btrfs: do not allow non subvolume root targets for snapshot
[platform/kernel/linux-rpi.git] / fs / btrfs / relocation.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 #include "space-info.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
37 #include "super.h"
38 #include "tree-checker.h"
39
40 /*
41  * Relocation overview
42  *
43  * [What does relocation do]
44  *
45  * The objective of relocation is to relocate all extents of the target block
46  * group to other block groups.
47  * This is utilized by resize (shrink only), profile converting, compacting
48  * space, or balance routine to spread chunks over devices.
49  *
50  *              Before          |               After
51  * ------------------------------------------------------------------
52  *  BG A: 10 data extents       | BG A: deleted
53  *  BG B:  2 data extents       | BG B: 10 data extents (2 old + 8 relocated)
54  *  BG C:  1 extents            | BG C:  3 data extents (1 old + 2 relocated)
55  *
56  * [How does relocation work]
57  *
58  * 1.   Mark the target block group read-only
59  *      New extents won't be allocated from the target block group.
60  *
61  * 2.1  Record each extent in the target block group
62  *      To build a proper map of extents to be relocated.
63  *
64  * 2.2  Build data reloc tree and reloc trees
65  *      Data reloc tree will contain an inode, recording all newly relocated
66  *      data extents.
67  *      There will be only one data reloc tree for one data block group.
68  *
69  *      Reloc tree will be a special snapshot of its source tree, containing
70  *      relocated tree blocks.
71  *      Each tree referring to a tree block in target block group will get its
72  *      reloc tree built.
73  *
74  * 2.3  Swap source tree with its corresponding reloc tree
75  *      Each involved tree only refers to new extents after swap.
76  *
77  * 3.   Cleanup reloc trees and data reloc tree.
78  *      As old extents in the target block group are still referenced by reloc
79  *      trees, we need to clean them up before really freeing the target block
80  *      group.
81  *
82  * The main complexity is in steps 2.2 and 2.3.
83  *
84  * The entry point of relocation is relocate_block_group() function.
85  */
86
87 #define RELOCATION_RESERVED_NODES       256
88 /*
89  * map address of tree root to tree
90  */
91 struct mapping_node {
92         struct {
93                 struct rb_node rb_node;
94                 u64 bytenr;
95         }; /* Use rb_simle_node for search/insert */
96         void *data;
97 };
98
99 struct mapping_tree {
100         struct rb_root rb_root;
101         spinlock_t lock;
102 };
103
104 /*
105  * present a tree block to process
106  */
107 struct tree_block {
108         struct {
109                 struct rb_node rb_node;
110                 u64 bytenr;
111         }; /* Use rb_simple_node for search/insert */
112         u64 owner;
113         struct btrfs_key key;
114         unsigned int level:8;
115         unsigned int key_ready:1;
116 };
117
118 #define MAX_EXTENTS 128
119
120 struct file_extent_cluster {
121         u64 start;
122         u64 end;
123         u64 boundary[MAX_EXTENTS];
124         unsigned int nr;
125 };
126
127 struct reloc_control {
128         /* block group to relocate */
129         struct btrfs_block_group *block_group;
130         /* extent tree */
131         struct btrfs_root *extent_root;
132         /* inode for moving data */
133         struct inode *data_inode;
134
135         struct btrfs_block_rsv *block_rsv;
136
137         struct btrfs_backref_cache backref_cache;
138
139         struct file_extent_cluster cluster;
140         /* tree blocks have been processed */
141         struct extent_io_tree processed_blocks;
142         /* map start of tree root to corresponding reloc tree */
143         struct mapping_tree reloc_root_tree;
144         /* list of reloc trees */
145         struct list_head reloc_roots;
146         /* list of subvolume trees that get relocated */
147         struct list_head dirty_subvol_roots;
148         /* size of metadata reservation for merging reloc trees */
149         u64 merging_rsv_size;
150         /* size of relocated tree nodes */
151         u64 nodes_relocated;
152         /* reserved size for block group relocation*/
153         u64 reserved_bytes;
154
155         u64 search_start;
156         u64 extents_found;
157
158         unsigned int stage:8;
159         unsigned int create_reloc_tree:1;
160         unsigned int merge_reloc_tree:1;
161         unsigned int found_file_extent:1;
162 };
163
164 /* stages of data relocation */
165 #define MOVE_DATA_EXTENTS       0
166 #define UPDATE_DATA_PTRS        1
167
168 static void mark_block_processed(struct reloc_control *rc,
169                                  struct btrfs_backref_node *node)
170 {
171         u32 blocksize;
172
173         if (node->level == 0 ||
174             in_range(node->bytenr, rc->block_group->start,
175                      rc->block_group->length)) {
176                 blocksize = rc->extent_root->fs_info->nodesize;
177                 set_extent_bit(&rc->processed_blocks, node->bytenr,
178                                node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL);
179         }
180         node->processed = 1;
181 }
182
183
184 static void mapping_tree_init(struct mapping_tree *tree)
185 {
186         tree->rb_root = RB_ROOT;
187         spin_lock_init(&tree->lock);
188 }
189
190 /*
191  * walk up backref nodes until reach node presents tree root
192  */
193 static struct btrfs_backref_node *walk_up_backref(
194                 struct btrfs_backref_node *node,
195                 struct btrfs_backref_edge *edges[], int *index)
196 {
197         struct btrfs_backref_edge *edge;
198         int idx = *index;
199
200         while (!list_empty(&node->upper)) {
201                 edge = list_entry(node->upper.next,
202                                   struct btrfs_backref_edge, list[LOWER]);
203                 edges[idx++] = edge;
204                 node = edge->node[UPPER];
205         }
206         BUG_ON(node->detached);
207         *index = idx;
208         return node;
209 }
210
211 /*
212  * walk down backref nodes to find start of next reference path
213  */
214 static struct btrfs_backref_node *walk_down_backref(
215                 struct btrfs_backref_edge *edges[], int *index)
216 {
217         struct btrfs_backref_edge *edge;
218         struct btrfs_backref_node *lower;
219         int idx = *index;
220
221         while (idx > 0) {
222                 edge = edges[idx - 1];
223                 lower = edge->node[LOWER];
224                 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
225                         idx--;
226                         continue;
227                 }
228                 edge = list_entry(edge->list[LOWER].next,
229                                   struct btrfs_backref_edge, list[LOWER]);
230                 edges[idx - 1] = edge;
231                 *index = idx;
232                 return edge->node[UPPER];
233         }
234         *index = 0;
235         return NULL;
236 }
237
238 static void update_backref_node(struct btrfs_backref_cache *cache,
239                                 struct btrfs_backref_node *node, u64 bytenr)
240 {
241         struct rb_node *rb_node;
242         rb_erase(&node->rb_node, &cache->rb_root);
243         node->bytenr = bytenr;
244         rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
245         if (rb_node)
246                 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
247 }
248
249 /*
250  * update backref cache after a transaction commit
251  */
252 static int update_backref_cache(struct btrfs_trans_handle *trans,
253                                 struct btrfs_backref_cache *cache)
254 {
255         struct btrfs_backref_node *node;
256         int level = 0;
257
258         if (cache->last_trans == 0) {
259                 cache->last_trans = trans->transid;
260                 return 0;
261         }
262
263         if (cache->last_trans == trans->transid)
264                 return 0;
265
266         /*
267          * detached nodes are used to avoid unnecessary backref
268          * lookup. transaction commit changes the extent tree.
269          * so the detached nodes are no longer useful.
270          */
271         while (!list_empty(&cache->detached)) {
272                 node = list_entry(cache->detached.next,
273                                   struct btrfs_backref_node, list);
274                 btrfs_backref_cleanup_node(cache, node);
275         }
276
277         while (!list_empty(&cache->changed)) {
278                 node = list_entry(cache->changed.next,
279                                   struct btrfs_backref_node, list);
280                 list_del_init(&node->list);
281                 BUG_ON(node->pending);
282                 update_backref_node(cache, node, node->new_bytenr);
283         }
284
285         /*
286          * some nodes can be left in the pending list if there were
287          * errors during processing the pending nodes.
288          */
289         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
290                 list_for_each_entry(node, &cache->pending[level], list) {
291                         BUG_ON(!node->pending);
292                         if (node->bytenr == node->new_bytenr)
293                                 continue;
294                         update_backref_node(cache, node, node->new_bytenr);
295                 }
296         }
297
298         cache->last_trans = 0;
299         return 1;
300 }
301
302 static bool reloc_root_is_dead(struct btrfs_root *root)
303 {
304         /*
305          * Pair with set_bit/clear_bit in clean_dirty_subvols and
306          * btrfs_update_reloc_root. We need to see the updated bit before
307          * trying to access reloc_root
308          */
309         smp_rmb();
310         if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
311                 return true;
312         return false;
313 }
314
315 /*
316  * Check if this subvolume tree has valid reloc tree.
317  *
318  * Reloc tree after swap is considered dead, thus not considered as valid.
319  * This is enough for most callers, as they don't distinguish dead reloc root
320  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
321  * special case.
322  */
323 static bool have_reloc_root(struct btrfs_root *root)
324 {
325         if (reloc_root_is_dead(root))
326                 return false;
327         if (!root->reloc_root)
328                 return false;
329         return true;
330 }
331
332 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
333 {
334         struct btrfs_root *reloc_root;
335
336         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
337                 return 0;
338
339         /* This root has been merged with its reloc tree, we can ignore it */
340         if (reloc_root_is_dead(root))
341                 return 1;
342
343         reloc_root = root->reloc_root;
344         if (!reloc_root)
345                 return 0;
346
347         if (btrfs_header_generation(reloc_root->commit_root) ==
348             root->fs_info->running_transaction->transid)
349                 return 0;
350         /*
351          * if there is reloc tree and it was created in previous
352          * transaction backref lookup can find the reloc tree,
353          * so backref node for the fs tree root is useless for
354          * relocation.
355          */
356         return 1;
357 }
358
359 /*
360  * find reloc tree by address of tree root
361  */
362 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
363 {
364         struct reloc_control *rc = fs_info->reloc_ctl;
365         struct rb_node *rb_node;
366         struct mapping_node *node;
367         struct btrfs_root *root = NULL;
368
369         ASSERT(rc);
370         spin_lock(&rc->reloc_root_tree.lock);
371         rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
372         if (rb_node) {
373                 node = rb_entry(rb_node, struct mapping_node, rb_node);
374                 root = node->data;
375         }
376         spin_unlock(&rc->reloc_root_tree.lock);
377         return btrfs_grab_root(root);
378 }
379
380 /*
381  * For useless nodes, do two major clean ups:
382  *
383  * - Cleanup the children edges and nodes
384  *   If child node is also orphan (no parent) during cleanup, then the child
385  *   node will also be cleaned up.
386  *
387  * - Freeing up leaves (level 0), keeps nodes detached
388  *   For nodes, the node is still cached as "detached"
389  *
390  * Return false if @node is not in the @useless_nodes list.
391  * Return true if @node is in the @useless_nodes list.
392  */
393 static bool handle_useless_nodes(struct reloc_control *rc,
394                                  struct btrfs_backref_node *node)
395 {
396         struct btrfs_backref_cache *cache = &rc->backref_cache;
397         struct list_head *useless_node = &cache->useless_node;
398         bool ret = false;
399
400         while (!list_empty(useless_node)) {
401                 struct btrfs_backref_node *cur;
402
403                 cur = list_first_entry(useless_node, struct btrfs_backref_node,
404                                  list);
405                 list_del_init(&cur->list);
406
407                 /* Only tree root nodes can be added to @useless_nodes */
408                 ASSERT(list_empty(&cur->upper));
409
410                 if (cur == node)
411                         ret = true;
412
413                 /* The node is the lowest node */
414                 if (cur->lowest) {
415                         list_del_init(&cur->lower);
416                         cur->lowest = 0;
417                 }
418
419                 /* Cleanup the lower edges */
420                 while (!list_empty(&cur->lower)) {
421                         struct btrfs_backref_edge *edge;
422                         struct btrfs_backref_node *lower;
423
424                         edge = list_entry(cur->lower.next,
425                                         struct btrfs_backref_edge, list[UPPER]);
426                         list_del(&edge->list[UPPER]);
427                         list_del(&edge->list[LOWER]);
428                         lower = edge->node[LOWER];
429                         btrfs_backref_free_edge(cache, edge);
430
431                         /* Child node is also orphan, queue for cleanup */
432                         if (list_empty(&lower->upper))
433                                 list_add(&lower->list, useless_node);
434                 }
435                 /* Mark this block processed for relocation */
436                 mark_block_processed(rc, cur);
437
438                 /*
439                  * Backref nodes for tree leaves are deleted from the cache.
440                  * Backref nodes for upper level tree blocks are left in the
441                  * cache to avoid unnecessary backref lookup.
442                  */
443                 if (cur->level > 0) {
444                         list_add(&cur->list, &cache->detached);
445                         cur->detached = 1;
446                 } else {
447                         rb_erase(&cur->rb_node, &cache->rb_root);
448                         btrfs_backref_free_node(cache, cur);
449                 }
450         }
451         return ret;
452 }
453
454 /*
455  * Build backref tree for a given tree block. Root of the backref tree
456  * corresponds the tree block, leaves of the backref tree correspond roots of
457  * b-trees that reference the tree block.
458  *
459  * The basic idea of this function is check backrefs of a given block to find
460  * upper level blocks that reference the block, and then check backrefs of
461  * these upper level blocks recursively. The recursion stops when tree root is
462  * reached or backrefs for the block is cached.
463  *
464  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
465  * all upper level blocks that directly/indirectly reference the block are also
466  * cached.
467  */
468 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
469                         struct btrfs_trans_handle *trans,
470                         struct reloc_control *rc, struct btrfs_key *node_key,
471                         int level, u64 bytenr)
472 {
473         struct btrfs_backref_iter *iter;
474         struct btrfs_backref_cache *cache = &rc->backref_cache;
475         /* For searching parent of TREE_BLOCK_REF */
476         struct btrfs_path *path;
477         struct btrfs_backref_node *cur;
478         struct btrfs_backref_node *node = NULL;
479         struct btrfs_backref_edge *edge;
480         int ret;
481         int err = 0;
482
483         iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
484         if (!iter)
485                 return ERR_PTR(-ENOMEM);
486         path = btrfs_alloc_path();
487         if (!path) {
488                 err = -ENOMEM;
489                 goto out;
490         }
491
492         node = btrfs_backref_alloc_node(cache, bytenr, level);
493         if (!node) {
494                 err = -ENOMEM;
495                 goto out;
496         }
497
498         node->lowest = 1;
499         cur = node;
500
501         /* Breadth-first search to build backref cache */
502         do {
503                 ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
504                                                   node_key, cur);
505                 if (ret < 0) {
506                         err = ret;
507                         goto out;
508                 }
509                 edge = list_first_entry_or_null(&cache->pending_edge,
510                                 struct btrfs_backref_edge, list[UPPER]);
511                 /*
512                  * The pending list isn't empty, take the first block to
513                  * process
514                  */
515                 if (edge) {
516                         list_del_init(&edge->list[UPPER]);
517                         cur = edge->node[UPPER];
518                 }
519         } while (edge);
520
521         /* Finish the upper linkage of newly added edges/nodes */
522         ret = btrfs_backref_finish_upper_links(cache, node);
523         if (ret < 0) {
524                 err = ret;
525                 goto out;
526         }
527
528         if (handle_useless_nodes(rc, node))
529                 node = NULL;
530 out:
531         btrfs_backref_iter_free(iter);
532         btrfs_free_path(path);
533         if (err) {
534                 btrfs_backref_error_cleanup(cache, node);
535                 return ERR_PTR(err);
536         }
537         ASSERT(!node || !node->detached);
538         ASSERT(list_empty(&cache->useless_node) &&
539                list_empty(&cache->pending_edge));
540         return node;
541 }
542
543 /*
544  * helper to add backref node for the newly created snapshot.
545  * the backref node is created by cloning backref node that
546  * corresponds to root of source tree
547  */
548 static int clone_backref_node(struct btrfs_trans_handle *trans,
549                               struct reloc_control *rc,
550                               struct btrfs_root *src,
551                               struct btrfs_root *dest)
552 {
553         struct btrfs_root *reloc_root = src->reloc_root;
554         struct btrfs_backref_cache *cache = &rc->backref_cache;
555         struct btrfs_backref_node *node = NULL;
556         struct btrfs_backref_node *new_node;
557         struct btrfs_backref_edge *edge;
558         struct btrfs_backref_edge *new_edge;
559         struct rb_node *rb_node;
560
561         if (cache->last_trans > 0)
562                 update_backref_cache(trans, cache);
563
564         rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
565         if (rb_node) {
566                 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
567                 if (node->detached)
568                         node = NULL;
569                 else
570                         BUG_ON(node->new_bytenr != reloc_root->node->start);
571         }
572
573         if (!node) {
574                 rb_node = rb_simple_search(&cache->rb_root,
575                                            reloc_root->commit_root->start);
576                 if (rb_node) {
577                         node = rb_entry(rb_node, struct btrfs_backref_node,
578                                         rb_node);
579                         BUG_ON(node->detached);
580                 }
581         }
582
583         if (!node)
584                 return 0;
585
586         new_node = btrfs_backref_alloc_node(cache, dest->node->start,
587                                             node->level);
588         if (!new_node)
589                 return -ENOMEM;
590
591         new_node->lowest = node->lowest;
592         new_node->checked = 1;
593         new_node->root = btrfs_grab_root(dest);
594         ASSERT(new_node->root);
595
596         if (!node->lowest) {
597                 list_for_each_entry(edge, &node->lower, list[UPPER]) {
598                         new_edge = btrfs_backref_alloc_edge(cache);
599                         if (!new_edge)
600                                 goto fail;
601
602                         btrfs_backref_link_edge(new_edge, edge->node[LOWER],
603                                                 new_node, LINK_UPPER);
604                 }
605         } else {
606                 list_add_tail(&new_node->lower, &cache->leaves);
607         }
608
609         rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
610                                    &new_node->rb_node);
611         if (rb_node)
612                 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
613
614         if (!new_node->lowest) {
615                 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
616                         list_add_tail(&new_edge->list[LOWER],
617                                       &new_edge->node[LOWER]->upper);
618                 }
619         }
620         return 0;
621 fail:
622         while (!list_empty(&new_node->lower)) {
623                 new_edge = list_entry(new_node->lower.next,
624                                       struct btrfs_backref_edge, list[UPPER]);
625                 list_del(&new_edge->list[UPPER]);
626                 btrfs_backref_free_edge(cache, new_edge);
627         }
628         btrfs_backref_free_node(cache, new_node);
629         return -ENOMEM;
630 }
631
632 /*
633  * helper to add 'address of tree root -> reloc tree' mapping
634  */
635 static int __must_check __add_reloc_root(struct btrfs_root *root)
636 {
637         struct btrfs_fs_info *fs_info = root->fs_info;
638         struct rb_node *rb_node;
639         struct mapping_node *node;
640         struct reloc_control *rc = fs_info->reloc_ctl;
641
642         node = kmalloc(sizeof(*node), GFP_NOFS);
643         if (!node)
644                 return -ENOMEM;
645
646         node->bytenr = root->commit_root->start;
647         node->data = root;
648
649         spin_lock(&rc->reloc_root_tree.lock);
650         rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
651                                    node->bytenr, &node->rb_node);
652         spin_unlock(&rc->reloc_root_tree.lock);
653         if (rb_node) {
654                 btrfs_err(fs_info,
655                             "Duplicate root found for start=%llu while inserting into relocation tree",
656                             node->bytenr);
657                 return -EEXIST;
658         }
659
660         list_add_tail(&root->root_list, &rc->reloc_roots);
661         return 0;
662 }
663
664 /*
665  * helper to delete the 'address of tree root -> reloc tree'
666  * mapping
667  */
668 static void __del_reloc_root(struct btrfs_root *root)
669 {
670         struct btrfs_fs_info *fs_info = root->fs_info;
671         struct rb_node *rb_node;
672         struct mapping_node *node = NULL;
673         struct reloc_control *rc = fs_info->reloc_ctl;
674         bool put_ref = false;
675
676         if (rc && root->node) {
677                 spin_lock(&rc->reloc_root_tree.lock);
678                 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
679                                            root->commit_root->start);
680                 if (rb_node) {
681                         node = rb_entry(rb_node, struct mapping_node, rb_node);
682                         rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
683                         RB_CLEAR_NODE(&node->rb_node);
684                 }
685                 spin_unlock(&rc->reloc_root_tree.lock);
686                 ASSERT(!node || (struct btrfs_root *)node->data == root);
687         }
688
689         /*
690          * We only put the reloc root here if it's on the list.  There's a lot
691          * of places where the pattern is to splice the rc->reloc_roots, process
692          * the reloc roots, and then add the reloc root back onto
693          * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
694          * list we don't want the reference being dropped, because the guy
695          * messing with the list is in charge of the reference.
696          */
697         spin_lock(&fs_info->trans_lock);
698         if (!list_empty(&root->root_list)) {
699                 put_ref = true;
700                 list_del_init(&root->root_list);
701         }
702         spin_unlock(&fs_info->trans_lock);
703         if (put_ref)
704                 btrfs_put_root(root);
705         kfree(node);
706 }
707
708 /*
709  * helper to update the 'address of tree root -> reloc tree'
710  * mapping
711  */
712 static int __update_reloc_root(struct btrfs_root *root)
713 {
714         struct btrfs_fs_info *fs_info = root->fs_info;
715         struct rb_node *rb_node;
716         struct mapping_node *node = NULL;
717         struct reloc_control *rc = fs_info->reloc_ctl;
718
719         spin_lock(&rc->reloc_root_tree.lock);
720         rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
721                                    root->commit_root->start);
722         if (rb_node) {
723                 node = rb_entry(rb_node, struct mapping_node, rb_node);
724                 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
725         }
726         spin_unlock(&rc->reloc_root_tree.lock);
727
728         if (!node)
729                 return 0;
730         BUG_ON((struct btrfs_root *)node->data != root);
731
732         spin_lock(&rc->reloc_root_tree.lock);
733         node->bytenr = root->node->start;
734         rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
735                                    node->bytenr, &node->rb_node);
736         spin_unlock(&rc->reloc_root_tree.lock);
737         if (rb_node)
738                 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
739         return 0;
740 }
741
742 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
743                                         struct btrfs_root *root, u64 objectid)
744 {
745         struct btrfs_fs_info *fs_info = root->fs_info;
746         struct btrfs_root *reloc_root;
747         struct extent_buffer *eb;
748         struct btrfs_root_item *root_item;
749         struct btrfs_key root_key;
750         int ret = 0;
751         bool must_abort = false;
752
753         root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
754         if (!root_item)
755                 return ERR_PTR(-ENOMEM);
756
757         root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
758         root_key.type = BTRFS_ROOT_ITEM_KEY;
759         root_key.offset = objectid;
760
761         if (root->root_key.objectid == objectid) {
762                 u64 commit_root_gen;
763
764                 /* called by btrfs_init_reloc_root */
765                 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
766                                       BTRFS_TREE_RELOC_OBJECTID);
767                 if (ret)
768                         goto fail;
769
770                 /*
771                  * Set the last_snapshot field to the generation of the commit
772                  * root - like this ctree.c:btrfs_block_can_be_shared() behaves
773                  * correctly (returns true) when the relocation root is created
774                  * either inside the critical section of a transaction commit
775                  * (through transaction.c:qgroup_account_snapshot()) and when
776                  * it's created before the transaction commit is started.
777                  */
778                 commit_root_gen = btrfs_header_generation(root->commit_root);
779                 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
780         } else {
781                 /*
782                  * called by btrfs_reloc_post_snapshot_hook.
783                  * the source tree is a reloc tree, all tree blocks
784                  * modified after it was created have RELOC flag
785                  * set in their headers. so it's OK to not update
786                  * the 'last_snapshot'.
787                  */
788                 ret = btrfs_copy_root(trans, root, root->node, &eb,
789                                       BTRFS_TREE_RELOC_OBJECTID);
790                 if (ret)
791                         goto fail;
792         }
793
794         /*
795          * We have changed references at this point, we must abort the
796          * transaction if anything fails.
797          */
798         must_abort = true;
799
800         memcpy(root_item, &root->root_item, sizeof(*root_item));
801         btrfs_set_root_bytenr(root_item, eb->start);
802         btrfs_set_root_level(root_item, btrfs_header_level(eb));
803         btrfs_set_root_generation(root_item, trans->transid);
804
805         if (root->root_key.objectid == objectid) {
806                 btrfs_set_root_refs(root_item, 0);
807                 memset(&root_item->drop_progress, 0,
808                        sizeof(struct btrfs_disk_key));
809                 btrfs_set_root_drop_level(root_item, 0);
810         }
811
812         btrfs_tree_unlock(eb);
813         free_extent_buffer(eb);
814
815         ret = btrfs_insert_root(trans, fs_info->tree_root,
816                                 &root_key, root_item);
817         if (ret)
818                 goto fail;
819
820         kfree(root_item);
821
822         reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
823         if (IS_ERR(reloc_root)) {
824                 ret = PTR_ERR(reloc_root);
825                 goto abort;
826         }
827         set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
828         reloc_root->last_trans = trans->transid;
829         return reloc_root;
830 fail:
831         kfree(root_item);
832 abort:
833         if (must_abort)
834                 btrfs_abort_transaction(trans, ret);
835         return ERR_PTR(ret);
836 }
837
838 /*
839  * create reloc tree for a given fs tree. reloc tree is just a
840  * snapshot of the fs tree with special root objectid.
841  *
842  * The reloc_root comes out of here with two references, one for
843  * root->reloc_root, and another for being on the rc->reloc_roots list.
844  */
845 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
846                           struct btrfs_root *root)
847 {
848         struct btrfs_fs_info *fs_info = root->fs_info;
849         struct btrfs_root *reloc_root;
850         struct reloc_control *rc = fs_info->reloc_ctl;
851         struct btrfs_block_rsv *rsv;
852         int clear_rsv = 0;
853         int ret;
854
855         if (!rc)
856                 return 0;
857
858         /*
859          * The subvolume has reloc tree but the swap is finished, no need to
860          * create/update the dead reloc tree
861          */
862         if (reloc_root_is_dead(root))
863                 return 0;
864
865         /*
866          * This is subtle but important.  We do not do
867          * record_root_in_transaction for reloc roots, instead we record their
868          * corresponding fs root, and then here we update the last trans for the
869          * reloc root.  This means that we have to do this for the entire life
870          * of the reloc root, regardless of which stage of the relocation we are
871          * in.
872          */
873         if (root->reloc_root) {
874                 reloc_root = root->reloc_root;
875                 reloc_root->last_trans = trans->transid;
876                 return 0;
877         }
878
879         /*
880          * We are merging reloc roots, we do not need new reloc trees.  Also
881          * reloc trees never need their own reloc tree.
882          */
883         if (!rc->create_reloc_tree ||
884             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
885                 return 0;
886
887         if (!trans->reloc_reserved) {
888                 rsv = trans->block_rsv;
889                 trans->block_rsv = rc->block_rsv;
890                 clear_rsv = 1;
891         }
892         reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
893         if (clear_rsv)
894                 trans->block_rsv = rsv;
895         if (IS_ERR(reloc_root))
896                 return PTR_ERR(reloc_root);
897
898         ret = __add_reloc_root(reloc_root);
899         ASSERT(ret != -EEXIST);
900         if (ret) {
901                 /* Pairs with create_reloc_root */
902                 btrfs_put_root(reloc_root);
903                 return ret;
904         }
905         root->reloc_root = btrfs_grab_root(reloc_root);
906         return 0;
907 }
908
909 /*
910  * update root item of reloc tree
911  */
912 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
913                             struct btrfs_root *root)
914 {
915         struct btrfs_fs_info *fs_info = root->fs_info;
916         struct btrfs_root *reloc_root;
917         struct btrfs_root_item *root_item;
918         int ret;
919
920         if (!have_reloc_root(root))
921                 return 0;
922
923         reloc_root = root->reloc_root;
924         root_item = &reloc_root->root_item;
925
926         /*
927          * We are probably ok here, but __del_reloc_root() will drop its ref of
928          * the root.  We have the ref for root->reloc_root, but just in case
929          * hold it while we update the reloc root.
930          */
931         btrfs_grab_root(reloc_root);
932
933         /* root->reloc_root will stay until current relocation finished */
934         if (fs_info->reloc_ctl->merge_reloc_tree &&
935             btrfs_root_refs(root_item) == 0) {
936                 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
937                 /*
938                  * Mark the tree as dead before we change reloc_root so
939                  * have_reloc_root will not touch it from now on.
940                  */
941                 smp_wmb();
942                 __del_reloc_root(reloc_root);
943         }
944
945         if (reloc_root->commit_root != reloc_root->node) {
946                 __update_reloc_root(reloc_root);
947                 btrfs_set_root_node(root_item, reloc_root->node);
948                 free_extent_buffer(reloc_root->commit_root);
949                 reloc_root->commit_root = btrfs_root_node(reloc_root);
950         }
951
952         ret = btrfs_update_root(trans, fs_info->tree_root,
953                                 &reloc_root->root_key, root_item);
954         btrfs_put_root(reloc_root);
955         return ret;
956 }
957
958 /*
959  * helper to find first cached inode with inode number >= objectid
960  * in a subvolume
961  */
962 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
963 {
964         struct rb_node *node;
965         struct rb_node *prev;
966         struct btrfs_inode *entry;
967         struct inode *inode;
968
969         spin_lock(&root->inode_lock);
970 again:
971         node = root->inode_tree.rb_node;
972         prev = NULL;
973         while (node) {
974                 prev = node;
975                 entry = rb_entry(node, struct btrfs_inode, rb_node);
976
977                 if (objectid < btrfs_ino(entry))
978                         node = node->rb_left;
979                 else if (objectid > btrfs_ino(entry))
980                         node = node->rb_right;
981                 else
982                         break;
983         }
984         if (!node) {
985                 while (prev) {
986                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
987                         if (objectid <= btrfs_ino(entry)) {
988                                 node = prev;
989                                 break;
990                         }
991                         prev = rb_next(prev);
992                 }
993         }
994         while (node) {
995                 entry = rb_entry(node, struct btrfs_inode, rb_node);
996                 inode = igrab(&entry->vfs_inode);
997                 if (inode) {
998                         spin_unlock(&root->inode_lock);
999                         return inode;
1000                 }
1001
1002                 objectid = btrfs_ino(entry) + 1;
1003                 if (cond_resched_lock(&root->inode_lock))
1004                         goto again;
1005
1006                 node = rb_next(node);
1007         }
1008         spin_unlock(&root->inode_lock);
1009         return NULL;
1010 }
1011
1012 /*
1013  * get new location of data
1014  */
1015 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1016                             u64 bytenr, u64 num_bytes)
1017 {
1018         struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1019         struct btrfs_path *path;
1020         struct btrfs_file_extent_item *fi;
1021         struct extent_buffer *leaf;
1022         int ret;
1023
1024         path = btrfs_alloc_path();
1025         if (!path)
1026                 return -ENOMEM;
1027
1028         bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1029         ret = btrfs_lookup_file_extent(NULL, root, path,
1030                         btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1031         if (ret < 0)
1032                 goto out;
1033         if (ret > 0) {
1034                 ret = -ENOENT;
1035                 goto out;
1036         }
1037
1038         leaf = path->nodes[0];
1039         fi = btrfs_item_ptr(leaf, path->slots[0],
1040                             struct btrfs_file_extent_item);
1041
1042         BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1043                btrfs_file_extent_compression(leaf, fi) ||
1044                btrfs_file_extent_encryption(leaf, fi) ||
1045                btrfs_file_extent_other_encoding(leaf, fi));
1046
1047         if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1048                 ret = -EINVAL;
1049                 goto out;
1050         }
1051
1052         *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1053         ret = 0;
1054 out:
1055         btrfs_free_path(path);
1056         return ret;
1057 }
1058
1059 /*
1060  * update file extent items in the tree leaf to point to
1061  * the new locations.
1062  */
1063 static noinline_for_stack
1064 int replace_file_extents(struct btrfs_trans_handle *trans,
1065                          struct reloc_control *rc,
1066                          struct btrfs_root *root,
1067                          struct extent_buffer *leaf)
1068 {
1069         struct btrfs_fs_info *fs_info = root->fs_info;
1070         struct btrfs_key key;
1071         struct btrfs_file_extent_item *fi;
1072         struct inode *inode = NULL;
1073         u64 parent;
1074         u64 bytenr;
1075         u64 new_bytenr = 0;
1076         u64 num_bytes;
1077         u64 end;
1078         u32 nritems;
1079         u32 i;
1080         int ret = 0;
1081         int first = 1;
1082         int dirty = 0;
1083
1084         if (rc->stage != UPDATE_DATA_PTRS)
1085                 return 0;
1086
1087         /* reloc trees always use full backref */
1088         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1089                 parent = leaf->start;
1090         else
1091                 parent = 0;
1092
1093         nritems = btrfs_header_nritems(leaf);
1094         for (i = 0; i < nritems; i++) {
1095                 struct btrfs_ref ref = { 0 };
1096
1097                 cond_resched();
1098                 btrfs_item_key_to_cpu(leaf, &key, i);
1099                 if (key.type != BTRFS_EXTENT_DATA_KEY)
1100                         continue;
1101                 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1102                 if (btrfs_file_extent_type(leaf, fi) ==
1103                     BTRFS_FILE_EXTENT_INLINE)
1104                         continue;
1105                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1106                 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1107                 if (bytenr == 0)
1108                         continue;
1109                 if (!in_range(bytenr, rc->block_group->start,
1110                               rc->block_group->length))
1111                         continue;
1112
1113                 /*
1114                  * if we are modifying block in fs tree, wait for read_folio
1115                  * to complete and drop the extent cache
1116                  */
1117                 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1118                         if (first) {
1119                                 inode = find_next_inode(root, key.objectid);
1120                                 first = 0;
1121                         } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1122                                 btrfs_add_delayed_iput(BTRFS_I(inode));
1123                                 inode = find_next_inode(root, key.objectid);
1124                         }
1125                         if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1126                                 struct extent_state *cached_state = NULL;
1127
1128                                 end = key.offset +
1129                                       btrfs_file_extent_num_bytes(leaf, fi);
1130                                 WARN_ON(!IS_ALIGNED(key.offset,
1131                                                     fs_info->sectorsize));
1132                                 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1133                                 end--;
1134                                 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1135                                                       key.offset, end,
1136                                                       &cached_state);
1137                                 if (!ret)
1138                                         continue;
1139
1140                                 btrfs_drop_extent_map_range(BTRFS_I(inode),
1141                                                             key.offset, end, true);
1142                                 unlock_extent(&BTRFS_I(inode)->io_tree,
1143                                               key.offset, end, &cached_state);
1144                         }
1145                 }
1146
1147                 ret = get_new_location(rc->data_inode, &new_bytenr,
1148                                        bytenr, num_bytes);
1149                 if (ret) {
1150                         /*
1151                          * Don't have to abort since we've not changed anything
1152                          * in the file extent yet.
1153                          */
1154                         break;
1155                 }
1156
1157                 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1158                 dirty = 1;
1159
1160                 key.offset -= btrfs_file_extent_offset(leaf, fi);
1161                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1162                                        num_bytes, parent);
1163                 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1164                                     key.objectid, key.offset,
1165                                     root->root_key.objectid, false);
1166                 ret = btrfs_inc_extent_ref(trans, &ref);
1167                 if (ret) {
1168                         btrfs_abort_transaction(trans, ret);
1169                         break;
1170                 }
1171
1172                 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1173                                        num_bytes, parent);
1174                 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1175                                     key.objectid, key.offset,
1176                                     root->root_key.objectid, false);
1177                 ret = btrfs_free_extent(trans, &ref);
1178                 if (ret) {
1179                         btrfs_abort_transaction(trans, ret);
1180                         break;
1181                 }
1182         }
1183         if (dirty)
1184                 btrfs_mark_buffer_dirty(trans, leaf);
1185         if (inode)
1186                 btrfs_add_delayed_iput(BTRFS_I(inode));
1187         return ret;
1188 }
1189
1190 static noinline_for_stack
1191 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1192                      struct btrfs_path *path, int level)
1193 {
1194         struct btrfs_disk_key key1;
1195         struct btrfs_disk_key key2;
1196         btrfs_node_key(eb, &key1, slot);
1197         btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1198         return memcmp(&key1, &key2, sizeof(key1));
1199 }
1200
1201 /*
1202  * try to replace tree blocks in fs tree with the new blocks
1203  * in reloc tree. tree blocks haven't been modified since the
1204  * reloc tree was create can be replaced.
1205  *
1206  * if a block was replaced, level of the block + 1 is returned.
1207  * if no block got replaced, 0 is returned. if there are other
1208  * errors, a negative error number is returned.
1209  */
1210 static noinline_for_stack
1211 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1212                  struct btrfs_root *dest, struct btrfs_root *src,
1213                  struct btrfs_path *path, struct btrfs_key *next_key,
1214                  int lowest_level, int max_level)
1215 {
1216         struct btrfs_fs_info *fs_info = dest->fs_info;
1217         struct extent_buffer *eb;
1218         struct extent_buffer *parent;
1219         struct btrfs_ref ref = { 0 };
1220         struct btrfs_key key;
1221         u64 old_bytenr;
1222         u64 new_bytenr;
1223         u64 old_ptr_gen;
1224         u64 new_ptr_gen;
1225         u64 last_snapshot;
1226         u32 blocksize;
1227         int cow = 0;
1228         int level;
1229         int ret;
1230         int slot;
1231
1232         ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1233         ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1234
1235         last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1236 again:
1237         slot = path->slots[lowest_level];
1238         btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1239
1240         eb = btrfs_lock_root_node(dest);
1241         level = btrfs_header_level(eb);
1242
1243         if (level < lowest_level) {
1244                 btrfs_tree_unlock(eb);
1245                 free_extent_buffer(eb);
1246                 return 0;
1247         }
1248
1249         if (cow) {
1250                 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1251                                       BTRFS_NESTING_COW);
1252                 if (ret) {
1253                         btrfs_tree_unlock(eb);
1254                         free_extent_buffer(eb);
1255                         return ret;
1256                 }
1257         }
1258
1259         if (next_key) {
1260                 next_key->objectid = (u64)-1;
1261                 next_key->type = (u8)-1;
1262                 next_key->offset = (u64)-1;
1263         }
1264
1265         parent = eb;
1266         while (1) {
1267                 level = btrfs_header_level(parent);
1268                 ASSERT(level >= lowest_level);
1269
1270                 ret = btrfs_bin_search(parent, 0, &key, &slot);
1271                 if (ret < 0)
1272                         break;
1273                 if (ret && slot > 0)
1274                         slot--;
1275
1276                 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1277                         btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1278
1279                 old_bytenr = btrfs_node_blockptr(parent, slot);
1280                 blocksize = fs_info->nodesize;
1281                 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1282
1283                 if (level <= max_level) {
1284                         eb = path->nodes[level];
1285                         new_bytenr = btrfs_node_blockptr(eb,
1286                                                         path->slots[level]);
1287                         new_ptr_gen = btrfs_node_ptr_generation(eb,
1288                                                         path->slots[level]);
1289                 } else {
1290                         new_bytenr = 0;
1291                         new_ptr_gen = 0;
1292                 }
1293
1294                 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1295                         ret = level;
1296                         break;
1297                 }
1298
1299                 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1300                     memcmp_node_keys(parent, slot, path, level)) {
1301                         if (level <= lowest_level) {
1302                                 ret = 0;
1303                                 break;
1304                         }
1305
1306                         eb = btrfs_read_node_slot(parent, slot);
1307                         if (IS_ERR(eb)) {
1308                                 ret = PTR_ERR(eb);
1309                                 break;
1310                         }
1311                         btrfs_tree_lock(eb);
1312                         if (cow) {
1313                                 ret = btrfs_cow_block(trans, dest, eb, parent,
1314                                                       slot, &eb,
1315                                                       BTRFS_NESTING_COW);
1316                                 if (ret) {
1317                                         btrfs_tree_unlock(eb);
1318                                         free_extent_buffer(eb);
1319                                         break;
1320                                 }
1321                         }
1322
1323                         btrfs_tree_unlock(parent);
1324                         free_extent_buffer(parent);
1325
1326                         parent = eb;
1327                         continue;
1328                 }
1329
1330                 if (!cow) {
1331                         btrfs_tree_unlock(parent);
1332                         free_extent_buffer(parent);
1333                         cow = 1;
1334                         goto again;
1335                 }
1336
1337                 btrfs_node_key_to_cpu(path->nodes[level], &key,
1338                                       path->slots[level]);
1339                 btrfs_release_path(path);
1340
1341                 path->lowest_level = level;
1342                 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1343                 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1344                 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1345                 path->lowest_level = 0;
1346                 if (ret) {
1347                         if (ret > 0)
1348                                 ret = -ENOENT;
1349                         break;
1350                 }
1351
1352                 /*
1353                  * Info qgroup to trace both subtrees.
1354                  *
1355                  * We must trace both trees.
1356                  * 1) Tree reloc subtree
1357                  *    If not traced, we will leak data numbers
1358                  * 2) Fs subtree
1359                  *    If not traced, we will double count old data
1360                  *
1361                  * We don't scan the subtree right now, but only record
1362                  * the swapped tree blocks.
1363                  * The real subtree rescan is delayed until we have new
1364                  * CoW on the subtree root node before transaction commit.
1365                  */
1366                 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1367                                 rc->block_group, parent, slot,
1368                                 path->nodes[level], path->slots[level],
1369                                 last_snapshot);
1370                 if (ret < 0)
1371                         break;
1372                 /*
1373                  * swap blocks in fs tree and reloc tree.
1374                  */
1375                 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1376                 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1377                 btrfs_mark_buffer_dirty(trans, parent);
1378
1379                 btrfs_set_node_blockptr(path->nodes[level],
1380                                         path->slots[level], old_bytenr);
1381                 btrfs_set_node_ptr_generation(path->nodes[level],
1382                                               path->slots[level], old_ptr_gen);
1383                 btrfs_mark_buffer_dirty(trans, path->nodes[level]);
1384
1385                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1386                                        blocksize, path->nodes[level]->start);
1387                 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1388                                     0, true);
1389                 ret = btrfs_inc_extent_ref(trans, &ref);
1390                 if (ret) {
1391                         btrfs_abort_transaction(trans, ret);
1392                         break;
1393                 }
1394                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1395                                        blocksize, 0);
1396                 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1397                                     true);
1398                 ret = btrfs_inc_extent_ref(trans, &ref);
1399                 if (ret) {
1400                         btrfs_abort_transaction(trans, ret);
1401                         break;
1402                 }
1403
1404                 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1405                                        blocksize, path->nodes[level]->start);
1406                 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1407                                     0, true);
1408                 ret = btrfs_free_extent(trans, &ref);
1409                 if (ret) {
1410                         btrfs_abort_transaction(trans, ret);
1411                         break;
1412                 }
1413
1414                 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1415                                        blocksize, 0);
1416                 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1417                                     0, true);
1418                 ret = btrfs_free_extent(trans, &ref);
1419                 if (ret) {
1420                         btrfs_abort_transaction(trans, ret);
1421                         break;
1422                 }
1423
1424                 btrfs_unlock_up_safe(path, 0);
1425
1426                 ret = level;
1427                 break;
1428         }
1429         btrfs_tree_unlock(parent);
1430         free_extent_buffer(parent);
1431         return ret;
1432 }
1433
1434 /*
1435  * helper to find next relocated block in reloc tree
1436  */
1437 static noinline_for_stack
1438 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1439                        int *level)
1440 {
1441         struct extent_buffer *eb;
1442         int i;
1443         u64 last_snapshot;
1444         u32 nritems;
1445
1446         last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1447
1448         for (i = 0; i < *level; i++) {
1449                 free_extent_buffer(path->nodes[i]);
1450                 path->nodes[i] = NULL;
1451         }
1452
1453         for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1454                 eb = path->nodes[i];
1455                 nritems = btrfs_header_nritems(eb);
1456                 while (path->slots[i] + 1 < nritems) {
1457                         path->slots[i]++;
1458                         if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1459                             last_snapshot)
1460                                 continue;
1461
1462                         *level = i;
1463                         return 0;
1464                 }
1465                 free_extent_buffer(path->nodes[i]);
1466                 path->nodes[i] = NULL;
1467         }
1468         return 1;
1469 }
1470
1471 /*
1472  * walk down reloc tree to find relocated block of lowest level
1473  */
1474 static noinline_for_stack
1475 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1476                          int *level)
1477 {
1478         struct extent_buffer *eb = NULL;
1479         int i;
1480         u64 ptr_gen = 0;
1481         u64 last_snapshot;
1482         u32 nritems;
1483
1484         last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1485
1486         for (i = *level; i > 0; i--) {
1487                 eb = path->nodes[i];
1488                 nritems = btrfs_header_nritems(eb);
1489                 while (path->slots[i] < nritems) {
1490                         ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1491                         if (ptr_gen > last_snapshot)
1492                                 break;
1493                         path->slots[i]++;
1494                 }
1495                 if (path->slots[i] >= nritems) {
1496                         if (i == *level)
1497                                 break;
1498                         *level = i + 1;
1499                         return 0;
1500                 }
1501                 if (i == 1) {
1502                         *level = i;
1503                         return 0;
1504                 }
1505
1506                 eb = btrfs_read_node_slot(eb, path->slots[i]);
1507                 if (IS_ERR(eb))
1508                         return PTR_ERR(eb);
1509                 BUG_ON(btrfs_header_level(eb) != i - 1);
1510                 path->nodes[i - 1] = eb;
1511                 path->slots[i - 1] = 0;
1512         }
1513         return 1;
1514 }
1515
1516 /*
1517  * invalidate extent cache for file extents whose key in range of
1518  * [min_key, max_key)
1519  */
1520 static int invalidate_extent_cache(struct btrfs_root *root,
1521                                    struct btrfs_key *min_key,
1522                                    struct btrfs_key *max_key)
1523 {
1524         struct btrfs_fs_info *fs_info = root->fs_info;
1525         struct inode *inode = NULL;
1526         u64 objectid;
1527         u64 start, end;
1528         u64 ino;
1529
1530         objectid = min_key->objectid;
1531         while (1) {
1532                 struct extent_state *cached_state = NULL;
1533
1534                 cond_resched();
1535                 iput(inode);
1536
1537                 if (objectid > max_key->objectid)
1538                         break;
1539
1540                 inode = find_next_inode(root, objectid);
1541                 if (!inode)
1542                         break;
1543                 ino = btrfs_ino(BTRFS_I(inode));
1544
1545                 if (ino > max_key->objectid) {
1546                         iput(inode);
1547                         break;
1548                 }
1549
1550                 objectid = ino + 1;
1551                 if (!S_ISREG(inode->i_mode))
1552                         continue;
1553
1554                 if (unlikely(min_key->objectid == ino)) {
1555                         if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1556                                 continue;
1557                         if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1558                                 start = 0;
1559                         else {
1560                                 start = min_key->offset;
1561                                 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1562                         }
1563                 } else {
1564                         start = 0;
1565                 }
1566
1567                 if (unlikely(max_key->objectid == ino)) {
1568                         if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1569                                 continue;
1570                         if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1571                                 end = (u64)-1;
1572                         } else {
1573                                 if (max_key->offset == 0)
1574                                         continue;
1575                                 end = max_key->offset;
1576                                 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1577                                 end--;
1578                         }
1579                 } else {
1580                         end = (u64)-1;
1581                 }
1582
1583                 /* the lock_extent waits for read_folio to complete */
1584                 lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1585                 btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true);
1586                 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1587         }
1588         return 0;
1589 }
1590
1591 static int find_next_key(struct btrfs_path *path, int level,
1592                          struct btrfs_key *key)
1593
1594 {
1595         while (level < BTRFS_MAX_LEVEL) {
1596                 if (!path->nodes[level])
1597                         break;
1598                 if (path->slots[level] + 1 <
1599                     btrfs_header_nritems(path->nodes[level])) {
1600                         btrfs_node_key_to_cpu(path->nodes[level], key,
1601                                               path->slots[level] + 1);
1602                         return 0;
1603                 }
1604                 level++;
1605         }
1606         return 1;
1607 }
1608
1609 /*
1610  * Insert current subvolume into reloc_control::dirty_subvol_roots
1611  */
1612 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1613                                struct reloc_control *rc,
1614                                struct btrfs_root *root)
1615 {
1616         struct btrfs_root *reloc_root = root->reloc_root;
1617         struct btrfs_root_item *reloc_root_item;
1618         int ret;
1619
1620         /* @root must be a subvolume tree root with a valid reloc tree */
1621         ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1622         ASSERT(reloc_root);
1623
1624         reloc_root_item = &reloc_root->root_item;
1625         memset(&reloc_root_item->drop_progress, 0,
1626                 sizeof(reloc_root_item->drop_progress));
1627         btrfs_set_root_drop_level(reloc_root_item, 0);
1628         btrfs_set_root_refs(reloc_root_item, 0);
1629         ret = btrfs_update_reloc_root(trans, root);
1630         if (ret)
1631                 return ret;
1632
1633         if (list_empty(&root->reloc_dirty_list)) {
1634                 btrfs_grab_root(root);
1635                 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1636         }
1637
1638         return 0;
1639 }
1640
1641 static int clean_dirty_subvols(struct reloc_control *rc)
1642 {
1643         struct btrfs_root *root;
1644         struct btrfs_root *next;
1645         int ret = 0;
1646         int ret2;
1647
1648         list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1649                                  reloc_dirty_list) {
1650                 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1651                         /* Merged subvolume, cleanup its reloc root */
1652                         struct btrfs_root *reloc_root = root->reloc_root;
1653
1654                         list_del_init(&root->reloc_dirty_list);
1655                         root->reloc_root = NULL;
1656                         /*
1657                          * Need barrier to ensure clear_bit() only happens after
1658                          * root->reloc_root = NULL. Pairs with have_reloc_root.
1659                          */
1660                         smp_wmb();
1661                         clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1662                         if (reloc_root) {
1663                                 /*
1664                                  * btrfs_drop_snapshot drops our ref we hold for
1665                                  * ->reloc_root.  If it fails however we must
1666                                  * drop the ref ourselves.
1667                                  */
1668                                 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1669                                 if (ret2 < 0) {
1670                                         btrfs_put_root(reloc_root);
1671                                         if (!ret)
1672                                                 ret = ret2;
1673                                 }
1674                         }
1675                         btrfs_put_root(root);
1676                 } else {
1677                         /* Orphan reloc tree, just clean it up */
1678                         ret2 = btrfs_drop_snapshot(root, 0, 1);
1679                         if (ret2 < 0) {
1680                                 btrfs_put_root(root);
1681                                 if (!ret)
1682                                         ret = ret2;
1683                         }
1684                 }
1685         }
1686         return ret;
1687 }
1688
1689 /*
1690  * merge the relocated tree blocks in reloc tree with corresponding
1691  * fs tree.
1692  */
1693 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1694                                                struct btrfs_root *root)
1695 {
1696         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1697         struct btrfs_key key;
1698         struct btrfs_key next_key;
1699         struct btrfs_trans_handle *trans = NULL;
1700         struct btrfs_root *reloc_root;
1701         struct btrfs_root_item *root_item;
1702         struct btrfs_path *path;
1703         struct extent_buffer *leaf;
1704         int reserve_level;
1705         int level;
1706         int max_level;
1707         int replaced = 0;
1708         int ret = 0;
1709         u32 min_reserved;
1710
1711         path = btrfs_alloc_path();
1712         if (!path)
1713                 return -ENOMEM;
1714         path->reada = READA_FORWARD;
1715
1716         reloc_root = root->reloc_root;
1717         root_item = &reloc_root->root_item;
1718
1719         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1720                 level = btrfs_root_level(root_item);
1721                 atomic_inc(&reloc_root->node->refs);
1722                 path->nodes[level] = reloc_root->node;
1723                 path->slots[level] = 0;
1724         } else {
1725                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1726
1727                 level = btrfs_root_drop_level(root_item);
1728                 BUG_ON(level == 0);
1729                 path->lowest_level = level;
1730                 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1731                 path->lowest_level = 0;
1732                 if (ret < 0) {
1733                         btrfs_free_path(path);
1734                         return ret;
1735                 }
1736
1737                 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1738                                       path->slots[level]);
1739                 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1740
1741                 btrfs_unlock_up_safe(path, 0);
1742         }
1743
1744         /*
1745          * In merge_reloc_root(), we modify the upper level pointer to swap the
1746          * tree blocks between reloc tree and subvolume tree.  Thus for tree
1747          * block COW, we COW at most from level 1 to root level for each tree.
1748          *
1749          * Thus the needed metadata size is at most root_level * nodesize,
1750          * and * 2 since we have two trees to COW.
1751          */
1752         reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1753         min_reserved = fs_info->nodesize * reserve_level * 2;
1754         memset(&next_key, 0, sizeof(next_key));
1755
1756         while (1) {
1757                 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1758                                              min_reserved,
1759                                              BTRFS_RESERVE_FLUSH_LIMIT);
1760                 if (ret)
1761                         goto out;
1762                 trans = btrfs_start_transaction(root, 0);
1763                 if (IS_ERR(trans)) {
1764                         ret = PTR_ERR(trans);
1765                         trans = NULL;
1766                         goto out;
1767                 }
1768
1769                 /*
1770                  * At this point we no longer have a reloc_control, so we can't
1771                  * depend on btrfs_init_reloc_root to update our last_trans.
1772                  *
1773                  * But that's ok, we started the trans handle on our
1774                  * corresponding fs_root, which means it's been added to the
1775                  * dirty list.  At commit time we'll still call
1776                  * btrfs_update_reloc_root() and update our root item
1777                  * appropriately.
1778                  */
1779                 reloc_root->last_trans = trans->transid;
1780                 trans->block_rsv = rc->block_rsv;
1781
1782                 replaced = 0;
1783                 max_level = level;
1784
1785                 ret = walk_down_reloc_tree(reloc_root, path, &level);
1786                 if (ret < 0)
1787                         goto out;
1788                 if (ret > 0)
1789                         break;
1790
1791                 if (!find_next_key(path, level, &key) &&
1792                     btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1793                         ret = 0;
1794                 } else {
1795                         ret = replace_path(trans, rc, root, reloc_root, path,
1796                                            &next_key, level, max_level);
1797                 }
1798                 if (ret < 0)
1799                         goto out;
1800                 if (ret > 0) {
1801                         level = ret;
1802                         btrfs_node_key_to_cpu(path->nodes[level], &key,
1803                                               path->slots[level]);
1804                         replaced = 1;
1805                 }
1806
1807                 ret = walk_up_reloc_tree(reloc_root, path, &level);
1808                 if (ret > 0)
1809                         break;
1810
1811                 BUG_ON(level == 0);
1812                 /*
1813                  * save the merging progress in the drop_progress.
1814                  * this is OK since root refs == 1 in this case.
1815                  */
1816                 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1817                                path->slots[level]);
1818                 btrfs_set_root_drop_level(root_item, level);
1819
1820                 btrfs_end_transaction_throttle(trans);
1821                 trans = NULL;
1822
1823                 btrfs_btree_balance_dirty(fs_info);
1824
1825                 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1826                         invalidate_extent_cache(root, &key, &next_key);
1827         }
1828
1829         /*
1830          * handle the case only one block in the fs tree need to be
1831          * relocated and the block is tree root.
1832          */
1833         leaf = btrfs_lock_root_node(root);
1834         ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1835                               BTRFS_NESTING_COW);
1836         btrfs_tree_unlock(leaf);
1837         free_extent_buffer(leaf);
1838 out:
1839         btrfs_free_path(path);
1840
1841         if (ret == 0) {
1842                 ret = insert_dirty_subvol(trans, rc, root);
1843                 if (ret)
1844                         btrfs_abort_transaction(trans, ret);
1845         }
1846
1847         if (trans)
1848                 btrfs_end_transaction_throttle(trans);
1849
1850         btrfs_btree_balance_dirty(fs_info);
1851
1852         if (replaced && rc->stage == UPDATE_DATA_PTRS)
1853                 invalidate_extent_cache(root, &key, &next_key);
1854
1855         return ret;
1856 }
1857
1858 static noinline_for_stack
1859 int prepare_to_merge(struct reloc_control *rc, int err)
1860 {
1861         struct btrfs_root *root = rc->extent_root;
1862         struct btrfs_fs_info *fs_info = root->fs_info;
1863         struct btrfs_root *reloc_root;
1864         struct btrfs_trans_handle *trans;
1865         LIST_HEAD(reloc_roots);
1866         u64 num_bytes = 0;
1867         int ret;
1868
1869         mutex_lock(&fs_info->reloc_mutex);
1870         rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1871         rc->merging_rsv_size += rc->nodes_relocated * 2;
1872         mutex_unlock(&fs_info->reloc_mutex);
1873
1874 again:
1875         if (!err) {
1876                 num_bytes = rc->merging_rsv_size;
1877                 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1878                                           BTRFS_RESERVE_FLUSH_ALL);
1879                 if (ret)
1880                         err = ret;
1881         }
1882
1883         trans = btrfs_join_transaction(rc->extent_root);
1884         if (IS_ERR(trans)) {
1885                 if (!err)
1886                         btrfs_block_rsv_release(fs_info, rc->block_rsv,
1887                                                 num_bytes, NULL);
1888                 return PTR_ERR(trans);
1889         }
1890
1891         if (!err) {
1892                 if (num_bytes != rc->merging_rsv_size) {
1893                         btrfs_end_transaction(trans);
1894                         btrfs_block_rsv_release(fs_info, rc->block_rsv,
1895                                                 num_bytes, NULL);
1896                         goto again;
1897                 }
1898         }
1899
1900         rc->merge_reloc_tree = 1;
1901
1902         while (!list_empty(&rc->reloc_roots)) {
1903                 reloc_root = list_entry(rc->reloc_roots.next,
1904                                         struct btrfs_root, root_list);
1905                 list_del_init(&reloc_root->root_list);
1906
1907                 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1908                                 false);
1909                 if (IS_ERR(root)) {
1910                         /*
1911                          * Even if we have an error we need this reloc root
1912                          * back on our list so we can clean up properly.
1913                          */
1914                         list_add(&reloc_root->root_list, &reloc_roots);
1915                         btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1916                         if (!err)
1917                                 err = PTR_ERR(root);
1918                         break;
1919                 }
1920
1921                 if (unlikely(root->reloc_root != reloc_root)) {
1922                         if (root->reloc_root) {
1923                                 btrfs_err(fs_info,
1924 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1925                                           root->root_key.objectid,
1926                                           root->reloc_root->root_key.objectid,
1927                                           root->reloc_root->root_key.type,
1928                                           root->reloc_root->root_key.offset,
1929                                           btrfs_root_generation(
1930                                                   &root->reloc_root->root_item),
1931                                           reloc_root->root_key.objectid,
1932                                           reloc_root->root_key.type,
1933                                           reloc_root->root_key.offset,
1934                                           btrfs_root_generation(
1935                                                   &reloc_root->root_item));
1936                         } else {
1937                                 btrfs_err(fs_info,
1938 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1939                                           root->root_key.objectid,
1940                                           reloc_root->root_key.objectid,
1941                                           reloc_root->root_key.type,
1942                                           reloc_root->root_key.offset,
1943                                           btrfs_root_generation(
1944                                                   &reloc_root->root_item));
1945                         }
1946                         list_add(&reloc_root->root_list, &reloc_roots);
1947                         btrfs_put_root(root);
1948                         btrfs_abort_transaction(trans, -EUCLEAN);
1949                         if (!err)
1950                                 err = -EUCLEAN;
1951                         break;
1952                 }
1953
1954                 /*
1955                  * set reference count to 1, so btrfs_recover_relocation
1956                  * knows it should resumes merging
1957                  */
1958                 if (!err)
1959                         btrfs_set_root_refs(&reloc_root->root_item, 1);
1960                 ret = btrfs_update_reloc_root(trans, root);
1961
1962                 /*
1963                  * Even if we have an error we need this reloc root back on our
1964                  * list so we can clean up properly.
1965                  */
1966                 list_add(&reloc_root->root_list, &reloc_roots);
1967                 btrfs_put_root(root);
1968
1969                 if (ret) {
1970                         btrfs_abort_transaction(trans, ret);
1971                         if (!err)
1972                                 err = ret;
1973                         break;
1974                 }
1975         }
1976
1977         list_splice(&reloc_roots, &rc->reloc_roots);
1978
1979         if (!err)
1980                 err = btrfs_commit_transaction(trans);
1981         else
1982                 btrfs_end_transaction(trans);
1983         return err;
1984 }
1985
1986 static noinline_for_stack
1987 void free_reloc_roots(struct list_head *list)
1988 {
1989         struct btrfs_root *reloc_root, *tmp;
1990
1991         list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1992                 __del_reloc_root(reloc_root);
1993 }
1994
1995 static noinline_for_stack
1996 void merge_reloc_roots(struct reloc_control *rc)
1997 {
1998         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1999         struct btrfs_root *root;
2000         struct btrfs_root *reloc_root;
2001         LIST_HEAD(reloc_roots);
2002         int found = 0;
2003         int ret = 0;
2004 again:
2005         root = rc->extent_root;
2006
2007         /*
2008          * this serializes us with btrfs_record_root_in_transaction,
2009          * we have to make sure nobody is in the middle of
2010          * adding their roots to the list while we are
2011          * doing this splice
2012          */
2013         mutex_lock(&fs_info->reloc_mutex);
2014         list_splice_init(&rc->reloc_roots, &reloc_roots);
2015         mutex_unlock(&fs_info->reloc_mutex);
2016
2017         while (!list_empty(&reloc_roots)) {
2018                 found = 1;
2019                 reloc_root = list_entry(reloc_roots.next,
2020                                         struct btrfs_root, root_list);
2021
2022                 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
2023                                          false);
2024                 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2025                         if (WARN_ON(IS_ERR(root))) {
2026                                 /*
2027                                  * For recovery we read the fs roots on mount,
2028                                  * and if we didn't find the root then we marked
2029                                  * the reloc root as a garbage root.  For normal
2030                                  * relocation obviously the root should exist in
2031                                  * memory.  However there's no reason we can't
2032                                  * handle the error properly here just in case.
2033                                  */
2034                                 ret = PTR_ERR(root);
2035                                 goto out;
2036                         }
2037                         if (WARN_ON(root->reloc_root != reloc_root)) {
2038                                 /*
2039                                  * This can happen if on-disk metadata has some
2040                                  * corruption, e.g. bad reloc tree key offset.
2041                                  */
2042                                 ret = -EINVAL;
2043                                 goto out;
2044                         }
2045                         ret = merge_reloc_root(rc, root);
2046                         btrfs_put_root(root);
2047                         if (ret) {
2048                                 if (list_empty(&reloc_root->root_list))
2049                                         list_add_tail(&reloc_root->root_list,
2050                                                       &reloc_roots);
2051                                 goto out;
2052                         }
2053                 } else {
2054                         if (!IS_ERR(root)) {
2055                                 if (root->reloc_root == reloc_root) {
2056                                         root->reloc_root = NULL;
2057                                         btrfs_put_root(reloc_root);
2058                                 }
2059                                 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2060                                           &root->state);
2061                                 btrfs_put_root(root);
2062                         }
2063
2064                         list_del_init(&reloc_root->root_list);
2065                         /* Don't forget to queue this reloc root for cleanup */
2066                         list_add_tail(&reloc_root->reloc_dirty_list,
2067                                       &rc->dirty_subvol_roots);
2068                 }
2069         }
2070
2071         if (found) {
2072                 found = 0;
2073                 goto again;
2074         }
2075 out:
2076         if (ret) {
2077                 btrfs_handle_fs_error(fs_info, ret, NULL);
2078                 free_reloc_roots(&reloc_roots);
2079
2080                 /* new reloc root may be added */
2081                 mutex_lock(&fs_info->reloc_mutex);
2082                 list_splice_init(&rc->reloc_roots, &reloc_roots);
2083                 mutex_unlock(&fs_info->reloc_mutex);
2084                 free_reloc_roots(&reloc_roots);
2085         }
2086
2087         /*
2088          * We used to have
2089          *
2090          * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2091          *
2092          * here, but it's wrong.  If we fail to start the transaction in
2093          * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2094          * have actually been removed from the reloc_root_tree rb tree.  This is
2095          * fine because we're bailing here, and we hold a reference on the root
2096          * for the list that holds it, so these roots will be cleaned up when we
2097          * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2098          * will be cleaned up on unmount.
2099          *
2100          * The remaining nodes will be cleaned up by free_reloc_control.
2101          */
2102 }
2103
2104 static void free_block_list(struct rb_root *blocks)
2105 {
2106         struct tree_block *block;
2107         struct rb_node *rb_node;
2108         while ((rb_node = rb_first(blocks))) {
2109                 block = rb_entry(rb_node, struct tree_block, rb_node);
2110                 rb_erase(rb_node, blocks);
2111                 kfree(block);
2112         }
2113 }
2114
2115 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2116                                       struct btrfs_root *reloc_root)
2117 {
2118         struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2119         struct btrfs_root *root;
2120         int ret;
2121
2122         if (reloc_root->last_trans == trans->transid)
2123                 return 0;
2124
2125         root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2126
2127         /*
2128          * This should succeed, since we can't have a reloc root without having
2129          * already looked up the actual root and created the reloc root for this
2130          * root.
2131          *
2132          * However if there's some sort of corruption where we have a ref to a
2133          * reloc root without a corresponding root this could return ENOENT.
2134          */
2135         if (IS_ERR(root)) {
2136                 ASSERT(0);
2137                 return PTR_ERR(root);
2138         }
2139         if (root->reloc_root != reloc_root) {
2140                 ASSERT(0);
2141                 btrfs_err(fs_info,
2142                           "root %llu has two reloc roots associated with it",
2143                           reloc_root->root_key.offset);
2144                 btrfs_put_root(root);
2145                 return -EUCLEAN;
2146         }
2147         ret = btrfs_record_root_in_trans(trans, root);
2148         btrfs_put_root(root);
2149
2150         return ret;
2151 }
2152
2153 static noinline_for_stack
2154 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2155                                      struct reloc_control *rc,
2156                                      struct btrfs_backref_node *node,
2157                                      struct btrfs_backref_edge *edges[])
2158 {
2159         struct btrfs_backref_node *next;
2160         struct btrfs_root *root;
2161         int index = 0;
2162         int ret;
2163
2164         next = node;
2165         while (1) {
2166                 cond_resched();
2167                 next = walk_up_backref(next, edges, &index);
2168                 root = next->root;
2169
2170                 /*
2171                  * If there is no root, then our references for this block are
2172                  * incomplete, as we should be able to walk all the way up to a
2173                  * block that is owned by a root.
2174                  *
2175                  * This path is only for SHAREABLE roots, so if we come upon a
2176                  * non-SHAREABLE root then we have backrefs that resolve
2177                  * improperly.
2178                  *
2179                  * Both of these cases indicate file system corruption, or a bug
2180                  * in the backref walking code.
2181                  */
2182                 if (!root) {
2183                         ASSERT(0);
2184                         btrfs_err(trans->fs_info,
2185                 "bytenr %llu doesn't have a backref path ending in a root",
2186                                   node->bytenr);
2187                         return ERR_PTR(-EUCLEAN);
2188                 }
2189                 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2190                         ASSERT(0);
2191                         btrfs_err(trans->fs_info,
2192         "bytenr %llu has multiple refs with one ending in a non-shareable root",
2193                                   node->bytenr);
2194                         return ERR_PTR(-EUCLEAN);
2195                 }
2196
2197                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2198                         ret = record_reloc_root_in_trans(trans, root);
2199                         if (ret)
2200                                 return ERR_PTR(ret);
2201                         break;
2202                 }
2203
2204                 ret = btrfs_record_root_in_trans(trans, root);
2205                 if (ret)
2206                         return ERR_PTR(ret);
2207                 root = root->reloc_root;
2208
2209                 /*
2210                  * We could have raced with another thread which failed, so
2211                  * root->reloc_root may not be set, return ENOENT in this case.
2212                  */
2213                 if (!root)
2214                         return ERR_PTR(-ENOENT);
2215
2216                 if (next->new_bytenr != root->node->start) {
2217                         /*
2218                          * We just created the reloc root, so we shouldn't have
2219                          * ->new_bytenr set and this shouldn't be in the changed
2220                          *  list.  If it is then we have multiple roots pointing
2221                          *  at the same bytenr which indicates corruption, or
2222                          *  we've made a mistake in the backref walking code.
2223                          */
2224                         ASSERT(next->new_bytenr == 0);
2225                         ASSERT(list_empty(&next->list));
2226                         if (next->new_bytenr || !list_empty(&next->list)) {
2227                                 btrfs_err(trans->fs_info,
2228         "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2229                                           node->bytenr, next->bytenr);
2230                                 return ERR_PTR(-EUCLEAN);
2231                         }
2232
2233                         next->new_bytenr = root->node->start;
2234                         btrfs_put_root(next->root);
2235                         next->root = btrfs_grab_root(root);
2236                         ASSERT(next->root);
2237                         list_add_tail(&next->list,
2238                                       &rc->backref_cache.changed);
2239                         mark_block_processed(rc, next);
2240                         break;
2241                 }
2242
2243                 WARN_ON(1);
2244                 root = NULL;
2245                 next = walk_down_backref(edges, &index);
2246                 if (!next || next->level <= node->level)
2247                         break;
2248         }
2249         if (!root) {
2250                 /*
2251                  * This can happen if there's fs corruption or if there's a bug
2252                  * in the backref lookup code.
2253                  */
2254                 ASSERT(0);
2255                 return ERR_PTR(-ENOENT);
2256         }
2257
2258         next = node;
2259         /* setup backref node path for btrfs_reloc_cow_block */
2260         while (1) {
2261                 rc->backref_cache.path[next->level] = next;
2262                 if (--index < 0)
2263                         break;
2264                 next = edges[index]->node[UPPER];
2265         }
2266         return root;
2267 }
2268
2269 /*
2270  * Select a tree root for relocation.
2271  *
2272  * Return NULL if the block is not shareable. We should use do_relocation() in
2273  * this case.
2274  *
2275  * Return a tree root pointer if the block is shareable.
2276  * Return -ENOENT if the block is root of reloc tree.
2277  */
2278 static noinline_for_stack
2279 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2280 {
2281         struct btrfs_backref_node *next;
2282         struct btrfs_root *root;
2283         struct btrfs_root *fs_root = NULL;
2284         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2285         int index = 0;
2286
2287         next = node;
2288         while (1) {
2289                 cond_resched();
2290                 next = walk_up_backref(next, edges, &index);
2291                 root = next->root;
2292
2293                 /*
2294                  * This can occur if we have incomplete extent refs leading all
2295                  * the way up a particular path, in this case return -EUCLEAN.
2296                  */
2297                 if (!root)
2298                         return ERR_PTR(-EUCLEAN);
2299
2300                 /* No other choice for non-shareable tree */
2301                 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2302                         return root;
2303
2304                 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2305                         fs_root = root;
2306
2307                 if (next != node)
2308                         return NULL;
2309
2310                 next = walk_down_backref(edges, &index);
2311                 if (!next || next->level <= node->level)
2312                         break;
2313         }
2314
2315         if (!fs_root)
2316                 return ERR_PTR(-ENOENT);
2317         return fs_root;
2318 }
2319
2320 static noinline_for_stack
2321 u64 calcu_metadata_size(struct reloc_control *rc,
2322                         struct btrfs_backref_node *node, int reserve)
2323 {
2324         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2325         struct btrfs_backref_node *next = node;
2326         struct btrfs_backref_edge *edge;
2327         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2328         u64 num_bytes = 0;
2329         int index = 0;
2330
2331         BUG_ON(reserve && node->processed);
2332
2333         while (next) {
2334                 cond_resched();
2335                 while (1) {
2336                         if (next->processed && (reserve || next != node))
2337                                 break;
2338
2339                         num_bytes += fs_info->nodesize;
2340
2341                         if (list_empty(&next->upper))
2342                                 break;
2343
2344                         edge = list_entry(next->upper.next,
2345                                         struct btrfs_backref_edge, list[LOWER]);
2346                         edges[index++] = edge;
2347                         next = edge->node[UPPER];
2348                 }
2349                 next = walk_down_backref(edges, &index);
2350         }
2351         return num_bytes;
2352 }
2353
2354 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2355                                   struct reloc_control *rc,
2356                                   struct btrfs_backref_node *node)
2357 {
2358         struct btrfs_root *root = rc->extent_root;
2359         struct btrfs_fs_info *fs_info = root->fs_info;
2360         u64 num_bytes;
2361         int ret;
2362         u64 tmp;
2363
2364         num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2365
2366         trans->block_rsv = rc->block_rsv;
2367         rc->reserved_bytes += num_bytes;
2368
2369         /*
2370          * We are under a transaction here so we can only do limited flushing.
2371          * If we get an enospc just kick back -EAGAIN so we know to drop the
2372          * transaction and try to refill when we can flush all the things.
2373          */
2374         ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2375                                      BTRFS_RESERVE_FLUSH_LIMIT);
2376         if (ret) {
2377                 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2378                 while (tmp <= rc->reserved_bytes)
2379                         tmp <<= 1;
2380                 /*
2381                  * only one thread can access block_rsv at this point,
2382                  * so we don't need hold lock to protect block_rsv.
2383                  * we expand more reservation size here to allow enough
2384                  * space for relocation and we will return earlier in
2385                  * enospc case.
2386                  */
2387                 rc->block_rsv->size = tmp + fs_info->nodesize *
2388                                       RELOCATION_RESERVED_NODES;
2389                 return -EAGAIN;
2390         }
2391
2392         return 0;
2393 }
2394
2395 /*
2396  * relocate a block tree, and then update pointers in upper level
2397  * blocks that reference the block to point to the new location.
2398  *
2399  * if called by link_to_upper, the block has already been relocated.
2400  * in that case this function just updates pointers.
2401  */
2402 static int do_relocation(struct btrfs_trans_handle *trans,
2403                          struct reloc_control *rc,
2404                          struct btrfs_backref_node *node,
2405                          struct btrfs_key *key,
2406                          struct btrfs_path *path, int lowest)
2407 {
2408         struct btrfs_backref_node *upper;
2409         struct btrfs_backref_edge *edge;
2410         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2411         struct btrfs_root *root;
2412         struct extent_buffer *eb;
2413         u32 blocksize;
2414         u64 bytenr;
2415         int slot;
2416         int ret = 0;
2417
2418         /*
2419          * If we are lowest then this is the first time we're processing this
2420          * block, and thus shouldn't have an eb associated with it yet.
2421          */
2422         ASSERT(!lowest || !node->eb);
2423
2424         path->lowest_level = node->level + 1;
2425         rc->backref_cache.path[node->level] = node;
2426         list_for_each_entry(edge, &node->upper, list[LOWER]) {
2427                 struct btrfs_ref ref = { 0 };
2428
2429                 cond_resched();
2430
2431                 upper = edge->node[UPPER];
2432                 root = select_reloc_root(trans, rc, upper, edges);
2433                 if (IS_ERR(root)) {
2434                         ret = PTR_ERR(root);
2435                         goto next;
2436                 }
2437
2438                 if (upper->eb && !upper->locked) {
2439                         if (!lowest) {
2440                                 ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2441                                 if (ret < 0)
2442                                         goto next;
2443                                 BUG_ON(ret);
2444                                 bytenr = btrfs_node_blockptr(upper->eb, slot);
2445                                 if (node->eb->start == bytenr)
2446                                         goto next;
2447                         }
2448                         btrfs_backref_drop_node_buffer(upper);
2449                 }
2450
2451                 if (!upper->eb) {
2452                         ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2453                         if (ret) {
2454                                 if (ret > 0)
2455                                         ret = -ENOENT;
2456
2457                                 btrfs_release_path(path);
2458                                 break;
2459                         }
2460
2461                         if (!upper->eb) {
2462                                 upper->eb = path->nodes[upper->level];
2463                                 path->nodes[upper->level] = NULL;
2464                         } else {
2465                                 BUG_ON(upper->eb != path->nodes[upper->level]);
2466                         }
2467
2468                         upper->locked = 1;
2469                         path->locks[upper->level] = 0;
2470
2471                         slot = path->slots[upper->level];
2472                         btrfs_release_path(path);
2473                 } else {
2474                         ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2475                         if (ret < 0)
2476                                 goto next;
2477                         BUG_ON(ret);
2478                 }
2479
2480                 bytenr = btrfs_node_blockptr(upper->eb, slot);
2481                 if (lowest) {
2482                         if (bytenr != node->bytenr) {
2483                                 btrfs_err(root->fs_info,
2484                 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2485                                           bytenr, node->bytenr, slot,
2486                                           upper->eb->start);
2487                                 ret = -EIO;
2488                                 goto next;
2489                         }
2490                 } else {
2491                         if (node->eb->start == bytenr)
2492                                 goto next;
2493                 }
2494
2495                 blocksize = root->fs_info->nodesize;
2496                 eb = btrfs_read_node_slot(upper->eb, slot);
2497                 if (IS_ERR(eb)) {
2498                         ret = PTR_ERR(eb);
2499                         goto next;
2500                 }
2501                 btrfs_tree_lock(eb);
2502
2503                 if (!node->eb) {
2504                         ret = btrfs_cow_block(trans, root, eb, upper->eb,
2505                                               slot, &eb, BTRFS_NESTING_COW);
2506                         btrfs_tree_unlock(eb);
2507                         free_extent_buffer(eb);
2508                         if (ret < 0)
2509                                 goto next;
2510                         /*
2511                          * We've just COWed this block, it should have updated
2512                          * the correct backref node entry.
2513                          */
2514                         ASSERT(node->eb == eb);
2515                 } else {
2516                         btrfs_set_node_blockptr(upper->eb, slot,
2517                                                 node->eb->start);
2518                         btrfs_set_node_ptr_generation(upper->eb, slot,
2519                                                       trans->transid);
2520                         btrfs_mark_buffer_dirty(trans, upper->eb);
2521
2522                         btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2523                                                node->eb->start, blocksize,
2524                                                upper->eb->start);
2525                         btrfs_init_tree_ref(&ref, node->level,
2526                                             btrfs_header_owner(upper->eb),
2527                                             root->root_key.objectid, false);
2528                         ret = btrfs_inc_extent_ref(trans, &ref);
2529                         if (!ret)
2530                                 ret = btrfs_drop_subtree(trans, root, eb,
2531                                                          upper->eb);
2532                         if (ret)
2533                                 btrfs_abort_transaction(trans, ret);
2534                 }
2535 next:
2536                 if (!upper->pending)
2537                         btrfs_backref_drop_node_buffer(upper);
2538                 else
2539                         btrfs_backref_unlock_node_buffer(upper);
2540                 if (ret)
2541                         break;
2542         }
2543
2544         if (!ret && node->pending) {
2545                 btrfs_backref_drop_node_buffer(node);
2546                 list_move_tail(&node->list, &rc->backref_cache.changed);
2547                 node->pending = 0;
2548         }
2549
2550         path->lowest_level = 0;
2551
2552         /*
2553          * We should have allocated all of our space in the block rsv and thus
2554          * shouldn't ENOSPC.
2555          */
2556         ASSERT(ret != -ENOSPC);
2557         return ret;
2558 }
2559
2560 static int link_to_upper(struct btrfs_trans_handle *trans,
2561                          struct reloc_control *rc,
2562                          struct btrfs_backref_node *node,
2563                          struct btrfs_path *path)
2564 {
2565         struct btrfs_key key;
2566
2567         btrfs_node_key_to_cpu(node->eb, &key, 0);
2568         return do_relocation(trans, rc, node, &key, path, 0);
2569 }
2570
2571 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2572                                 struct reloc_control *rc,
2573                                 struct btrfs_path *path, int err)
2574 {
2575         LIST_HEAD(list);
2576         struct btrfs_backref_cache *cache = &rc->backref_cache;
2577         struct btrfs_backref_node *node;
2578         int level;
2579         int ret;
2580
2581         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2582                 while (!list_empty(&cache->pending[level])) {
2583                         node = list_entry(cache->pending[level].next,
2584                                           struct btrfs_backref_node, list);
2585                         list_move_tail(&node->list, &list);
2586                         BUG_ON(!node->pending);
2587
2588                         if (!err) {
2589                                 ret = link_to_upper(trans, rc, node, path);
2590                                 if (ret < 0)
2591                                         err = ret;
2592                         }
2593                 }
2594                 list_splice_init(&list, &cache->pending[level]);
2595         }
2596         return err;
2597 }
2598
2599 /*
2600  * mark a block and all blocks directly/indirectly reference the block
2601  * as processed.
2602  */
2603 static void update_processed_blocks(struct reloc_control *rc,
2604                                     struct btrfs_backref_node *node)
2605 {
2606         struct btrfs_backref_node *next = node;
2607         struct btrfs_backref_edge *edge;
2608         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2609         int index = 0;
2610
2611         while (next) {
2612                 cond_resched();
2613                 while (1) {
2614                         if (next->processed)
2615                                 break;
2616
2617                         mark_block_processed(rc, next);
2618
2619                         if (list_empty(&next->upper))
2620                                 break;
2621
2622                         edge = list_entry(next->upper.next,
2623                                         struct btrfs_backref_edge, list[LOWER]);
2624                         edges[index++] = edge;
2625                         next = edge->node[UPPER];
2626                 }
2627                 next = walk_down_backref(edges, &index);
2628         }
2629 }
2630
2631 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2632 {
2633         u32 blocksize = rc->extent_root->fs_info->nodesize;
2634
2635         if (test_range_bit(&rc->processed_blocks, bytenr,
2636                            bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2637                 return 1;
2638         return 0;
2639 }
2640
2641 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2642                               struct tree_block *block)
2643 {
2644         struct btrfs_tree_parent_check check = {
2645                 .level = block->level,
2646                 .owner_root = block->owner,
2647                 .transid = block->key.offset
2648         };
2649         struct extent_buffer *eb;
2650
2651         eb = read_tree_block(fs_info, block->bytenr, &check);
2652         if (IS_ERR(eb))
2653                 return PTR_ERR(eb);
2654         if (!extent_buffer_uptodate(eb)) {
2655                 free_extent_buffer(eb);
2656                 return -EIO;
2657         }
2658         if (block->level == 0)
2659                 btrfs_item_key_to_cpu(eb, &block->key, 0);
2660         else
2661                 btrfs_node_key_to_cpu(eb, &block->key, 0);
2662         free_extent_buffer(eb);
2663         block->key_ready = 1;
2664         return 0;
2665 }
2666
2667 /*
2668  * helper function to relocate a tree block
2669  */
2670 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2671                                 struct reloc_control *rc,
2672                                 struct btrfs_backref_node *node,
2673                                 struct btrfs_key *key,
2674                                 struct btrfs_path *path)
2675 {
2676         struct btrfs_root *root;
2677         int ret = 0;
2678
2679         if (!node)
2680                 return 0;
2681
2682         /*
2683          * If we fail here we want to drop our backref_node because we are going
2684          * to start over and regenerate the tree for it.
2685          */
2686         ret = reserve_metadata_space(trans, rc, node);
2687         if (ret)
2688                 goto out;
2689
2690         BUG_ON(node->processed);
2691         root = select_one_root(node);
2692         if (IS_ERR(root)) {
2693                 ret = PTR_ERR(root);
2694
2695                 /* See explanation in select_one_root for the -EUCLEAN case. */
2696                 ASSERT(ret == -ENOENT);
2697                 if (ret == -ENOENT) {
2698                         ret = 0;
2699                         update_processed_blocks(rc, node);
2700                 }
2701                 goto out;
2702         }
2703
2704         if (root) {
2705                 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2706                         /*
2707                          * This block was the root block of a root, and this is
2708                          * the first time we're processing the block and thus it
2709                          * should not have had the ->new_bytenr modified and
2710                          * should have not been included on the changed list.
2711                          *
2712                          * However in the case of corruption we could have
2713                          * multiple refs pointing to the same block improperly,
2714                          * and thus we would trip over these checks.  ASSERT()
2715                          * for the developer case, because it could indicate a
2716                          * bug in the backref code, however error out for a
2717                          * normal user in the case of corruption.
2718                          */
2719                         ASSERT(node->new_bytenr == 0);
2720                         ASSERT(list_empty(&node->list));
2721                         if (node->new_bytenr || !list_empty(&node->list)) {
2722                                 btrfs_err(root->fs_info,
2723                                   "bytenr %llu has improper references to it",
2724                                           node->bytenr);
2725                                 ret = -EUCLEAN;
2726                                 goto out;
2727                         }
2728                         ret = btrfs_record_root_in_trans(trans, root);
2729                         if (ret)
2730                                 goto out;
2731                         /*
2732                          * Another thread could have failed, need to check if we
2733                          * have reloc_root actually set.
2734                          */
2735                         if (!root->reloc_root) {
2736                                 ret = -ENOENT;
2737                                 goto out;
2738                         }
2739                         root = root->reloc_root;
2740                         node->new_bytenr = root->node->start;
2741                         btrfs_put_root(node->root);
2742                         node->root = btrfs_grab_root(root);
2743                         ASSERT(node->root);
2744                         list_add_tail(&node->list, &rc->backref_cache.changed);
2745                 } else {
2746                         path->lowest_level = node->level;
2747                         if (root == root->fs_info->chunk_root)
2748                                 btrfs_reserve_chunk_metadata(trans, false);
2749                         ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2750                         btrfs_release_path(path);
2751                         if (root == root->fs_info->chunk_root)
2752                                 btrfs_trans_release_chunk_metadata(trans);
2753                         if (ret > 0)
2754                                 ret = 0;
2755                 }
2756                 if (!ret)
2757                         update_processed_blocks(rc, node);
2758         } else {
2759                 ret = do_relocation(trans, rc, node, key, path, 1);
2760         }
2761 out:
2762         if (ret || node->level == 0 || node->cowonly)
2763                 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2764         return ret;
2765 }
2766
2767 /*
2768  * relocate a list of blocks
2769  */
2770 static noinline_for_stack
2771 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2772                          struct reloc_control *rc, struct rb_root *blocks)
2773 {
2774         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2775         struct btrfs_backref_node *node;
2776         struct btrfs_path *path;
2777         struct tree_block *block;
2778         struct tree_block *next;
2779         int ret;
2780         int err = 0;
2781
2782         path = btrfs_alloc_path();
2783         if (!path) {
2784                 err = -ENOMEM;
2785                 goto out_free_blocks;
2786         }
2787
2788         /* Kick in readahead for tree blocks with missing keys */
2789         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2790                 if (!block->key_ready)
2791                         btrfs_readahead_tree_block(fs_info, block->bytenr,
2792                                                    block->owner, 0,
2793                                                    block->level);
2794         }
2795
2796         /* Get first keys */
2797         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2798                 if (!block->key_ready) {
2799                         err = get_tree_block_key(fs_info, block);
2800                         if (err)
2801                                 goto out_free_path;
2802                 }
2803         }
2804
2805         /* Do tree relocation */
2806         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2807                 node = build_backref_tree(trans, rc, &block->key,
2808                                           block->level, block->bytenr);
2809                 if (IS_ERR(node)) {
2810                         err = PTR_ERR(node);
2811                         goto out;
2812                 }
2813
2814                 ret = relocate_tree_block(trans, rc, node, &block->key,
2815                                           path);
2816                 if (ret < 0) {
2817                         err = ret;
2818                         break;
2819                 }
2820         }
2821 out:
2822         err = finish_pending_nodes(trans, rc, path, err);
2823
2824 out_free_path:
2825         btrfs_free_path(path);
2826 out_free_blocks:
2827         free_block_list(blocks);
2828         return err;
2829 }
2830
2831 static noinline_for_stack int prealloc_file_extent_cluster(
2832                                 struct btrfs_inode *inode,
2833                                 struct file_extent_cluster *cluster)
2834 {
2835         u64 alloc_hint = 0;
2836         u64 start;
2837         u64 end;
2838         u64 offset = inode->index_cnt;
2839         u64 num_bytes;
2840         int nr;
2841         int ret = 0;
2842         u64 i_size = i_size_read(&inode->vfs_inode);
2843         u64 prealloc_start = cluster->start - offset;
2844         u64 prealloc_end = cluster->end - offset;
2845         u64 cur_offset = prealloc_start;
2846
2847         /*
2848          * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2849          * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2850          * btrfs_do_readpage() call of previously relocated file cluster.
2851          *
2852          * If the current cluster starts in the above range, btrfs_do_readpage()
2853          * will skip the read, and relocate_one_page() will later writeback
2854          * the padding zeros as new data, causing data corruption.
2855          *
2856          * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2857          */
2858         if (!PAGE_ALIGNED(i_size)) {
2859                 struct address_space *mapping = inode->vfs_inode.i_mapping;
2860                 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2861                 const u32 sectorsize = fs_info->sectorsize;
2862                 struct page *page;
2863
2864                 ASSERT(sectorsize < PAGE_SIZE);
2865                 ASSERT(IS_ALIGNED(i_size, sectorsize));
2866
2867                 /*
2868                  * Subpage can't handle page with DIRTY but without UPTODATE
2869                  * bit as it can lead to the following deadlock:
2870                  *
2871                  * btrfs_read_folio()
2872                  * | Page already *locked*
2873                  * |- btrfs_lock_and_flush_ordered_range()
2874                  *    |- btrfs_start_ordered_extent()
2875                  *       |- extent_write_cache_pages()
2876                  *          |- lock_page()
2877                  *             We try to lock the page we already hold.
2878                  *
2879                  * Here we just writeback the whole data reloc inode, so that
2880                  * we will be ensured to have no dirty range in the page, and
2881                  * are safe to clear the uptodate bits.
2882                  *
2883                  * This shouldn't cause too much overhead, as we need to write
2884                  * the data back anyway.
2885                  */
2886                 ret = filemap_write_and_wait(mapping);
2887                 if (ret < 0)
2888                         return ret;
2889
2890                 clear_extent_bits(&inode->io_tree, i_size,
2891                                   round_up(i_size, PAGE_SIZE) - 1,
2892                                   EXTENT_UPTODATE);
2893                 page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2894                 /*
2895                  * If page is freed we don't need to do anything then, as we
2896                  * will re-read the whole page anyway.
2897                  */
2898                 if (page) {
2899                         btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2900                                         round_up(i_size, PAGE_SIZE) - i_size);
2901                         unlock_page(page);
2902                         put_page(page);
2903                 }
2904         }
2905
2906         BUG_ON(cluster->start != cluster->boundary[0]);
2907         ret = btrfs_alloc_data_chunk_ondemand(inode,
2908                                               prealloc_end + 1 - prealloc_start);
2909         if (ret)
2910                 return ret;
2911
2912         btrfs_inode_lock(inode, 0);
2913         for (nr = 0; nr < cluster->nr; nr++) {
2914                 struct extent_state *cached_state = NULL;
2915
2916                 start = cluster->boundary[nr] - offset;
2917                 if (nr + 1 < cluster->nr)
2918                         end = cluster->boundary[nr + 1] - 1 - offset;
2919                 else
2920                         end = cluster->end - offset;
2921
2922                 lock_extent(&inode->io_tree, start, end, &cached_state);
2923                 num_bytes = end + 1 - start;
2924                 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2925                                                 num_bytes, num_bytes,
2926                                                 end + 1, &alloc_hint);
2927                 cur_offset = end + 1;
2928                 unlock_extent(&inode->io_tree, start, end, &cached_state);
2929                 if (ret)
2930                         break;
2931         }
2932         btrfs_inode_unlock(inode, 0);
2933
2934         if (cur_offset < prealloc_end)
2935                 btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2936                                                prealloc_end + 1 - cur_offset);
2937         return ret;
2938 }
2939
2940 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2941                                 u64 start, u64 end, u64 block_start)
2942 {
2943         struct extent_map *em;
2944         struct extent_state *cached_state = NULL;
2945         int ret = 0;
2946
2947         em = alloc_extent_map();
2948         if (!em)
2949                 return -ENOMEM;
2950
2951         em->start = start;
2952         em->len = end + 1 - start;
2953         em->block_len = em->len;
2954         em->block_start = block_start;
2955         set_bit(EXTENT_FLAG_PINNED, &em->flags);
2956
2957         lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2958         ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false);
2959         unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2960         free_extent_map(em);
2961
2962         return ret;
2963 }
2964
2965 /*
2966  * Allow error injection to test balance/relocation cancellation
2967  */
2968 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2969 {
2970         return atomic_read(&fs_info->balance_cancel_req) ||
2971                 atomic_read(&fs_info->reloc_cancel_req) ||
2972                 fatal_signal_pending(current);
2973 }
2974 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2975
2976 static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster,
2977                                     int cluster_nr)
2978 {
2979         /* Last extent, use cluster end directly */
2980         if (cluster_nr >= cluster->nr - 1)
2981                 return cluster->end;
2982
2983         /* Use next boundary start*/
2984         return cluster->boundary[cluster_nr + 1] - 1;
2985 }
2986
2987 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2988                              struct file_extent_cluster *cluster,
2989                              int *cluster_nr, unsigned long page_index)
2990 {
2991         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2992         u64 offset = BTRFS_I(inode)->index_cnt;
2993         const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2994         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2995         struct page *page;
2996         u64 page_start;
2997         u64 page_end;
2998         u64 cur;
2999         int ret;
3000
3001         ASSERT(page_index <= last_index);
3002         page = find_lock_page(inode->i_mapping, page_index);
3003         if (!page) {
3004                 page_cache_sync_readahead(inode->i_mapping, ra, NULL,
3005                                 page_index, last_index + 1 - page_index);
3006                 page = find_or_create_page(inode->i_mapping, page_index, mask);
3007                 if (!page)
3008                         return -ENOMEM;
3009         }
3010
3011         if (PageReadahead(page))
3012                 page_cache_async_readahead(inode->i_mapping, ra, NULL,
3013                                 page_folio(page), page_index,
3014                                 last_index + 1 - page_index);
3015
3016         if (!PageUptodate(page)) {
3017                 btrfs_read_folio(NULL, page_folio(page));
3018                 lock_page(page);
3019                 if (!PageUptodate(page)) {
3020                         ret = -EIO;
3021                         goto release_page;
3022                 }
3023         }
3024
3025         /*
3026          * We could have lost page private when we dropped the lock to read the
3027          * page above, make sure we set_page_extent_mapped here so we have any
3028          * of the subpage blocksize stuff we need in place.
3029          */
3030         ret = set_page_extent_mapped(page);
3031         if (ret < 0)
3032                 goto release_page;
3033
3034         page_start = page_offset(page);
3035         page_end = page_start + PAGE_SIZE - 1;
3036
3037         /*
3038          * Start from the cluster, as for subpage case, the cluster can start
3039          * inside the page.
3040          */
3041         cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
3042         while (cur <= page_end) {
3043                 struct extent_state *cached_state = NULL;
3044                 u64 extent_start = cluster->boundary[*cluster_nr] - offset;
3045                 u64 extent_end = get_cluster_boundary_end(cluster,
3046                                                 *cluster_nr) - offset;
3047                 u64 clamped_start = max(page_start, extent_start);
3048                 u64 clamped_end = min(page_end, extent_end);
3049                 u32 clamped_len = clamped_end + 1 - clamped_start;
3050
3051                 /* Reserve metadata for this range */
3052                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3053                                                       clamped_len, clamped_len,
3054                                                       false);
3055                 if (ret)
3056                         goto release_page;
3057
3058                 /* Mark the range delalloc and dirty for later writeback */
3059                 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3060                             &cached_state);
3061                 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3062                                                 clamped_end, 0, &cached_state);
3063                 if (ret) {
3064                         clear_extent_bit(&BTRFS_I(inode)->io_tree,
3065                                          clamped_start, clamped_end,
3066                                          EXTENT_LOCKED | EXTENT_BOUNDARY,
3067                                          &cached_state);
3068                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
3069                                                         clamped_len, true);
3070                         btrfs_delalloc_release_extents(BTRFS_I(inode),
3071                                                        clamped_len);
3072                         goto release_page;
3073                 }
3074                 btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3075
3076                 /*
3077                  * Set the boundary if it's inside the page.
3078                  * Data relocation requires the destination extents to have the
3079                  * same size as the source.
3080                  * EXTENT_BOUNDARY bit prevents current extent from being merged
3081                  * with previous extent.
3082                  */
3083                 if (in_range(cluster->boundary[*cluster_nr] - offset,
3084                              page_start, PAGE_SIZE)) {
3085                         u64 boundary_start = cluster->boundary[*cluster_nr] -
3086                                                 offset;
3087                         u64 boundary_end = boundary_start +
3088                                            fs_info->sectorsize - 1;
3089
3090                         set_extent_bit(&BTRFS_I(inode)->io_tree,
3091                                        boundary_start, boundary_end,
3092                                        EXTENT_BOUNDARY, NULL);
3093                 }
3094                 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3095                               &cached_state);
3096                 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3097                 cur += clamped_len;
3098
3099                 /* Crossed extent end, go to next extent */
3100                 if (cur >= extent_end) {
3101                         (*cluster_nr)++;
3102                         /* Just finished the last extent of the cluster, exit. */
3103                         if (*cluster_nr >= cluster->nr)
3104                                 break;
3105                 }
3106         }
3107         unlock_page(page);
3108         put_page(page);
3109
3110         balance_dirty_pages_ratelimited(inode->i_mapping);
3111         btrfs_throttle(fs_info);
3112         if (btrfs_should_cancel_balance(fs_info))
3113                 ret = -ECANCELED;
3114         return ret;
3115
3116 release_page:
3117         unlock_page(page);
3118         put_page(page);
3119         return ret;
3120 }
3121
3122 static int relocate_file_extent_cluster(struct inode *inode,
3123                                         struct file_extent_cluster *cluster)
3124 {
3125         u64 offset = BTRFS_I(inode)->index_cnt;
3126         unsigned long index;
3127         unsigned long last_index;
3128         struct file_ra_state *ra;
3129         int cluster_nr = 0;
3130         int ret = 0;
3131
3132         if (!cluster->nr)
3133                 return 0;
3134
3135         ra = kzalloc(sizeof(*ra), GFP_NOFS);
3136         if (!ra)
3137                 return -ENOMEM;
3138
3139         ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3140         if (ret)
3141                 goto out;
3142
3143         file_ra_state_init(ra, inode->i_mapping);
3144
3145         ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3146                                    cluster->end - offset, cluster->start);
3147         if (ret)
3148                 goto out;
3149
3150         last_index = (cluster->end - offset) >> PAGE_SHIFT;
3151         for (index = (cluster->start - offset) >> PAGE_SHIFT;
3152              index <= last_index && !ret; index++)
3153                 ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3154         if (ret == 0)
3155                 WARN_ON(cluster_nr != cluster->nr);
3156 out:
3157         kfree(ra);
3158         return ret;
3159 }
3160
3161 static noinline_for_stack
3162 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3163                          struct file_extent_cluster *cluster)
3164 {
3165         int ret;
3166
3167         if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3168                 ret = relocate_file_extent_cluster(inode, cluster);
3169                 if (ret)
3170                         return ret;
3171                 cluster->nr = 0;
3172         }
3173
3174         if (!cluster->nr)
3175                 cluster->start = extent_key->objectid;
3176         else
3177                 BUG_ON(cluster->nr >= MAX_EXTENTS);
3178         cluster->end = extent_key->objectid + extent_key->offset - 1;
3179         cluster->boundary[cluster->nr] = extent_key->objectid;
3180         cluster->nr++;
3181
3182         if (cluster->nr >= MAX_EXTENTS) {
3183                 ret = relocate_file_extent_cluster(inode, cluster);
3184                 if (ret)
3185                         return ret;
3186                 cluster->nr = 0;
3187         }
3188         return 0;
3189 }
3190
3191 /*
3192  * helper to add a tree block to the list.
3193  * the major work is getting the generation and level of the block
3194  */
3195 static int add_tree_block(struct reloc_control *rc,
3196                           struct btrfs_key *extent_key,
3197                           struct btrfs_path *path,
3198                           struct rb_root *blocks)
3199 {
3200         struct extent_buffer *eb;
3201         struct btrfs_extent_item *ei;
3202         struct btrfs_tree_block_info *bi;
3203         struct tree_block *block;
3204         struct rb_node *rb_node;
3205         u32 item_size;
3206         int level = -1;
3207         u64 generation;
3208         u64 owner = 0;
3209
3210         eb =  path->nodes[0];
3211         item_size = btrfs_item_size(eb, path->slots[0]);
3212
3213         if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3214             item_size >= sizeof(*ei) + sizeof(*bi)) {
3215                 unsigned long ptr = 0, end;
3216
3217                 ei = btrfs_item_ptr(eb, path->slots[0],
3218                                 struct btrfs_extent_item);
3219                 end = (unsigned long)ei + item_size;
3220                 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3221                         bi = (struct btrfs_tree_block_info *)(ei + 1);
3222                         level = btrfs_tree_block_level(eb, bi);
3223                         ptr = (unsigned long)(bi + 1);
3224                 } else {
3225                         level = (int)extent_key->offset;
3226                         ptr = (unsigned long)(ei + 1);
3227                 }
3228                 generation = btrfs_extent_generation(eb, ei);
3229
3230                 /*
3231                  * We're reading random blocks without knowing their owner ahead
3232                  * of time.  This is ok most of the time, as all reloc roots and
3233                  * fs roots have the same lock type.  However normal trees do
3234                  * not, and the only way to know ahead of time is to read the
3235                  * inline ref offset.  We know it's an fs root if
3236                  *
3237                  * 1. There's more than one ref.
3238                  * 2. There's a SHARED_DATA_REF_KEY set.
3239                  * 3. FULL_BACKREF is set on the flags.
3240                  *
3241                  * Otherwise it's safe to assume that the ref offset == the
3242                  * owner of this block, so we can use that when calling
3243                  * read_tree_block.
3244                  */
3245                 if (btrfs_extent_refs(eb, ei) == 1 &&
3246                     !(btrfs_extent_flags(eb, ei) &
3247                       BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3248                     ptr < end) {
3249                         struct btrfs_extent_inline_ref *iref;
3250                         int type;
3251
3252                         iref = (struct btrfs_extent_inline_ref *)ptr;
3253                         type = btrfs_get_extent_inline_ref_type(eb, iref,
3254                                                         BTRFS_REF_TYPE_BLOCK);
3255                         if (type == BTRFS_REF_TYPE_INVALID)
3256                                 return -EINVAL;
3257                         if (type == BTRFS_TREE_BLOCK_REF_KEY)
3258                                 owner = btrfs_extent_inline_ref_offset(eb, iref);
3259                 }
3260         } else {
3261                 btrfs_print_leaf(eb);
3262                 btrfs_err(rc->block_group->fs_info,
3263                           "unrecognized tree backref at tree block %llu slot %u",
3264                           eb->start, path->slots[0]);
3265                 btrfs_release_path(path);
3266                 return -EUCLEAN;
3267         }
3268
3269         btrfs_release_path(path);
3270
3271         BUG_ON(level == -1);
3272
3273         block = kmalloc(sizeof(*block), GFP_NOFS);
3274         if (!block)
3275                 return -ENOMEM;
3276
3277         block->bytenr = extent_key->objectid;
3278         block->key.objectid = rc->extent_root->fs_info->nodesize;
3279         block->key.offset = generation;
3280         block->level = level;
3281         block->key_ready = 0;
3282         block->owner = owner;
3283
3284         rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3285         if (rb_node)
3286                 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3287                                     -EEXIST);
3288
3289         return 0;
3290 }
3291
3292 /*
3293  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3294  */
3295 static int __add_tree_block(struct reloc_control *rc,
3296                             u64 bytenr, u32 blocksize,
3297                             struct rb_root *blocks)
3298 {
3299         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3300         struct btrfs_path *path;
3301         struct btrfs_key key;
3302         int ret;
3303         bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3304
3305         if (tree_block_processed(bytenr, rc))
3306                 return 0;
3307
3308         if (rb_simple_search(blocks, bytenr))
3309                 return 0;
3310
3311         path = btrfs_alloc_path();
3312         if (!path)
3313                 return -ENOMEM;
3314 again:
3315         key.objectid = bytenr;
3316         if (skinny) {
3317                 key.type = BTRFS_METADATA_ITEM_KEY;
3318                 key.offset = (u64)-1;
3319         } else {
3320                 key.type = BTRFS_EXTENT_ITEM_KEY;
3321                 key.offset = blocksize;
3322         }
3323
3324         path->search_commit_root = 1;
3325         path->skip_locking = 1;
3326         ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3327         if (ret < 0)
3328                 goto out;
3329
3330         if (ret > 0 && skinny) {
3331                 if (path->slots[0]) {
3332                         path->slots[0]--;
3333                         btrfs_item_key_to_cpu(path->nodes[0], &key,
3334                                               path->slots[0]);
3335                         if (key.objectid == bytenr &&
3336                             (key.type == BTRFS_METADATA_ITEM_KEY ||
3337                              (key.type == BTRFS_EXTENT_ITEM_KEY &&
3338                               key.offset == blocksize)))
3339                                 ret = 0;
3340                 }
3341
3342                 if (ret) {
3343                         skinny = false;
3344                         btrfs_release_path(path);
3345                         goto again;
3346                 }
3347         }
3348         if (ret) {
3349                 ASSERT(ret == 1);
3350                 btrfs_print_leaf(path->nodes[0]);
3351                 btrfs_err(fs_info,
3352              "tree block extent item (%llu) is not found in extent tree",
3353                      bytenr);
3354                 WARN_ON(1);
3355                 ret = -EINVAL;
3356                 goto out;
3357         }
3358
3359         ret = add_tree_block(rc, &key, path, blocks);
3360 out:
3361         btrfs_free_path(path);
3362         return ret;
3363 }
3364
3365 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3366                                     struct btrfs_block_group *block_group,
3367                                     struct inode *inode,
3368                                     u64 ino)
3369 {
3370         struct btrfs_root *root = fs_info->tree_root;
3371         struct btrfs_trans_handle *trans;
3372         int ret = 0;
3373
3374         if (inode)
3375                 goto truncate;
3376
3377         inode = btrfs_iget(fs_info->sb, ino, root);
3378         if (IS_ERR(inode))
3379                 return -ENOENT;
3380
3381 truncate:
3382         ret = btrfs_check_trunc_cache_free_space(fs_info,
3383                                                  &fs_info->global_block_rsv);
3384         if (ret)
3385                 goto out;
3386
3387         trans = btrfs_join_transaction(root);
3388         if (IS_ERR(trans)) {
3389                 ret = PTR_ERR(trans);
3390                 goto out;
3391         }
3392
3393         ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3394
3395         btrfs_end_transaction(trans);
3396         btrfs_btree_balance_dirty(fs_info);
3397 out:
3398         iput(inode);
3399         return ret;
3400 }
3401
3402 /*
3403  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3404  * cache inode, to avoid free space cache data extent blocking data relocation.
3405  */
3406 static int delete_v1_space_cache(struct extent_buffer *leaf,
3407                                  struct btrfs_block_group *block_group,
3408                                  u64 data_bytenr)
3409 {
3410         u64 space_cache_ino;
3411         struct btrfs_file_extent_item *ei;
3412         struct btrfs_key key;
3413         bool found = false;
3414         int i;
3415         int ret;
3416
3417         if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3418                 return 0;
3419
3420         for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3421                 u8 type;
3422
3423                 btrfs_item_key_to_cpu(leaf, &key, i);
3424                 if (key.type != BTRFS_EXTENT_DATA_KEY)
3425                         continue;
3426                 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3427                 type = btrfs_file_extent_type(leaf, ei);
3428
3429                 if ((type == BTRFS_FILE_EXTENT_REG ||
3430                      type == BTRFS_FILE_EXTENT_PREALLOC) &&
3431                     btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3432                         found = true;
3433                         space_cache_ino = key.objectid;
3434                         break;
3435                 }
3436         }
3437         if (!found)
3438                 return -ENOENT;
3439         ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3440                                         space_cache_ino);
3441         return ret;
3442 }
3443
3444 /*
3445  * helper to find all tree blocks that reference a given data extent
3446  */
3447 static noinline_for_stack
3448 int add_data_references(struct reloc_control *rc,
3449                         struct btrfs_key *extent_key,
3450                         struct btrfs_path *path,
3451                         struct rb_root *blocks)
3452 {
3453         struct btrfs_backref_walk_ctx ctx = { 0 };
3454         struct ulist_iterator leaf_uiter;
3455         struct ulist_node *ref_node = NULL;
3456         const u32 blocksize = rc->extent_root->fs_info->nodesize;
3457         int ret = 0;
3458
3459         btrfs_release_path(path);
3460
3461         ctx.bytenr = extent_key->objectid;
3462         ctx.skip_inode_ref_list = true;
3463         ctx.fs_info = rc->extent_root->fs_info;
3464
3465         ret = btrfs_find_all_leafs(&ctx);
3466         if (ret < 0)
3467                 return ret;
3468
3469         ULIST_ITER_INIT(&leaf_uiter);
3470         while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3471                 struct btrfs_tree_parent_check check = { 0 };
3472                 struct extent_buffer *eb;
3473
3474                 eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3475                 if (IS_ERR(eb)) {
3476                         ret = PTR_ERR(eb);
3477                         break;
3478                 }
3479                 ret = delete_v1_space_cache(eb, rc->block_group,
3480                                             extent_key->objectid);
3481                 free_extent_buffer(eb);
3482                 if (ret < 0)
3483                         break;
3484                 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3485                 if (ret < 0)
3486                         break;
3487         }
3488         if (ret < 0)
3489                 free_block_list(blocks);
3490         ulist_free(ctx.refs);
3491         return ret;
3492 }
3493
3494 /*
3495  * helper to find next unprocessed extent
3496  */
3497 static noinline_for_stack
3498 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3499                      struct btrfs_key *extent_key)
3500 {
3501         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3502         struct btrfs_key key;
3503         struct extent_buffer *leaf;
3504         u64 start, end, last;
3505         int ret;
3506
3507         last = rc->block_group->start + rc->block_group->length;
3508         while (1) {
3509                 bool block_found;
3510
3511                 cond_resched();
3512                 if (rc->search_start >= last) {
3513                         ret = 1;
3514                         break;
3515                 }
3516
3517                 key.objectid = rc->search_start;
3518                 key.type = BTRFS_EXTENT_ITEM_KEY;
3519                 key.offset = 0;
3520
3521                 path->search_commit_root = 1;
3522                 path->skip_locking = 1;
3523                 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3524                                         0, 0);
3525                 if (ret < 0)
3526                         break;
3527 next:
3528                 leaf = path->nodes[0];
3529                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3530                         ret = btrfs_next_leaf(rc->extent_root, path);
3531                         if (ret != 0)
3532                                 break;
3533                         leaf = path->nodes[0];
3534                 }
3535
3536                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3537                 if (key.objectid >= last) {
3538                         ret = 1;
3539                         break;
3540                 }
3541
3542                 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3543                     key.type != BTRFS_METADATA_ITEM_KEY) {
3544                         path->slots[0]++;
3545                         goto next;
3546                 }
3547
3548                 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3549                     key.objectid + key.offset <= rc->search_start) {
3550                         path->slots[0]++;
3551                         goto next;
3552                 }
3553
3554                 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3555                     key.objectid + fs_info->nodesize <=
3556                     rc->search_start) {
3557                         path->slots[0]++;
3558                         goto next;
3559                 }
3560
3561                 block_found = find_first_extent_bit(&rc->processed_blocks,
3562                                                     key.objectid, &start, &end,
3563                                                     EXTENT_DIRTY, NULL);
3564
3565                 if (block_found && start <= key.objectid) {
3566                         btrfs_release_path(path);
3567                         rc->search_start = end + 1;
3568                 } else {
3569                         if (key.type == BTRFS_EXTENT_ITEM_KEY)
3570                                 rc->search_start = key.objectid + key.offset;
3571                         else
3572                                 rc->search_start = key.objectid +
3573                                         fs_info->nodesize;
3574                         memcpy(extent_key, &key, sizeof(key));
3575                         return 0;
3576                 }
3577         }
3578         btrfs_release_path(path);
3579         return ret;
3580 }
3581
3582 static void set_reloc_control(struct reloc_control *rc)
3583 {
3584         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3585
3586         mutex_lock(&fs_info->reloc_mutex);
3587         fs_info->reloc_ctl = rc;
3588         mutex_unlock(&fs_info->reloc_mutex);
3589 }
3590
3591 static void unset_reloc_control(struct reloc_control *rc)
3592 {
3593         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3594
3595         mutex_lock(&fs_info->reloc_mutex);
3596         fs_info->reloc_ctl = NULL;
3597         mutex_unlock(&fs_info->reloc_mutex);
3598 }
3599
3600 static noinline_for_stack
3601 int prepare_to_relocate(struct reloc_control *rc)
3602 {
3603         struct btrfs_trans_handle *trans;
3604         int ret;
3605
3606         rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3607                                               BTRFS_BLOCK_RSV_TEMP);
3608         if (!rc->block_rsv)
3609                 return -ENOMEM;
3610
3611         memset(&rc->cluster, 0, sizeof(rc->cluster));
3612         rc->search_start = rc->block_group->start;
3613         rc->extents_found = 0;
3614         rc->nodes_relocated = 0;
3615         rc->merging_rsv_size = 0;
3616         rc->reserved_bytes = 0;
3617         rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3618                               RELOCATION_RESERVED_NODES;
3619         ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3620                                      rc->block_rsv, rc->block_rsv->size,
3621                                      BTRFS_RESERVE_FLUSH_ALL);
3622         if (ret)
3623                 return ret;
3624
3625         rc->create_reloc_tree = 1;
3626         set_reloc_control(rc);
3627
3628         trans = btrfs_join_transaction(rc->extent_root);
3629         if (IS_ERR(trans)) {
3630                 unset_reloc_control(rc);
3631                 /*
3632                  * extent tree is not a ref_cow tree and has no reloc_root to
3633                  * cleanup.  And callers are responsible to free the above
3634                  * block rsv.
3635                  */
3636                 return PTR_ERR(trans);
3637         }
3638
3639         ret = btrfs_commit_transaction(trans);
3640         if (ret)
3641                 unset_reloc_control(rc);
3642
3643         return ret;
3644 }
3645
3646 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3647 {
3648         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3649         struct rb_root blocks = RB_ROOT;
3650         struct btrfs_key key;
3651         struct btrfs_trans_handle *trans = NULL;
3652         struct btrfs_path *path;
3653         struct btrfs_extent_item *ei;
3654         u64 flags;
3655         int ret;
3656         int err = 0;
3657         int progress = 0;
3658
3659         path = btrfs_alloc_path();
3660         if (!path)
3661                 return -ENOMEM;
3662         path->reada = READA_FORWARD;
3663
3664         ret = prepare_to_relocate(rc);
3665         if (ret) {
3666                 err = ret;
3667                 goto out_free;
3668         }
3669
3670         while (1) {
3671                 rc->reserved_bytes = 0;
3672                 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3673                                              rc->block_rsv->size,
3674                                              BTRFS_RESERVE_FLUSH_ALL);
3675                 if (ret) {
3676                         err = ret;
3677                         break;
3678                 }
3679                 progress++;
3680                 trans = btrfs_start_transaction(rc->extent_root, 0);
3681                 if (IS_ERR(trans)) {
3682                         err = PTR_ERR(trans);
3683                         trans = NULL;
3684                         break;
3685                 }
3686 restart:
3687                 if (update_backref_cache(trans, &rc->backref_cache)) {
3688                         btrfs_end_transaction(trans);
3689                         trans = NULL;
3690                         continue;
3691                 }
3692
3693                 ret = find_next_extent(rc, path, &key);
3694                 if (ret < 0)
3695                         err = ret;
3696                 if (ret != 0)
3697                         break;
3698
3699                 rc->extents_found++;
3700
3701                 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3702                                     struct btrfs_extent_item);
3703                 flags = btrfs_extent_flags(path->nodes[0], ei);
3704
3705                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3706                         ret = add_tree_block(rc, &key, path, &blocks);
3707                 } else if (rc->stage == UPDATE_DATA_PTRS &&
3708                            (flags & BTRFS_EXTENT_FLAG_DATA)) {
3709                         ret = add_data_references(rc, &key, path, &blocks);
3710                 } else {
3711                         btrfs_release_path(path);
3712                         ret = 0;
3713                 }
3714                 if (ret < 0) {
3715                         err = ret;
3716                         break;
3717                 }
3718
3719                 if (!RB_EMPTY_ROOT(&blocks)) {
3720                         ret = relocate_tree_blocks(trans, rc, &blocks);
3721                         if (ret < 0) {
3722                                 if (ret != -EAGAIN) {
3723                                         err = ret;
3724                                         break;
3725                                 }
3726                                 rc->extents_found--;
3727                                 rc->search_start = key.objectid;
3728                         }
3729                 }
3730
3731                 btrfs_end_transaction_throttle(trans);
3732                 btrfs_btree_balance_dirty(fs_info);
3733                 trans = NULL;
3734
3735                 if (rc->stage == MOVE_DATA_EXTENTS &&
3736                     (flags & BTRFS_EXTENT_FLAG_DATA)) {
3737                         rc->found_file_extent = 1;
3738                         ret = relocate_data_extent(rc->data_inode,
3739                                                    &key, &rc->cluster);
3740                         if (ret < 0) {
3741                                 err = ret;
3742                                 break;
3743                         }
3744                 }
3745                 if (btrfs_should_cancel_balance(fs_info)) {
3746                         err = -ECANCELED;
3747                         break;
3748                 }
3749         }
3750         if (trans && progress && err == -ENOSPC) {
3751                 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3752                 if (ret == 1) {
3753                         err = 0;
3754                         progress = 0;
3755                         goto restart;
3756                 }
3757         }
3758
3759         btrfs_release_path(path);
3760         clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3761
3762         if (trans) {
3763                 btrfs_end_transaction_throttle(trans);
3764                 btrfs_btree_balance_dirty(fs_info);
3765         }
3766
3767         if (!err) {
3768                 ret = relocate_file_extent_cluster(rc->data_inode,
3769                                                    &rc->cluster);
3770                 if (ret < 0)
3771                         err = ret;
3772         }
3773
3774         rc->create_reloc_tree = 0;
3775         set_reloc_control(rc);
3776
3777         btrfs_backref_release_cache(&rc->backref_cache);
3778         btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3779
3780         /*
3781          * Even in the case when the relocation is cancelled, we should all go
3782          * through prepare_to_merge() and merge_reloc_roots().
3783          *
3784          * For error (including cancelled balance), prepare_to_merge() will
3785          * mark all reloc trees orphan, then queue them for cleanup in
3786          * merge_reloc_roots()
3787          */
3788         err = prepare_to_merge(rc, err);
3789
3790         merge_reloc_roots(rc);
3791
3792         rc->merge_reloc_tree = 0;
3793         unset_reloc_control(rc);
3794         btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3795
3796         /* get rid of pinned extents */
3797         trans = btrfs_join_transaction(rc->extent_root);
3798         if (IS_ERR(trans)) {
3799                 err = PTR_ERR(trans);
3800                 goto out_free;
3801         }
3802         ret = btrfs_commit_transaction(trans);
3803         if (ret && !err)
3804                 err = ret;
3805 out_free:
3806         ret = clean_dirty_subvols(rc);
3807         if (ret < 0 && !err)
3808                 err = ret;
3809         btrfs_free_block_rsv(fs_info, rc->block_rsv);
3810         btrfs_free_path(path);
3811         return err;
3812 }
3813
3814 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3815                                  struct btrfs_root *root, u64 objectid)
3816 {
3817         struct btrfs_path *path;
3818         struct btrfs_inode_item *item;
3819         struct extent_buffer *leaf;
3820         int ret;
3821
3822         path = btrfs_alloc_path();
3823         if (!path)
3824                 return -ENOMEM;
3825
3826         ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3827         if (ret)
3828                 goto out;
3829
3830         leaf = path->nodes[0];
3831         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3832         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3833         btrfs_set_inode_generation(leaf, item, 1);
3834         btrfs_set_inode_size(leaf, item, 0);
3835         btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3836         btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3837                                           BTRFS_INODE_PREALLOC);
3838         btrfs_mark_buffer_dirty(trans, leaf);
3839 out:
3840         btrfs_free_path(path);
3841         return ret;
3842 }
3843
3844 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3845                                 struct btrfs_root *root, u64 objectid)
3846 {
3847         struct btrfs_path *path;
3848         struct btrfs_key key;
3849         int ret = 0;
3850
3851         path = btrfs_alloc_path();
3852         if (!path) {
3853                 ret = -ENOMEM;
3854                 goto out;
3855         }
3856
3857         key.objectid = objectid;
3858         key.type = BTRFS_INODE_ITEM_KEY;
3859         key.offset = 0;
3860         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3861         if (ret) {
3862                 if (ret > 0)
3863                         ret = -ENOENT;
3864                 goto out;
3865         }
3866         ret = btrfs_del_item(trans, root, path);
3867 out:
3868         if (ret)
3869                 btrfs_abort_transaction(trans, ret);
3870         btrfs_free_path(path);
3871 }
3872
3873 /*
3874  * helper to create inode for data relocation.
3875  * the inode is in data relocation tree and its link count is 0
3876  */
3877 static noinline_for_stack
3878 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3879                                  struct btrfs_block_group *group)
3880 {
3881         struct inode *inode = NULL;
3882         struct btrfs_trans_handle *trans;
3883         struct btrfs_root *root;
3884         u64 objectid;
3885         int err = 0;
3886
3887         root = btrfs_grab_root(fs_info->data_reloc_root);
3888         trans = btrfs_start_transaction(root, 6);
3889         if (IS_ERR(trans)) {
3890                 btrfs_put_root(root);
3891                 return ERR_CAST(trans);
3892         }
3893
3894         err = btrfs_get_free_objectid(root, &objectid);
3895         if (err)
3896                 goto out;
3897
3898         err = __insert_orphan_inode(trans, root, objectid);
3899         if (err)
3900                 goto out;
3901
3902         inode = btrfs_iget(fs_info->sb, objectid, root);
3903         if (IS_ERR(inode)) {
3904                 delete_orphan_inode(trans, root, objectid);
3905                 err = PTR_ERR(inode);
3906                 inode = NULL;
3907                 goto out;
3908         }
3909         BTRFS_I(inode)->index_cnt = group->start;
3910
3911         err = btrfs_orphan_add(trans, BTRFS_I(inode));
3912 out:
3913         btrfs_put_root(root);
3914         btrfs_end_transaction(trans);
3915         btrfs_btree_balance_dirty(fs_info);
3916         if (err) {
3917                 iput(inode);
3918                 inode = ERR_PTR(err);
3919         }
3920         return inode;
3921 }
3922
3923 /*
3924  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3925  * has been requested meanwhile and don't start in that case.
3926  *
3927  * Return:
3928  *   0             success
3929  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3930  *   -ECANCELED    cancellation request was set before the operation started
3931  */
3932 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3933 {
3934         if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3935                 /* This should not happen */
3936                 btrfs_err(fs_info, "reloc already running, cannot start");
3937                 return -EINPROGRESS;
3938         }
3939
3940         if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3941                 btrfs_info(fs_info, "chunk relocation canceled on start");
3942                 /*
3943                  * On cancel, clear all requests but let the caller mark
3944                  * the end after cleanup operations.
3945                  */
3946                 atomic_set(&fs_info->reloc_cancel_req, 0);
3947                 return -ECANCELED;
3948         }
3949         return 0;
3950 }
3951
3952 /*
3953  * Mark end of chunk relocation that is cancellable and wake any waiters.
3954  */
3955 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3956 {
3957         /* Requested after start, clear bit first so any waiters can continue */
3958         if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3959                 btrfs_info(fs_info, "chunk relocation canceled during operation");
3960         clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3961         atomic_set(&fs_info->reloc_cancel_req, 0);
3962 }
3963
3964 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3965 {
3966         struct reloc_control *rc;
3967
3968         rc = kzalloc(sizeof(*rc), GFP_NOFS);
3969         if (!rc)
3970                 return NULL;
3971
3972         INIT_LIST_HEAD(&rc->reloc_roots);
3973         INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3974         btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3975         mapping_tree_init(&rc->reloc_root_tree);
3976         extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3977         return rc;
3978 }
3979
3980 static void free_reloc_control(struct reloc_control *rc)
3981 {
3982         struct mapping_node *node, *tmp;
3983
3984         free_reloc_roots(&rc->reloc_roots);
3985         rbtree_postorder_for_each_entry_safe(node, tmp,
3986                         &rc->reloc_root_tree.rb_root, rb_node)
3987                 kfree(node);
3988
3989         kfree(rc);
3990 }
3991
3992 /*
3993  * Print the block group being relocated
3994  */
3995 static void describe_relocation(struct btrfs_fs_info *fs_info,
3996                                 struct btrfs_block_group *block_group)
3997 {
3998         char buf[128] = {'\0'};
3999
4000         btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4001
4002         btrfs_info(fs_info,
4003                    "relocating block group %llu flags %s",
4004                    block_group->start, buf);
4005 }
4006
4007 static const char *stage_to_string(int stage)
4008 {
4009         if (stage == MOVE_DATA_EXTENTS)
4010                 return "move data extents";
4011         if (stage == UPDATE_DATA_PTRS)
4012                 return "update data pointers";
4013         return "unknown";
4014 }
4015
4016 /*
4017  * function to relocate all extents in a block group.
4018  */
4019 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4020 {
4021         struct btrfs_block_group *bg;
4022         struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
4023         struct reloc_control *rc;
4024         struct inode *inode;
4025         struct btrfs_path *path;
4026         int ret;
4027         int rw = 0;
4028         int err = 0;
4029
4030         /*
4031          * This only gets set if we had a half-deleted snapshot on mount.  We
4032          * cannot allow relocation to start while we're still trying to clean up
4033          * these pending deletions.
4034          */
4035         ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
4036         if (ret)
4037                 return ret;
4038
4039         /* We may have been woken up by close_ctree, so bail if we're closing. */
4040         if (btrfs_fs_closing(fs_info))
4041                 return -EINTR;
4042
4043         bg = btrfs_lookup_block_group(fs_info, group_start);
4044         if (!bg)
4045                 return -ENOENT;
4046
4047         /*
4048          * Relocation of a data block group creates ordered extents.  Without
4049          * sb_start_write(), we can freeze the filesystem while unfinished
4050          * ordered extents are left. Such ordered extents can cause a deadlock
4051          * e.g. when syncfs() is waiting for their completion but they can't
4052          * finish because they block when joining a transaction, due to the
4053          * fact that the freeze locks are being held in write mode.
4054          */
4055         if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4056                 ASSERT(sb_write_started(fs_info->sb));
4057
4058         if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4059                 btrfs_put_block_group(bg);
4060                 return -ETXTBSY;
4061         }
4062
4063         rc = alloc_reloc_control(fs_info);
4064         if (!rc) {
4065                 btrfs_put_block_group(bg);
4066                 return -ENOMEM;
4067         }
4068
4069         ret = reloc_chunk_start(fs_info);
4070         if (ret < 0) {
4071                 err = ret;
4072                 goto out_put_bg;
4073         }
4074
4075         rc->extent_root = extent_root;
4076         rc->block_group = bg;
4077
4078         ret = btrfs_inc_block_group_ro(rc->block_group, true);
4079         if (ret) {
4080                 err = ret;
4081                 goto out;
4082         }
4083         rw = 1;
4084
4085         path = btrfs_alloc_path();
4086         if (!path) {
4087                 err = -ENOMEM;
4088                 goto out;
4089         }
4090
4091         inode = lookup_free_space_inode(rc->block_group, path);
4092         btrfs_free_path(path);
4093
4094         if (!IS_ERR(inode))
4095                 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4096         else
4097                 ret = PTR_ERR(inode);
4098
4099         if (ret && ret != -ENOENT) {
4100                 err = ret;
4101                 goto out;
4102         }
4103
4104         rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4105         if (IS_ERR(rc->data_inode)) {
4106                 err = PTR_ERR(rc->data_inode);
4107                 rc->data_inode = NULL;
4108                 goto out;
4109         }
4110
4111         describe_relocation(fs_info, rc->block_group);
4112
4113         btrfs_wait_block_group_reservations(rc->block_group);
4114         btrfs_wait_nocow_writers(rc->block_group);
4115         btrfs_wait_ordered_roots(fs_info, U64_MAX,
4116                                  rc->block_group->start,
4117                                  rc->block_group->length);
4118
4119         ret = btrfs_zone_finish(rc->block_group);
4120         WARN_ON(ret && ret != -EAGAIN);
4121
4122         while (1) {
4123                 int finishes_stage;
4124
4125                 mutex_lock(&fs_info->cleaner_mutex);
4126                 ret = relocate_block_group(rc);
4127                 mutex_unlock(&fs_info->cleaner_mutex);
4128                 if (ret < 0)
4129                         err = ret;
4130
4131                 finishes_stage = rc->stage;
4132                 /*
4133                  * We may have gotten ENOSPC after we already dirtied some
4134                  * extents.  If writeout happens while we're relocating a
4135                  * different block group we could end up hitting the
4136                  * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4137                  * btrfs_reloc_cow_block.  Make sure we write everything out
4138                  * properly so we don't trip over this problem, and then break
4139                  * out of the loop if we hit an error.
4140                  */
4141                 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4142                         ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4143                                                        (u64)-1);
4144                         if (ret)
4145                                 err = ret;
4146                         invalidate_mapping_pages(rc->data_inode->i_mapping,
4147                                                  0, -1);
4148                         rc->stage = UPDATE_DATA_PTRS;
4149                 }
4150
4151                 if (err < 0)
4152                         goto out;
4153
4154                 if (rc->extents_found == 0)
4155                         break;
4156
4157                 btrfs_info(fs_info, "found %llu extents, stage: %s",
4158                            rc->extents_found, stage_to_string(finishes_stage));
4159         }
4160
4161         WARN_ON(rc->block_group->pinned > 0);
4162         WARN_ON(rc->block_group->reserved > 0);
4163         WARN_ON(rc->block_group->used > 0);
4164 out:
4165         if (err && rw)
4166                 btrfs_dec_block_group_ro(rc->block_group);
4167         iput(rc->data_inode);
4168 out_put_bg:
4169         btrfs_put_block_group(bg);
4170         reloc_chunk_end(fs_info);
4171         free_reloc_control(rc);
4172         return err;
4173 }
4174
4175 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4176 {
4177         struct btrfs_fs_info *fs_info = root->fs_info;
4178         struct btrfs_trans_handle *trans;
4179         int ret, err;
4180
4181         trans = btrfs_start_transaction(fs_info->tree_root, 0);
4182         if (IS_ERR(trans))
4183                 return PTR_ERR(trans);
4184
4185         memset(&root->root_item.drop_progress, 0,
4186                 sizeof(root->root_item.drop_progress));
4187         btrfs_set_root_drop_level(&root->root_item, 0);
4188         btrfs_set_root_refs(&root->root_item, 0);
4189         ret = btrfs_update_root(trans, fs_info->tree_root,
4190                                 &root->root_key, &root->root_item);
4191
4192         err = btrfs_end_transaction(trans);
4193         if (err)
4194                 return err;
4195         return ret;
4196 }
4197
4198 /*
4199  * recover relocation interrupted by system crash.
4200  *
4201  * this function resumes merging reloc trees with corresponding fs trees.
4202  * this is important for keeping the sharing of tree blocks
4203  */
4204 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4205 {
4206         LIST_HEAD(reloc_roots);
4207         struct btrfs_key key;
4208         struct btrfs_root *fs_root;
4209         struct btrfs_root *reloc_root;
4210         struct btrfs_path *path;
4211         struct extent_buffer *leaf;
4212         struct reloc_control *rc = NULL;
4213         struct btrfs_trans_handle *trans;
4214         int ret;
4215         int err = 0;
4216
4217         path = btrfs_alloc_path();
4218         if (!path)
4219                 return -ENOMEM;
4220         path->reada = READA_BACK;
4221
4222         key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4223         key.type = BTRFS_ROOT_ITEM_KEY;
4224         key.offset = (u64)-1;
4225
4226         while (1) {
4227                 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4228                                         path, 0, 0);
4229                 if (ret < 0) {
4230                         err = ret;
4231                         goto out;
4232                 }
4233                 if (ret > 0) {
4234                         if (path->slots[0] == 0)
4235                                 break;
4236                         path->slots[0]--;
4237                 }
4238                 leaf = path->nodes[0];
4239                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4240                 btrfs_release_path(path);
4241
4242                 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4243                     key.type != BTRFS_ROOT_ITEM_KEY)
4244                         break;
4245
4246                 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4247                 if (IS_ERR(reloc_root)) {
4248                         err = PTR_ERR(reloc_root);
4249                         goto out;
4250                 }
4251
4252                 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4253                 list_add(&reloc_root->root_list, &reloc_roots);
4254
4255                 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4256                         fs_root = btrfs_get_fs_root(fs_info,
4257                                         reloc_root->root_key.offset, false);
4258                         if (IS_ERR(fs_root)) {
4259                                 ret = PTR_ERR(fs_root);
4260                                 if (ret != -ENOENT) {
4261                                         err = ret;
4262                                         goto out;
4263                                 }
4264                                 ret = mark_garbage_root(reloc_root);
4265                                 if (ret < 0) {
4266                                         err = ret;
4267                                         goto out;
4268                                 }
4269                         } else {
4270                                 btrfs_put_root(fs_root);
4271                         }
4272                 }
4273
4274                 if (key.offset == 0)
4275                         break;
4276
4277                 key.offset--;
4278         }
4279         btrfs_release_path(path);
4280
4281         if (list_empty(&reloc_roots))
4282                 goto out;
4283
4284         rc = alloc_reloc_control(fs_info);
4285         if (!rc) {
4286                 err = -ENOMEM;
4287                 goto out;
4288         }
4289
4290         ret = reloc_chunk_start(fs_info);
4291         if (ret < 0) {
4292                 err = ret;
4293                 goto out_end;
4294         }
4295
4296         rc->extent_root = btrfs_extent_root(fs_info, 0);
4297
4298         set_reloc_control(rc);
4299
4300         trans = btrfs_join_transaction(rc->extent_root);
4301         if (IS_ERR(trans)) {
4302                 err = PTR_ERR(trans);
4303                 goto out_unset;
4304         }
4305
4306         rc->merge_reloc_tree = 1;
4307
4308         while (!list_empty(&reloc_roots)) {
4309                 reloc_root = list_entry(reloc_roots.next,
4310                                         struct btrfs_root, root_list);
4311                 list_del(&reloc_root->root_list);
4312
4313                 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4314                         list_add_tail(&reloc_root->root_list,
4315                                       &rc->reloc_roots);
4316                         continue;
4317                 }
4318
4319                 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4320                                             false);
4321                 if (IS_ERR(fs_root)) {
4322                         err = PTR_ERR(fs_root);
4323                         list_add_tail(&reloc_root->root_list, &reloc_roots);
4324                         btrfs_end_transaction(trans);
4325                         goto out_unset;
4326                 }
4327
4328                 err = __add_reloc_root(reloc_root);
4329                 ASSERT(err != -EEXIST);
4330                 if (err) {
4331                         list_add_tail(&reloc_root->root_list, &reloc_roots);
4332                         btrfs_put_root(fs_root);
4333                         btrfs_end_transaction(trans);
4334                         goto out_unset;
4335                 }
4336                 fs_root->reloc_root = btrfs_grab_root(reloc_root);
4337                 btrfs_put_root(fs_root);
4338         }
4339
4340         err = btrfs_commit_transaction(trans);
4341         if (err)
4342                 goto out_unset;
4343
4344         merge_reloc_roots(rc);
4345
4346         unset_reloc_control(rc);
4347
4348         trans = btrfs_join_transaction(rc->extent_root);
4349         if (IS_ERR(trans)) {
4350                 err = PTR_ERR(trans);
4351                 goto out_clean;
4352         }
4353         err = btrfs_commit_transaction(trans);
4354 out_clean:
4355         ret = clean_dirty_subvols(rc);
4356         if (ret < 0 && !err)
4357                 err = ret;
4358 out_unset:
4359         unset_reloc_control(rc);
4360 out_end:
4361         reloc_chunk_end(fs_info);
4362         free_reloc_control(rc);
4363 out:
4364         free_reloc_roots(&reloc_roots);
4365
4366         btrfs_free_path(path);
4367
4368         if (err == 0) {
4369                 /* cleanup orphan inode in data relocation tree */
4370                 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4371                 ASSERT(fs_root);
4372                 err = btrfs_orphan_cleanup(fs_root);
4373                 btrfs_put_root(fs_root);
4374         }
4375         return err;
4376 }
4377
4378 /*
4379  * helper to add ordered checksum for data relocation.
4380  *
4381  * cloning checksum properly handles the nodatasum extents.
4382  * it also saves CPU time to re-calculate the checksum.
4383  */
4384 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4385 {
4386         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
4387         struct btrfs_fs_info *fs_info = inode->root->fs_info;
4388         u64 disk_bytenr = ordered->file_offset + inode->index_cnt;
4389         struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4390         LIST_HEAD(list);
4391         int ret;
4392
4393         ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4394                                       disk_bytenr + ordered->num_bytes - 1,
4395                                       &list, 0, false);
4396         if (ret)
4397                 return ret;
4398
4399         while (!list_empty(&list)) {
4400                 struct btrfs_ordered_sum *sums =
4401                         list_entry(list.next, struct btrfs_ordered_sum, list);
4402
4403                 list_del_init(&sums->list);
4404
4405                 /*
4406                  * We need to offset the new_bytenr based on where the csum is.
4407                  * We need to do this because we will read in entire prealloc
4408                  * extents but we may have written to say the middle of the
4409                  * prealloc extent, so we need to make sure the csum goes with
4410                  * the right disk offset.
4411                  *
4412                  * We can do this because the data reloc inode refers strictly
4413                  * to the on disk bytes, so we don't have to worry about
4414                  * disk_len vs real len like with real inodes since it's all
4415                  * disk length.
4416                  */
4417                 sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4418                 btrfs_add_ordered_sum(ordered, sums);
4419         }
4420
4421         return 0;
4422 }
4423
4424 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4425                           struct btrfs_root *root, struct extent_buffer *buf,
4426                           struct extent_buffer *cow)
4427 {
4428         struct btrfs_fs_info *fs_info = root->fs_info;
4429         struct reloc_control *rc;
4430         struct btrfs_backref_node *node;
4431         int first_cow = 0;
4432         int level;
4433         int ret = 0;
4434
4435         rc = fs_info->reloc_ctl;
4436         if (!rc)
4437                 return 0;
4438
4439         BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4440
4441         level = btrfs_header_level(buf);
4442         if (btrfs_header_generation(buf) <=
4443             btrfs_root_last_snapshot(&root->root_item))
4444                 first_cow = 1;
4445
4446         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4447             rc->create_reloc_tree) {
4448                 WARN_ON(!first_cow && level == 0);
4449
4450                 node = rc->backref_cache.path[level];
4451                 BUG_ON(node->bytenr != buf->start &&
4452                        node->new_bytenr != buf->start);
4453
4454                 btrfs_backref_drop_node_buffer(node);
4455                 atomic_inc(&cow->refs);
4456                 node->eb = cow;
4457                 node->new_bytenr = cow->start;
4458
4459                 if (!node->pending) {
4460                         list_move_tail(&node->list,
4461                                        &rc->backref_cache.pending[level]);
4462                         node->pending = 1;
4463                 }
4464
4465                 if (first_cow)
4466                         mark_block_processed(rc, node);
4467
4468                 if (first_cow && level > 0)
4469                         rc->nodes_relocated += buf->len;
4470         }
4471
4472         if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4473                 ret = replace_file_extents(trans, rc, root, cow);
4474         return ret;
4475 }
4476
4477 /*
4478  * called before creating snapshot. it calculates metadata reservation
4479  * required for relocating tree blocks in the snapshot
4480  */
4481 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4482                               u64 *bytes_to_reserve)
4483 {
4484         struct btrfs_root *root = pending->root;
4485         struct reloc_control *rc = root->fs_info->reloc_ctl;
4486
4487         if (!rc || !have_reloc_root(root))
4488                 return;
4489
4490         if (!rc->merge_reloc_tree)
4491                 return;
4492
4493         root = root->reloc_root;
4494         BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4495         /*
4496          * relocation is in the stage of merging trees. the space
4497          * used by merging a reloc tree is twice the size of
4498          * relocated tree nodes in the worst case. half for cowing
4499          * the reloc tree, half for cowing the fs tree. the space
4500          * used by cowing the reloc tree will be freed after the
4501          * tree is dropped. if we create snapshot, cowing the fs
4502          * tree may use more space than it frees. so we need
4503          * reserve extra space.
4504          */
4505         *bytes_to_reserve += rc->nodes_relocated;
4506 }
4507
4508 /*
4509  * called after snapshot is created. migrate block reservation
4510  * and create reloc root for the newly created snapshot
4511  *
4512  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4513  * references held on the reloc_root, one for root->reloc_root and one for
4514  * rc->reloc_roots.
4515  */
4516 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4517                                struct btrfs_pending_snapshot *pending)
4518 {
4519         struct btrfs_root *root = pending->root;
4520         struct btrfs_root *reloc_root;
4521         struct btrfs_root *new_root;
4522         struct reloc_control *rc = root->fs_info->reloc_ctl;
4523         int ret;
4524
4525         if (!rc || !have_reloc_root(root))
4526                 return 0;
4527
4528         rc = root->fs_info->reloc_ctl;
4529         rc->merging_rsv_size += rc->nodes_relocated;
4530
4531         if (rc->merge_reloc_tree) {
4532                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4533                                               rc->block_rsv,
4534                                               rc->nodes_relocated, true);
4535                 if (ret)
4536                         return ret;
4537         }
4538
4539         new_root = pending->snap;
4540         reloc_root = create_reloc_root(trans, root->reloc_root,
4541                                        new_root->root_key.objectid);
4542         if (IS_ERR(reloc_root))
4543                 return PTR_ERR(reloc_root);
4544
4545         ret = __add_reloc_root(reloc_root);
4546         ASSERT(ret != -EEXIST);
4547         if (ret) {
4548                 /* Pairs with create_reloc_root */
4549                 btrfs_put_root(reloc_root);
4550                 return ret;
4551         }
4552         new_root->reloc_root = btrfs_grab_root(reloc_root);
4553
4554         if (rc->create_reloc_tree)
4555                 ret = clone_backref_node(trans, rc, root, reloc_root);
4556         return ret;
4557 }
4558
4559 /*
4560  * Get the current bytenr for the block group which is being relocated.
4561  *
4562  * Return U64_MAX if no running relocation.
4563  */
4564 u64 btrfs_get_reloc_bg_bytenr(struct btrfs_fs_info *fs_info)
4565 {
4566         u64 logical = U64_MAX;
4567
4568         lockdep_assert_held(&fs_info->reloc_mutex);
4569
4570         if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4571                 logical = fs_info->reloc_ctl->block_group->start;
4572         return logical;
4573 }