Merge branch 'for-6.3/hid-bpf' into for-linus
[platform/kernel/linux-starfive.git] / fs / btrfs / ref-verify.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2014 Facebook.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/stacktrace.h>
8 #include "messages.h"
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "locking.h"
12 #include "delayed-ref.h"
13 #include "ref-verify.h"
14 #include "fs.h"
15 #include "accessors.h"
16
17 /*
18  * Used to keep track the roots and number of refs each root has for a given
19  * bytenr.  This just tracks the number of direct references, no shared
20  * references.
21  */
22 struct root_entry {
23         u64 root_objectid;
24         u64 num_refs;
25         struct rb_node node;
26 };
27
28 /*
29  * These are meant to represent what should exist in the extent tree, these can
30  * be used to verify the extent tree is consistent as these should all match
31  * what the extent tree says.
32  */
33 struct ref_entry {
34         u64 root_objectid;
35         u64 parent;
36         u64 owner;
37         u64 offset;
38         u64 num_refs;
39         struct rb_node node;
40 };
41
42 #define MAX_TRACE       16
43
44 /*
45  * Whenever we add/remove a reference we record the action.  The action maps
46  * back to the delayed ref action.  We hold the ref we are changing in the
47  * action so we can account for the history properly, and we record the root we
48  * were called with since it could be different from ref_root.  We also store
49  * stack traces because that's how I roll.
50  */
51 struct ref_action {
52         int action;
53         u64 root;
54         struct ref_entry ref;
55         struct list_head list;
56         unsigned long trace[MAX_TRACE];
57         unsigned int trace_len;
58 };
59
60 /*
61  * One of these for every block we reference, it holds the roots and references
62  * to it as well as all of the ref actions that have occurred to it.  We never
63  * free it until we unmount the file system in order to make sure re-allocations
64  * are happening properly.
65  */
66 struct block_entry {
67         u64 bytenr;
68         u64 len;
69         u64 num_refs;
70         int metadata;
71         int from_disk;
72         struct rb_root roots;
73         struct rb_root refs;
74         struct rb_node node;
75         struct list_head actions;
76 };
77
78 static struct block_entry *insert_block_entry(struct rb_root *root,
79                                               struct block_entry *be)
80 {
81         struct rb_node **p = &root->rb_node;
82         struct rb_node *parent_node = NULL;
83         struct block_entry *entry;
84
85         while (*p) {
86                 parent_node = *p;
87                 entry = rb_entry(parent_node, struct block_entry, node);
88                 if (entry->bytenr > be->bytenr)
89                         p = &(*p)->rb_left;
90                 else if (entry->bytenr < be->bytenr)
91                         p = &(*p)->rb_right;
92                 else
93                         return entry;
94         }
95
96         rb_link_node(&be->node, parent_node, p);
97         rb_insert_color(&be->node, root);
98         return NULL;
99 }
100
101 static struct block_entry *lookup_block_entry(struct rb_root *root, u64 bytenr)
102 {
103         struct rb_node *n;
104         struct block_entry *entry = NULL;
105
106         n = root->rb_node;
107         while (n) {
108                 entry = rb_entry(n, struct block_entry, node);
109                 if (entry->bytenr < bytenr)
110                         n = n->rb_right;
111                 else if (entry->bytenr > bytenr)
112                         n = n->rb_left;
113                 else
114                         return entry;
115         }
116         return NULL;
117 }
118
119 static struct root_entry *insert_root_entry(struct rb_root *root,
120                                             struct root_entry *re)
121 {
122         struct rb_node **p = &root->rb_node;
123         struct rb_node *parent_node = NULL;
124         struct root_entry *entry;
125
126         while (*p) {
127                 parent_node = *p;
128                 entry = rb_entry(parent_node, struct root_entry, node);
129                 if (entry->root_objectid > re->root_objectid)
130                         p = &(*p)->rb_left;
131                 else if (entry->root_objectid < re->root_objectid)
132                         p = &(*p)->rb_right;
133                 else
134                         return entry;
135         }
136
137         rb_link_node(&re->node, parent_node, p);
138         rb_insert_color(&re->node, root);
139         return NULL;
140
141 }
142
143 static int comp_refs(struct ref_entry *ref1, struct ref_entry *ref2)
144 {
145         if (ref1->root_objectid < ref2->root_objectid)
146                 return -1;
147         if (ref1->root_objectid > ref2->root_objectid)
148                 return 1;
149         if (ref1->parent < ref2->parent)
150                 return -1;
151         if (ref1->parent > ref2->parent)
152                 return 1;
153         if (ref1->owner < ref2->owner)
154                 return -1;
155         if (ref1->owner > ref2->owner)
156                 return 1;
157         if (ref1->offset < ref2->offset)
158                 return -1;
159         if (ref1->offset > ref2->offset)
160                 return 1;
161         return 0;
162 }
163
164 static struct ref_entry *insert_ref_entry(struct rb_root *root,
165                                           struct ref_entry *ref)
166 {
167         struct rb_node **p = &root->rb_node;
168         struct rb_node *parent_node = NULL;
169         struct ref_entry *entry;
170         int cmp;
171
172         while (*p) {
173                 parent_node = *p;
174                 entry = rb_entry(parent_node, struct ref_entry, node);
175                 cmp = comp_refs(entry, ref);
176                 if (cmp > 0)
177                         p = &(*p)->rb_left;
178                 else if (cmp < 0)
179                         p = &(*p)->rb_right;
180                 else
181                         return entry;
182         }
183
184         rb_link_node(&ref->node, parent_node, p);
185         rb_insert_color(&ref->node, root);
186         return NULL;
187
188 }
189
190 static struct root_entry *lookup_root_entry(struct rb_root *root, u64 objectid)
191 {
192         struct rb_node *n;
193         struct root_entry *entry = NULL;
194
195         n = root->rb_node;
196         while (n) {
197                 entry = rb_entry(n, struct root_entry, node);
198                 if (entry->root_objectid < objectid)
199                         n = n->rb_right;
200                 else if (entry->root_objectid > objectid)
201                         n = n->rb_left;
202                 else
203                         return entry;
204         }
205         return NULL;
206 }
207
208 #ifdef CONFIG_STACKTRACE
209 static void __save_stack_trace(struct ref_action *ra)
210 {
211         ra->trace_len = stack_trace_save(ra->trace, MAX_TRACE, 2);
212 }
213
214 static void __print_stack_trace(struct btrfs_fs_info *fs_info,
215                                 struct ref_action *ra)
216 {
217         if (ra->trace_len == 0) {
218                 btrfs_err(fs_info, "  ref-verify: no stacktrace");
219                 return;
220         }
221         stack_trace_print(ra->trace, ra->trace_len, 2);
222 }
223 #else
224 static inline void __save_stack_trace(struct ref_action *ra)
225 {
226 }
227
228 static inline void __print_stack_trace(struct btrfs_fs_info *fs_info,
229                                        struct ref_action *ra)
230 {
231         btrfs_err(fs_info, "  ref-verify: no stacktrace support");
232 }
233 #endif
234
235 static void free_block_entry(struct block_entry *be)
236 {
237         struct root_entry *re;
238         struct ref_entry *ref;
239         struct ref_action *ra;
240         struct rb_node *n;
241
242         while ((n = rb_first(&be->roots))) {
243                 re = rb_entry(n, struct root_entry, node);
244                 rb_erase(&re->node, &be->roots);
245                 kfree(re);
246         }
247
248         while((n = rb_first(&be->refs))) {
249                 ref = rb_entry(n, struct ref_entry, node);
250                 rb_erase(&ref->node, &be->refs);
251                 kfree(ref);
252         }
253
254         while (!list_empty(&be->actions)) {
255                 ra = list_first_entry(&be->actions, struct ref_action,
256                                       list);
257                 list_del(&ra->list);
258                 kfree(ra);
259         }
260         kfree(be);
261 }
262
263 static struct block_entry *add_block_entry(struct btrfs_fs_info *fs_info,
264                                            u64 bytenr, u64 len,
265                                            u64 root_objectid)
266 {
267         struct block_entry *be = NULL, *exist;
268         struct root_entry *re = NULL;
269
270         re = kzalloc(sizeof(struct root_entry), GFP_NOFS);
271         be = kzalloc(sizeof(struct block_entry), GFP_NOFS);
272         if (!be || !re) {
273                 kfree(re);
274                 kfree(be);
275                 return ERR_PTR(-ENOMEM);
276         }
277         be->bytenr = bytenr;
278         be->len = len;
279
280         re->root_objectid = root_objectid;
281         re->num_refs = 0;
282
283         spin_lock(&fs_info->ref_verify_lock);
284         exist = insert_block_entry(&fs_info->block_tree, be);
285         if (exist) {
286                 if (root_objectid) {
287                         struct root_entry *exist_re;
288
289                         exist_re = insert_root_entry(&exist->roots, re);
290                         if (exist_re)
291                                 kfree(re);
292                 } else {
293                         kfree(re);
294                 }
295                 kfree(be);
296                 return exist;
297         }
298
299         be->num_refs = 0;
300         be->metadata = 0;
301         be->from_disk = 0;
302         be->roots = RB_ROOT;
303         be->refs = RB_ROOT;
304         INIT_LIST_HEAD(&be->actions);
305         if (root_objectid)
306                 insert_root_entry(&be->roots, re);
307         else
308                 kfree(re);
309         return be;
310 }
311
312 static int add_tree_block(struct btrfs_fs_info *fs_info, u64 ref_root,
313                           u64 parent, u64 bytenr, int level)
314 {
315         struct block_entry *be;
316         struct root_entry *re;
317         struct ref_entry *ref = NULL, *exist;
318
319         ref = kmalloc(sizeof(struct ref_entry), GFP_NOFS);
320         if (!ref)
321                 return -ENOMEM;
322
323         if (parent)
324                 ref->root_objectid = 0;
325         else
326                 ref->root_objectid = ref_root;
327         ref->parent = parent;
328         ref->owner = level;
329         ref->offset = 0;
330         ref->num_refs = 1;
331
332         be = add_block_entry(fs_info, bytenr, fs_info->nodesize, ref_root);
333         if (IS_ERR(be)) {
334                 kfree(ref);
335                 return PTR_ERR(be);
336         }
337         be->num_refs++;
338         be->from_disk = 1;
339         be->metadata = 1;
340
341         if (!parent) {
342                 ASSERT(ref_root);
343                 re = lookup_root_entry(&be->roots, ref_root);
344                 ASSERT(re);
345                 re->num_refs++;
346         }
347         exist = insert_ref_entry(&be->refs, ref);
348         if (exist) {
349                 exist->num_refs++;
350                 kfree(ref);
351         }
352         spin_unlock(&fs_info->ref_verify_lock);
353
354         return 0;
355 }
356
357 static int add_shared_data_ref(struct btrfs_fs_info *fs_info,
358                                u64 parent, u32 num_refs, u64 bytenr,
359                                u64 num_bytes)
360 {
361         struct block_entry *be;
362         struct ref_entry *ref;
363
364         ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
365         if (!ref)
366                 return -ENOMEM;
367         be = add_block_entry(fs_info, bytenr, num_bytes, 0);
368         if (IS_ERR(be)) {
369                 kfree(ref);
370                 return PTR_ERR(be);
371         }
372         be->num_refs += num_refs;
373
374         ref->parent = parent;
375         ref->num_refs = num_refs;
376         if (insert_ref_entry(&be->refs, ref)) {
377                 spin_unlock(&fs_info->ref_verify_lock);
378                 btrfs_err(fs_info, "existing shared ref when reading from disk?");
379                 kfree(ref);
380                 return -EINVAL;
381         }
382         spin_unlock(&fs_info->ref_verify_lock);
383         return 0;
384 }
385
386 static int add_extent_data_ref(struct btrfs_fs_info *fs_info,
387                                struct extent_buffer *leaf,
388                                struct btrfs_extent_data_ref *dref,
389                                u64 bytenr, u64 num_bytes)
390 {
391         struct block_entry *be;
392         struct ref_entry *ref;
393         struct root_entry *re;
394         u64 ref_root = btrfs_extent_data_ref_root(leaf, dref);
395         u64 owner = btrfs_extent_data_ref_objectid(leaf, dref);
396         u64 offset = btrfs_extent_data_ref_offset(leaf, dref);
397         u32 num_refs = btrfs_extent_data_ref_count(leaf, dref);
398
399         ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
400         if (!ref)
401                 return -ENOMEM;
402         be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
403         if (IS_ERR(be)) {
404                 kfree(ref);
405                 return PTR_ERR(be);
406         }
407         be->num_refs += num_refs;
408
409         ref->parent = 0;
410         ref->owner = owner;
411         ref->root_objectid = ref_root;
412         ref->offset = offset;
413         ref->num_refs = num_refs;
414         if (insert_ref_entry(&be->refs, ref)) {
415                 spin_unlock(&fs_info->ref_verify_lock);
416                 btrfs_err(fs_info, "existing ref when reading from disk?");
417                 kfree(ref);
418                 return -EINVAL;
419         }
420
421         re = lookup_root_entry(&be->roots, ref_root);
422         if (!re) {
423                 spin_unlock(&fs_info->ref_verify_lock);
424                 btrfs_err(fs_info, "missing root in new block entry?");
425                 return -EINVAL;
426         }
427         re->num_refs += num_refs;
428         spin_unlock(&fs_info->ref_verify_lock);
429         return 0;
430 }
431
432 static int process_extent_item(struct btrfs_fs_info *fs_info,
433                                struct btrfs_path *path, struct btrfs_key *key,
434                                int slot, int *tree_block_level)
435 {
436         struct btrfs_extent_item *ei;
437         struct btrfs_extent_inline_ref *iref;
438         struct btrfs_extent_data_ref *dref;
439         struct btrfs_shared_data_ref *sref;
440         struct extent_buffer *leaf = path->nodes[0];
441         u32 item_size = btrfs_item_size(leaf, slot);
442         unsigned long end, ptr;
443         u64 offset, flags, count;
444         int type, ret;
445
446         ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
447         flags = btrfs_extent_flags(leaf, ei);
448
449         if ((key->type == BTRFS_EXTENT_ITEM_KEY) &&
450             flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
451                 struct btrfs_tree_block_info *info;
452
453                 info = (struct btrfs_tree_block_info *)(ei + 1);
454                 *tree_block_level = btrfs_tree_block_level(leaf, info);
455                 iref = (struct btrfs_extent_inline_ref *)(info + 1);
456         } else {
457                 if (key->type == BTRFS_METADATA_ITEM_KEY)
458                         *tree_block_level = key->offset;
459                 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
460         }
461
462         ptr = (unsigned long)iref;
463         end = (unsigned long)ei + item_size;
464         while (ptr < end) {
465                 iref = (struct btrfs_extent_inline_ref *)ptr;
466                 type = btrfs_extent_inline_ref_type(leaf, iref);
467                 offset = btrfs_extent_inline_ref_offset(leaf, iref);
468                 switch (type) {
469                 case BTRFS_TREE_BLOCK_REF_KEY:
470                         ret = add_tree_block(fs_info, offset, 0, key->objectid,
471                                              *tree_block_level);
472                         break;
473                 case BTRFS_SHARED_BLOCK_REF_KEY:
474                         ret = add_tree_block(fs_info, 0, offset, key->objectid,
475                                              *tree_block_level);
476                         break;
477                 case BTRFS_EXTENT_DATA_REF_KEY:
478                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
479                         ret = add_extent_data_ref(fs_info, leaf, dref,
480                                                   key->objectid, key->offset);
481                         break;
482                 case BTRFS_SHARED_DATA_REF_KEY:
483                         sref = (struct btrfs_shared_data_ref *)(iref + 1);
484                         count = btrfs_shared_data_ref_count(leaf, sref);
485                         ret = add_shared_data_ref(fs_info, offset, count,
486                                                   key->objectid, key->offset);
487                         break;
488                 default:
489                         btrfs_err(fs_info, "invalid key type in iref");
490                         ret = -EINVAL;
491                         break;
492                 }
493                 if (ret)
494                         break;
495                 ptr += btrfs_extent_inline_ref_size(type);
496         }
497         return ret;
498 }
499
500 static int process_leaf(struct btrfs_root *root,
501                         struct btrfs_path *path, u64 *bytenr, u64 *num_bytes,
502                         int *tree_block_level)
503 {
504         struct btrfs_fs_info *fs_info = root->fs_info;
505         struct extent_buffer *leaf = path->nodes[0];
506         struct btrfs_extent_data_ref *dref;
507         struct btrfs_shared_data_ref *sref;
508         u32 count;
509         int i = 0, ret = 0;
510         struct btrfs_key key;
511         int nritems = btrfs_header_nritems(leaf);
512
513         for (i = 0; i < nritems; i++) {
514                 btrfs_item_key_to_cpu(leaf, &key, i);
515                 switch (key.type) {
516                 case BTRFS_EXTENT_ITEM_KEY:
517                         *num_bytes = key.offset;
518                         fallthrough;
519                 case BTRFS_METADATA_ITEM_KEY:
520                         *bytenr = key.objectid;
521                         ret = process_extent_item(fs_info, path, &key, i,
522                                                   tree_block_level);
523                         break;
524                 case BTRFS_TREE_BLOCK_REF_KEY:
525                         ret = add_tree_block(fs_info, key.offset, 0,
526                                              key.objectid, *tree_block_level);
527                         break;
528                 case BTRFS_SHARED_BLOCK_REF_KEY:
529                         ret = add_tree_block(fs_info, 0, key.offset,
530                                              key.objectid, *tree_block_level);
531                         break;
532                 case BTRFS_EXTENT_DATA_REF_KEY:
533                         dref = btrfs_item_ptr(leaf, i,
534                                               struct btrfs_extent_data_ref);
535                         ret = add_extent_data_ref(fs_info, leaf, dref, *bytenr,
536                                                   *num_bytes);
537                         break;
538                 case BTRFS_SHARED_DATA_REF_KEY:
539                         sref = btrfs_item_ptr(leaf, i,
540                                               struct btrfs_shared_data_ref);
541                         count = btrfs_shared_data_ref_count(leaf, sref);
542                         ret = add_shared_data_ref(fs_info, key.offset, count,
543                                                   *bytenr, *num_bytes);
544                         break;
545                 default:
546                         break;
547                 }
548                 if (ret)
549                         break;
550         }
551         return ret;
552 }
553
554 /* Walk down to the leaf from the given level */
555 static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path,
556                           int level, u64 *bytenr, u64 *num_bytes,
557                           int *tree_block_level)
558 {
559         struct extent_buffer *eb;
560         int ret = 0;
561
562         while (level >= 0) {
563                 if (level) {
564                         eb = btrfs_read_node_slot(path->nodes[level],
565                                                   path->slots[level]);
566                         if (IS_ERR(eb))
567                                 return PTR_ERR(eb);
568                         btrfs_tree_read_lock(eb);
569                         path->nodes[level-1] = eb;
570                         path->slots[level-1] = 0;
571                         path->locks[level-1] = BTRFS_READ_LOCK;
572                 } else {
573                         ret = process_leaf(root, path, bytenr, num_bytes,
574                                            tree_block_level);
575                         if (ret)
576                                 break;
577                 }
578                 level--;
579         }
580         return ret;
581 }
582
583 /* Walk up to the next node that needs to be processed */
584 static int walk_up_tree(struct btrfs_path *path, int *level)
585 {
586         int l;
587
588         for (l = 0; l < BTRFS_MAX_LEVEL; l++) {
589                 if (!path->nodes[l])
590                         continue;
591                 if (l) {
592                         path->slots[l]++;
593                         if (path->slots[l] <
594                             btrfs_header_nritems(path->nodes[l])) {
595                                 *level = l;
596                                 return 0;
597                         }
598                 }
599                 btrfs_tree_unlock_rw(path->nodes[l], path->locks[l]);
600                 free_extent_buffer(path->nodes[l]);
601                 path->nodes[l] = NULL;
602                 path->slots[l] = 0;
603                 path->locks[l] = 0;
604         }
605
606         return 1;
607 }
608
609 static void dump_ref_action(struct btrfs_fs_info *fs_info,
610                             struct ref_action *ra)
611 {
612         btrfs_err(fs_info,
613 "  Ref action %d, root %llu, ref_root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
614                   ra->action, ra->root, ra->ref.root_objectid, ra->ref.parent,
615                   ra->ref.owner, ra->ref.offset, ra->ref.num_refs);
616         __print_stack_trace(fs_info, ra);
617 }
618
619 /*
620  * Dumps all the information from the block entry to printk, it's going to be
621  * awesome.
622  */
623 static void dump_block_entry(struct btrfs_fs_info *fs_info,
624                              struct block_entry *be)
625 {
626         struct ref_entry *ref;
627         struct root_entry *re;
628         struct ref_action *ra;
629         struct rb_node *n;
630
631         btrfs_err(fs_info,
632 "dumping block entry [%llu %llu], num_refs %llu, metadata %d, from disk %d",
633                   be->bytenr, be->len, be->num_refs, be->metadata,
634                   be->from_disk);
635
636         for (n = rb_first(&be->refs); n; n = rb_next(n)) {
637                 ref = rb_entry(n, struct ref_entry, node);
638                 btrfs_err(fs_info,
639 "  ref root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
640                           ref->root_objectid, ref->parent, ref->owner,
641                           ref->offset, ref->num_refs);
642         }
643
644         for (n = rb_first(&be->roots); n; n = rb_next(n)) {
645                 re = rb_entry(n, struct root_entry, node);
646                 btrfs_err(fs_info, "  root entry %llu, num_refs %llu",
647                           re->root_objectid, re->num_refs);
648         }
649
650         list_for_each_entry(ra, &be->actions, list)
651                 dump_ref_action(fs_info, ra);
652 }
653
654 /*
655  * btrfs_ref_tree_mod: called when we modify a ref for a bytenr
656  *
657  * This will add an action item to the given bytenr and do sanity checks to make
658  * sure we haven't messed something up.  If we are making a new allocation and
659  * this block entry has history we will delete all previous actions as long as
660  * our sanity checks pass as they are no longer needed.
661  */
662 int btrfs_ref_tree_mod(struct btrfs_fs_info *fs_info,
663                        struct btrfs_ref *generic_ref)
664 {
665         struct ref_entry *ref = NULL, *exist;
666         struct ref_action *ra = NULL;
667         struct block_entry *be = NULL;
668         struct root_entry *re = NULL;
669         int action = generic_ref->action;
670         int ret = 0;
671         bool metadata;
672         u64 bytenr = generic_ref->bytenr;
673         u64 num_bytes = generic_ref->len;
674         u64 parent = generic_ref->parent;
675         u64 ref_root = 0;
676         u64 owner = 0;
677         u64 offset = 0;
678
679         if (!btrfs_test_opt(fs_info, REF_VERIFY))
680                 return 0;
681
682         if (generic_ref->type == BTRFS_REF_METADATA) {
683                 if (!parent)
684                         ref_root = generic_ref->tree_ref.owning_root;
685                 owner = generic_ref->tree_ref.level;
686         } else if (!parent) {
687                 ref_root = generic_ref->data_ref.owning_root;
688                 owner = generic_ref->data_ref.ino;
689                 offset = generic_ref->data_ref.offset;
690         }
691         metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
692
693         ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
694         ra = kmalloc(sizeof(struct ref_action), GFP_NOFS);
695         if (!ra || !ref) {
696                 kfree(ref);
697                 kfree(ra);
698                 ret = -ENOMEM;
699                 goto out;
700         }
701
702         ref->parent = parent;
703         ref->owner = owner;
704         ref->root_objectid = ref_root;
705         ref->offset = offset;
706         ref->num_refs = (action == BTRFS_DROP_DELAYED_REF) ? -1 : 1;
707
708         memcpy(&ra->ref, ref, sizeof(struct ref_entry));
709         /*
710          * Save the extra info from the delayed ref in the ref action to make it
711          * easier to figure out what is happening.  The real ref's we add to the
712          * ref tree need to reflect what we save on disk so it matches any
713          * on-disk refs we pre-loaded.
714          */
715         ra->ref.owner = owner;
716         ra->ref.offset = offset;
717         ra->ref.root_objectid = ref_root;
718         __save_stack_trace(ra);
719
720         INIT_LIST_HEAD(&ra->list);
721         ra->action = action;
722         ra->root = generic_ref->real_root;
723
724         /*
725          * This is an allocation, preallocate the block_entry in case we haven't
726          * used it before.
727          */
728         ret = -EINVAL;
729         if (action == BTRFS_ADD_DELAYED_EXTENT) {
730                 /*
731                  * For subvol_create we'll just pass in whatever the parent root
732                  * is and the new root objectid, so let's not treat the passed
733                  * in root as if it really has a ref for this bytenr.
734                  */
735                 be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
736                 if (IS_ERR(be)) {
737                         kfree(ref);
738                         kfree(ra);
739                         ret = PTR_ERR(be);
740                         goto out;
741                 }
742                 be->num_refs++;
743                 if (metadata)
744                         be->metadata = 1;
745
746                 if (be->num_refs != 1) {
747                         btrfs_err(fs_info,
748                         "re-allocated a block that still has references to it!");
749                         dump_block_entry(fs_info, be);
750                         dump_ref_action(fs_info, ra);
751                         kfree(ref);
752                         kfree(ra);
753                         goto out_unlock;
754                 }
755
756                 while (!list_empty(&be->actions)) {
757                         struct ref_action *tmp;
758
759                         tmp = list_first_entry(&be->actions, struct ref_action,
760                                                list);
761                         list_del(&tmp->list);
762                         kfree(tmp);
763                 }
764         } else {
765                 struct root_entry *tmp;
766
767                 if (!parent) {
768                         re = kmalloc(sizeof(struct root_entry), GFP_NOFS);
769                         if (!re) {
770                                 kfree(ref);
771                                 kfree(ra);
772                                 ret = -ENOMEM;
773                                 goto out;
774                         }
775                         /*
776                          * This is the root that is modifying us, so it's the
777                          * one we want to lookup below when we modify the
778                          * re->num_refs.
779                          */
780                         ref_root = generic_ref->real_root;
781                         re->root_objectid = generic_ref->real_root;
782                         re->num_refs = 0;
783                 }
784
785                 spin_lock(&fs_info->ref_verify_lock);
786                 be = lookup_block_entry(&fs_info->block_tree, bytenr);
787                 if (!be) {
788                         btrfs_err(fs_info,
789 "trying to do action %d to bytenr %llu num_bytes %llu but there is no existing entry!",
790                                   action, bytenr, num_bytes);
791                         dump_ref_action(fs_info, ra);
792                         kfree(ref);
793                         kfree(ra);
794                         goto out_unlock;
795                 } else if (be->num_refs == 0) {
796                         btrfs_err(fs_info,
797                 "trying to do action %d for a bytenr that has 0 total references",
798                                 action);
799                         dump_block_entry(fs_info, be);
800                         dump_ref_action(fs_info, ra);
801                         kfree(ref);
802                         kfree(ra);
803                         goto out_unlock;
804                 }
805
806                 if (!parent) {
807                         tmp = insert_root_entry(&be->roots, re);
808                         if (tmp) {
809                                 kfree(re);
810                                 re = tmp;
811                         }
812                 }
813         }
814
815         exist = insert_ref_entry(&be->refs, ref);
816         if (exist) {
817                 if (action == BTRFS_DROP_DELAYED_REF) {
818                         if (exist->num_refs == 0) {
819                                 btrfs_err(fs_info,
820 "dropping a ref for a existing root that doesn't have a ref on the block");
821                                 dump_block_entry(fs_info, be);
822                                 dump_ref_action(fs_info, ra);
823                                 kfree(ref);
824                                 kfree(ra);
825                                 goto out_unlock;
826                         }
827                         exist->num_refs--;
828                         if (exist->num_refs == 0) {
829                                 rb_erase(&exist->node, &be->refs);
830                                 kfree(exist);
831                         }
832                 } else if (!be->metadata) {
833                         exist->num_refs++;
834                 } else {
835                         btrfs_err(fs_info,
836 "attempting to add another ref for an existing ref on a tree block");
837                         dump_block_entry(fs_info, be);
838                         dump_ref_action(fs_info, ra);
839                         kfree(ref);
840                         kfree(ra);
841                         goto out_unlock;
842                 }
843                 kfree(ref);
844         } else {
845                 if (action == BTRFS_DROP_DELAYED_REF) {
846                         btrfs_err(fs_info,
847 "dropping a ref for a root that doesn't have a ref on the block");
848                         dump_block_entry(fs_info, be);
849                         dump_ref_action(fs_info, ra);
850                         kfree(ref);
851                         kfree(ra);
852                         goto out_unlock;
853                 }
854         }
855
856         if (!parent && !re) {
857                 re = lookup_root_entry(&be->roots, ref_root);
858                 if (!re) {
859                         /*
860                          * This shouldn't happen because we will add our re
861                          * above when we lookup the be with !parent, but just in
862                          * case catch this case so we don't panic because I
863                          * didn't think of some other corner case.
864                          */
865                         btrfs_err(fs_info, "failed to find root %llu for %llu",
866                                   generic_ref->real_root, be->bytenr);
867                         dump_block_entry(fs_info, be);
868                         dump_ref_action(fs_info, ra);
869                         kfree(ra);
870                         goto out_unlock;
871                 }
872         }
873         if (action == BTRFS_DROP_DELAYED_REF) {
874                 if (re)
875                         re->num_refs--;
876                 be->num_refs--;
877         } else if (action == BTRFS_ADD_DELAYED_REF) {
878                 be->num_refs++;
879                 if (re)
880                         re->num_refs++;
881         }
882         list_add_tail(&ra->list, &be->actions);
883         ret = 0;
884 out_unlock:
885         spin_unlock(&fs_info->ref_verify_lock);
886 out:
887         if (ret)
888                 btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
889         return ret;
890 }
891
892 /* Free up the ref cache */
893 void btrfs_free_ref_cache(struct btrfs_fs_info *fs_info)
894 {
895         struct block_entry *be;
896         struct rb_node *n;
897
898         if (!btrfs_test_opt(fs_info, REF_VERIFY))
899                 return;
900
901         spin_lock(&fs_info->ref_verify_lock);
902         while ((n = rb_first(&fs_info->block_tree))) {
903                 be = rb_entry(n, struct block_entry, node);
904                 rb_erase(&be->node, &fs_info->block_tree);
905                 free_block_entry(be);
906                 cond_resched_lock(&fs_info->ref_verify_lock);
907         }
908         spin_unlock(&fs_info->ref_verify_lock);
909 }
910
911 void btrfs_free_ref_tree_range(struct btrfs_fs_info *fs_info, u64 start,
912                                u64 len)
913 {
914         struct block_entry *be = NULL, *entry;
915         struct rb_node *n;
916
917         if (!btrfs_test_opt(fs_info, REF_VERIFY))
918                 return;
919
920         spin_lock(&fs_info->ref_verify_lock);
921         n = fs_info->block_tree.rb_node;
922         while (n) {
923                 entry = rb_entry(n, struct block_entry, node);
924                 if (entry->bytenr < start) {
925                         n = n->rb_right;
926                 } else if (entry->bytenr > start) {
927                         n = n->rb_left;
928                 } else {
929                         be = entry;
930                         break;
931                 }
932                 /* We want to get as close to start as possible */
933                 if (be == NULL ||
934                     (entry->bytenr < start && be->bytenr > start) ||
935                     (entry->bytenr < start && entry->bytenr > be->bytenr))
936                         be = entry;
937         }
938
939         /*
940          * Could have an empty block group, maybe have something to check for
941          * this case to verify we were actually empty?
942          */
943         if (!be) {
944                 spin_unlock(&fs_info->ref_verify_lock);
945                 return;
946         }
947
948         n = &be->node;
949         while (n) {
950                 be = rb_entry(n, struct block_entry, node);
951                 n = rb_next(n);
952                 if (be->bytenr < start && be->bytenr + be->len > start) {
953                         btrfs_err(fs_info,
954                                 "block entry overlaps a block group [%llu,%llu]!",
955                                 start, len);
956                         dump_block_entry(fs_info, be);
957                         continue;
958                 }
959                 if (be->bytenr < start)
960                         continue;
961                 if (be->bytenr >= start + len)
962                         break;
963                 if (be->bytenr + be->len > start + len) {
964                         btrfs_err(fs_info,
965                                 "block entry overlaps a block group [%llu,%llu]!",
966                                 start, len);
967                         dump_block_entry(fs_info, be);
968                 }
969                 rb_erase(&be->node, &fs_info->block_tree);
970                 free_block_entry(be);
971         }
972         spin_unlock(&fs_info->ref_verify_lock);
973 }
974
975 /* Walk down all roots and build the ref tree, meant to be called at mount */
976 int btrfs_build_ref_tree(struct btrfs_fs_info *fs_info)
977 {
978         struct btrfs_root *extent_root;
979         struct btrfs_path *path;
980         struct extent_buffer *eb;
981         int tree_block_level = 0;
982         u64 bytenr = 0, num_bytes = 0;
983         int ret, level;
984
985         if (!btrfs_test_opt(fs_info, REF_VERIFY))
986                 return 0;
987
988         path = btrfs_alloc_path();
989         if (!path)
990                 return -ENOMEM;
991
992         extent_root = btrfs_extent_root(fs_info, 0);
993         eb = btrfs_read_lock_root_node(extent_root);
994         level = btrfs_header_level(eb);
995         path->nodes[level] = eb;
996         path->slots[level] = 0;
997         path->locks[level] = BTRFS_READ_LOCK;
998
999         while (1) {
1000                 /*
1001                  * We have to keep track of the bytenr/num_bytes we last hit
1002                  * because we could have run out of space for an inline ref, and
1003                  * would have had to added a ref key item which may appear on a
1004                  * different leaf from the original extent item.
1005                  */
1006                 ret = walk_down_tree(extent_root, path, level,
1007                                      &bytenr, &num_bytes, &tree_block_level);
1008                 if (ret)
1009                         break;
1010                 ret = walk_up_tree(path, &level);
1011                 if (ret < 0)
1012                         break;
1013                 if (ret > 0) {
1014                         ret = 0;
1015                         break;
1016                 }
1017         }
1018         if (ret) {
1019                 btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
1020                 btrfs_free_ref_cache(fs_info);
1021         }
1022         btrfs_free_path(path);
1023         return ret;
1024 }