btrfs: fix uninitialized parent in insert_state
[platform/kernel/linux-starfive.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "ctree.h"
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
15 #include "disk-io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
18 #include "qgroup.h"
19 #include "subpage.h"
20
21 static struct kmem_cache *btrfs_ordered_extent_cache;
22
23 static u64 entry_end(struct btrfs_ordered_extent *entry)
24 {
25         if (entry->file_offset + entry->num_bytes < entry->file_offset)
26                 return (u64)-1;
27         return entry->file_offset + entry->num_bytes;
28 }
29
30 /* returns NULL if the insertion worked, or it returns the node it did find
31  * in the tree
32  */
33 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
34                                    struct rb_node *node)
35 {
36         struct rb_node **p = &root->rb_node;
37         struct rb_node *parent = NULL;
38         struct btrfs_ordered_extent *entry;
39
40         while (*p) {
41                 parent = *p;
42                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
43
44                 if (file_offset < entry->file_offset)
45                         p = &(*p)->rb_left;
46                 else if (file_offset >= entry_end(entry))
47                         p = &(*p)->rb_right;
48                 else
49                         return parent;
50         }
51
52         rb_link_node(node, parent, p);
53         rb_insert_color(node, root);
54         return NULL;
55 }
56
57 /*
58  * look for a given offset in the tree, and if it can't be found return the
59  * first lesser offset
60  */
61 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
62                                      struct rb_node **prev_ret)
63 {
64         struct rb_node *n = root->rb_node;
65         struct rb_node *prev = NULL;
66         struct rb_node *test;
67         struct btrfs_ordered_extent *entry;
68         struct btrfs_ordered_extent *prev_entry = NULL;
69
70         while (n) {
71                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
72                 prev = n;
73                 prev_entry = entry;
74
75                 if (file_offset < entry->file_offset)
76                         n = n->rb_left;
77                 else if (file_offset >= entry_end(entry))
78                         n = n->rb_right;
79                 else
80                         return n;
81         }
82         if (!prev_ret)
83                 return NULL;
84
85         while (prev && file_offset >= entry_end(prev_entry)) {
86                 test = rb_next(prev);
87                 if (!test)
88                         break;
89                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
90                                       rb_node);
91                 if (file_offset < entry_end(prev_entry))
92                         break;
93
94                 prev = test;
95         }
96         if (prev)
97                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
98                                       rb_node);
99         while (prev && file_offset < entry_end(prev_entry)) {
100                 test = rb_prev(prev);
101                 if (!test)
102                         break;
103                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
104                                       rb_node);
105                 prev = test;
106         }
107         *prev_ret = prev;
108         return NULL;
109 }
110
111 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
112                           u64 len)
113 {
114         if (file_offset + len <= entry->file_offset ||
115             entry->file_offset + entry->num_bytes <= file_offset)
116                 return 0;
117         return 1;
118 }
119
120 /*
121  * look find the first ordered struct that has this offset, otherwise
122  * the first one less than this offset
123  */
124 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
125                                           u64 file_offset)
126 {
127         struct rb_root *root = &tree->tree;
128         struct rb_node *prev = NULL;
129         struct rb_node *ret;
130         struct btrfs_ordered_extent *entry;
131
132         if (tree->last) {
133                 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
134                                  rb_node);
135                 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
136                         return tree->last;
137         }
138         ret = __tree_search(root, file_offset, &prev);
139         if (!ret)
140                 ret = prev;
141         if (ret)
142                 tree->last = ret;
143         return ret;
144 }
145
146 /**
147  * Add an ordered extent to the per-inode tree.
148  *
149  * @inode:           Inode that this extent is for.
150  * @file_offset:     Logical offset in file where the extent starts.
151  * @num_bytes:       Logical length of extent in file.
152  * @ram_bytes:       Full length of unencoded data.
153  * @disk_bytenr:     Offset of extent on disk.
154  * @disk_num_bytes:  Size of extent on disk.
155  * @offset:          Offset into unencoded data where file data starts.
156  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
157  * @compress_type:   Compression algorithm used for data.
158  *
159  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
160  * tree is given a single reference on the ordered extent that was inserted.
161  *
162  * Return: 0 or -ENOMEM.
163  */
164 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
165                              u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
166                              u64 disk_num_bytes, u64 offset, unsigned flags,
167                              int compress_type)
168 {
169         struct btrfs_root *root = inode->root;
170         struct btrfs_fs_info *fs_info = root->fs_info;
171         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
172         struct rb_node *node;
173         struct btrfs_ordered_extent *entry;
174         int ret;
175
176         if (flags &
177             ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
178                 /* For nocow write, we can release the qgroup rsv right now */
179                 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
180                 if (ret < 0)
181                         return ret;
182                 ret = 0;
183         } else {
184                 /*
185                  * The ordered extent has reserved qgroup space, release now
186                  * and pass the reserved number for qgroup_record to free.
187                  */
188                 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
189                 if (ret < 0)
190                         return ret;
191         }
192         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
193         if (!entry)
194                 return -ENOMEM;
195
196         entry->file_offset = file_offset;
197         entry->num_bytes = num_bytes;
198         entry->ram_bytes = ram_bytes;
199         entry->disk_bytenr = disk_bytenr;
200         entry->disk_num_bytes = disk_num_bytes;
201         entry->offset = offset;
202         entry->bytes_left = num_bytes;
203         entry->inode = igrab(&inode->vfs_inode);
204         entry->compress_type = compress_type;
205         entry->truncated_len = (u64)-1;
206         entry->qgroup_rsv = ret;
207         entry->physical = (u64)-1;
208
209         ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
210         entry->flags = flags;
211
212         percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
213                                  fs_info->delalloc_batch);
214
215         /* one ref for the tree */
216         refcount_set(&entry->refs, 1);
217         init_waitqueue_head(&entry->wait);
218         INIT_LIST_HEAD(&entry->list);
219         INIT_LIST_HEAD(&entry->log_list);
220         INIT_LIST_HEAD(&entry->root_extent_list);
221         INIT_LIST_HEAD(&entry->work_list);
222         init_completion(&entry->completion);
223
224         trace_btrfs_ordered_extent_add(inode, entry);
225
226         spin_lock_irq(&tree->lock);
227         node = tree_insert(&tree->tree, file_offset,
228                            &entry->rb_node);
229         if (node)
230                 btrfs_panic(fs_info, -EEXIST,
231                                 "inconsistency in ordered tree at offset %llu",
232                                 file_offset);
233         spin_unlock_irq(&tree->lock);
234
235         spin_lock(&root->ordered_extent_lock);
236         list_add_tail(&entry->root_extent_list,
237                       &root->ordered_extents);
238         root->nr_ordered_extents++;
239         if (root->nr_ordered_extents == 1) {
240                 spin_lock(&fs_info->ordered_root_lock);
241                 BUG_ON(!list_empty(&root->ordered_root));
242                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
243                 spin_unlock(&fs_info->ordered_root_lock);
244         }
245         spin_unlock(&root->ordered_extent_lock);
246
247         /*
248          * We don't need the count_max_extents here, we can assume that all of
249          * that work has been done at higher layers, so this is truly the
250          * smallest the extent is going to get.
251          */
252         spin_lock(&inode->lock);
253         btrfs_mod_outstanding_extents(inode, 1);
254         spin_unlock(&inode->lock);
255
256         return 0;
257 }
258
259 /*
260  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
261  * when an ordered extent is finished.  If the list covers more than one
262  * ordered extent, it is split across multiples.
263  */
264 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
265                            struct btrfs_ordered_sum *sum)
266 {
267         struct btrfs_ordered_inode_tree *tree;
268
269         tree = &BTRFS_I(entry->inode)->ordered_tree;
270         spin_lock_irq(&tree->lock);
271         list_add_tail(&sum->list, &entry->list);
272         spin_unlock_irq(&tree->lock);
273 }
274
275 static void finish_ordered_fn(struct btrfs_work *work)
276 {
277         struct btrfs_ordered_extent *ordered_extent;
278
279         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
280         btrfs_finish_ordered_io(ordered_extent);
281 }
282
283 /*
284  * Mark all ordered extents io inside the specified range finished.
285  *
286  * @page:        The involved page for the operation.
287  *               For uncompressed buffered IO, the page status also needs to be
288  *               updated to indicate whether the pending ordered io is finished.
289  *               Can be NULL for direct IO and compressed write.
290  *               For these cases, callers are ensured they won't execute the
291  *               endio function twice.
292  *
293  * This function is called for endio, thus the range must have ordered
294  * extent(s) covering it.
295  */
296 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
297                                     struct page *page, u64 file_offset,
298                                     u64 num_bytes, bool uptodate)
299 {
300         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
301         struct btrfs_fs_info *fs_info = inode->root->fs_info;
302         struct btrfs_workqueue *wq;
303         struct rb_node *node;
304         struct btrfs_ordered_extent *entry = NULL;
305         unsigned long flags;
306         u64 cur = file_offset;
307
308         if (btrfs_is_free_space_inode(inode))
309                 wq = fs_info->endio_freespace_worker;
310         else
311                 wq = fs_info->endio_write_workers;
312
313         if (page)
314                 ASSERT(page->mapping && page_offset(page) <= file_offset &&
315                        file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
316
317         spin_lock_irqsave(&tree->lock, flags);
318         while (cur < file_offset + num_bytes) {
319                 u64 entry_end;
320                 u64 end;
321                 u32 len;
322
323                 node = tree_search(tree, cur);
324                 /* No ordered extents at all */
325                 if (!node)
326                         break;
327
328                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
329                 entry_end = entry->file_offset + entry->num_bytes;
330                 /*
331                  * |<-- OE --->|  |
332                  *                cur
333                  * Go to next OE.
334                  */
335                 if (cur >= entry_end) {
336                         node = rb_next(node);
337                         /* No more ordered extents, exit */
338                         if (!node)
339                                 break;
340                         entry = rb_entry(node, struct btrfs_ordered_extent,
341                                          rb_node);
342
343                         /* Go to next ordered extent and continue */
344                         cur = entry->file_offset;
345                         continue;
346                 }
347                 /*
348                  * |    |<--- OE --->|
349                  * cur
350                  * Go to the start of OE.
351                  */
352                 if (cur < entry->file_offset) {
353                         cur = entry->file_offset;
354                         continue;
355                 }
356
357                 /*
358                  * Now we are definitely inside one ordered extent.
359                  *
360                  * |<--- OE --->|
361                  *      |
362                  *      cur
363                  */
364                 end = min(entry->file_offset + entry->num_bytes,
365                           file_offset + num_bytes) - 1;
366                 ASSERT(end + 1 - cur < U32_MAX);
367                 len = end + 1 - cur;
368
369                 if (page) {
370                         /*
371                          * Ordered (Private2) bit indicates whether we still
372                          * have pending io unfinished for the ordered extent.
373                          *
374                          * If there's no such bit, we need to skip to next range.
375                          */
376                         if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
377                                 cur += len;
378                                 continue;
379                         }
380                         btrfs_page_clear_ordered(fs_info, page, cur, len);
381                 }
382
383                 /* Now we're fine to update the accounting */
384                 if (unlikely(len > entry->bytes_left)) {
385                         WARN_ON(1);
386                         btrfs_crit(fs_info,
387 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
388                                    inode->root->root_key.objectid,
389                                    btrfs_ino(inode),
390                                    entry->file_offset,
391                                    entry->num_bytes,
392                                    len, entry->bytes_left);
393                         entry->bytes_left = 0;
394                 } else {
395                         entry->bytes_left -= len;
396                 }
397
398                 if (!uptodate)
399                         set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
400
401                 /*
402                  * All the IO of the ordered extent is finished, we need to queue
403                  * the finish_func to be executed.
404                  */
405                 if (entry->bytes_left == 0) {
406                         set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
407                         cond_wake_up(&entry->wait);
408                         refcount_inc(&entry->refs);
409                         trace_btrfs_ordered_extent_mark_finished(inode, entry);
410                         spin_unlock_irqrestore(&tree->lock, flags);
411                         btrfs_init_work(&entry->work, finish_ordered_fn, NULL, NULL);
412                         btrfs_queue_work(wq, &entry->work);
413                         spin_lock_irqsave(&tree->lock, flags);
414                 }
415                 cur += len;
416         }
417         spin_unlock_irqrestore(&tree->lock, flags);
418 }
419
420 /*
421  * Finish IO for one ordered extent across a given range.  The range can only
422  * contain one ordered extent.
423  *
424  * @cached:      The cached ordered extent. If not NULL, we can skip the tree
425  *               search and use the ordered extent directly.
426  *               Will be also used to store the finished ordered extent.
427  * @file_offset: File offset for the finished IO
428  * @io_size:     Length of the finish IO range
429  *
430  * Return true if the ordered extent is finished in the range, and update
431  * @cached.
432  * Return false otherwise.
433  *
434  * NOTE: The range can NOT cross multiple ordered extents.
435  * Thus caller should ensure the range doesn't cross ordered extents.
436  */
437 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
438                                     struct btrfs_ordered_extent **cached,
439                                     u64 file_offset, u64 io_size)
440 {
441         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
442         struct rb_node *node;
443         struct btrfs_ordered_extent *entry = NULL;
444         unsigned long flags;
445         bool finished = false;
446
447         spin_lock_irqsave(&tree->lock, flags);
448         if (cached && *cached) {
449                 entry = *cached;
450                 goto have_entry;
451         }
452
453         node = tree_search(tree, file_offset);
454         if (!node)
455                 goto out;
456
457         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
458 have_entry:
459         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
460                 goto out;
461
462         if (io_size > entry->bytes_left)
463                 btrfs_crit(inode->root->fs_info,
464                            "bad ordered accounting left %llu size %llu",
465                        entry->bytes_left, io_size);
466
467         entry->bytes_left -= io_size;
468
469         if (entry->bytes_left == 0) {
470                 /*
471                  * Ensure only one caller can set the flag and finished_ret
472                  * accordingly
473                  */
474                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
475                 /* test_and_set_bit implies a barrier */
476                 cond_wake_up_nomb(&entry->wait);
477         }
478 out:
479         if (finished && cached && entry) {
480                 *cached = entry;
481                 refcount_inc(&entry->refs);
482                 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
483         }
484         spin_unlock_irqrestore(&tree->lock, flags);
485         return finished;
486 }
487
488 /*
489  * used to drop a reference on an ordered extent.  This will free
490  * the extent if the last reference is dropped
491  */
492 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
493 {
494         struct list_head *cur;
495         struct btrfs_ordered_sum *sum;
496
497         trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
498
499         if (refcount_dec_and_test(&entry->refs)) {
500                 ASSERT(list_empty(&entry->root_extent_list));
501                 ASSERT(list_empty(&entry->log_list));
502                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
503                 if (entry->inode)
504                         btrfs_add_delayed_iput(entry->inode);
505                 while (!list_empty(&entry->list)) {
506                         cur = entry->list.next;
507                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
508                         list_del(&sum->list);
509                         kvfree(sum);
510                 }
511                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
512         }
513 }
514
515 /*
516  * remove an ordered extent from the tree.  No references are dropped
517  * and waiters are woken up.
518  */
519 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
520                                  struct btrfs_ordered_extent *entry)
521 {
522         struct btrfs_ordered_inode_tree *tree;
523         struct btrfs_root *root = btrfs_inode->root;
524         struct btrfs_fs_info *fs_info = root->fs_info;
525         struct rb_node *node;
526         bool pending;
527         bool freespace_inode;
528
529         /*
530          * If this is a free space inode the thread has not acquired the ordered
531          * extents lockdep map.
532          */
533         freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
534
535         btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
536         /* This is paired with btrfs_add_ordered_extent. */
537         spin_lock(&btrfs_inode->lock);
538         btrfs_mod_outstanding_extents(btrfs_inode, -1);
539         spin_unlock(&btrfs_inode->lock);
540         if (root != fs_info->tree_root) {
541                 u64 release;
542
543                 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
544                         release = entry->disk_num_bytes;
545                 else
546                         release = entry->num_bytes;
547                 btrfs_delalloc_release_metadata(btrfs_inode, release, false);
548         }
549
550         percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
551                                  fs_info->delalloc_batch);
552
553         tree = &btrfs_inode->ordered_tree;
554         spin_lock_irq(&tree->lock);
555         node = &entry->rb_node;
556         rb_erase(node, &tree->tree);
557         RB_CLEAR_NODE(node);
558         if (tree->last == node)
559                 tree->last = NULL;
560         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
561         pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
562         spin_unlock_irq(&tree->lock);
563
564         /*
565          * The current running transaction is waiting on us, we need to let it
566          * know that we're complete and wake it up.
567          */
568         if (pending) {
569                 struct btrfs_transaction *trans;
570
571                 /*
572                  * The checks for trans are just a formality, it should be set,
573                  * but if it isn't we don't want to deref/assert under the spin
574                  * lock, so be nice and check if trans is set, but ASSERT() so
575                  * if it isn't set a developer will notice.
576                  */
577                 spin_lock(&fs_info->trans_lock);
578                 trans = fs_info->running_transaction;
579                 if (trans)
580                         refcount_inc(&trans->use_count);
581                 spin_unlock(&fs_info->trans_lock);
582
583                 ASSERT(trans);
584                 if (trans) {
585                         if (atomic_dec_and_test(&trans->pending_ordered))
586                                 wake_up(&trans->pending_wait);
587                         btrfs_put_transaction(trans);
588                 }
589         }
590
591         btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
592
593         spin_lock(&root->ordered_extent_lock);
594         list_del_init(&entry->root_extent_list);
595         root->nr_ordered_extents--;
596
597         trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
598
599         if (!root->nr_ordered_extents) {
600                 spin_lock(&fs_info->ordered_root_lock);
601                 BUG_ON(list_empty(&root->ordered_root));
602                 list_del_init(&root->ordered_root);
603                 spin_unlock(&fs_info->ordered_root_lock);
604         }
605         spin_unlock(&root->ordered_extent_lock);
606         wake_up(&entry->wait);
607         if (!freespace_inode)
608                 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
609 }
610
611 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
612 {
613         struct btrfs_ordered_extent *ordered;
614
615         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
616         btrfs_start_ordered_extent(ordered, 1);
617         complete(&ordered->completion);
618 }
619
620 /*
621  * wait for all the ordered extents in a root.  This is done when balancing
622  * space between drives.
623  */
624 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
625                                const u64 range_start, const u64 range_len)
626 {
627         struct btrfs_fs_info *fs_info = root->fs_info;
628         LIST_HEAD(splice);
629         LIST_HEAD(skipped);
630         LIST_HEAD(works);
631         struct btrfs_ordered_extent *ordered, *next;
632         u64 count = 0;
633         const u64 range_end = range_start + range_len;
634
635         mutex_lock(&root->ordered_extent_mutex);
636         spin_lock(&root->ordered_extent_lock);
637         list_splice_init(&root->ordered_extents, &splice);
638         while (!list_empty(&splice) && nr) {
639                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
640                                            root_extent_list);
641
642                 if (range_end <= ordered->disk_bytenr ||
643                     ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
644                         list_move_tail(&ordered->root_extent_list, &skipped);
645                         cond_resched_lock(&root->ordered_extent_lock);
646                         continue;
647                 }
648
649                 list_move_tail(&ordered->root_extent_list,
650                                &root->ordered_extents);
651                 refcount_inc(&ordered->refs);
652                 spin_unlock(&root->ordered_extent_lock);
653
654                 btrfs_init_work(&ordered->flush_work,
655                                 btrfs_run_ordered_extent_work, NULL, NULL);
656                 list_add_tail(&ordered->work_list, &works);
657                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
658
659                 cond_resched();
660                 spin_lock(&root->ordered_extent_lock);
661                 if (nr != U64_MAX)
662                         nr--;
663                 count++;
664         }
665         list_splice_tail(&skipped, &root->ordered_extents);
666         list_splice_tail(&splice, &root->ordered_extents);
667         spin_unlock(&root->ordered_extent_lock);
668
669         list_for_each_entry_safe(ordered, next, &works, work_list) {
670                 list_del_init(&ordered->work_list);
671                 wait_for_completion(&ordered->completion);
672                 btrfs_put_ordered_extent(ordered);
673                 cond_resched();
674         }
675         mutex_unlock(&root->ordered_extent_mutex);
676
677         return count;
678 }
679
680 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
681                              const u64 range_start, const u64 range_len)
682 {
683         struct btrfs_root *root;
684         struct list_head splice;
685         u64 done;
686
687         INIT_LIST_HEAD(&splice);
688
689         mutex_lock(&fs_info->ordered_operations_mutex);
690         spin_lock(&fs_info->ordered_root_lock);
691         list_splice_init(&fs_info->ordered_roots, &splice);
692         while (!list_empty(&splice) && nr) {
693                 root = list_first_entry(&splice, struct btrfs_root,
694                                         ordered_root);
695                 root = btrfs_grab_root(root);
696                 BUG_ON(!root);
697                 list_move_tail(&root->ordered_root,
698                                &fs_info->ordered_roots);
699                 spin_unlock(&fs_info->ordered_root_lock);
700
701                 done = btrfs_wait_ordered_extents(root, nr,
702                                                   range_start, range_len);
703                 btrfs_put_root(root);
704
705                 spin_lock(&fs_info->ordered_root_lock);
706                 if (nr != U64_MAX) {
707                         nr -= done;
708                 }
709         }
710         list_splice_tail(&splice, &fs_info->ordered_roots);
711         spin_unlock(&fs_info->ordered_root_lock);
712         mutex_unlock(&fs_info->ordered_operations_mutex);
713 }
714
715 /*
716  * Used to start IO or wait for a given ordered extent to finish.
717  *
718  * If wait is one, this effectively waits on page writeback for all the pages
719  * in the extent, and it waits on the io completion code to insert
720  * metadata into the btree corresponding to the extent
721  */
722 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
723 {
724         u64 start = entry->file_offset;
725         u64 end = start + entry->num_bytes - 1;
726         struct btrfs_inode *inode = BTRFS_I(entry->inode);
727         bool freespace_inode;
728
729         trace_btrfs_ordered_extent_start(inode, entry);
730
731         /*
732          * If this is a free space inode do not take the ordered extents lockdep
733          * map.
734          */
735         freespace_inode = btrfs_is_free_space_inode(inode);
736
737         /*
738          * pages in the range can be dirty, clean or writeback.  We
739          * start IO on any dirty ones so the wait doesn't stall waiting
740          * for the flusher thread to find them
741          */
742         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
743                 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
744         if (wait) {
745                 if (!freespace_inode)
746                         btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
747                 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
748                                                  &entry->flags));
749         }
750 }
751
752 /*
753  * Used to wait on ordered extents across a large range of bytes.
754  */
755 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
756 {
757         int ret = 0;
758         int ret_wb = 0;
759         u64 end;
760         u64 orig_end;
761         struct btrfs_ordered_extent *ordered;
762
763         if (start + len < start) {
764                 orig_end = INT_LIMIT(loff_t);
765         } else {
766                 orig_end = start + len - 1;
767                 if (orig_end > INT_LIMIT(loff_t))
768                         orig_end = INT_LIMIT(loff_t);
769         }
770
771         /* start IO across the range first to instantiate any delalloc
772          * extents
773          */
774         ret = btrfs_fdatawrite_range(inode, start, orig_end);
775         if (ret)
776                 return ret;
777
778         /*
779          * If we have a writeback error don't return immediately. Wait first
780          * for any ordered extents that haven't completed yet. This is to make
781          * sure no one can dirty the same page ranges and call writepages()
782          * before the ordered extents complete - to avoid failures (-EEXIST)
783          * when adding the new ordered extents to the ordered tree.
784          */
785         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
786
787         end = orig_end;
788         while (1) {
789                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
790                 if (!ordered)
791                         break;
792                 if (ordered->file_offset > orig_end) {
793                         btrfs_put_ordered_extent(ordered);
794                         break;
795                 }
796                 if (ordered->file_offset + ordered->num_bytes <= start) {
797                         btrfs_put_ordered_extent(ordered);
798                         break;
799                 }
800                 btrfs_start_ordered_extent(ordered, 1);
801                 end = ordered->file_offset;
802                 /*
803                  * If the ordered extent had an error save the error but don't
804                  * exit without waiting first for all other ordered extents in
805                  * the range to complete.
806                  */
807                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
808                         ret = -EIO;
809                 btrfs_put_ordered_extent(ordered);
810                 if (end == 0 || end == start)
811                         break;
812                 end--;
813         }
814         return ret_wb ? ret_wb : ret;
815 }
816
817 /*
818  * find an ordered extent corresponding to file_offset.  return NULL if
819  * nothing is found, otherwise take a reference on the extent and return it
820  */
821 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
822                                                          u64 file_offset)
823 {
824         struct btrfs_ordered_inode_tree *tree;
825         struct rb_node *node;
826         struct btrfs_ordered_extent *entry = NULL;
827         unsigned long flags;
828
829         tree = &inode->ordered_tree;
830         spin_lock_irqsave(&tree->lock, flags);
831         node = tree_search(tree, file_offset);
832         if (!node)
833                 goto out;
834
835         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
836         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
837                 entry = NULL;
838         if (entry) {
839                 refcount_inc(&entry->refs);
840                 trace_btrfs_ordered_extent_lookup(inode, entry);
841         }
842 out:
843         spin_unlock_irqrestore(&tree->lock, flags);
844         return entry;
845 }
846
847 /* Since the DIO code tries to lock a wide area we need to look for any ordered
848  * extents that exist in the range, rather than just the start of the range.
849  */
850 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
851                 struct btrfs_inode *inode, u64 file_offset, u64 len)
852 {
853         struct btrfs_ordered_inode_tree *tree;
854         struct rb_node *node;
855         struct btrfs_ordered_extent *entry = NULL;
856
857         tree = &inode->ordered_tree;
858         spin_lock_irq(&tree->lock);
859         node = tree_search(tree, file_offset);
860         if (!node) {
861                 node = tree_search(tree, file_offset + len);
862                 if (!node)
863                         goto out;
864         }
865
866         while (1) {
867                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
868                 if (range_overlaps(entry, file_offset, len))
869                         break;
870
871                 if (entry->file_offset >= file_offset + len) {
872                         entry = NULL;
873                         break;
874                 }
875                 entry = NULL;
876                 node = rb_next(node);
877                 if (!node)
878                         break;
879         }
880 out:
881         if (entry) {
882                 refcount_inc(&entry->refs);
883                 trace_btrfs_ordered_extent_lookup_range(inode, entry);
884         }
885         spin_unlock_irq(&tree->lock);
886         return entry;
887 }
888
889 /*
890  * Adds all ordered extents to the given list. The list ends up sorted by the
891  * file_offset of the ordered extents.
892  */
893 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
894                                            struct list_head *list)
895 {
896         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
897         struct rb_node *n;
898
899         ASSERT(inode_is_locked(&inode->vfs_inode));
900
901         spin_lock_irq(&tree->lock);
902         for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
903                 struct btrfs_ordered_extent *ordered;
904
905                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
906
907                 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
908                         continue;
909
910                 ASSERT(list_empty(&ordered->log_list));
911                 list_add_tail(&ordered->log_list, list);
912                 refcount_inc(&ordered->refs);
913                 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
914         }
915         spin_unlock_irq(&tree->lock);
916 }
917
918 /*
919  * lookup and return any extent before 'file_offset'.  NULL is returned
920  * if none is found
921  */
922 struct btrfs_ordered_extent *
923 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
924 {
925         struct btrfs_ordered_inode_tree *tree;
926         struct rb_node *node;
927         struct btrfs_ordered_extent *entry = NULL;
928
929         tree = &inode->ordered_tree;
930         spin_lock_irq(&tree->lock);
931         node = tree_search(tree, file_offset);
932         if (!node)
933                 goto out;
934
935         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
936         refcount_inc(&entry->refs);
937         trace_btrfs_ordered_extent_lookup_first(inode, entry);
938 out:
939         spin_unlock_irq(&tree->lock);
940         return entry;
941 }
942
943 /*
944  * Lookup the first ordered extent that overlaps the range
945  * [@file_offset, @file_offset + @len).
946  *
947  * The difference between this and btrfs_lookup_first_ordered_extent() is
948  * that this one won't return any ordered extent that does not overlap the range.
949  * And the difference against btrfs_lookup_ordered_extent() is, this function
950  * ensures the first ordered extent gets returned.
951  */
952 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
953                         struct btrfs_inode *inode, u64 file_offset, u64 len)
954 {
955         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
956         struct rb_node *node;
957         struct rb_node *cur;
958         struct rb_node *prev;
959         struct rb_node *next;
960         struct btrfs_ordered_extent *entry = NULL;
961
962         spin_lock_irq(&tree->lock);
963         node = tree->tree.rb_node;
964         /*
965          * Here we don't want to use tree_search() which will use tree->last
966          * and screw up the search order.
967          * And __tree_search() can't return the adjacent ordered extents
968          * either, thus here we do our own search.
969          */
970         while (node) {
971                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
972
973                 if (file_offset < entry->file_offset) {
974                         node = node->rb_left;
975                 } else if (file_offset >= entry_end(entry)) {
976                         node = node->rb_right;
977                 } else {
978                         /*
979                          * Direct hit, got an ordered extent that starts at
980                          * @file_offset
981                          */
982                         goto out;
983                 }
984         }
985         if (!entry) {
986                 /* Empty tree */
987                 goto out;
988         }
989
990         cur = &entry->rb_node;
991         /* We got an entry around @file_offset, check adjacent entries */
992         if (entry->file_offset < file_offset) {
993                 prev = cur;
994                 next = rb_next(cur);
995         } else {
996                 prev = rb_prev(cur);
997                 next = cur;
998         }
999         if (prev) {
1000                 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1001                 if (range_overlaps(entry, file_offset, len))
1002                         goto out;
1003         }
1004         if (next) {
1005                 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1006                 if (range_overlaps(entry, file_offset, len))
1007                         goto out;
1008         }
1009         /* No ordered extent in the range */
1010         entry = NULL;
1011 out:
1012         if (entry) {
1013                 refcount_inc(&entry->refs);
1014                 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1015         }
1016
1017         spin_unlock_irq(&tree->lock);
1018         return entry;
1019 }
1020
1021 /*
1022  * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
1023  * ordered extents in it are run to completion.
1024  *
1025  * @inode:        Inode whose ordered tree is to be searched
1026  * @start:        Beginning of range to flush
1027  * @end:          Last byte of range to lock
1028  * @cached_state: If passed, will return the extent state responsible for the
1029  * locked range. It's the caller's responsibility to free the cached state.
1030  *
1031  * This function always returns with the given range locked, ensuring after it's
1032  * called no order extent can be pending.
1033  */
1034 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1035                                         u64 end,
1036                                         struct extent_state **cached_state)
1037 {
1038         struct btrfs_ordered_extent *ordered;
1039         struct extent_state *cache = NULL;
1040         struct extent_state **cachedp = &cache;
1041
1042         if (cached_state)
1043                 cachedp = cached_state;
1044
1045         while (1) {
1046                 lock_extent(&inode->io_tree, start, end, cachedp);
1047                 ordered = btrfs_lookup_ordered_range(inode, start,
1048                                                      end - start + 1);
1049                 if (!ordered) {
1050                         /*
1051                          * If no external cached_state has been passed then
1052                          * decrement the extra ref taken for cachedp since we
1053                          * aren't exposing it outside of this function
1054                          */
1055                         if (!cached_state)
1056                                 refcount_dec(&cache->refs);
1057                         break;
1058                 }
1059                 unlock_extent(&inode->io_tree, start, end, cachedp);
1060                 btrfs_start_ordered_extent(ordered, 1);
1061                 btrfs_put_ordered_extent(ordered);
1062         }
1063 }
1064
1065 /*
1066  * Lock the passed range and ensure all pending ordered extents in it are run
1067  * to completion in nowait mode.
1068  *
1069  * Return true if btrfs_lock_ordered_range does not return any extents,
1070  * otherwise false.
1071  */
1072 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end)
1073 {
1074         struct btrfs_ordered_extent *ordered;
1075
1076         if (!try_lock_extent(&inode->io_tree, start, end))
1077                 return false;
1078
1079         ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1080         if (!ordered)
1081                 return true;
1082
1083         btrfs_put_ordered_extent(ordered);
1084         unlock_extent(&inode->io_tree, start, end, NULL);
1085
1086         return false;
1087 }
1088
1089
1090 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
1091                                 u64 len)
1092 {
1093         struct inode *inode = ordered->inode;
1094         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1095         u64 file_offset = ordered->file_offset + pos;
1096         u64 disk_bytenr = ordered->disk_bytenr + pos;
1097         unsigned long flags = ordered->flags & BTRFS_ORDERED_TYPE_FLAGS;
1098
1099         /*
1100          * The splitting extent is already counted and will be added again in
1101          * btrfs_add_ordered_extent_*(). Subtract len to avoid double counting.
1102          */
1103         percpu_counter_add_batch(&fs_info->ordered_bytes, -len,
1104                                  fs_info->delalloc_batch);
1105         WARN_ON_ONCE(flags & (1 << BTRFS_ORDERED_COMPRESSED));
1106         return btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, len, len,
1107                                         disk_bytenr, len, 0, flags,
1108                                         ordered->compress_type);
1109 }
1110
1111 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
1112                                 u64 post)
1113 {
1114         struct inode *inode = ordered->inode;
1115         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1116         struct rb_node *node;
1117         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1118         int ret = 0;
1119
1120         trace_btrfs_ordered_extent_split(BTRFS_I(inode), ordered);
1121
1122         spin_lock_irq(&tree->lock);
1123         /* Remove from tree once */
1124         node = &ordered->rb_node;
1125         rb_erase(node, &tree->tree);
1126         RB_CLEAR_NODE(node);
1127         if (tree->last == node)
1128                 tree->last = NULL;
1129
1130         ordered->file_offset += pre;
1131         ordered->disk_bytenr += pre;
1132         ordered->num_bytes -= (pre + post);
1133         ordered->disk_num_bytes -= (pre + post);
1134         ordered->bytes_left -= (pre + post);
1135
1136         /* Re-insert the node */
1137         node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1138         if (node)
1139                 btrfs_panic(fs_info, -EEXIST,
1140                         "zoned: inconsistency in ordered tree at offset %llu",
1141                             ordered->file_offset);
1142
1143         spin_unlock_irq(&tree->lock);
1144
1145         if (pre)
1146                 ret = clone_ordered_extent(ordered, 0, pre);
1147         if (ret == 0 && post)
1148                 ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1149                                            post);
1150
1151         return ret;
1152 }
1153
1154 int __init ordered_data_init(void)
1155 {
1156         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1157                                      sizeof(struct btrfs_ordered_extent), 0,
1158                                      SLAB_MEM_SPREAD,
1159                                      NULL);
1160         if (!btrfs_ordered_extent_cache)
1161                 return -ENOMEM;
1162
1163         return 0;
1164 }
1165
1166 void __cold ordered_data_exit(void)
1167 {
1168         kmem_cache_destroy(btrfs_ordered_extent_cache);
1169 }