2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
29 #include "transaction.h"
30 #include "dev-replace.h"
35 * This is the implementation for the generic read ahead framework.
37 * To trigger a readahead, btrfs_reada_add must be called. It will start
38 * a read ahead for the given range [start, end) on tree root. The returned
39 * handle can either be used to wait on the readahead to finish
40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
42 * The read ahead works as follows:
43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44 * reada_start_machine will then search for extents to prefetch and trigger
45 * some reads. When a read finishes for a node, all contained node/leaf
46 * pointers that lie in the given range will also be enqueued. The reads will
47 * be triggered in sequential order, thus giving a big win over a naive
48 * enumeration. It will also make use of multi-device layouts. Each disk
49 * will have its on read pointer and all disks will by utilized in parallel.
50 * Also will no two disks read both sides of a mirror simultaneously, as this
51 * would waste seeking capacity. Instead both disks will read different parts
53 * Any number of readaheads can be started in parallel. The read order will be
54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
55 * than the 2 started one after another.
58 #define MAX_IN_FLIGHT 6
61 struct list_head list;
62 struct reada_control *rc;
71 struct list_head extctl;
74 struct reada_zone *zones[BTRFS_MAX_MIRRORS];
76 struct btrfs_device *scheduled_for;
83 struct list_head list;
86 struct btrfs_device *device;
87 struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
93 struct reada_machine_work {
94 struct btrfs_work work;
95 struct btrfs_fs_info *fs_info;
98 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
99 static void reada_control_release(struct kref *kref);
100 static void reada_zone_release(struct kref *kref);
101 static void reada_start_machine(struct btrfs_fs_info *fs_info);
102 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
104 static int reada_add_block(struct reada_control *rc, u64 logical,
105 struct btrfs_key *top, int level, u64 generation);
108 /* in case of err, eb might be NULL */
109 static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
117 struct reada_extent *re;
118 struct btrfs_fs_info *fs_info = root->fs_info;
119 struct list_head list;
120 unsigned long index = start >> PAGE_CACHE_SHIFT;
121 struct btrfs_device *for_dev;
124 level = btrfs_header_level(eb);
127 spin_lock(&fs_info->reada_lock);
128 re = radix_tree_lookup(&fs_info->reada_tree, index);
131 spin_unlock(&fs_info->reada_lock);
136 spin_lock(&re->lock);
138 * just take the full list from the extent. afterwards we
139 * don't need the lock anymore
141 list_replace_init(&re->extctl, &list);
142 for_dev = re->scheduled_for;
143 re->scheduled_for = NULL;
144 spin_unlock(&re->lock);
147 nritems = level ? btrfs_header_nritems(eb) : 0;
148 generation = btrfs_header_generation(eb);
150 * FIXME: currently we just set nritems to 0 if this is a leaf,
151 * effectively ignoring the content. In a next step we could
152 * trigger more readahead depending from the content, e.g.
153 * fetch the checksums for the extents in the leaf.
157 * this is the error case, the extent buffer has not been
158 * read correctly. We won't access anything from it and
159 * just cleanup our data structures. Effectively this will
160 * cut the branch below this node from read ahead.
166 for (i = 0; i < nritems; i++) {
167 struct reada_extctl *rec;
169 struct btrfs_key key;
170 struct btrfs_key next_key;
172 btrfs_node_key_to_cpu(eb, &key, i);
174 btrfs_node_key_to_cpu(eb, &next_key, i + 1);
177 bytenr = btrfs_node_blockptr(eb, i);
178 n_gen = btrfs_node_ptr_generation(eb, i);
180 list_for_each_entry(rec, &list, list) {
181 struct reada_control *rc = rec->rc;
184 * if the generation doesn't match, just ignore this
185 * extctl. This will probably cut off a branch from
186 * prefetch. Alternatively one could start a new (sub-)
187 * prefetch for this branch, starting again from root.
188 * FIXME: move the generation check out of this loop
191 if (rec->generation != generation) {
192 printk(KERN_DEBUG "generation mismatch for "
193 "(%llu,%d,%llu) %llu != %llu\n",
194 key.objectid, key.type, key.offset,
195 rec->generation, generation);
198 if (rec->generation == generation &&
199 btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
200 btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
201 reada_add_block(rc, bytenr, &next_key,
206 * free extctl records
208 while (!list_empty(&list)) {
209 struct reada_control *rc;
210 struct reada_extctl *rec;
212 rec = list_first_entry(&list, struct reada_extctl, list);
213 list_del(&rec->list);
217 kref_get(&rc->refcnt);
218 if (atomic_dec_and_test(&rc->elems)) {
219 kref_put(&rc->refcnt, reada_control_release);
222 kref_put(&rc->refcnt, reada_control_release);
224 reada_extent_put(fs_info, re); /* one ref for each entry */
226 reada_extent_put(fs_info, re); /* our ref */
228 atomic_dec(&for_dev->reada_in_flight);
234 * start is passed separately in case eb in NULL, which may be the case with
237 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
242 ret = __readahead_hook(root, eb, start, err);
244 reada_start_machine(root->fs_info);
249 static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
250 struct btrfs_device *dev, u64 logical,
251 struct btrfs_bio *bbio)
254 struct reada_zone *zone;
255 struct btrfs_block_group_cache *cache = NULL;
261 spin_lock(&fs_info->reada_lock);
262 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
263 logical >> PAGE_CACHE_SHIFT, 1);
265 kref_get(&zone->refcnt);
266 spin_unlock(&fs_info->reada_lock);
269 if (logical >= zone->start && logical < zone->end)
271 spin_lock(&fs_info->reada_lock);
272 kref_put(&zone->refcnt, reada_zone_release);
273 spin_unlock(&fs_info->reada_lock);
276 cache = btrfs_lookup_block_group(fs_info, logical);
280 start = cache->key.objectid;
281 end = start + cache->key.offset - 1;
282 btrfs_put_block_group(cache);
284 zone = kzalloc(sizeof(*zone), GFP_NOFS);
290 INIT_LIST_HEAD(&zone->list);
291 spin_lock_init(&zone->lock);
293 kref_init(&zone->refcnt);
295 zone->device = dev; /* our device always sits at index 0 */
296 for (i = 0; i < bbio->num_stripes; ++i) {
297 /* bounds have already been checked */
298 zone->devs[i] = bbio->stripes[i].dev;
300 zone->ndevs = bbio->num_stripes;
302 spin_lock(&fs_info->reada_lock);
303 ret = radix_tree_insert(&dev->reada_zones,
304 (unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
307 if (ret == -EEXIST) {
309 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
310 logical >> PAGE_CACHE_SHIFT, 1);
312 kref_get(&zone->refcnt);
314 spin_unlock(&fs_info->reada_lock);
319 static struct reada_extent *reada_find_extent(struct btrfs_root *root,
321 struct btrfs_key *top, int level)
324 struct reada_extent *re = NULL;
325 struct reada_extent *re_exist = NULL;
326 struct btrfs_fs_info *fs_info = root->fs_info;
327 struct btrfs_bio *bbio = NULL;
328 struct btrfs_device *dev;
329 struct btrfs_device *prev_dev;
334 unsigned long index = logical >> PAGE_CACHE_SHIFT;
335 int dev_replace_is_ongoing;
337 spin_lock(&fs_info->reada_lock);
338 re = radix_tree_lookup(&fs_info->reada_tree, index);
341 spin_unlock(&fs_info->reada_lock);
346 re = kzalloc(sizeof(*re), GFP_NOFS);
350 blocksize = btrfs_level_size(root, level);
351 re->logical = logical;
352 re->blocksize = blocksize;
354 INIT_LIST_HEAD(&re->extctl);
355 spin_lock_init(&re->lock);
362 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
364 if (ret || !bbio || length < blocksize)
367 if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
368 printk(KERN_ERR "btrfs readahead: more than %d copies not "
369 "supported", BTRFS_MAX_MIRRORS);
373 for (nzones = 0; nzones < bbio->num_stripes; ++nzones) {
374 struct reada_zone *zone;
376 dev = bbio->stripes[nzones].dev;
377 zone = reada_find_zone(fs_info, dev, logical, bbio);
381 re->zones[nzones] = zone;
382 spin_lock(&zone->lock);
384 kref_get(&zone->refcnt);
386 spin_unlock(&zone->lock);
387 spin_lock(&fs_info->reada_lock);
388 kref_put(&zone->refcnt, reada_zone_release);
389 spin_unlock(&fs_info->reada_lock);
393 /* not a single zone found, error and out */
397 /* insert extent in reada_tree + all per-device trees, all or nothing */
398 btrfs_dev_replace_lock(&fs_info->dev_replace);
399 spin_lock(&fs_info->reada_lock);
400 ret = radix_tree_insert(&fs_info->reada_tree, index, re);
401 if (ret == -EEXIST) {
402 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
405 spin_unlock(&fs_info->reada_lock);
406 btrfs_dev_replace_unlock(&fs_info->dev_replace);
410 spin_unlock(&fs_info->reada_lock);
411 btrfs_dev_replace_unlock(&fs_info->dev_replace);
415 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
416 &fs_info->dev_replace);
417 for (i = 0; i < nzones; ++i) {
418 dev = bbio->stripes[i].dev;
419 if (dev == prev_dev) {
421 * in case of DUP, just add the first zone. As both
422 * are on the same device, there's nothing to gain
424 * Also, it wouldn't work, as the tree is per device
425 * and adding would fail with EEXIST
430 /* cannot read ahead on missing device */
433 if (dev_replace_is_ongoing &&
434 dev == fs_info->dev_replace.tgtdev) {
436 * as this device is selected for reading only as
437 * a last resort, skip it for read ahead.
442 ret = radix_tree_insert(&dev->reada_extents, index, re);
445 dev = bbio->stripes[i].dev;
447 /* ignore whether the entry was inserted */
448 radix_tree_delete(&dev->reada_extents, index);
450 BUG_ON(fs_info == NULL);
451 radix_tree_delete(&fs_info->reada_tree, index);
452 spin_unlock(&fs_info->reada_lock);
453 btrfs_dev_replace_unlock(&fs_info->dev_replace);
457 spin_unlock(&fs_info->reada_lock);
458 btrfs_dev_replace_unlock(&fs_info->dev_replace);
465 struct reada_zone *zone;
468 zone = re->zones[nzones];
469 kref_get(&zone->refcnt);
470 spin_lock(&zone->lock);
472 if (zone->elems == 0) {
474 * no fs_info->reada_lock needed, as this can't be
477 kref_put(&zone->refcnt, reada_zone_release);
479 spin_unlock(&zone->lock);
481 spin_lock(&fs_info->reada_lock);
482 kref_put(&zone->refcnt, reada_zone_release);
483 spin_unlock(&fs_info->reada_lock);
490 static void reada_extent_put(struct btrfs_fs_info *fs_info,
491 struct reada_extent *re)
494 unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
496 spin_lock(&fs_info->reada_lock);
498 spin_unlock(&fs_info->reada_lock);
502 radix_tree_delete(&fs_info->reada_tree, index);
503 for (i = 0; i < re->nzones; ++i) {
504 struct reada_zone *zone = re->zones[i];
506 radix_tree_delete(&zone->device->reada_extents, index);
509 spin_unlock(&fs_info->reada_lock);
511 for (i = 0; i < re->nzones; ++i) {
512 struct reada_zone *zone = re->zones[i];
514 kref_get(&zone->refcnt);
515 spin_lock(&zone->lock);
517 if (zone->elems == 0) {
518 /* no fs_info->reada_lock needed, as this can't be
520 kref_put(&zone->refcnt, reada_zone_release);
522 spin_unlock(&zone->lock);
524 spin_lock(&fs_info->reada_lock);
525 kref_put(&zone->refcnt, reada_zone_release);
526 spin_unlock(&fs_info->reada_lock);
528 if (re->scheduled_for)
529 atomic_dec(&re->scheduled_for->reada_in_flight);
534 static void reada_zone_release(struct kref *kref)
536 struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
538 radix_tree_delete(&zone->device->reada_zones,
539 zone->end >> PAGE_CACHE_SHIFT);
544 static void reada_control_release(struct kref *kref)
546 struct reada_control *rc = container_of(kref, struct reada_control,
552 static int reada_add_block(struct reada_control *rc, u64 logical,
553 struct btrfs_key *top, int level, u64 generation)
555 struct btrfs_root *root = rc->root;
556 struct reada_extent *re;
557 struct reada_extctl *rec;
559 re = reada_find_extent(root, logical, top, level); /* takes one ref */
563 rec = kzalloc(sizeof(*rec), GFP_NOFS);
565 reada_extent_put(root->fs_info, re);
570 rec->generation = generation;
571 atomic_inc(&rc->elems);
573 spin_lock(&re->lock);
574 list_add_tail(&rec->list, &re->extctl);
575 spin_unlock(&re->lock);
577 /* leave the ref on the extent */
583 * called with fs_info->reada_lock held
585 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
588 unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
590 for (i = 0; i < zone->ndevs; ++i) {
591 struct reada_zone *peer;
592 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
593 if (peer && peer->device != zone->device)
599 * called with fs_info->reada_lock held
601 static int reada_pick_zone(struct btrfs_device *dev)
603 struct reada_zone *top_zone = NULL;
604 struct reada_zone *top_locked_zone = NULL;
606 u64 top_locked_elems = 0;
607 unsigned long index = 0;
610 if (dev->reada_curr_zone) {
611 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
612 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
613 dev->reada_curr_zone = NULL;
615 /* pick the zone with the most elements */
617 struct reada_zone *zone;
619 ret = radix_tree_gang_lookup(&dev->reada_zones,
620 (void **)&zone, index, 1);
623 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
625 if (zone->elems > top_locked_elems) {
626 top_locked_elems = zone->elems;
627 top_locked_zone = zone;
630 if (zone->elems > top_elems) {
631 top_elems = zone->elems;
637 dev->reada_curr_zone = top_zone;
638 else if (top_locked_zone)
639 dev->reada_curr_zone = top_locked_zone;
643 dev->reada_next = dev->reada_curr_zone->start;
644 kref_get(&dev->reada_curr_zone->refcnt);
645 reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
650 static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
651 struct btrfs_device *dev)
653 struct reada_extent *re = NULL;
655 struct extent_buffer *eb = NULL;
662 spin_lock(&fs_info->reada_lock);
663 if (dev->reada_curr_zone == NULL) {
664 ret = reada_pick_zone(dev);
666 spin_unlock(&fs_info->reada_lock);
671 * FIXME currently we issue the reads one extent at a time. If we have
672 * a contiguous block of extents, we could also coagulate them or use
673 * plugging to speed things up
675 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
676 dev->reada_next >> PAGE_CACHE_SHIFT, 1);
677 if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
678 ret = reada_pick_zone(dev);
680 spin_unlock(&fs_info->reada_lock);
684 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
685 dev->reada_next >> PAGE_CACHE_SHIFT, 1);
688 spin_unlock(&fs_info->reada_lock);
691 dev->reada_next = re->logical + re->blocksize;
694 spin_unlock(&fs_info->reada_lock);
699 for (i = 0; i < re->nzones; ++i) {
700 if (re->zones[i]->device == dev) {
705 logical = re->logical;
706 blocksize = re->blocksize;
708 spin_lock(&re->lock);
709 if (re->scheduled_for == NULL) {
710 re->scheduled_for = dev;
713 spin_unlock(&re->lock);
715 reada_extent_put(fs_info, re);
720 atomic_inc(&dev->reada_in_flight);
721 ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize,
724 __readahead_hook(fs_info->extent_root, NULL, logical, ret);
726 __readahead_hook(fs_info->extent_root, eb, eb->start, ret);
729 free_extent_buffer(eb);
735 static void reada_start_machine_worker(struct btrfs_work *work)
737 struct reada_machine_work *rmw;
738 struct btrfs_fs_info *fs_info;
741 rmw = container_of(work, struct reada_machine_work, work);
742 fs_info = rmw->fs_info;
746 old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
747 task_nice_ioprio(current));
748 set_task_ioprio(current, BTRFS_IOPRIO_READA);
749 __reada_start_machine(fs_info);
750 set_task_ioprio(current, old_ioprio);
753 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
755 struct btrfs_device *device;
756 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
763 list_for_each_entry(device, &fs_devices->devices, dev_list) {
764 if (atomic_read(&device->reada_in_flight) <
766 enqueued += reada_start_machine_dev(fs_info,
770 } while (enqueued && total < 10000);
776 * If everything is already in the cache, this is effectively single
777 * threaded. To a) not hold the caller for too long and b) to utilize
778 * more cores, we broke the loop above after 10000 iterations and now
779 * enqueue to workers to finish it. This will distribute the load to
782 for (i = 0; i < 2; ++i)
783 reada_start_machine(fs_info);
786 static void reada_start_machine(struct btrfs_fs_info *fs_info)
788 struct reada_machine_work *rmw;
790 rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
792 /* FIXME we cannot handle this properly right now */
795 rmw->work.func = reada_start_machine_worker;
796 rmw->fs_info = fs_info;
798 btrfs_queue_worker(&fs_info->readahead_workers, &rmw->work);
802 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
804 struct btrfs_device *device;
805 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
812 spin_lock(&fs_info->reada_lock);
813 list_for_each_entry(device, &fs_devices->devices, dev_list) {
814 printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
815 atomic_read(&device->reada_in_flight));
818 struct reada_zone *zone;
819 ret = radix_tree_gang_lookup(&device->reada_zones,
820 (void **)&zone, index, 1);
823 printk(KERN_DEBUG " zone %llu-%llu elems %llu locked "
824 "%d devs", zone->start, zone->end, zone->elems,
826 for (j = 0; j < zone->ndevs; ++j) {
827 printk(KERN_CONT " %lld",
828 zone->devs[j]->devid);
830 if (device->reada_curr_zone == zone)
831 printk(KERN_CONT " curr off %llu",
832 device->reada_next - zone->start);
833 printk(KERN_CONT "\n");
834 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
839 struct reada_extent *re = NULL;
841 ret = radix_tree_gang_lookup(&device->reada_extents,
842 (void **)&re, index, 1);
846 " re: logical %llu size %u empty %d for %lld",
847 re->logical, re->blocksize,
848 list_empty(&re->extctl), re->scheduled_for ?
849 re->scheduled_for->devid : -1);
851 for (i = 0; i < re->nzones; ++i) {
852 printk(KERN_CONT " zone %llu-%llu devs",
855 for (j = 0; j < re->zones[i]->ndevs; ++j) {
856 printk(KERN_CONT " %lld",
857 re->zones[i]->devs[j]->devid);
860 printk(KERN_CONT "\n");
861 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
870 struct reada_extent *re = NULL;
872 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
876 if (!re->scheduled_for) {
877 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
881 "re: logical %llu size %u list empty %d for %lld",
882 re->logical, re->blocksize, list_empty(&re->extctl),
883 re->scheduled_for ? re->scheduled_for->devid : -1);
884 for (i = 0; i < re->nzones; ++i) {
885 printk(KERN_CONT " zone %llu-%llu devs",
888 for (i = 0; i < re->nzones; ++i) {
889 printk(KERN_CONT " zone %llu-%llu devs",
892 for (j = 0; j < re->zones[i]->ndevs; ++j) {
893 printk(KERN_CONT " %lld",
894 re->zones[i]->devs[j]->devid);
898 printk(KERN_CONT "\n");
899 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
901 spin_unlock(&fs_info->reada_lock);
908 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
909 struct btrfs_key *key_start, struct btrfs_key *key_end)
911 struct reada_control *rc;
915 struct extent_buffer *node;
916 static struct btrfs_key max_key = {
922 rc = kzalloc(sizeof(*rc), GFP_NOFS);
924 return ERR_PTR(-ENOMEM);
927 rc->key_start = *key_start;
928 rc->key_end = *key_end;
929 atomic_set(&rc->elems, 0);
930 init_waitqueue_head(&rc->wait);
931 kref_init(&rc->refcnt);
932 kref_get(&rc->refcnt); /* one ref for having elements */
934 node = btrfs_root_node(root);
936 level = btrfs_header_level(node);
937 generation = btrfs_header_generation(node);
938 free_extent_buffer(node);
940 if (reada_add_block(rc, start, &max_key, level, generation)) {
942 return ERR_PTR(-ENOMEM);
945 reada_start_machine(root->fs_info);
951 int btrfs_reada_wait(void *handle)
953 struct reada_control *rc = handle;
955 while (atomic_read(&rc->elems)) {
956 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
958 dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
961 dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
963 kref_put(&rc->refcnt, reada_control_release);
968 int btrfs_reada_wait(void *handle)
970 struct reada_control *rc = handle;
972 while (atomic_read(&rc->elems)) {
973 wait_event(rc->wait, atomic_read(&rc->elems) == 0);
976 kref_put(&rc->refcnt, reada_control_release);
982 void btrfs_reada_detach(void *handle)
984 struct reada_control *rc = handle;
986 kref_put(&rc->refcnt, reada_control_release);