Merge tag 'ceph-for-5.15-rc1' of git://github.com/ceph/ceph-client
[platform/kernel/linux-rpi.git] / fs / btrfs / relocation.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28
29 /*
30  * Relocation overview
31  *
32  * [What does relocation do]
33  *
34  * The objective of relocation is to relocate all extents of the target block
35  * group to other block groups.
36  * This is utilized by resize (shrink only), profile converting, compacting
37  * space, or balance routine to spread chunks over devices.
38  *
39  *              Before          |               After
40  * ------------------------------------------------------------------
41  *  BG A: 10 data extents       | BG A: deleted
42  *  BG B:  2 data extents       | BG B: 10 data extents (2 old + 8 relocated)
43  *  BG C:  1 extents            | BG C:  3 data extents (1 old + 2 relocated)
44  *
45  * [How does relocation work]
46  *
47  * 1.   Mark the target block group read-only
48  *      New extents won't be allocated from the target block group.
49  *
50  * 2.1  Record each extent in the target block group
51  *      To build a proper map of extents to be relocated.
52  *
53  * 2.2  Build data reloc tree and reloc trees
54  *      Data reloc tree will contain an inode, recording all newly relocated
55  *      data extents.
56  *      There will be only one data reloc tree for one data block group.
57  *
58  *      Reloc tree will be a special snapshot of its source tree, containing
59  *      relocated tree blocks.
60  *      Each tree referring to a tree block in target block group will get its
61  *      reloc tree built.
62  *
63  * 2.3  Swap source tree with its corresponding reloc tree
64  *      Each involved tree only refers to new extents after swap.
65  *
66  * 3.   Cleanup reloc trees and data reloc tree.
67  *      As old extents in the target block group are still referenced by reloc
68  *      trees, we need to clean them up before really freeing the target block
69  *      group.
70  *
71  * The main complexity is in steps 2.2 and 2.3.
72  *
73  * The entry point of relocation is relocate_block_group() function.
74  */
75
76 #define RELOCATION_RESERVED_NODES       256
77 /*
78  * map address of tree root to tree
79  */
80 struct mapping_node {
81         struct {
82                 struct rb_node rb_node;
83                 u64 bytenr;
84         }; /* Use rb_simle_node for search/insert */
85         void *data;
86 };
87
88 struct mapping_tree {
89         struct rb_root rb_root;
90         spinlock_t lock;
91 };
92
93 /*
94  * present a tree block to process
95  */
96 struct tree_block {
97         struct {
98                 struct rb_node rb_node;
99                 u64 bytenr;
100         }; /* Use rb_simple_node for search/insert */
101         u64 owner;
102         struct btrfs_key key;
103         unsigned int level:8;
104         unsigned int key_ready:1;
105 };
106
107 #define MAX_EXTENTS 128
108
109 struct file_extent_cluster {
110         u64 start;
111         u64 end;
112         u64 boundary[MAX_EXTENTS];
113         unsigned int nr;
114 };
115
116 struct reloc_control {
117         /* block group to relocate */
118         struct btrfs_block_group *block_group;
119         /* extent tree */
120         struct btrfs_root *extent_root;
121         /* inode for moving data */
122         struct inode *data_inode;
123
124         struct btrfs_block_rsv *block_rsv;
125
126         struct btrfs_backref_cache backref_cache;
127
128         struct file_extent_cluster cluster;
129         /* tree blocks have been processed */
130         struct extent_io_tree processed_blocks;
131         /* map start of tree root to corresponding reloc tree */
132         struct mapping_tree reloc_root_tree;
133         /* list of reloc trees */
134         struct list_head reloc_roots;
135         /* list of subvolume trees that get relocated */
136         struct list_head dirty_subvol_roots;
137         /* size of metadata reservation for merging reloc trees */
138         u64 merging_rsv_size;
139         /* size of relocated tree nodes */
140         u64 nodes_relocated;
141         /* reserved size for block group relocation*/
142         u64 reserved_bytes;
143
144         u64 search_start;
145         u64 extents_found;
146
147         unsigned int stage:8;
148         unsigned int create_reloc_tree:1;
149         unsigned int merge_reloc_tree:1;
150         unsigned int found_file_extent:1;
151 };
152
153 /* stages of data relocation */
154 #define MOVE_DATA_EXTENTS       0
155 #define UPDATE_DATA_PTRS        1
156
157 static void mark_block_processed(struct reloc_control *rc,
158                                  struct btrfs_backref_node *node)
159 {
160         u32 blocksize;
161
162         if (node->level == 0 ||
163             in_range(node->bytenr, rc->block_group->start,
164                      rc->block_group->length)) {
165                 blocksize = rc->extent_root->fs_info->nodesize;
166                 set_extent_bits(&rc->processed_blocks, node->bytenr,
167                                 node->bytenr + blocksize - 1, EXTENT_DIRTY);
168         }
169         node->processed = 1;
170 }
171
172
173 static void mapping_tree_init(struct mapping_tree *tree)
174 {
175         tree->rb_root = RB_ROOT;
176         spin_lock_init(&tree->lock);
177 }
178
179 /*
180  * walk up backref nodes until reach node presents tree root
181  */
182 static struct btrfs_backref_node *walk_up_backref(
183                 struct btrfs_backref_node *node,
184                 struct btrfs_backref_edge *edges[], int *index)
185 {
186         struct btrfs_backref_edge *edge;
187         int idx = *index;
188
189         while (!list_empty(&node->upper)) {
190                 edge = list_entry(node->upper.next,
191                                   struct btrfs_backref_edge, list[LOWER]);
192                 edges[idx++] = edge;
193                 node = edge->node[UPPER];
194         }
195         BUG_ON(node->detached);
196         *index = idx;
197         return node;
198 }
199
200 /*
201  * walk down backref nodes to find start of next reference path
202  */
203 static struct btrfs_backref_node *walk_down_backref(
204                 struct btrfs_backref_edge *edges[], int *index)
205 {
206         struct btrfs_backref_edge *edge;
207         struct btrfs_backref_node *lower;
208         int idx = *index;
209
210         while (idx > 0) {
211                 edge = edges[idx - 1];
212                 lower = edge->node[LOWER];
213                 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
214                         idx--;
215                         continue;
216                 }
217                 edge = list_entry(edge->list[LOWER].next,
218                                   struct btrfs_backref_edge, list[LOWER]);
219                 edges[idx - 1] = edge;
220                 *index = idx;
221                 return edge->node[UPPER];
222         }
223         *index = 0;
224         return NULL;
225 }
226
227 static void update_backref_node(struct btrfs_backref_cache *cache,
228                                 struct btrfs_backref_node *node, u64 bytenr)
229 {
230         struct rb_node *rb_node;
231         rb_erase(&node->rb_node, &cache->rb_root);
232         node->bytenr = bytenr;
233         rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
234         if (rb_node)
235                 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
236 }
237
238 /*
239  * update backref cache after a transaction commit
240  */
241 static int update_backref_cache(struct btrfs_trans_handle *trans,
242                                 struct btrfs_backref_cache *cache)
243 {
244         struct btrfs_backref_node *node;
245         int level = 0;
246
247         if (cache->last_trans == 0) {
248                 cache->last_trans = trans->transid;
249                 return 0;
250         }
251
252         if (cache->last_trans == trans->transid)
253                 return 0;
254
255         /*
256          * detached nodes are used to avoid unnecessary backref
257          * lookup. transaction commit changes the extent tree.
258          * so the detached nodes are no longer useful.
259          */
260         while (!list_empty(&cache->detached)) {
261                 node = list_entry(cache->detached.next,
262                                   struct btrfs_backref_node, list);
263                 btrfs_backref_cleanup_node(cache, node);
264         }
265
266         while (!list_empty(&cache->changed)) {
267                 node = list_entry(cache->changed.next,
268                                   struct btrfs_backref_node, list);
269                 list_del_init(&node->list);
270                 BUG_ON(node->pending);
271                 update_backref_node(cache, node, node->new_bytenr);
272         }
273
274         /*
275          * some nodes can be left in the pending list if there were
276          * errors during processing the pending nodes.
277          */
278         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
279                 list_for_each_entry(node, &cache->pending[level], list) {
280                         BUG_ON(!node->pending);
281                         if (node->bytenr == node->new_bytenr)
282                                 continue;
283                         update_backref_node(cache, node, node->new_bytenr);
284                 }
285         }
286
287         cache->last_trans = 0;
288         return 1;
289 }
290
291 static bool reloc_root_is_dead(struct btrfs_root *root)
292 {
293         /*
294          * Pair with set_bit/clear_bit in clean_dirty_subvols and
295          * btrfs_update_reloc_root. We need to see the updated bit before
296          * trying to access reloc_root
297          */
298         smp_rmb();
299         if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
300                 return true;
301         return false;
302 }
303
304 /*
305  * Check if this subvolume tree has valid reloc tree.
306  *
307  * Reloc tree after swap is considered dead, thus not considered as valid.
308  * This is enough for most callers, as they don't distinguish dead reloc root
309  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
310  * special case.
311  */
312 static bool have_reloc_root(struct btrfs_root *root)
313 {
314         if (reloc_root_is_dead(root))
315                 return false;
316         if (!root->reloc_root)
317                 return false;
318         return true;
319 }
320
321 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
322 {
323         struct btrfs_root *reloc_root;
324
325         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
326                 return 0;
327
328         /* This root has been merged with its reloc tree, we can ignore it */
329         if (reloc_root_is_dead(root))
330                 return 1;
331
332         reloc_root = root->reloc_root;
333         if (!reloc_root)
334                 return 0;
335
336         if (btrfs_header_generation(reloc_root->commit_root) ==
337             root->fs_info->running_transaction->transid)
338                 return 0;
339         /*
340          * if there is reloc tree and it was created in previous
341          * transaction backref lookup can find the reloc tree,
342          * so backref node for the fs tree root is useless for
343          * relocation.
344          */
345         return 1;
346 }
347
348 /*
349  * find reloc tree by address of tree root
350  */
351 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
352 {
353         struct reloc_control *rc = fs_info->reloc_ctl;
354         struct rb_node *rb_node;
355         struct mapping_node *node;
356         struct btrfs_root *root = NULL;
357
358         ASSERT(rc);
359         spin_lock(&rc->reloc_root_tree.lock);
360         rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
361         if (rb_node) {
362                 node = rb_entry(rb_node, struct mapping_node, rb_node);
363                 root = (struct btrfs_root *)node->data;
364         }
365         spin_unlock(&rc->reloc_root_tree.lock);
366         return btrfs_grab_root(root);
367 }
368
369 /*
370  * For useless nodes, do two major clean ups:
371  *
372  * - Cleanup the children edges and nodes
373  *   If child node is also orphan (no parent) during cleanup, then the child
374  *   node will also be cleaned up.
375  *
376  * - Freeing up leaves (level 0), keeps nodes detached
377  *   For nodes, the node is still cached as "detached"
378  *
379  * Return false if @node is not in the @useless_nodes list.
380  * Return true if @node is in the @useless_nodes list.
381  */
382 static bool handle_useless_nodes(struct reloc_control *rc,
383                                  struct btrfs_backref_node *node)
384 {
385         struct btrfs_backref_cache *cache = &rc->backref_cache;
386         struct list_head *useless_node = &cache->useless_node;
387         bool ret = false;
388
389         while (!list_empty(useless_node)) {
390                 struct btrfs_backref_node *cur;
391
392                 cur = list_first_entry(useless_node, struct btrfs_backref_node,
393                                  list);
394                 list_del_init(&cur->list);
395
396                 /* Only tree root nodes can be added to @useless_nodes */
397                 ASSERT(list_empty(&cur->upper));
398
399                 if (cur == node)
400                         ret = true;
401
402                 /* The node is the lowest node */
403                 if (cur->lowest) {
404                         list_del_init(&cur->lower);
405                         cur->lowest = 0;
406                 }
407
408                 /* Cleanup the lower edges */
409                 while (!list_empty(&cur->lower)) {
410                         struct btrfs_backref_edge *edge;
411                         struct btrfs_backref_node *lower;
412
413                         edge = list_entry(cur->lower.next,
414                                         struct btrfs_backref_edge, list[UPPER]);
415                         list_del(&edge->list[UPPER]);
416                         list_del(&edge->list[LOWER]);
417                         lower = edge->node[LOWER];
418                         btrfs_backref_free_edge(cache, edge);
419
420                         /* Child node is also orphan, queue for cleanup */
421                         if (list_empty(&lower->upper))
422                                 list_add(&lower->list, useless_node);
423                 }
424                 /* Mark this block processed for relocation */
425                 mark_block_processed(rc, cur);
426
427                 /*
428                  * Backref nodes for tree leaves are deleted from the cache.
429                  * Backref nodes for upper level tree blocks are left in the
430                  * cache to avoid unnecessary backref lookup.
431                  */
432                 if (cur->level > 0) {
433                         list_add(&cur->list, &cache->detached);
434                         cur->detached = 1;
435                 } else {
436                         rb_erase(&cur->rb_node, &cache->rb_root);
437                         btrfs_backref_free_node(cache, cur);
438                 }
439         }
440         return ret;
441 }
442
443 /*
444  * Build backref tree for a given tree block. Root of the backref tree
445  * corresponds the tree block, leaves of the backref tree correspond roots of
446  * b-trees that reference the tree block.
447  *
448  * The basic idea of this function is check backrefs of a given block to find
449  * upper level blocks that reference the block, and then check backrefs of
450  * these upper level blocks recursively. The recursion stops when tree root is
451  * reached or backrefs for the block is cached.
452  *
453  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
454  * all upper level blocks that directly/indirectly reference the block are also
455  * cached.
456  */
457 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
458                         struct reloc_control *rc, struct btrfs_key *node_key,
459                         int level, u64 bytenr)
460 {
461         struct btrfs_backref_iter *iter;
462         struct btrfs_backref_cache *cache = &rc->backref_cache;
463         /* For searching parent of TREE_BLOCK_REF */
464         struct btrfs_path *path;
465         struct btrfs_backref_node *cur;
466         struct btrfs_backref_node *node = NULL;
467         struct btrfs_backref_edge *edge;
468         int ret;
469         int err = 0;
470
471         iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
472         if (!iter)
473                 return ERR_PTR(-ENOMEM);
474         path = btrfs_alloc_path();
475         if (!path) {
476                 err = -ENOMEM;
477                 goto out;
478         }
479
480         node = btrfs_backref_alloc_node(cache, bytenr, level);
481         if (!node) {
482                 err = -ENOMEM;
483                 goto out;
484         }
485
486         node->lowest = 1;
487         cur = node;
488
489         /* Breadth-first search to build backref cache */
490         do {
491                 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
492                                                   cur);
493                 if (ret < 0) {
494                         err = ret;
495                         goto out;
496                 }
497                 edge = list_first_entry_or_null(&cache->pending_edge,
498                                 struct btrfs_backref_edge, list[UPPER]);
499                 /*
500                  * The pending list isn't empty, take the first block to
501                  * process
502                  */
503                 if (edge) {
504                         list_del_init(&edge->list[UPPER]);
505                         cur = edge->node[UPPER];
506                 }
507         } while (edge);
508
509         /* Finish the upper linkage of newly added edges/nodes */
510         ret = btrfs_backref_finish_upper_links(cache, node);
511         if (ret < 0) {
512                 err = ret;
513                 goto out;
514         }
515
516         if (handle_useless_nodes(rc, node))
517                 node = NULL;
518 out:
519         btrfs_backref_iter_free(iter);
520         btrfs_free_path(path);
521         if (err) {
522                 btrfs_backref_error_cleanup(cache, node);
523                 return ERR_PTR(err);
524         }
525         ASSERT(!node || !node->detached);
526         ASSERT(list_empty(&cache->useless_node) &&
527                list_empty(&cache->pending_edge));
528         return node;
529 }
530
531 /*
532  * helper to add backref node for the newly created snapshot.
533  * the backref node is created by cloning backref node that
534  * corresponds to root of source tree
535  */
536 static int clone_backref_node(struct btrfs_trans_handle *trans,
537                               struct reloc_control *rc,
538                               struct btrfs_root *src,
539                               struct btrfs_root *dest)
540 {
541         struct btrfs_root *reloc_root = src->reloc_root;
542         struct btrfs_backref_cache *cache = &rc->backref_cache;
543         struct btrfs_backref_node *node = NULL;
544         struct btrfs_backref_node *new_node;
545         struct btrfs_backref_edge *edge;
546         struct btrfs_backref_edge *new_edge;
547         struct rb_node *rb_node;
548
549         if (cache->last_trans > 0)
550                 update_backref_cache(trans, cache);
551
552         rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
553         if (rb_node) {
554                 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
555                 if (node->detached)
556                         node = NULL;
557                 else
558                         BUG_ON(node->new_bytenr != reloc_root->node->start);
559         }
560
561         if (!node) {
562                 rb_node = rb_simple_search(&cache->rb_root,
563                                            reloc_root->commit_root->start);
564                 if (rb_node) {
565                         node = rb_entry(rb_node, struct btrfs_backref_node,
566                                         rb_node);
567                         BUG_ON(node->detached);
568                 }
569         }
570
571         if (!node)
572                 return 0;
573
574         new_node = btrfs_backref_alloc_node(cache, dest->node->start,
575                                             node->level);
576         if (!new_node)
577                 return -ENOMEM;
578
579         new_node->lowest = node->lowest;
580         new_node->checked = 1;
581         new_node->root = btrfs_grab_root(dest);
582         ASSERT(new_node->root);
583
584         if (!node->lowest) {
585                 list_for_each_entry(edge, &node->lower, list[UPPER]) {
586                         new_edge = btrfs_backref_alloc_edge(cache);
587                         if (!new_edge)
588                                 goto fail;
589
590                         btrfs_backref_link_edge(new_edge, edge->node[LOWER],
591                                                 new_node, LINK_UPPER);
592                 }
593         } else {
594                 list_add_tail(&new_node->lower, &cache->leaves);
595         }
596
597         rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
598                                    &new_node->rb_node);
599         if (rb_node)
600                 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
601
602         if (!new_node->lowest) {
603                 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
604                         list_add_tail(&new_edge->list[LOWER],
605                                       &new_edge->node[LOWER]->upper);
606                 }
607         }
608         return 0;
609 fail:
610         while (!list_empty(&new_node->lower)) {
611                 new_edge = list_entry(new_node->lower.next,
612                                       struct btrfs_backref_edge, list[UPPER]);
613                 list_del(&new_edge->list[UPPER]);
614                 btrfs_backref_free_edge(cache, new_edge);
615         }
616         btrfs_backref_free_node(cache, new_node);
617         return -ENOMEM;
618 }
619
620 /*
621  * helper to add 'address of tree root -> reloc tree' mapping
622  */
623 static int __must_check __add_reloc_root(struct btrfs_root *root)
624 {
625         struct btrfs_fs_info *fs_info = root->fs_info;
626         struct rb_node *rb_node;
627         struct mapping_node *node;
628         struct reloc_control *rc = fs_info->reloc_ctl;
629
630         node = kmalloc(sizeof(*node), GFP_NOFS);
631         if (!node)
632                 return -ENOMEM;
633
634         node->bytenr = root->commit_root->start;
635         node->data = root;
636
637         spin_lock(&rc->reloc_root_tree.lock);
638         rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
639                                    node->bytenr, &node->rb_node);
640         spin_unlock(&rc->reloc_root_tree.lock);
641         if (rb_node) {
642                 btrfs_err(fs_info,
643                             "Duplicate root found for start=%llu while inserting into relocation tree",
644                             node->bytenr);
645                 return -EEXIST;
646         }
647
648         list_add_tail(&root->root_list, &rc->reloc_roots);
649         return 0;
650 }
651
652 /*
653  * helper to delete the 'address of tree root -> reloc tree'
654  * mapping
655  */
656 static void __del_reloc_root(struct btrfs_root *root)
657 {
658         struct btrfs_fs_info *fs_info = root->fs_info;
659         struct rb_node *rb_node;
660         struct mapping_node *node = NULL;
661         struct reloc_control *rc = fs_info->reloc_ctl;
662         bool put_ref = false;
663
664         if (rc && root->node) {
665                 spin_lock(&rc->reloc_root_tree.lock);
666                 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
667                                            root->commit_root->start);
668                 if (rb_node) {
669                         node = rb_entry(rb_node, struct mapping_node, rb_node);
670                         rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
671                         RB_CLEAR_NODE(&node->rb_node);
672                 }
673                 spin_unlock(&rc->reloc_root_tree.lock);
674                 ASSERT(!node || (struct btrfs_root *)node->data == root);
675         }
676
677         /*
678          * We only put the reloc root here if it's on the list.  There's a lot
679          * of places where the pattern is to splice the rc->reloc_roots, process
680          * the reloc roots, and then add the reloc root back onto
681          * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
682          * list we don't want the reference being dropped, because the guy
683          * messing with the list is in charge of the reference.
684          */
685         spin_lock(&fs_info->trans_lock);
686         if (!list_empty(&root->root_list)) {
687                 put_ref = true;
688                 list_del_init(&root->root_list);
689         }
690         spin_unlock(&fs_info->trans_lock);
691         if (put_ref)
692                 btrfs_put_root(root);
693         kfree(node);
694 }
695
696 /*
697  * helper to update the 'address of tree root -> reloc tree'
698  * mapping
699  */
700 static int __update_reloc_root(struct btrfs_root *root)
701 {
702         struct btrfs_fs_info *fs_info = root->fs_info;
703         struct rb_node *rb_node;
704         struct mapping_node *node = NULL;
705         struct reloc_control *rc = fs_info->reloc_ctl;
706
707         spin_lock(&rc->reloc_root_tree.lock);
708         rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
709                                    root->commit_root->start);
710         if (rb_node) {
711                 node = rb_entry(rb_node, struct mapping_node, rb_node);
712                 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
713         }
714         spin_unlock(&rc->reloc_root_tree.lock);
715
716         if (!node)
717                 return 0;
718         BUG_ON((struct btrfs_root *)node->data != root);
719
720         spin_lock(&rc->reloc_root_tree.lock);
721         node->bytenr = root->node->start;
722         rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
723                                    node->bytenr, &node->rb_node);
724         spin_unlock(&rc->reloc_root_tree.lock);
725         if (rb_node)
726                 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
727         return 0;
728 }
729
730 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
731                                         struct btrfs_root *root, u64 objectid)
732 {
733         struct btrfs_fs_info *fs_info = root->fs_info;
734         struct btrfs_root *reloc_root;
735         struct extent_buffer *eb;
736         struct btrfs_root_item *root_item;
737         struct btrfs_key root_key;
738         int ret = 0;
739         bool must_abort = false;
740
741         root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
742         if (!root_item)
743                 return ERR_PTR(-ENOMEM);
744
745         root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
746         root_key.type = BTRFS_ROOT_ITEM_KEY;
747         root_key.offset = objectid;
748
749         if (root->root_key.objectid == objectid) {
750                 u64 commit_root_gen;
751
752                 /* called by btrfs_init_reloc_root */
753                 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
754                                       BTRFS_TREE_RELOC_OBJECTID);
755                 if (ret)
756                         goto fail;
757
758                 /*
759                  * Set the last_snapshot field to the generation of the commit
760                  * root - like this ctree.c:btrfs_block_can_be_shared() behaves
761                  * correctly (returns true) when the relocation root is created
762                  * either inside the critical section of a transaction commit
763                  * (through transaction.c:qgroup_account_snapshot()) and when
764                  * it's created before the transaction commit is started.
765                  */
766                 commit_root_gen = btrfs_header_generation(root->commit_root);
767                 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
768         } else {
769                 /*
770                  * called by btrfs_reloc_post_snapshot_hook.
771                  * the source tree is a reloc tree, all tree blocks
772                  * modified after it was created have RELOC flag
773                  * set in their headers. so it's OK to not update
774                  * the 'last_snapshot'.
775                  */
776                 ret = btrfs_copy_root(trans, root, root->node, &eb,
777                                       BTRFS_TREE_RELOC_OBJECTID);
778                 if (ret)
779                         goto fail;
780         }
781
782         /*
783          * We have changed references at this point, we must abort the
784          * transaction if anything fails.
785          */
786         must_abort = true;
787
788         memcpy(root_item, &root->root_item, sizeof(*root_item));
789         btrfs_set_root_bytenr(root_item, eb->start);
790         btrfs_set_root_level(root_item, btrfs_header_level(eb));
791         btrfs_set_root_generation(root_item, trans->transid);
792
793         if (root->root_key.objectid == objectid) {
794                 btrfs_set_root_refs(root_item, 0);
795                 memset(&root_item->drop_progress, 0,
796                        sizeof(struct btrfs_disk_key));
797                 btrfs_set_root_drop_level(root_item, 0);
798         }
799
800         btrfs_tree_unlock(eb);
801         free_extent_buffer(eb);
802
803         ret = btrfs_insert_root(trans, fs_info->tree_root,
804                                 &root_key, root_item);
805         if (ret)
806                 goto fail;
807
808         kfree(root_item);
809
810         reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
811         if (IS_ERR(reloc_root)) {
812                 ret = PTR_ERR(reloc_root);
813                 goto abort;
814         }
815         set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
816         reloc_root->last_trans = trans->transid;
817         return reloc_root;
818 fail:
819         kfree(root_item);
820 abort:
821         if (must_abort)
822                 btrfs_abort_transaction(trans, ret);
823         return ERR_PTR(ret);
824 }
825
826 /*
827  * create reloc tree for a given fs tree. reloc tree is just a
828  * snapshot of the fs tree with special root objectid.
829  *
830  * The reloc_root comes out of here with two references, one for
831  * root->reloc_root, and another for being on the rc->reloc_roots list.
832  */
833 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
834                           struct btrfs_root *root)
835 {
836         struct btrfs_fs_info *fs_info = root->fs_info;
837         struct btrfs_root *reloc_root;
838         struct reloc_control *rc = fs_info->reloc_ctl;
839         struct btrfs_block_rsv *rsv;
840         int clear_rsv = 0;
841         int ret;
842
843         if (!rc)
844                 return 0;
845
846         /*
847          * The subvolume has reloc tree but the swap is finished, no need to
848          * create/update the dead reloc tree
849          */
850         if (reloc_root_is_dead(root))
851                 return 0;
852
853         /*
854          * This is subtle but important.  We do not do
855          * record_root_in_transaction for reloc roots, instead we record their
856          * corresponding fs root, and then here we update the last trans for the
857          * reloc root.  This means that we have to do this for the entire life
858          * of the reloc root, regardless of which stage of the relocation we are
859          * in.
860          */
861         if (root->reloc_root) {
862                 reloc_root = root->reloc_root;
863                 reloc_root->last_trans = trans->transid;
864                 return 0;
865         }
866
867         /*
868          * We are merging reloc roots, we do not need new reloc trees.  Also
869          * reloc trees never need their own reloc tree.
870          */
871         if (!rc->create_reloc_tree ||
872             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
873                 return 0;
874
875         if (!trans->reloc_reserved) {
876                 rsv = trans->block_rsv;
877                 trans->block_rsv = rc->block_rsv;
878                 clear_rsv = 1;
879         }
880         reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
881         if (clear_rsv)
882                 trans->block_rsv = rsv;
883         if (IS_ERR(reloc_root))
884                 return PTR_ERR(reloc_root);
885
886         ret = __add_reloc_root(reloc_root);
887         ASSERT(ret != -EEXIST);
888         if (ret) {
889                 /* Pairs with create_reloc_root */
890                 btrfs_put_root(reloc_root);
891                 return ret;
892         }
893         root->reloc_root = btrfs_grab_root(reloc_root);
894         return 0;
895 }
896
897 /*
898  * update root item of reloc tree
899  */
900 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
901                             struct btrfs_root *root)
902 {
903         struct btrfs_fs_info *fs_info = root->fs_info;
904         struct btrfs_root *reloc_root;
905         struct btrfs_root_item *root_item;
906         int ret;
907
908         if (!have_reloc_root(root))
909                 return 0;
910
911         reloc_root = root->reloc_root;
912         root_item = &reloc_root->root_item;
913
914         /*
915          * We are probably ok here, but __del_reloc_root() will drop its ref of
916          * the root.  We have the ref for root->reloc_root, but just in case
917          * hold it while we update the reloc root.
918          */
919         btrfs_grab_root(reloc_root);
920
921         /* root->reloc_root will stay until current relocation finished */
922         if (fs_info->reloc_ctl->merge_reloc_tree &&
923             btrfs_root_refs(root_item) == 0) {
924                 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
925                 /*
926                  * Mark the tree as dead before we change reloc_root so
927                  * have_reloc_root will not touch it from now on.
928                  */
929                 smp_wmb();
930                 __del_reloc_root(reloc_root);
931         }
932
933         if (reloc_root->commit_root != reloc_root->node) {
934                 __update_reloc_root(reloc_root);
935                 btrfs_set_root_node(root_item, reloc_root->node);
936                 free_extent_buffer(reloc_root->commit_root);
937                 reloc_root->commit_root = btrfs_root_node(reloc_root);
938         }
939
940         ret = btrfs_update_root(trans, fs_info->tree_root,
941                                 &reloc_root->root_key, root_item);
942         btrfs_put_root(reloc_root);
943         return ret;
944 }
945
946 /*
947  * helper to find first cached inode with inode number >= objectid
948  * in a subvolume
949  */
950 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
951 {
952         struct rb_node *node;
953         struct rb_node *prev;
954         struct btrfs_inode *entry;
955         struct inode *inode;
956
957         spin_lock(&root->inode_lock);
958 again:
959         node = root->inode_tree.rb_node;
960         prev = NULL;
961         while (node) {
962                 prev = node;
963                 entry = rb_entry(node, struct btrfs_inode, rb_node);
964
965                 if (objectid < btrfs_ino(entry))
966                         node = node->rb_left;
967                 else if (objectid > btrfs_ino(entry))
968                         node = node->rb_right;
969                 else
970                         break;
971         }
972         if (!node) {
973                 while (prev) {
974                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
975                         if (objectid <= btrfs_ino(entry)) {
976                                 node = prev;
977                                 break;
978                         }
979                         prev = rb_next(prev);
980                 }
981         }
982         while (node) {
983                 entry = rb_entry(node, struct btrfs_inode, rb_node);
984                 inode = igrab(&entry->vfs_inode);
985                 if (inode) {
986                         spin_unlock(&root->inode_lock);
987                         return inode;
988                 }
989
990                 objectid = btrfs_ino(entry) + 1;
991                 if (cond_resched_lock(&root->inode_lock))
992                         goto again;
993
994                 node = rb_next(node);
995         }
996         spin_unlock(&root->inode_lock);
997         return NULL;
998 }
999
1000 /*
1001  * get new location of data
1002  */
1003 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1004                             u64 bytenr, u64 num_bytes)
1005 {
1006         struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1007         struct btrfs_path *path;
1008         struct btrfs_file_extent_item *fi;
1009         struct extent_buffer *leaf;
1010         int ret;
1011
1012         path = btrfs_alloc_path();
1013         if (!path)
1014                 return -ENOMEM;
1015
1016         bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1017         ret = btrfs_lookup_file_extent(NULL, root, path,
1018                         btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1019         if (ret < 0)
1020                 goto out;
1021         if (ret > 0) {
1022                 ret = -ENOENT;
1023                 goto out;
1024         }
1025
1026         leaf = path->nodes[0];
1027         fi = btrfs_item_ptr(leaf, path->slots[0],
1028                             struct btrfs_file_extent_item);
1029
1030         BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1031                btrfs_file_extent_compression(leaf, fi) ||
1032                btrfs_file_extent_encryption(leaf, fi) ||
1033                btrfs_file_extent_other_encoding(leaf, fi));
1034
1035         if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1036                 ret = -EINVAL;
1037                 goto out;
1038         }
1039
1040         *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1041         ret = 0;
1042 out:
1043         btrfs_free_path(path);
1044         return ret;
1045 }
1046
1047 /*
1048  * update file extent items in the tree leaf to point to
1049  * the new locations.
1050  */
1051 static noinline_for_stack
1052 int replace_file_extents(struct btrfs_trans_handle *trans,
1053                          struct reloc_control *rc,
1054                          struct btrfs_root *root,
1055                          struct extent_buffer *leaf)
1056 {
1057         struct btrfs_fs_info *fs_info = root->fs_info;
1058         struct btrfs_key key;
1059         struct btrfs_file_extent_item *fi;
1060         struct inode *inode = NULL;
1061         u64 parent;
1062         u64 bytenr;
1063         u64 new_bytenr = 0;
1064         u64 num_bytes;
1065         u64 end;
1066         u32 nritems;
1067         u32 i;
1068         int ret = 0;
1069         int first = 1;
1070         int dirty = 0;
1071
1072         if (rc->stage != UPDATE_DATA_PTRS)
1073                 return 0;
1074
1075         /* reloc trees always use full backref */
1076         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1077                 parent = leaf->start;
1078         else
1079                 parent = 0;
1080
1081         nritems = btrfs_header_nritems(leaf);
1082         for (i = 0; i < nritems; i++) {
1083                 struct btrfs_ref ref = { 0 };
1084
1085                 cond_resched();
1086                 btrfs_item_key_to_cpu(leaf, &key, i);
1087                 if (key.type != BTRFS_EXTENT_DATA_KEY)
1088                         continue;
1089                 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1090                 if (btrfs_file_extent_type(leaf, fi) ==
1091                     BTRFS_FILE_EXTENT_INLINE)
1092                         continue;
1093                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1094                 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1095                 if (bytenr == 0)
1096                         continue;
1097                 if (!in_range(bytenr, rc->block_group->start,
1098                               rc->block_group->length))
1099                         continue;
1100
1101                 /*
1102                  * if we are modifying block in fs tree, wait for readpage
1103                  * to complete and drop the extent cache
1104                  */
1105                 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1106                         if (first) {
1107                                 inode = find_next_inode(root, key.objectid);
1108                                 first = 0;
1109                         } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1110                                 btrfs_add_delayed_iput(inode);
1111                                 inode = find_next_inode(root, key.objectid);
1112                         }
1113                         if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1114                                 end = key.offset +
1115                                       btrfs_file_extent_num_bytes(leaf, fi);
1116                                 WARN_ON(!IS_ALIGNED(key.offset,
1117                                                     fs_info->sectorsize));
1118                                 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1119                                 end--;
1120                                 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1121                                                       key.offset, end);
1122                                 if (!ret)
1123                                         continue;
1124
1125                                 btrfs_drop_extent_cache(BTRFS_I(inode),
1126                                                 key.offset,     end, 1);
1127                                 unlock_extent(&BTRFS_I(inode)->io_tree,
1128                                               key.offset, end);
1129                         }
1130                 }
1131
1132                 ret = get_new_location(rc->data_inode, &new_bytenr,
1133                                        bytenr, num_bytes);
1134                 if (ret) {
1135                         /*
1136                          * Don't have to abort since we've not changed anything
1137                          * in the file extent yet.
1138                          */
1139                         break;
1140                 }
1141
1142                 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1143                 dirty = 1;
1144
1145                 key.offset -= btrfs_file_extent_offset(leaf, fi);
1146                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1147                                        num_bytes, parent);
1148                 ref.real_root = root->root_key.objectid;
1149                 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1150                                     key.objectid, key.offset);
1151                 ret = btrfs_inc_extent_ref(trans, &ref);
1152                 if (ret) {
1153                         btrfs_abort_transaction(trans, ret);
1154                         break;
1155                 }
1156
1157                 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1158                                        num_bytes, parent);
1159                 ref.real_root = root->root_key.objectid;
1160                 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1161                                     key.objectid, key.offset);
1162                 ret = btrfs_free_extent(trans, &ref);
1163                 if (ret) {
1164                         btrfs_abort_transaction(trans, ret);
1165                         break;
1166                 }
1167         }
1168         if (dirty)
1169                 btrfs_mark_buffer_dirty(leaf);
1170         if (inode)
1171                 btrfs_add_delayed_iput(inode);
1172         return ret;
1173 }
1174
1175 static noinline_for_stack
1176 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1177                      struct btrfs_path *path, int level)
1178 {
1179         struct btrfs_disk_key key1;
1180         struct btrfs_disk_key key2;
1181         btrfs_node_key(eb, &key1, slot);
1182         btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1183         return memcmp(&key1, &key2, sizeof(key1));
1184 }
1185
1186 /*
1187  * try to replace tree blocks in fs tree with the new blocks
1188  * in reloc tree. tree blocks haven't been modified since the
1189  * reloc tree was create can be replaced.
1190  *
1191  * if a block was replaced, level of the block + 1 is returned.
1192  * if no block got replaced, 0 is returned. if there are other
1193  * errors, a negative error number is returned.
1194  */
1195 static noinline_for_stack
1196 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1197                  struct btrfs_root *dest, struct btrfs_root *src,
1198                  struct btrfs_path *path, struct btrfs_key *next_key,
1199                  int lowest_level, int max_level)
1200 {
1201         struct btrfs_fs_info *fs_info = dest->fs_info;
1202         struct extent_buffer *eb;
1203         struct extent_buffer *parent;
1204         struct btrfs_ref ref = { 0 };
1205         struct btrfs_key key;
1206         u64 old_bytenr;
1207         u64 new_bytenr;
1208         u64 old_ptr_gen;
1209         u64 new_ptr_gen;
1210         u64 last_snapshot;
1211         u32 blocksize;
1212         int cow = 0;
1213         int level;
1214         int ret;
1215         int slot;
1216
1217         ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1218         ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1219
1220         last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1221 again:
1222         slot = path->slots[lowest_level];
1223         btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1224
1225         eb = btrfs_lock_root_node(dest);
1226         level = btrfs_header_level(eb);
1227
1228         if (level < lowest_level) {
1229                 btrfs_tree_unlock(eb);
1230                 free_extent_buffer(eb);
1231                 return 0;
1232         }
1233
1234         if (cow) {
1235                 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1236                                       BTRFS_NESTING_COW);
1237                 if (ret) {
1238                         btrfs_tree_unlock(eb);
1239                         free_extent_buffer(eb);
1240                         return ret;
1241                 }
1242         }
1243
1244         if (next_key) {
1245                 next_key->objectid = (u64)-1;
1246                 next_key->type = (u8)-1;
1247                 next_key->offset = (u64)-1;
1248         }
1249
1250         parent = eb;
1251         while (1) {
1252                 level = btrfs_header_level(parent);
1253                 ASSERT(level >= lowest_level);
1254
1255                 ret = btrfs_bin_search(parent, &key, &slot);
1256                 if (ret < 0)
1257                         break;
1258                 if (ret && slot > 0)
1259                         slot--;
1260
1261                 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1262                         btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1263
1264                 old_bytenr = btrfs_node_blockptr(parent, slot);
1265                 blocksize = fs_info->nodesize;
1266                 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1267
1268                 if (level <= max_level) {
1269                         eb = path->nodes[level];
1270                         new_bytenr = btrfs_node_blockptr(eb,
1271                                                         path->slots[level]);
1272                         new_ptr_gen = btrfs_node_ptr_generation(eb,
1273                                                         path->slots[level]);
1274                 } else {
1275                         new_bytenr = 0;
1276                         new_ptr_gen = 0;
1277                 }
1278
1279                 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1280                         ret = level;
1281                         break;
1282                 }
1283
1284                 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1285                     memcmp_node_keys(parent, slot, path, level)) {
1286                         if (level <= lowest_level) {
1287                                 ret = 0;
1288                                 break;
1289                         }
1290
1291                         eb = btrfs_read_node_slot(parent, slot);
1292                         if (IS_ERR(eb)) {
1293                                 ret = PTR_ERR(eb);
1294                                 break;
1295                         }
1296                         btrfs_tree_lock(eb);
1297                         if (cow) {
1298                                 ret = btrfs_cow_block(trans, dest, eb, parent,
1299                                                       slot, &eb,
1300                                                       BTRFS_NESTING_COW);
1301                                 if (ret) {
1302                                         btrfs_tree_unlock(eb);
1303                                         free_extent_buffer(eb);
1304                                         break;
1305                                 }
1306                         }
1307
1308                         btrfs_tree_unlock(parent);
1309                         free_extent_buffer(parent);
1310
1311                         parent = eb;
1312                         continue;
1313                 }
1314
1315                 if (!cow) {
1316                         btrfs_tree_unlock(parent);
1317                         free_extent_buffer(parent);
1318                         cow = 1;
1319                         goto again;
1320                 }
1321
1322                 btrfs_node_key_to_cpu(path->nodes[level], &key,
1323                                       path->slots[level]);
1324                 btrfs_release_path(path);
1325
1326                 path->lowest_level = level;
1327                 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1328                 path->lowest_level = 0;
1329                 if (ret) {
1330                         if (ret > 0)
1331                                 ret = -ENOENT;
1332                         break;
1333                 }
1334
1335                 /*
1336                  * Info qgroup to trace both subtrees.
1337                  *
1338                  * We must trace both trees.
1339                  * 1) Tree reloc subtree
1340                  *    If not traced, we will leak data numbers
1341                  * 2) Fs subtree
1342                  *    If not traced, we will double count old data
1343                  *
1344                  * We don't scan the subtree right now, but only record
1345                  * the swapped tree blocks.
1346                  * The real subtree rescan is delayed until we have new
1347                  * CoW on the subtree root node before transaction commit.
1348                  */
1349                 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1350                                 rc->block_group, parent, slot,
1351                                 path->nodes[level], path->slots[level],
1352                                 last_snapshot);
1353                 if (ret < 0)
1354                         break;
1355                 /*
1356                  * swap blocks in fs tree and reloc tree.
1357                  */
1358                 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1359                 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1360                 btrfs_mark_buffer_dirty(parent);
1361
1362                 btrfs_set_node_blockptr(path->nodes[level],
1363                                         path->slots[level], old_bytenr);
1364                 btrfs_set_node_ptr_generation(path->nodes[level],
1365                                               path->slots[level], old_ptr_gen);
1366                 btrfs_mark_buffer_dirty(path->nodes[level]);
1367
1368                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1369                                        blocksize, path->nodes[level]->start);
1370                 ref.skip_qgroup = true;
1371                 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1372                 ret = btrfs_inc_extent_ref(trans, &ref);
1373                 if (ret) {
1374                         btrfs_abort_transaction(trans, ret);
1375                         break;
1376                 }
1377                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1378                                        blocksize, 0);
1379                 ref.skip_qgroup = true;
1380                 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1381                 ret = btrfs_inc_extent_ref(trans, &ref);
1382                 if (ret) {
1383                         btrfs_abort_transaction(trans, ret);
1384                         break;
1385                 }
1386
1387                 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1388                                        blocksize, path->nodes[level]->start);
1389                 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1390                 ref.skip_qgroup = true;
1391                 ret = btrfs_free_extent(trans, &ref);
1392                 if (ret) {
1393                         btrfs_abort_transaction(trans, ret);
1394                         break;
1395                 }
1396
1397                 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1398                                        blocksize, 0);
1399                 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1400                 ref.skip_qgroup = true;
1401                 ret = btrfs_free_extent(trans, &ref);
1402                 if (ret) {
1403                         btrfs_abort_transaction(trans, ret);
1404                         break;
1405                 }
1406
1407                 btrfs_unlock_up_safe(path, 0);
1408
1409                 ret = level;
1410                 break;
1411         }
1412         btrfs_tree_unlock(parent);
1413         free_extent_buffer(parent);
1414         return ret;
1415 }
1416
1417 /*
1418  * helper to find next relocated block in reloc tree
1419  */
1420 static noinline_for_stack
1421 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1422                        int *level)
1423 {
1424         struct extent_buffer *eb;
1425         int i;
1426         u64 last_snapshot;
1427         u32 nritems;
1428
1429         last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1430
1431         for (i = 0; i < *level; i++) {
1432                 free_extent_buffer(path->nodes[i]);
1433                 path->nodes[i] = NULL;
1434         }
1435
1436         for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1437                 eb = path->nodes[i];
1438                 nritems = btrfs_header_nritems(eb);
1439                 while (path->slots[i] + 1 < nritems) {
1440                         path->slots[i]++;
1441                         if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1442                             last_snapshot)
1443                                 continue;
1444
1445                         *level = i;
1446                         return 0;
1447                 }
1448                 free_extent_buffer(path->nodes[i]);
1449                 path->nodes[i] = NULL;
1450         }
1451         return 1;
1452 }
1453
1454 /*
1455  * walk down reloc tree to find relocated block of lowest level
1456  */
1457 static noinline_for_stack
1458 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1459                          int *level)
1460 {
1461         struct extent_buffer *eb = NULL;
1462         int i;
1463         u64 ptr_gen = 0;
1464         u64 last_snapshot;
1465         u32 nritems;
1466
1467         last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1468
1469         for (i = *level; i > 0; i--) {
1470                 eb = path->nodes[i];
1471                 nritems = btrfs_header_nritems(eb);
1472                 while (path->slots[i] < nritems) {
1473                         ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1474                         if (ptr_gen > last_snapshot)
1475                                 break;
1476                         path->slots[i]++;
1477                 }
1478                 if (path->slots[i] >= nritems) {
1479                         if (i == *level)
1480                                 break;
1481                         *level = i + 1;
1482                         return 0;
1483                 }
1484                 if (i == 1) {
1485                         *level = i;
1486                         return 0;
1487                 }
1488
1489                 eb = btrfs_read_node_slot(eb, path->slots[i]);
1490                 if (IS_ERR(eb))
1491                         return PTR_ERR(eb);
1492                 BUG_ON(btrfs_header_level(eb) != i - 1);
1493                 path->nodes[i - 1] = eb;
1494                 path->slots[i - 1] = 0;
1495         }
1496         return 1;
1497 }
1498
1499 /*
1500  * invalidate extent cache for file extents whose key in range of
1501  * [min_key, max_key)
1502  */
1503 static int invalidate_extent_cache(struct btrfs_root *root,
1504                                    struct btrfs_key *min_key,
1505                                    struct btrfs_key *max_key)
1506 {
1507         struct btrfs_fs_info *fs_info = root->fs_info;
1508         struct inode *inode = NULL;
1509         u64 objectid;
1510         u64 start, end;
1511         u64 ino;
1512
1513         objectid = min_key->objectid;
1514         while (1) {
1515                 cond_resched();
1516                 iput(inode);
1517
1518                 if (objectid > max_key->objectid)
1519                         break;
1520
1521                 inode = find_next_inode(root, objectid);
1522                 if (!inode)
1523                         break;
1524                 ino = btrfs_ino(BTRFS_I(inode));
1525
1526                 if (ino > max_key->objectid) {
1527                         iput(inode);
1528                         break;
1529                 }
1530
1531                 objectid = ino + 1;
1532                 if (!S_ISREG(inode->i_mode))
1533                         continue;
1534
1535                 if (unlikely(min_key->objectid == ino)) {
1536                         if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1537                                 continue;
1538                         if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1539                                 start = 0;
1540                         else {
1541                                 start = min_key->offset;
1542                                 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1543                         }
1544                 } else {
1545                         start = 0;
1546                 }
1547
1548                 if (unlikely(max_key->objectid == ino)) {
1549                         if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1550                                 continue;
1551                         if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1552                                 end = (u64)-1;
1553                         } else {
1554                                 if (max_key->offset == 0)
1555                                         continue;
1556                                 end = max_key->offset;
1557                                 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1558                                 end--;
1559                         }
1560                 } else {
1561                         end = (u64)-1;
1562                 }
1563
1564                 /* the lock_extent waits for readpage to complete */
1565                 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1566                 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1567                 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1568         }
1569         return 0;
1570 }
1571
1572 static int find_next_key(struct btrfs_path *path, int level,
1573                          struct btrfs_key *key)
1574
1575 {
1576         while (level < BTRFS_MAX_LEVEL) {
1577                 if (!path->nodes[level])
1578                         break;
1579                 if (path->slots[level] + 1 <
1580                     btrfs_header_nritems(path->nodes[level])) {
1581                         btrfs_node_key_to_cpu(path->nodes[level], key,
1582                                               path->slots[level] + 1);
1583                         return 0;
1584                 }
1585                 level++;
1586         }
1587         return 1;
1588 }
1589
1590 /*
1591  * Insert current subvolume into reloc_control::dirty_subvol_roots
1592  */
1593 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1594                                struct reloc_control *rc,
1595                                struct btrfs_root *root)
1596 {
1597         struct btrfs_root *reloc_root = root->reloc_root;
1598         struct btrfs_root_item *reloc_root_item;
1599         int ret;
1600
1601         /* @root must be a subvolume tree root with a valid reloc tree */
1602         ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1603         ASSERT(reloc_root);
1604
1605         reloc_root_item = &reloc_root->root_item;
1606         memset(&reloc_root_item->drop_progress, 0,
1607                 sizeof(reloc_root_item->drop_progress));
1608         btrfs_set_root_drop_level(reloc_root_item, 0);
1609         btrfs_set_root_refs(reloc_root_item, 0);
1610         ret = btrfs_update_reloc_root(trans, root);
1611         if (ret)
1612                 return ret;
1613
1614         if (list_empty(&root->reloc_dirty_list)) {
1615                 btrfs_grab_root(root);
1616                 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1617         }
1618
1619         return 0;
1620 }
1621
1622 static int clean_dirty_subvols(struct reloc_control *rc)
1623 {
1624         struct btrfs_root *root;
1625         struct btrfs_root *next;
1626         int ret = 0;
1627         int ret2;
1628
1629         list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1630                                  reloc_dirty_list) {
1631                 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1632                         /* Merged subvolume, cleanup its reloc root */
1633                         struct btrfs_root *reloc_root = root->reloc_root;
1634
1635                         list_del_init(&root->reloc_dirty_list);
1636                         root->reloc_root = NULL;
1637                         /*
1638                          * Need barrier to ensure clear_bit() only happens after
1639                          * root->reloc_root = NULL. Pairs with have_reloc_root.
1640                          */
1641                         smp_wmb();
1642                         clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1643                         if (reloc_root) {
1644                                 /*
1645                                  * btrfs_drop_snapshot drops our ref we hold for
1646                                  * ->reloc_root.  If it fails however we must
1647                                  * drop the ref ourselves.
1648                                  */
1649                                 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1650                                 if (ret2 < 0) {
1651                                         btrfs_put_root(reloc_root);
1652                                         if (!ret)
1653                                                 ret = ret2;
1654                                 }
1655                         }
1656                         btrfs_put_root(root);
1657                 } else {
1658                         /* Orphan reloc tree, just clean it up */
1659                         ret2 = btrfs_drop_snapshot(root, 0, 1);
1660                         if (ret2 < 0) {
1661                                 btrfs_put_root(root);
1662                                 if (!ret)
1663                                         ret = ret2;
1664                         }
1665                 }
1666         }
1667         return ret;
1668 }
1669
1670 /*
1671  * merge the relocated tree blocks in reloc tree with corresponding
1672  * fs tree.
1673  */
1674 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1675                                                struct btrfs_root *root)
1676 {
1677         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1678         struct btrfs_key key;
1679         struct btrfs_key next_key;
1680         struct btrfs_trans_handle *trans = NULL;
1681         struct btrfs_root *reloc_root;
1682         struct btrfs_root_item *root_item;
1683         struct btrfs_path *path;
1684         struct extent_buffer *leaf;
1685         int reserve_level;
1686         int level;
1687         int max_level;
1688         int replaced = 0;
1689         int ret = 0;
1690         u32 min_reserved;
1691
1692         path = btrfs_alloc_path();
1693         if (!path)
1694                 return -ENOMEM;
1695         path->reada = READA_FORWARD;
1696
1697         reloc_root = root->reloc_root;
1698         root_item = &reloc_root->root_item;
1699
1700         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1701                 level = btrfs_root_level(root_item);
1702                 atomic_inc(&reloc_root->node->refs);
1703                 path->nodes[level] = reloc_root->node;
1704                 path->slots[level] = 0;
1705         } else {
1706                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1707
1708                 level = btrfs_root_drop_level(root_item);
1709                 BUG_ON(level == 0);
1710                 path->lowest_level = level;
1711                 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1712                 path->lowest_level = 0;
1713                 if (ret < 0) {
1714                         btrfs_free_path(path);
1715                         return ret;
1716                 }
1717
1718                 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1719                                       path->slots[level]);
1720                 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1721
1722                 btrfs_unlock_up_safe(path, 0);
1723         }
1724
1725         /*
1726          * In merge_reloc_root(), we modify the upper level pointer to swap the
1727          * tree blocks between reloc tree and subvolume tree.  Thus for tree
1728          * block COW, we COW at most from level 1 to root level for each tree.
1729          *
1730          * Thus the needed metadata size is at most root_level * nodesize,
1731          * and * 2 since we have two trees to COW.
1732          */
1733         reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1734         min_reserved = fs_info->nodesize * reserve_level * 2;
1735         memset(&next_key, 0, sizeof(next_key));
1736
1737         while (1) {
1738                 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1739                                              BTRFS_RESERVE_FLUSH_LIMIT);
1740                 if (ret)
1741                         goto out;
1742                 trans = btrfs_start_transaction(root, 0);
1743                 if (IS_ERR(trans)) {
1744                         ret = PTR_ERR(trans);
1745                         trans = NULL;
1746                         goto out;
1747                 }
1748
1749                 /*
1750                  * At this point we no longer have a reloc_control, so we can't
1751                  * depend on btrfs_init_reloc_root to update our last_trans.
1752                  *
1753                  * But that's ok, we started the trans handle on our
1754                  * corresponding fs_root, which means it's been added to the
1755                  * dirty list.  At commit time we'll still call
1756                  * btrfs_update_reloc_root() and update our root item
1757                  * appropriately.
1758                  */
1759                 reloc_root->last_trans = trans->transid;
1760                 trans->block_rsv = rc->block_rsv;
1761
1762                 replaced = 0;
1763                 max_level = level;
1764
1765                 ret = walk_down_reloc_tree(reloc_root, path, &level);
1766                 if (ret < 0)
1767                         goto out;
1768                 if (ret > 0)
1769                         break;
1770
1771                 if (!find_next_key(path, level, &key) &&
1772                     btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1773                         ret = 0;
1774                 } else {
1775                         ret = replace_path(trans, rc, root, reloc_root, path,
1776                                            &next_key, level, max_level);
1777                 }
1778                 if (ret < 0)
1779                         goto out;
1780                 if (ret > 0) {
1781                         level = ret;
1782                         btrfs_node_key_to_cpu(path->nodes[level], &key,
1783                                               path->slots[level]);
1784                         replaced = 1;
1785                 }
1786
1787                 ret = walk_up_reloc_tree(reloc_root, path, &level);
1788                 if (ret > 0)
1789                         break;
1790
1791                 BUG_ON(level == 0);
1792                 /*
1793                  * save the merging progress in the drop_progress.
1794                  * this is OK since root refs == 1 in this case.
1795                  */
1796                 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1797                                path->slots[level]);
1798                 btrfs_set_root_drop_level(root_item, level);
1799
1800                 btrfs_end_transaction_throttle(trans);
1801                 trans = NULL;
1802
1803                 btrfs_btree_balance_dirty(fs_info);
1804
1805                 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1806                         invalidate_extent_cache(root, &key, &next_key);
1807         }
1808
1809         /*
1810          * handle the case only one block in the fs tree need to be
1811          * relocated and the block is tree root.
1812          */
1813         leaf = btrfs_lock_root_node(root);
1814         ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1815                               BTRFS_NESTING_COW);
1816         btrfs_tree_unlock(leaf);
1817         free_extent_buffer(leaf);
1818 out:
1819         btrfs_free_path(path);
1820
1821         if (ret == 0) {
1822                 ret = insert_dirty_subvol(trans, rc, root);
1823                 if (ret)
1824                         btrfs_abort_transaction(trans, ret);
1825         }
1826
1827         if (trans)
1828                 btrfs_end_transaction_throttle(trans);
1829
1830         btrfs_btree_balance_dirty(fs_info);
1831
1832         if (replaced && rc->stage == UPDATE_DATA_PTRS)
1833                 invalidate_extent_cache(root, &key, &next_key);
1834
1835         return ret;
1836 }
1837
1838 static noinline_for_stack
1839 int prepare_to_merge(struct reloc_control *rc, int err)
1840 {
1841         struct btrfs_root *root = rc->extent_root;
1842         struct btrfs_fs_info *fs_info = root->fs_info;
1843         struct btrfs_root *reloc_root;
1844         struct btrfs_trans_handle *trans;
1845         LIST_HEAD(reloc_roots);
1846         u64 num_bytes = 0;
1847         int ret;
1848
1849         mutex_lock(&fs_info->reloc_mutex);
1850         rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1851         rc->merging_rsv_size += rc->nodes_relocated * 2;
1852         mutex_unlock(&fs_info->reloc_mutex);
1853
1854 again:
1855         if (!err) {
1856                 num_bytes = rc->merging_rsv_size;
1857                 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1858                                           BTRFS_RESERVE_FLUSH_ALL);
1859                 if (ret)
1860                         err = ret;
1861         }
1862
1863         trans = btrfs_join_transaction(rc->extent_root);
1864         if (IS_ERR(trans)) {
1865                 if (!err)
1866                         btrfs_block_rsv_release(fs_info, rc->block_rsv,
1867                                                 num_bytes, NULL);
1868                 return PTR_ERR(trans);
1869         }
1870
1871         if (!err) {
1872                 if (num_bytes != rc->merging_rsv_size) {
1873                         btrfs_end_transaction(trans);
1874                         btrfs_block_rsv_release(fs_info, rc->block_rsv,
1875                                                 num_bytes, NULL);
1876                         goto again;
1877                 }
1878         }
1879
1880         rc->merge_reloc_tree = 1;
1881
1882         while (!list_empty(&rc->reloc_roots)) {
1883                 reloc_root = list_entry(rc->reloc_roots.next,
1884                                         struct btrfs_root, root_list);
1885                 list_del_init(&reloc_root->root_list);
1886
1887                 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1888                                 false);
1889                 if (IS_ERR(root)) {
1890                         /*
1891                          * Even if we have an error we need this reloc root
1892                          * back on our list so we can clean up properly.
1893                          */
1894                         list_add(&reloc_root->root_list, &reloc_roots);
1895                         btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1896                         if (!err)
1897                                 err = PTR_ERR(root);
1898                         break;
1899                 }
1900                 ASSERT(root->reloc_root == reloc_root);
1901
1902                 /*
1903                  * set reference count to 1, so btrfs_recover_relocation
1904                  * knows it should resumes merging
1905                  */
1906                 if (!err)
1907                         btrfs_set_root_refs(&reloc_root->root_item, 1);
1908                 ret = btrfs_update_reloc_root(trans, root);
1909
1910                 /*
1911                  * Even if we have an error we need this reloc root back on our
1912                  * list so we can clean up properly.
1913                  */
1914                 list_add(&reloc_root->root_list, &reloc_roots);
1915                 btrfs_put_root(root);
1916
1917                 if (ret) {
1918                         btrfs_abort_transaction(trans, ret);
1919                         if (!err)
1920                                 err = ret;
1921                         break;
1922                 }
1923         }
1924
1925         list_splice(&reloc_roots, &rc->reloc_roots);
1926
1927         if (!err)
1928                 err = btrfs_commit_transaction(trans);
1929         else
1930                 btrfs_end_transaction(trans);
1931         return err;
1932 }
1933
1934 static noinline_for_stack
1935 void free_reloc_roots(struct list_head *list)
1936 {
1937         struct btrfs_root *reloc_root, *tmp;
1938
1939         list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1940                 __del_reloc_root(reloc_root);
1941 }
1942
1943 static noinline_for_stack
1944 void merge_reloc_roots(struct reloc_control *rc)
1945 {
1946         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1947         struct btrfs_root *root;
1948         struct btrfs_root *reloc_root;
1949         LIST_HEAD(reloc_roots);
1950         int found = 0;
1951         int ret = 0;
1952 again:
1953         root = rc->extent_root;
1954
1955         /*
1956          * this serializes us with btrfs_record_root_in_transaction,
1957          * we have to make sure nobody is in the middle of
1958          * adding their roots to the list while we are
1959          * doing this splice
1960          */
1961         mutex_lock(&fs_info->reloc_mutex);
1962         list_splice_init(&rc->reloc_roots, &reloc_roots);
1963         mutex_unlock(&fs_info->reloc_mutex);
1964
1965         while (!list_empty(&reloc_roots)) {
1966                 found = 1;
1967                 reloc_root = list_entry(reloc_roots.next,
1968                                         struct btrfs_root, root_list);
1969
1970                 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1971                                          false);
1972                 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1973                         if (IS_ERR(root)) {
1974                                 /*
1975                                  * For recovery we read the fs roots on mount,
1976                                  * and if we didn't find the root then we marked
1977                                  * the reloc root as a garbage root.  For normal
1978                                  * relocation obviously the root should exist in
1979                                  * memory.  However there's no reason we can't
1980                                  * handle the error properly here just in case.
1981                                  */
1982                                 ASSERT(0);
1983                                 ret = PTR_ERR(root);
1984                                 goto out;
1985                         }
1986                         if (root->reloc_root != reloc_root) {
1987                                 /*
1988                                  * This is actually impossible without something
1989                                  * going really wrong (like weird race condition
1990                                  * or cosmic rays).
1991                                  */
1992                                 ASSERT(0);
1993                                 ret = -EINVAL;
1994                                 goto out;
1995                         }
1996                         ret = merge_reloc_root(rc, root);
1997                         btrfs_put_root(root);
1998                         if (ret) {
1999                                 if (list_empty(&reloc_root->root_list))
2000                                         list_add_tail(&reloc_root->root_list,
2001                                                       &reloc_roots);
2002                                 goto out;
2003                         }
2004                 } else {
2005                         if (!IS_ERR(root)) {
2006                                 if (root->reloc_root == reloc_root) {
2007                                         root->reloc_root = NULL;
2008                                         btrfs_put_root(reloc_root);
2009                                 }
2010                                 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2011                                           &root->state);
2012                                 btrfs_put_root(root);
2013                         }
2014
2015                         list_del_init(&reloc_root->root_list);
2016                         /* Don't forget to queue this reloc root for cleanup */
2017                         list_add_tail(&reloc_root->reloc_dirty_list,
2018                                       &rc->dirty_subvol_roots);
2019                 }
2020         }
2021
2022         if (found) {
2023                 found = 0;
2024                 goto again;
2025         }
2026 out:
2027         if (ret) {
2028                 btrfs_handle_fs_error(fs_info, ret, NULL);
2029                 free_reloc_roots(&reloc_roots);
2030
2031                 /* new reloc root may be added */
2032                 mutex_lock(&fs_info->reloc_mutex);
2033                 list_splice_init(&rc->reloc_roots, &reloc_roots);
2034                 mutex_unlock(&fs_info->reloc_mutex);
2035                 free_reloc_roots(&reloc_roots);
2036         }
2037
2038         /*
2039          * We used to have
2040          *
2041          * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2042          *
2043          * here, but it's wrong.  If we fail to start the transaction in
2044          * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2045          * have actually been removed from the reloc_root_tree rb tree.  This is
2046          * fine because we're bailing here, and we hold a reference on the root
2047          * for the list that holds it, so these roots will be cleaned up when we
2048          * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2049          * will be cleaned up on unmount.
2050          *
2051          * The remaining nodes will be cleaned up by free_reloc_control.
2052          */
2053 }
2054
2055 static void free_block_list(struct rb_root *blocks)
2056 {
2057         struct tree_block *block;
2058         struct rb_node *rb_node;
2059         while ((rb_node = rb_first(blocks))) {
2060                 block = rb_entry(rb_node, struct tree_block, rb_node);
2061                 rb_erase(rb_node, blocks);
2062                 kfree(block);
2063         }
2064 }
2065
2066 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2067                                       struct btrfs_root *reloc_root)
2068 {
2069         struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2070         struct btrfs_root *root;
2071         int ret;
2072
2073         if (reloc_root->last_trans == trans->transid)
2074                 return 0;
2075
2076         root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2077
2078         /*
2079          * This should succeed, since we can't have a reloc root without having
2080          * already looked up the actual root and created the reloc root for this
2081          * root.
2082          *
2083          * However if there's some sort of corruption where we have a ref to a
2084          * reloc root without a corresponding root this could return ENOENT.
2085          */
2086         if (IS_ERR(root)) {
2087                 ASSERT(0);
2088                 return PTR_ERR(root);
2089         }
2090         if (root->reloc_root != reloc_root) {
2091                 ASSERT(0);
2092                 btrfs_err(fs_info,
2093                           "root %llu has two reloc roots associated with it",
2094                           reloc_root->root_key.offset);
2095                 btrfs_put_root(root);
2096                 return -EUCLEAN;
2097         }
2098         ret = btrfs_record_root_in_trans(trans, root);
2099         btrfs_put_root(root);
2100
2101         return ret;
2102 }
2103
2104 static noinline_for_stack
2105 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2106                                      struct reloc_control *rc,
2107                                      struct btrfs_backref_node *node,
2108                                      struct btrfs_backref_edge *edges[])
2109 {
2110         struct btrfs_backref_node *next;
2111         struct btrfs_root *root;
2112         int index = 0;
2113         int ret;
2114
2115         next = node;
2116         while (1) {
2117                 cond_resched();
2118                 next = walk_up_backref(next, edges, &index);
2119                 root = next->root;
2120
2121                 /*
2122                  * If there is no root, then our references for this block are
2123                  * incomplete, as we should be able to walk all the way up to a
2124                  * block that is owned by a root.
2125                  *
2126                  * This path is only for SHAREABLE roots, so if we come upon a
2127                  * non-SHAREABLE root then we have backrefs that resolve
2128                  * improperly.
2129                  *
2130                  * Both of these cases indicate file system corruption, or a bug
2131                  * in the backref walking code.
2132                  */
2133                 if (!root) {
2134                         ASSERT(0);
2135                         btrfs_err(trans->fs_info,
2136                 "bytenr %llu doesn't have a backref path ending in a root",
2137                                   node->bytenr);
2138                         return ERR_PTR(-EUCLEAN);
2139                 }
2140                 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2141                         ASSERT(0);
2142                         btrfs_err(trans->fs_info,
2143         "bytenr %llu has multiple refs with one ending in a non-shareable root",
2144                                   node->bytenr);
2145                         return ERR_PTR(-EUCLEAN);
2146                 }
2147
2148                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2149                         ret = record_reloc_root_in_trans(trans, root);
2150                         if (ret)
2151                                 return ERR_PTR(ret);
2152                         break;
2153                 }
2154
2155                 ret = btrfs_record_root_in_trans(trans, root);
2156                 if (ret)
2157                         return ERR_PTR(ret);
2158                 root = root->reloc_root;
2159
2160                 /*
2161                  * We could have raced with another thread which failed, so
2162                  * root->reloc_root may not be set, return ENOENT in this case.
2163                  */
2164                 if (!root)
2165                         return ERR_PTR(-ENOENT);
2166
2167                 if (next->new_bytenr != root->node->start) {
2168                         /*
2169                          * We just created the reloc root, so we shouldn't have
2170                          * ->new_bytenr set and this shouldn't be in the changed
2171                          *  list.  If it is then we have multiple roots pointing
2172                          *  at the same bytenr which indicates corruption, or
2173                          *  we've made a mistake in the backref walking code.
2174                          */
2175                         ASSERT(next->new_bytenr == 0);
2176                         ASSERT(list_empty(&next->list));
2177                         if (next->new_bytenr || !list_empty(&next->list)) {
2178                                 btrfs_err(trans->fs_info,
2179         "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2180                                           node->bytenr, next->bytenr);
2181                                 return ERR_PTR(-EUCLEAN);
2182                         }
2183
2184                         next->new_bytenr = root->node->start;
2185                         btrfs_put_root(next->root);
2186                         next->root = btrfs_grab_root(root);
2187                         ASSERT(next->root);
2188                         list_add_tail(&next->list,
2189                                       &rc->backref_cache.changed);
2190                         mark_block_processed(rc, next);
2191                         break;
2192                 }
2193
2194                 WARN_ON(1);
2195                 root = NULL;
2196                 next = walk_down_backref(edges, &index);
2197                 if (!next || next->level <= node->level)
2198                         break;
2199         }
2200         if (!root) {
2201                 /*
2202                  * This can happen if there's fs corruption or if there's a bug
2203                  * in the backref lookup code.
2204                  */
2205                 ASSERT(0);
2206                 return ERR_PTR(-ENOENT);
2207         }
2208
2209         next = node;
2210         /* setup backref node path for btrfs_reloc_cow_block */
2211         while (1) {
2212                 rc->backref_cache.path[next->level] = next;
2213                 if (--index < 0)
2214                         break;
2215                 next = edges[index]->node[UPPER];
2216         }
2217         return root;
2218 }
2219
2220 /*
2221  * Select a tree root for relocation.
2222  *
2223  * Return NULL if the block is not shareable. We should use do_relocation() in
2224  * this case.
2225  *
2226  * Return a tree root pointer if the block is shareable.
2227  * Return -ENOENT if the block is root of reloc tree.
2228  */
2229 static noinline_for_stack
2230 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2231 {
2232         struct btrfs_backref_node *next;
2233         struct btrfs_root *root;
2234         struct btrfs_root *fs_root = NULL;
2235         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2236         int index = 0;
2237
2238         next = node;
2239         while (1) {
2240                 cond_resched();
2241                 next = walk_up_backref(next, edges, &index);
2242                 root = next->root;
2243
2244                 /*
2245                  * This can occur if we have incomplete extent refs leading all
2246                  * the way up a particular path, in this case return -EUCLEAN.
2247                  */
2248                 if (!root)
2249                         return ERR_PTR(-EUCLEAN);
2250
2251                 /* No other choice for non-shareable tree */
2252                 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2253                         return root;
2254
2255                 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2256                         fs_root = root;
2257
2258                 if (next != node)
2259                         return NULL;
2260
2261                 next = walk_down_backref(edges, &index);
2262                 if (!next || next->level <= node->level)
2263                         break;
2264         }
2265
2266         if (!fs_root)
2267                 return ERR_PTR(-ENOENT);
2268         return fs_root;
2269 }
2270
2271 static noinline_for_stack
2272 u64 calcu_metadata_size(struct reloc_control *rc,
2273                         struct btrfs_backref_node *node, int reserve)
2274 {
2275         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2276         struct btrfs_backref_node *next = node;
2277         struct btrfs_backref_edge *edge;
2278         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2279         u64 num_bytes = 0;
2280         int index = 0;
2281
2282         BUG_ON(reserve && node->processed);
2283
2284         while (next) {
2285                 cond_resched();
2286                 while (1) {
2287                         if (next->processed && (reserve || next != node))
2288                                 break;
2289
2290                         num_bytes += fs_info->nodesize;
2291
2292                         if (list_empty(&next->upper))
2293                                 break;
2294
2295                         edge = list_entry(next->upper.next,
2296                                         struct btrfs_backref_edge, list[LOWER]);
2297                         edges[index++] = edge;
2298                         next = edge->node[UPPER];
2299                 }
2300                 next = walk_down_backref(edges, &index);
2301         }
2302         return num_bytes;
2303 }
2304
2305 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2306                                   struct reloc_control *rc,
2307                                   struct btrfs_backref_node *node)
2308 {
2309         struct btrfs_root *root = rc->extent_root;
2310         struct btrfs_fs_info *fs_info = root->fs_info;
2311         u64 num_bytes;
2312         int ret;
2313         u64 tmp;
2314
2315         num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2316
2317         trans->block_rsv = rc->block_rsv;
2318         rc->reserved_bytes += num_bytes;
2319
2320         /*
2321          * We are under a transaction here so we can only do limited flushing.
2322          * If we get an enospc just kick back -EAGAIN so we know to drop the
2323          * transaction and try to refill when we can flush all the things.
2324          */
2325         ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2326                                 BTRFS_RESERVE_FLUSH_LIMIT);
2327         if (ret) {
2328                 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2329                 while (tmp <= rc->reserved_bytes)
2330                         tmp <<= 1;
2331                 /*
2332                  * only one thread can access block_rsv at this point,
2333                  * so we don't need hold lock to protect block_rsv.
2334                  * we expand more reservation size here to allow enough
2335                  * space for relocation and we will return earlier in
2336                  * enospc case.
2337                  */
2338                 rc->block_rsv->size = tmp + fs_info->nodesize *
2339                                       RELOCATION_RESERVED_NODES;
2340                 return -EAGAIN;
2341         }
2342
2343         return 0;
2344 }
2345
2346 /*
2347  * relocate a block tree, and then update pointers in upper level
2348  * blocks that reference the block to point to the new location.
2349  *
2350  * if called by link_to_upper, the block has already been relocated.
2351  * in that case this function just updates pointers.
2352  */
2353 static int do_relocation(struct btrfs_trans_handle *trans,
2354                          struct reloc_control *rc,
2355                          struct btrfs_backref_node *node,
2356                          struct btrfs_key *key,
2357                          struct btrfs_path *path, int lowest)
2358 {
2359         struct btrfs_backref_node *upper;
2360         struct btrfs_backref_edge *edge;
2361         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2362         struct btrfs_root *root;
2363         struct extent_buffer *eb;
2364         u32 blocksize;
2365         u64 bytenr;
2366         int slot;
2367         int ret = 0;
2368
2369         /*
2370          * If we are lowest then this is the first time we're processing this
2371          * block, and thus shouldn't have an eb associated with it yet.
2372          */
2373         ASSERT(!lowest || !node->eb);
2374
2375         path->lowest_level = node->level + 1;
2376         rc->backref_cache.path[node->level] = node;
2377         list_for_each_entry(edge, &node->upper, list[LOWER]) {
2378                 struct btrfs_ref ref = { 0 };
2379
2380                 cond_resched();
2381
2382                 upper = edge->node[UPPER];
2383                 root = select_reloc_root(trans, rc, upper, edges);
2384                 if (IS_ERR(root)) {
2385                         ret = PTR_ERR(root);
2386                         goto next;
2387                 }
2388
2389                 if (upper->eb && !upper->locked) {
2390                         if (!lowest) {
2391                                 ret = btrfs_bin_search(upper->eb, key, &slot);
2392                                 if (ret < 0)
2393                                         goto next;
2394                                 BUG_ON(ret);
2395                                 bytenr = btrfs_node_blockptr(upper->eb, slot);
2396                                 if (node->eb->start == bytenr)
2397                                         goto next;
2398                         }
2399                         btrfs_backref_drop_node_buffer(upper);
2400                 }
2401
2402                 if (!upper->eb) {
2403                         ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2404                         if (ret) {
2405                                 if (ret > 0)
2406                                         ret = -ENOENT;
2407
2408                                 btrfs_release_path(path);
2409                                 break;
2410                         }
2411
2412                         if (!upper->eb) {
2413                                 upper->eb = path->nodes[upper->level];
2414                                 path->nodes[upper->level] = NULL;
2415                         } else {
2416                                 BUG_ON(upper->eb != path->nodes[upper->level]);
2417                         }
2418
2419                         upper->locked = 1;
2420                         path->locks[upper->level] = 0;
2421
2422                         slot = path->slots[upper->level];
2423                         btrfs_release_path(path);
2424                 } else {
2425                         ret = btrfs_bin_search(upper->eb, key, &slot);
2426                         if (ret < 0)
2427                                 goto next;
2428                         BUG_ON(ret);
2429                 }
2430
2431                 bytenr = btrfs_node_blockptr(upper->eb, slot);
2432                 if (lowest) {
2433                         if (bytenr != node->bytenr) {
2434                                 btrfs_err(root->fs_info,
2435                 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2436                                           bytenr, node->bytenr, slot,
2437                                           upper->eb->start);
2438                                 ret = -EIO;
2439                                 goto next;
2440                         }
2441                 } else {
2442                         if (node->eb->start == bytenr)
2443                                 goto next;
2444                 }
2445
2446                 blocksize = root->fs_info->nodesize;
2447                 eb = btrfs_read_node_slot(upper->eb, slot);
2448                 if (IS_ERR(eb)) {
2449                         ret = PTR_ERR(eb);
2450                         goto next;
2451                 }
2452                 btrfs_tree_lock(eb);
2453
2454                 if (!node->eb) {
2455                         ret = btrfs_cow_block(trans, root, eb, upper->eb,
2456                                               slot, &eb, BTRFS_NESTING_COW);
2457                         btrfs_tree_unlock(eb);
2458                         free_extent_buffer(eb);
2459                         if (ret < 0)
2460                                 goto next;
2461                         /*
2462                          * We've just COWed this block, it should have updated
2463                          * the correct backref node entry.
2464                          */
2465                         ASSERT(node->eb == eb);
2466                 } else {
2467                         btrfs_set_node_blockptr(upper->eb, slot,
2468                                                 node->eb->start);
2469                         btrfs_set_node_ptr_generation(upper->eb, slot,
2470                                                       trans->transid);
2471                         btrfs_mark_buffer_dirty(upper->eb);
2472
2473                         btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2474                                                node->eb->start, blocksize,
2475                                                upper->eb->start);
2476                         ref.real_root = root->root_key.objectid;
2477                         btrfs_init_tree_ref(&ref, node->level,
2478                                             btrfs_header_owner(upper->eb));
2479                         ret = btrfs_inc_extent_ref(trans, &ref);
2480                         if (!ret)
2481                                 ret = btrfs_drop_subtree(trans, root, eb,
2482                                                          upper->eb);
2483                         if (ret)
2484                                 btrfs_abort_transaction(trans, ret);
2485                 }
2486 next:
2487                 if (!upper->pending)
2488                         btrfs_backref_drop_node_buffer(upper);
2489                 else
2490                         btrfs_backref_unlock_node_buffer(upper);
2491                 if (ret)
2492                         break;
2493         }
2494
2495         if (!ret && node->pending) {
2496                 btrfs_backref_drop_node_buffer(node);
2497                 list_move_tail(&node->list, &rc->backref_cache.changed);
2498                 node->pending = 0;
2499         }
2500
2501         path->lowest_level = 0;
2502
2503         /*
2504          * We should have allocated all of our space in the block rsv and thus
2505          * shouldn't ENOSPC.
2506          */
2507         ASSERT(ret != -ENOSPC);
2508         return ret;
2509 }
2510
2511 static int link_to_upper(struct btrfs_trans_handle *trans,
2512                          struct reloc_control *rc,
2513                          struct btrfs_backref_node *node,
2514                          struct btrfs_path *path)
2515 {
2516         struct btrfs_key key;
2517
2518         btrfs_node_key_to_cpu(node->eb, &key, 0);
2519         return do_relocation(trans, rc, node, &key, path, 0);
2520 }
2521
2522 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2523                                 struct reloc_control *rc,
2524                                 struct btrfs_path *path, int err)
2525 {
2526         LIST_HEAD(list);
2527         struct btrfs_backref_cache *cache = &rc->backref_cache;
2528         struct btrfs_backref_node *node;
2529         int level;
2530         int ret;
2531
2532         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2533                 while (!list_empty(&cache->pending[level])) {
2534                         node = list_entry(cache->pending[level].next,
2535                                           struct btrfs_backref_node, list);
2536                         list_move_tail(&node->list, &list);
2537                         BUG_ON(!node->pending);
2538
2539                         if (!err) {
2540                                 ret = link_to_upper(trans, rc, node, path);
2541                                 if (ret < 0)
2542                                         err = ret;
2543                         }
2544                 }
2545                 list_splice_init(&list, &cache->pending[level]);
2546         }
2547         return err;
2548 }
2549
2550 /*
2551  * mark a block and all blocks directly/indirectly reference the block
2552  * as processed.
2553  */
2554 static void update_processed_blocks(struct reloc_control *rc,
2555                                     struct btrfs_backref_node *node)
2556 {
2557         struct btrfs_backref_node *next = node;
2558         struct btrfs_backref_edge *edge;
2559         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2560         int index = 0;
2561
2562         while (next) {
2563                 cond_resched();
2564                 while (1) {
2565                         if (next->processed)
2566                                 break;
2567
2568                         mark_block_processed(rc, next);
2569
2570                         if (list_empty(&next->upper))
2571                                 break;
2572
2573                         edge = list_entry(next->upper.next,
2574                                         struct btrfs_backref_edge, list[LOWER]);
2575                         edges[index++] = edge;
2576                         next = edge->node[UPPER];
2577                 }
2578                 next = walk_down_backref(edges, &index);
2579         }
2580 }
2581
2582 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2583 {
2584         u32 blocksize = rc->extent_root->fs_info->nodesize;
2585
2586         if (test_range_bit(&rc->processed_blocks, bytenr,
2587                            bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2588                 return 1;
2589         return 0;
2590 }
2591
2592 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2593                               struct tree_block *block)
2594 {
2595         struct extent_buffer *eb;
2596
2597         eb = read_tree_block(fs_info, block->bytenr, block->owner,
2598                              block->key.offset, block->level, NULL);
2599         if (IS_ERR(eb)) {
2600                 return PTR_ERR(eb);
2601         } else if (!extent_buffer_uptodate(eb)) {
2602                 free_extent_buffer(eb);
2603                 return -EIO;
2604         }
2605         if (block->level == 0)
2606                 btrfs_item_key_to_cpu(eb, &block->key, 0);
2607         else
2608                 btrfs_node_key_to_cpu(eb, &block->key, 0);
2609         free_extent_buffer(eb);
2610         block->key_ready = 1;
2611         return 0;
2612 }
2613
2614 /*
2615  * helper function to relocate a tree block
2616  */
2617 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2618                                 struct reloc_control *rc,
2619                                 struct btrfs_backref_node *node,
2620                                 struct btrfs_key *key,
2621                                 struct btrfs_path *path)
2622 {
2623         struct btrfs_root *root;
2624         int ret = 0;
2625
2626         if (!node)
2627                 return 0;
2628
2629         /*
2630          * If we fail here we want to drop our backref_node because we are going
2631          * to start over and regenerate the tree for it.
2632          */
2633         ret = reserve_metadata_space(trans, rc, node);
2634         if (ret)
2635                 goto out;
2636
2637         BUG_ON(node->processed);
2638         root = select_one_root(node);
2639         if (IS_ERR(root)) {
2640                 ret = PTR_ERR(root);
2641
2642                 /* See explanation in select_one_root for the -EUCLEAN case. */
2643                 ASSERT(ret == -ENOENT);
2644                 if (ret == -ENOENT) {
2645                         ret = 0;
2646                         update_processed_blocks(rc, node);
2647                 }
2648                 goto out;
2649         }
2650
2651         if (root) {
2652                 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2653                         /*
2654                          * This block was the root block of a root, and this is
2655                          * the first time we're processing the block and thus it
2656                          * should not have had the ->new_bytenr modified and
2657                          * should have not been included on the changed list.
2658                          *
2659                          * However in the case of corruption we could have
2660                          * multiple refs pointing to the same block improperly,
2661                          * and thus we would trip over these checks.  ASSERT()
2662                          * for the developer case, because it could indicate a
2663                          * bug in the backref code, however error out for a
2664                          * normal user in the case of corruption.
2665                          */
2666                         ASSERT(node->new_bytenr == 0);
2667                         ASSERT(list_empty(&node->list));
2668                         if (node->new_bytenr || !list_empty(&node->list)) {
2669                                 btrfs_err(root->fs_info,
2670                                   "bytenr %llu has improper references to it",
2671                                           node->bytenr);
2672                                 ret = -EUCLEAN;
2673                                 goto out;
2674                         }
2675                         ret = btrfs_record_root_in_trans(trans, root);
2676                         if (ret)
2677                                 goto out;
2678                         /*
2679                          * Another thread could have failed, need to check if we
2680                          * have reloc_root actually set.
2681                          */
2682                         if (!root->reloc_root) {
2683                                 ret = -ENOENT;
2684                                 goto out;
2685                         }
2686                         root = root->reloc_root;
2687                         node->new_bytenr = root->node->start;
2688                         btrfs_put_root(node->root);
2689                         node->root = btrfs_grab_root(root);
2690                         ASSERT(node->root);
2691                         list_add_tail(&node->list, &rc->backref_cache.changed);
2692                 } else {
2693                         path->lowest_level = node->level;
2694                         ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2695                         btrfs_release_path(path);
2696                         if (ret > 0)
2697                                 ret = 0;
2698                 }
2699                 if (!ret)
2700                         update_processed_blocks(rc, node);
2701         } else {
2702                 ret = do_relocation(trans, rc, node, key, path, 1);
2703         }
2704 out:
2705         if (ret || node->level == 0 || node->cowonly)
2706                 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2707         return ret;
2708 }
2709
2710 /*
2711  * relocate a list of blocks
2712  */
2713 static noinline_for_stack
2714 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2715                          struct reloc_control *rc, struct rb_root *blocks)
2716 {
2717         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2718         struct btrfs_backref_node *node;
2719         struct btrfs_path *path;
2720         struct tree_block *block;
2721         struct tree_block *next;
2722         int ret;
2723         int err = 0;
2724
2725         path = btrfs_alloc_path();
2726         if (!path) {
2727                 err = -ENOMEM;
2728                 goto out_free_blocks;
2729         }
2730
2731         /* Kick in readahead for tree blocks with missing keys */
2732         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2733                 if (!block->key_ready)
2734                         btrfs_readahead_tree_block(fs_info, block->bytenr,
2735                                                    block->owner, 0,
2736                                                    block->level);
2737         }
2738
2739         /* Get first keys */
2740         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2741                 if (!block->key_ready) {
2742                         err = get_tree_block_key(fs_info, block);
2743                         if (err)
2744                                 goto out_free_path;
2745                 }
2746         }
2747
2748         /* Do tree relocation */
2749         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2750                 node = build_backref_tree(rc, &block->key,
2751                                           block->level, block->bytenr);
2752                 if (IS_ERR(node)) {
2753                         err = PTR_ERR(node);
2754                         goto out;
2755                 }
2756
2757                 ret = relocate_tree_block(trans, rc, node, &block->key,
2758                                           path);
2759                 if (ret < 0) {
2760                         err = ret;
2761                         break;
2762                 }
2763         }
2764 out:
2765         err = finish_pending_nodes(trans, rc, path, err);
2766
2767 out_free_path:
2768         btrfs_free_path(path);
2769 out_free_blocks:
2770         free_block_list(blocks);
2771         return err;
2772 }
2773
2774 static noinline_for_stack int prealloc_file_extent_cluster(
2775                                 struct btrfs_inode *inode,
2776                                 struct file_extent_cluster *cluster)
2777 {
2778         u64 alloc_hint = 0;
2779         u64 start;
2780         u64 end;
2781         u64 offset = inode->index_cnt;
2782         u64 num_bytes;
2783         int nr;
2784         int ret = 0;
2785         u64 i_size = i_size_read(&inode->vfs_inode);
2786         u64 prealloc_start = cluster->start - offset;
2787         u64 prealloc_end = cluster->end - offset;
2788         u64 cur_offset = prealloc_start;
2789
2790         /*
2791          * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2792          * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2793          * btrfs_do_readpage() call of previously relocated file cluster.
2794          *
2795          * If the current cluster starts in the above range, btrfs_do_readpage()
2796          * will skip the read, and relocate_one_page() will later writeback
2797          * the padding zeros as new data, causing data corruption.
2798          *
2799          * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2800          */
2801         if (!IS_ALIGNED(i_size, PAGE_SIZE)) {
2802                 struct address_space *mapping = inode->vfs_inode.i_mapping;
2803                 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2804                 const u32 sectorsize = fs_info->sectorsize;
2805                 struct page *page;
2806
2807                 ASSERT(sectorsize < PAGE_SIZE);
2808                 ASSERT(IS_ALIGNED(i_size, sectorsize));
2809
2810                 /*
2811                  * Subpage can't handle page with DIRTY but without UPTODATE
2812                  * bit as it can lead to the following deadlock:
2813                  *
2814                  * btrfs_readpage()
2815                  * | Page already *locked*
2816                  * |- btrfs_lock_and_flush_ordered_range()
2817                  *    |- btrfs_start_ordered_extent()
2818                  *       |- extent_write_cache_pages()
2819                  *          |- lock_page()
2820                  *             We try to lock the page we already hold.
2821                  *
2822                  * Here we just writeback the whole data reloc inode, so that
2823                  * we will be ensured to have no dirty range in the page, and
2824                  * are safe to clear the uptodate bits.
2825                  *
2826                  * This shouldn't cause too much overhead, as we need to write
2827                  * the data back anyway.
2828                  */
2829                 ret = filemap_write_and_wait(mapping);
2830                 if (ret < 0)
2831                         return ret;
2832
2833                 clear_extent_bits(&inode->io_tree, i_size,
2834                                   round_up(i_size, PAGE_SIZE) - 1,
2835                                   EXTENT_UPTODATE);
2836                 page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2837                 /*
2838                  * If page is freed we don't need to do anything then, as we
2839                  * will re-read the whole page anyway.
2840                  */
2841                 if (page) {
2842                         btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2843                                         round_up(i_size, PAGE_SIZE) - i_size);
2844                         unlock_page(page);
2845                         put_page(page);
2846                 }
2847         }
2848
2849         BUG_ON(cluster->start != cluster->boundary[0]);
2850         ret = btrfs_alloc_data_chunk_ondemand(inode,
2851                                               prealloc_end + 1 - prealloc_start);
2852         if (ret)
2853                 return ret;
2854
2855         /*
2856          * On a zoned filesystem, we cannot preallocate the file region.
2857          * Instead, we dirty and fiemap_write the region.
2858          */
2859         if (btrfs_is_zoned(inode->root->fs_info)) {
2860                 struct btrfs_root *root = inode->root;
2861                 struct btrfs_trans_handle *trans;
2862
2863                 end = cluster->end - offset + 1;
2864                 trans = btrfs_start_transaction(root, 1);
2865                 if (IS_ERR(trans))
2866                         return PTR_ERR(trans);
2867
2868                 inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
2869                 i_size_write(&inode->vfs_inode, end);
2870                 ret = btrfs_update_inode(trans, root, inode);
2871                 if (ret) {
2872                         btrfs_abort_transaction(trans, ret);
2873                         btrfs_end_transaction(trans);
2874                         return ret;
2875                 }
2876
2877                 return btrfs_end_transaction(trans);
2878         }
2879
2880         btrfs_inode_lock(&inode->vfs_inode, 0);
2881         for (nr = 0; nr < cluster->nr; nr++) {
2882                 start = cluster->boundary[nr] - offset;
2883                 if (nr + 1 < cluster->nr)
2884                         end = cluster->boundary[nr + 1] - 1 - offset;
2885                 else
2886                         end = cluster->end - offset;
2887
2888                 lock_extent(&inode->io_tree, start, end);
2889                 num_bytes = end + 1 - start;
2890                 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2891                                                 num_bytes, num_bytes,
2892                                                 end + 1, &alloc_hint);
2893                 cur_offset = end + 1;
2894                 unlock_extent(&inode->io_tree, start, end);
2895                 if (ret)
2896                         break;
2897         }
2898         btrfs_inode_unlock(&inode->vfs_inode, 0);
2899
2900         if (cur_offset < prealloc_end)
2901                 btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2902                                                prealloc_end + 1 - cur_offset);
2903         return ret;
2904 }
2905
2906 static noinline_for_stack
2907 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2908                          u64 block_start)
2909 {
2910         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2911         struct extent_map *em;
2912         int ret = 0;
2913
2914         em = alloc_extent_map();
2915         if (!em)
2916                 return -ENOMEM;
2917
2918         em->start = start;
2919         em->len = end + 1 - start;
2920         em->block_len = em->len;
2921         em->block_start = block_start;
2922         set_bit(EXTENT_FLAG_PINNED, &em->flags);
2923
2924         lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2925         while (1) {
2926                 write_lock(&em_tree->lock);
2927                 ret = add_extent_mapping(em_tree, em, 0);
2928                 write_unlock(&em_tree->lock);
2929                 if (ret != -EEXIST) {
2930                         free_extent_map(em);
2931                         break;
2932                 }
2933                 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2934         }
2935         unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2936         return ret;
2937 }
2938
2939 /*
2940  * Allow error injection to test balance/relocation cancellation
2941  */
2942 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2943 {
2944         return atomic_read(&fs_info->balance_cancel_req) ||
2945                 atomic_read(&fs_info->reloc_cancel_req) ||
2946                 fatal_signal_pending(current);
2947 }
2948 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2949
2950 static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster,
2951                                     int cluster_nr)
2952 {
2953         /* Last extent, use cluster end directly */
2954         if (cluster_nr >= cluster->nr - 1)
2955                 return cluster->end;
2956
2957         /* Use next boundary start*/
2958         return cluster->boundary[cluster_nr + 1] - 1;
2959 }
2960
2961 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2962                              struct file_extent_cluster *cluster,
2963                              int *cluster_nr, unsigned long page_index)
2964 {
2965         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2966         u64 offset = BTRFS_I(inode)->index_cnt;
2967         const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2968         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2969         struct page *page;
2970         u64 page_start;
2971         u64 page_end;
2972         u64 cur;
2973         int ret;
2974
2975         ASSERT(page_index <= last_index);
2976         page = find_lock_page(inode->i_mapping, page_index);
2977         if (!page) {
2978                 page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2979                                 page_index, last_index + 1 - page_index);
2980                 page = find_or_create_page(inode->i_mapping, page_index, mask);
2981                 if (!page)
2982                         return -ENOMEM;
2983         }
2984         ret = set_page_extent_mapped(page);
2985         if (ret < 0)
2986                 goto release_page;
2987
2988         if (PageReadahead(page))
2989                 page_cache_async_readahead(inode->i_mapping, ra, NULL, page,
2990                                    page_index, last_index + 1 - page_index);
2991
2992         if (!PageUptodate(page)) {
2993                 btrfs_readpage(NULL, page);
2994                 lock_page(page);
2995                 if (!PageUptodate(page)) {
2996                         ret = -EIO;
2997                         goto release_page;
2998                 }
2999         }
3000
3001         page_start = page_offset(page);
3002         page_end = page_start + PAGE_SIZE - 1;
3003
3004         /*
3005          * Start from the cluster, as for subpage case, the cluster can start
3006          * inside the page.
3007          */
3008         cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
3009         while (cur <= page_end) {
3010                 u64 extent_start = cluster->boundary[*cluster_nr] - offset;
3011                 u64 extent_end = get_cluster_boundary_end(cluster,
3012                                                 *cluster_nr) - offset;
3013                 u64 clamped_start = max(page_start, extent_start);
3014                 u64 clamped_end = min(page_end, extent_end);
3015                 u32 clamped_len = clamped_end + 1 - clamped_start;
3016
3017                 /* Reserve metadata for this range */
3018                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3019                                                       clamped_len);
3020                 if (ret)
3021                         goto release_page;
3022
3023                 /* Mark the range delalloc and dirty for later writeback */
3024                 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end);
3025                 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3026                                                 clamped_end, 0, NULL);
3027                 if (ret) {
3028                         clear_extent_bits(&BTRFS_I(inode)->io_tree,
3029                                         clamped_start, clamped_end,
3030                                         EXTENT_LOCKED | EXTENT_BOUNDARY);
3031                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
3032                                                         clamped_len, true);
3033                         btrfs_delalloc_release_extents(BTRFS_I(inode),
3034                                                        clamped_len);
3035                         goto release_page;
3036                 }
3037                 btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3038
3039                 /*
3040                  * Set the boundary if it's inside the page.
3041                  * Data relocation requires the destination extents to have the
3042                  * same size as the source.
3043                  * EXTENT_BOUNDARY bit prevents current extent from being merged
3044                  * with previous extent.
3045                  */
3046                 if (in_range(cluster->boundary[*cluster_nr] - offset,
3047                              page_start, PAGE_SIZE)) {
3048                         u64 boundary_start = cluster->boundary[*cluster_nr] -
3049                                                 offset;
3050                         u64 boundary_end = boundary_start +
3051                                            fs_info->sectorsize - 1;
3052
3053                         set_extent_bits(&BTRFS_I(inode)->io_tree,
3054                                         boundary_start, boundary_end,
3055                                         EXTENT_BOUNDARY);
3056                 }
3057                 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end);
3058                 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3059                 cur += clamped_len;
3060
3061                 /* Crossed extent end, go to next extent */
3062                 if (cur >= extent_end) {
3063                         (*cluster_nr)++;
3064                         /* Just finished the last extent of the cluster, exit. */
3065                         if (*cluster_nr >= cluster->nr)
3066                                 break;
3067                 }
3068         }
3069         unlock_page(page);
3070         put_page(page);
3071
3072         balance_dirty_pages_ratelimited(inode->i_mapping);
3073         btrfs_throttle(fs_info);
3074         if (btrfs_should_cancel_balance(fs_info))
3075                 ret = -ECANCELED;
3076         return ret;
3077
3078 release_page:
3079         unlock_page(page);
3080         put_page(page);
3081         return ret;
3082 }
3083
3084 static int relocate_file_extent_cluster(struct inode *inode,
3085                                         struct file_extent_cluster *cluster)
3086 {
3087         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3088         u64 offset = BTRFS_I(inode)->index_cnt;
3089         unsigned long index;
3090         unsigned long last_index;
3091         struct file_ra_state *ra;
3092         int cluster_nr = 0;
3093         int ret = 0;
3094
3095         if (!cluster->nr)
3096                 return 0;
3097
3098         ra = kzalloc(sizeof(*ra), GFP_NOFS);
3099         if (!ra)
3100                 return -ENOMEM;
3101
3102         ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3103         if (ret)
3104                 goto out;
3105
3106         file_ra_state_init(ra, inode->i_mapping);
3107
3108         ret = setup_extent_mapping(inode, cluster->start - offset,
3109                                    cluster->end - offset, cluster->start);
3110         if (ret)
3111                 goto out;
3112
3113         last_index = (cluster->end - offset) >> PAGE_SHIFT;
3114         for (index = (cluster->start - offset) >> PAGE_SHIFT;
3115              index <= last_index && !ret; index++)
3116                 ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3117         if (btrfs_is_zoned(fs_info) && !ret)
3118                 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
3119         if (ret == 0)
3120                 WARN_ON(cluster_nr != cluster->nr);
3121 out:
3122         kfree(ra);
3123         return ret;
3124 }
3125
3126 static noinline_for_stack
3127 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3128                          struct file_extent_cluster *cluster)
3129 {
3130         int ret;
3131
3132         if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3133                 ret = relocate_file_extent_cluster(inode, cluster);
3134                 if (ret)
3135                         return ret;
3136                 cluster->nr = 0;
3137         }
3138
3139         if (!cluster->nr)
3140                 cluster->start = extent_key->objectid;
3141         else
3142                 BUG_ON(cluster->nr >= MAX_EXTENTS);
3143         cluster->end = extent_key->objectid + extent_key->offset - 1;
3144         cluster->boundary[cluster->nr] = extent_key->objectid;
3145         cluster->nr++;
3146
3147         if (cluster->nr >= MAX_EXTENTS) {
3148                 ret = relocate_file_extent_cluster(inode, cluster);
3149                 if (ret)
3150                         return ret;
3151                 cluster->nr = 0;
3152         }
3153         return 0;
3154 }
3155
3156 /*
3157  * helper to add a tree block to the list.
3158  * the major work is getting the generation and level of the block
3159  */
3160 static int add_tree_block(struct reloc_control *rc,
3161                           struct btrfs_key *extent_key,
3162                           struct btrfs_path *path,
3163                           struct rb_root *blocks)
3164 {
3165         struct extent_buffer *eb;
3166         struct btrfs_extent_item *ei;
3167         struct btrfs_tree_block_info *bi;
3168         struct tree_block *block;
3169         struct rb_node *rb_node;
3170         u32 item_size;
3171         int level = -1;
3172         u64 generation;
3173         u64 owner = 0;
3174
3175         eb =  path->nodes[0];
3176         item_size = btrfs_item_size_nr(eb, path->slots[0]);
3177
3178         if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3179             item_size >= sizeof(*ei) + sizeof(*bi)) {
3180                 unsigned long ptr = 0, end;
3181
3182                 ei = btrfs_item_ptr(eb, path->slots[0],
3183                                 struct btrfs_extent_item);
3184                 end = (unsigned long)ei + item_size;
3185                 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3186                         bi = (struct btrfs_tree_block_info *)(ei + 1);
3187                         level = btrfs_tree_block_level(eb, bi);
3188                         ptr = (unsigned long)(bi + 1);
3189                 } else {
3190                         level = (int)extent_key->offset;
3191                         ptr = (unsigned long)(ei + 1);
3192                 }
3193                 generation = btrfs_extent_generation(eb, ei);
3194
3195                 /*
3196                  * We're reading random blocks without knowing their owner ahead
3197                  * of time.  This is ok most of the time, as all reloc roots and
3198                  * fs roots have the same lock type.  However normal trees do
3199                  * not, and the only way to know ahead of time is to read the
3200                  * inline ref offset.  We know it's an fs root if
3201                  *
3202                  * 1. There's more than one ref.
3203                  * 2. There's a SHARED_DATA_REF_KEY set.
3204                  * 3. FULL_BACKREF is set on the flags.
3205                  *
3206                  * Otherwise it's safe to assume that the ref offset == the
3207                  * owner of this block, so we can use that when calling
3208                  * read_tree_block.
3209                  */
3210                 if (btrfs_extent_refs(eb, ei) == 1 &&
3211                     !(btrfs_extent_flags(eb, ei) &
3212                       BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3213                     ptr < end) {
3214                         struct btrfs_extent_inline_ref *iref;
3215                         int type;
3216
3217                         iref = (struct btrfs_extent_inline_ref *)ptr;
3218                         type = btrfs_get_extent_inline_ref_type(eb, iref,
3219                                                         BTRFS_REF_TYPE_BLOCK);
3220                         if (type == BTRFS_REF_TYPE_INVALID)
3221                                 return -EINVAL;
3222                         if (type == BTRFS_TREE_BLOCK_REF_KEY)
3223                                 owner = btrfs_extent_inline_ref_offset(eb, iref);
3224                 }
3225         } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3226                 btrfs_print_v0_err(eb->fs_info);
3227                 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3228                 return -EINVAL;
3229         } else {
3230                 BUG();
3231         }
3232
3233         btrfs_release_path(path);
3234
3235         BUG_ON(level == -1);
3236
3237         block = kmalloc(sizeof(*block), GFP_NOFS);
3238         if (!block)
3239                 return -ENOMEM;
3240
3241         block->bytenr = extent_key->objectid;
3242         block->key.objectid = rc->extent_root->fs_info->nodesize;
3243         block->key.offset = generation;
3244         block->level = level;
3245         block->key_ready = 0;
3246         block->owner = owner;
3247
3248         rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3249         if (rb_node)
3250                 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3251                                     -EEXIST);
3252
3253         return 0;
3254 }
3255
3256 /*
3257  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3258  */
3259 static int __add_tree_block(struct reloc_control *rc,
3260                             u64 bytenr, u32 blocksize,
3261                             struct rb_root *blocks)
3262 {
3263         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3264         struct btrfs_path *path;
3265         struct btrfs_key key;
3266         int ret;
3267         bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3268
3269         if (tree_block_processed(bytenr, rc))
3270                 return 0;
3271
3272         if (rb_simple_search(blocks, bytenr))
3273                 return 0;
3274
3275         path = btrfs_alloc_path();
3276         if (!path)
3277                 return -ENOMEM;
3278 again:
3279         key.objectid = bytenr;
3280         if (skinny) {
3281                 key.type = BTRFS_METADATA_ITEM_KEY;
3282                 key.offset = (u64)-1;
3283         } else {
3284                 key.type = BTRFS_EXTENT_ITEM_KEY;
3285                 key.offset = blocksize;
3286         }
3287
3288         path->search_commit_root = 1;
3289         path->skip_locking = 1;
3290         ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3291         if (ret < 0)
3292                 goto out;
3293
3294         if (ret > 0 && skinny) {
3295                 if (path->slots[0]) {
3296                         path->slots[0]--;
3297                         btrfs_item_key_to_cpu(path->nodes[0], &key,
3298                                               path->slots[0]);
3299                         if (key.objectid == bytenr &&
3300                             (key.type == BTRFS_METADATA_ITEM_KEY ||
3301                              (key.type == BTRFS_EXTENT_ITEM_KEY &&
3302                               key.offset == blocksize)))
3303                                 ret = 0;
3304                 }
3305
3306                 if (ret) {
3307                         skinny = false;
3308                         btrfs_release_path(path);
3309                         goto again;
3310                 }
3311         }
3312         if (ret) {
3313                 ASSERT(ret == 1);
3314                 btrfs_print_leaf(path->nodes[0]);
3315                 btrfs_err(fs_info,
3316              "tree block extent item (%llu) is not found in extent tree",
3317                      bytenr);
3318                 WARN_ON(1);
3319                 ret = -EINVAL;
3320                 goto out;
3321         }
3322
3323         ret = add_tree_block(rc, &key, path, blocks);
3324 out:
3325         btrfs_free_path(path);
3326         return ret;
3327 }
3328
3329 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3330                                     struct btrfs_block_group *block_group,
3331                                     struct inode *inode,
3332                                     u64 ino)
3333 {
3334         struct btrfs_root *root = fs_info->tree_root;
3335         struct btrfs_trans_handle *trans;
3336         int ret = 0;
3337
3338         if (inode)
3339                 goto truncate;
3340
3341         inode = btrfs_iget(fs_info->sb, ino, root);
3342         if (IS_ERR(inode))
3343                 return -ENOENT;
3344
3345 truncate:
3346         ret = btrfs_check_trunc_cache_free_space(fs_info,
3347                                                  &fs_info->global_block_rsv);
3348         if (ret)
3349                 goto out;
3350
3351         trans = btrfs_join_transaction(root);
3352         if (IS_ERR(trans)) {
3353                 ret = PTR_ERR(trans);
3354                 goto out;
3355         }
3356
3357         ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3358
3359         btrfs_end_transaction(trans);
3360         btrfs_btree_balance_dirty(fs_info);
3361 out:
3362         iput(inode);
3363         return ret;
3364 }
3365
3366 /*
3367  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3368  * cache inode, to avoid free space cache data extent blocking data relocation.
3369  */
3370 static int delete_v1_space_cache(struct extent_buffer *leaf,
3371                                  struct btrfs_block_group *block_group,
3372                                  u64 data_bytenr)
3373 {
3374         u64 space_cache_ino;
3375         struct btrfs_file_extent_item *ei;
3376         struct btrfs_key key;
3377         bool found = false;
3378         int i;
3379         int ret;
3380
3381         if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3382                 return 0;
3383
3384         for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3385                 u8 type;
3386
3387                 btrfs_item_key_to_cpu(leaf, &key, i);
3388                 if (key.type != BTRFS_EXTENT_DATA_KEY)
3389                         continue;
3390                 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3391                 type = btrfs_file_extent_type(leaf, ei);
3392
3393                 if ((type == BTRFS_FILE_EXTENT_REG ||
3394                      type == BTRFS_FILE_EXTENT_PREALLOC) &&
3395                     btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3396                         found = true;
3397                         space_cache_ino = key.objectid;
3398                         break;
3399                 }
3400         }
3401         if (!found)
3402                 return -ENOENT;
3403         ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3404                                         space_cache_ino);
3405         return ret;
3406 }
3407
3408 /*
3409  * helper to find all tree blocks that reference a given data extent
3410  */
3411 static noinline_for_stack
3412 int add_data_references(struct reloc_control *rc,
3413                         struct btrfs_key *extent_key,
3414                         struct btrfs_path *path,
3415                         struct rb_root *blocks)
3416 {
3417         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3418         struct ulist *leaves = NULL;
3419         struct ulist_iterator leaf_uiter;
3420         struct ulist_node *ref_node = NULL;
3421         const u32 blocksize = fs_info->nodesize;
3422         int ret = 0;
3423
3424         btrfs_release_path(path);
3425         ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3426                                    0, &leaves, NULL, true);
3427         if (ret < 0)
3428                 return ret;
3429
3430         ULIST_ITER_INIT(&leaf_uiter);
3431         while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3432                 struct extent_buffer *eb;
3433
3434                 eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL);
3435                 if (IS_ERR(eb)) {
3436                         ret = PTR_ERR(eb);
3437                         break;
3438                 }
3439                 ret = delete_v1_space_cache(eb, rc->block_group,
3440                                             extent_key->objectid);
3441                 free_extent_buffer(eb);
3442                 if (ret < 0)
3443                         break;
3444                 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3445                 if (ret < 0)
3446                         break;
3447         }
3448         if (ret < 0)
3449                 free_block_list(blocks);
3450         ulist_free(leaves);
3451         return ret;
3452 }
3453
3454 /*
3455  * helper to find next unprocessed extent
3456  */
3457 static noinline_for_stack
3458 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3459                      struct btrfs_key *extent_key)
3460 {
3461         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3462         struct btrfs_key key;
3463         struct extent_buffer *leaf;
3464         u64 start, end, last;
3465         int ret;
3466
3467         last = rc->block_group->start + rc->block_group->length;
3468         while (1) {
3469                 cond_resched();
3470                 if (rc->search_start >= last) {
3471                         ret = 1;
3472                         break;
3473                 }
3474
3475                 key.objectid = rc->search_start;
3476                 key.type = BTRFS_EXTENT_ITEM_KEY;
3477                 key.offset = 0;
3478
3479                 path->search_commit_root = 1;
3480                 path->skip_locking = 1;
3481                 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3482                                         0, 0);
3483                 if (ret < 0)
3484                         break;
3485 next:
3486                 leaf = path->nodes[0];
3487                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3488                         ret = btrfs_next_leaf(rc->extent_root, path);
3489                         if (ret != 0)
3490                                 break;
3491                         leaf = path->nodes[0];
3492                 }
3493
3494                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3495                 if (key.objectid >= last) {
3496                         ret = 1;
3497                         break;
3498                 }
3499
3500                 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3501                     key.type != BTRFS_METADATA_ITEM_KEY) {
3502                         path->slots[0]++;
3503                         goto next;
3504                 }
3505
3506                 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3507                     key.objectid + key.offset <= rc->search_start) {
3508                         path->slots[0]++;
3509                         goto next;
3510                 }
3511
3512                 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3513                     key.objectid + fs_info->nodesize <=
3514                     rc->search_start) {
3515                         path->slots[0]++;
3516                         goto next;
3517                 }
3518
3519                 ret = find_first_extent_bit(&rc->processed_blocks,
3520                                             key.objectid, &start, &end,
3521                                             EXTENT_DIRTY, NULL);
3522
3523                 if (ret == 0 && start <= key.objectid) {
3524                         btrfs_release_path(path);
3525                         rc->search_start = end + 1;
3526                 } else {
3527                         if (key.type == BTRFS_EXTENT_ITEM_KEY)
3528                                 rc->search_start = key.objectid + key.offset;
3529                         else
3530                                 rc->search_start = key.objectid +
3531                                         fs_info->nodesize;
3532                         memcpy(extent_key, &key, sizeof(key));
3533                         return 0;
3534                 }
3535         }
3536         btrfs_release_path(path);
3537         return ret;
3538 }
3539
3540 static void set_reloc_control(struct reloc_control *rc)
3541 {
3542         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3543
3544         mutex_lock(&fs_info->reloc_mutex);
3545         fs_info->reloc_ctl = rc;
3546         mutex_unlock(&fs_info->reloc_mutex);
3547 }
3548
3549 static void unset_reloc_control(struct reloc_control *rc)
3550 {
3551         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3552
3553         mutex_lock(&fs_info->reloc_mutex);
3554         fs_info->reloc_ctl = NULL;
3555         mutex_unlock(&fs_info->reloc_mutex);
3556 }
3557
3558 static noinline_for_stack
3559 int prepare_to_relocate(struct reloc_control *rc)
3560 {
3561         struct btrfs_trans_handle *trans;
3562         int ret;
3563
3564         rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3565                                               BTRFS_BLOCK_RSV_TEMP);
3566         if (!rc->block_rsv)
3567                 return -ENOMEM;
3568
3569         memset(&rc->cluster, 0, sizeof(rc->cluster));
3570         rc->search_start = rc->block_group->start;
3571         rc->extents_found = 0;
3572         rc->nodes_relocated = 0;
3573         rc->merging_rsv_size = 0;
3574         rc->reserved_bytes = 0;
3575         rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3576                               RELOCATION_RESERVED_NODES;
3577         ret = btrfs_block_rsv_refill(rc->extent_root,
3578                                      rc->block_rsv, rc->block_rsv->size,
3579                                      BTRFS_RESERVE_FLUSH_ALL);
3580         if (ret)
3581                 return ret;
3582
3583         rc->create_reloc_tree = 1;
3584         set_reloc_control(rc);
3585
3586         trans = btrfs_join_transaction(rc->extent_root);
3587         if (IS_ERR(trans)) {
3588                 unset_reloc_control(rc);
3589                 /*
3590                  * extent tree is not a ref_cow tree and has no reloc_root to
3591                  * cleanup.  And callers are responsible to free the above
3592                  * block rsv.
3593                  */
3594                 return PTR_ERR(trans);
3595         }
3596         return btrfs_commit_transaction(trans);
3597 }
3598
3599 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3600 {
3601         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3602         struct rb_root blocks = RB_ROOT;
3603         struct btrfs_key key;
3604         struct btrfs_trans_handle *trans = NULL;
3605         struct btrfs_path *path;
3606         struct btrfs_extent_item *ei;
3607         u64 flags;
3608         int ret;
3609         int err = 0;
3610         int progress = 0;
3611
3612         path = btrfs_alloc_path();
3613         if (!path)
3614                 return -ENOMEM;
3615         path->reada = READA_FORWARD;
3616
3617         ret = prepare_to_relocate(rc);
3618         if (ret) {
3619                 err = ret;
3620                 goto out_free;
3621         }
3622
3623         while (1) {
3624                 rc->reserved_bytes = 0;
3625                 ret = btrfs_block_rsv_refill(rc->extent_root,
3626                                         rc->block_rsv, rc->block_rsv->size,
3627                                         BTRFS_RESERVE_FLUSH_ALL);
3628                 if (ret) {
3629                         err = ret;
3630                         break;
3631                 }
3632                 progress++;
3633                 trans = btrfs_start_transaction(rc->extent_root, 0);
3634                 if (IS_ERR(trans)) {
3635                         err = PTR_ERR(trans);
3636                         trans = NULL;
3637                         break;
3638                 }
3639 restart:
3640                 if (update_backref_cache(trans, &rc->backref_cache)) {
3641                         btrfs_end_transaction(trans);
3642                         trans = NULL;
3643                         continue;
3644                 }
3645
3646                 ret = find_next_extent(rc, path, &key);
3647                 if (ret < 0)
3648                         err = ret;
3649                 if (ret != 0)
3650                         break;
3651
3652                 rc->extents_found++;
3653
3654                 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3655                                     struct btrfs_extent_item);
3656                 flags = btrfs_extent_flags(path->nodes[0], ei);
3657
3658                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3659                         ret = add_tree_block(rc, &key, path, &blocks);
3660                 } else if (rc->stage == UPDATE_DATA_PTRS &&
3661                            (flags & BTRFS_EXTENT_FLAG_DATA)) {
3662                         ret = add_data_references(rc, &key, path, &blocks);
3663                 } else {
3664                         btrfs_release_path(path);
3665                         ret = 0;
3666                 }
3667                 if (ret < 0) {
3668                         err = ret;
3669                         break;
3670                 }
3671
3672                 if (!RB_EMPTY_ROOT(&blocks)) {
3673                         ret = relocate_tree_blocks(trans, rc, &blocks);
3674                         if (ret < 0) {
3675                                 if (ret != -EAGAIN) {
3676                                         err = ret;
3677                                         break;
3678                                 }
3679                                 rc->extents_found--;
3680                                 rc->search_start = key.objectid;
3681                         }
3682                 }
3683
3684                 btrfs_end_transaction_throttle(trans);
3685                 btrfs_btree_balance_dirty(fs_info);
3686                 trans = NULL;
3687
3688                 if (rc->stage == MOVE_DATA_EXTENTS &&
3689                     (flags & BTRFS_EXTENT_FLAG_DATA)) {
3690                         rc->found_file_extent = 1;
3691                         ret = relocate_data_extent(rc->data_inode,
3692                                                    &key, &rc->cluster);
3693                         if (ret < 0) {
3694                                 err = ret;
3695                                 break;
3696                         }
3697                 }
3698                 if (btrfs_should_cancel_balance(fs_info)) {
3699                         err = -ECANCELED;
3700                         break;
3701                 }
3702         }
3703         if (trans && progress && err == -ENOSPC) {
3704                 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3705                 if (ret == 1) {
3706                         err = 0;
3707                         progress = 0;
3708                         goto restart;
3709                 }
3710         }
3711
3712         btrfs_release_path(path);
3713         clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3714
3715         if (trans) {
3716                 btrfs_end_transaction_throttle(trans);
3717                 btrfs_btree_balance_dirty(fs_info);
3718         }
3719
3720         if (!err) {
3721                 ret = relocate_file_extent_cluster(rc->data_inode,
3722                                                    &rc->cluster);
3723                 if (ret < 0)
3724                         err = ret;
3725         }
3726
3727         rc->create_reloc_tree = 0;
3728         set_reloc_control(rc);
3729
3730         btrfs_backref_release_cache(&rc->backref_cache);
3731         btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3732
3733         /*
3734          * Even in the case when the relocation is cancelled, we should all go
3735          * through prepare_to_merge() and merge_reloc_roots().
3736          *
3737          * For error (including cancelled balance), prepare_to_merge() will
3738          * mark all reloc trees orphan, then queue them for cleanup in
3739          * merge_reloc_roots()
3740          */
3741         err = prepare_to_merge(rc, err);
3742
3743         merge_reloc_roots(rc);
3744
3745         rc->merge_reloc_tree = 0;
3746         unset_reloc_control(rc);
3747         btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3748
3749         /* get rid of pinned extents */
3750         trans = btrfs_join_transaction(rc->extent_root);
3751         if (IS_ERR(trans)) {
3752                 err = PTR_ERR(trans);
3753                 goto out_free;
3754         }
3755         ret = btrfs_commit_transaction(trans);
3756         if (ret && !err)
3757                 err = ret;
3758 out_free:
3759         ret = clean_dirty_subvols(rc);
3760         if (ret < 0 && !err)
3761                 err = ret;
3762         btrfs_free_block_rsv(fs_info, rc->block_rsv);
3763         btrfs_free_path(path);
3764         return err;
3765 }
3766
3767 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3768                                  struct btrfs_root *root, u64 objectid)
3769 {
3770         struct btrfs_path *path;
3771         struct btrfs_inode_item *item;
3772         struct extent_buffer *leaf;
3773         u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
3774         int ret;
3775
3776         if (btrfs_is_zoned(trans->fs_info))
3777                 flags &= ~BTRFS_INODE_PREALLOC;
3778
3779         path = btrfs_alloc_path();
3780         if (!path)
3781                 return -ENOMEM;
3782
3783         ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3784         if (ret)
3785                 goto out;
3786
3787         leaf = path->nodes[0];
3788         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3789         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3790         btrfs_set_inode_generation(leaf, item, 1);
3791         btrfs_set_inode_size(leaf, item, 0);
3792         btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3793         btrfs_set_inode_flags(leaf, item, flags);
3794         btrfs_mark_buffer_dirty(leaf);
3795 out:
3796         btrfs_free_path(path);
3797         return ret;
3798 }
3799
3800 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3801                                 struct btrfs_root *root, u64 objectid)
3802 {
3803         struct btrfs_path *path;
3804         struct btrfs_key key;
3805         int ret = 0;
3806
3807         path = btrfs_alloc_path();
3808         if (!path) {
3809                 ret = -ENOMEM;
3810                 goto out;
3811         }
3812
3813         key.objectid = objectid;
3814         key.type = BTRFS_INODE_ITEM_KEY;
3815         key.offset = 0;
3816         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3817         if (ret) {
3818                 if (ret > 0)
3819                         ret = -ENOENT;
3820                 goto out;
3821         }
3822         ret = btrfs_del_item(trans, root, path);
3823 out:
3824         if (ret)
3825                 btrfs_abort_transaction(trans, ret);
3826         btrfs_free_path(path);
3827 }
3828
3829 /*
3830  * helper to create inode for data relocation.
3831  * the inode is in data relocation tree and its link count is 0
3832  */
3833 static noinline_for_stack
3834 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3835                                  struct btrfs_block_group *group)
3836 {
3837         struct inode *inode = NULL;
3838         struct btrfs_trans_handle *trans;
3839         struct btrfs_root *root;
3840         u64 objectid;
3841         int err = 0;
3842
3843         root = btrfs_grab_root(fs_info->data_reloc_root);
3844         trans = btrfs_start_transaction(root, 6);
3845         if (IS_ERR(trans)) {
3846                 btrfs_put_root(root);
3847                 return ERR_CAST(trans);
3848         }
3849
3850         err = btrfs_get_free_objectid(root, &objectid);
3851         if (err)
3852                 goto out;
3853
3854         err = __insert_orphan_inode(trans, root, objectid);
3855         if (err)
3856                 goto out;
3857
3858         inode = btrfs_iget(fs_info->sb, objectid, root);
3859         if (IS_ERR(inode)) {
3860                 delete_orphan_inode(trans, root, objectid);
3861                 err = PTR_ERR(inode);
3862                 inode = NULL;
3863                 goto out;
3864         }
3865         BTRFS_I(inode)->index_cnt = group->start;
3866
3867         err = btrfs_orphan_add(trans, BTRFS_I(inode));
3868 out:
3869         btrfs_put_root(root);
3870         btrfs_end_transaction(trans);
3871         btrfs_btree_balance_dirty(fs_info);
3872         if (err) {
3873                 if (inode)
3874                         iput(inode);
3875                 inode = ERR_PTR(err);
3876         }
3877         return inode;
3878 }
3879
3880 /*
3881  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3882  * has been requested meanwhile and don't start in that case.
3883  *
3884  * Return:
3885  *   0             success
3886  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3887  *   -ECANCELED    cancellation request was set before the operation started
3888  *   -EAGAIN       can not start because there are ongoing send operations
3889  */
3890 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3891 {
3892         spin_lock(&fs_info->send_reloc_lock);
3893         if (fs_info->send_in_progress) {
3894                 btrfs_warn_rl(fs_info,
3895 "cannot run relocation while send operations are in progress (%d in progress)",
3896                               fs_info->send_in_progress);
3897                 spin_unlock(&fs_info->send_reloc_lock);
3898                 return -EAGAIN;
3899         }
3900         if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3901                 /* This should not happen */
3902                 spin_unlock(&fs_info->send_reloc_lock);
3903                 btrfs_err(fs_info, "reloc already running, cannot start");
3904                 return -EINPROGRESS;
3905         }
3906         spin_unlock(&fs_info->send_reloc_lock);
3907
3908         if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3909                 btrfs_info(fs_info, "chunk relocation canceled on start");
3910                 /*
3911                  * On cancel, clear all requests but let the caller mark
3912                  * the end after cleanup operations.
3913                  */
3914                 atomic_set(&fs_info->reloc_cancel_req, 0);
3915                 return -ECANCELED;
3916         }
3917         return 0;
3918 }
3919
3920 /*
3921  * Mark end of chunk relocation that is cancellable and wake any waiters.
3922  */
3923 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3924 {
3925         /* Requested after start, clear bit first so any waiters can continue */
3926         if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3927                 btrfs_info(fs_info, "chunk relocation canceled during operation");
3928         spin_lock(&fs_info->send_reloc_lock);
3929         clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3930         spin_unlock(&fs_info->send_reloc_lock);
3931         atomic_set(&fs_info->reloc_cancel_req, 0);
3932 }
3933
3934 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3935 {
3936         struct reloc_control *rc;
3937
3938         rc = kzalloc(sizeof(*rc), GFP_NOFS);
3939         if (!rc)
3940                 return NULL;
3941
3942         INIT_LIST_HEAD(&rc->reloc_roots);
3943         INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3944         btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3945         mapping_tree_init(&rc->reloc_root_tree);
3946         extent_io_tree_init(fs_info, &rc->processed_blocks,
3947                             IO_TREE_RELOC_BLOCKS, NULL);
3948         return rc;
3949 }
3950
3951 static void free_reloc_control(struct reloc_control *rc)
3952 {
3953         struct mapping_node *node, *tmp;
3954
3955         free_reloc_roots(&rc->reloc_roots);
3956         rbtree_postorder_for_each_entry_safe(node, tmp,
3957                         &rc->reloc_root_tree.rb_root, rb_node)
3958                 kfree(node);
3959
3960         kfree(rc);
3961 }
3962
3963 /*
3964  * Print the block group being relocated
3965  */
3966 static void describe_relocation(struct btrfs_fs_info *fs_info,
3967                                 struct btrfs_block_group *block_group)
3968 {
3969         char buf[128] = {'\0'};
3970
3971         btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3972
3973         btrfs_info(fs_info,
3974                    "relocating block group %llu flags %s",
3975                    block_group->start, buf);
3976 }
3977
3978 static const char *stage_to_string(int stage)
3979 {
3980         if (stage == MOVE_DATA_EXTENTS)
3981                 return "move data extents";
3982         if (stage == UPDATE_DATA_PTRS)
3983                 return "update data pointers";
3984         return "unknown";
3985 }
3986
3987 /*
3988  * function to relocate all extents in a block group.
3989  */
3990 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3991 {
3992         struct btrfs_block_group *bg;
3993         struct btrfs_root *extent_root = fs_info->extent_root;
3994         struct reloc_control *rc;
3995         struct inode *inode;
3996         struct btrfs_path *path;
3997         int ret;
3998         int rw = 0;
3999         int err = 0;
4000
4001         bg = btrfs_lookup_block_group(fs_info, group_start);
4002         if (!bg)
4003                 return -ENOENT;
4004
4005         if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4006                 btrfs_put_block_group(bg);
4007                 return -ETXTBSY;
4008         }
4009
4010         rc = alloc_reloc_control(fs_info);
4011         if (!rc) {
4012                 btrfs_put_block_group(bg);
4013                 return -ENOMEM;
4014         }
4015
4016         ret = reloc_chunk_start(fs_info);
4017         if (ret < 0) {
4018                 err = ret;
4019                 goto out_put_bg;
4020         }
4021
4022         rc->extent_root = extent_root;
4023         rc->block_group = bg;
4024
4025         ret = btrfs_inc_block_group_ro(rc->block_group, true);
4026         if (ret) {
4027                 err = ret;
4028                 goto out;
4029         }
4030         rw = 1;
4031
4032         path = btrfs_alloc_path();
4033         if (!path) {
4034                 err = -ENOMEM;
4035                 goto out;
4036         }
4037
4038         inode = lookup_free_space_inode(rc->block_group, path);
4039         btrfs_free_path(path);
4040
4041         if (!IS_ERR(inode))
4042                 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4043         else
4044                 ret = PTR_ERR(inode);
4045
4046         if (ret && ret != -ENOENT) {
4047                 err = ret;
4048                 goto out;
4049         }
4050
4051         rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4052         if (IS_ERR(rc->data_inode)) {
4053                 err = PTR_ERR(rc->data_inode);
4054                 rc->data_inode = NULL;
4055                 goto out;
4056         }
4057
4058         describe_relocation(fs_info, rc->block_group);
4059
4060         btrfs_wait_block_group_reservations(rc->block_group);
4061         btrfs_wait_nocow_writers(rc->block_group);
4062         btrfs_wait_ordered_roots(fs_info, U64_MAX,
4063                                  rc->block_group->start,
4064                                  rc->block_group->length);
4065
4066         while (1) {
4067                 int finishes_stage;
4068
4069                 mutex_lock(&fs_info->cleaner_mutex);
4070                 ret = relocate_block_group(rc);
4071                 mutex_unlock(&fs_info->cleaner_mutex);
4072                 if (ret < 0)
4073                         err = ret;
4074
4075                 finishes_stage = rc->stage;
4076                 /*
4077                  * We may have gotten ENOSPC after we already dirtied some
4078                  * extents.  If writeout happens while we're relocating a
4079                  * different block group we could end up hitting the
4080                  * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4081                  * btrfs_reloc_cow_block.  Make sure we write everything out
4082                  * properly so we don't trip over this problem, and then break
4083                  * out of the loop if we hit an error.
4084                  */
4085                 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4086                         ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4087                                                        (u64)-1);
4088                         if (ret)
4089                                 err = ret;
4090                         invalidate_mapping_pages(rc->data_inode->i_mapping,
4091                                                  0, -1);
4092                         rc->stage = UPDATE_DATA_PTRS;
4093                 }
4094
4095                 if (err < 0)
4096                         goto out;
4097
4098                 if (rc->extents_found == 0)
4099                         break;
4100
4101                 btrfs_info(fs_info, "found %llu extents, stage: %s",
4102                            rc->extents_found, stage_to_string(finishes_stage));
4103         }
4104
4105         WARN_ON(rc->block_group->pinned > 0);
4106         WARN_ON(rc->block_group->reserved > 0);
4107         WARN_ON(rc->block_group->used > 0);
4108 out:
4109         if (err && rw)
4110                 btrfs_dec_block_group_ro(rc->block_group);
4111         iput(rc->data_inode);
4112 out_put_bg:
4113         btrfs_put_block_group(bg);
4114         reloc_chunk_end(fs_info);
4115         free_reloc_control(rc);
4116         return err;
4117 }
4118
4119 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4120 {
4121         struct btrfs_fs_info *fs_info = root->fs_info;
4122         struct btrfs_trans_handle *trans;
4123         int ret, err;
4124
4125         trans = btrfs_start_transaction(fs_info->tree_root, 0);
4126         if (IS_ERR(trans))
4127                 return PTR_ERR(trans);
4128
4129         memset(&root->root_item.drop_progress, 0,
4130                 sizeof(root->root_item.drop_progress));
4131         btrfs_set_root_drop_level(&root->root_item, 0);
4132         btrfs_set_root_refs(&root->root_item, 0);
4133         ret = btrfs_update_root(trans, fs_info->tree_root,
4134                                 &root->root_key, &root->root_item);
4135
4136         err = btrfs_end_transaction(trans);
4137         if (err)
4138                 return err;
4139         return ret;
4140 }
4141
4142 /*
4143  * recover relocation interrupted by system crash.
4144  *
4145  * this function resumes merging reloc trees with corresponding fs trees.
4146  * this is important for keeping the sharing of tree blocks
4147  */
4148 int btrfs_recover_relocation(struct btrfs_root *root)
4149 {
4150         struct btrfs_fs_info *fs_info = root->fs_info;
4151         LIST_HEAD(reloc_roots);
4152         struct btrfs_key key;
4153         struct btrfs_root *fs_root;
4154         struct btrfs_root *reloc_root;
4155         struct btrfs_path *path;
4156         struct extent_buffer *leaf;
4157         struct reloc_control *rc = NULL;
4158         struct btrfs_trans_handle *trans;
4159         int ret;
4160         int err = 0;
4161
4162         path = btrfs_alloc_path();
4163         if (!path)
4164                 return -ENOMEM;
4165         path->reada = READA_BACK;
4166
4167         key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4168         key.type = BTRFS_ROOT_ITEM_KEY;
4169         key.offset = (u64)-1;
4170
4171         while (1) {
4172                 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4173                                         path, 0, 0);
4174                 if (ret < 0) {
4175                         err = ret;
4176                         goto out;
4177                 }
4178                 if (ret > 0) {
4179                         if (path->slots[0] == 0)
4180                                 break;
4181                         path->slots[0]--;
4182                 }
4183                 leaf = path->nodes[0];
4184                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4185                 btrfs_release_path(path);
4186
4187                 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4188                     key.type != BTRFS_ROOT_ITEM_KEY)
4189                         break;
4190
4191                 reloc_root = btrfs_read_tree_root(root, &key);
4192                 if (IS_ERR(reloc_root)) {
4193                         err = PTR_ERR(reloc_root);
4194                         goto out;
4195                 }
4196
4197                 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4198                 list_add(&reloc_root->root_list, &reloc_roots);
4199
4200                 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4201                         fs_root = btrfs_get_fs_root(fs_info,
4202                                         reloc_root->root_key.offset, false);
4203                         if (IS_ERR(fs_root)) {
4204                                 ret = PTR_ERR(fs_root);
4205                                 if (ret != -ENOENT) {
4206                                         err = ret;
4207                                         goto out;
4208                                 }
4209                                 ret = mark_garbage_root(reloc_root);
4210                                 if (ret < 0) {
4211                                         err = ret;
4212                                         goto out;
4213                                 }
4214                         } else {
4215                                 btrfs_put_root(fs_root);
4216                         }
4217                 }
4218
4219                 if (key.offset == 0)
4220                         break;
4221
4222                 key.offset--;
4223         }
4224         btrfs_release_path(path);
4225
4226         if (list_empty(&reloc_roots))
4227                 goto out;
4228
4229         rc = alloc_reloc_control(fs_info);
4230         if (!rc) {
4231                 err = -ENOMEM;
4232                 goto out;
4233         }
4234
4235         ret = reloc_chunk_start(fs_info);
4236         if (ret < 0) {
4237                 err = ret;
4238                 goto out_end;
4239         }
4240
4241         rc->extent_root = fs_info->extent_root;
4242
4243         set_reloc_control(rc);
4244
4245         trans = btrfs_join_transaction(rc->extent_root);
4246         if (IS_ERR(trans)) {
4247                 err = PTR_ERR(trans);
4248                 goto out_unset;
4249         }
4250
4251         rc->merge_reloc_tree = 1;
4252
4253         while (!list_empty(&reloc_roots)) {
4254                 reloc_root = list_entry(reloc_roots.next,
4255                                         struct btrfs_root, root_list);
4256                 list_del(&reloc_root->root_list);
4257
4258                 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4259                         list_add_tail(&reloc_root->root_list,
4260                                       &rc->reloc_roots);
4261                         continue;
4262                 }
4263
4264                 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4265                                             false);
4266                 if (IS_ERR(fs_root)) {
4267                         err = PTR_ERR(fs_root);
4268                         list_add_tail(&reloc_root->root_list, &reloc_roots);
4269                         btrfs_end_transaction(trans);
4270                         goto out_unset;
4271                 }
4272
4273                 err = __add_reloc_root(reloc_root);
4274                 ASSERT(err != -EEXIST);
4275                 if (err) {
4276                         list_add_tail(&reloc_root->root_list, &reloc_roots);
4277                         btrfs_put_root(fs_root);
4278                         btrfs_end_transaction(trans);
4279                         goto out_unset;
4280                 }
4281                 fs_root->reloc_root = btrfs_grab_root(reloc_root);
4282                 btrfs_put_root(fs_root);
4283         }
4284
4285         err = btrfs_commit_transaction(trans);
4286         if (err)
4287                 goto out_unset;
4288
4289         merge_reloc_roots(rc);
4290
4291         unset_reloc_control(rc);
4292
4293         trans = btrfs_join_transaction(rc->extent_root);
4294         if (IS_ERR(trans)) {
4295                 err = PTR_ERR(trans);
4296                 goto out_clean;
4297         }
4298         err = btrfs_commit_transaction(trans);
4299 out_clean:
4300         ret = clean_dirty_subvols(rc);
4301         if (ret < 0 && !err)
4302                 err = ret;
4303 out_unset:
4304         unset_reloc_control(rc);
4305 out_end:
4306         reloc_chunk_end(fs_info);
4307         free_reloc_control(rc);
4308 out:
4309         free_reloc_roots(&reloc_roots);
4310
4311         btrfs_free_path(path);
4312
4313         if (err == 0) {
4314                 /* cleanup orphan inode in data relocation tree */
4315                 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4316                 ASSERT(fs_root);
4317                 err = btrfs_orphan_cleanup(fs_root);
4318                 btrfs_put_root(fs_root);
4319         }
4320         return err;
4321 }
4322
4323 /*
4324  * helper to add ordered checksum for data relocation.
4325  *
4326  * cloning checksum properly handles the nodatasum extents.
4327  * it also saves CPU time to re-calculate the checksum.
4328  */
4329 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
4330 {
4331         struct btrfs_fs_info *fs_info = inode->root->fs_info;
4332         struct btrfs_ordered_sum *sums;
4333         struct btrfs_ordered_extent *ordered;
4334         int ret;
4335         u64 disk_bytenr;
4336         u64 new_bytenr;
4337         LIST_HEAD(list);
4338
4339         ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4340         BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
4341
4342         disk_bytenr = file_pos + inode->index_cnt;
4343         ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4344                                        disk_bytenr + len - 1, &list, 0);
4345         if (ret)
4346                 goto out;
4347
4348         while (!list_empty(&list)) {
4349                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4350                 list_del_init(&sums->list);
4351
4352                 /*
4353                  * We need to offset the new_bytenr based on where the csum is.
4354                  * We need to do this because we will read in entire prealloc
4355                  * extents but we may have written to say the middle of the
4356                  * prealloc extent, so we need to make sure the csum goes with
4357                  * the right disk offset.
4358                  *
4359                  * We can do this because the data reloc inode refers strictly
4360                  * to the on disk bytes, so we don't have to worry about
4361                  * disk_len vs real len like with real inodes since it's all
4362                  * disk length.
4363                  */
4364                 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
4365                 sums->bytenr = new_bytenr;
4366
4367                 btrfs_add_ordered_sum(ordered, sums);
4368         }
4369 out:
4370         btrfs_put_ordered_extent(ordered);
4371         return ret;
4372 }
4373
4374 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4375                           struct btrfs_root *root, struct extent_buffer *buf,
4376                           struct extent_buffer *cow)
4377 {
4378         struct btrfs_fs_info *fs_info = root->fs_info;
4379         struct reloc_control *rc;
4380         struct btrfs_backref_node *node;
4381         int first_cow = 0;
4382         int level;
4383         int ret = 0;
4384
4385         rc = fs_info->reloc_ctl;
4386         if (!rc)
4387                 return 0;
4388
4389         BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4390                root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4391
4392         level = btrfs_header_level(buf);
4393         if (btrfs_header_generation(buf) <=
4394             btrfs_root_last_snapshot(&root->root_item))
4395                 first_cow = 1;
4396
4397         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4398             rc->create_reloc_tree) {
4399                 WARN_ON(!first_cow && level == 0);
4400
4401                 node = rc->backref_cache.path[level];
4402                 BUG_ON(node->bytenr != buf->start &&
4403                        node->new_bytenr != buf->start);
4404
4405                 btrfs_backref_drop_node_buffer(node);
4406                 atomic_inc(&cow->refs);
4407                 node->eb = cow;
4408                 node->new_bytenr = cow->start;
4409
4410                 if (!node->pending) {
4411                         list_move_tail(&node->list,
4412                                        &rc->backref_cache.pending[level]);
4413                         node->pending = 1;
4414                 }
4415
4416                 if (first_cow)
4417                         mark_block_processed(rc, node);
4418
4419                 if (first_cow && level > 0)
4420                         rc->nodes_relocated += buf->len;
4421         }
4422
4423         if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4424                 ret = replace_file_extents(trans, rc, root, cow);
4425         return ret;
4426 }
4427
4428 /*
4429  * called before creating snapshot. it calculates metadata reservation
4430  * required for relocating tree blocks in the snapshot
4431  */
4432 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4433                               u64 *bytes_to_reserve)
4434 {
4435         struct btrfs_root *root = pending->root;
4436         struct reloc_control *rc = root->fs_info->reloc_ctl;
4437
4438         if (!rc || !have_reloc_root(root))
4439                 return;
4440
4441         if (!rc->merge_reloc_tree)
4442                 return;
4443
4444         root = root->reloc_root;
4445         BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4446         /*
4447          * relocation is in the stage of merging trees. the space
4448          * used by merging a reloc tree is twice the size of
4449          * relocated tree nodes in the worst case. half for cowing
4450          * the reloc tree, half for cowing the fs tree. the space
4451          * used by cowing the reloc tree will be freed after the
4452          * tree is dropped. if we create snapshot, cowing the fs
4453          * tree may use more space than it frees. so we need
4454          * reserve extra space.
4455          */
4456         *bytes_to_reserve += rc->nodes_relocated;
4457 }
4458
4459 /*
4460  * called after snapshot is created. migrate block reservation
4461  * and create reloc root for the newly created snapshot
4462  *
4463  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4464  * references held on the reloc_root, one for root->reloc_root and one for
4465  * rc->reloc_roots.
4466  */
4467 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4468                                struct btrfs_pending_snapshot *pending)
4469 {
4470         struct btrfs_root *root = pending->root;
4471         struct btrfs_root *reloc_root;
4472         struct btrfs_root *new_root;
4473         struct reloc_control *rc = root->fs_info->reloc_ctl;
4474         int ret;
4475
4476         if (!rc || !have_reloc_root(root))
4477                 return 0;
4478
4479         rc = root->fs_info->reloc_ctl;
4480         rc->merging_rsv_size += rc->nodes_relocated;
4481
4482         if (rc->merge_reloc_tree) {
4483                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4484                                               rc->block_rsv,
4485                                               rc->nodes_relocated, true);
4486                 if (ret)
4487                         return ret;
4488         }
4489
4490         new_root = pending->snap;
4491         reloc_root = create_reloc_root(trans, root->reloc_root,
4492                                        new_root->root_key.objectid);
4493         if (IS_ERR(reloc_root))
4494                 return PTR_ERR(reloc_root);
4495
4496         ret = __add_reloc_root(reloc_root);
4497         ASSERT(ret != -EEXIST);
4498         if (ret) {
4499                 /* Pairs with create_reloc_root */
4500                 btrfs_put_root(reloc_root);
4501                 return ret;
4502         }
4503         new_root->reloc_root = btrfs_grab_root(reloc_root);
4504
4505         if (rc->create_reloc_tree)
4506                 ret = clone_backref_node(trans, rc, root, reloc_root);
4507         return ret;
4508 }