Merge tag 'phy-for-6.5_v2' of git://git.kernel.org/pub/scm/linux/kernel/git/phy/linux-phy
[platform/kernel/linux-starfive.git] / fs / btrfs / scrub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "raid56.h"
21 #include "block-group.h"
22 #include "zoned.h"
23 #include "fs.h"
24 #include "accessors.h"
25 #include "file-item.h"
26 #include "scrub.h"
27
28 /*
29  * This is only the first step towards a full-features scrub. It reads all
30  * extent and super block and verifies the checksums. In case a bad checksum
31  * is found or the extent cannot be read, good data will be written back if
32  * any can be found.
33  *
34  * Future enhancements:
35  *  - In case an unrepairable extent is encountered, track which files are
36  *    affected and report them
37  *  - track and record media errors, throw out bad devices
38  *  - add a mode to also read unallocated space
39  */
40
41 struct scrub_ctx;
42
43 /*
44  * The following value only influences the performance.
45  *
46  * This determines the batch size for stripe submitted in one go.
47  */
48 #define SCRUB_STRIPES_PER_SCTX  8       /* That would be 8 64K stripe per-device. */
49
50 /*
51  * The following value times PAGE_SIZE needs to be large enough to match the
52  * largest node/leaf/sector size that shall be supported.
53  */
54 #define SCRUB_MAX_SECTORS_PER_BLOCK     (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
55
56 /* Represent one sector and its needed info to verify the content. */
57 struct scrub_sector_verification {
58         bool is_metadata;
59
60         union {
61                 /*
62                  * Csum pointer for data csum verification.  Should point to a
63                  * sector csum inside scrub_stripe::csums.
64                  *
65                  * NULL if this data sector has no csum.
66                  */
67                 u8 *csum;
68
69                 /*
70                  * Extra info for metadata verification.  All sectors inside a
71                  * tree block share the same generation.
72                  */
73                 u64 generation;
74         };
75 };
76
77 enum scrub_stripe_flags {
78         /* Set when @mirror_num, @dev, @physical and @logical are set. */
79         SCRUB_STRIPE_FLAG_INITIALIZED,
80
81         /* Set when the read-repair is finished. */
82         SCRUB_STRIPE_FLAG_REPAIR_DONE,
83
84         /*
85          * Set for data stripes if it's triggered from P/Q stripe.
86          * During such scrub, we should not report errors in data stripes, nor
87          * update the accounting.
88          */
89         SCRUB_STRIPE_FLAG_NO_REPORT,
90 };
91
92 #define SCRUB_STRIPE_PAGES              (BTRFS_STRIPE_LEN / PAGE_SIZE)
93
94 /*
95  * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
96  */
97 struct scrub_stripe {
98         struct scrub_ctx *sctx;
99         struct btrfs_block_group *bg;
100
101         struct page *pages[SCRUB_STRIPE_PAGES];
102         struct scrub_sector_verification *sectors;
103
104         struct btrfs_device *dev;
105         u64 logical;
106         u64 physical;
107
108         u16 mirror_num;
109
110         /* Should be BTRFS_STRIPE_LEN / sectorsize. */
111         u16 nr_sectors;
112
113         /*
114          * How many data/meta extents are in this stripe.  Only for scrub status
115          * reporting purposes.
116          */
117         u16 nr_data_extents;
118         u16 nr_meta_extents;
119
120         atomic_t pending_io;
121         wait_queue_head_t io_wait;
122         wait_queue_head_t repair_wait;
123
124         /*
125          * Indicate the states of the stripe.  Bits are defined in
126          * scrub_stripe_flags enum.
127          */
128         unsigned long state;
129
130         /* Indicate which sectors are covered by extent items. */
131         unsigned long extent_sector_bitmap;
132
133         /*
134          * The errors hit during the initial read of the stripe.
135          *
136          * Would be utilized for error reporting and repair.
137          *
138          * The remaining init_nr_* records the number of errors hit, only used
139          * by error reporting.
140          */
141         unsigned long init_error_bitmap;
142         unsigned int init_nr_io_errors;
143         unsigned int init_nr_csum_errors;
144         unsigned int init_nr_meta_errors;
145
146         /*
147          * The following error bitmaps are all for the current status.
148          * Every time we submit a new read, these bitmaps may be updated.
149          *
150          * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
151          *
152          * IO and csum errors can happen for both metadata and data.
153          */
154         unsigned long error_bitmap;
155         unsigned long io_error_bitmap;
156         unsigned long csum_error_bitmap;
157         unsigned long meta_error_bitmap;
158
159         /* For writeback (repair or replace) error reporting. */
160         unsigned long write_error_bitmap;
161
162         /* Writeback can be concurrent, thus we need to protect the bitmap. */
163         spinlock_t write_error_lock;
164
165         /*
166          * Checksum for the whole stripe if this stripe is inside a data block
167          * group.
168          */
169         u8 *csums;
170
171         struct work_struct work;
172 };
173
174 struct scrub_ctx {
175         struct scrub_stripe     stripes[SCRUB_STRIPES_PER_SCTX];
176         struct scrub_stripe     *raid56_data_stripes;
177         struct btrfs_fs_info    *fs_info;
178         int                     first_free;
179         int                     cur_stripe;
180         atomic_t                cancel_req;
181         int                     readonly;
182         int                     sectors_per_bio;
183
184         /* State of IO submission throttling affecting the associated device */
185         ktime_t                 throttle_deadline;
186         u64                     throttle_sent;
187
188         int                     is_dev_replace;
189         u64                     write_pointer;
190
191         struct mutex            wr_lock;
192         struct btrfs_device     *wr_tgtdev;
193
194         /*
195          * statistics
196          */
197         struct btrfs_scrub_progress stat;
198         spinlock_t              stat_lock;
199
200         /*
201          * Use a ref counter to avoid use-after-free issues. Scrub workers
202          * decrement bios_in_flight and workers_pending and then do a wakeup
203          * on the list_wait wait queue. We must ensure the main scrub task
204          * doesn't free the scrub context before or while the workers are
205          * doing the wakeup() call.
206          */
207         refcount_t              refs;
208 };
209
210 struct scrub_warning {
211         struct btrfs_path       *path;
212         u64                     extent_item_size;
213         const char              *errstr;
214         u64                     physical;
215         u64                     logical;
216         struct btrfs_device     *dev;
217 };
218
219 static void release_scrub_stripe(struct scrub_stripe *stripe)
220 {
221         if (!stripe)
222                 return;
223
224         for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
225                 if (stripe->pages[i])
226                         __free_page(stripe->pages[i]);
227                 stripe->pages[i] = NULL;
228         }
229         kfree(stripe->sectors);
230         kfree(stripe->csums);
231         stripe->sectors = NULL;
232         stripe->csums = NULL;
233         stripe->sctx = NULL;
234         stripe->state = 0;
235 }
236
237 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
238                              struct scrub_stripe *stripe)
239 {
240         int ret;
241
242         memset(stripe, 0, sizeof(*stripe));
243
244         stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
245         stripe->state = 0;
246
247         init_waitqueue_head(&stripe->io_wait);
248         init_waitqueue_head(&stripe->repair_wait);
249         atomic_set(&stripe->pending_io, 0);
250         spin_lock_init(&stripe->write_error_lock);
251
252         ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages);
253         if (ret < 0)
254                 goto error;
255
256         stripe->sectors = kcalloc(stripe->nr_sectors,
257                                   sizeof(struct scrub_sector_verification),
258                                   GFP_KERNEL);
259         if (!stripe->sectors)
260                 goto error;
261
262         stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
263                                 fs_info->csum_size, GFP_KERNEL);
264         if (!stripe->csums)
265                 goto error;
266         return 0;
267 error:
268         release_scrub_stripe(stripe);
269         return -ENOMEM;
270 }
271
272 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
273 {
274         wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
275 }
276
277 static void scrub_put_ctx(struct scrub_ctx *sctx);
278
279 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
280 {
281         while (atomic_read(&fs_info->scrub_pause_req)) {
282                 mutex_unlock(&fs_info->scrub_lock);
283                 wait_event(fs_info->scrub_pause_wait,
284                    atomic_read(&fs_info->scrub_pause_req) == 0);
285                 mutex_lock(&fs_info->scrub_lock);
286         }
287 }
288
289 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
290 {
291         atomic_inc(&fs_info->scrubs_paused);
292         wake_up(&fs_info->scrub_pause_wait);
293 }
294
295 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
296 {
297         mutex_lock(&fs_info->scrub_lock);
298         __scrub_blocked_if_needed(fs_info);
299         atomic_dec(&fs_info->scrubs_paused);
300         mutex_unlock(&fs_info->scrub_lock);
301
302         wake_up(&fs_info->scrub_pause_wait);
303 }
304
305 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
306 {
307         scrub_pause_on(fs_info);
308         scrub_pause_off(fs_info);
309 }
310
311 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
312 {
313         int i;
314
315         if (!sctx)
316                 return;
317
318         for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++)
319                 release_scrub_stripe(&sctx->stripes[i]);
320
321         kfree(sctx);
322 }
323
324 static void scrub_put_ctx(struct scrub_ctx *sctx)
325 {
326         if (refcount_dec_and_test(&sctx->refs))
327                 scrub_free_ctx(sctx);
328 }
329
330 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
331                 struct btrfs_fs_info *fs_info, int is_dev_replace)
332 {
333         struct scrub_ctx *sctx;
334         int             i;
335
336         sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
337         if (!sctx)
338                 goto nomem;
339         refcount_set(&sctx->refs, 1);
340         sctx->is_dev_replace = is_dev_replace;
341         sctx->fs_info = fs_info;
342         for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++) {
343                 int ret;
344
345                 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
346                 if (ret < 0)
347                         goto nomem;
348                 sctx->stripes[i].sctx = sctx;
349         }
350         sctx->first_free = 0;
351         atomic_set(&sctx->cancel_req, 0);
352
353         spin_lock_init(&sctx->stat_lock);
354         sctx->throttle_deadline = 0;
355
356         mutex_init(&sctx->wr_lock);
357         if (is_dev_replace) {
358                 WARN_ON(!fs_info->dev_replace.tgtdev);
359                 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
360         }
361
362         return sctx;
363
364 nomem:
365         scrub_free_ctx(sctx);
366         return ERR_PTR(-ENOMEM);
367 }
368
369 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
370                                      u64 root, void *warn_ctx)
371 {
372         u32 nlink;
373         int ret;
374         int i;
375         unsigned nofs_flag;
376         struct extent_buffer *eb;
377         struct btrfs_inode_item *inode_item;
378         struct scrub_warning *swarn = warn_ctx;
379         struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
380         struct inode_fs_paths *ipath = NULL;
381         struct btrfs_root *local_root;
382         struct btrfs_key key;
383
384         local_root = btrfs_get_fs_root(fs_info, root, true);
385         if (IS_ERR(local_root)) {
386                 ret = PTR_ERR(local_root);
387                 goto err;
388         }
389
390         /*
391          * this makes the path point to (inum INODE_ITEM ioff)
392          */
393         key.objectid = inum;
394         key.type = BTRFS_INODE_ITEM_KEY;
395         key.offset = 0;
396
397         ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
398         if (ret) {
399                 btrfs_put_root(local_root);
400                 btrfs_release_path(swarn->path);
401                 goto err;
402         }
403
404         eb = swarn->path->nodes[0];
405         inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
406                                         struct btrfs_inode_item);
407         nlink = btrfs_inode_nlink(eb, inode_item);
408         btrfs_release_path(swarn->path);
409
410         /*
411          * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
412          * uses GFP_NOFS in this context, so we keep it consistent but it does
413          * not seem to be strictly necessary.
414          */
415         nofs_flag = memalloc_nofs_save();
416         ipath = init_ipath(4096, local_root, swarn->path);
417         memalloc_nofs_restore(nofs_flag);
418         if (IS_ERR(ipath)) {
419                 btrfs_put_root(local_root);
420                 ret = PTR_ERR(ipath);
421                 ipath = NULL;
422                 goto err;
423         }
424         ret = paths_from_inode(inum, ipath);
425
426         if (ret < 0)
427                 goto err;
428
429         /*
430          * we deliberately ignore the bit ipath might have been too small to
431          * hold all of the paths here
432          */
433         for (i = 0; i < ipath->fspath->elem_cnt; ++i)
434                 btrfs_warn_in_rcu(fs_info,
435 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
436                                   swarn->errstr, swarn->logical,
437                                   btrfs_dev_name(swarn->dev),
438                                   swarn->physical,
439                                   root, inum, offset,
440                                   fs_info->sectorsize, nlink,
441                                   (char *)(unsigned long)ipath->fspath->val[i]);
442
443         btrfs_put_root(local_root);
444         free_ipath(ipath);
445         return 0;
446
447 err:
448         btrfs_warn_in_rcu(fs_info,
449                           "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
450                           swarn->errstr, swarn->logical,
451                           btrfs_dev_name(swarn->dev),
452                           swarn->physical,
453                           root, inum, offset, ret);
454
455         free_ipath(ipath);
456         return 0;
457 }
458
459 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
460                                        bool is_super, u64 logical, u64 physical)
461 {
462         struct btrfs_fs_info *fs_info = dev->fs_info;
463         struct btrfs_path *path;
464         struct btrfs_key found_key;
465         struct extent_buffer *eb;
466         struct btrfs_extent_item *ei;
467         struct scrub_warning swarn;
468         u64 flags = 0;
469         u32 item_size;
470         int ret;
471
472         /* Super block error, no need to search extent tree. */
473         if (is_super) {
474                 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
475                                   errstr, btrfs_dev_name(dev), physical);
476                 return;
477         }
478         path = btrfs_alloc_path();
479         if (!path)
480                 return;
481
482         swarn.physical = physical;
483         swarn.logical = logical;
484         swarn.errstr = errstr;
485         swarn.dev = NULL;
486
487         ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
488                                   &flags);
489         if (ret < 0)
490                 goto out;
491
492         swarn.extent_item_size = found_key.offset;
493
494         eb = path->nodes[0];
495         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
496         item_size = btrfs_item_size(eb, path->slots[0]);
497
498         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
499                 unsigned long ptr = 0;
500                 u8 ref_level;
501                 u64 ref_root;
502
503                 while (true) {
504                         ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
505                                                       item_size, &ref_root,
506                                                       &ref_level);
507                         if (ret < 0) {
508                                 btrfs_warn(fs_info,
509                                 "failed to resolve tree backref for logical %llu: %d",
510                                                   swarn.logical, ret);
511                                 break;
512                         }
513                         if (ret > 0)
514                                 break;
515                         btrfs_warn_in_rcu(fs_info,
516 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
517                                 errstr, swarn.logical, btrfs_dev_name(dev),
518                                 swarn.physical, (ref_level ? "node" : "leaf"),
519                                 ref_level, ref_root);
520                 }
521                 btrfs_release_path(path);
522         } else {
523                 struct btrfs_backref_walk_ctx ctx = { 0 };
524
525                 btrfs_release_path(path);
526
527                 ctx.bytenr = found_key.objectid;
528                 ctx.extent_item_pos = swarn.logical - found_key.objectid;
529                 ctx.fs_info = fs_info;
530
531                 swarn.path = path;
532                 swarn.dev = dev;
533
534                 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
535         }
536
537 out:
538         btrfs_free_path(path);
539 }
540
541 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
542 {
543         int ret = 0;
544         u64 length;
545
546         if (!btrfs_is_zoned(sctx->fs_info))
547                 return 0;
548
549         if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
550                 return 0;
551
552         if (sctx->write_pointer < physical) {
553                 length = physical - sctx->write_pointer;
554
555                 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
556                                                 sctx->write_pointer, length);
557                 if (!ret)
558                         sctx->write_pointer = physical;
559         }
560         return ret;
561 }
562
563 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
564 {
565         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
566         int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
567
568         return stripe->pages[page_index];
569 }
570
571 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
572                                                  int sector_nr)
573 {
574         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
575
576         return offset_in_page(sector_nr << fs_info->sectorsize_bits);
577 }
578
579 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
580 {
581         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
582         const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
583         const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
584         const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
585         const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
586         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
587         u8 on_disk_csum[BTRFS_CSUM_SIZE];
588         u8 calculated_csum[BTRFS_CSUM_SIZE];
589         struct btrfs_header *header;
590
591         /*
592          * Here we don't have a good way to attach the pages (and subpages)
593          * to a dummy extent buffer, thus we have to directly grab the members
594          * from pages.
595          */
596         header = (struct btrfs_header *)(page_address(first_page) + first_off);
597         memcpy(on_disk_csum, header->csum, fs_info->csum_size);
598
599         if (logical != btrfs_stack_header_bytenr(header)) {
600                 bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
601                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
602                 btrfs_warn_rl(fs_info,
603                 "tree block %llu mirror %u has bad bytenr, has %llu want %llu",
604                               logical, stripe->mirror_num,
605                               btrfs_stack_header_bytenr(header), logical);
606                 return;
607         }
608         if (memcmp(header->fsid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE) != 0) {
609                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
610                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
611                 btrfs_warn_rl(fs_info,
612                 "tree block %llu mirror %u has bad fsid, has %pU want %pU",
613                               logical, stripe->mirror_num,
614                               header->fsid, fs_info->fs_devices->fsid);
615                 return;
616         }
617         if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
618                    BTRFS_UUID_SIZE) != 0) {
619                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
620                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
621                 btrfs_warn_rl(fs_info,
622                 "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
623                               logical, stripe->mirror_num,
624                               header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
625                 return;
626         }
627
628         /* Now check tree block csum. */
629         shash->tfm = fs_info->csum_shash;
630         crypto_shash_init(shash);
631         crypto_shash_update(shash, page_address(first_page) + first_off +
632                             BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
633
634         for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
635                 struct page *page = scrub_stripe_get_page(stripe, i);
636                 unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
637
638                 crypto_shash_update(shash, page_address(page) + page_off,
639                                     fs_info->sectorsize);
640         }
641
642         crypto_shash_final(shash, calculated_csum);
643         if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
644                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
645                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
646                 btrfs_warn_rl(fs_info,
647                 "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
648                               logical, stripe->mirror_num,
649                               CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
650                               CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
651                 return;
652         }
653         if (stripe->sectors[sector_nr].generation !=
654             btrfs_stack_header_generation(header)) {
655                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
656                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
657                 btrfs_warn_rl(fs_info,
658                 "tree block %llu mirror %u has bad generation, has %llu want %llu",
659                               logical, stripe->mirror_num,
660                               btrfs_stack_header_generation(header),
661                               stripe->sectors[sector_nr].generation);
662                 return;
663         }
664         bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
665         bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
666         bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
667 }
668
669 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
670 {
671         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
672         struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
673         const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
674         struct page *page = scrub_stripe_get_page(stripe, sector_nr);
675         unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
676         u8 csum_buf[BTRFS_CSUM_SIZE];
677         int ret;
678
679         ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
680
681         /* Sector not utilized, skip it. */
682         if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
683                 return;
684
685         /* IO error, no need to check. */
686         if (test_bit(sector_nr, &stripe->io_error_bitmap))
687                 return;
688
689         /* Metadata, verify the full tree block. */
690         if (sector->is_metadata) {
691                 /*
692                  * Check if the tree block crosses the stripe boudary.  If
693                  * crossed the boundary, we cannot verify it but only give a
694                  * warning.
695                  *
696                  * This can only happen on a very old filesystem where chunks
697                  * are not ensured to be stripe aligned.
698                  */
699                 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
700                         btrfs_warn_rl(fs_info,
701                         "tree block at %llu crosses stripe boundary %llu",
702                                       stripe->logical +
703                                       (sector_nr << fs_info->sectorsize_bits),
704                                       stripe->logical);
705                         return;
706                 }
707                 scrub_verify_one_metadata(stripe, sector_nr);
708                 return;
709         }
710
711         /*
712          * Data is easier, we just verify the data csum (if we have it).  For
713          * cases without csum, we have no other choice but to trust it.
714          */
715         if (!sector->csum) {
716                 clear_bit(sector_nr, &stripe->error_bitmap);
717                 return;
718         }
719
720         ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
721         if (ret < 0) {
722                 set_bit(sector_nr, &stripe->csum_error_bitmap);
723                 set_bit(sector_nr, &stripe->error_bitmap);
724         } else {
725                 clear_bit(sector_nr, &stripe->csum_error_bitmap);
726                 clear_bit(sector_nr, &stripe->error_bitmap);
727         }
728 }
729
730 /* Verify specified sectors of a stripe. */
731 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
732 {
733         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
734         const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
735         int sector_nr;
736
737         for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
738                 scrub_verify_one_sector(stripe, sector_nr);
739                 if (stripe->sectors[sector_nr].is_metadata)
740                         sector_nr += sectors_per_tree - 1;
741         }
742 }
743
744 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
745 {
746         int i;
747
748         for (i = 0; i < stripe->nr_sectors; i++) {
749                 if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
750                     scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
751                         break;
752         }
753         ASSERT(i < stripe->nr_sectors);
754         return i;
755 }
756
757 /*
758  * Repair read is different to the regular read:
759  *
760  * - Only reads the failed sectors
761  * - May have extra blocksize limits
762  */
763 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
764 {
765         struct scrub_stripe *stripe = bbio->private;
766         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
767         struct bio_vec *bvec;
768         int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
769         u32 bio_size = 0;
770         int i;
771
772         ASSERT(sector_nr < stripe->nr_sectors);
773
774         bio_for_each_bvec_all(bvec, &bbio->bio, i)
775                 bio_size += bvec->bv_len;
776
777         if (bbio->bio.bi_status) {
778                 bitmap_set(&stripe->io_error_bitmap, sector_nr,
779                            bio_size >> fs_info->sectorsize_bits);
780                 bitmap_set(&stripe->error_bitmap, sector_nr,
781                            bio_size >> fs_info->sectorsize_bits);
782         } else {
783                 bitmap_clear(&stripe->io_error_bitmap, sector_nr,
784                              bio_size >> fs_info->sectorsize_bits);
785         }
786         bio_put(&bbio->bio);
787         if (atomic_dec_and_test(&stripe->pending_io))
788                 wake_up(&stripe->io_wait);
789 }
790
791 static int calc_next_mirror(int mirror, int num_copies)
792 {
793         ASSERT(mirror <= num_copies);
794         return (mirror + 1 > num_copies) ? 1 : mirror + 1;
795 }
796
797 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
798                                             int mirror, int blocksize, bool wait)
799 {
800         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
801         struct btrfs_bio *bbio = NULL;
802         const unsigned long old_error_bitmap = stripe->error_bitmap;
803         int i;
804
805         ASSERT(stripe->mirror_num >= 1);
806         ASSERT(atomic_read(&stripe->pending_io) == 0);
807
808         for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
809                 struct page *page;
810                 int pgoff;
811                 int ret;
812
813                 page = scrub_stripe_get_page(stripe, i);
814                 pgoff = scrub_stripe_get_page_offset(stripe, i);
815
816                 /* The current sector cannot be merged, submit the bio. */
817                 if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
818                              bbio->bio.bi_iter.bi_size >= blocksize)) {
819                         ASSERT(bbio->bio.bi_iter.bi_size);
820                         atomic_inc(&stripe->pending_io);
821                         btrfs_submit_bio(bbio, mirror);
822                         if (wait)
823                                 wait_scrub_stripe_io(stripe);
824                         bbio = NULL;
825                 }
826
827                 if (!bbio) {
828                         bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
829                                 fs_info, scrub_repair_read_endio, stripe);
830                         bbio->bio.bi_iter.bi_sector = (stripe->logical +
831                                 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
832                 }
833
834                 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
835                 ASSERT(ret == fs_info->sectorsize);
836         }
837         if (bbio) {
838                 ASSERT(bbio->bio.bi_iter.bi_size);
839                 atomic_inc(&stripe->pending_io);
840                 btrfs_submit_bio(bbio, mirror);
841                 if (wait)
842                         wait_scrub_stripe_io(stripe);
843         }
844 }
845
846 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
847                                        struct scrub_stripe *stripe)
848 {
849         static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
850                                       DEFAULT_RATELIMIT_BURST);
851         struct btrfs_fs_info *fs_info = sctx->fs_info;
852         struct btrfs_device *dev = NULL;
853         u64 physical = 0;
854         int nr_data_sectors = 0;
855         int nr_meta_sectors = 0;
856         int nr_nodatacsum_sectors = 0;
857         int nr_repaired_sectors = 0;
858         int sector_nr;
859
860         if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
861                 return;
862
863         /*
864          * Init needed infos for error reporting.
865          *
866          * Although our scrub_stripe infrastucture is mostly based on btrfs_submit_bio()
867          * thus no need for dev/physical, error reporting still needs dev and physical.
868          */
869         if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
870                 u64 mapped_len = fs_info->sectorsize;
871                 struct btrfs_io_context *bioc = NULL;
872                 int stripe_index = stripe->mirror_num - 1;
873                 int ret;
874
875                 /* For scrub, our mirror_num should always start at 1. */
876                 ASSERT(stripe->mirror_num >= 1);
877                 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
878                                       stripe->logical, &mapped_len, &bioc,
879                                       NULL, NULL, 1);
880                 /*
881                  * If we failed, dev will be NULL, and later detailed reports
882                  * will just be skipped.
883                  */
884                 if (ret < 0)
885                         goto skip;
886                 physical = bioc->stripes[stripe_index].physical;
887                 dev = bioc->stripes[stripe_index].dev;
888                 btrfs_put_bioc(bioc);
889         }
890
891 skip:
892         for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
893                 bool repaired = false;
894
895                 if (stripe->sectors[sector_nr].is_metadata) {
896                         nr_meta_sectors++;
897                 } else {
898                         nr_data_sectors++;
899                         if (!stripe->sectors[sector_nr].csum)
900                                 nr_nodatacsum_sectors++;
901                 }
902
903                 if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
904                     !test_bit(sector_nr, &stripe->error_bitmap)) {
905                         nr_repaired_sectors++;
906                         repaired = true;
907                 }
908
909                 /* Good sector from the beginning, nothing need to be done. */
910                 if (!test_bit(sector_nr, &stripe->init_error_bitmap))
911                         continue;
912
913                 /*
914                  * Report error for the corrupted sectors.  If repaired, just
915                  * output the message of repaired message.
916                  */
917                 if (repaired) {
918                         if (dev) {
919                                 btrfs_err_rl_in_rcu(fs_info,
920                         "fixed up error at logical %llu on dev %s physical %llu",
921                                             stripe->logical, btrfs_dev_name(dev),
922                                             physical);
923                         } else {
924                                 btrfs_err_rl_in_rcu(fs_info,
925                         "fixed up error at logical %llu on mirror %u",
926                                             stripe->logical, stripe->mirror_num);
927                         }
928                         continue;
929                 }
930
931                 /* The remaining are all for unrepaired. */
932                 if (dev) {
933                         btrfs_err_rl_in_rcu(fs_info,
934         "unable to fixup (regular) error at logical %llu on dev %s physical %llu",
935                                             stripe->logical, btrfs_dev_name(dev),
936                                             physical);
937                 } else {
938                         btrfs_err_rl_in_rcu(fs_info,
939         "unable to fixup (regular) error at logical %llu on mirror %u",
940                                             stripe->logical, stripe->mirror_num);
941                 }
942
943                 if (test_bit(sector_nr, &stripe->io_error_bitmap))
944                         if (__ratelimit(&rs) && dev)
945                                 scrub_print_common_warning("i/o error", dev, false,
946                                                      stripe->logical, physical);
947                 if (test_bit(sector_nr, &stripe->csum_error_bitmap))
948                         if (__ratelimit(&rs) && dev)
949                                 scrub_print_common_warning("checksum error", dev, false,
950                                                      stripe->logical, physical);
951                 if (test_bit(sector_nr, &stripe->meta_error_bitmap))
952                         if (__ratelimit(&rs) && dev)
953                                 scrub_print_common_warning("header error", dev, false,
954                                                      stripe->logical, physical);
955         }
956
957         spin_lock(&sctx->stat_lock);
958         sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
959         sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
960         sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
961         sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
962         sctx->stat.no_csum += nr_nodatacsum_sectors;
963         sctx->stat.read_errors += stripe->init_nr_io_errors;
964         sctx->stat.csum_errors += stripe->init_nr_csum_errors;
965         sctx->stat.verify_errors += stripe->init_nr_meta_errors;
966         sctx->stat.uncorrectable_errors +=
967                 bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
968         sctx->stat.corrected_errors += nr_repaired_sectors;
969         spin_unlock(&sctx->stat_lock);
970 }
971
972 /*
973  * The main entrance for all read related scrub work, including:
974  *
975  * - Wait for the initial read to finish
976  * - Verify and locate any bad sectors
977  * - Go through the remaining mirrors and try to read as large blocksize as
978  *   possible
979  * - Go through all mirrors (including the failed mirror) sector-by-sector
980  *
981  * Writeback does not happen here, it needs extra synchronization.
982  */
983 static void scrub_stripe_read_repair_worker(struct work_struct *work)
984 {
985         struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
986         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
987         int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
988                                           stripe->bg->length);
989         int mirror;
990         int i;
991
992         ASSERT(stripe->mirror_num > 0);
993
994         wait_scrub_stripe_io(stripe);
995         scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
996         /* Save the initial failed bitmap for later repair and report usage. */
997         stripe->init_error_bitmap = stripe->error_bitmap;
998         stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
999                                                   stripe->nr_sectors);
1000         stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1001                                                     stripe->nr_sectors);
1002         stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1003                                                     stripe->nr_sectors);
1004
1005         if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1006                 goto out;
1007
1008         /*
1009          * Try all remaining mirrors.
1010          *
1011          * Here we still try to read as large block as possible, as this is
1012          * faster and we have extra safety nets to rely on.
1013          */
1014         for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1015              mirror != stripe->mirror_num;
1016              mirror = calc_next_mirror(mirror, num_copies)) {
1017                 const unsigned long old_error_bitmap = stripe->error_bitmap;
1018
1019                 scrub_stripe_submit_repair_read(stripe, mirror,
1020                                                 BTRFS_STRIPE_LEN, false);
1021                 wait_scrub_stripe_io(stripe);
1022                 scrub_verify_one_stripe(stripe, old_error_bitmap);
1023                 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1024                         goto out;
1025         }
1026
1027         /*
1028          * Last safety net, try re-checking all mirrors, including the failed
1029          * one, sector-by-sector.
1030          *
1031          * As if one sector failed the drive's internal csum, the whole read
1032          * containing the offending sector would be marked as error.
1033          * Thus here we do sector-by-sector read.
1034          *
1035          * This can be slow, thus we only try it as the last resort.
1036          */
1037
1038         for (i = 0, mirror = stripe->mirror_num;
1039              i < num_copies;
1040              i++, mirror = calc_next_mirror(mirror, num_copies)) {
1041                 const unsigned long old_error_bitmap = stripe->error_bitmap;
1042
1043                 scrub_stripe_submit_repair_read(stripe, mirror,
1044                                                 fs_info->sectorsize, true);
1045                 wait_scrub_stripe_io(stripe);
1046                 scrub_verify_one_stripe(stripe, old_error_bitmap);
1047                 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1048                         goto out;
1049         }
1050 out:
1051         scrub_stripe_report_errors(stripe->sctx, stripe);
1052         set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1053         wake_up(&stripe->repair_wait);
1054 }
1055
1056 static void scrub_read_endio(struct btrfs_bio *bbio)
1057 {
1058         struct scrub_stripe *stripe = bbio->private;
1059
1060         if (bbio->bio.bi_status) {
1061                 bitmap_set(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
1062                 bitmap_set(&stripe->error_bitmap, 0, stripe->nr_sectors);
1063         } else {
1064                 bitmap_clear(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
1065         }
1066         bio_put(&bbio->bio);
1067         if (atomic_dec_and_test(&stripe->pending_io)) {
1068                 wake_up(&stripe->io_wait);
1069                 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1070                 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1071         }
1072 }
1073
1074 static void scrub_write_endio(struct btrfs_bio *bbio)
1075 {
1076         struct scrub_stripe *stripe = bbio->private;
1077         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1078         struct bio_vec *bvec;
1079         int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1080         u32 bio_size = 0;
1081         int i;
1082
1083         bio_for_each_bvec_all(bvec, &bbio->bio, i)
1084                 bio_size += bvec->bv_len;
1085
1086         if (bbio->bio.bi_status) {
1087                 unsigned long flags;
1088
1089                 spin_lock_irqsave(&stripe->write_error_lock, flags);
1090                 bitmap_set(&stripe->write_error_bitmap, sector_nr,
1091                            bio_size >> fs_info->sectorsize_bits);
1092                 spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1093         }
1094         bio_put(&bbio->bio);
1095
1096         if (atomic_dec_and_test(&stripe->pending_io))
1097                 wake_up(&stripe->io_wait);
1098 }
1099
1100 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1101                                    struct scrub_stripe *stripe,
1102                                    struct btrfs_bio *bbio, bool dev_replace)
1103 {
1104         struct btrfs_fs_info *fs_info = sctx->fs_info;
1105         u32 bio_len = bbio->bio.bi_iter.bi_size;
1106         u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1107                       stripe->logical;
1108
1109         fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1110         atomic_inc(&stripe->pending_io);
1111         btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1112         if (!btrfs_is_zoned(fs_info))
1113                 return;
1114         /*
1115          * For zoned writeback, queue depth must be 1, thus we must wait for
1116          * the write to finish before the next write.
1117          */
1118         wait_scrub_stripe_io(stripe);
1119
1120         /*
1121          * And also need to update the write pointer if write finished
1122          * successfully.
1123          */
1124         if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1125                       &stripe->write_error_bitmap))
1126                 sctx->write_pointer += bio_len;
1127 }
1128
1129 /*
1130  * Submit the write bio(s) for the sectors specified by @write_bitmap.
1131  *
1132  * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1133  *
1134  * - Only needs logical bytenr and mirror_num
1135  *   Just like the scrub read path
1136  *
1137  * - Would only result in writes to the specified mirror
1138  *   Unlike the regular writeback path, which would write back to all stripes
1139  *
1140  * - Handle dev-replace and read-repair writeback differently
1141  */
1142 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1143                                 unsigned long write_bitmap, bool dev_replace)
1144 {
1145         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1146         struct btrfs_bio *bbio = NULL;
1147         int sector_nr;
1148
1149         for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1150                 struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1151                 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1152                 int ret;
1153
1154                 /* We should only writeback sectors covered by an extent. */
1155                 ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1156
1157                 /* Cannot merge with previous sector, submit the current one. */
1158                 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1159                         scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1160                         bbio = NULL;
1161                 }
1162                 if (!bbio) {
1163                         bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1164                                                fs_info, scrub_write_endio, stripe);
1165                         bbio->bio.bi_iter.bi_sector = (stripe->logical +
1166                                 (sector_nr << fs_info->sectorsize_bits)) >>
1167                                 SECTOR_SHIFT;
1168                 }
1169                 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1170                 ASSERT(ret == fs_info->sectorsize);
1171         }
1172         if (bbio)
1173                 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1174 }
1175
1176 /*
1177  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1178  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1179  */
1180 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1181                                   unsigned int bio_size)
1182 {
1183         const int time_slice = 1000;
1184         s64 delta;
1185         ktime_t now;
1186         u32 div;
1187         u64 bwlimit;
1188
1189         bwlimit = READ_ONCE(device->scrub_speed_max);
1190         if (bwlimit == 0)
1191                 return;
1192
1193         /*
1194          * Slice is divided into intervals when the IO is submitted, adjust by
1195          * bwlimit and maximum of 64 intervals.
1196          */
1197         div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1198         div = min_t(u32, 64, div);
1199
1200         /* Start new epoch, set deadline */
1201         now = ktime_get();
1202         if (sctx->throttle_deadline == 0) {
1203                 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1204                 sctx->throttle_sent = 0;
1205         }
1206
1207         /* Still in the time to send? */
1208         if (ktime_before(now, sctx->throttle_deadline)) {
1209                 /* If current bio is within the limit, send it */
1210                 sctx->throttle_sent += bio_size;
1211                 if (sctx->throttle_sent <= div_u64(bwlimit, div))
1212                         return;
1213
1214                 /* We're over the limit, sleep until the rest of the slice */
1215                 delta = ktime_ms_delta(sctx->throttle_deadline, now);
1216         } else {
1217                 /* New request after deadline, start new epoch */
1218                 delta = 0;
1219         }
1220
1221         if (delta) {
1222                 long timeout;
1223
1224                 timeout = div_u64(delta * HZ, 1000);
1225                 schedule_timeout_interruptible(timeout);
1226         }
1227
1228         /* Next call will start the deadline period */
1229         sctx->throttle_deadline = 0;
1230 }
1231
1232 /*
1233  * Given a physical address, this will calculate it's
1234  * logical offset. if this is a parity stripe, it will return
1235  * the most left data stripe's logical offset.
1236  *
1237  * return 0 if it is a data stripe, 1 means parity stripe.
1238  */
1239 static int get_raid56_logic_offset(u64 physical, int num,
1240                                    struct map_lookup *map, u64 *offset,
1241                                    u64 *stripe_start)
1242 {
1243         int i;
1244         int j = 0;
1245         u64 last_offset;
1246         const int data_stripes = nr_data_stripes(map);
1247
1248         last_offset = (physical - map->stripes[num].physical) * data_stripes;
1249         if (stripe_start)
1250                 *stripe_start = last_offset;
1251
1252         *offset = last_offset;
1253         for (i = 0; i < data_stripes; i++) {
1254                 u32 stripe_nr;
1255                 u32 stripe_index;
1256                 u32 rot;
1257
1258                 *offset = last_offset + btrfs_stripe_nr_to_offset(i);
1259
1260                 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1261
1262                 /* Work out the disk rotation on this stripe-set */
1263                 rot = stripe_nr % map->num_stripes;
1264                 stripe_nr /= map->num_stripes;
1265                 /* calculate which stripe this data locates */
1266                 rot += i;
1267                 stripe_index = rot % map->num_stripes;
1268                 if (stripe_index == num)
1269                         return 0;
1270                 if (stripe_index < num)
1271                         j++;
1272         }
1273         *offset = last_offset + btrfs_stripe_nr_to_offset(j);
1274         return 1;
1275 }
1276
1277 /*
1278  * Return 0 if the extent item range covers any byte of the range.
1279  * Return <0 if the extent item is before @search_start.
1280  * Return >0 if the extent item is after @start_start + @search_len.
1281  */
1282 static int compare_extent_item_range(struct btrfs_path *path,
1283                                      u64 search_start, u64 search_len)
1284 {
1285         struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1286         u64 len;
1287         struct btrfs_key key;
1288
1289         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1290         ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1291                key.type == BTRFS_METADATA_ITEM_KEY);
1292         if (key.type == BTRFS_METADATA_ITEM_KEY)
1293                 len = fs_info->nodesize;
1294         else
1295                 len = key.offset;
1296
1297         if (key.objectid + len <= search_start)
1298                 return -1;
1299         if (key.objectid >= search_start + search_len)
1300                 return 1;
1301         return 0;
1302 }
1303
1304 /*
1305  * Locate one extent item which covers any byte in range
1306  * [@search_start, @search_start + @search_length)
1307  *
1308  * If the path is not initialized, we will initialize the search by doing
1309  * a btrfs_search_slot().
1310  * If the path is already initialized, we will use the path as the initial
1311  * slot, to avoid duplicated btrfs_search_slot() calls.
1312  *
1313  * NOTE: If an extent item starts before @search_start, we will still
1314  * return the extent item. This is for data extent crossing stripe boundary.
1315  *
1316  * Return 0 if we found such extent item, and @path will point to the extent item.
1317  * Return >0 if no such extent item can be found, and @path will be released.
1318  * Return <0 if hit fatal error, and @path will be released.
1319  */
1320 static int find_first_extent_item(struct btrfs_root *extent_root,
1321                                   struct btrfs_path *path,
1322                                   u64 search_start, u64 search_len)
1323 {
1324         struct btrfs_fs_info *fs_info = extent_root->fs_info;
1325         struct btrfs_key key;
1326         int ret;
1327
1328         /* Continue using the existing path */
1329         if (path->nodes[0])
1330                 goto search_forward;
1331
1332         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1333                 key.type = BTRFS_METADATA_ITEM_KEY;
1334         else
1335                 key.type = BTRFS_EXTENT_ITEM_KEY;
1336         key.objectid = search_start;
1337         key.offset = (u64)-1;
1338
1339         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1340         if (ret < 0)
1341                 return ret;
1342
1343         ASSERT(ret > 0);
1344         /*
1345          * Here we intentionally pass 0 as @min_objectid, as there could be
1346          * an extent item starting before @search_start.
1347          */
1348         ret = btrfs_previous_extent_item(extent_root, path, 0);
1349         if (ret < 0)
1350                 return ret;
1351         /*
1352          * No matter whether we have found an extent item, the next loop will
1353          * properly do every check on the key.
1354          */
1355 search_forward:
1356         while (true) {
1357                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1358                 if (key.objectid >= search_start + search_len)
1359                         break;
1360                 if (key.type != BTRFS_METADATA_ITEM_KEY &&
1361                     key.type != BTRFS_EXTENT_ITEM_KEY)
1362                         goto next;
1363
1364                 ret = compare_extent_item_range(path, search_start, search_len);
1365                 if (ret == 0)
1366                         return ret;
1367                 if (ret > 0)
1368                         break;
1369 next:
1370                 path->slots[0]++;
1371                 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
1372                         ret = btrfs_next_leaf(extent_root, path);
1373                         if (ret) {
1374                                 /* Either no more item or fatal error */
1375                                 btrfs_release_path(path);
1376                                 return ret;
1377                         }
1378                 }
1379         }
1380         btrfs_release_path(path);
1381         return 1;
1382 }
1383
1384 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1385                             u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1386 {
1387         struct btrfs_key key;
1388         struct btrfs_extent_item *ei;
1389
1390         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1391         ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1392                key.type == BTRFS_EXTENT_ITEM_KEY);
1393         *extent_start_ret = key.objectid;
1394         if (key.type == BTRFS_METADATA_ITEM_KEY)
1395                 *size_ret = path->nodes[0]->fs_info->nodesize;
1396         else
1397                 *size_ret = key.offset;
1398         ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1399         *flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1400         *generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1401 }
1402
1403 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1404                                         u64 physical, u64 physical_end)
1405 {
1406         struct btrfs_fs_info *fs_info = sctx->fs_info;
1407         int ret = 0;
1408
1409         if (!btrfs_is_zoned(fs_info))
1410                 return 0;
1411
1412         mutex_lock(&sctx->wr_lock);
1413         if (sctx->write_pointer < physical_end) {
1414                 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1415                                                     physical,
1416                                                     sctx->write_pointer);
1417                 if (ret)
1418                         btrfs_err(fs_info,
1419                                   "zoned: failed to recover write pointer");
1420         }
1421         mutex_unlock(&sctx->wr_lock);
1422         btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1423
1424         return ret;
1425 }
1426
1427 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1428                                  struct scrub_stripe *stripe,
1429                                  u64 extent_start, u64 extent_len,
1430                                  u64 extent_flags, u64 extent_gen)
1431 {
1432         for (u64 cur_logical = max(stripe->logical, extent_start);
1433              cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1434                                extent_start + extent_len);
1435              cur_logical += fs_info->sectorsize) {
1436                 const int nr_sector = (cur_logical - stripe->logical) >>
1437                                       fs_info->sectorsize_bits;
1438                 struct scrub_sector_verification *sector =
1439                                                 &stripe->sectors[nr_sector];
1440
1441                 set_bit(nr_sector, &stripe->extent_sector_bitmap);
1442                 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1443                         sector->is_metadata = true;
1444                         sector->generation = extent_gen;
1445                 }
1446         }
1447 }
1448
1449 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1450 {
1451         stripe->extent_sector_bitmap = 0;
1452         stripe->init_error_bitmap = 0;
1453         stripe->init_nr_io_errors = 0;
1454         stripe->init_nr_csum_errors = 0;
1455         stripe->init_nr_meta_errors = 0;
1456         stripe->error_bitmap = 0;
1457         stripe->io_error_bitmap = 0;
1458         stripe->csum_error_bitmap = 0;
1459         stripe->meta_error_bitmap = 0;
1460 }
1461
1462 /*
1463  * Locate one stripe which has at least one extent in its range.
1464  *
1465  * Return 0 if found such stripe, and store its info into @stripe.
1466  * Return >0 if there is no such stripe in the specified range.
1467  * Return <0 for error.
1468  */
1469 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1470                                         struct btrfs_device *dev, u64 physical,
1471                                         int mirror_num, u64 logical_start,
1472                                         u32 logical_len,
1473                                         struct scrub_stripe *stripe)
1474 {
1475         struct btrfs_fs_info *fs_info = bg->fs_info;
1476         struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1477         struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1478         const u64 logical_end = logical_start + logical_len;
1479         struct btrfs_path path = { 0 };
1480         u64 cur_logical = logical_start;
1481         u64 stripe_end;
1482         u64 extent_start;
1483         u64 extent_len;
1484         u64 extent_flags;
1485         u64 extent_gen;
1486         int ret;
1487
1488         memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1489                                    stripe->nr_sectors);
1490         scrub_stripe_reset_bitmaps(stripe);
1491
1492         /* The range must be inside the bg. */
1493         ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1494
1495         path.search_commit_root = 1;
1496         path.skip_locking = 1;
1497
1498         ret = find_first_extent_item(extent_root, &path, logical_start, logical_len);
1499         /* Either error or not found. */
1500         if (ret)
1501                 goto out;
1502         get_extent_info(&path, &extent_start, &extent_len, &extent_flags, &extent_gen);
1503         if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1504                 stripe->nr_meta_extents++;
1505         if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1506                 stripe->nr_data_extents++;
1507         cur_logical = max(extent_start, cur_logical);
1508
1509         /*
1510          * Round down to stripe boundary.
1511          *
1512          * The extra calculation against bg->start is to handle block groups
1513          * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1514          */
1515         stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1516                           bg->start;
1517         stripe->physical = physical + stripe->logical - logical_start;
1518         stripe->dev = dev;
1519         stripe->bg = bg;
1520         stripe->mirror_num = mirror_num;
1521         stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1522
1523         /* Fill the first extent info into stripe->sectors[] array. */
1524         fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1525                              extent_flags, extent_gen);
1526         cur_logical = extent_start + extent_len;
1527
1528         /* Fill the extent info for the remaining sectors. */
1529         while (cur_logical <= stripe_end) {
1530                 ret = find_first_extent_item(extent_root, &path, cur_logical,
1531                                              stripe_end - cur_logical + 1);
1532                 if (ret < 0)
1533                         goto out;
1534                 if (ret > 0) {
1535                         ret = 0;
1536                         break;
1537                 }
1538                 get_extent_info(&path, &extent_start, &extent_len,
1539                                 &extent_flags, &extent_gen);
1540                 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1541                         stripe->nr_meta_extents++;
1542                 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1543                         stripe->nr_data_extents++;
1544                 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1545                                      extent_flags, extent_gen);
1546                 cur_logical = extent_start + extent_len;
1547         }
1548
1549         /* Now fill the data csum. */
1550         if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1551                 int sector_nr;
1552                 unsigned long csum_bitmap = 0;
1553
1554                 /* Csum space should have already been allocated. */
1555                 ASSERT(stripe->csums);
1556
1557                 /*
1558                  * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1559                  * should contain at most 16 sectors.
1560                  */
1561                 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1562
1563                 ret = btrfs_lookup_csums_bitmap(csum_root, stripe->logical,
1564                                                 stripe_end, stripe->csums,
1565                                                 &csum_bitmap, true);
1566                 if (ret < 0)
1567                         goto out;
1568                 if (ret > 0)
1569                         ret = 0;
1570
1571                 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1572                         stripe->sectors[sector_nr].csum = stripe->csums +
1573                                 sector_nr * fs_info->csum_size;
1574                 }
1575         }
1576         set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1577 out:
1578         btrfs_release_path(&path);
1579         return ret;
1580 }
1581
1582 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1583 {
1584         scrub_stripe_reset_bitmaps(stripe);
1585
1586         stripe->nr_meta_extents = 0;
1587         stripe->nr_data_extents = 0;
1588         stripe->state = 0;
1589
1590         for (int i = 0; i < stripe->nr_sectors; i++) {
1591                 stripe->sectors[i].is_metadata = false;
1592                 stripe->sectors[i].csum = NULL;
1593                 stripe->sectors[i].generation = 0;
1594         }
1595 }
1596
1597 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1598                                       struct scrub_stripe *stripe)
1599 {
1600         struct btrfs_fs_info *fs_info = sctx->fs_info;
1601         struct btrfs_bio *bbio;
1602         int mirror = stripe->mirror_num;
1603
1604         ASSERT(stripe->bg);
1605         ASSERT(stripe->mirror_num > 0);
1606         ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1607
1608         bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1609                                scrub_read_endio, stripe);
1610
1611         /* Read the whole stripe. */
1612         bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1613         for (int i = 0; i < BTRFS_STRIPE_LEN >> PAGE_SHIFT; i++) {
1614                 int ret;
1615
1616                 ret = bio_add_page(&bbio->bio, stripe->pages[i], PAGE_SIZE, 0);
1617                 /* We should have allocated enough bio vectors. */
1618                 ASSERT(ret == PAGE_SIZE);
1619         }
1620         atomic_inc(&stripe->pending_io);
1621
1622         /*
1623          * For dev-replace, either user asks to avoid the source dev, or
1624          * the device is missing, we try the next mirror instead.
1625          */
1626         if (sctx->is_dev_replace &&
1627             (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1628              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1629              !stripe->dev->bdev)) {
1630                 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1631                                                   stripe->bg->length);
1632
1633                 mirror = calc_next_mirror(mirror, num_copies);
1634         }
1635         btrfs_submit_bio(bbio, mirror);
1636 }
1637
1638 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1639 {
1640         int i;
1641
1642         for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1643                 if (stripe->sectors[i].is_metadata) {
1644                         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1645
1646                         btrfs_err(fs_info,
1647                         "stripe %llu has unrepaired metadata sector at %llu",
1648                                   stripe->logical,
1649                                   stripe->logical + (i << fs_info->sectorsize_bits));
1650                         return true;
1651                 }
1652         }
1653         return false;
1654 }
1655
1656 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1657 {
1658         struct btrfs_fs_info *fs_info = sctx->fs_info;
1659         struct scrub_stripe *stripe;
1660         const int nr_stripes = sctx->cur_stripe;
1661         int ret = 0;
1662
1663         if (!nr_stripes)
1664                 return 0;
1665
1666         ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1667
1668         scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1669                               btrfs_stripe_nr_to_offset(nr_stripes));
1670         for (int i = 0; i < nr_stripes; i++) {
1671                 stripe = &sctx->stripes[i];
1672                 scrub_submit_initial_read(sctx, stripe);
1673         }
1674
1675         for (int i = 0; i < nr_stripes; i++) {
1676                 stripe = &sctx->stripes[i];
1677
1678                 wait_event(stripe->repair_wait,
1679                            test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1680         }
1681
1682         /*
1683          * Submit the repaired sectors.  For zoned case, we cannot do repair
1684          * in-place, but queue the bg to be relocated.
1685          */
1686         if (btrfs_is_zoned(fs_info)) {
1687                 for (int i = 0; i < nr_stripes; i++) {
1688                         stripe = &sctx->stripes[i];
1689
1690                         if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) {
1691                                 btrfs_repair_one_zone(fs_info,
1692                                                       sctx->stripes[0].bg->start);
1693                                 break;
1694                         }
1695                 }
1696         } else if (!sctx->readonly) {
1697                 for (int i = 0; i < nr_stripes; i++) {
1698                         unsigned long repaired;
1699
1700                         stripe = &sctx->stripes[i];
1701
1702                         bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1703                                       &stripe->error_bitmap, stripe->nr_sectors);
1704                         scrub_write_sectors(sctx, stripe, repaired, false);
1705                 }
1706         }
1707
1708         /* Submit for dev-replace. */
1709         if (sctx->is_dev_replace) {
1710                 /*
1711                  * For dev-replace, if we know there is something wrong with
1712                  * metadata, we should immedately abort.
1713                  */
1714                 for (int i = 0; i < nr_stripes; i++) {
1715                         if (stripe_has_metadata_error(&sctx->stripes[i])) {
1716                                 ret = -EIO;
1717                                 goto out;
1718                         }
1719                 }
1720                 for (int i = 0; i < nr_stripes; i++) {
1721                         unsigned long good;
1722
1723                         stripe = &sctx->stripes[i];
1724
1725                         ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1726
1727                         bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1728                                       &stripe->error_bitmap, stripe->nr_sectors);
1729                         scrub_write_sectors(sctx, stripe, good, true);
1730                 }
1731         }
1732
1733         /* Wait for the above writebacks to finish. */
1734         for (int i = 0; i < nr_stripes; i++) {
1735                 stripe = &sctx->stripes[i];
1736
1737                 wait_scrub_stripe_io(stripe);
1738                 scrub_reset_stripe(stripe);
1739         }
1740 out:
1741         sctx->cur_stripe = 0;
1742         return ret;
1743 }
1744
1745 static void raid56_scrub_wait_endio(struct bio *bio)
1746 {
1747         complete(bio->bi_private);
1748 }
1749
1750 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1751                               struct btrfs_device *dev, int mirror_num,
1752                               u64 logical, u32 length, u64 physical)
1753 {
1754         struct scrub_stripe *stripe;
1755         int ret;
1756
1757         /* No available slot, submit all stripes and wait for them. */
1758         if (sctx->cur_stripe >= SCRUB_STRIPES_PER_SCTX) {
1759                 ret = flush_scrub_stripes(sctx);
1760                 if (ret < 0)
1761                         return ret;
1762         }
1763
1764         stripe = &sctx->stripes[sctx->cur_stripe];
1765
1766         /* We can queue one stripe using the remaining slot. */
1767         scrub_reset_stripe(stripe);
1768         ret = scrub_find_fill_first_stripe(bg, dev, physical, mirror_num,
1769                                            logical, length, stripe);
1770         /* Either >0 as no more extents or <0 for error. */
1771         if (ret)
1772                 return ret;
1773         sctx->cur_stripe++;
1774         return 0;
1775 }
1776
1777 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1778                                       struct btrfs_device *scrub_dev,
1779                                       struct btrfs_block_group *bg,
1780                                       struct map_lookup *map,
1781                                       u64 full_stripe_start)
1782 {
1783         DECLARE_COMPLETION_ONSTACK(io_done);
1784         struct btrfs_fs_info *fs_info = sctx->fs_info;
1785         struct btrfs_raid_bio *rbio;
1786         struct btrfs_io_context *bioc = NULL;
1787         struct bio *bio;
1788         struct scrub_stripe *stripe;
1789         bool all_empty = true;
1790         const int data_stripes = nr_data_stripes(map);
1791         unsigned long extent_bitmap = 0;
1792         u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1793         int ret;
1794
1795         ASSERT(sctx->raid56_data_stripes);
1796
1797         for (int i = 0; i < data_stripes; i++) {
1798                 int stripe_index;
1799                 int rot;
1800                 u64 physical;
1801
1802                 stripe = &sctx->raid56_data_stripes[i];
1803                 rot = div_u64(full_stripe_start - bg->start,
1804                               data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1805                 stripe_index = (i + rot) % map->num_stripes;
1806                 physical = map->stripes[stripe_index].physical +
1807                            btrfs_stripe_nr_to_offset(rot);
1808
1809                 scrub_reset_stripe(stripe);
1810                 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1811                 ret = scrub_find_fill_first_stripe(bg,
1812                                 map->stripes[stripe_index].dev, physical, 1,
1813                                 full_stripe_start + btrfs_stripe_nr_to_offset(i),
1814                                 BTRFS_STRIPE_LEN, stripe);
1815                 if (ret < 0)
1816                         goto out;
1817                 /*
1818                  * No extent in this data stripe, need to manually mark them
1819                  * initialized to make later read submission happy.
1820                  */
1821                 if (ret > 0) {
1822                         stripe->logical = full_stripe_start +
1823                                           btrfs_stripe_nr_to_offset(i);
1824                         stripe->dev = map->stripes[stripe_index].dev;
1825                         stripe->mirror_num = 1;
1826                         set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1827                 }
1828         }
1829
1830         /* Check if all data stripes are empty. */
1831         for (int i = 0; i < data_stripes; i++) {
1832                 stripe = &sctx->raid56_data_stripes[i];
1833                 if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1834                         all_empty = false;
1835                         break;
1836                 }
1837         }
1838         if (all_empty) {
1839                 ret = 0;
1840                 goto out;
1841         }
1842
1843         for (int i = 0; i < data_stripes; i++) {
1844                 stripe = &sctx->raid56_data_stripes[i];
1845                 scrub_submit_initial_read(sctx, stripe);
1846         }
1847         for (int i = 0; i < data_stripes; i++) {
1848                 stripe = &sctx->raid56_data_stripes[i];
1849
1850                 wait_event(stripe->repair_wait,
1851                            test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1852         }
1853         /* For now, no zoned support for RAID56. */
1854         ASSERT(!btrfs_is_zoned(sctx->fs_info));
1855
1856         /* Writeback for the repaired sectors. */
1857         for (int i = 0; i < data_stripes; i++) {
1858                 unsigned long repaired;
1859
1860                 stripe = &sctx->raid56_data_stripes[i];
1861
1862                 bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1863                               &stripe->error_bitmap, stripe->nr_sectors);
1864                 scrub_write_sectors(sctx, stripe, repaired, false);
1865         }
1866
1867         /* Wait for the above writebacks to finish. */
1868         for (int i = 0; i < data_stripes; i++) {
1869                 stripe = &sctx->raid56_data_stripes[i];
1870
1871                 wait_scrub_stripe_io(stripe);
1872         }
1873
1874         /*
1875          * Now all data stripes are properly verified. Check if we have any
1876          * unrepaired, if so abort immediately or we could further corrupt the
1877          * P/Q stripes.
1878          *
1879          * During the loop, also populate extent_bitmap.
1880          */
1881         for (int i = 0; i < data_stripes; i++) {
1882                 unsigned long error;
1883
1884                 stripe = &sctx->raid56_data_stripes[i];
1885
1886                 /*
1887                  * We should only check the errors where there is an extent.
1888                  * As we may hit an empty data stripe while it's missing.
1889                  */
1890                 bitmap_and(&error, &stripe->error_bitmap,
1891                            &stripe->extent_sector_bitmap, stripe->nr_sectors);
1892                 if (!bitmap_empty(&error, stripe->nr_sectors)) {
1893                         btrfs_err(fs_info,
1894 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
1895                                   full_stripe_start, i, stripe->nr_sectors,
1896                                   &error);
1897                         ret = -EIO;
1898                         goto out;
1899                 }
1900                 bitmap_or(&extent_bitmap, &extent_bitmap,
1901                           &stripe->extent_sector_bitmap, stripe->nr_sectors);
1902         }
1903
1904         /* Now we can check and regenerate the P/Q stripe. */
1905         bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
1906         bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
1907         bio->bi_private = &io_done;
1908         bio->bi_end_io = raid56_scrub_wait_endio;
1909
1910         btrfs_bio_counter_inc_blocked(fs_info);
1911         ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
1912                               &length, &bioc, NULL, NULL, 1);
1913         if (ret < 0) {
1914                 btrfs_put_bioc(bioc);
1915                 btrfs_bio_counter_dec(fs_info);
1916                 goto out;
1917         }
1918         rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
1919                                 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1920         btrfs_put_bioc(bioc);
1921         if (!rbio) {
1922                 ret = -ENOMEM;
1923                 btrfs_bio_counter_dec(fs_info);
1924                 goto out;
1925         }
1926         /* Use the recovered stripes as cache to avoid read them from disk again. */
1927         for (int i = 0; i < data_stripes; i++) {
1928                 stripe = &sctx->raid56_data_stripes[i];
1929
1930                 raid56_parity_cache_data_pages(rbio, stripe->pages,
1931                                 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
1932         }
1933         raid56_parity_submit_scrub_rbio(rbio);
1934         wait_for_completion_io(&io_done);
1935         ret = blk_status_to_errno(bio->bi_status);
1936         bio_put(bio);
1937         btrfs_bio_counter_dec(fs_info);
1938
1939 out:
1940         return ret;
1941 }
1942
1943 /*
1944  * Scrub one range which can only has simple mirror based profile.
1945  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
1946  *  RAID0/RAID10).
1947  *
1948  * Since we may need to handle a subset of block group, we need @logical_start
1949  * and @logical_length parameter.
1950  */
1951 static int scrub_simple_mirror(struct scrub_ctx *sctx,
1952                                struct btrfs_block_group *bg,
1953                                struct map_lookup *map,
1954                                u64 logical_start, u64 logical_length,
1955                                struct btrfs_device *device,
1956                                u64 physical, int mirror_num)
1957 {
1958         struct btrfs_fs_info *fs_info = sctx->fs_info;
1959         const u64 logical_end = logical_start + logical_length;
1960         /* An artificial limit, inherit from old scrub behavior */
1961         struct btrfs_path path = { 0 };
1962         u64 cur_logical = logical_start;
1963         int ret;
1964
1965         /* The range must be inside the bg */
1966         ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1967
1968         path.search_commit_root = 1;
1969         path.skip_locking = 1;
1970         /* Go through each extent items inside the logical range */
1971         while (cur_logical < logical_end) {
1972                 u64 cur_physical = physical + cur_logical - logical_start;
1973
1974                 /* Canceled? */
1975                 if (atomic_read(&fs_info->scrub_cancel_req) ||
1976                     atomic_read(&sctx->cancel_req)) {
1977                         ret = -ECANCELED;
1978                         break;
1979                 }
1980                 /* Paused? */
1981                 if (atomic_read(&fs_info->scrub_pause_req)) {
1982                         /* Push queued extents */
1983                         scrub_blocked_if_needed(fs_info);
1984                 }
1985                 /* Block group removed? */
1986                 spin_lock(&bg->lock);
1987                 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
1988                         spin_unlock(&bg->lock);
1989                         ret = 0;
1990                         break;
1991                 }
1992                 spin_unlock(&bg->lock);
1993
1994                 ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
1995                                          cur_logical, logical_end - cur_logical,
1996                                          cur_physical);
1997                 if (ret > 0) {
1998                         /* No more extent, just update the accounting */
1999                         sctx->stat.last_physical = physical + logical_length;
2000                         ret = 0;
2001                         break;
2002                 }
2003                 if (ret < 0)
2004                         break;
2005
2006                 ASSERT(sctx->cur_stripe > 0);
2007                 cur_logical = sctx->stripes[sctx->cur_stripe - 1].logical
2008                               + BTRFS_STRIPE_LEN;
2009
2010                 /* Don't hold CPU for too long time */
2011                 cond_resched();
2012         }
2013         btrfs_release_path(&path);
2014         return ret;
2015 }
2016
2017 /* Calculate the full stripe length for simple stripe based profiles */
2018 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
2019 {
2020         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2021                             BTRFS_BLOCK_GROUP_RAID10));
2022
2023         return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2024 }
2025
2026 /* Get the logical bytenr for the stripe */
2027 static u64 simple_stripe_get_logical(struct map_lookup *map,
2028                                      struct btrfs_block_group *bg,
2029                                      int stripe_index)
2030 {
2031         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2032                             BTRFS_BLOCK_GROUP_RAID10));
2033         ASSERT(stripe_index < map->num_stripes);
2034
2035         /*
2036          * (stripe_index / sub_stripes) gives how many data stripes we need to
2037          * skip.
2038          */
2039         return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2040                bg->start;
2041 }
2042
2043 /* Get the mirror number for the stripe */
2044 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
2045 {
2046         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2047                             BTRFS_BLOCK_GROUP_RAID10));
2048         ASSERT(stripe_index < map->num_stripes);
2049
2050         /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2051         return stripe_index % map->sub_stripes + 1;
2052 }
2053
2054 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2055                                struct btrfs_block_group *bg,
2056                                struct map_lookup *map,
2057                                struct btrfs_device *device,
2058                                int stripe_index)
2059 {
2060         const u64 logical_increment = simple_stripe_full_stripe_len(map);
2061         const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2062         const u64 orig_physical = map->stripes[stripe_index].physical;
2063         const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2064         u64 cur_logical = orig_logical;
2065         u64 cur_physical = orig_physical;
2066         int ret = 0;
2067
2068         while (cur_logical < bg->start + bg->length) {
2069                 /*
2070                  * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2071                  * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2072                  * this stripe.
2073                  */
2074                 ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2075                                           BTRFS_STRIPE_LEN, device, cur_physical,
2076                                           mirror_num);
2077                 if (ret)
2078                         return ret;
2079                 /* Skip to next stripe which belongs to the target device */
2080                 cur_logical += logical_increment;
2081                 /* For physical offset, we just go to next stripe */
2082                 cur_physical += BTRFS_STRIPE_LEN;
2083         }
2084         return ret;
2085 }
2086
2087 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2088                                            struct btrfs_block_group *bg,
2089                                            struct extent_map *em,
2090                                            struct btrfs_device *scrub_dev,
2091                                            int stripe_index)
2092 {
2093         struct btrfs_fs_info *fs_info = sctx->fs_info;
2094         struct map_lookup *map = em->map_lookup;
2095         const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2096         const u64 chunk_logical = bg->start;
2097         int ret;
2098         int ret2;
2099         u64 physical = map->stripes[stripe_index].physical;
2100         const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
2101         const u64 physical_end = physical + dev_stripe_len;
2102         u64 logical;
2103         u64 logic_end;
2104         /* The logical increment after finishing one stripe */
2105         u64 increment;
2106         /* Offset inside the chunk */
2107         u64 offset;
2108         u64 stripe_logical;
2109         int stop_loop = 0;
2110
2111         scrub_blocked_if_needed(fs_info);
2112
2113         if (sctx->is_dev_replace &&
2114             btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2115                 mutex_lock(&sctx->wr_lock);
2116                 sctx->write_pointer = physical;
2117                 mutex_unlock(&sctx->wr_lock);
2118         }
2119
2120         /* Prepare the extra data stripes used by RAID56. */
2121         if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2122                 ASSERT(sctx->raid56_data_stripes == NULL);
2123
2124                 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2125                                                     sizeof(struct scrub_stripe),
2126                                                     GFP_KERNEL);
2127                 if (!sctx->raid56_data_stripes) {
2128                         ret = -ENOMEM;
2129                         goto out;
2130                 }
2131                 for (int i = 0; i < nr_data_stripes(map); i++) {
2132                         ret = init_scrub_stripe(fs_info,
2133                                                 &sctx->raid56_data_stripes[i]);
2134                         if (ret < 0)
2135                                 goto out;
2136                         sctx->raid56_data_stripes[i].bg = bg;
2137                         sctx->raid56_data_stripes[i].sctx = sctx;
2138                 }
2139         }
2140         /*
2141          * There used to be a big double loop to handle all profiles using the
2142          * same routine, which grows larger and more gross over time.
2143          *
2144          * So here we handle each profile differently, so simpler profiles
2145          * have simpler scrubbing function.
2146          */
2147         if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2148                          BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2149                 /*
2150                  * Above check rules out all complex profile, the remaining
2151                  * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2152                  * mirrored duplication without stripe.
2153                  *
2154                  * Only @physical and @mirror_num needs to calculated using
2155                  * @stripe_index.
2156                  */
2157                 ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2158                                 scrub_dev, map->stripes[stripe_index].physical,
2159                                 stripe_index + 1);
2160                 offset = 0;
2161                 goto out;
2162         }
2163         if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2164                 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2165                 offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2166                 goto out;
2167         }
2168
2169         /* Only RAID56 goes through the old code */
2170         ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2171         ret = 0;
2172
2173         /* Calculate the logical end of the stripe */
2174         get_raid56_logic_offset(physical_end, stripe_index,
2175                                 map, &logic_end, NULL);
2176         logic_end += chunk_logical;
2177
2178         /* Initialize @offset in case we need to go to out: label */
2179         get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2180         increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2181
2182         /*
2183          * Due to the rotation, for RAID56 it's better to iterate each stripe
2184          * using their physical offset.
2185          */
2186         while (physical < physical_end) {
2187                 ret = get_raid56_logic_offset(physical, stripe_index, map,
2188                                               &logical, &stripe_logical);
2189                 logical += chunk_logical;
2190                 if (ret) {
2191                         /* it is parity strip */
2192                         stripe_logical += chunk_logical;
2193                         ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2194                                                          map, stripe_logical);
2195                         if (ret)
2196                                 goto out;
2197                         goto next;
2198                 }
2199
2200                 /*
2201                  * Now we're at a data stripe, scrub each extents in the range.
2202                  *
2203                  * At this stage, if we ignore the repair part, inside each data
2204                  * stripe it is no different than SINGLE profile.
2205                  * We can reuse scrub_simple_mirror() here, as the repair part
2206                  * is still based on @mirror_num.
2207                  */
2208                 ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2209                                           scrub_dev, physical, 1);
2210                 if (ret < 0)
2211                         goto out;
2212 next:
2213                 logical += increment;
2214                 physical += BTRFS_STRIPE_LEN;
2215                 spin_lock(&sctx->stat_lock);
2216                 if (stop_loop)
2217                         sctx->stat.last_physical =
2218                                 map->stripes[stripe_index].physical + dev_stripe_len;
2219                 else
2220                         sctx->stat.last_physical = physical;
2221                 spin_unlock(&sctx->stat_lock);
2222                 if (stop_loop)
2223                         break;
2224         }
2225 out:
2226         ret2 = flush_scrub_stripes(sctx);
2227         if (!ret)
2228                 ret = ret2;
2229         if (sctx->raid56_data_stripes) {
2230                 for (int i = 0; i < nr_data_stripes(map); i++)
2231                         release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2232                 kfree(sctx->raid56_data_stripes);
2233                 sctx->raid56_data_stripes = NULL;
2234         }
2235
2236         if (sctx->is_dev_replace && ret >= 0) {
2237                 int ret2;
2238
2239                 ret2 = sync_write_pointer_for_zoned(sctx,
2240                                 chunk_logical + offset,
2241                                 map->stripes[stripe_index].physical,
2242                                 physical_end);
2243                 if (ret2)
2244                         ret = ret2;
2245         }
2246
2247         return ret < 0 ? ret : 0;
2248 }
2249
2250 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2251                                           struct btrfs_block_group *bg,
2252                                           struct btrfs_device *scrub_dev,
2253                                           u64 dev_offset,
2254                                           u64 dev_extent_len)
2255 {
2256         struct btrfs_fs_info *fs_info = sctx->fs_info;
2257         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2258         struct map_lookup *map;
2259         struct extent_map *em;
2260         int i;
2261         int ret = 0;
2262
2263         read_lock(&map_tree->lock);
2264         em = lookup_extent_mapping(map_tree, bg->start, bg->length);
2265         read_unlock(&map_tree->lock);
2266
2267         if (!em) {
2268                 /*
2269                  * Might have been an unused block group deleted by the cleaner
2270                  * kthread or relocation.
2271                  */
2272                 spin_lock(&bg->lock);
2273                 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2274                         ret = -EINVAL;
2275                 spin_unlock(&bg->lock);
2276
2277                 return ret;
2278         }
2279         if (em->start != bg->start)
2280                 goto out;
2281         if (em->len < dev_extent_len)
2282                 goto out;
2283
2284         map = em->map_lookup;
2285         for (i = 0; i < map->num_stripes; ++i) {
2286                 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2287                     map->stripes[i].physical == dev_offset) {
2288                         ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
2289                         if (ret)
2290                                 goto out;
2291                 }
2292         }
2293 out:
2294         free_extent_map(em);
2295
2296         return ret;
2297 }
2298
2299 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2300                                           struct btrfs_block_group *cache)
2301 {
2302         struct btrfs_fs_info *fs_info = cache->fs_info;
2303         struct btrfs_trans_handle *trans;
2304
2305         if (!btrfs_is_zoned(fs_info))
2306                 return 0;
2307
2308         btrfs_wait_block_group_reservations(cache);
2309         btrfs_wait_nocow_writers(cache);
2310         btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2311
2312         trans = btrfs_join_transaction(root);
2313         if (IS_ERR(trans))
2314                 return PTR_ERR(trans);
2315         return btrfs_commit_transaction(trans);
2316 }
2317
2318 static noinline_for_stack
2319 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2320                            struct btrfs_device *scrub_dev, u64 start, u64 end)
2321 {
2322         struct btrfs_dev_extent *dev_extent = NULL;
2323         struct btrfs_path *path;
2324         struct btrfs_fs_info *fs_info = sctx->fs_info;
2325         struct btrfs_root *root = fs_info->dev_root;
2326         u64 chunk_offset;
2327         int ret = 0;
2328         int ro_set;
2329         int slot;
2330         struct extent_buffer *l;
2331         struct btrfs_key key;
2332         struct btrfs_key found_key;
2333         struct btrfs_block_group *cache;
2334         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2335
2336         path = btrfs_alloc_path();
2337         if (!path)
2338                 return -ENOMEM;
2339
2340         path->reada = READA_FORWARD;
2341         path->search_commit_root = 1;
2342         path->skip_locking = 1;
2343
2344         key.objectid = scrub_dev->devid;
2345         key.offset = 0ull;
2346         key.type = BTRFS_DEV_EXTENT_KEY;
2347
2348         while (1) {
2349                 u64 dev_extent_len;
2350
2351                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2352                 if (ret < 0)
2353                         break;
2354                 if (ret > 0) {
2355                         if (path->slots[0] >=
2356                             btrfs_header_nritems(path->nodes[0])) {
2357                                 ret = btrfs_next_leaf(root, path);
2358                                 if (ret < 0)
2359                                         break;
2360                                 if (ret > 0) {
2361                                         ret = 0;
2362                                         break;
2363                                 }
2364                         } else {
2365                                 ret = 0;
2366                         }
2367                 }
2368
2369                 l = path->nodes[0];
2370                 slot = path->slots[0];
2371
2372                 btrfs_item_key_to_cpu(l, &found_key, slot);
2373
2374                 if (found_key.objectid != scrub_dev->devid)
2375                         break;
2376
2377                 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2378                         break;
2379
2380                 if (found_key.offset >= end)
2381                         break;
2382
2383                 if (found_key.offset < key.offset)
2384                         break;
2385
2386                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2387                 dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2388
2389                 if (found_key.offset + dev_extent_len <= start)
2390                         goto skip;
2391
2392                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2393
2394                 /*
2395                  * get a reference on the corresponding block group to prevent
2396                  * the chunk from going away while we scrub it
2397                  */
2398                 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2399
2400                 /* some chunks are removed but not committed to disk yet,
2401                  * continue scrubbing */
2402                 if (!cache)
2403                         goto skip;
2404
2405                 ASSERT(cache->start <= chunk_offset);
2406                 /*
2407                  * We are using the commit root to search for device extents, so
2408                  * that means we could have found a device extent item from a
2409                  * block group that was deleted in the current transaction. The
2410                  * logical start offset of the deleted block group, stored at
2411                  * @chunk_offset, might be part of the logical address range of
2412                  * a new block group (which uses different physical extents).
2413                  * In this case btrfs_lookup_block_group() has returned the new
2414                  * block group, and its start address is less than @chunk_offset.
2415                  *
2416                  * We skip such new block groups, because it's pointless to
2417                  * process them, as we won't find their extents because we search
2418                  * for them using the commit root of the extent tree. For a device
2419                  * replace it's also fine to skip it, we won't miss copying them
2420                  * to the target device because we have the write duplication
2421                  * setup through the regular write path (by btrfs_map_block()),
2422                  * and we have committed a transaction when we started the device
2423                  * replace, right after setting up the device replace state.
2424                  */
2425                 if (cache->start < chunk_offset) {
2426                         btrfs_put_block_group(cache);
2427                         goto skip;
2428                 }
2429
2430                 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2431                         if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2432                                 btrfs_put_block_group(cache);
2433                                 goto skip;
2434                         }
2435                 }
2436
2437                 /*
2438                  * Make sure that while we are scrubbing the corresponding block
2439                  * group doesn't get its logical address and its device extents
2440                  * reused for another block group, which can possibly be of a
2441                  * different type and different profile. We do this to prevent
2442                  * false error detections and crashes due to bogus attempts to
2443                  * repair extents.
2444                  */
2445                 spin_lock(&cache->lock);
2446                 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2447                         spin_unlock(&cache->lock);
2448                         btrfs_put_block_group(cache);
2449                         goto skip;
2450                 }
2451                 btrfs_freeze_block_group(cache);
2452                 spin_unlock(&cache->lock);
2453
2454                 /*
2455                  * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2456                  * to avoid deadlock caused by:
2457                  * btrfs_inc_block_group_ro()
2458                  * -> btrfs_wait_for_commit()
2459                  * -> btrfs_commit_transaction()
2460                  * -> btrfs_scrub_pause()
2461                  */
2462                 scrub_pause_on(fs_info);
2463
2464                 /*
2465                  * Don't do chunk preallocation for scrub.
2466                  *
2467                  * This is especially important for SYSTEM bgs, or we can hit
2468                  * -EFBIG from btrfs_finish_chunk_alloc() like:
2469                  * 1. The only SYSTEM bg is marked RO.
2470                  *    Since SYSTEM bg is small, that's pretty common.
2471                  * 2. New SYSTEM bg will be allocated
2472                  *    Due to regular version will allocate new chunk.
2473                  * 3. New SYSTEM bg is empty and will get cleaned up
2474                  *    Before cleanup really happens, it's marked RO again.
2475                  * 4. Empty SYSTEM bg get scrubbed
2476                  *    We go back to 2.
2477                  *
2478                  * This can easily boost the amount of SYSTEM chunks if cleaner
2479                  * thread can't be triggered fast enough, and use up all space
2480                  * of btrfs_super_block::sys_chunk_array
2481                  *
2482                  * While for dev replace, we need to try our best to mark block
2483                  * group RO, to prevent race between:
2484                  * - Write duplication
2485                  *   Contains latest data
2486                  * - Scrub copy
2487                  *   Contains data from commit tree
2488                  *
2489                  * If target block group is not marked RO, nocow writes can
2490                  * be overwritten by scrub copy, causing data corruption.
2491                  * So for dev-replace, it's not allowed to continue if a block
2492                  * group is not RO.
2493                  */
2494                 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2495                 if (!ret && sctx->is_dev_replace) {
2496                         ret = finish_extent_writes_for_zoned(root, cache);
2497                         if (ret) {
2498                                 btrfs_dec_block_group_ro(cache);
2499                                 scrub_pause_off(fs_info);
2500                                 btrfs_put_block_group(cache);
2501                                 break;
2502                         }
2503                 }
2504
2505                 if (ret == 0) {
2506                         ro_set = 1;
2507                 } else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2508                            !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2509                         /*
2510                          * btrfs_inc_block_group_ro return -ENOSPC when it
2511                          * failed in creating new chunk for metadata.
2512                          * It is not a problem for scrub, because
2513                          * metadata are always cowed, and our scrub paused
2514                          * commit_transactions.
2515                          *
2516                          * For RAID56 chunks, we have to mark them read-only
2517                          * for scrub, as later we would use our own cache
2518                          * out of RAID56 realm.
2519                          * Thus we want the RAID56 bg to be marked RO to
2520                          * prevent RMW from screwing up out cache.
2521                          */
2522                         ro_set = 0;
2523                 } else if (ret == -ETXTBSY) {
2524                         btrfs_warn(fs_info,
2525                    "skipping scrub of block group %llu due to active swapfile",
2526                                    cache->start);
2527                         scrub_pause_off(fs_info);
2528                         ret = 0;
2529                         goto skip_unfreeze;
2530                 } else {
2531                         btrfs_warn(fs_info,
2532                                    "failed setting block group ro: %d", ret);
2533                         btrfs_unfreeze_block_group(cache);
2534                         btrfs_put_block_group(cache);
2535                         scrub_pause_off(fs_info);
2536                         break;
2537                 }
2538
2539                 /*
2540                  * Now the target block is marked RO, wait for nocow writes to
2541                  * finish before dev-replace.
2542                  * COW is fine, as COW never overwrites extents in commit tree.
2543                  */
2544                 if (sctx->is_dev_replace) {
2545                         btrfs_wait_nocow_writers(cache);
2546                         btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2547                                         cache->length);
2548                 }
2549
2550                 scrub_pause_off(fs_info);
2551                 down_write(&dev_replace->rwsem);
2552                 dev_replace->cursor_right = found_key.offset + dev_extent_len;
2553                 dev_replace->cursor_left = found_key.offset;
2554                 dev_replace->item_needs_writeback = 1;
2555                 up_write(&dev_replace->rwsem);
2556
2557                 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2558                                   dev_extent_len);
2559                 if (sctx->is_dev_replace &&
2560                     !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2561                                                       cache, found_key.offset))
2562                         ro_set = 0;
2563
2564                 down_write(&dev_replace->rwsem);
2565                 dev_replace->cursor_left = dev_replace->cursor_right;
2566                 dev_replace->item_needs_writeback = 1;
2567                 up_write(&dev_replace->rwsem);
2568
2569                 if (ro_set)
2570                         btrfs_dec_block_group_ro(cache);
2571
2572                 /*
2573                  * We might have prevented the cleaner kthread from deleting
2574                  * this block group if it was already unused because we raced
2575                  * and set it to RO mode first. So add it back to the unused
2576                  * list, otherwise it might not ever be deleted unless a manual
2577                  * balance is triggered or it becomes used and unused again.
2578                  */
2579                 spin_lock(&cache->lock);
2580                 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2581                     !cache->ro && cache->reserved == 0 && cache->used == 0) {
2582                         spin_unlock(&cache->lock);
2583                         if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2584                                 btrfs_discard_queue_work(&fs_info->discard_ctl,
2585                                                          cache);
2586                         else
2587                                 btrfs_mark_bg_unused(cache);
2588                 } else {
2589                         spin_unlock(&cache->lock);
2590                 }
2591 skip_unfreeze:
2592                 btrfs_unfreeze_block_group(cache);
2593                 btrfs_put_block_group(cache);
2594                 if (ret)
2595                         break;
2596                 if (sctx->is_dev_replace &&
2597                     atomic64_read(&dev_replace->num_write_errors) > 0) {
2598                         ret = -EIO;
2599                         break;
2600                 }
2601                 if (sctx->stat.malloc_errors > 0) {
2602                         ret = -ENOMEM;
2603                         break;
2604                 }
2605 skip:
2606                 key.offset = found_key.offset + dev_extent_len;
2607                 btrfs_release_path(path);
2608         }
2609
2610         btrfs_free_path(path);
2611
2612         return ret;
2613 }
2614
2615 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2616                            struct page *page, u64 physical, u64 generation)
2617 {
2618         struct btrfs_fs_info *fs_info = sctx->fs_info;
2619         struct bio_vec bvec;
2620         struct bio bio;
2621         struct btrfs_super_block *sb = page_address(page);
2622         int ret;
2623
2624         bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2625         bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2626         __bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2627         ret = submit_bio_wait(&bio);
2628         bio_uninit(&bio);
2629
2630         if (ret < 0)
2631                 return ret;
2632         ret = btrfs_check_super_csum(fs_info, sb);
2633         if (ret != 0) {
2634                 btrfs_err_rl(fs_info,
2635                         "super block at physical %llu devid %llu has bad csum",
2636                         physical, dev->devid);
2637                 return -EIO;
2638         }
2639         if (btrfs_super_generation(sb) != generation) {
2640                 btrfs_err_rl(fs_info,
2641 "super block at physical %llu devid %llu has bad generation %llu expect %llu",
2642                              physical, dev->devid,
2643                              btrfs_super_generation(sb), generation);
2644                 return -EUCLEAN;
2645         }
2646
2647         return btrfs_validate_super(fs_info, sb, -1);
2648 }
2649
2650 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2651                                            struct btrfs_device *scrub_dev)
2652 {
2653         int     i;
2654         u64     bytenr;
2655         u64     gen;
2656         int ret = 0;
2657         struct page *page;
2658         struct btrfs_fs_info *fs_info = sctx->fs_info;
2659
2660         if (BTRFS_FS_ERROR(fs_info))
2661                 return -EROFS;
2662
2663         page = alloc_page(GFP_KERNEL);
2664         if (!page) {
2665                 spin_lock(&sctx->stat_lock);
2666                 sctx->stat.malloc_errors++;
2667                 spin_unlock(&sctx->stat_lock);
2668                 return -ENOMEM;
2669         }
2670
2671         /* Seed devices of a new filesystem has their own generation. */
2672         if (scrub_dev->fs_devices != fs_info->fs_devices)
2673                 gen = scrub_dev->generation;
2674         else
2675                 gen = fs_info->last_trans_committed;
2676
2677         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2678                 bytenr = btrfs_sb_offset(i);
2679                 if (bytenr + BTRFS_SUPER_INFO_SIZE >
2680                     scrub_dev->commit_total_bytes)
2681                         break;
2682                 if (!btrfs_check_super_location(scrub_dev, bytenr))
2683                         continue;
2684
2685                 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2686                 if (ret) {
2687                         spin_lock(&sctx->stat_lock);
2688                         sctx->stat.super_errors++;
2689                         spin_unlock(&sctx->stat_lock);
2690                 }
2691         }
2692         __free_page(page);
2693         return 0;
2694 }
2695
2696 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2697 {
2698         if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2699                                         &fs_info->scrub_lock)) {
2700                 struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2701
2702                 fs_info->scrub_workers = NULL;
2703                 mutex_unlock(&fs_info->scrub_lock);
2704
2705                 if (scrub_workers)
2706                         destroy_workqueue(scrub_workers);
2707         }
2708 }
2709
2710 /*
2711  * get a reference count on fs_info->scrub_workers. start worker if necessary
2712  */
2713 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2714                                                 int is_dev_replace)
2715 {
2716         struct workqueue_struct *scrub_workers = NULL;
2717         unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2718         int max_active = fs_info->thread_pool_size;
2719         int ret = -ENOMEM;
2720
2721         if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2722                 return 0;
2723
2724         if (is_dev_replace)
2725                 scrub_workers = alloc_ordered_workqueue("btrfs-scrub", flags);
2726         else
2727                 scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2728         if (!scrub_workers)
2729                 return -ENOMEM;
2730
2731         mutex_lock(&fs_info->scrub_lock);
2732         if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2733                 ASSERT(fs_info->scrub_workers == NULL);
2734                 fs_info->scrub_workers = scrub_workers;
2735                 refcount_set(&fs_info->scrub_workers_refcnt, 1);
2736                 mutex_unlock(&fs_info->scrub_lock);
2737                 return 0;
2738         }
2739         /* Other thread raced in and created the workers for us */
2740         refcount_inc(&fs_info->scrub_workers_refcnt);
2741         mutex_unlock(&fs_info->scrub_lock);
2742
2743         ret = 0;
2744
2745         destroy_workqueue(scrub_workers);
2746         return ret;
2747 }
2748
2749 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2750                     u64 end, struct btrfs_scrub_progress *progress,
2751                     int readonly, int is_dev_replace)
2752 {
2753         struct btrfs_dev_lookup_args args = { .devid = devid };
2754         struct scrub_ctx *sctx;
2755         int ret;
2756         struct btrfs_device *dev;
2757         unsigned int nofs_flag;
2758         bool need_commit = false;
2759
2760         if (btrfs_fs_closing(fs_info))
2761                 return -EAGAIN;
2762
2763         /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2764         ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2765
2766         /*
2767          * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2768          * value (max nodesize / min sectorsize), thus nodesize should always
2769          * be fine.
2770          */
2771         ASSERT(fs_info->nodesize <=
2772                SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2773
2774         /* Allocate outside of device_list_mutex */
2775         sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2776         if (IS_ERR(sctx))
2777                 return PTR_ERR(sctx);
2778
2779         ret = scrub_workers_get(fs_info, is_dev_replace);
2780         if (ret)
2781                 goto out_free_ctx;
2782
2783         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2784         dev = btrfs_find_device(fs_info->fs_devices, &args);
2785         if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2786                      !is_dev_replace)) {
2787                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2788                 ret = -ENODEV;
2789                 goto out;
2790         }
2791
2792         if (!is_dev_replace && !readonly &&
2793             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2794                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2795                 btrfs_err_in_rcu(fs_info,
2796                         "scrub on devid %llu: filesystem on %s is not writable",
2797                                  devid, btrfs_dev_name(dev));
2798                 ret = -EROFS;
2799                 goto out;
2800         }
2801
2802         mutex_lock(&fs_info->scrub_lock);
2803         if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2804             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2805                 mutex_unlock(&fs_info->scrub_lock);
2806                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2807                 ret = -EIO;
2808                 goto out;
2809         }
2810
2811         down_read(&fs_info->dev_replace.rwsem);
2812         if (dev->scrub_ctx ||
2813             (!is_dev_replace &&
2814              btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2815                 up_read(&fs_info->dev_replace.rwsem);
2816                 mutex_unlock(&fs_info->scrub_lock);
2817                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2818                 ret = -EINPROGRESS;
2819                 goto out;
2820         }
2821         up_read(&fs_info->dev_replace.rwsem);
2822
2823         sctx->readonly = readonly;
2824         dev->scrub_ctx = sctx;
2825         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2826
2827         /*
2828          * checking @scrub_pause_req here, we can avoid
2829          * race between committing transaction and scrubbing.
2830          */
2831         __scrub_blocked_if_needed(fs_info);
2832         atomic_inc(&fs_info->scrubs_running);
2833         mutex_unlock(&fs_info->scrub_lock);
2834
2835         /*
2836          * In order to avoid deadlock with reclaim when there is a transaction
2837          * trying to pause scrub, make sure we use GFP_NOFS for all the
2838          * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2839          * invoked by our callees. The pausing request is done when the
2840          * transaction commit starts, and it blocks the transaction until scrub
2841          * is paused (done at specific points at scrub_stripe() or right above
2842          * before incrementing fs_info->scrubs_running).
2843          */
2844         nofs_flag = memalloc_nofs_save();
2845         if (!is_dev_replace) {
2846                 u64 old_super_errors;
2847
2848                 spin_lock(&sctx->stat_lock);
2849                 old_super_errors = sctx->stat.super_errors;
2850                 spin_unlock(&sctx->stat_lock);
2851
2852                 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2853                 /*
2854                  * by holding device list mutex, we can
2855                  * kick off writing super in log tree sync.
2856                  */
2857                 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2858                 ret = scrub_supers(sctx, dev);
2859                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2860
2861                 spin_lock(&sctx->stat_lock);
2862                 /*
2863                  * Super block errors found, but we can not commit transaction
2864                  * at current context, since btrfs_commit_transaction() needs
2865                  * to pause the current running scrub (hold by ourselves).
2866                  */
2867                 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
2868                         need_commit = true;
2869                 spin_unlock(&sctx->stat_lock);
2870         }
2871
2872         if (!ret)
2873                 ret = scrub_enumerate_chunks(sctx, dev, start, end);
2874         memalloc_nofs_restore(nofs_flag);
2875
2876         atomic_dec(&fs_info->scrubs_running);
2877         wake_up(&fs_info->scrub_pause_wait);
2878
2879         if (progress)
2880                 memcpy(progress, &sctx->stat, sizeof(*progress));
2881
2882         if (!is_dev_replace)
2883                 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
2884                         ret ? "not finished" : "finished", devid, ret);
2885
2886         mutex_lock(&fs_info->scrub_lock);
2887         dev->scrub_ctx = NULL;
2888         mutex_unlock(&fs_info->scrub_lock);
2889
2890         scrub_workers_put(fs_info);
2891         scrub_put_ctx(sctx);
2892
2893         /*
2894          * We found some super block errors before, now try to force a
2895          * transaction commit, as scrub has finished.
2896          */
2897         if (need_commit) {
2898                 struct btrfs_trans_handle *trans;
2899
2900                 trans = btrfs_start_transaction(fs_info->tree_root, 0);
2901                 if (IS_ERR(trans)) {
2902                         ret = PTR_ERR(trans);
2903                         btrfs_err(fs_info,
2904         "scrub: failed to start transaction to fix super block errors: %d", ret);
2905                         return ret;
2906                 }
2907                 ret = btrfs_commit_transaction(trans);
2908                 if (ret < 0)
2909                         btrfs_err(fs_info,
2910         "scrub: failed to commit transaction to fix super block errors: %d", ret);
2911         }
2912         return ret;
2913 out:
2914         scrub_workers_put(fs_info);
2915 out_free_ctx:
2916         scrub_free_ctx(sctx);
2917
2918         return ret;
2919 }
2920
2921 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
2922 {
2923         mutex_lock(&fs_info->scrub_lock);
2924         atomic_inc(&fs_info->scrub_pause_req);
2925         while (atomic_read(&fs_info->scrubs_paused) !=
2926                atomic_read(&fs_info->scrubs_running)) {
2927                 mutex_unlock(&fs_info->scrub_lock);
2928                 wait_event(fs_info->scrub_pause_wait,
2929                            atomic_read(&fs_info->scrubs_paused) ==
2930                            atomic_read(&fs_info->scrubs_running));
2931                 mutex_lock(&fs_info->scrub_lock);
2932         }
2933         mutex_unlock(&fs_info->scrub_lock);
2934 }
2935
2936 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
2937 {
2938         atomic_dec(&fs_info->scrub_pause_req);
2939         wake_up(&fs_info->scrub_pause_wait);
2940 }
2941
2942 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2943 {
2944         mutex_lock(&fs_info->scrub_lock);
2945         if (!atomic_read(&fs_info->scrubs_running)) {
2946                 mutex_unlock(&fs_info->scrub_lock);
2947                 return -ENOTCONN;
2948         }
2949
2950         atomic_inc(&fs_info->scrub_cancel_req);
2951         while (atomic_read(&fs_info->scrubs_running)) {
2952                 mutex_unlock(&fs_info->scrub_lock);
2953                 wait_event(fs_info->scrub_pause_wait,
2954                            atomic_read(&fs_info->scrubs_running) == 0);
2955                 mutex_lock(&fs_info->scrub_lock);
2956         }
2957         atomic_dec(&fs_info->scrub_cancel_req);
2958         mutex_unlock(&fs_info->scrub_lock);
2959
2960         return 0;
2961 }
2962
2963 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
2964 {
2965         struct btrfs_fs_info *fs_info = dev->fs_info;
2966         struct scrub_ctx *sctx;
2967
2968         mutex_lock(&fs_info->scrub_lock);
2969         sctx = dev->scrub_ctx;
2970         if (!sctx) {
2971                 mutex_unlock(&fs_info->scrub_lock);
2972                 return -ENOTCONN;
2973         }
2974         atomic_inc(&sctx->cancel_req);
2975         while (dev->scrub_ctx) {
2976                 mutex_unlock(&fs_info->scrub_lock);
2977                 wait_event(fs_info->scrub_pause_wait,
2978                            dev->scrub_ctx == NULL);
2979                 mutex_lock(&fs_info->scrub_lock);
2980         }
2981         mutex_unlock(&fs_info->scrub_lock);
2982
2983         return 0;
2984 }
2985
2986 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
2987                          struct btrfs_scrub_progress *progress)
2988 {
2989         struct btrfs_dev_lookup_args args = { .devid = devid };
2990         struct btrfs_device *dev;
2991         struct scrub_ctx *sctx = NULL;
2992
2993         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2994         dev = btrfs_find_device(fs_info->fs_devices, &args);
2995         if (dev)
2996                 sctx = dev->scrub_ctx;
2997         if (sctx)
2998                 memcpy(progress, &sctx->stat, sizeof(*progress));
2999         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3000
3001         return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3002 }