e261c3d0cec783a40f230558df68d67a0e18ff8d
[platform/kernel/linux-rpi.git] / fs / btrfs / reada.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/slab.h>
11 #include <linux/workqueue.h>
12 #include "ctree.h"
13 #include "volumes.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "block-group.h"
18
19 #undef DEBUG
20
21 /*
22  * This is the implementation for the generic read ahead framework.
23  *
24  * To trigger a readahead, btrfs_reada_add must be called. It will start
25  * a read ahead for the given range [start, end) on tree root. The returned
26  * handle can either be used to wait on the readahead to finish
27  * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
28  *
29  * The read ahead works as follows:
30  * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
31  * reada_start_machine will then search for extents to prefetch and trigger
32  * some reads. When a read finishes for a node, all contained node/leaf
33  * pointers that lie in the given range will also be enqueued. The reads will
34  * be triggered in sequential order, thus giving a big win over a naive
35  * enumeration. It will also make use of multi-device layouts. Each disk
36  * will have its on read pointer and all disks will by utilized in parallel.
37  * Also will no two disks read both sides of a mirror simultaneously, as this
38  * would waste seeking capacity. Instead both disks will read different parts
39  * of the filesystem.
40  * Any number of readaheads can be started in parallel. The read order will be
41  * determined globally, i.e. 2 parallel readaheads will normally finish faster
42  * than the 2 started one after another.
43  */
44
45 #define MAX_IN_FLIGHT 6
46
47 struct reada_extctl {
48         struct list_head        list;
49         struct reada_control    *rc;
50         u64                     generation;
51 };
52
53 struct reada_extent {
54         u64                     logical;
55         struct btrfs_key        top;
56         struct list_head        extctl;
57         int                     refcnt;
58         spinlock_t              lock;
59         struct reada_zone       *zones[BTRFS_MAX_MIRRORS];
60         int                     nzones;
61         int                     scheduled;
62 };
63
64 struct reada_zone {
65         u64                     start;
66         u64                     end;
67         u64                     elems;
68         struct list_head        list;
69         spinlock_t              lock;
70         int                     locked;
71         struct btrfs_device     *device;
72         struct btrfs_device     *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
73                                                            * self */
74         int                     ndevs;
75         struct kref             refcnt;
76 };
77
78 struct reada_machine_work {
79         struct btrfs_work       work;
80         struct btrfs_fs_info    *fs_info;
81 };
82
83 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
84 static void reada_control_release(struct kref *kref);
85 static void reada_zone_release(struct kref *kref);
86 static void reada_start_machine(struct btrfs_fs_info *fs_info);
87 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
88
89 static int reada_add_block(struct reada_control *rc, u64 logical,
90                            struct btrfs_key *top, u64 generation);
91
92 /* recurses */
93 /* in case of err, eb might be NULL */
94 static void __readahead_hook(struct btrfs_fs_info *fs_info,
95                              struct reada_extent *re, struct extent_buffer *eb,
96                              int err)
97 {
98         int nritems;
99         int i;
100         u64 bytenr;
101         u64 generation;
102         struct list_head list;
103
104         spin_lock(&re->lock);
105         /*
106          * just take the full list from the extent. afterwards we
107          * don't need the lock anymore
108          */
109         list_replace_init(&re->extctl, &list);
110         re->scheduled = 0;
111         spin_unlock(&re->lock);
112
113         /*
114          * this is the error case, the extent buffer has not been
115          * read correctly. We won't access anything from it and
116          * just cleanup our data structures. Effectively this will
117          * cut the branch below this node from read ahead.
118          */
119         if (err)
120                 goto cleanup;
121
122         /*
123          * FIXME: currently we just set nritems to 0 if this is a leaf,
124          * effectively ignoring the content. In a next step we could
125          * trigger more readahead depending from the content, e.g.
126          * fetch the checksums for the extents in the leaf.
127          */
128         if (!btrfs_header_level(eb))
129                 goto cleanup;
130
131         nritems = btrfs_header_nritems(eb);
132         generation = btrfs_header_generation(eb);
133         for (i = 0; i < nritems; i++) {
134                 struct reada_extctl *rec;
135                 u64 n_gen;
136                 struct btrfs_key key;
137                 struct btrfs_key next_key;
138
139                 btrfs_node_key_to_cpu(eb, &key, i);
140                 if (i + 1 < nritems)
141                         btrfs_node_key_to_cpu(eb, &next_key, i + 1);
142                 else
143                         next_key = re->top;
144                 bytenr = btrfs_node_blockptr(eb, i);
145                 n_gen = btrfs_node_ptr_generation(eb, i);
146
147                 list_for_each_entry(rec, &list, list) {
148                         struct reada_control *rc = rec->rc;
149
150                         /*
151                          * if the generation doesn't match, just ignore this
152                          * extctl. This will probably cut off a branch from
153                          * prefetch. Alternatively one could start a new (sub-)
154                          * prefetch for this branch, starting again from root.
155                          * FIXME: move the generation check out of this loop
156                          */
157 #ifdef DEBUG
158                         if (rec->generation != generation) {
159                                 btrfs_debug(fs_info,
160                                             "generation mismatch for (%llu,%d,%llu) %llu != %llu",
161                                             key.objectid, key.type, key.offset,
162                                             rec->generation, generation);
163                         }
164 #endif
165                         if (rec->generation == generation &&
166                             btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
167                             btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
168                                 reada_add_block(rc, bytenr, &next_key, n_gen);
169                 }
170         }
171
172 cleanup:
173         /*
174          * free extctl records
175          */
176         while (!list_empty(&list)) {
177                 struct reada_control *rc;
178                 struct reada_extctl *rec;
179
180                 rec = list_first_entry(&list, struct reada_extctl, list);
181                 list_del(&rec->list);
182                 rc = rec->rc;
183                 kfree(rec);
184
185                 kref_get(&rc->refcnt);
186                 if (atomic_dec_and_test(&rc->elems)) {
187                         kref_put(&rc->refcnt, reada_control_release);
188                         wake_up(&rc->wait);
189                 }
190                 kref_put(&rc->refcnt, reada_control_release);
191
192                 reada_extent_put(fs_info, re);  /* one ref for each entry */
193         }
194
195         return;
196 }
197
198 int btree_readahead_hook(struct extent_buffer *eb, int err)
199 {
200         struct btrfs_fs_info *fs_info = eb->fs_info;
201         int ret = 0;
202         struct reada_extent *re;
203
204         /* find extent */
205         spin_lock(&fs_info->reada_lock);
206         re = radix_tree_lookup(&fs_info->reada_tree,
207                                eb->start >> PAGE_SHIFT);
208         if (re)
209                 re->refcnt++;
210         spin_unlock(&fs_info->reada_lock);
211         if (!re) {
212                 ret = -1;
213                 goto start_machine;
214         }
215
216         __readahead_hook(fs_info, re, eb, err);
217         reada_extent_put(fs_info, re);  /* our ref */
218
219 start_machine:
220         reada_start_machine(fs_info);
221         return ret;
222 }
223
224 static struct reada_zone *reada_find_zone(struct btrfs_device *dev, u64 logical,
225                                           struct btrfs_bio *bbio)
226 {
227         struct btrfs_fs_info *fs_info = dev->fs_info;
228         int ret;
229         struct reada_zone *zone;
230         struct btrfs_block_group *cache = NULL;
231         u64 start;
232         u64 end;
233         int i;
234
235         zone = NULL;
236         spin_lock(&fs_info->reada_lock);
237         ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
238                                      logical >> PAGE_SHIFT, 1);
239         if (ret == 1 && logical >= zone->start && logical <= zone->end) {
240                 kref_get(&zone->refcnt);
241                 spin_unlock(&fs_info->reada_lock);
242                 return zone;
243         }
244
245         spin_unlock(&fs_info->reada_lock);
246
247         cache = btrfs_lookup_block_group(fs_info, logical);
248         if (!cache)
249                 return NULL;
250
251         start = cache->start;
252         end = start + cache->length - 1;
253         btrfs_put_block_group(cache);
254
255         zone = kzalloc(sizeof(*zone), GFP_KERNEL);
256         if (!zone)
257                 return NULL;
258
259         ret = radix_tree_preload(GFP_KERNEL);
260         if (ret) {
261                 kfree(zone);
262                 return NULL;
263         }
264
265         zone->start = start;
266         zone->end = end;
267         INIT_LIST_HEAD(&zone->list);
268         spin_lock_init(&zone->lock);
269         zone->locked = 0;
270         kref_init(&zone->refcnt);
271         zone->elems = 0;
272         zone->device = dev; /* our device always sits at index 0 */
273         for (i = 0; i < bbio->num_stripes; ++i) {
274                 /* bounds have already been checked */
275                 zone->devs[i] = bbio->stripes[i].dev;
276         }
277         zone->ndevs = bbio->num_stripes;
278
279         spin_lock(&fs_info->reada_lock);
280         ret = radix_tree_insert(&dev->reada_zones,
281                                 (unsigned long)(zone->end >> PAGE_SHIFT),
282                                 zone);
283
284         if (ret == -EEXIST) {
285                 kfree(zone);
286                 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
287                                              logical >> PAGE_SHIFT, 1);
288                 if (ret == 1 && logical >= zone->start && logical <= zone->end)
289                         kref_get(&zone->refcnt);
290                 else
291                         zone = NULL;
292         }
293         spin_unlock(&fs_info->reada_lock);
294         radix_tree_preload_end();
295
296         return zone;
297 }
298
299 static struct reada_extent *reada_find_extent(struct btrfs_fs_info *fs_info,
300                                               u64 logical,
301                                               struct btrfs_key *top)
302 {
303         int ret;
304         struct reada_extent *re = NULL;
305         struct reada_extent *re_exist = NULL;
306         struct btrfs_bio *bbio = NULL;
307         struct btrfs_device *dev;
308         struct btrfs_device *prev_dev;
309         u64 length;
310         int real_stripes;
311         int nzones = 0;
312         unsigned long index = logical >> PAGE_SHIFT;
313         int dev_replace_is_ongoing;
314         int have_zone = 0;
315
316         spin_lock(&fs_info->reada_lock);
317         re = radix_tree_lookup(&fs_info->reada_tree, index);
318         if (re)
319                 re->refcnt++;
320         spin_unlock(&fs_info->reada_lock);
321
322         if (re)
323                 return re;
324
325         re = kzalloc(sizeof(*re), GFP_KERNEL);
326         if (!re)
327                 return NULL;
328
329         re->logical = logical;
330         re->top = *top;
331         INIT_LIST_HEAD(&re->extctl);
332         spin_lock_init(&re->lock);
333         re->refcnt = 1;
334
335         /*
336          * map block
337          */
338         length = fs_info->nodesize;
339         ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
340                         &length, &bbio, 0);
341         if (ret || !bbio || length < fs_info->nodesize)
342                 goto error;
343
344         if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
345                 btrfs_err(fs_info,
346                            "readahead: more than %d copies not supported",
347                            BTRFS_MAX_MIRRORS);
348                 goto error;
349         }
350
351         real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
352         for (nzones = 0; nzones < real_stripes; ++nzones) {
353                 struct reada_zone *zone;
354
355                 dev = bbio->stripes[nzones].dev;
356
357                 /* cannot read ahead on missing device. */
358                 if (!dev->bdev)
359                         continue;
360
361                 zone = reada_find_zone(dev, logical, bbio);
362                 if (!zone)
363                         continue;
364
365                 re->zones[re->nzones++] = zone;
366                 spin_lock(&zone->lock);
367                 if (!zone->elems)
368                         kref_get(&zone->refcnt);
369                 ++zone->elems;
370                 spin_unlock(&zone->lock);
371                 spin_lock(&fs_info->reada_lock);
372                 kref_put(&zone->refcnt, reada_zone_release);
373                 spin_unlock(&fs_info->reada_lock);
374         }
375         if (re->nzones == 0) {
376                 /* not a single zone found, error and out */
377                 goto error;
378         }
379
380         /* Insert extent in reada tree + all per-device trees, all or nothing */
381         down_read(&fs_info->dev_replace.rwsem);
382         ret = radix_tree_preload(GFP_KERNEL);
383         if (ret) {
384                 up_read(&fs_info->dev_replace.rwsem);
385                 goto error;
386         }
387
388         spin_lock(&fs_info->reada_lock);
389         ret = radix_tree_insert(&fs_info->reada_tree, index, re);
390         if (ret == -EEXIST) {
391                 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
392                 re_exist->refcnt++;
393                 spin_unlock(&fs_info->reada_lock);
394                 radix_tree_preload_end();
395                 up_read(&fs_info->dev_replace.rwsem);
396                 goto error;
397         }
398         if (ret) {
399                 spin_unlock(&fs_info->reada_lock);
400                 radix_tree_preload_end();
401                 up_read(&fs_info->dev_replace.rwsem);
402                 goto error;
403         }
404         radix_tree_preload_end();
405         prev_dev = NULL;
406         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
407                         &fs_info->dev_replace);
408         for (nzones = 0; nzones < re->nzones; ++nzones) {
409                 dev = re->zones[nzones]->device;
410
411                 if (dev == prev_dev) {
412                         /*
413                          * in case of DUP, just add the first zone. As both
414                          * are on the same device, there's nothing to gain
415                          * from adding both.
416                          * Also, it wouldn't work, as the tree is per device
417                          * and adding would fail with EEXIST
418                          */
419                         continue;
420                 }
421                 if (!dev->bdev)
422                         continue;
423
424                 if (dev_replace_is_ongoing &&
425                     dev == fs_info->dev_replace.tgtdev) {
426                         /*
427                          * as this device is selected for reading only as
428                          * a last resort, skip it for read ahead.
429                          */
430                         continue;
431                 }
432                 prev_dev = dev;
433                 ret = radix_tree_insert(&dev->reada_extents, index, re);
434                 if (ret) {
435                         while (--nzones >= 0) {
436                                 dev = re->zones[nzones]->device;
437                                 BUG_ON(dev == NULL);
438                                 /* ignore whether the entry was inserted */
439                                 radix_tree_delete(&dev->reada_extents, index);
440                         }
441                         radix_tree_delete(&fs_info->reada_tree, index);
442                         spin_unlock(&fs_info->reada_lock);
443                         up_read(&fs_info->dev_replace.rwsem);
444                         goto error;
445                 }
446                 have_zone = 1;
447         }
448         if (!have_zone)
449                 radix_tree_delete(&fs_info->reada_tree, index);
450         spin_unlock(&fs_info->reada_lock);
451         up_read(&fs_info->dev_replace.rwsem);
452
453         if (!have_zone)
454                 goto error;
455
456         btrfs_put_bbio(bbio);
457         return re;
458
459 error:
460         for (nzones = 0; nzones < re->nzones; ++nzones) {
461                 struct reada_zone *zone;
462
463                 zone = re->zones[nzones];
464                 kref_get(&zone->refcnt);
465                 spin_lock(&zone->lock);
466                 --zone->elems;
467                 if (zone->elems == 0) {
468                         /*
469                          * no fs_info->reada_lock needed, as this can't be
470                          * the last ref
471                          */
472                         kref_put(&zone->refcnt, reada_zone_release);
473                 }
474                 spin_unlock(&zone->lock);
475
476                 spin_lock(&fs_info->reada_lock);
477                 kref_put(&zone->refcnt, reada_zone_release);
478                 spin_unlock(&fs_info->reada_lock);
479         }
480         btrfs_put_bbio(bbio);
481         kfree(re);
482         return re_exist;
483 }
484
485 static void reada_extent_put(struct btrfs_fs_info *fs_info,
486                              struct reada_extent *re)
487 {
488         int i;
489         unsigned long index = re->logical >> PAGE_SHIFT;
490
491         spin_lock(&fs_info->reada_lock);
492         if (--re->refcnt) {
493                 spin_unlock(&fs_info->reada_lock);
494                 return;
495         }
496
497         radix_tree_delete(&fs_info->reada_tree, index);
498         for (i = 0; i < re->nzones; ++i) {
499                 struct reada_zone *zone = re->zones[i];
500
501                 radix_tree_delete(&zone->device->reada_extents, index);
502         }
503
504         spin_unlock(&fs_info->reada_lock);
505
506         for (i = 0; i < re->nzones; ++i) {
507                 struct reada_zone *zone = re->zones[i];
508
509                 kref_get(&zone->refcnt);
510                 spin_lock(&zone->lock);
511                 --zone->elems;
512                 if (zone->elems == 0) {
513                         /* no fs_info->reada_lock needed, as this can't be
514                          * the last ref */
515                         kref_put(&zone->refcnt, reada_zone_release);
516                 }
517                 spin_unlock(&zone->lock);
518
519                 spin_lock(&fs_info->reada_lock);
520                 kref_put(&zone->refcnt, reada_zone_release);
521                 spin_unlock(&fs_info->reada_lock);
522         }
523
524         kfree(re);
525 }
526
527 static void reada_zone_release(struct kref *kref)
528 {
529         struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
530
531         radix_tree_delete(&zone->device->reada_zones,
532                           zone->end >> PAGE_SHIFT);
533
534         kfree(zone);
535 }
536
537 static void reada_control_release(struct kref *kref)
538 {
539         struct reada_control *rc = container_of(kref, struct reada_control,
540                                                 refcnt);
541
542         kfree(rc);
543 }
544
545 static int reada_add_block(struct reada_control *rc, u64 logical,
546                            struct btrfs_key *top, u64 generation)
547 {
548         struct btrfs_fs_info *fs_info = rc->fs_info;
549         struct reada_extent *re;
550         struct reada_extctl *rec;
551
552         /* takes one ref */
553         re = reada_find_extent(fs_info, logical, top);
554         if (!re)
555                 return -1;
556
557         rec = kzalloc(sizeof(*rec), GFP_KERNEL);
558         if (!rec) {
559                 reada_extent_put(fs_info, re);
560                 return -ENOMEM;
561         }
562
563         rec->rc = rc;
564         rec->generation = generation;
565         atomic_inc(&rc->elems);
566
567         spin_lock(&re->lock);
568         list_add_tail(&rec->list, &re->extctl);
569         spin_unlock(&re->lock);
570
571         /* leave the ref on the extent */
572
573         return 0;
574 }
575
576 /*
577  * called with fs_info->reada_lock held
578  */
579 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
580 {
581         int i;
582         unsigned long index = zone->end >> PAGE_SHIFT;
583
584         for (i = 0; i < zone->ndevs; ++i) {
585                 struct reada_zone *peer;
586                 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
587                 if (peer && peer->device != zone->device)
588                         peer->locked = lock;
589         }
590 }
591
592 /*
593  * called with fs_info->reada_lock held
594  */
595 static int reada_pick_zone(struct btrfs_device *dev)
596 {
597         struct reada_zone *top_zone = NULL;
598         struct reada_zone *top_locked_zone = NULL;
599         u64 top_elems = 0;
600         u64 top_locked_elems = 0;
601         unsigned long index = 0;
602         int ret;
603
604         if (dev->reada_curr_zone) {
605                 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
606                 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
607                 dev->reada_curr_zone = NULL;
608         }
609         /* pick the zone with the most elements */
610         while (1) {
611                 struct reada_zone *zone;
612
613                 ret = radix_tree_gang_lookup(&dev->reada_zones,
614                                              (void **)&zone, index, 1);
615                 if (ret == 0)
616                         break;
617                 index = (zone->end >> PAGE_SHIFT) + 1;
618                 if (zone->locked) {
619                         if (zone->elems > top_locked_elems) {
620                                 top_locked_elems = zone->elems;
621                                 top_locked_zone = zone;
622                         }
623                 } else {
624                         if (zone->elems > top_elems) {
625                                 top_elems = zone->elems;
626                                 top_zone = zone;
627                         }
628                 }
629         }
630         if (top_zone)
631                 dev->reada_curr_zone = top_zone;
632         else if (top_locked_zone)
633                 dev->reada_curr_zone = top_locked_zone;
634         else
635                 return 0;
636
637         dev->reada_next = dev->reada_curr_zone->start;
638         kref_get(&dev->reada_curr_zone->refcnt);
639         reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
640
641         return 1;
642 }
643
644 static int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
645                                     int mirror_num, struct extent_buffer **eb)
646 {
647         struct extent_buffer *buf = NULL;
648         int ret;
649
650         buf = btrfs_find_create_tree_block(fs_info, bytenr);
651         if (IS_ERR(buf))
652                 return 0;
653
654         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
655
656         ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
657         if (ret) {
658                 free_extent_buffer_stale(buf);
659                 return ret;
660         }
661
662         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
663                 free_extent_buffer_stale(buf);
664                 return -EIO;
665         } else if (extent_buffer_uptodate(buf)) {
666                 *eb = buf;
667         } else {
668                 free_extent_buffer(buf);
669         }
670         return 0;
671 }
672
673 static int reada_start_machine_dev(struct btrfs_device *dev)
674 {
675         struct btrfs_fs_info *fs_info = dev->fs_info;
676         struct reada_extent *re = NULL;
677         int mirror_num = 0;
678         struct extent_buffer *eb = NULL;
679         u64 logical;
680         int ret;
681         int i;
682
683         spin_lock(&fs_info->reada_lock);
684         if (dev->reada_curr_zone == NULL) {
685                 ret = reada_pick_zone(dev);
686                 if (!ret) {
687                         spin_unlock(&fs_info->reada_lock);
688                         return 0;
689                 }
690         }
691         /*
692          * FIXME currently we issue the reads one extent at a time. If we have
693          * a contiguous block of extents, we could also coagulate them or use
694          * plugging to speed things up
695          */
696         ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
697                                      dev->reada_next >> PAGE_SHIFT, 1);
698         if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
699                 ret = reada_pick_zone(dev);
700                 if (!ret) {
701                         spin_unlock(&fs_info->reada_lock);
702                         return 0;
703                 }
704                 re = NULL;
705                 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
706                                         dev->reada_next >> PAGE_SHIFT, 1);
707         }
708         if (ret == 0) {
709                 spin_unlock(&fs_info->reada_lock);
710                 return 0;
711         }
712         dev->reada_next = re->logical + fs_info->nodesize;
713         re->refcnt++;
714
715         spin_unlock(&fs_info->reada_lock);
716
717         spin_lock(&re->lock);
718         if (re->scheduled || list_empty(&re->extctl)) {
719                 spin_unlock(&re->lock);
720                 reada_extent_put(fs_info, re);
721                 return 0;
722         }
723         re->scheduled = 1;
724         spin_unlock(&re->lock);
725
726         /*
727          * find mirror num
728          */
729         for (i = 0; i < re->nzones; ++i) {
730                 if (re->zones[i]->device == dev) {
731                         mirror_num = i + 1;
732                         break;
733                 }
734         }
735         logical = re->logical;
736
737         atomic_inc(&dev->reada_in_flight);
738         ret = reada_tree_block_flagged(fs_info, logical, mirror_num, &eb);
739         if (ret)
740                 __readahead_hook(fs_info, re, NULL, ret);
741         else if (eb)
742                 __readahead_hook(fs_info, re, eb, ret);
743
744         if (eb)
745                 free_extent_buffer(eb);
746
747         atomic_dec(&dev->reada_in_flight);
748         reada_extent_put(fs_info, re);
749
750         return 1;
751
752 }
753
754 static void reada_start_machine_worker(struct btrfs_work *work)
755 {
756         struct reada_machine_work *rmw;
757         int old_ioprio;
758
759         rmw = container_of(work, struct reada_machine_work, work);
760
761         old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
762                                        task_nice_ioprio(current));
763         set_task_ioprio(current, BTRFS_IOPRIO_READA);
764         __reada_start_machine(rmw->fs_info);
765         set_task_ioprio(current, old_ioprio);
766
767         atomic_dec(&rmw->fs_info->reada_works_cnt);
768
769         kfree(rmw);
770 }
771
772 /* Try to start up to 10k READA requests for a group of devices */
773 static int reada_start_for_fsdevs(struct btrfs_fs_devices *fs_devices)
774 {
775         u64 enqueued;
776         u64 total = 0;
777         struct btrfs_device *device;
778
779         do {
780                 enqueued = 0;
781                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
782                         if (atomic_read(&device->reada_in_flight) <
783                             MAX_IN_FLIGHT)
784                                 enqueued += reada_start_machine_dev(device);
785                 }
786                 total += enqueued;
787         } while (enqueued && total < 10000);
788
789         return total;
790 }
791
792 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
793 {
794         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
795         int i;
796         u64 enqueued = 0;
797
798         mutex_lock(&fs_devices->device_list_mutex);
799
800         enqueued += reada_start_for_fsdevs(fs_devices);
801         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
802                 enqueued += reada_start_for_fsdevs(seed_devs);
803
804         mutex_unlock(&fs_devices->device_list_mutex);
805         if (enqueued == 0)
806                 return;
807
808         /*
809          * If everything is already in the cache, this is effectively single
810          * threaded. To a) not hold the caller for too long and b) to utilize
811          * more cores, we broke the loop above after 10000 iterations and now
812          * enqueue to workers to finish it. This will distribute the load to
813          * the cores.
814          */
815         for (i = 0; i < 2; ++i) {
816                 reada_start_machine(fs_info);
817                 if (atomic_read(&fs_info->reada_works_cnt) >
818                     BTRFS_MAX_MIRRORS * 2)
819                         break;
820         }
821 }
822
823 static void reada_start_machine(struct btrfs_fs_info *fs_info)
824 {
825         struct reada_machine_work *rmw;
826
827         rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
828         if (!rmw) {
829                 /* FIXME we cannot handle this properly right now */
830                 BUG();
831         }
832         btrfs_init_work(&rmw->work, reada_start_machine_worker, NULL, NULL);
833         rmw->fs_info = fs_info;
834
835         btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
836         atomic_inc(&fs_info->reada_works_cnt);
837 }
838
839 #ifdef DEBUG
840 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
841 {
842         struct btrfs_device *device;
843         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
844         unsigned long index;
845         int ret;
846         int i;
847         int j;
848         int cnt;
849
850         spin_lock(&fs_info->reada_lock);
851         list_for_each_entry(device, &fs_devices->devices, dev_list) {
852                 btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
853                         atomic_read(&device->reada_in_flight));
854                 index = 0;
855                 while (1) {
856                         struct reada_zone *zone;
857                         ret = radix_tree_gang_lookup(&device->reada_zones,
858                                                      (void **)&zone, index, 1);
859                         if (ret == 0)
860                                 break;
861                         pr_debug("  zone %llu-%llu elems %llu locked %d devs",
862                                     zone->start, zone->end, zone->elems,
863                                     zone->locked);
864                         for (j = 0; j < zone->ndevs; ++j) {
865                                 pr_cont(" %lld",
866                                         zone->devs[j]->devid);
867                         }
868                         if (device->reada_curr_zone == zone)
869                                 pr_cont(" curr off %llu",
870                                         device->reada_next - zone->start);
871                         pr_cont("\n");
872                         index = (zone->end >> PAGE_SHIFT) + 1;
873                 }
874                 cnt = 0;
875                 index = 0;
876                 while (all) {
877                         struct reada_extent *re = NULL;
878
879                         ret = radix_tree_gang_lookup(&device->reada_extents,
880                                                      (void **)&re, index, 1);
881                         if (ret == 0)
882                                 break;
883                         pr_debug("  re: logical %llu size %u empty %d scheduled %d",
884                                 re->logical, fs_info->nodesize,
885                                 list_empty(&re->extctl), re->scheduled);
886
887                         for (i = 0; i < re->nzones; ++i) {
888                                 pr_cont(" zone %llu-%llu devs",
889                                         re->zones[i]->start,
890                                         re->zones[i]->end);
891                                 for (j = 0; j < re->zones[i]->ndevs; ++j) {
892                                         pr_cont(" %lld",
893                                                 re->zones[i]->devs[j]->devid);
894                                 }
895                         }
896                         pr_cont("\n");
897                         index = (re->logical >> PAGE_SHIFT) + 1;
898                         if (++cnt > 15)
899                                 break;
900                 }
901         }
902
903         index = 0;
904         cnt = 0;
905         while (all) {
906                 struct reada_extent *re = NULL;
907
908                 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
909                                              index, 1);
910                 if (ret == 0)
911                         break;
912                 if (!re->scheduled) {
913                         index = (re->logical >> PAGE_SHIFT) + 1;
914                         continue;
915                 }
916                 pr_debug("re: logical %llu size %u list empty %d scheduled %d",
917                         re->logical, fs_info->nodesize,
918                         list_empty(&re->extctl), re->scheduled);
919                 for (i = 0; i < re->nzones; ++i) {
920                         pr_cont(" zone %llu-%llu devs",
921                                 re->zones[i]->start,
922                                 re->zones[i]->end);
923                         for (j = 0; j < re->zones[i]->ndevs; ++j) {
924                                 pr_cont(" %lld",
925                                        re->zones[i]->devs[j]->devid);
926                         }
927                 }
928                 pr_cont("\n");
929                 index = (re->logical >> PAGE_SHIFT) + 1;
930         }
931         spin_unlock(&fs_info->reada_lock);
932 }
933 #endif
934
935 /*
936  * interface
937  */
938 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
939                         struct btrfs_key *key_start, struct btrfs_key *key_end)
940 {
941         struct reada_control *rc;
942         u64 start;
943         u64 generation;
944         int ret;
945         struct extent_buffer *node;
946         static struct btrfs_key max_key = {
947                 .objectid = (u64)-1,
948                 .type = (u8)-1,
949                 .offset = (u64)-1
950         };
951
952         rc = kzalloc(sizeof(*rc), GFP_KERNEL);
953         if (!rc)
954                 return ERR_PTR(-ENOMEM);
955
956         rc->fs_info = root->fs_info;
957         rc->key_start = *key_start;
958         rc->key_end = *key_end;
959         atomic_set(&rc->elems, 0);
960         init_waitqueue_head(&rc->wait);
961         kref_init(&rc->refcnt);
962         kref_get(&rc->refcnt); /* one ref for having elements */
963
964         node = btrfs_root_node(root);
965         start = node->start;
966         generation = btrfs_header_generation(node);
967         free_extent_buffer(node);
968
969         ret = reada_add_block(rc, start, &max_key, generation);
970         if (ret) {
971                 kfree(rc);
972                 return ERR_PTR(ret);
973         }
974
975         reada_start_machine(root->fs_info);
976
977         return rc;
978 }
979
980 #ifdef DEBUG
981 int btrfs_reada_wait(void *handle)
982 {
983         struct reada_control *rc = handle;
984         struct btrfs_fs_info *fs_info = rc->fs_info;
985
986         while (atomic_read(&rc->elems)) {
987                 if (!atomic_read(&fs_info->reada_works_cnt))
988                         reada_start_machine(fs_info);
989                 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
990                                    5 * HZ);
991                 dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
992         }
993
994         dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
995
996         kref_put(&rc->refcnt, reada_control_release);
997
998         return 0;
999 }
1000 #else
1001 int btrfs_reada_wait(void *handle)
1002 {
1003         struct reada_control *rc = handle;
1004         struct btrfs_fs_info *fs_info = rc->fs_info;
1005
1006         while (atomic_read(&rc->elems)) {
1007                 if (!atomic_read(&fs_info->reada_works_cnt))
1008                         reada_start_machine(fs_info);
1009                 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
1010                                    (HZ + 9) / 10);
1011         }
1012
1013         kref_put(&rc->refcnt, reada_control_release);
1014
1015         return 0;
1016 }
1017 #endif
1018
1019 void btrfs_reada_detach(void *handle)
1020 {
1021         struct reada_control *rc = handle;
1022
1023         kref_put(&rc->refcnt, reada_control_release);
1024 }