2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/wait.h>
21 #include <linux/bio.h>
22 #include <linux/slab.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/random.h>
26 #include <linux/iocontext.h>
27 #include <linux/capability.h>
28 #include <linux/ratelimit.h>
29 #include <linux/kthread.h>
30 #include <linux/raid/pq.h>
31 #include <linux/hash.h>
32 #include <linux/list_sort.h>
33 #include <linux/raid/xor.h>
34 #include <linux/vmalloc.h>
35 #include <asm/div64.h>
37 #include "extent_map.h"
39 #include "transaction.h"
40 #include "print-tree.h"
43 #include "async-thread.h"
44 #include "check-integrity.h"
45 #include "rcu-string.h"
47 /* set when additional merges to this rbio are not allowed */
48 #define RBIO_RMW_LOCKED_BIT 1
51 * set when this rbio is sitting in the hash, but it is just a cache
54 #define RBIO_CACHE_BIT 2
57 * set when it is safe to trust the stripe_pages for caching
59 #define RBIO_CACHE_READY_BIT 3
62 #define RBIO_CACHE_SIZE 1024
64 struct btrfs_raid_bio {
65 struct btrfs_fs_info *fs_info;
66 struct btrfs_bio *bbio;
69 * logical block numbers for the start of each stripe
70 * The last one or two are p/q. These are sorted,
71 * so raid_map[0] is the start of our full stripe
75 /* while we're doing rmw on a stripe
76 * we put it into a hash table so we can
77 * lock the stripe and merge more rbios
80 struct list_head hash_list;
83 * LRU list for the stripe cache
85 struct list_head stripe_cache;
88 * for scheduling work in the helper threads
90 struct btrfs_work work;
93 * bio list and bio_list_lock are used
94 * to add more bios into the stripe
95 * in hopes of avoiding the full rmw
97 struct bio_list bio_list;
98 spinlock_t bio_list_lock;
100 /* also protected by the bio_list_lock, the
101 * plug list is used by the plugging code
102 * to collect partial bios while plugged. The
103 * stripe locking code also uses it to hand off
104 * the stripe lock to the next pending IO
106 struct list_head plug_list;
109 * flags that tell us if it is safe to
110 * merge with this bio
114 /* size of each individual stripe on disk */
117 /* number of data stripes (no p/q) */
121 * set if we're doing a parity rebuild
122 * for a read from higher up, which is handled
123 * differently from a parity rebuild as part of
128 /* first bad stripe */
131 /* second bad stripe (for raid6 use) */
135 * number of pages needed to represent the full
141 * size of all the bios in the bio_list. This
142 * helps us decide if the rbio maps to a full
150 * these are two arrays of pointers. We allocate the
151 * rbio big enough to hold them both and setup their
152 * locations when the rbio is allocated
155 /* pointers to pages that we allocated for
156 * reading/writing stripes directly from the disk (including P/Q)
158 struct page **stripe_pages;
161 * pointers to the pages in the bio_list. Stored
162 * here for faster lookup
164 struct page **bio_pages;
167 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
168 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
169 static void rmw_work(struct btrfs_work *work);
170 static void read_rebuild_work(struct btrfs_work *work);
171 static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
172 static void async_read_rebuild(struct btrfs_raid_bio *rbio);
173 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
174 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
175 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
176 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
177 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
180 * the stripe hash table is used for locking, and to collect
181 * bios in hopes of making a full stripe
183 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
185 struct btrfs_stripe_hash_table *table;
186 struct btrfs_stripe_hash_table *x;
187 struct btrfs_stripe_hash *cur;
188 struct btrfs_stripe_hash *h;
189 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
193 if (info->stripe_hash_table)
197 * The table is large, starting with order 4 and can go as high as
198 * order 7 in case lock debugging is turned on.
200 * Try harder to allocate and fallback to vmalloc to lower the chance
201 * of a failing mount.
203 table_size = sizeof(*table) + sizeof(*h) * num_entries;
204 table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
206 table = vzalloc(table_size);
211 spin_lock_init(&table->cache_lock);
212 INIT_LIST_HEAD(&table->stripe_cache);
216 for (i = 0; i < num_entries; i++) {
218 INIT_LIST_HEAD(&cur->hash_list);
219 spin_lock_init(&cur->lock);
220 init_waitqueue_head(&cur->wait);
223 x = cmpxchg(&info->stripe_hash_table, NULL, table);
225 if (is_vmalloc_addr(x))
234 * caching an rbio means to copy anything from the
235 * bio_pages array into the stripe_pages array. We
236 * use the page uptodate bit in the stripe cache array
237 * to indicate if it has valid data
239 * once the caching is done, we set the cache ready
242 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
249 ret = alloc_rbio_pages(rbio);
253 for (i = 0; i < rbio->nr_pages; i++) {
254 if (!rbio->bio_pages[i])
257 s = kmap(rbio->bio_pages[i]);
258 d = kmap(rbio->stripe_pages[i]);
260 memcpy(d, s, PAGE_CACHE_SIZE);
262 kunmap(rbio->bio_pages[i]);
263 kunmap(rbio->stripe_pages[i]);
264 SetPageUptodate(rbio->stripe_pages[i]);
266 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
270 * we hash on the first logical address of the stripe
272 static int rbio_bucket(struct btrfs_raid_bio *rbio)
274 u64 num = rbio->raid_map[0];
277 * we shift down quite a bit. We're using byte
278 * addressing, and most of the lower bits are zeros.
279 * This tends to upset hash_64, and it consistently
280 * returns just one or two different values.
282 * shifting off the lower bits fixes things.
284 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
288 * stealing an rbio means taking all the uptodate pages from the stripe
289 * array in the source rbio and putting them into the destination rbio
291 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
297 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
300 for (i = 0; i < dest->nr_pages; i++) {
301 s = src->stripe_pages[i];
302 if (!s || !PageUptodate(s)) {
306 d = dest->stripe_pages[i];
310 dest->stripe_pages[i] = s;
311 src->stripe_pages[i] = NULL;
316 * merging means we take the bio_list from the victim and
317 * splice it into the destination. The victim should
318 * be discarded afterwards.
320 * must be called with dest->rbio_list_lock held
322 static void merge_rbio(struct btrfs_raid_bio *dest,
323 struct btrfs_raid_bio *victim)
325 bio_list_merge(&dest->bio_list, &victim->bio_list);
326 dest->bio_list_bytes += victim->bio_list_bytes;
327 bio_list_init(&victim->bio_list);
331 * used to prune items that are in the cache. The caller
332 * must hold the hash table lock.
334 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
336 int bucket = rbio_bucket(rbio);
337 struct btrfs_stripe_hash_table *table;
338 struct btrfs_stripe_hash *h;
342 * check the bit again under the hash table lock.
344 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
347 table = rbio->fs_info->stripe_hash_table;
348 h = table->table + bucket;
350 /* hold the lock for the bucket because we may be
351 * removing it from the hash table
356 * hold the lock for the bio list because we need
357 * to make sure the bio list is empty
359 spin_lock(&rbio->bio_list_lock);
361 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
362 list_del_init(&rbio->stripe_cache);
363 table->cache_size -= 1;
366 /* if the bio list isn't empty, this rbio is
367 * still involved in an IO. We take it out
368 * of the cache list, and drop the ref that
369 * was held for the list.
371 * If the bio_list was empty, we also remove
372 * the rbio from the hash_table, and drop
373 * the corresponding ref
375 if (bio_list_empty(&rbio->bio_list)) {
376 if (!list_empty(&rbio->hash_list)) {
377 list_del_init(&rbio->hash_list);
378 atomic_dec(&rbio->refs);
379 BUG_ON(!list_empty(&rbio->plug_list));
384 spin_unlock(&rbio->bio_list_lock);
385 spin_unlock(&h->lock);
388 __free_raid_bio(rbio);
392 * prune a given rbio from the cache
394 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
396 struct btrfs_stripe_hash_table *table;
399 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
402 table = rbio->fs_info->stripe_hash_table;
404 spin_lock_irqsave(&table->cache_lock, flags);
405 __remove_rbio_from_cache(rbio);
406 spin_unlock_irqrestore(&table->cache_lock, flags);
410 * remove everything in the cache
412 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
414 struct btrfs_stripe_hash_table *table;
416 struct btrfs_raid_bio *rbio;
418 table = info->stripe_hash_table;
420 spin_lock_irqsave(&table->cache_lock, flags);
421 while (!list_empty(&table->stripe_cache)) {
422 rbio = list_entry(table->stripe_cache.next,
423 struct btrfs_raid_bio,
425 __remove_rbio_from_cache(rbio);
427 spin_unlock_irqrestore(&table->cache_lock, flags);
431 * remove all cached entries and free the hash table
434 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
436 if (!info->stripe_hash_table)
438 btrfs_clear_rbio_cache(info);
439 if (is_vmalloc_addr(info->stripe_hash_table))
440 vfree(info->stripe_hash_table);
442 kfree(info->stripe_hash_table);
443 info->stripe_hash_table = NULL;
447 * insert an rbio into the stripe cache. It
448 * must have already been prepared by calling
451 * If this rbio was already cached, it gets
452 * moved to the front of the lru.
454 * If the size of the rbio cache is too big, we
457 static void cache_rbio(struct btrfs_raid_bio *rbio)
459 struct btrfs_stripe_hash_table *table;
462 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
465 table = rbio->fs_info->stripe_hash_table;
467 spin_lock_irqsave(&table->cache_lock, flags);
468 spin_lock(&rbio->bio_list_lock);
470 /* bump our ref if we were not in the list before */
471 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
472 atomic_inc(&rbio->refs);
474 if (!list_empty(&rbio->stripe_cache)){
475 list_move(&rbio->stripe_cache, &table->stripe_cache);
477 list_add(&rbio->stripe_cache, &table->stripe_cache);
478 table->cache_size += 1;
481 spin_unlock(&rbio->bio_list_lock);
483 if (table->cache_size > RBIO_CACHE_SIZE) {
484 struct btrfs_raid_bio *found;
486 found = list_entry(table->stripe_cache.prev,
487 struct btrfs_raid_bio,
491 __remove_rbio_from_cache(found);
494 spin_unlock_irqrestore(&table->cache_lock, flags);
499 * helper function to run the xor_blocks api. It is only
500 * able to do MAX_XOR_BLOCKS at a time, so we need to
503 static void run_xor(void **pages, int src_cnt, ssize_t len)
507 void *dest = pages[src_cnt];
510 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
511 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
513 src_cnt -= xor_src_cnt;
514 src_off += xor_src_cnt;
519 * returns true if the bio list inside this rbio
520 * covers an entire stripe (no rmw required).
521 * Must be called with the bio list lock held, or
522 * at a time when you know it is impossible to add
523 * new bios into the list
525 static int __rbio_is_full(struct btrfs_raid_bio *rbio)
527 unsigned long size = rbio->bio_list_bytes;
530 if (size != rbio->nr_data * rbio->stripe_len)
533 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
537 static int rbio_is_full(struct btrfs_raid_bio *rbio)
542 spin_lock_irqsave(&rbio->bio_list_lock, flags);
543 ret = __rbio_is_full(rbio);
544 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
549 * returns 1 if it is safe to merge two rbios together.
550 * The merging is safe if the two rbios correspond to
551 * the same stripe and if they are both going in the same
552 * direction (read vs write), and if neither one is
553 * locked for final IO
555 * The caller is responsible for locking such that
556 * rmw_locked is safe to test
558 static int rbio_can_merge(struct btrfs_raid_bio *last,
559 struct btrfs_raid_bio *cur)
561 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
562 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
566 * we can't merge with cached rbios, since the
567 * idea is that when we merge the destination
568 * rbio is going to run our IO for us. We can
569 * steal from cached rbio's though, other functions
572 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
573 test_bit(RBIO_CACHE_BIT, &cur->flags))
576 if (last->raid_map[0] !=
580 /* reads can't merge with writes */
581 if (last->read_rebuild !=
590 * helper to index into the pstripe
592 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
594 index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
595 return rbio->stripe_pages[index];
599 * helper to index into the qstripe, returns null
600 * if there is no qstripe
602 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
604 if (rbio->nr_data + 1 == rbio->bbio->num_stripes)
607 index += ((rbio->nr_data + 1) * rbio->stripe_len) >>
609 return rbio->stripe_pages[index];
613 * The first stripe in the table for a logical address
614 * has the lock. rbios are added in one of three ways:
616 * 1) Nobody has the stripe locked yet. The rbio is given
617 * the lock and 0 is returned. The caller must start the IO
620 * 2) Someone has the stripe locked, but we're able to merge
621 * with the lock owner. The rbio is freed and the IO will
622 * start automatically along with the existing rbio. 1 is returned.
624 * 3) Someone has the stripe locked, but we're not able to merge.
625 * The rbio is added to the lock owner's plug list, or merged into
626 * an rbio already on the plug list. When the lock owner unlocks,
627 * the next rbio on the list is run and the IO is started automatically.
630 * If we return 0, the caller still owns the rbio and must continue with
631 * IO submission. If we return 1, the caller must assume the rbio has
632 * already been freed.
634 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
636 int bucket = rbio_bucket(rbio);
637 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
638 struct btrfs_raid_bio *cur;
639 struct btrfs_raid_bio *pending;
642 struct btrfs_raid_bio *freeit = NULL;
643 struct btrfs_raid_bio *cache_drop = NULL;
647 spin_lock_irqsave(&h->lock, flags);
648 list_for_each_entry(cur, &h->hash_list, hash_list) {
650 if (cur->raid_map[0] == rbio->raid_map[0]) {
651 spin_lock(&cur->bio_list_lock);
653 /* can we steal this cached rbio's pages? */
654 if (bio_list_empty(&cur->bio_list) &&
655 list_empty(&cur->plug_list) &&
656 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
657 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
658 list_del_init(&cur->hash_list);
659 atomic_dec(&cur->refs);
661 steal_rbio(cur, rbio);
663 spin_unlock(&cur->bio_list_lock);
668 /* can we merge into the lock owner? */
669 if (rbio_can_merge(cur, rbio)) {
670 merge_rbio(cur, rbio);
671 spin_unlock(&cur->bio_list_lock);
679 * we couldn't merge with the running
680 * rbio, see if we can merge with the
681 * pending ones. We don't have to
682 * check for rmw_locked because there
683 * is no way they are inside finish_rmw
686 list_for_each_entry(pending, &cur->plug_list,
688 if (rbio_can_merge(pending, rbio)) {
689 merge_rbio(pending, rbio);
690 spin_unlock(&cur->bio_list_lock);
697 /* no merging, put us on the tail of the plug list,
698 * our rbio will be started with the currently
699 * running rbio unlocks
701 list_add_tail(&rbio->plug_list, &cur->plug_list);
702 spin_unlock(&cur->bio_list_lock);
708 atomic_inc(&rbio->refs);
709 list_add(&rbio->hash_list, &h->hash_list);
711 spin_unlock_irqrestore(&h->lock, flags);
713 remove_rbio_from_cache(cache_drop);
715 __free_raid_bio(freeit);
720 * called as rmw or parity rebuild is completed. If the plug list has more
721 * rbios waiting for this stripe, the next one on the list will be started
723 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
726 struct btrfs_stripe_hash *h;
730 bucket = rbio_bucket(rbio);
731 h = rbio->fs_info->stripe_hash_table->table + bucket;
733 if (list_empty(&rbio->plug_list))
736 spin_lock_irqsave(&h->lock, flags);
737 spin_lock(&rbio->bio_list_lock);
739 if (!list_empty(&rbio->hash_list)) {
741 * if we're still cached and there is no other IO
742 * to perform, just leave this rbio here for others
743 * to steal from later
745 if (list_empty(&rbio->plug_list) &&
746 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
748 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
749 BUG_ON(!bio_list_empty(&rbio->bio_list));
753 list_del_init(&rbio->hash_list);
754 atomic_dec(&rbio->refs);
757 * we use the plug list to hold all the rbios
758 * waiting for the chance to lock this stripe.
759 * hand the lock over to one of them.
761 if (!list_empty(&rbio->plug_list)) {
762 struct btrfs_raid_bio *next;
763 struct list_head *head = rbio->plug_list.next;
765 next = list_entry(head, struct btrfs_raid_bio,
768 list_del_init(&rbio->plug_list);
770 list_add(&next->hash_list, &h->hash_list);
771 atomic_inc(&next->refs);
772 spin_unlock(&rbio->bio_list_lock);
773 spin_unlock_irqrestore(&h->lock, flags);
775 if (next->read_rebuild)
776 async_read_rebuild(next);
778 steal_rbio(rbio, next);
779 async_rmw_stripe(next);
783 } else if (waitqueue_active(&h->wait)) {
784 spin_unlock(&rbio->bio_list_lock);
785 spin_unlock_irqrestore(&h->lock, flags);
791 spin_unlock(&rbio->bio_list_lock);
792 spin_unlock_irqrestore(&h->lock, flags);
796 remove_rbio_from_cache(rbio);
799 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
803 WARN_ON(atomic_read(&rbio->refs) < 0);
804 if (!atomic_dec_and_test(&rbio->refs))
807 WARN_ON(!list_empty(&rbio->stripe_cache));
808 WARN_ON(!list_empty(&rbio->hash_list));
809 WARN_ON(!bio_list_empty(&rbio->bio_list));
811 for (i = 0; i < rbio->nr_pages; i++) {
812 if (rbio->stripe_pages[i]) {
813 __free_page(rbio->stripe_pages[i]);
814 rbio->stripe_pages[i] = NULL;
817 kfree(rbio->raid_map);
822 static void free_raid_bio(struct btrfs_raid_bio *rbio)
825 __free_raid_bio(rbio);
829 * this frees the rbio and runs through all the bios in the
830 * bio_list and calls end_io on them
832 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err, int uptodate)
834 struct bio *cur = bio_list_get(&rbio->bio_list);
842 set_bit(BIO_UPTODATE, &cur->bi_flags);
849 * end io function used by finish_rmw. When we finally
850 * get here, we've written a full stripe
852 static void raid_write_end_io(struct bio *bio, int err)
854 struct btrfs_raid_bio *rbio = bio->bi_private;
857 fail_bio_stripe(rbio, bio);
861 if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
866 /* OK, we have read all the stripes we need to. */
867 if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
870 rbio_orig_end_io(rbio, err, 0);
875 * the read/modify/write code wants to use the original bio for
876 * any pages it included, and then use the rbio for everything
877 * else. This function decides if a given index (stripe number)
878 * and page number in that stripe fall inside the original bio
881 * if you set bio_list_only, you'll get a NULL back for any ranges
882 * that are outside the bio_list
884 * This doesn't take any refs on anything, you get a bare page pointer
885 * and the caller must bump refs as required.
887 * You must call index_rbio_pages once before you can trust
888 * the answers from this function.
890 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
891 int index, int pagenr, int bio_list_only)
894 struct page *p = NULL;
896 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
898 spin_lock_irq(&rbio->bio_list_lock);
899 p = rbio->bio_pages[chunk_page];
900 spin_unlock_irq(&rbio->bio_list_lock);
902 if (p || bio_list_only)
905 return rbio->stripe_pages[chunk_page];
909 * number of pages we need for the entire stripe across all the
912 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
914 unsigned long nr = stripe_len * nr_stripes;
915 return (nr + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
919 * allocation and initial setup for the btrfs_raid_bio. Not
920 * this does not allocate any pages for rbio->pages.
922 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
923 struct btrfs_bio *bbio, u64 *raid_map,
926 struct btrfs_raid_bio *rbio;
928 int num_pages = rbio_nr_pages(stripe_len, bbio->num_stripes);
931 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2,
936 return ERR_PTR(-ENOMEM);
939 bio_list_init(&rbio->bio_list);
940 INIT_LIST_HEAD(&rbio->plug_list);
941 spin_lock_init(&rbio->bio_list_lock);
942 INIT_LIST_HEAD(&rbio->stripe_cache);
943 INIT_LIST_HEAD(&rbio->hash_list);
945 rbio->raid_map = raid_map;
946 rbio->fs_info = root->fs_info;
947 rbio->stripe_len = stripe_len;
948 rbio->nr_pages = num_pages;
951 atomic_set(&rbio->refs, 1);
954 * the stripe_pages and bio_pages array point to the extra
955 * memory we allocated past the end of the rbio
958 rbio->stripe_pages = p;
959 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
961 if (raid_map[bbio->num_stripes - 1] == RAID6_Q_STRIPE)
962 nr_data = bbio->num_stripes - 2;
964 nr_data = bbio->num_stripes - 1;
966 rbio->nr_data = nr_data;
970 /* allocate pages for all the stripes in the bio, including parity */
971 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
976 for (i = 0; i < rbio->nr_pages; i++) {
977 if (rbio->stripe_pages[i])
979 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
982 rbio->stripe_pages[i] = page;
983 ClearPageUptodate(page);
988 /* allocate pages for just the p/q stripes */
989 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
994 i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
996 for (; i < rbio->nr_pages; i++) {
997 if (rbio->stripe_pages[i])
999 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1002 rbio->stripe_pages[i] = page;
1008 * add a single page from a specific stripe into our list of bios for IO
1009 * this will try to merge into existing bios if possible, and returns
1010 * zero if all went well.
1012 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1013 struct bio_list *bio_list,
1016 unsigned long page_index,
1017 unsigned long bio_max_len)
1019 struct bio *last = bio_list->tail;
1023 struct btrfs_bio_stripe *stripe;
1026 stripe = &rbio->bbio->stripes[stripe_nr];
1027 disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT);
1029 /* if the device is missing, just fail this stripe */
1030 if (!stripe->dev->bdev)
1031 return fail_rbio_index(rbio, stripe_nr);
1033 /* see if we can add this page onto our existing bio */
1035 last_end = (u64)last->bi_iter.bi_sector << 9;
1036 last_end += last->bi_iter.bi_size;
1039 * we can't merge these if they are from different
1040 * devices or if they are not contiguous
1042 if (last_end == disk_start && stripe->dev->bdev &&
1043 test_bit(BIO_UPTODATE, &last->bi_flags) &&
1044 last->bi_bdev == stripe->dev->bdev) {
1045 ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0);
1046 if (ret == PAGE_CACHE_SIZE)
1051 /* put a new bio on the list */
1052 bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1056 bio->bi_iter.bi_size = 0;
1057 bio->bi_bdev = stripe->dev->bdev;
1058 bio->bi_iter.bi_sector = disk_start >> 9;
1059 set_bit(BIO_UPTODATE, &bio->bi_flags);
1061 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
1062 bio_list_add(bio_list, bio);
1067 * while we're doing the read/modify/write cycle, we could
1068 * have errors in reading pages off the disk. This checks
1069 * for errors and if we're not able to read the page it'll
1070 * trigger parity reconstruction. The rmw will be finished
1071 * after we've reconstructed the failed stripes
1073 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1075 if (rbio->faila >= 0 || rbio->failb >= 0) {
1076 BUG_ON(rbio->faila == rbio->bbio->num_stripes - 1);
1077 __raid56_parity_recover(rbio);
1084 * these are just the pages from the rbio array, not from anything
1085 * the FS sent down to us
1087 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page)
1090 index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT);
1092 return rbio->stripe_pages[index];
1096 * helper function to walk our bio list and populate the bio_pages array with
1097 * the result. This seems expensive, but it is faster than constantly
1098 * searching through the bio list as we setup the IO in finish_rmw or stripe
1101 * This must be called before you trust the answers from page_in_rbio
1103 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1107 unsigned long stripe_offset;
1108 unsigned long page_index;
1112 spin_lock_irq(&rbio->bio_list_lock);
1113 bio_list_for_each(bio, &rbio->bio_list) {
1114 start = (u64)bio->bi_iter.bi_sector << 9;
1115 stripe_offset = start - rbio->raid_map[0];
1116 page_index = stripe_offset >> PAGE_CACHE_SHIFT;
1118 for (i = 0; i < bio->bi_vcnt; i++) {
1119 p = bio->bi_io_vec[i].bv_page;
1120 rbio->bio_pages[page_index + i] = p;
1123 spin_unlock_irq(&rbio->bio_list_lock);
1127 * this is called from one of two situations. We either
1128 * have a full stripe from the higher layers, or we've read all
1129 * the missing bits off disk.
1131 * This will calculate the parity and then send down any
1134 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1136 struct btrfs_bio *bbio = rbio->bbio;
1137 void *pointers[bbio->num_stripes];
1138 int stripe_len = rbio->stripe_len;
1139 int nr_data = rbio->nr_data;
1144 struct bio_list bio_list;
1146 int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT;
1149 bio_list_init(&bio_list);
1151 if (bbio->num_stripes - rbio->nr_data == 1) {
1152 p_stripe = bbio->num_stripes - 1;
1153 } else if (bbio->num_stripes - rbio->nr_data == 2) {
1154 p_stripe = bbio->num_stripes - 2;
1155 q_stripe = bbio->num_stripes - 1;
1160 /* at this point we either have a full stripe,
1161 * or we've read the full stripe from the drive.
1162 * recalculate the parity and write the new results.
1164 * We're not allowed to add any new bios to the
1165 * bio list here, anyone else that wants to
1166 * change this stripe needs to do their own rmw.
1168 spin_lock_irq(&rbio->bio_list_lock);
1169 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1170 spin_unlock_irq(&rbio->bio_list_lock);
1172 atomic_set(&rbio->bbio->error, 0);
1175 * now that we've set rmw_locked, run through the
1176 * bio list one last time and map the page pointers
1178 * We don't cache full rbios because we're assuming
1179 * the higher layers are unlikely to use this area of
1180 * the disk again soon. If they do use it again,
1181 * hopefully they will send another full bio.
1183 index_rbio_pages(rbio);
1184 if (!rbio_is_full(rbio))
1185 cache_rbio_pages(rbio);
1187 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1189 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1191 /* first collect one page from each data stripe */
1192 for (stripe = 0; stripe < nr_data; stripe++) {
1193 p = page_in_rbio(rbio, stripe, pagenr, 0);
1194 pointers[stripe] = kmap(p);
1197 /* then add the parity stripe */
1198 p = rbio_pstripe_page(rbio, pagenr);
1200 pointers[stripe++] = kmap(p);
1202 if (q_stripe != -1) {
1205 * raid6, add the qstripe and call the
1206 * library function to fill in our p/q
1208 p = rbio_qstripe_page(rbio, pagenr);
1210 pointers[stripe++] = kmap(p);
1212 raid6_call.gen_syndrome(bbio->num_stripes, PAGE_SIZE,
1216 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1217 run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
1221 for (stripe = 0; stripe < bbio->num_stripes; stripe++)
1222 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1226 * time to start writing. Make bios for everything from the
1227 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1230 for (stripe = 0; stripe < bbio->num_stripes; stripe++) {
1231 for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
1233 if (stripe < rbio->nr_data) {
1234 page = page_in_rbio(rbio, stripe, pagenr, 1);
1238 page = rbio_stripe_page(rbio, stripe, pagenr);
1241 ret = rbio_add_io_page(rbio, &bio_list,
1242 page, stripe, pagenr, rbio->stripe_len);
1248 atomic_set(&bbio->stripes_pending, bio_list_size(&bio_list));
1249 BUG_ON(atomic_read(&bbio->stripes_pending) == 0);
1252 bio = bio_list_pop(&bio_list);
1256 bio->bi_private = rbio;
1257 bio->bi_end_io = raid_write_end_io;
1258 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
1259 submit_bio(WRITE, bio);
1264 rbio_orig_end_io(rbio, -EIO, 0);
1268 * helper to find the stripe number for a given bio. Used to figure out which
1269 * stripe has failed. This expects the bio to correspond to a physical disk,
1270 * so it looks up based on physical sector numbers.
1272 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1275 u64 physical = bio->bi_iter.bi_sector;
1278 struct btrfs_bio_stripe *stripe;
1282 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1283 stripe = &rbio->bbio->stripes[i];
1284 stripe_start = stripe->physical;
1285 if (physical >= stripe_start &&
1286 physical < stripe_start + rbio->stripe_len) {
1294 * helper to find the stripe number for a given
1295 * bio (before mapping). Used to figure out which stripe has
1296 * failed. This looks up based on logical block numbers.
1298 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1301 u64 logical = bio->bi_iter.bi_sector;
1307 for (i = 0; i < rbio->nr_data; i++) {
1308 stripe_start = rbio->raid_map[i];
1309 if (logical >= stripe_start &&
1310 logical < stripe_start + rbio->stripe_len) {
1318 * returns -EIO if we had too many failures
1320 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1322 unsigned long flags;
1325 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1327 /* we already know this stripe is bad, move on */
1328 if (rbio->faila == failed || rbio->failb == failed)
1331 if (rbio->faila == -1) {
1332 /* first failure on this rbio */
1333 rbio->faila = failed;
1334 atomic_inc(&rbio->bbio->error);
1335 } else if (rbio->failb == -1) {
1336 /* second failure on this rbio */
1337 rbio->failb = failed;
1338 atomic_inc(&rbio->bbio->error);
1343 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1349 * helper to fail a stripe based on a physical disk
1352 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1355 int failed = find_bio_stripe(rbio, bio);
1360 return fail_rbio_index(rbio, failed);
1364 * this sets each page in the bio uptodate. It should only be used on private
1365 * rbio pages, nothing that comes in from the higher layers
1367 static void set_bio_pages_uptodate(struct bio *bio)
1372 for (i = 0; i < bio->bi_vcnt; i++) {
1373 p = bio->bi_io_vec[i].bv_page;
1379 * end io for the read phase of the rmw cycle. All the bios here are physical
1380 * stripe bios we've read from the disk so we can recalculate the parity of the
1383 * This will usually kick off finish_rmw once all the bios are read in, but it
1384 * may trigger parity reconstruction if we had any errors along the way
1386 static void raid_rmw_end_io(struct bio *bio, int err)
1388 struct btrfs_raid_bio *rbio = bio->bi_private;
1391 fail_bio_stripe(rbio, bio);
1393 set_bio_pages_uptodate(bio);
1397 if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
1401 if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
1405 * this will normally call finish_rmw to start our write
1406 * but if there are any failed stripes we'll reconstruct
1409 validate_rbio_for_rmw(rbio);
1414 rbio_orig_end_io(rbio, -EIO, 0);
1417 static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1419 rbio->work.flags = 0;
1420 rbio->work.func = rmw_work;
1422 btrfs_queue_worker(&rbio->fs_info->rmw_workers,
1426 static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1428 rbio->work.flags = 0;
1429 rbio->work.func = read_rebuild_work;
1431 btrfs_queue_worker(&rbio->fs_info->rmw_workers,
1436 * the stripe must be locked by the caller. It will
1437 * unlock after all the writes are done
1439 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1441 int bios_to_read = 0;
1442 struct btrfs_bio *bbio = rbio->bbio;
1443 struct bio_list bio_list;
1445 int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1450 bio_list_init(&bio_list);
1452 ret = alloc_rbio_pages(rbio);
1456 index_rbio_pages(rbio);
1458 atomic_set(&rbio->bbio->error, 0);
1460 * build a list of bios to read all the missing parts of this
1463 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1464 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1467 * we want to find all the pages missing from
1468 * the rbio and read them from the disk. If
1469 * page_in_rbio finds a page in the bio list
1470 * we don't need to read it off the stripe.
1472 page = page_in_rbio(rbio, stripe, pagenr, 1);
1476 page = rbio_stripe_page(rbio, stripe, pagenr);
1478 * the bio cache may have handed us an uptodate
1479 * page. If so, be happy and use it
1481 if (PageUptodate(page))
1484 ret = rbio_add_io_page(rbio, &bio_list, page,
1485 stripe, pagenr, rbio->stripe_len);
1491 bios_to_read = bio_list_size(&bio_list);
1492 if (!bios_to_read) {
1494 * this can happen if others have merged with
1495 * us, it means there is nothing left to read.
1496 * But if there are missing devices it may not be
1497 * safe to do the full stripe write yet.
1503 * the bbio may be freed once we submit the last bio. Make sure
1504 * not to touch it after that
1506 atomic_set(&bbio->stripes_pending, bios_to_read);
1508 bio = bio_list_pop(&bio_list);
1512 bio->bi_private = rbio;
1513 bio->bi_end_io = raid_rmw_end_io;
1515 btrfs_bio_wq_end_io(rbio->fs_info, bio,
1516 BTRFS_WQ_ENDIO_RAID56);
1518 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
1519 submit_bio(READ, bio);
1521 /* the actual write will happen once the reads are done */
1525 rbio_orig_end_io(rbio, -EIO, 0);
1529 validate_rbio_for_rmw(rbio);
1534 * if the upper layers pass in a full stripe, we thank them by only allocating
1535 * enough pages to hold the parity, and sending it all down quickly.
1537 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1541 ret = alloc_rbio_parity_pages(rbio);
1543 __free_raid_bio(rbio);
1547 ret = lock_stripe_add(rbio);
1554 * partial stripe writes get handed over to async helpers.
1555 * We're really hoping to merge a few more writes into this
1556 * rbio before calculating new parity
1558 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1562 ret = lock_stripe_add(rbio);
1564 async_rmw_stripe(rbio);
1569 * sometimes while we were reading from the drive to
1570 * recalculate parity, enough new bios come into create
1571 * a full stripe. So we do a check here to see if we can
1572 * go directly to finish_rmw
1574 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1576 /* head off into rmw land if we don't have a full stripe */
1577 if (!rbio_is_full(rbio))
1578 return partial_stripe_write(rbio);
1579 return full_stripe_write(rbio);
1583 * We use plugging call backs to collect full stripes.
1584 * Any time we get a partial stripe write while plugged
1585 * we collect it into a list. When the unplug comes down,
1586 * we sort the list by logical block number and merge
1587 * everything we can into the same rbios
1589 struct btrfs_plug_cb {
1590 struct blk_plug_cb cb;
1591 struct btrfs_fs_info *info;
1592 struct list_head rbio_list;
1593 struct btrfs_work work;
1597 * rbios on the plug list are sorted for easier merging.
1599 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1601 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1603 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1605 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1606 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1608 if (a_sector < b_sector)
1610 if (a_sector > b_sector)
1615 static void run_plug(struct btrfs_plug_cb *plug)
1617 struct btrfs_raid_bio *cur;
1618 struct btrfs_raid_bio *last = NULL;
1621 * sort our plug list then try to merge
1622 * everything we can in hopes of creating full
1625 list_sort(NULL, &plug->rbio_list, plug_cmp);
1626 while (!list_empty(&plug->rbio_list)) {
1627 cur = list_entry(plug->rbio_list.next,
1628 struct btrfs_raid_bio, plug_list);
1629 list_del_init(&cur->plug_list);
1631 if (rbio_is_full(cur)) {
1632 /* we have a full stripe, send it down */
1633 full_stripe_write(cur);
1637 if (rbio_can_merge(last, cur)) {
1638 merge_rbio(last, cur);
1639 __free_raid_bio(cur);
1643 __raid56_parity_write(last);
1648 __raid56_parity_write(last);
1654 * if the unplug comes from schedule, we have to push the
1655 * work off to a helper thread
1657 static void unplug_work(struct btrfs_work *work)
1659 struct btrfs_plug_cb *plug;
1660 plug = container_of(work, struct btrfs_plug_cb, work);
1664 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1666 struct btrfs_plug_cb *plug;
1667 plug = container_of(cb, struct btrfs_plug_cb, cb);
1669 if (from_schedule) {
1670 plug->work.flags = 0;
1671 plug->work.func = unplug_work;
1672 btrfs_queue_worker(&plug->info->rmw_workers,
1680 * our main entry point for writes from the rest of the FS.
1682 int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
1683 struct btrfs_bio *bbio, u64 *raid_map,
1686 struct btrfs_raid_bio *rbio;
1687 struct btrfs_plug_cb *plug = NULL;
1688 struct blk_plug_cb *cb;
1690 rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
1692 return PTR_ERR(rbio);
1693 bio_list_add(&rbio->bio_list, bio);
1694 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1697 * don't plug on full rbios, just get them out the door
1698 * as quickly as we can
1700 if (rbio_is_full(rbio))
1701 return full_stripe_write(rbio);
1703 cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1706 plug = container_of(cb, struct btrfs_plug_cb, cb);
1708 plug->info = root->fs_info;
1709 INIT_LIST_HEAD(&plug->rbio_list);
1711 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1713 return __raid56_parity_write(rbio);
1719 * all parity reconstruction happens here. We've read in everything
1720 * we can find from the drives and this does the heavy lifting of
1721 * sorting the good from the bad.
1723 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1727 int faila = -1, failb = -1;
1728 int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1733 pointers = kzalloc(rbio->bbio->num_stripes * sizeof(void *),
1740 faila = rbio->faila;
1741 failb = rbio->failb;
1743 if (rbio->read_rebuild) {
1744 spin_lock_irq(&rbio->bio_list_lock);
1745 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1746 spin_unlock_irq(&rbio->bio_list_lock);
1749 index_rbio_pages(rbio);
1751 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1752 /* setup our array of pointers with pages
1755 for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) {
1757 * if we're rebuilding a read, we have to use
1758 * pages from the bio list
1760 if (rbio->read_rebuild &&
1761 (stripe == faila || stripe == failb)) {
1762 page = page_in_rbio(rbio, stripe, pagenr, 0);
1764 page = rbio_stripe_page(rbio, stripe, pagenr);
1766 pointers[stripe] = kmap(page);
1769 /* all raid6 handling here */
1770 if (rbio->raid_map[rbio->bbio->num_stripes - 1] ==
1774 * single failure, rebuild from parity raid5
1778 if (faila == rbio->nr_data) {
1780 * Just the P stripe has failed, without
1781 * a bad data or Q stripe.
1782 * TODO, we should redo the xor here.
1788 * a single failure in raid6 is rebuilt
1789 * in the pstripe code below
1794 /* make sure our ps and qs are in order */
1795 if (faila > failb) {
1801 /* if the q stripe is failed, do a pstripe reconstruction
1803 * If both the q stripe and the P stripe are failed, we're
1804 * here due to a crc mismatch and we can't give them the
1807 if (rbio->raid_map[failb] == RAID6_Q_STRIPE) {
1808 if (rbio->raid_map[faila] == RAID5_P_STRIPE) {
1813 * otherwise we have one bad data stripe and
1814 * a good P stripe. raid5!
1819 if (rbio->raid_map[failb] == RAID5_P_STRIPE) {
1820 raid6_datap_recov(rbio->bbio->num_stripes,
1821 PAGE_SIZE, faila, pointers);
1823 raid6_2data_recov(rbio->bbio->num_stripes,
1824 PAGE_SIZE, faila, failb,
1830 /* rebuild from P stripe here (raid5 or raid6) */
1831 BUG_ON(failb != -1);
1833 /* Copy parity block into failed block to start with */
1834 memcpy(pointers[faila],
1835 pointers[rbio->nr_data],
1838 /* rearrange the pointer array */
1839 p = pointers[faila];
1840 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1841 pointers[stripe] = pointers[stripe + 1];
1842 pointers[rbio->nr_data - 1] = p;
1844 /* xor in the rest */
1845 run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE);
1847 /* if we're doing this rebuild as part of an rmw, go through
1848 * and set all of our private rbio pages in the
1849 * failed stripes as uptodate. This way finish_rmw will
1850 * know they can be trusted. If this was a read reconstruction,
1851 * other endio functions will fiddle the uptodate bits
1853 if (!rbio->read_rebuild) {
1854 for (i = 0; i < nr_pages; i++) {
1856 page = rbio_stripe_page(rbio, faila, i);
1857 SetPageUptodate(page);
1860 page = rbio_stripe_page(rbio, failb, i);
1861 SetPageUptodate(page);
1865 for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) {
1867 * if we're rebuilding a read, we have to use
1868 * pages from the bio list
1870 if (rbio->read_rebuild &&
1871 (stripe == faila || stripe == failb)) {
1872 page = page_in_rbio(rbio, stripe, pagenr, 0);
1874 page = rbio_stripe_page(rbio, stripe, pagenr);
1886 if (rbio->read_rebuild) {
1888 cache_rbio_pages(rbio);
1890 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1892 rbio_orig_end_io(rbio, err, err == 0);
1893 } else if (err == 0) {
1898 rbio_orig_end_io(rbio, err, 0);
1903 * This is called only for stripes we've read from disk to
1904 * reconstruct the parity.
1906 static void raid_recover_end_io(struct bio *bio, int err)
1908 struct btrfs_raid_bio *rbio = bio->bi_private;
1911 * we only read stripe pages off the disk, set them
1912 * up to date if there were no errors
1915 fail_bio_stripe(rbio, bio);
1917 set_bio_pages_uptodate(bio);
1920 if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
1923 if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
1924 rbio_orig_end_io(rbio, -EIO, 0);
1926 __raid_recover_end_io(rbio);
1930 * reads everything we need off the disk to reconstruct
1931 * the parity. endio handlers trigger final reconstruction
1932 * when the IO is done.
1934 * This is used both for reads from the higher layers and for
1935 * parity construction required to finish a rmw cycle.
1937 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
1939 int bios_to_read = 0;
1940 struct btrfs_bio *bbio = rbio->bbio;
1941 struct bio_list bio_list;
1943 int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1948 bio_list_init(&bio_list);
1950 ret = alloc_rbio_pages(rbio);
1954 atomic_set(&rbio->bbio->error, 0);
1957 * read everything that hasn't failed. Thanks to the
1958 * stripe cache, it is possible that some or all of these
1959 * pages are going to be uptodate.
1961 for (stripe = 0; stripe < bbio->num_stripes; stripe++) {
1962 if (rbio->faila == stripe ||
1963 rbio->failb == stripe)
1966 for (pagenr = 0; pagenr < nr_pages; pagenr++) {
1970 * the rmw code may have already read this
1973 p = rbio_stripe_page(rbio, stripe, pagenr);
1974 if (PageUptodate(p))
1977 ret = rbio_add_io_page(rbio, &bio_list,
1978 rbio_stripe_page(rbio, stripe, pagenr),
1979 stripe, pagenr, rbio->stripe_len);
1985 bios_to_read = bio_list_size(&bio_list);
1986 if (!bios_to_read) {
1988 * we might have no bios to read just because the pages
1989 * were up to date, or we might have no bios to read because
1990 * the devices were gone.
1992 if (atomic_read(&rbio->bbio->error) <= rbio->bbio->max_errors) {
1993 __raid_recover_end_io(rbio);
2001 * the bbio may be freed once we submit the last bio. Make sure
2002 * not to touch it after that
2004 atomic_set(&bbio->stripes_pending, bios_to_read);
2006 bio = bio_list_pop(&bio_list);
2010 bio->bi_private = rbio;
2011 bio->bi_end_io = raid_recover_end_io;
2013 btrfs_bio_wq_end_io(rbio->fs_info, bio,
2014 BTRFS_WQ_ENDIO_RAID56);
2016 BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
2017 submit_bio(READ, bio);
2023 if (rbio->read_rebuild)
2024 rbio_orig_end_io(rbio, -EIO, 0);
2029 * the main entry point for reads from the higher layers. This
2030 * is really only called when the normal read path had a failure,
2031 * so we assume the bio they send down corresponds to a failed part
2034 int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
2035 struct btrfs_bio *bbio, u64 *raid_map,
2036 u64 stripe_len, int mirror_num)
2038 struct btrfs_raid_bio *rbio;
2041 rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
2043 return PTR_ERR(rbio);
2045 rbio->read_rebuild = 1;
2046 bio_list_add(&rbio->bio_list, bio);
2047 rbio->bio_list_bytes = bio->bi_iter.bi_size;
2049 rbio->faila = find_logical_bio_stripe(rbio, bio);
2050 if (rbio->faila == -1) {
2059 * reconstruct from the q stripe if they are
2060 * asking for mirror 3
2062 if (mirror_num == 3)
2063 rbio->failb = bbio->num_stripes - 2;
2065 ret = lock_stripe_add(rbio);
2068 * __raid56_parity_recover will end the bio with
2069 * any errors it hits. We don't want to return
2070 * its error value up the stack because our caller
2071 * will end up calling bio_endio with any nonzero
2075 __raid56_parity_recover(rbio);
2077 * our rbio has been added to the list of
2078 * rbios that will be handled after the
2079 * currently lock owner is done
2085 static void rmw_work(struct btrfs_work *work)
2087 struct btrfs_raid_bio *rbio;
2089 rbio = container_of(work, struct btrfs_raid_bio, work);
2090 raid56_rmw_stripe(rbio);
2093 static void read_rebuild_work(struct btrfs_work *work)
2095 struct btrfs_raid_bio *rbio;
2097 rbio = container_of(work, struct btrfs_raid_bio, work);
2098 __raid56_parity_recover(rbio);