1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/blkdev.h>
4 #include <linux/iversion.h>
8 #include "compression.h"
9 #include "delalloc-space.h"
12 #include "transaction.h"
14 #include "accessors.h"
15 #include "file-item.h"
19 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
21 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
28 struct btrfs_root *root = BTRFS_I(inode)->root;
31 inode_inc_iversion(inode);
32 if (!no_time_update) {
33 inode->i_mtime = current_time(inode);
34 inode->i_ctime = inode->i_mtime;
37 * We round up to the block size at eof when determining which
38 * extents to clone above, but shouldn't round up the file size.
40 if (endoff > destoff + olen)
41 endoff = destoff + olen;
42 if (endoff > inode->i_size) {
43 i_size_write(inode, endoff);
44 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
47 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
49 btrfs_abort_transaction(trans, ret);
50 btrfs_end_transaction(trans);
53 ret = btrfs_end_transaction(trans);
58 static int copy_inline_to_page(struct btrfs_inode *inode,
59 const u64 file_offset,
65 struct btrfs_fs_info *fs_info = inode->root->fs_info;
66 const u32 block_size = fs_info->sectorsize;
67 const u64 range_end = file_offset + block_size - 1;
68 const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
69 char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
70 struct extent_changeset *data_reserved = NULL;
71 struct page *page = NULL;
72 struct address_space *mapping = inode->vfs_inode.i_mapping;
75 ASSERT(IS_ALIGNED(file_offset, block_size));
78 * We have flushed and locked the ranges of the source and destination
79 * inodes, we also have locked the inodes, so we are safe to do a
80 * reservation here. Also we must not do the reservation while holding
81 * a transaction open, otherwise we would deadlock.
83 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
88 page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
89 btrfs_alloc_write_mask(mapping));
95 ret = set_page_extent_mapped(page);
99 clear_extent_bit(&inode->io_tree, file_offset, range_end,
100 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
102 ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
107 * After dirtying the page our caller will need to start a transaction,
108 * and if we are low on metadata free space, that can cause flushing of
109 * delalloc for all inodes in order to get metadata space released.
110 * However we are holding the range locked for the whole duration of
111 * the clone/dedupe operation, so we may deadlock if that happens and no
112 * other task releases enough space. So mark this inode as not being
113 * possible to flush to avoid such deadlock. We will clear that flag
114 * when we finish cloning all extents, since a transaction is started
115 * after finding each extent to clone.
117 set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
119 if (comp_type == BTRFS_COMPRESS_NONE) {
120 memcpy_to_page(page, offset_in_page(file_offset), data_start,
123 ret = btrfs_decompress(comp_type, data_start, page,
124 offset_in_page(file_offset),
128 flush_dcache_page(page);
132 * If our inline data is smaller then the block/page size, then the
133 * remaining of the block/page is equivalent to zeroes. We had something
134 * like the following done:
136 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
137 * $ sync # (or fsync)
138 * $ xfs_io -c "falloc 0 4K" file
139 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
141 * So what's in the range [500, 4095] corresponds to zeroes.
143 if (datal < block_size)
144 memzero_page(page, datal, block_size - datal);
146 btrfs_page_set_uptodate(fs_info, page, file_offset, block_size);
147 btrfs_page_clear_checked(fs_info, page, file_offset, block_size);
148 btrfs_page_set_dirty(fs_info, page, file_offset, block_size);
155 btrfs_delalloc_release_space(inode, data_reserved, file_offset,
157 btrfs_delalloc_release_extents(inode, block_size);
159 extent_changeset_free(data_reserved);
165 * Deal with cloning of inline extents. We try to copy the inline extent from
166 * the source inode to destination inode when possible. When not possible we
167 * copy the inline extent's data into the respective page of the inode.
169 static int clone_copy_inline_extent(struct inode *dst,
170 struct btrfs_path *path,
171 struct btrfs_key *new_key,
172 const u64 drop_start,
177 struct btrfs_trans_handle **trans_out)
179 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
180 struct btrfs_root *root = BTRFS_I(dst)->root;
181 const u64 aligned_end = ALIGN(new_key->offset + datal,
182 fs_info->sectorsize);
183 struct btrfs_trans_handle *trans = NULL;
184 struct btrfs_drop_extents_args drop_args = { 0 };
186 struct btrfs_key key;
188 if (new_key->offset > 0) {
189 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
190 inline_data, size, datal, comp_type);
194 key.objectid = btrfs_ino(BTRFS_I(dst));
195 key.type = BTRFS_EXTENT_DATA_KEY;
197 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
200 } else if (ret > 0) {
201 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
202 ret = btrfs_next_leaf(root, path);
206 goto copy_inline_extent;
208 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
209 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
210 key.type == BTRFS_EXTENT_DATA_KEY) {
212 * There's an implicit hole at file offset 0, copy the
213 * inline extent's data to the page.
215 ASSERT(key.offset > 0);
218 } else if (i_size_read(dst) <= datal) {
219 struct btrfs_file_extent_item *ei;
221 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
222 struct btrfs_file_extent_item);
224 * If it's an inline extent replace it with the source inline
225 * extent, otherwise copy the source inline extent data into
226 * the respective page at the destination inode.
228 if (btrfs_file_extent_type(path->nodes[0], ei) ==
229 BTRFS_FILE_EXTENT_INLINE)
230 goto copy_inline_extent;
237 * We have no extent items, or we have an extent at offset 0 which may
238 * or may not be inlined. All these cases are dealt the same way.
240 if (i_size_read(dst) > datal) {
242 * At the destination offset 0 we have either a hole, a regular
243 * extent or an inline extent larger then the one we want to
244 * clone. Deal with all these cases by copying the inline extent
245 * data into the respective page at the destination inode.
251 * Release path before starting a new transaction so we don't hold locks
252 * that would confuse lockdep.
254 btrfs_release_path(path);
256 * If we end up here it means were copy the inline extent into a leaf
257 * of the destination inode. We know we will drop or adjust at most one
258 * extent item in the destination root.
260 * 1 unit - adjusting old extent (we may have to split it)
261 * 1 unit - add new extent
262 * 1 unit - inode update
264 trans = btrfs_start_transaction(root, 3);
266 ret = PTR_ERR(trans);
270 drop_args.path = path;
271 drop_args.start = drop_start;
272 drop_args.end = aligned_end;
273 drop_args.drop_cache = true;
274 ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
277 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
281 write_extent_buffer(path->nodes[0], inline_data,
282 btrfs_item_ptr_offset(path->nodes[0],
285 btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
286 btrfs_set_inode_full_sync(BTRFS_I(dst));
287 ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
289 if (!ret && !trans) {
291 * No transaction here means we copied the inline extent into a
292 * page of the destination inode.
294 * 1 unit to update inode item
296 trans = btrfs_start_transaction(root, 1);
298 ret = PTR_ERR(trans);
303 btrfs_abort_transaction(trans, ret);
304 btrfs_end_transaction(trans);
313 * Release our path because we don't need it anymore and also because
314 * copy_inline_to_page() needs to reserve data and metadata, which may
315 * need to flush delalloc when we are low on available space and
316 * therefore cause a deadlock if writeback of an inline extent needs to
317 * write to the same leaf or an ordered extent completion needs to write
320 btrfs_release_path(path);
322 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
323 inline_data, size, datal, comp_type);
328 * Clone a range from inode file to another.
330 * @src: Inode to clone from
331 * @inode: Inode to clone to
332 * @off: Offset within source to start clone from
333 * @olen: Original length, passed by user, of range to clone
334 * @olen_aligned: Block-aligned value of olen
335 * @destoff: Offset within @inode to start clone
336 * @no_time_update: Whether to update mtime/ctime on the target inode
338 static int btrfs_clone(struct inode *src, struct inode *inode,
339 const u64 off, const u64 olen, const u64 olen_aligned,
340 const u64 destoff, int no_time_update)
342 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
343 struct btrfs_path *path = NULL;
344 struct extent_buffer *leaf;
345 struct btrfs_trans_handle *trans;
347 struct btrfs_key key;
351 const u64 len = olen_aligned;
352 u64 last_dest_end = destoff;
353 u64 prev_extent_end = off;
356 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
360 path = btrfs_alloc_path();
366 path->reada = READA_FORWARD;
368 key.objectid = btrfs_ino(BTRFS_I(src));
369 key.type = BTRFS_EXTENT_DATA_KEY;
373 struct btrfs_file_extent_item *extent;
377 struct btrfs_key new_key;
378 u64 disko = 0, diskl = 0;
379 u64 datao = 0, datal = 0;
383 /* Note the key will change type as we walk through the tree */
384 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
389 * First search, if no extent item that starts at offset off was
390 * found but the previous item is an extent item, it's possible
391 * it might overlap our target range, therefore process it.
393 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
394 btrfs_item_key_to_cpu(path->nodes[0], &key,
396 if (key.type == BTRFS_EXTENT_DATA_KEY)
400 nritems = btrfs_header_nritems(path->nodes[0]);
402 if (path->slots[0] >= nritems) {
403 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
408 nritems = btrfs_header_nritems(path->nodes[0]);
410 leaf = path->nodes[0];
411 slot = path->slots[0];
413 btrfs_item_key_to_cpu(leaf, &key, slot);
414 if (key.type > BTRFS_EXTENT_DATA_KEY ||
415 key.objectid != btrfs_ino(BTRFS_I(src)))
418 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
420 extent = btrfs_item_ptr(leaf, slot,
421 struct btrfs_file_extent_item);
422 extent_gen = btrfs_file_extent_generation(leaf, extent);
423 comp = btrfs_file_extent_compression(leaf, extent);
424 type = btrfs_file_extent_type(leaf, extent);
425 if (type == BTRFS_FILE_EXTENT_REG ||
426 type == BTRFS_FILE_EXTENT_PREALLOC) {
427 disko = btrfs_file_extent_disk_bytenr(leaf, extent);
428 diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
429 datao = btrfs_file_extent_offset(leaf, extent);
430 datal = btrfs_file_extent_num_bytes(leaf, extent);
431 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
432 /* Take upper bound, may be compressed */
433 datal = btrfs_file_extent_ram_bytes(leaf, extent);
437 * The first search might have left us at an extent item that
438 * ends before our target range's start, can happen if we have
439 * holes and NO_HOLES feature enabled.
441 * Subsequent searches may leave us on a file range we have
442 * processed before - this happens due to a race with ordered
443 * extent completion for a file range that is outside our source
444 * range, but that range was part of a file extent item that
445 * also covered a leading part of our source range.
447 if (key.offset + datal <= prev_extent_end) {
450 } else if (key.offset >= off + len) {
454 prev_extent_end = key.offset + datal;
455 size = btrfs_item_size(leaf, slot);
456 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
459 btrfs_release_path(path);
461 memcpy(&new_key, &key, sizeof(new_key));
462 new_key.objectid = btrfs_ino(BTRFS_I(inode));
463 if (off <= key.offset)
464 new_key.offset = key.offset + destoff - off;
466 new_key.offset = destoff;
469 * Deal with a hole that doesn't have an extent item that
470 * represents it (NO_HOLES feature enabled).
471 * This hole is either in the middle of the cloning range or at
472 * the beginning (fully overlaps it or partially overlaps it).
474 if (new_key.offset != last_dest_end)
475 drop_start = last_dest_end;
477 drop_start = new_key.offset;
479 if (type == BTRFS_FILE_EXTENT_REG ||
480 type == BTRFS_FILE_EXTENT_PREALLOC) {
481 struct btrfs_replace_extent_info clone_info;
484 * a | --- range to clone ---| b
485 * | ------------- extent ------------- |
488 /* Subtract range b */
489 if (key.offset + datal > off + len)
490 datal = off + len - key.offset;
492 /* Subtract range a */
493 if (off > key.offset) {
494 datao += off - key.offset;
495 datal -= off - key.offset;
498 clone_info.disk_offset = disko;
499 clone_info.disk_len = diskl;
500 clone_info.data_offset = datao;
501 clone_info.data_len = datal;
502 clone_info.file_offset = new_key.offset;
503 clone_info.extent_buf = buf;
504 clone_info.is_new_extent = false;
505 clone_info.update_times = !no_time_update;
506 ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
507 drop_start, new_key.offset + datal - 1,
508 &clone_info, &trans);
512 ASSERT(type == BTRFS_FILE_EXTENT_INLINE);
514 * Inline extents always have to start at file offset 0
515 * and can never be bigger then the sector size. We can
516 * never clone only parts of an inline extent, since all
517 * reflink operations must start at a sector size aligned
518 * offset, and the length must be aligned too or end at
519 * the i_size (which implies the whole inlined data).
521 ASSERT(key.offset == 0);
522 ASSERT(datal <= fs_info->sectorsize);
523 if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) ||
524 WARN_ON(key.offset != 0) ||
525 WARN_ON(datal > fs_info->sectorsize)) {
530 ret = clone_copy_inline_extent(inode, path, &new_key,
531 drop_start, datal, size,
537 btrfs_release_path(path);
540 * Whenever we share an extent we update the last_reflink_trans
541 * of each inode to the current transaction. This is needed to
542 * make sure fsync does not log multiple checksum items with
543 * overlapping ranges (because some extent items might refer
544 * only to sections of the original extent). For the destination
545 * inode we do this regardless of the generation of the extents
546 * or even if they are inline extents or explicit holes, to make
547 * sure a full fsync does not skip them. For the source inode,
548 * we only need to update last_reflink_trans in case it's a new
549 * extent that is not a hole or an inline extent, to deal with
550 * the checksums problem on fsync.
552 if (extent_gen == trans->transid && disko > 0)
553 BTRFS_I(src)->last_reflink_trans = trans->transid;
555 BTRFS_I(inode)->last_reflink_trans = trans->transid;
557 last_dest_end = ALIGN(new_key.offset + datal,
558 fs_info->sectorsize);
559 ret = clone_finish_inode_update(trans, inode, last_dest_end,
560 destoff, olen, no_time_update);
563 if (new_key.offset + datal >= destoff + len)
566 btrfs_release_path(path);
567 key.offset = prev_extent_end;
569 if (fatal_signal_pending(current)) {
578 if (last_dest_end < destoff + len) {
580 * We have an implicit hole that fully or partially overlaps our
581 * cloning range at its end. This means that we either have the
582 * NO_HOLES feature enabled or the implicit hole happened due to
583 * mixing buffered and direct IO writes against this file.
585 btrfs_release_path(path);
588 * When using NO_HOLES and we are cloning a range that covers
589 * only a hole (no extents) into a range beyond the current
590 * i_size, punching a hole in the target range will not create
591 * an extent map defining a hole, because the range starts at or
592 * beyond current i_size. If the file previously had an i_size
593 * greater than the new i_size set by this clone operation, we
594 * need to make sure the next fsync is a full fsync, so that it
595 * detects and logs a hole covering a range from the current
596 * i_size to the new i_size. If the clone range covers extents,
597 * besides a hole, then we know the full sync flag was already
598 * set by previous calls to btrfs_replace_file_extents() that
599 * replaced file extent items.
601 if (last_dest_end >= i_size_read(inode))
602 btrfs_set_inode_full_sync(BTRFS_I(inode));
604 ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
605 last_dest_end, destoff + len - 1, NULL, &trans);
609 ret = clone_finish_inode_update(trans, inode, destoff + len,
610 destoff, olen, no_time_update);
614 btrfs_free_path(path);
616 clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
621 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
622 struct inode *inode2, u64 loff2, u64 len)
624 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1, NULL);
625 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1, NULL);
628 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
629 struct inode *inode2, u64 loff2, u64 len)
631 u64 range1_end = loff1 + len - 1;
632 u64 range2_end = loff2 + len - 1;
634 if (inode1 < inode2) {
635 swap(inode1, inode2);
637 swap(range1_end, range2_end);
638 } else if (inode1 == inode2 && loff2 < loff1) {
640 swap(range1_end, range2_end);
643 lock_extent(&BTRFS_I(inode1)->io_tree, loff1, range1_end, NULL);
644 lock_extent(&BTRFS_I(inode2)->io_tree, loff2, range2_end, NULL);
646 btrfs_assert_inode_range_clean(BTRFS_I(inode1), loff1, range1_end);
647 btrfs_assert_inode_range_clean(BTRFS_I(inode2), loff2, range2_end);
650 static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
653 swap(inode1, inode2);
654 down_write(&BTRFS_I(inode1)->i_mmap_lock);
655 down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
658 static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
660 up_write(&BTRFS_I(inode1)->i_mmap_lock);
661 up_write(&BTRFS_I(inode2)->i_mmap_lock);
664 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
665 struct inode *dst, u64 dst_loff)
667 struct btrfs_fs_info *fs_info = BTRFS_I(src)->root->fs_info;
668 const u64 bs = fs_info->sb->s_blocksize;
672 * Lock destination range to serialize with concurrent readahead() and
673 * source range to serialize with relocation.
675 btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
676 ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
677 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
679 btrfs_btree_balance_dirty(fs_info);
684 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
685 struct inode *dst, u64 dst_loff)
688 u64 i, tail_len, chunk_count;
689 struct btrfs_root *root_dst = BTRFS_I(dst)->root;
691 spin_lock(&root_dst->root_item_lock);
692 if (root_dst->send_in_progress) {
693 btrfs_warn_rl(root_dst->fs_info,
694 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
695 root_dst->root_key.objectid,
696 root_dst->send_in_progress);
697 spin_unlock(&root_dst->root_item_lock);
700 root_dst->dedupe_in_progress++;
701 spin_unlock(&root_dst->root_item_lock);
703 tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
704 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
706 for (i = 0; i < chunk_count; i++) {
707 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
712 loff += BTRFS_MAX_DEDUPE_LEN;
713 dst_loff += BTRFS_MAX_DEDUPE_LEN;
717 ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
719 spin_lock(&root_dst->root_item_lock);
720 root_dst->dedupe_in_progress--;
721 spin_unlock(&root_dst->root_item_lock);
726 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
727 u64 off, u64 olen, u64 destoff)
729 struct inode *inode = file_inode(file);
730 struct inode *src = file_inode(file_src);
731 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
735 u64 bs = fs_info->sb->s_blocksize;
738 * VFS's generic_remap_file_range_prep() protects us from cloning the
739 * eof block into the middle of a file, which would result in corruption
740 * if the file size is not blocksize aligned. So we don't need to check
741 * for that case here.
743 if (off + len == src->i_size)
744 len = ALIGN(src->i_size, bs) - off;
746 if (destoff > inode->i_size) {
747 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
749 ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
753 * We may have truncated the last block if the inode's size is
754 * not sector size aligned, so we need to wait for writeback to
755 * complete before proceeding further, otherwise we can race
756 * with cloning and attempt to increment a reference to an
757 * extent that no longer exists (writeback completed right after
758 * we found the previous extent covering eof and before we
759 * attempted to increment its reference count).
761 ret = btrfs_wait_ordered_range(inode, wb_start,
768 * Lock destination range to serialize with concurrent readahead() and
769 * source range to serialize with relocation.
771 btrfs_double_extent_lock(src, off, inode, destoff, len);
772 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
773 btrfs_double_extent_unlock(src, off, inode, destoff, len);
776 * We may have copied an inline extent into a page of the destination
777 * range, so wait for writeback to complete before truncating pages
778 * from the page cache. This is a rare case.
780 wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
781 ret = ret ? ret : wb_ret;
783 * Truncate page cache pages so that future reads will see the cloned
784 * data immediately and not the previous data.
786 truncate_inode_pages_range(&inode->i_data,
787 round_down(destoff, PAGE_SIZE),
788 round_up(destoff + len, PAGE_SIZE) - 1);
790 btrfs_btree_balance_dirty(fs_info);
795 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
796 struct file *file_out, loff_t pos_out,
797 loff_t *len, unsigned int remap_flags)
799 struct inode *inode_in = file_inode(file_in);
800 struct inode *inode_out = file_inode(file_out);
801 u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
805 if (!(remap_flags & REMAP_FILE_DEDUP)) {
806 struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
808 if (btrfs_root_readonly(root_out))
811 ASSERT(inode_in->i_sb == inode_out->i_sb);
814 /* Don't make the dst file partly checksummed */
815 if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
816 (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
821 * Now that the inodes are locked, we need to start writeback ourselves
822 * and can not rely on the writeback from the VFS's generic helper
823 * generic_remap_file_range_prep() because:
825 * 1) For compression we must call filemap_fdatawrite_range() range
826 * twice (btrfs_fdatawrite_range() does it for us), and the generic
827 * helper only calls it once;
829 * 2) filemap_fdatawrite_range(), called by the generic helper only
830 * waits for the writeback to complete, i.e. for IO to be done, and
831 * not for the ordered extents to complete. We need to wait for them
832 * to complete so that new file extent items are in the fs tree.
834 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
835 wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
837 wb_len = ALIGN(*len, bs);
840 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
842 * Btrfs' back references do not have a block level granularity, they
843 * work at the whole extent level.
844 * NOCOW buffered write without data space reserved may not be able
845 * to fall back to CoW due to lack of data space, thus could cause
848 * Here we take a shortcut by flushing the whole inode, so that all
849 * nocow write should reach disk as nocow before we increase the
850 * reference of the extent. We could do better by only flushing NOCOW
851 * data, but that needs extra accounting.
853 * Also we don't need to check ASYNC_EXTENT, as async extent will be
854 * CoWed anyway, not affecting nocow part.
856 ret = filemap_flush(inode_in->i_mapping);
860 ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
864 ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
869 return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
873 static bool file_sync_write(const struct file *file)
875 if (file->f_flags & (__O_SYNC | O_DSYNC))
877 if (IS_SYNC(file_inode(file)))
883 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
884 struct file *dst_file, loff_t destoff, loff_t len,
885 unsigned int remap_flags)
887 struct inode *src_inode = file_inode(src_file);
888 struct inode *dst_inode = file_inode(dst_file);
889 bool same_inode = dst_inode == src_inode;
892 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
896 btrfs_inode_lock(BTRFS_I(src_inode), BTRFS_ILOCK_MMAP);
898 lock_two_nondirectories(src_inode, dst_inode);
899 btrfs_double_mmap_lock(src_inode, dst_inode);
902 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
904 if (ret < 0 || len == 0)
907 if (remap_flags & REMAP_FILE_DEDUP)
908 ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
910 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
914 btrfs_inode_unlock(BTRFS_I(src_inode), BTRFS_ILOCK_MMAP);
916 btrfs_double_mmap_unlock(src_inode, dst_inode);
917 unlock_two_nondirectories(src_inode, dst_inode);
921 * If either the source or the destination file was opened with O_SYNC,
922 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
923 * source files/ranges, so that after a successful return (0) followed
924 * by a power failure results in the reflinked data to be readable from
927 if (ret == 0 && len > 0 &&
928 (file_sync_write(src_file) || file_sync_write(dst_file))) {
929 ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
931 ret = btrfs_sync_file(dst_file, destoff,
932 destoff + len - 1, 0);
935 return ret < 0 ? ret : len;