btrfs: refactor how we finish ordered extent io for endio functions
[platform/kernel/linux-rpi.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "ctree.h"
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
15 #include "disk-io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
18 #include "qgroup.h"
19
20 static struct kmem_cache *btrfs_ordered_extent_cache;
21
22 static u64 entry_end(struct btrfs_ordered_extent *entry)
23 {
24         if (entry->file_offset + entry->num_bytes < entry->file_offset)
25                 return (u64)-1;
26         return entry->file_offset + entry->num_bytes;
27 }
28
29 /* returns NULL if the insertion worked, or it returns the node it did find
30  * in the tree
31  */
32 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
33                                    struct rb_node *node)
34 {
35         struct rb_node **p = &root->rb_node;
36         struct rb_node *parent = NULL;
37         struct btrfs_ordered_extent *entry;
38
39         while (*p) {
40                 parent = *p;
41                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
42
43                 if (file_offset < entry->file_offset)
44                         p = &(*p)->rb_left;
45                 else if (file_offset >= entry_end(entry))
46                         p = &(*p)->rb_right;
47                 else
48                         return parent;
49         }
50
51         rb_link_node(node, parent, p);
52         rb_insert_color(node, root);
53         return NULL;
54 }
55
56 /*
57  * look for a given offset in the tree, and if it can't be found return the
58  * first lesser offset
59  */
60 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
61                                      struct rb_node **prev_ret)
62 {
63         struct rb_node *n = root->rb_node;
64         struct rb_node *prev = NULL;
65         struct rb_node *test;
66         struct btrfs_ordered_extent *entry;
67         struct btrfs_ordered_extent *prev_entry = NULL;
68
69         while (n) {
70                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
71                 prev = n;
72                 prev_entry = entry;
73
74                 if (file_offset < entry->file_offset)
75                         n = n->rb_left;
76                 else if (file_offset >= entry_end(entry))
77                         n = n->rb_right;
78                 else
79                         return n;
80         }
81         if (!prev_ret)
82                 return NULL;
83
84         while (prev && file_offset >= entry_end(prev_entry)) {
85                 test = rb_next(prev);
86                 if (!test)
87                         break;
88                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
89                                       rb_node);
90                 if (file_offset < entry_end(prev_entry))
91                         break;
92
93                 prev = test;
94         }
95         if (prev)
96                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
97                                       rb_node);
98         while (prev && file_offset < entry_end(prev_entry)) {
99                 test = rb_prev(prev);
100                 if (!test)
101                         break;
102                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
103                                       rb_node);
104                 prev = test;
105         }
106         *prev_ret = prev;
107         return NULL;
108 }
109
110 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
111                           u64 len)
112 {
113         if (file_offset + len <= entry->file_offset ||
114             entry->file_offset + entry->num_bytes <= file_offset)
115                 return 0;
116         return 1;
117 }
118
119 /*
120  * look find the first ordered struct that has this offset, otherwise
121  * the first one less than this offset
122  */
123 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
124                                           u64 file_offset)
125 {
126         struct rb_root *root = &tree->tree;
127         struct rb_node *prev = NULL;
128         struct rb_node *ret;
129         struct btrfs_ordered_extent *entry;
130
131         if (tree->last) {
132                 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
133                                  rb_node);
134                 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
135                         return tree->last;
136         }
137         ret = __tree_search(root, file_offset, &prev);
138         if (!ret)
139                 ret = prev;
140         if (ret)
141                 tree->last = ret;
142         return ret;
143 }
144
145 /*
146  * Allocate and add a new ordered_extent into the per-inode tree.
147  *
148  * The tree is given a single reference on the ordered extent that was
149  * inserted.
150  */
151 static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
152                                       u64 disk_bytenr, u64 num_bytes,
153                                       u64 disk_num_bytes, int type, int dio,
154                                       int compress_type)
155 {
156         struct btrfs_root *root = inode->root;
157         struct btrfs_fs_info *fs_info = root->fs_info;
158         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
159         struct rb_node *node;
160         struct btrfs_ordered_extent *entry;
161         int ret;
162
163         if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
164                 /* For nocow write, we can release the qgroup rsv right now */
165                 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
166                 if (ret < 0)
167                         return ret;
168                 ret = 0;
169         } else {
170                 /*
171                  * The ordered extent has reserved qgroup space, release now
172                  * and pass the reserved number for qgroup_record to free.
173                  */
174                 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
175                 if (ret < 0)
176                         return ret;
177         }
178         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
179         if (!entry)
180                 return -ENOMEM;
181
182         entry->file_offset = file_offset;
183         entry->disk_bytenr = disk_bytenr;
184         entry->num_bytes = num_bytes;
185         entry->disk_num_bytes = disk_num_bytes;
186         entry->bytes_left = num_bytes;
187         entry->inode = igrab(&inode->vfs_inode);
188         entry->compress_type = compress_type;
189         entry->truncated_len = (u64)-1;
190         entry->qgroup_rsv = ret;
191         entry->physical = (u64)-1;
192         entry->disk = NULL;
193         entry->partno = (u8)-1;
194
195         ASSERT(type == BTRFS_ORDERED_REGULAR ||
196                type == BTRFS_ORDERED_NOCOW ||
197                type == BTRFS_ORDERED_PREALLOC ||
198                type == BTRFS_ORDERED_COMPRESSED);
199         set_bit(type, &entry->flags);
200
201         percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
202                                  fs_info->delalloc_batch);
203
204         if (dio)
205                 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
206
207         /* one ref for the tree */
208         refcount_set(&entry->refs, 1);
209         init_waitqueue_head(&entry->wait);
210         INIT_LIST_HEAD(&entry->list);
211         INIT_LIST_HEAD(&entry->log_list);
212         INIT_LIST_HEAD(&entry->root_extent_list);
213         INIT_LIST_HEAD(&entry->work_list);
214         init_completion(&entry->completion);
215
216         trace_btrfs_ordered_extent_add(inode, entry);
217
218         spin_lock_irq(&tree->lock);
219         node = tree_insert(&tree->tree, file_offset,
220                            &entry->rb_node);
221         if (node)
222                 btrfs_panic(fs_info, -EEXIST,
223                                 "inconsistency in ordered tree at offset %llu",
224                                 file_offset);
225         spin_unlock_irq(&tree->lock);
226
227         spin_lock(&root->ordered_extent_lock);
228         list_add_tail(&entry->root_extent_list,
229                       &root->ordered_extents);
230         root->nr_ordered_extents++;
231         if (root->nr_ordered_extents == 1) {
232                 spin_lock(&fs_info->ordered_root_lock);
233                 BUG_ON(!list_empty(&root->ordered_root));
234                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
235                 spin_unlock(&fs_info->ordered_root_lock);
236         }
237         spin_unlock(&root->ordered_extent_lock);
238
239         /*
240          * We don't need the count_max_extents here, we can assume that all of
241          * that work has been done at higher layers, so this is truly the
242          * smallest the extent is going to get.
243          */
244         spin_lock(&inode->lock);
245         btrfs_mod_outstanding_extents(inode, 1);
246         spin_unlock(&inode->lock);
247
248         return 0;
249 }
250
251 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
252                              u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
253                              int type)
254 {
255         ASSERT(type == BTRFS_ORDERED_REGULAR ||
256                type == BTRFS_ORDERED_NOCOW ||
257                type == BTRFS_ORDERED_PREALLOC);
258         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
259                                           num_bytes, disk_num_bytes, type, 0,
260                                           BTRFS_COMPRESS_NONE);
261 }
262
263 int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
264                                  u64 disk_bytenr, u64 num_bytes,
265                                  u64 disk_num_bytes, int type)
266 {
267         ASSERT(type == BTRFS_ORDERED_REGULAR ||
268                type == BTRFS_ORDERED_NOCOW ||
269                type == BTRFS_ORDERED_PREALLOC);
270         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
271                                           num_bytes, disk_num_bytes, type, 1,
272                                           BTRFS_COMPRESS_NONE);
273 }
274
275 int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
276                                       u64 disk_bytenr, u64 num_bytes,
277                                       u64 disk_num_bytes, int compress_type)
278 {
279         ASSERT(compress_type != BTRFS_COMPRESS_NONE);
280         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
281                                           num_bytes, disk_num_bytes,
282                                           BTRFS_ORDERED_COMPRESSED, 0,
283                                           compress_type);
284 }
285
286 /*
287  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
288  * when an ordered extent is finished.  If the list covers more than one
289  * ordered extent, it is split across multiples.
290  */
291 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
292                            struct btrfs_ordered_sum *sum)
293 {
294         struct btrfs_ordered_inode_tree *tree;
295
296         tree = &BTRFS_I(entry->inode)->ordered_tree;
297         spin_lock_irq(&tree->lock);
298         list_add_tail(&sum->list, &entry->list);
299         spin_unlock_irq(&tree->lock);
300 }
301
302 /*
303  * Mark all ordered extents io inside the specified range finished.
304  *
305  * @page:        The invovled page for the opeartion.
306  *               For uncompressed buffered IO, the page status also needs to be
307  *               updated to indicate whether the pending ordered io is finished.
308  *               Can be NULL for direct IO and compressed write.
309  *               For these cases, callers are ensured they won't execute the
310  *               endio function twice.
311  * @finish_func: The function to be executed when all the IO of an ordered
312  *               extent are finished.
313  *
314  * This function is called for endio, thus the range must have ordered
315  * extent(s) coveri it.
316  */
317 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
318                                 struct page *page, u64 file_offset,
319                                 u64 num_bytes, btrfs_func_t finish_func,
320                                 bool uptodate)
321 {
322         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
323         struct btrfs_fs_info *fs_info = inode->root->fs_info;
324         struct btrfs_workqueue *wq;
325         struct rb_node *node;
326         struct btrfs_ordered_extent *entry = NULL;
327         unsigned long flags;
328         u64 cur = file_offset;
329
330         if (btrfs_is_free_space_inode(inode))
331                 wq = fs_info->endio_freespace_worker;
332         else
333                 wq = fs_info->endio_write_workers;
334
335         if (page)
336                 ASSERT(page->mapping && page_offset(page) <= file_offset &&
337                        file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
338
339         spin_lock_irqsave(&tree->lock, flags);
340         while (cur < file_offset + num_bytes) {
341                 u64 entry_end;
342                 u64 end;
343                 u32 len;
344
345                 node = tree_search(tree, cur);
346                 /* No ordered extents at all */
347                 if (!node)
348                         break;
349
350                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
351                 entry_end = entry->file_offset + entry->num_bytes;
352                 /*
353                  * |<-- OE --->|  |
354                  *                cur
355                  * Go to next OE.
356                  */
357                 if (cur >= entry_end) {
358                         node = rb_next(node);
359                         /* No more ordered extents, exit */
360                         if (!node)
361                                 break;
362                         entry = rb_entry(node, struct btrfs_ordered_extent,
363                                          rb_node);
364
365                         /* Go to next ordered extent and continue */
366                         cur = entry->file_offset;
367                         continue;
368                 }
369                 /*
370                  * |    |<--- OE --->|
371                  * cur
372                  * Go to the start of OE.
373                  */
374                 if (cur < entry->file_offset) {
375                         cur = entry->file_offset;
376                         continue;
377                 }
378
379                 /*
380                  * Now we are definitely inside one ordered extent.
381                  *
382                  * |<--- OE --->|
383                  *      |
384                  *      cur
385                  */
386                 end = min(entry->file_offset + entry->num_bytes,
387                           file_offset + num_bytes) - 1;
388                 ASSERT(end + 1 - cur < U32_MAX);
389                 len = end + 1 - cur;
390
391                 if (page) {
392                         /*
393                          * Private2 bit indicates whether we still have pending
394                          * io unfinished for the ordered extent.
395                          *
396                          * If there's no such bit, we need to skip to next range.
397                          */
398                         if (!PagePrivate2(page)) {
399                                 cur += len;
400                                 continue;
401                         }
402                         ClearPagePrivate2(page);
403                 }
404
405                 /* Now we're fine to update the accounting */
406                 if (unlikely(len > entry->bytes_left)) {
407                         WARN_ON(1);
408                         btrfs_crit(fs_info,
409 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
410                                    inode->root->root_key.objectid,
411                                    btrfs_ino(inode),
412                                    entry->file_offset,
413                                    entry->num_bytes,
414                                    len, entry->bytes_left);
415                         entry->bytes_left = 0;
416                 } else {
417                         entry->bytes_left -= len;
418                 }
419
420                 if (!uptodate)
421                         set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
422
423                 /*
424                  * All the IO of the ordered extent is finished, we need to queue
425                  * the finish_func to be executed.
426                  */
427                 if (entry->bytes_left == 0) {
428                         set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
429                         cond_wake_up(&entry->wait);
430                         refcount_inc(&entry->refs);
431                         spin_unlock_irqrestore(&tree->lock, flags);
432                         btrfs_init_work(&entry->work, finish_func, NULL, NULL);
433                         btrfs_queue_work(wq, &entry->work);
434                         spin_lock_irqsave(&tree->lock, flags);
435                 }
436                 cur += len;
437         }
438         spin_unlock_irqrestore(&tree->lock, flags);
439 }
440
441 /*
442  * Finish IO for one ordered extent across a given range.  The range can only
443  * contain one ordered extent.
444  *
445  * @cached:      The cached ordered extent. If not NULL, we can skip the tree
446  *               search and use the ordered extent directly.
447  *               Will be also used to store the finished ordered extent.
448  * @file_offset: File offset for the finished IO
449  * @io_size:     Length of the finish IO range
450  * @uptodate:    If the IO finishes without problem
451  *
452  * Return true if the ordered extent is finished in the range, and update
453  * @cached.
454  * Return false otherwise.
455  *
456  * NOTE: The range can NOT cross multiple ordered extents.
457  * Thus caller should ensure the range doesn't cross ordered extents.
458  */
459 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
460                                     struct btrfs_ordered_extent **cached,
461                                     u64 file_offset, u64 io_size, int uptodate)
462 {
463         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
464         struct rb_node *node;
465         struct btrfs_ordered_extent *entry = NULL;
466         unsigned long flags;
467         bool finished = false;
468
469         spin_lock_irqsave(&tree->lock, flags);
470         if (cached && *cached) {
471                 entry = *cached;
472                 goto have_entry;
473         }
474
475         node = tree_search(tree, file_offset);
476         if (!node)
477                 goto out;
478
479         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
480 have_entry:
481         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
482                 goto out;
483
484         if (io_size > entry->bytes_left)
485                 btrfs_crit(inode->root->fs_info,
486                            "bad ordered accounting left %llu size %llu",
487                        entry->bytes_left, io_size);
488
489         entry->bytes_left -= io_size;
490         if (!uptodate)
491                 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
492
493         if (entry->bytes_left == 0) {
494                 /*
495                  * Ensure only one caller can set the flag and finished_ret
496                  * accordingly
497                  */
498                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
499                 /* test_and_set_bit implies a barrier */
500                 cond_wake_up_nomb(&entry->wait);
501         }
502 out:
503         if (finished && cached && entry) {
504                 *cached = entry;
505                 refcount_inc(&entry->refs);
506         }
507         spin_unlock_irqrestore(&tree->lock, flags);
508         return finished;
509 }
510
511 /*
512  * used to drop a reference on an ordered extent.  This will free
513  * the extent if the last reference is dropped
514  */
515 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
516 {
517         struct list_head *cur;
518         struct btrfs_ordered_sum *sum;
519
520         trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
521
522         if (refcount_dec_and_test(&entry->refs)) {
523                 ASSERT(list_empty(&entry->root_extent_list));
524                 ASSERT(list_empty(&entry->log_list));
525                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
526                 if (entry->inode)
527                         btrfs_add_delayed_iput(entry->inode);
528                 while (!list_empty(&entry->list)) {
529                         cur = entry->list.next;
530                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
531                         list_del(&sum->list);
532                         kvfree(sum);
533                 }
534                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
535         }
536 }
537
538 /*
539  * remove an ordered extent from the tree.  No references are dropped
540  * and waiters are woken up.
541  */
542 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
543                                  struct btrfs_ordered_extent *entry)
544 {
545         struct btrfs_ordered_inode_tree *tree;
546         struct btrfs_root *root = btrfs_inode->root;
547         struct btrfs_fs_info *fs_info = root->fs_info;
548         struct rb_node *node;
549         bool pending;
550
551         /* This is paired with btrfs_add_ordered_extent. */
552         spin_lock(&btrfs_inode->lock);
553         btrfs_mod_outstanding_extents(btrfs_inode, -1);
554         spin_unlock(&btrfs_inode->lock);
555         if (root != fs_info->tree_root)
556                 btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
557                                                 false);
558
559         percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
560                                  fs_info->delalloc_batch);
561
562         tree = &btrfs_inode->ordered_tree;
563         spin_lock_irq(&tree->lock);
564         node = &entry->rb_node;
565         rb_erase(node, &tree->tree);
566         RB_CLEAR_NODE(node);
567         if (tree->last == node)
568                 tree->last = NULL;
569         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
570         pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
571         spin_unlock_irq(&tree->lock);
572
573         /*
574          * The current running transaction is waiting on us, we need to let it
575          * know that we're complete and wake it up.
576          */
577         if (pending) {
578                 struct btrfs_transaction *trans;
579
580                 /*
581                  * The checks for trans are just a formality, it should be set,
582                  * but if it isn't we don't want to deref/assert under the spin
583                  * lock, so be nice and check if trans is set, but ASSERT() so
584                  * if it isn't set a developer will notice.
585                  */
586                 spin_lock(&fs_info->trans_lock);
587                 trans = fs_info->running_transaction;
588                 if (trans)
589                         refcount_inc(&trans->use_count);
590                 spin_unlock(&fs_info->trans_lock);
591
592                 ASSERT(trans);
593                 if (trans) {
594                         if (atomic_dec_and_test(&trans->pending_ordered))
595                                 wake_up(&trans->pending_wait);
596                         btrfs_put_transaction(trans);
597                 }
598         }
599
600         spin_lock(&root->ordered_extent_lock);
601         list_del_init(&entry->root_extent_list);
602         root->nr_ordered_extents--;
603
604         trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
605
606         if (!root->nr_ordered_extents) {
607                 spin_lock(&fs_info->ordered_root_lock);
608                 BUG_ON(list_empty(&root->ordered_root));
609                 list_del_init(&root->ordered_root);
610                 spin_unlock(&fs_info->ordered_root_lock);
611         }
612         spin_unlock(&root->ordered_extent_lock);
613         wake_up(&entry->wait);
614 }
615
616 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
617 {
618         struct btrfs_ordered_extent *ordered;
619
620         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
621         btrfs_start_ordered_extent(ordered, 1);
622         complete(&ordered->completion);
623 }
624
625 /*
626  * wait for all the ordered extents in a root.  This is done when balancing
627  * space between drives.
628  */
629 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
630                                const u64 range_start, const u64 range_len)
631 {
632         struct btrfs_fs_info *fs_info = root->fs_info;
633         LIST_HEAD(splice);
634         LIST_HEAD(skipped);
635         LIST_HEAD(works);
636         struct btrfs_ordered_extent *ordered, *next;
637         u64 count = 0;
638         const u64 range_end = range_start + range_len;
639
640         mutex_lock(&root->ordered_extent_mutex);
641         spin_lock(&root->ordered_extent_lock);
642         list_splice_init(&root->ordered_extents, &splice);
643         while (!list_empty(&splice) && nr) {
644                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
645                                            root_extent_list);
646
647                 if (range_end <= ordered->disk_bytenr ||
648                     ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
649                         list_move_tail(&ordered->root_extent_list, &skipped);
650                         cond_resched_lock(&root->ordered_extent_lock);
651                         continue;
652                 }
653
654                 list_move_tail(&ordered->root_extent_list,
655                                &root->ordered_extents);
656                 refcount_inc(&ordered->refs);
657                 spin_unlock(&root->ordered_extent_lock);
658
659                 btrfs_init_work(&ordered->flush_work,
660                                 btrfs_run_ordered_extent_work, NULL, NULL);
661                 list_add_tail(&ordered->work_list, &works);
662                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
663
664                 cond_resched();
665                 spin_lock(&root->ordered_extent_lock);
666                 if (nr != U64_MAX)
667                         nr--;
668                 count++;
669         }
670         list_splice_tail(&skipped, &root->ordered_extents);
671         list_splice_tail(&splice, &root->ordered_extents);
672         spin_unlock(&root->ordered_extent_lock);
673
674         list_for_each_entry_safe(ordered, next, &works, work_list) {
675                 list_del_init(&ordered->work_list);
676                 wait_for_completion(&ordered->completion);
677                 btrfs_put_ordered_extent(ordered);
678                 cond_resched();
679         }
680         mutex_unlock(&root->ordered_extent_mutex);
681
682         return count;
683 }
684
685 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
686                              const u64 range_start, const u64 range_len)
687 {
688         struct btrfs_root *root;
689         struct list_head splice;
690         u64 done;
691
692         INIT_LIST_HEAD(&splice);
693
694         mutex_lock(&fs_info->ordered_operations_mutex);
695         spin_lock(&fs_info->ordered_root_lock);
696         list_splice_init(&fs_info->ordered_roots, &splice);
697         while (!list_empty(&splice) && nr) {
698                 root = list_first_entry(&splice, struct btrfs_root,
699                                         ordered_root);
700                 root = btrfs_grab_root(root);
701                 BUG_ON(!root);
702                 list_move_tail(&root->ordered_root,
703                                &fs_info->ordered_roots);
704                 spin_unlock(&fs_info->ordered_root_lock);
705
706                 done = btrfs_wait_ordered_extents(root, nr,
707                                                   range_start, range_len);
708                 btrfs_put_root(root);
709
710                 spin_lock(&fs_info->ordered_root_lock);
711                 if (nr != U64_MAX) {
712                         nr -= done;
713                 }
714         }
715         list_splice_tail(&splice, &fs_info->ordered_roots);
716         spin_unlock(&fs_info->ordered_root_lock);
717         mutex_unlock(&fs_info->ordered_operations_mutex);
718 }
719
720 /*
721  * Used to start IO or wait for a given ordered extent to finish.
722  *
723  * If wait is one, this effectively waits on page writeback for all the pages
724  * in the extent, and it waits on the io completion code to insert
725  * metadata into the btree corresponding to the extent
726  */
727 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
728 {
729         u64 start = entry->file_offset;
730         u64 end = start + entry->num_bytes - 1;
731         struct btrfs_inode *inode = BTRFS_I(entry->inode);
732
733         trace_btrfs_ordered_extent_start(inode, entry);
734
735         /*
736          * pages in the range can be dirty, clean or writeback.  We
737          * start IO on any dirty ones so the wait doesn't stall waiting
738          * for the flusher thread to find them
739          */
740         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
741                 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
742         if (wait) {
743                 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
744                                                  &entry->flags));
745         }
746 }
747
748 /*
749  * Used to wait on ordered extents across a large range of bytes.
750  */
751 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
752 {
753         int ret = 0;
754         int ret_wb = 0;
755         u64 end;
756         u64 orig_end;
757         struct btrfs_ordered_extent *ordered;
758
759         if (start + len < start) {
760                 orig_end = INT_LIMIT(loff_t);
761         } else {
762                 orig_end = start + len - 1;
763                 if (orig_end > INT_LIMIT(loff_t))
764                         orig_end = INT_LIMIT(loff_t);
765         }
766
767         /* start IO across the range first to instantiate any delalloc
768          * extents
769          */
770         ret = btrfs_fdatawrite_range(inode, start, orig_end);
771         if (ret)
772                 return ret;
773
774         /*
775          * If we have a writeback error don't return immediately. Wait first
776          * for any ordered extents that haven't completed yet. This is to make
777          * sure no one can dirty the same page ranges and call writepages()
778          * before the ordered extents complete - to avoid failures (-EEXIST)
779          * when adding the new ordered extents to the ordered tree.
780          */
781         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
782
783         end = orig_end;
784         while (1) {
785                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
786                 if (!ordered)
787                         break;
788                 if (ordered->file_offset > orig_end) {
789                         btrfs_put_ordered_extent(ordered);
790                         break;
791                 }
792                 if (ordered->file_offset + ordered->num_bytes <= start) {
793                         btrfs_put_ordered_extent(ordered);
794                         break;
795                 }
796                 btrfs_start_ordered_extent(ordered, 1);
797                 end = ordered->file_offset;
798                 /*
799                  * If the ordered extent had an error save the error but don't
800                  * exit without waiting first for all other ordered extents in
801                  * the range to complete.
802                  */
803                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
804                         ret = -EIO;
805                 btrfs_put_ordered_extent(ordered);
806                 if (end == 0 || end == start)
807                         break;
808                 end--;
809         }
810         return ret_wb ? ret_wb : ret;
811 }
812
813 /*
814  * find an ordered extent corresponding to file_offset.  return NULL if
815  * nothing is found, otherwise take a reference on the extent and return it
816  */
817 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
818                                                          u64 file_offset)
819 {
820         struct btrfs_ordered_inode_tree *tree;
821         struct rb_node *node;
822         struct btrfs_ordered_extent *entry = NULL;
823         unsigned long flags;
824
825         tree = &inode->ordered_tree;
826         spin_lock_irqsave(&tree->lock, flags);
827         node = tree_search(tree, file_offset);
828         if (!node)
829                 goto out;
830
831         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
832         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
833                 entry = NULL;
834         if (entry)
835                 refcount_inc(&entry->refs);
836 out:
837         spin_unlock_irqrestore(&tree->lock, flags);
838         return entry;
839 }
840
841 /* Since the DIO code tries to lock a wide area we need to look for any ordered
842  * extents that exist in the range, rather than just the start of the range.
843  */
844 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
845                 struct btrfs_inode *inode, u64 file_offset, u64 len)
846 {
847         struct btrfs_ordered_inode_tree *tree;
848         struct rb_node *node;
849         struct btrfs_ordered_extent *entry = NULL;
850
851         tree = &inode->ordered_tree;
852         spin_lock_irq(&tree->lock);
853         node = tree_search(tree, file_offset);
854         if (!node) {
855                 node = tree_search(tree, file_offset + len);
856                 if (!node)
857                         goto out;
858         }
859
860         while (1) {
861                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
862                 if (range_overlaps(entry, file_offset, len))
863                         break;
864
865                 if (entry->file_offset >= file_offset + len) {
866                         entry = NULL;
867                         break;
868                 }
869                 entry = NULL;
870                 node = rb_next(node);
871                 if (!node)
872                         break;
873         }
874 out:
875         if (entry)
876                 refcount_inc(&entry->refs);
877         spin_unlock_irq(&tree->lock);
878         return entry;
879 }
880
881 /*
882  * Adds all ordered extents to the given list. The list ends up sorted by the
883  * file_offset of the ordered extents.
884  */
885 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
886                                            struct list_head *list)
887 {
888         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
889         struct rb_node *n;
890
891         ASSERT(inode_is_locked(&inode->vfs_inode));
892
893         spin_lock_irq(&tree->lock);
894         for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
895                 struct btrfs_ordered_extent *ordered;
896
897                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
898
899                 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
900                         continue;
901
902                 ASSERT(list_empty(&ordered->log_list));
903                 list_add_tail(&ordered->log_list, list);
904                 refcount_inc(&ordered->refs);
905         }
906         spin_unlock_irq(&tree->lock);
907 }
908
909 /*
910  * lookup and return any extent before 'file_offset'.  NULL is returned
911  * if none is found
912  */
913 struct btrfs_ordered_extent *
914 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
915 {
916         struct btrfs_ordered_inode_tree *tree;
917         struct rb_node *node;
918         struct btrfs_ordered_extent *entry = NULL;
919
920         tree = &inode->ordered_tree;
921         spin_lock_irq(&tree->lock);
922         node = tree_search(tree, file_offset);
923         if (!node)
924                 goto out;
925
926         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
927         refcount_inc(&entry->refs);
928 out:
929         spin_unlock_irq(&tree->lock);
930         return entry;
931 }
932
933 /*
934  * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
935  * ordered extents in it are run to completion.
936  *
937  * @inode:        Inode whose ordered tree is to be searched
938  * @start:        Beginning of range to flush
939  * @end:          Last byte of range to lock
940  * @cached_state: If passed, will return the extent state responsible for the
941  * locked range. It's the caller's responsibility to free the cached state.
942  *
943  * This function always returns with the given range locked, ensuring after it's
944  * called no order extent can be pending.
945  */
946 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
947                                         u64 end,
948                                         struct extent_state **cached_state)
949 {
950         struct btrfs_ordered_extent *ordered;
951         struct extent_state *cache = NULL;
952         struct extent_state **cachedp = &cache;
953
954         if (cached_state)
955                 cachedp = cached_state;
956
957         while (1) {
958                 lock_extent_bits(&inode->io_tree, start, end, cachedp);
959                 ordered = btrfs_lookup_ordered_range(inode, start,
960                                                      end - start + 1);
961                 if (!ordered) {
962                         /*
963                          * If no external cached_state has been passed then
964                          * decrement the extra ref taken for cachedp since we
965                          * aren't exposing it outside of this function
966                          */
967                         if (!cached_state)
968                                 refcount_dec(&cache->refs);
969                         break;
970                 }
971                 unlock_extent_cached(&inode->io_tree, start, end, cachedp);
972                 btrfs_start_ordered_extent(ordered, 1);
973                 btrfs_put_ordered_extent(ordered);
974         }
975 }
976
977 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
978                                 u64 len)
979 {
980         struct inode *inode = ordered->inode;
981         u64 file_offset = ordered->file_offset + pos;
982         u64 disk_bytenr = ordered->disk_bytenr + pos;
983         u64 num_bytes = len;
984         u64 disk_num_bytes = len;
985         int type;
986         unsigned long flags_masked = ordered->flags & ~(1 << BTRFS_ORDERED_DIRECT);
987         int compress_type = ordered->compress_type;
988         unsigned long weight;
989         int ret;
990
991         weight = hweight_long(flags_masked);
992         WARN_ON_ONCE(weight > 1);
993         if (!weight)
994                 type = 0;
995         else
996                 type = __ffs(flags_masked);
997
998         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered->flags)) {
999                 WARN_ON_ONCE(1);
1000                 ret = btrfs_add_ordered_extent_compress(BTRFS_I(inode),
1001                                 file_offset, disk_bytenr, num_bytes,
1002                                 disk_num_bytes, compress_type);
1003         } else if (test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
1004                 ret = btrfs_add_ordered_extent_dio(BTRFS_I(inode), file_offset,
1005                                 disk_bytenr, num_bytes, disk_num_bytes, type);
1006         } else {
1007                 ret = btrfs_add_ordered_extent(BTRFS_I(inode), file_offset,
1008                                 disk_bytenr, num_bytes, disk_num_bytes, type);
1009         }
1010
1011         return ret;
1012 }
1013
1014 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
1015                                 u64 post)
1016 {
1017         struct inode *inode = ordered->inode;
1018         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1019         struct rb_node *node;
1020         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1021         int ret = 0;
1022
1023         spin_lock_irq(&tree->lock);
1024         /* Remove from tree once */
1025         node = &ordered->rb_node;
1026         rb_erase(node, &tree->tree);
1027         RB_CLEAR_NODE(node);
1028         if (tree->last == node)
1029                 tree->last = NULL;
1030
1031         ordered->file_offset += pre;
1032         ordered->disk_bytenr += pre;
1033         ordered->num_bytes -= (pre + post);
1034         ordered->disk_num_bytes -= (pre + post);
1035         ordered->bytes_left -= (pre + post);
1036
1037         /* Re-insert the node */
1038         node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1039         if (node)
1040                 btrfs_panic(fs_info, -EEXIST,
1041                         "zoned: inconsistency in ordered tree at offset %llu",
1042                             ordered->file_offset);
1043
1044         spin_unlock_irq(&tree->lock);
1045
1046         if (pre)
1047                 ret = clone_ordered_extent(ordered, 0, pre);
1048         if (ret == 0 && post)
1049                 ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1050                                            post);
1051
1052         return ret;
1053 }
1054
1055 int __init ordered_data_init(void)
1056 {
1057         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1058                                      sizeof(struct btrfs_ordered_extent), 0,
1059                                      SLAB_MEM_SPREAD,
1060                                      NULL);
1061         if (!btrfs_ordered_extent_cache)
1062                 return -ENOMEM;
1063
1064         return 0;
1065 }
1066
1067 void __cold ordered_data_exit(void)
1068 {
1069         kmem_cache_destroy(btrfs_ordered_extent_cache);
1070 }