btrfs: split btrfs_alloc_ordered_extent to allocation and insertion helpers
[platform/kernel/linux-starfive.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "super.h"
23
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25
26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28         if (entry->file_offset + entry->num_bytes < entry->file_offset)
29                 return (u64)-1;
30         return entry->file_offset + entry->num_bytes;
31 }
32
33 /* returns NULL if the insertion worked, or it returns the node it did find
34  * in the tree
35  */
36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37                                    struct rb_node *node)
38 {
39         struct rb_node **p = &root->rb_node;
40         struct rb_node *parent = NULL;
41         struct btrfs_ordered_extent *entry;
42
43         while (*p) {
44                 parent = *p;
45                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46
47                 if (file_offset < entry->file_offset)
48                         p = &(*p)->rb_left;
49                 else if (file_offset >= entry_end(entry))
50                         p = &(*p)->rb_right;
51                 else
52                         return parent;
53         }
54
55         rb_link_node(node, parent, p);
56         rb_insert_color(node, root);
57         return NULL;
58 }
59
60 /*
61  * look for a given offset in the tree, and if it can't be found return the
62  * first lesser offset
63  */
64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65                                      struct rb_node **prev_ret)
66 {
67         struct rb_node *n = root->rb_node;
68         struct rb_node *prev = NULL;
69         struct rb_node *test;
70         struct btrfs_ordered_extent *entry;
71         struct btrfs_ordered_extent *prev_entry = NULL;
72
73         while (n) {
74                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75                 prev = n;
76                 prev_entry = entry;
77
78                 if (file_offset < entry->file_offset)
79                         n = n->rb_left;
80                 else if (file_offset >= entry_end(entry))
81                         n = n->rb_right;
82                 else
83                         return n;
84         }
85         if (!prev_ret)
86                 return NULL;
87
88         while (prev && file_offset >= entry_end(prev_entry)) {
89                 test = rb_next(prev);
90                 if (!test)
91                         break;
92                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93                                       rb_node);
94                 if (file_offset < entry_end(prev_entry))
95                         break;
96
97                 prev = test;
98         }
99         if (prev)
100                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101                                       rb_node);
102         while (prev && file_offset < entry_end(prev_entry)) {
103                 test = rb_prev(prev);
104                 if (!test)
105                         break;
106                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107                                       rb_node);
108                 prev = test;
109         }
110         *prev_ret = prev;
111         return NULL;
112 }
113
114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115                           u64 len)
116 {
117         if (file_offset + len <= entry->file_offset ||
118             entry->file_offset + entry->num_bytes <= file_offset)
119                 return 0;
120         return 1;
121 }
122
123 /*
124  * look find the first ordered struct that has this offset, otherwise
125  * the first one less than this offset
126  */
127 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
128                                           u64 file_offset)
129 {
130         struct rb_root *root = &tree->tree;
131         struct rb_node *prev = NULL;
132         struct rb_node *ret;
133         struct btrfs_ordered_extent *entry;
134
135         if (tree->last) {
136                 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
137                                  rb_node);
138                 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
139                         return tree->last;
140         }
141         ret = __tree_search(root, file_offset, &prev);
142         if (!ret)
143                 ret = prev;
144         if (ret)
145                 tree->last = ret;
146         return ret;
147 }
148
149 static struct btrfs_ordered_extent *alloc_ordered_extent(
150                         struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
151                         u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
152                         u64 offset, unsigned long flags, int compress_type)
153 {
154         struct btrfs_ordered_extent *entry;
155         int ret;
156
157         if (flags &
158             ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
159                 /* For nocow write, we can release the qgroup rsv right now */
160                 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
161                 if (ret < 0)
162                         return ERR_PTR(ret);
163         } else {
164                 /*
165                  * The ordered extent has reserved qgroup space, release now
166                  * and pass the reserved number for qgroup_record to free.
167                  */
168                 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
169                 if (ret < 0)
170                         return ERR_PTR(ret);
171         }
172         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
173         if (!entry)
174                 return ERR_PTR(-ENOMEM);
175
176         entry->file_offset = file_offset;
177         entry->num_bytes = num_bytes;
178         entry->ram_bytes = ram_bytes;
179         entry->disk_bytenr = disk_bytenr;
180         entry->disk_num_bytes = disk_num_bytes;
181         entry->offset = offset;
182         entry->bytes_left = num_bytes;
183         entry->inode = igrab(&inode->vfs_inode);
184         entry->compress_type = compress_type;
185         entry->truncated_len = (u64)-1;
186         entry->qgroup_rsv = ret;
187         entry->flags = flags;
188         refcount_set(&entry->refs, 1);
189         init_waitqueue_head(&entry->wait);
190         INIT_LIST_HEAD(&entry->list);
191         INIT_LIST_HEAD(&entry->log_list);
192         INIT_LIST_HEAD(&entry->root_extent_list);
193         INIT_LIST_HEAD(&entry->work_list);
194         init_completion(&entry->completion);
195
196         /*
197          * We don't need the count_max_extents here, we can assume that all of
198          * that work has been done at higher layers, so this is truly the
199          * smallest the extent is going to get.
200          */
201         spin_lock(&inode->lock);
202         btrfs_mod_outstanding_extents(inode, 1);
203         spin_unlock(&inode->lock);
204
205         return entry;
206 }
207
208 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
209 {
210         struct btrfs_inode *inode = BTRFS_I(entry->inode);
211         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
212         struct btrfs_root *root = inode->root;
213         struct btrfs_fs_info *fs_info = root->fs_info;
214         struct rb_node *node;
215
216         trace_btrfs_ordered_extent_add(inode, entry);
217
218         percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
219                                  fs_info->delalloc_batch);
220
221         /* One ref for the tree. */
222         refcount_inc(&entry->refs);
223
224         spin_lock_irq(&tree->lock);
225         node = tree_insert(&tree->tree, entry->file_offset, &entry->rb_node);
226         if (node)
227                 btrfs_panic(fs_info, -EEXIST,
228                                 "inconsistency in ordered tree at offset %llu",
229                                 entry->file_offset);
230         spin_unlock_irq(&tree->lock);
231
232         spin_lock(&root->ordered_extent_lock);
233         list_add_tail(&entry->root_extent_list,
234                       &root->ordered_extents);
235         root->nr_ordered_extents++;
236         if (root->nr_ordered_extents == 1) {
237                 spin_lock(&fs_info->ordered_root_lock);
238                 BUG_ON(!list_empty(&root->ordered_root));
239                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
240                 spin_unlock(&fs_info->ordered_root_lock);
241         }
242         spin_unlock(&root->ordered_extent_lock);
243 }
244
245 /*
246  * Add an ordered extent to the per-inode tree.
247  *
248  * @inode:           Inode that this extent is for.
249  * @file_offset:     Logical offset in file where the extent starts.
250  * @num_bytes:       Logical length of extent in file.
251  * @ram_bytes:       Full length of unencoded data.
252  * @disk_bytenr:     Offset of extent on disk.
253  * @disk_num_bytes:  Size of extent on disk.
254  * @offset:          Offset into unencoded data where file data starts.
255  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
256  * @compress_type:   Compression algorithm used for data.
257  *
258  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
259  * tree is given a single reference on the ordered extent that was inserted, and
260  * the returned pointer is given a second reference.
261  *
262  * Return: the new ordered extent or error pointer.
263  */
264 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
265                         struct btrfs_inode *inode, u64 file_offset,
266                         u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
267                         u64 disk_num_bytes, u64 offset, unsigned long flags,
268                         int compress_type)
269 {
270         struct btrfs_ordered_extent *entry;
271
272         ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
273
274         entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
275                                      disk_bytenr, disk_num_bytes, offset, flags,
276                                      compress_type);
277         if (!IS_ERR(entry))
278                 insert_ordered_extent(entry);
279         return entry;
280 }
281
282 /*
283  * Add a new btrfs_ordered_extent for the range, but drop the reference instead
284  * of returning it to the caller.
285  */
286 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
287                              u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
288                              u64 disk_num_bytes, u64 offset, unsigned long flags,
289                              int compress_type)
290 {
291         struct btrfs_ordered_extent *ordered;
292
293         ordered = btrfs_alloc_ordered_extent(inode, file_offset, num_bytes,
294                                              ram_bytes, disk_bytenr,
295                                              disk_num_bytes, offset, flags,
296                                              compress_type);
297
298         if (IS_ERR(ordered))
299                 return PTR_ERR(ordered);
300         btrfs_put_ordered_extent(ordered);
301
302         return 0;
303 }
304
305 /*
306  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
307  * when an ordered extent is finished.  If the list covers more than one
308  * ordered extent, it is split across multiples.
309  */
310 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
311                            struct btrfs_ordered_sum *sum)
312 {
313         struct btrfs_ordered_inode_tree *tree;
314
315         tree = &BTRFS_I(entry->inode)->ordered_tree;
316         spin_lock_irq(&tree->lock);
317         list_add_tail(&sum->list, &entry->list);
318         spin_unlock_irq(&tree->lock);
319 }
320
321 static void finish_ordered_fn(struct btrfs_work *work)
322 {
323         struct btrfs_ordered_extent *ordered_extent;
324
325         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
326         btrfs_finish_ordered_io(ordered_extent);
327 }
328
329 /*
330  * Mark all ordered extents io inside the specified range finished.
331  *
332  * @page:        The involved page for the operation.
333  *               For uncompressed buffered IO, the page status also needs to be
334  *               updated to indicate whether the pending ordered io is finished.
335  *               Can be NULL for direct IO and compressed write.
336  *               For these cases, callers are ensured they won't execute the
337  *               endio function twice.
338  *
339  * This function is called for endio, thus the range must have ordered
340  * extent(s) covering it.
341  */
342 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
343                                     struct page *page, u64 file_offset,
344                                     u64 num_bytes, bool uptodate)
345 {
346         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
347         struct btrfs_fs_info *fs_info = inode->root->fs_info;
348         struct btrfs_workqueue *wq;
349         struct rb_node *node;
350         struct btrfs_ordered_extent *entry = NULL;
351         unsigned long flags;
352         u64 cur = file_offset;
353
354         if (btrfs_is_free_space_inode(inode))
355                 wq = fs_info->endio_freespace_worker;
356         else
357                 wq = fs_info->endio_write_workers;
358
359         if (page)
360                 ASSERT(page->mapping && page_offset(page) <= file_offset &&
361                        file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
362
363         spin_lock_irqsave(&tree->lock, flags);
364         while (cur < file_offset + num_bytes) {
365                 u64 entry_end;
366                 u64 end;
367                 u32 len;
368
369                 node = tree_search(tree, cur);
370                 /* No ordered extents at all */
371                 if (!node)
372                         break;
373
374                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
375                 entry_end = entry->file_offset + entry->num_bytes;
376                 /*
377                  * |<-- OE --->|  |
378                  *                cur
379                  * Go to next OE.
380                  */
381                 if (cur >= entry_end) {
382                         node = rb_next(node);
383                         /* No more ordered extents, exit */
384                         if (!node)
385                                 break;
386                         entry = rb_entry(node, struct btrfs_ordered_extent,
387                                          rb_node);
388
389                         /* Go to next ordered extent and continue */
390                         cur = entry->file_offset;
391                         continue;
392                 }
393                 /*
394                  * |    |<--- OE --->|
395                  * cur
396                  * Go to the start of OE.
397                  */
398                 if (cur < entry->file_offset) {
399                         cur = entry->file_offset;
400                         continue;
401                 }
402
403                 /*
404                  * Now we are definitely inside one ordered extent.
405                  *
406                  * |<--- OE --->|
407                  *      |
408                  *      cur
409                  */
410                 end = min(entry->file_offset + entry->num_bytes,
411                           file_offset + num_bytes) - 1;
412                 ASSERT(end + 1 - cur < U32_MAX);
413                 len = end + 1 - cur;
414
415                 if (page) {
416                         /*
417                          * Ordered (Private2) bit indicates whether we still
418                          * have pending io unfinished for the ordered extent.
419                          *
420                          * If there's no such bit, we need to skip to next range.
421                          */
422                         if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
423                                 cur += len;
424                                 continue;
425                         }
426                         btrfs_page_clear_ordered(fs_info, page, cur, len);
427                 }
428
429                 /* Now we're fine to update the accounting */
430                 if (unlikely(len > entry->bytes_left)) {
431                         WARN_ON(1);
432                         btrfs_crit(fs_info,
433 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
434                                    inode->root->root_key.objectid,
435                                    btrfs_ino(inode),
436                                    entry->file_offset,
437                                    entry->num_bytes,
438                                    len, entry->bytes_left);
439                         entry->bytes_left = 0;
440                 } else {
441                         entry->bytes_left -= len;
442                 }
443
444                 if (!uptodate)
445                         set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
446
447                 /*
448                  * All the IO of the ordered extent is finished, we need to queue
449                  * the finish_func to be executed.
450                  */
451                 if (entry->bytes_left == 0) {
452                         set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
453                         cond_wake_up(&entry->wait);
454                         refcount_inc(&entry->refs);
455                         trace_btrfs_ordered_extent_mark_finished(inode, entry);
456                         spin_unlock_irqrestore(&tree->lock, flags);
457                         btrfs_init_work(&entry->work, finish_ordered_fn, NULL, NULL);
458                         btrfs_queue_work(wq, &entry->work);
459                         spin_lock_irqsave(&tree->lock, flags);
460                 }
461                 cur += len;
462         }
463         spin_unlock_irqrestore(&tree->lock, flags);
464 }
465
466 /*
467  * Finish IO for one ordered extent across a given range.  The range can only
468  * contain one ordered extent.
469  *
470  * @cached:      The cached ordered extent. If not NULL, we can skip the tree
471  *               search and use the ordered extent directly.
472  *               Will be also used to store the finished ordered extent.
473  * @file_offset: File offset for the finished IO
474  * @io_size:     Length of the finish IO range
475  *
476  * Return true if the ordered extent is finished in the range, and update
477  * @cached.
478  * Return false otherwise.
479  *
480  * NOTE: The range can NOT cross multiple ordered extents.
481  * Thus caller should ensure the range doesn't cross ordered extents.
482  */
483 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
484                                     struct btrfs_ordered_extent **cached,
485                                     u64 file_offset, u64 io_size)
486 {
487         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
488         struct rb_node *node;
489         struct btrfs_ordered_extent *entry = NULL;
490         unsigned long flags;
491         bool finished = false;
492
493         spin_lock_irqsave(&tree->lock, flags);
494         if (cached && *cached) {
495                 entry = *cached;
496                 goto have_entry;
497         }
498
499         node = tree_search(tree, file_offset);
500         if (!node)
501                 goto out;
502
503         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
504 have_entry:
505         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
506                 goto out;
507
508         if (io_size > entry->bytes_left)
509                 btrfs_crit(inode->root->fs_info,
510                            "bad ordered accounting left %llu size %llu",
511                        entry->bytes_left, io_size);
512
513         entry->bytes_left -= io_size;
514
515         if (entry->bytes_left == 0) {
516                 /*
517                  * Ensure only one caller can set the flag and finished_ret
518                  * accordingly
519                  */
520                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
521                 /* test_and_set_bit implies a barrier */
522                 cond_wake_up_nomb(&entry->wait);
523         }
524 out:
525         if (finished && cached && entry) {
526                 *cached = entry;
527                 refcount_inc(&entry->refs);
528                 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
529         }
530         spin_unlock_irqrestore(&tree->lock, flags);
531         return finished;
532 }
533
534 /*
535  * used to drop a reference on an ordered extent.  This will free
536  * the extent if the last reference is dropped
537  */
538 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
539 {
540         struct list_head *cur;
541         struct btrfs_ordered_sum *sum;
542
543         trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
544
545         if (refcount_dec_and_test(&entry->refs)) {
546                 ASSERT(list_empty(&entry->root_extent_list));
547                 ASSERT(list_empty(&entry->log_list));
548                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
549                 if (entry->inode)
550                         btrfs_add_delayed_iput(BTRFS_I(entry->inode));
551                 while (!list_empty(&entry->list)) {
552                         cur = entry->list.next;
553                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
554                         list_del(&sum->list);
555                         kvfree(sum);
556                 }
557                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
558         }
559 }
560
561 /*
562  * remove an ordered extent from the tree.  No references are dropped
563  * and waiters are woken up.
564  */
565 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
566                                  struct btrfs_ordered_extent *entry)
567 {
568         struct btrfs_ordered_inode_tree *tree;
569         struct btrfs_root *root = btrfs_inode->root;
570         struct btrfs_fs_info *fs_info = root->fs_info;
571         struct rb_node *node;
572         bool pending;
573         bool freespace_inode;
574
575         /*
576          * If this is a free space inode the thread has not acquired the ordered
577          * extents lockdep map.
578          */
579         freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
580
581         btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
582         /* This is paired with btrfs_add_ordered_extent. */
583         spin_lock(&btrfs_inode->lock);
584         btrfs_mod_outstanding_extents(btrfs_inode, -1);
585         spin_unlock(&btrfs_inode->lock);
586         if (root != fs_info->tree_root) {
587                 u64 release;
588
589                 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
590                         release = entry->disk_num_bytes;
591                 else
592                         release = entry->num_bytes;
593                 btrfs_delalloc_release_metadata(btrfs_inode, release, false);
594         }
595
596         percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
597                                  fs_info->delalloc_batch);
598
599         tree = &btrfs_inode->ordered_tree;
600         spin_lock_irq(&tree->lock);
601         node = &entry->rb_node;
602         rb_erase(node, &tree->tree);
603         RB_CLEAR_NODE(node);
604         if (tree->last == node)
605                 tree->last = NULL;
606         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
607         pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
608         spin_unlock_irq(&tree->lock);
609
610         /*
611          * The current running transaction is waiting on us, we need to let it
612          * know that we're complete and wake it up.
613          */
614         if (pending) {
615                 struct btrfs_transaction *trans;
616
617                 /*
618                  * The checks for trans are just a formality, it should be set,
619                  * but if it isn't we don't want to deref/assert under the spin
620                  * lock, so be nice and check if trans is set, but ASSERT() so
621                  * if it isn't set a developer will notice.
622                  */
623                 spin_lock(&fs_info->trans_lock);
624                 trans = fs_info->running_transaction;
625                 if (trans)
626                         refcount_inc(&trans->use_count);
627                 spin_unlock(&fs_info->trans_lock);
628
629                 ASSERT(trans);
630                 if (trans) {
631                         if (atomic_dec_and_test(&trans->pending_ordered))
632                                 wake_up(&trans->pending_wait);
633                         btrfs_put_transaction(trans);
634                 }
635         }
636
637         btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
638
639         spin_lock(&root->ordered_extent_lock);
640         list_del_init(&entry->root_extent_list);
641         root->nr_ordered_extents--;
642
643         trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
644
645         if (!root->nr_ordered_extents) {
646                 spin_lock(&fs_info->ordered_root_lock);
647                 BUG_ON(list_empty(&root->ordered_root));
648                 list_del_init(&root->ordered_root);
649                 spin_unlock(&fs_info->ordered_root_lock);
650         }
651         spin_unlock(&root->ordered_extent_lock);
652         wake_up(&entry->wait);
653         if (!freespace_inode)
654                 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
655 }
656
657 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
658 {
659         struct btrfs_ordered_extent *ordered;
660
661         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
662         btrfs_start_ordered_extent(ordered);
663         complete(&ordered->completion);
664 }
665
666 /*
667  * wait for all the ordered extents in a root.  This is done when balancing
668  * space between drives.
669  */
670 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
671                                const u64 range_start, const u64 range_len)
672 {
673         struct btrfs_fs_info *fs_info = root->fs_info;
674         LIST_HEAD(splice);
675         LIST_HEAD(skipped);
676         LIST_HEAD(works);
677         struct btrfs_ordered_extent *ordered, *next;
678         u64 count = 0;
679         const u64 range_end = range_start + range_len;
680
681         mutex_lock(&root->ordered_extent_mutex);
682         spin_lock(&root->ordered_extent_lock);
683         list_splice_init(&root->ordered_extents, &splice);
684         while (!list_empty(&splice) && nr) {
685                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
686                                            root_extent_list);
687
688                 if (range_end <= ordered->disk_bytenr ||
689                     ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
690                         list_move_tail(&ordered->root_extent_list, &skipped);
691                         cond_resched_lock(&root->ordered_extent_lock);
692                         continue;
693                 }
694
695                 list_move_tail(&ordered->root_extent_list,
696                                &root->ordered_extents);
697                 refcount_inc(&ordered->refs);
698                 spin_unlock(&root->ordered_extent_lock);
699
700                 btrfs_init_work(&ordered->flush_work,
701                                 btrfs_run_ordered_extent_work, NULL, NULL);
702                 list_add_tail(&ordered->work_list, &works);
703                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
704
705                 cond_resched();
706                 spin_lock(&root->ordered_extent_lock);
707                 if (nr != U64_MAX)
708                         nr--;
709                 count++;
710         }
711         list_splice_tail(&skipped, &root->ordered_extents);
712         list_splice_tail(&splice, &root->ordered_extents);
713         spin_unlock(&root->ordered_extent_lock);
714
715         list_for_each_entry_safe(ordered, next, &works, work_list) {
716                 list_del_init(&ordered->work_list);
717                 wait_for_completion(&ordered->completion);
718                 btrfs_put_ordered_extent(ordered);
719                 cond_resched();
720         }
721         mutex_unlock(&root->ordered_extent_mutex);
722
723         return count;
724 }
725
726 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
727                              const u64 range_start, const u64 range_len)
728 {
729         struct btrfs_root *root;
730         struct list_head splice;
731         u64 done;
732
733         INIT_LIST_HEAD(&splice);
734
735         mutex_lock(&fs_info->ordered_operations_mutex);
736         spin_lock(&fs_info->ordered_root_lock);
737         list_splice_init(&fs_info->ordered_roots, &splice);
738         while (!list_empty(&splice) && nr) {
739                 root = list_first_entry(&splice, struct btrfs_root,
740                                         ordered_root);
741                 root = btrfs_grab_root(root);
742                 BUG_ON(!root);
743                 list_move_tail(&root->ordered_root,
744                                &fs_info->ordered_roots);
745                 spin_unlock(&fs_info->ordered_root_lock);
746
747                 done = btrfs_wait_ordered_extents(root, nr,
748                                                   range_start, range_len);
749                 btrfs_put_root(root);
750
751                 spin_lock(&fs_info->ordered_root_lock);
752                 if (nr != U64_MAX) {
753                         nr -= done;
754                 }
755         }
756         list_splice_tail(&splice, &fs_info->ordered_roots);
757         spin_unlock(&fs_info->ordered_root_lock);
758         mutex_unlock(&fs_info->ordered_operations_mutex);
759 }
760
761 /*
762  * Start IO and wait for a given ordered extent to finish.
763  *
764  * Wait on page writeback for all the pages in the extent and the IO completion
765  * code to insert metadata into the btree corresponding to the extent.
766  */
767 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
768 {
769         u64 start = entry->file_offset;
770         u64 end = start + entry->num_bytes - 1;
771         struct btrfs_inode *inode = BTRFS_I(entry->inode);
772         bool freespace_inode;
773
774         trace_btrfs_ordered_extent_start(inode, entry);
775
776         /*
777          * If this is a free space inode do not take the ordered extents lockdep
778          * map.
779          */
780         freespace_inode = btrfs_is_free_space_inode(inode);
781
782         /*
783          * pages in the range can be dirty, clean or writeback.  We
784          * start IO on any dirty ones so the wait doesn't stall waiting
785          * for the flusher thread to find them
786          */
787         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
788                 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
789
790         if (!freespace_inode)
791                 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
792         wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
793 }
794
795 /*
796  * Used to wait on ordered extents across a large range of bytes.
797  */
798 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
799 {
800         int ret = 0;
801         int ret_wb = 0;
802         u64 end;
803         u64 orig_end;
804         struct btrfs_ordered_extent *ordered;
805
806         if (start + len < start) {
807                 orig_end = OFFSET_MAX;
808         } else {
809                 orig_end = start + len - 1;
810                 if (orig_end > OFFSET_MAX)
811                         orig_end = OFFSET_MAX;
812         }
813
814         /* start IO across the range first to instantiate any delalloc
815          * extents
816          */
817         ret = btrfs_fdatawrite_range(inode, start, orig_end);
818         if (ret)
819                 return ret;
820
821         /*
822          * If we have a writeback error don't return immediately. Wait first
823          * for any ordered extents that haven't completed yet. This is to make
824          * sure no one can dirty the same page ranges and call writepages()
825          * before the ordered extents complete - to avoid failures (-EEXIST)
826          * when adding the new ordered extents to the ordered tree.
827          */
828         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
829
830         end = orig_end;
831         while (1) {
832                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
833                 if (!ordered)
834                         break;
835                 if (ordered->file_offset > orig_end) {
836                         btrfs_put_ordered_extent(ordered);
837                         break;
838                 }
839                 if (ordered->file_offset + ordered->num_bytes <= start) {
840                         btrfs_put_ordered_extent(ordered);
841                         break;
842                 }
843                 btrfs_start_ordered_extent(ordered);
844                 end = ordered->file_offset;
845                 /*
846                  * If the ordered extent had an error save the error but don't
847                  * exit without waiting first for all other ordered extents in
848                  * the range to complete.
849                  */
850                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
851                         ret = -EIO;
852                 btrfs_put_ordered_extent(ordered);
853                 if (end == 0 || end == start)
854                         break;
855                 end--;
856         }
857         return ret_wb ? ret_wb : ret;
858 }
859
860 /*
861  * find an ordered extent corresponding to file_offset.  return NULL if
862  * nothing is found, otherwise take a reference on the extent and return it
863  */
864 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
865                                                          u64 file_offset)
866 {
867         struct btrfs_ordered_inode_tree *tree;
868         struct rb_node *node;
869         struct btrfs_ordered_extent *entry = NULL;
870         unsigned long flags;
871
872         tree = &inode->ordered_tree;
873         spin_lock_irqsave(&tree->lock, flags);
874         node = tree_search(tree, file_offset);
875         if (!node)
876                 goto out;
877
878         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
879         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
880                 entry = NULL;
881         if (entry) {
882                 refcount_inc(&entry->refs);
883                 trace_btrfs_ordered_extent_lookup(inode, entry);
884         }
885 out:
886         spin_unlock_irqrestore(&tree->lock, flags);
887         return entry;
888 }
889
890 /* Since the DIO code tries to lock a wide area we need to look for any ordered
891  * extents that exist in the range, rather than just the start of the range.
892  */
893 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
894                 struct btrfs_inode *inode, u64 file_offset, u64 len)
895 {
896         struct btrfs_ordered_inode_tree *tree;
897         struct rb_node *node;
898         struct btrfs_ordered_extent *entry = NULL;
899
900         tree = &inode->ordered_tree;
901         spin_lock_irq(&tree->lock);
902         node = tree_search(tree, file_offset);
903         if (!node) {
904                 node = tree_search(tree, file_offset + len);
905                 if (!node)
906                         goto out;
907         }
908
909         while (1) {
910                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
911                 if (range_overlaps(entry, file_offset, len))
912                         break;
913
914                 if (entry->file_offset >= file_offset + len) {
915                         entry = NULL;
916                         break;
917                 }
918                 entry = NULL;
919                 node = rb_next(node);
920                 if (!node)
921                         break;
922         }
923 out:
924         if (entry) {
925                 refcount_inc(&entry->refs);
926                 trace_btrfs_ordered_extent_lookup_range(inode, entry);
927         }
928         spin_unlock_irq(&tree->lock);
929         return entry;
930 }
931
932 /*
933  * Adds all ordered extents to the given list. The list ends up sorted by the
934  * file_offset of the ordered extents.
935  */
936 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
937                                            struct list_head *list)
938 {
939         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
940         struct rb_node *n;
941
942         ASSERT(inode_is_locked(&inode->vfs_inode));
943
944         spin_lock_irq(&tree->lock);
945         for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
946                 struct btrfs_ordered_extent *ordered;
947
948                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
949
950                 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
951                         continue;
952
953                 ASSERT(list_empty(&ordered->log_list));
954                 list_add_tail(&ordered->log_list, list);
955                 refcount_inc(&ordered->refs);
956                 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
957         }
958         spin_unlock_irq(&tree->lock);
959 }
960
961 /*
962  * lookup and return any extent before 'file_offset'.  NULL is returned
963  * if none is found
964  */
965 struct btrfs_ordered_extent *
966 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
967 {
968         struct btrfs_ordered_inode_tree *tree;
969         struct rb_node *node;
970         struct btrfs_ordered_extent *entry = NULL;
971
972         tree = &inode->ordered_tree;
973         spin_lock_irq(&tree->lock);
974         node = tree_search(tree, file_offset);
975         if (!node)
976                 goto out;
977
978         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
979         refcount_inc(&entry->refs);
980         trace_btrfs_ordered_extent_lookup_first(inode, entry);
981 out:
982         spin_unlock_irq(&tree->lock);
983         return entry;
984 }
985
986 /*
987  * Lookup the first ordered extent that overlaps the range
988  * [@file_offset, @file_offset + @len).
989  *
990  * The difference between this and btrfs_lookup_first_ordered_extent() is
991  * that this one won't return any ordered extent that does not overlap the range.
992  * And the difference against btrfs_lookup_ordered_extent() is, this function
993  * ensures the first ordered extent gets returned.
994  */
995 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
996                         struct btrfs_inode *inode, u64 file_offset, u64 len)
997 {
998         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
999         struct rb_node *node;
1000         struct rb_node *cur;
1001         struct rb_node *prev;
1002         struct rb_node *next;
1003         struct btrfs_ordered_extent *entry = NULL;
1004
1005         spin_lock_irq(&tree->lock);
1006         node = tree->tree.rb_node;
1007         /*
1008          * Here we don't want to use tree_search() which will use tree->last
1009          * and screw up the search order.
1010          * And __tree_search() can't return the adjacent ordered extents
1011          * either, thus here we do our own search.
1012          */
1013         while (node) {
1014                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1015
1016                 if (file_offset < entry->file_offset) {
1017                         node = node->rb_left;
1018                 } else if (file_offset >= entry_end(entry)) {
1019                         node = node->rb_right;
1020                 } else {
1021                         /*
1022                          * Direct hit, got an ordered extent that starts at
1023                          * @file_offset
1024                          */
1025                         goto out;
1026                 }
1027         }
1028         if (!entry) {
1029                 /* Empty tree */
1030                 goto out;
1031         }
1032
1033         cur = &entry->rb_node;
1034         /* We got an entry around @file_offset, check adjacent entries */
1035         if (entry->file_offset < file_offset) {
1036                 prev = cur;
1037                 next = rb_next(cur);
1038         } else {
1039                 prev = rb_prev(cur);
1040                 next = cur;
1041         }
1042         if (prev) {
1043                 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1044                 if (range_overlaps(entry, file_offset, len))
1045                         goto out;
1046         }
1047         if (next) {
1048                 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1049                 if (range_overlaps(entry, file_offset, len))
1050                         goto out;
1051         }
1052         /* No ordered extent in the range */
1053         entry = NULL;
1054 out:
1055         if (entry) {
1056                 refcount_inc(&entry->refs);
1057                 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1058         }
1059
1060         spin_unlock_irq(&tree->lock);
1061         return entry;
1062 }
1063
1064 /*
1065  * Lock the passed range and ensures all pending ordered extents in it are run
1066  * to completion.
1067  *
1068  * @inode:        Inode whose ordered tree is to be searched
1069  * @start:        Beginning of range to flush
1070  * @end:          Last byte of range to lock
1071  * @cached_state: If passed, will return the extent state responsible for the
1072  *                locked range. It's the caller's responsibility to free the
1073  *                cached state.
1074  *
1075  * Always return with the given range locked, ensuring after it's called no
1076  * order extent can be pending.
1077  */
1078 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1079                                         u64 end,
1080                                         struct extent_state **cached_state)
1081 {
1082         struct btrfs_ordered_extent *ordered;
1083         struct extent_state *cache = NULL;
1084         struct extent_state **cachedp = &cache;
1085
1086         if (cached_state)
1087                 cachedp = cached_state;
1088
1089         while (1) {
1090                 lock_extent(&inode->io_tree, start, end, cachedp);
1091                 ordered = btrfs_lookup_ordered_range(inode, start,
1092                                                      end - start + 1);
1093                 if (!ordered) {
1094                         /*
1095                          * If no external cached_state has been passed then
1096                          * decrement the extra ref taken for cachedp since we
1097                          * aren't exposing it outside of this function
1098                          */
1099                         if (!cached_state)
1100                                 refcount_dec(&cache->refs);
1101                         break;
1102                 }
1103                 unlock_extent(&inode->io_tree, start, end, cachedp);
1104                 btrfs_start_ordered_extent(ordered);
1105                 btrfs_put_ordered_extent(ordered);
1106         }
1107 }
1108
1109 /*
1110  * Lock the passed range and ensure all pending ordered extents in it are run
1111  * to completion in nowait mode.
1112  *
1113  * Return true if btrfs_lock_ordered_range does not return any extents,
1114  * otherwise false.
1115  */
1116 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1117                                   struct extent_state **cached_state)
1118 {
1119         struct btrfs_ordered_extent *ordered;
1120
1121         if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1122                 return false;
1123
1124         ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1125         if (!ordered)
1126                 return true;
1127
1128         btrfs_put_ordered_extent(ordered);
1129         unlock_extent(&inode->io_tree, start, end, cached_state);
1130
1131         return false;
1132 }
1133
1134 /* Split out a new ordered extent for this first @len bytes of @ordered. */
1135 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1136                         struct btrfs_ordered_extent *ordered, u64 len)
1137 {
1138         struct inode *inode = ordered->inode;
1139         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1140         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1141         u64 file_offset = ordered->file_offset;
1142         u64 disk_bytenr = ordered->disk_bytenr;
1143         unsigned long flags = ordered->flags & BTRFS_ORDERED_TYPE_FLAGS;
1144         struct rb_node *node;
1145
1146         trace_btrfs_ordered_extent_split(BTRFS_I(inode), ordered);
1147
1148         ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1149
1150         /*
1151          * The entire bio must be covered by the ordered extent, but we can't
1152          * reduce the original extent to a zero length either.
1153          */
1154         if (WARN_ON_ONCE(len >= ordered->num_bytes))
1155                 return ERR_PTR(-EINVAL);
1156         /* We cannot split once ordered extent is past end_bio. */
1157         if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1158                 return ERR_PTR(-EINVAL);
1159         /* We cannot split a compressed ordered extent. */
1160         if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1161                 return ERR_PTR(-EINVAL);
1162         /* Checksum list should be empty. */
1163         if (WARN_ON_ONCE(!list_empty(&ordered->list)))
1164                 return ERR_PTR(-EINVAL);
1165
1166         spin_lock_irq(&tree->lock);
1167         /* Remove from tree once */
1168         node = &ordered->rb_node;
1169         rb_erase(node, &tree->tree);
1170         RB_CLEAR_NODE(node);
1171         if (tree->last == node)
1172                 tree->last = NULL;
1173
1174         ordered->file_offset += len;
1175         ordered->disk_bytenr += len;
1176         ordered->num_bytes -= len;
1177         ordered->disk_num_bytes -= len;
1178         ordered->bytes_left -= len;
1179
1180         /* Re-insert the node */
1181         node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1182         if (node)
1183                 btrfs_panic(fs_info, -EEXIST,
1184                         "zoned: inconsistency in ordered tree at offset %llu",
1185                             ordered->file_offset);
1186
1187         spin_unlock_irq(&tree->lock);
1188
1189         /*
1190          * The splitting extent is already counted and will be added again in
1191          * btrfs_alloc_ordered_extent(). Subtract len to avoid double counting.
1192          */
1193         percpu_counter_add_batch(&fs_info->ordered_bytes, -len, fs_info->delalloc_batch);
1194
1195         return btrfs_alloc_ordered_extent(BTRFS_I(inode), file_offset, len, len,
1196                                           disk_bytenr, len, 0, flags,
1197                                           ordered->compress_type);
1198 }
1199
1200 int __init ordered_data_init(void)
1201 {
1202         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1203                                      sizeof(struct btrfs_ordered_extent), 0,
1204                                      SLAB_MEM_SPREAD,
1205                                      NULL);
1206         if (!btrfs_ordered_extent_cache)
1207                 return -ENOMEM;
1208
1209         return 0;
1210 }
1211
1212 void __cold ordered_data_exit(void)
1213 {
1214         kmem_cache_destroy(btrfs_ordered_extent_cache);
1215 }