = scrub_dev;
2478                         extent_mirror_num = mirror_num;
2479                         if (is_dev_replace)
2480                                 scrub_remap_extent(fs_info, extent_logical,
2481                                                    extent_len, &extent_physical,
2482                                                    &extent_dev,
2483                                                    &extent_mirror_num);
2484                         ret = scrub_extent(sctx, extent_logical, extent_len,
2485                                            extent_physical, extent_dev, flags,
2486                                            generation, extent_mirror_num,
2487                                            key.objectid - logical + physical);
2488                         if (ret)
2489                                 goto out;
2490
2491 next:
2492                         path->slots[0]++;
2493                 }
2494                 btrfs_release_path(path);
2495                 logical += increment;
2496                 physical += map->stripe_len;
2497                 spin_lock(&sctx->stat_lock);
2498                 sctx->stat.last_physical = physical;
2499                 spin_unlock(&sctx->stat_lock);
2500         }
2501 out:
2502         /* push queued extents */
2503         scrub_submit(sctx);
2504         mutex_lock(&sctx->wr_ctx.wr_lock);
2505         scrub_wr_submit(sctx);
2506         mutex_unlock(&sctx->wr_ctx.wr_lock);
2507
2508         blk_finish_plug(&plug);
2509         btrfs_free_path(path);
2510         return ret < 0 ? ret : 0;
2511 }
2512
2513 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2514                                           struct btrfs_device *scrub_dev,
2515                                           u64 chunk_tree, u64 chunk_objectid,
2516                                           u64 chunk_offset, u64 length,
2517                                           u64 dev_offset, int is_dev_replace)
2518 {
2519         struct btrfs_mapping_tree *map_tree =
2520                 &sctx->dev_root->fs_info->mapping_tree;
2521         struct map_lookup *map;
2522         struct extent_map *em;
2523         int i;
2524         int ret = 0;
2525
2526         read_lock(&map_tree->map_tree.lock);
2527         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2528         read_unlock(&map_tree->map_tree.lock);
2529
2530         if (!em)
2531                 return -EINVAL;
2532
2533         map = (struct map_lookup *)em->bdev;
2534         if (em->start != chunk_offset)
2535                 goto out;
2536
2537         if (em->len < length)
2538                 goto out;
2539
2540         for (i = 0; i < map->num_stripes; ++i) {
2541                 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2542                     map->stripes[i].physical == dev_offset) {
2543                         ret = scrub_stripe(sctx, map, scrub_dev, i,
2544                                            chunk_offset, length,
2545                                            is_dev_replace);
2546                         if (ret)
2547                                 goto out;
2548                 }
2549         }
2550 out:
2551         free_extent_map(em);
2552
2553         return ret;
2554 }
2555
2556 static noinline_for_stack
2557 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2558                            struct btrfs_device *scrub_dev, u64 start, u64 end,
2559                            int is_dev_replace)
2560 {
2561         struct btrfs_dev_extent *dev_extent = NULL;
2562         struct btrfs_path *path;
2563         struct btrfs_root *root = sctx->dev_root;
2564         struct btrfs_fs_info *fs_info = root->fs_info;
2565         u64 length;
2566         u64 chunk_tree;
2567         u64 chunk_objectid;
2568         u64 chunk_offset;
2569         int ret;
2570         int slot;
2571         struct extent_buffer *l;
2572         struct btrfs_key key;
2573         struct btrfs_key found_key;
2574         struct btrfs_block_group_cache *cache;
2575         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2576
2577         path = btrfs_alloc_path();
2578         if (!path)
2579                 return -ENOMEM;
2580
2581         path->reada = 2;
2582         path->search_commit_root = 1;
2583         path->skip_locking = 1;
2584
2585         key.objectid = scrub_dev->devid;
2586         key.offset = 0ull;
2587         key.type = BTRFS_DEV_EXTENT_KEY;
2588
2589         while (1) {
2590                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2591                 if (ret < 0)
2592                         break;
2593                 if (ret > 0) {
2594                         if (path->slots[0] >=
2595                             btrfs_header_nritems(path->nodes[0])) {
2596                                 ret = btrfs_next_leaf(root, path);
2597                                 if (ret)
2598                                         break;
2599                         }
2600                 }
2601
2602                 l = path->nodes[0];
2603                 slot = path->slots[0];
2604
2605                 btrfs_item_key_to_cpu(l, &found_key, slot);
2606
2607                 if (found_key.objectid != scrub_dev->devid)
2608                         break;
2609
2610                 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2611                         break;
2612
2613                 if (found_key.offset >= end)
2614                         break;
2615
2616                 if (found_key.offset < key.offset)
2617                         break;
2618
2619                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2620                 length = btrfs_dev_extent_length(l, dev_extent);
2621
2622                 if (found_key.offset + length <= start) {
2623                         key.offset = found_key.offset + length;
2624                         btrfs_release_path(path);
2625                         continue;
2626                 }
2627
2628                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2629                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2630                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2631
2632                 /*
2633                  * get a reference on the corresponding block group to prevent
2634                  * the chunk from going away while we scrub it
2635                  */
2636                 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2637                 if (!cache) {
2638                         ret = -ENOENT;
2639                         break;
2640                 }
2641                 dev_replace->cursor_right = found_key.offset + length;
2642                 dev_replace->cursor_left = found_key.offset;
2643                 dev_replace->item_needs_writeback = 1;
2644                 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2645                                   chunk_offset, length, found_key.offset,
2646                                   is_dev_replace);
2647
2648                 /*
2649                  * flush, submit all pending read and write bios, afterwards
2650                  * wait for them.
2651                  * Note that in the dev replace case, a read request causes
2652                  * write requests that are submitted in the read completion
2653                  * worker. Therefore in the current situation, it is required
2654                  * that all write requests are flushed, so that all read and
2655                  * write requests are really completed when bios_in_flight
2656                  * changes to 0.
2657                  */
2658                 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2659                 scrub_submit(sctx);
2660                 mutex_lock(&sctx->wr_ctx.wr_lock);
2661                 scrub_wr_submit(sctx);
2662                 mutex_unlock(&sctx->wr_ctx.wr_lock);
2663
2664                 wait_event(sctx->list_wait,
2665                            atomic_read(&sctx->bios_in_flight) == 0);
2666                 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2667                 atomic_inc(&fs_info->scrubs_paused);
2668                 wake_up(&fs_info->scrub_pause_wait);
2669                 wait_event(sctx->list_wait,
2670                            atomic_read(&sctx->workers_pending) == 0);
2671
2672                 mutex_lock(&fs_info->scrub_lock);
2673                 while (atomic_read(&fs_info->scrub_pause_req)) {
2674                         mutex_unlock(&fs_info->scrub_lock);
2675                         wait_event(fs_info->scrub_pause_wait,
2676                            atomic_read(&fs_info->scrub_pause_req) == 0);
2677                         mutex_lock(&fs_info->scrub_lock);
2678                 }
2679                 atomic_dec(&fs_info->scrubs_paused);
2680                 mutex_unlock(&fs_info->scrub_lock);
2681                 wake_up(&fs_info->scrub_pause_wait);
2682
2683                 dev_replace->cursor_left = dev_replace->cursor_right;
2684                 dev_replace->item_needs_writeback = 1;
2685                 btrfs_put_block_group(cache);
2686                 if (ret)
2687                         break;
2688                 if (is_dev_replace &&
2689                     atomic64_read(&dev_replace->num_write_errors) > 0) {
2690                         ret = -EIO;
2691                         break;
2692                 }
2693                 if (sctx->stat.malloc_errors > 0) {
2694                         ret = -ENOMEM;
2695                         break;
2696                 }
2697
2698                 key.offset = found_key.offset + length;
2699                 btrfs_release_path(path);
2700         }
2701
2702         btrfs_free_path(path);
2703
2704         /*
2705          * ret can still be 1 from search_slot or next_leaf,
2706          * that's not an error
2707          */
2708         return ret < 0 ? ret : 0;
2709 }
2710
2711 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2712                                            struct btrfs_device *scrub_dev)
2713 {
2714         int     i;
2715         u64     bytenr;
2716         u64     gen;
2717         int     ret;
2718         struct btrfs_root *root = sctx->dev_root;
2719
2720         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2721                 return -EIO;
2722
2723         gen = root->fs_info->last_trans_committed;
2724
2725         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2726                 bytenr = btrfs_sb_offset(i);
2727                 if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2728                         break;
2729
2730                 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2731                                   scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2732                                   NULL, 1, bytenr);
2733                 if (ret)
2734                         return ret;
2735         }
2736         wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2737
2738         return 0;
2739 }
2740
2741 /*
2742  * get a reference count on fs_info->scrub_workers. start worker if necessary
2743  */
2744 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2745                                                 int is_dev_replace)
2746 {
2747         int ret = 0;
2748
2749         mutex_lock(&fs_info->scrub_lock);
2750         if (fs_info->scrub_workers_refcnt == 0) {
2751                 if (is_dev_replace)
2752                         btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1,
2753                                         &fs_info->generic_worker);
2754                 else
2755                         btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2756                                         fs_info->thread_pool_size,
2757                                         &fs_info->generic_worker);
2758                 fs_info->scrub_workers.idle_thresh = 4;
2759                 ret = btrfs_start_workers(&fs_info->scrub_workers);
2760                 if (ret)
2761                         goto out;
2762                 btrfs_init_workers(&fs_info->scrub_wr_completion_workers,
2763                                    "scrubwrc",
2764                                    fs_info->thread_pool_size,
2765                                    &fs_info->generic_worker);
2766                 fs_info->scrub_wr_completion_workers.idle_thresh = 2;
2767                 ret = btrfs_start_workers(
2768                                 &fs_info->scrub_wr_completion_workers);
2769                 if (ret)
2770                         goto out;
2771                 btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1,
2772                                    &fs_info->generic_worker);
2773                 ret = btrfs_start_workers(&fs_info->scrub_nocow_workers);
2774                 if (ret)
2775                         goto out;
2776         }
2777         ++fs_info->scrub_workers_refcnt;
2778 out:
2779         mutex_unlock(&fs_info->scrub_lock);
2780
2781         return ret;
2782 }
2783
2784 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2785 {
2786         mutex_lock(&fs_info->scrub_lock);
2787         if (--fs_info->scrub_workers_refcnt == 0) {
2788                 btrfs_stop_workers(&fs_info->scrub_workers);
2789                 btrfs_stop_workers(&fs_info->scrub_wr_completion_workers);
2790                 btrfs_stop_workers(&fs_info->scrub_nocow_workers);
2791         }
2792         WARN_ON(fs_info->scrub_workers_refcnt < 0);
2793         mutex_unlock(&fs_info->scrub_lock);
2794 }
2795
2796 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2797                     u64 end, struct btrfs_scrub_progress *progress,
2798                     int readonly, int is_dev_replace)
2799 {
2800         struct scrub_ctx *sctx;
2801         int ret;
2802         struct btrfs_device *dev;
2803
2804         if (btrfs_fs_closing(fs_info))
2805                 return -EINVAL;
2806
2807         /*
2808          * check some assumptions
2809          */
2810         if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2811                 printk(KERN_ERR
2812                        "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2813                        fs_info->chunk_root->nodesize,
2814                        fs_info->chunk_root->leafsize);
2815                 return -EINVAL;
2816         }
2817
2818         if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2819                 /*
2820                  * in this case scrub is unable to calculate the checksum
2821                  * the way scrub is implemented. Do not handle this
2822                  * situation at all because it won't ever happen.
2823                  */
2824                 printk(KERN_ERR
2825                        "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2826                        fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2827                 return -EINVAL;
2828         }
2829
2830         if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2831                 /* not supported for data w/o checksums */
2832                 printk(KERN_ERR
2833                        "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2834                        fs_info->chunk_root->sectorsize,
2835                        (unsigned long long)PAGE_SIZE);
2836                 return -EINVAL;
2837         }
2838
2839         if (fs_info->chunk_root->nodesize >
2840             PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2841             fs_info->chunk_root->sectorsize >
2842             PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2843                 /*
2844                  * would exhaust the array bounds of pagev member in
2845                  * struct scrub_block
2846                  */
2847                 pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n",
2848                        fs_info->chunk_root->nodesize,
2849                        SCRUB_MAX_PAGES_PER_BLOCK,
2850                        fs_info->chunk_root->sectorsize,
2851                        SCRUB_MAX_PAGES_PER_BLOCK);
2852                 return -EINVAL;
2853         }
2854
2855         ret = scrub_workers_get(fs_info, is_dev_replace);
2856         if (ret)
2857                 return ret;
2858
2859         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2860         dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2861         if (!dev || (dev->missing && !is_dev_replace)) {
2862                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2863                 scrub_workers_put(fs_info);
2864                 return -ENODEV;
2865         }
2866         mutex_lock(&fs_info->scrub_lock);
2867
2868         if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2869                 mutex_unlock(&fs_info->scrub_lock);
2870                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2871                 scrub_workers_put(fs_info);
2872                 return -EIO;
2873         }
2874
2875         btrfs_dev_replace_lock(&fs_info->dev_replace);
2876         if (dev->scrub_device ||
2877             (!is_dev_replace &&
2878              btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2879                 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2880                 mutex_unlock(&fs_info->scrub_lock);
2881                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2882                 scrub_workers_put(fs_info);
2883                 return -EINPROGRESS;
2884         }
2885         btrfs_dev_replace_unlock(&fs_info->dev_replace);
2886         sctx = scrub_setup_ctx(dev, is_dev_replace);
2887         if (IS_ERR(sctx)) {
2888                 mutex_unlock(&fs_info->scrub_lock);
2889                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2890                 scrub_workers_put(fs_info);
2891                 return PTR_ERR(sctx);
2892         }
2893         sctx->readonly = readonly;
2894         dev->scrub_device = sctx;
2895
2896         atomic_inc(&fs_info->scrubs_running);
2897         mutex_unlock(&fs_info->scrub_lock);
2898         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2899
2900         if (!is_dev_replace) {
2901                 down_read(&fs_info->scrub_super_lock);
2902                 ret = scrub_supers(sctx, dev);
2903                 up_read(&fs_info->scrub_super_lock);
2904         }
2905
2906         if (!ret)
2907                 ret = scrub_enumerate_chunks(sctx, dev, start, end,
2908                                              is_dev_replace);
2909
2910         wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2911         atomic_dec(&fs_info->scrubs_running);
2912         wake_up(&fs_info->scrub_pause_wait);
2913
2914         wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
2915
2916         if (progress)
2917                 memcpy(progress, &sctx->stat, sizeof(*progress));
2918
2919         mutex_lock(&fs_info->scrub_lock);
2920         dev->scrub_device = NULL;
2921         mutex_unlock(&fs_info->scrub_lock);
2922
2923         scrub_free_ctx(sctx);
2924         scrub_workers_put(fs_info);
2925
2926         return ret;
2927 }
2928
2929 void btrfs_scrub_pause(struct btrfs_root *root)
2930 {
2931         struct btrfs_fs_info *fs_info = root->fs_info;
2932
2933         mutex_lock(&fs_info->scrub_lock);
2934         atomic_inc(&fs_info->scrub_pause_req);
2935         while (atomic_read(&fs_info->scrubs_paused) !=
2936                atomic_read(&fs_info->scrubs_running)) {
2937                 mutex_unlock(&fs_info->scrub_lock);
2938                 wait_event(fs_info->scrub_pause_wait,
2939                            atomic_read(&fs_info->scrubs_paused) ==
2940                            atomic_read(&fs_info->scrubs_running));
2941                 mutex_lock(&fs_info->scrub_lock);
2942         }
2943         mutex_unlock(&fs_info->scrub_lock);
2944 }
2945
2946 void btrfs_scrub_continue(struct btrfs_root *root)
2947 {
2948         struct btrfs_fs_info *fs_info = root->fs_info;
2949
2950         atomic_dec(&fs_info->scrub_pause_req);
2951         wake_up(&fs_info->scrub_pause_wait);
2952 }
2953
2954 void btrfs_scrub_pause_super(struct btrfs_root *root)
2955 {
2956         down_write(&root->fs_info->scrub_super_lock);
2957 }
2958
2959 void btrfs_scrub_continue_super(struct btrfs_root *root)
2960 {
2961         up_write(&root->fs_info->scrub_super_lock);
2962 }
2963
2964 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2965 {
2966         mutex_lock(&fs_info->scrub_lock);
2967         if (!atomic_read(&fs_info->scrubs_running)) {
2968                 mutex_unlock(&fs_info->scrub_lock);
2969                 return -ENOTCONN;
2970         }
2971
2972         atomic_inc(&fs_info->scrub_cancel_req);
2973         while (atomic_read(&fs_info->scrubs_running)) {
2974                 mutex_unlock(&fs_info->scrub_lock);
2975                 wait_event(fs_info->scrub_pause_wait,
2976                            atomic_read(&fs_info->scrubs_running) == 0);
2977                 mutex_lock(&fs_info->scrub_lock);
2978         }
2979         atomic_dec(&fs_info->scrub_cancel_req);
2980         mutex_unlock(&fs_info->scrub_lock);
2981
2982         return 0;
2983 }
2984
2985 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
2986                            struct btrfs_device *dev)
2987 {
2988         struct scrub_ctx *sctx;
2989
2990         mutex_lock(&fs_info->scrub_lock);
2991         sctx = dev->scrub_device;
2992         if (!sctx) {
2993                 mutex_unlock(&fs_info->scrub_lock);
2994                 return -ENOTCONN;
2995         }
2996         atomic_inc(&sctx->cancel_req);
2997         while (dev->scrub_device) {
2998                 mutex_unlock(&fs_info->scrub_lock);
2999                 wait_event(fs_info->scrub_pause_wait,
3000                            dev->scrub_device == NULL);
3001                 mutex_lock(&fs_info->scrub_lock);
3002         }
3003         mutex_unlock(&fs_info->scrub_lock);
3004
3005         return 0;
3006 }
3007
3008 int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
3009 {
3010         struct btrfs_fs_info *fs_info = root->fs_info;
3011         struct btrfs_device *dev;
3012         int ret;
3013
3014         /*
3015          * we have to hold the device_list_mutex here so the device
3016          * does not go away in cancel_dev. FIXME: find a better solution
3017          */
3018         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3019         dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3020         if (!dev) {
3021                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3022                 return -ENODEV;
3023         }
3024         ret = btrfs_scrub_cancel_dev(fs_info, dev);
3025         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3026
3027         return ret;
3028 }
3029
3030 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3031                          struct btrfs_scrub_progress *progress)
3032 {
3033         struct btrfs_device *dev;
3034         struct scrub_ctx *sctx = NULL;
3035
3036         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3037         dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3038         if (dev)
3039                 sctx = dev->scrub_device;
3040         if (sctx)
3041                 memcpy(progress, &sctx->stat, sizeof(*progress));
3042         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3043
3044         return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3045 }
3046
3047 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3048                                u64 extent_logical, u64 extent_len,
3049                                u64 *extent_physical,
3050                                struct btrfs_device **extent_dev,
3051                                int *extent_mirror_num)
3052 {
3053         u64 mapped_length;
3054         struct btrfs_bio *bbio = NULL;
3055         int ret;
3056
3057         mapped_length = extent_len;
3058         ret = btrfs_map_block(fs_info, READ, extent_logical,
3059                               &mapped_length, &bbio, 0);
3060         if (ret || !bbio || mapped_length < extent_len ||
3061             !bbio->stripes[0].dev->bdev) {
3062                 kfree(bbio);
3063                 return;
3064         }
3065
3066         *extent_physical = bbio->stripes[0].physical;
3067         *extent_mirror_num = bbio->mirror_num;
3068         *extent_dev = bbio->stripes[0].dev;
3069         kfree(bbio);
3070 }
3071
3072 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3073                               struct scrub_wr_ctx *wr_ctx,
3074                               struct btrfs_fs_info *fs_info,
3075                               struct btrfs_device *dev,
3076                               int is_dev_replace)
3077 {
3078         WARN_ON(wr_ctx->wr_curr_bio != NULL);
3079
3080         mutex_init(&wr_ctx->wr_lock);
3081         wr_ctx->wr_curr_bio = NULL;
3082         if (!is_dev_replace)
3083                 return 0;
3084
3085         WARN_ON(!dev->bdev);
3086         wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3087                                          bio_get_nr_vecs(dev->bdev));
3088         wr_ctx->tgtdev = dev;
3089         atomic_set(&wr_ctx->flush_all_writes, 0);
3090         return 0;
3091 }
3092
3093 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3094 {
3095         mutex_lock(&wr_ctx->wr_lock);
3096         kfree(wr_ctx->wr_curr_bio);
3097         wr_ctx->wr_curr_bio = NULL;
3098         mutex_unlock(&wr_ctx->wr_lock);
3099 }
3100
3101 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3102                             int mirror_num, u64 physical_for_dev_replace)
3103 {
3104         struct scrub_copy_nocow_ctx *nocow_ctx;
3105         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3106
3107         nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3108         if (!nocow_ctx) {
3109                 spin_lock(&sctx->stat_lock);
3110                 sctx->stat.malloc_errors++;
3111                 spin_unlock(&sctx->stat_lock);
3112                 return -ENOMEM;
3113         }
3114
3115         scrub_pending_trans_workers_inc(sctx);
3116
3117         nocow_ctx->sctx = sctx;
3118         nocow_ctx->logical = logical;
3119         nocow_ctx->len = len;
3120         nocow_ctx->mirror_num = mirror_num;
3121         nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3122         nocow_ctx->work.func = copy_nocow_pages_worker;
3123         btrfs_queue_worker(&fs_info->scrub_nocow_workers,
3124                            &nocow_ctx->work);
3125
3126         return 0;
3127 }
3128
3129 static void copy_nocow_pages_worker(struct btrfs_work *work)
3130 {
3131         struct scrub_copy_nocow_ctx *nocow_ctx =
3132                 container_of(work, struct scrub_copy_nocow_ctx, work);
3133         struct scrub_ctx *sctx = nocow_ctx->sctx;
3134         u64 logical = nocow_ctx->logical;
3135         u64 len = nocow_ctx->len;
3136         int mirror_num = nocow_ctx->mirror_num;
3137         u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3138         int ret;
3139         struct btrfs_trans_handle *trans = NULL;
3140         struct btrfs_fs_info *fs_info;
3141         struct btrfs_path *path;
3142         struct btrfs_root *root;
3143         int not_written = 0;
3144
3145         fs_info = sctx->dev_root->fs_info;
3146         root = fs_info->extent_root;
3147
3148         path = btrfs_alloc_path();
3149         if (!path) {
3150                 spin_lock(&sctx->stat_lock);
3151                 sctx->stat.malloc_errors++;
3152                 spin_unlock(&sctx->stat_lock);
3153                 not_written = 1;
3154                 goto out;
3155         }
3156
3157         trans = btrfs_join_transaction(root);
3158         if (IS_ERR(trans)) {
3159                 not_written = 1;
3160                 goto out;
3161         }
3162
3163         ret = iterate_inodes_from_logical(logical, fs_info, path,
3164                                           copy_nocow_pages_for_inode,
3165                                           nocow_ctx);
3166         if (ret != 0 && ret != -ENOENT) {
3167                 pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %llu, ret %d\n",
3168                         (unsigned long long)logical,
3169                         (unsigned long long)physical_for_dev_replace,
3170                         (unsigned long long)len,
3171                         (unsigned long long)mirror_num, ret);
3172                 not_written = 1;
3173                 goto out;
3174         }
3175
3176 out:
3177         if (trans && !IS_ERR(trans))
3178                 btrfs_end_transaction(trans, root);
3179         if (not_written)
3180                 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3181                                             num_uncorrectable_read_errors);
3182
3183         btrfs_free_path(path);
3184         kfree(nocow_ctx);
3185
3186         scrub_pending_trans_workers_dec(sctx);
3187 }
3188
3189 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, void *ctx)
3190 {
3191         unsigned long index;
3192         struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3193         int ret = 0;
3194         struct btrfs_key key;
3195         struct inode *inode = NULL;
3196         struct btrfs_root *local_root;
3197         u64 physical_for_dev_replace;
3198         u64 len;
3199         struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3200         int srcu_index;
3201
3202         key.objectid = root;
3203         key.type = BTRFS_ROOT_ITEM_KEY;
3204         key.offset = (u64)-1;
3205
3206         srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3207
3208         local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3209         if (IS_ERR(local_root)) {
3210                 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3211                 return PTR_ERR(local_root);
3212         }
3213
3214         key.type = BTRFS_INODE_ITEM_KEY;
3215         key.objectid = inum;
3216         key.offset = 0;
3217         inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3218         srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3219         if (IS_ERR(inode))
3220                 return PTR_ERR(inode);
3221
3222         physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3223         len = nocow_ctx->len;
3224         while (len >= PAGE_CACHE_SIZE) {
3225                 struct page *page = NULL;
3226                 int ret_sub;
3227
3228                 index = offset >> PAGE_CACHE_SHIFT;
3229
3230                 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3231                 if (!page) {
3232                         pr_err("find_or_create_page() failed\n");
3233                         ret = -ENOMEM;
3234                         goto next_page;
3235                 }
3236
3237                 if (PageUptodate(page)) {
3238                         if (PageDirty(page))
3239                                 goto next_page;
3240                 } else {
3241                         ClearPageError(page);
3242                         ret_sub = extent_read_full_page(&BTRFS_I(inode)->
3243                                                          io_tree,
3244                                                         page, btrfs_get_extent,
3245                                                         nocow_ctx->mirror_num);
3246                         if (ret_sub) {
3247                                 ret = ret_sub;
3248                                 goto next_page;
3249                         }
3250                         wait_on_page_locked(page);
3251                         if (!PageUptodate(page)) {
3252                                 ret = -EIO;
3253                                 goto next_page;
3254                         }
3255                 }
3256                 ret_sub = write_page_nocow(nocow_ctx->sctx,
3257                                            physical_for_dev_replace, page);
3258                 if (ret_sub) {
3259                         ret = ret_sub;
3260                         goto next_page;
3261                 }
3262
3263 next_page:
3264                 if (page) {
3265                         unlock_page(page);
3266                         put_page(page);
3267                 }
3268                 offset += PAGE_CACHE_SIZE;
3269                 physical_for_dev_replace += PAGE_CACHE_SIZE;
3270                 len -= PAGE_CACHE_SIZE;
3271         }
3272
3273         if (inode)
3274                 iput(inode);
3275         return ret;
3276 }
3277
3278 static int write_page_nocow(struct scrub_ctx *sctx,
3279                             u64 physical_for_dev_replace, struct page *page)
3280 {
3281         struct bio *bio;
3282         struct btrfs_device *dev;
3283         int ret;
3284         DECLARE_COMPLETION_ONSTACK(compl);
3285
3286         dev = sctx->wr_ctx.tgtdev;
3287         if (!dev)
3288                 return -EIO;
3289         if (!dev->bdev) {
3290                 printk_ratelimited(KERN_WARNING
3291                         "btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3292                 return -EIO;
3293         }
3294         bio = bio_alloc(GFP_NOFS, 1);
3295         if (!bio) {
3296                 spin_lock(&sctx->stat_lock);
3297                 sctx->stat.malloc_errors++;
3298                 spin_unlock(&sctx->stat_lock);
3299                 return -ENOMEM;
3300         }
3301         bio->bi_private = &compl;
3302         bio->bi_end_io = scrub_complete_bio_end_io;
3303         bio->bi_size = 0;
3304         bio->bi_sector = physical_for_dev_replace >> 9;
3305         bio->bi_bdev = dev->bdev;
3306         ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3307         if (ret != PAGE_CACHE_SIZE) {
3308 leave_with_eio:
3309                 bio_put(bio);
3310                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3311                 return -EIO;
3312         }
3313         btrfsic_submit_bio(WRITE_SYNC, bio);
3314         wait_for_completion(&compl);
3315
3316         if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
3317                 goto leave_with_eio;
3318
3319         bio_put(bio);
3320         return 0;
3321 }