cifs: fix leak of iface for primary channel
[platform/kernel/linux-starfive.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "super.h"
23
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25
26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28         if (entry->file_offset + entry->num_bytes < entry->file_offset)
29                 return (u64)-1;
30         return entry->file_offset + entry->num_bytes;
31 }
32
33 /* returns NULL if the insertion worked, or it returns the node it did find
34  * in the tree
35  */
36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37                                    struct rb_node *node)
38 {
39         struct rb_node **p = &root->rb_node;
40         struct rb_node *parent = NULL;
41         struct btrfs_ordered_extent *entry;
42
43         while (*p) {
44                 parent = *p;
45                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46
47                 if (file_offset < entry->file_offset)
48                         p = &(*p)->rb_left;
49                 else if (file_offset >= entry_end(entry))
50                         p = &(*p)->rb_right;
51                 else
52                         return parent;
53         }
54
55         rb_link_node(node, parent, p);
56         rb_insert_color(node, root);
57         return NULL;
58 }
59
60 /*
61  * look for a given offset in the tree, and if it can't be found return the
62  * first lesser offset
63  */
64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65                                      struct rb_node **prev_ret)
66 {
67         struct rb_node *n = root->rb_node;
68         struct rb_node *prev = NULL;
69         struct rb_node *test;
70         struct btrfs_ordered_extent *entry;
71         struct btrfs_ordered_extent *prev_entry = NULL;
72
73         while (n) {
74                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75                 prev = n;
76                 prev_entry = entry;
77
78                 if (file_offset < entry->file_offset)
79                         n = n->rb_left;
80                 else if (file_offset >= entry_end(entry))
81                         n = n->rb_right;
82                 else
83                         return n;
84         }
85         if (!prev_ret)
86                 return NULL;
87
88         while (prev && file_offset >= entry_end(prev_entry)) {
89                 test = rb_next(prev);
90                 if (!test)
91                         break;
92                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93                                       rb_node);
94                 if (file_offset < entry_end(prev_entry))
95                         break;
96
97                 prev = test;
98         }
99         if (prev)
100                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101                                       rb_node);
102         while (prev && file_offset < entry_end(prev_entry)) {
103                 test = rb_prev(prev);
104                 if (!test)
105                         break;
106                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107                                       rb_node);
108                 prev = test;
109         }
110         *prev_ret = prev;
111         return NULL;
112 }
113
114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115                           u64 len)
116 {
117         if (file_offset + len <= entry->file_offset ||
118             entry->file_offset + entry->num_bytes <= file_offset)
119                 return 0;
120         return 1;
121 }
122
123 /*
124  * look find the first ordered struct that has this offset, otherwise
125  * the first one less than this offset
126  */
127 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
128                                           u64 file_offset)
129 {
130         struct rb_root *root = &tree->tree;
131         struct rb_node *prev = NULL;
132         struct rb_node *ret;
133         struct btrfs_ordered_extent *entry;
134
135         if (tree->last) {
136                 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
137                                  rb_node);
138                 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
139                         return tree->last;
140         }
141         ret = __tree_search(root, file_offset, &prev);
142         if (!ret)
143                 ret = prev;
144         if (ret)
145                 tree->last = ret;
146         return ret;
147 }
148
149 static struct btrfs_ordered_extent *alloc_ordered_extent(
150                         struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
151                         u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
152                         u64 offset, unsigned long flags, int compress_type)
153 {
154         struct btrfs_ordered_extent *entry;
155         int ret;
156
157         if (flags &
158             ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
159                 /* For nocow write, we can release the qgroup rsv right now */
160                 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
161                 if (ret < 0)
162                         return ERR_PTR(ret);
163         } else {
164                 /*
165                  * The ordered extent has reserved qgroup space, release now
166                  * and pass the reserved number for qgroup_record to free.
167                  */
168                 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
169                 if (ret < 0)
170                         return ERR_PTR(ret);
171         }
172         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
173         if (!entry)
174                 return ERR_PTR(-ENOMEM);
175
176         entry->file_offset = file_offset;
177         entry->num_bytes = num_bytes;
178         entry->ram_bytes = ram_bytes;
179         entry->disk_bytenr = disk_bytenr;
180         entry->disk_num_bytes = disk_num_bytes;
181         entry->offset = offset;
182         entry->bytes_left = num_bytes;
183         entry->inode = igrab(&inode->vfs_inode);
184         entry->compress_type = compress_type;
185         entry->truncated_len = (u64)-1;
186         entry->qgroup_rsv = ret;
187         entry->flags = flags;
188         refcount_set(&entry->refs, 1);
189         init_waitqueue_head(&entry->wait);
190         INIT_LIST_HEAD(&entry->list);
191         INIT_LIST_HEAD(&entry->log_list);
192         INIT_LIST_HEAD(&entry->root_extent_list);
193         INIT_LIST_HEAD(&entry->work_list);
194         init_completion(&entry->completion);
195
196         /*
197          * We don't need the count_max_extents here, we can assume that all of
198          * that work has been done at higher layers, so this is truly the
199          * smallest the extent is going to get.
200          */
201         spin_lock(&inode->lock);
202         btrfs_mod_outstanding_extents(inode, 1);
203         spin_unlock(&inode->lock);
204
205         return entry;
206 }
207
208 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
209 {
210         struct btrfs_inode *inode = BTRFS_I(entry->inode);
211         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
212         struct btrfs_root *root = inode->root;
213         struct btrfs_fs_info *fs_info = root->fs_info;
214         struct rb_node *node;
215
216         trace_btrfs_ordered_extent_add(inode, entry);
217
218         percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
219                                  fs_info->delalloc_batch);
220
221         /* One ref for the tree. */
222         refcount_inc(&entry->refs);
223
224         spin_lock_irq(&tree->lock);
225         node = tree_insert(&tree->tree, entry->file_offset, &entry->rb_node);
226         if (node)
227                 btrfs_panic(fs_info, -EEXIST,
228                                 "inconsistency in ordered tree at offset %llu",
229                                 entry->file_offset);
230         spin_unlock_irq(&tree->lock);
231
232         spin_lock(&root->ordered_extent_lock);
233         list_add_tail(&entry->root_extent_list,
234                       &root->ordered_extents);
235         root->nr_ordered_extents++;
236         if (root->nr_ordered_extents == 1) {
237                 spin_lock(&fs_info->ordered_root_lock);
238                 BUG_ON(!list_empty(&root->ordered_root));
239                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
240                 spin_unlock(&fs_info->ordered_root_lock);
241         }
242         spin_unlock(&root->ordered_extent_lock);
243 }
244
245 /*
246  * Add an ordered extent to the per-inode tree.
247  *
248  * @inode:           Inode that this extent is for.
249  * @file_offset:     Logical offset in file where the extent starts.
250  * @num_bytes:       Logical length of extent in file.
251  * @ram_bytes:       Full length of unencoded data.
252  * @disk_bytenr:     Offset of extent on disk.
253  * @disk_num_bytes:  Size of extent on disk.
254  * @offset:          Offset into unencoded data where file data starts.
255  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
256  * @compress_type:   Compression algorithm used for data.
257  *
258  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
259  * tree is given a single reference on the ordered extent that was inserted, and
260  * the returned pointer is given a second reference.
261  *
262  * Return: the new ordered extent or error pointer.
263  */
264 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
265                         struct btrfs_inode *inode, u64 file_offset,
266                         u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
267                         u64 disk_num_bytes, u64 offset, unsigned long flags,
268                         int compress_type)
269 {
270         struct btrfs_ordered_extent *entry;
271
272         ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
273
274         entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
275                                      disk_bytenr, disk_num_bytes, offset, flags,
276                                      compress_type);
277         if (!IS_ERR(entry))
278                 insert_ordered_extent(entry);
279         return entry;
280 }
281
282 /*
283  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
284  * when an ordered extent is finished.  If the list covers more than one
285  * ordered extent, it is split across multiples.
286  */
287 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
288                            struct btrfs_ordered_sum *sum)
289 {
290         struct btrfs_ordered_inode_tree *tree;
291
292         tree = &BTRFS_I(entry->inode)->ordered_tree;
293         spin_lock_irq(&tree->lock);
294         list_add_tail(&sum->list, &entry->list);
295         spin_unlock_irq(&tree->lock);
296 }
297
298 static void finish_ordered_fn(struct btrfs_work *work)
299 {
300         struct btrfs_ordered_extent *ordered_extent;
301
302         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
303         btrfs_finish_ordered_io(ordered_extent);
304 }
305
306 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
307                                       struct page *page, u64 file_offset,
308                                       u64 len, bool uptodate)
309 {
310         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
311         struct btrfs_fs_info *fs_info = inode->root->fs_info;
312
313         lockdep_assert_held(&inode->ordered_tree.lock);
314
315         if (page) {
316                 ASSERT(page->mapping);
317                 ASSERT(page_offset(page) <= file_offset);
318                 ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
319
320                 /*
321                  * Ordered (Private2) bit indicates whether we still have
322                  * pending io unfinished for the ordered extent.
323                  *
324                  * If there's no such bit, we need to skip to next range.
325                  */
326                 if (!btrfs_page_test_ordered(fs_info, page, file_offset, len))
327                         return false;
328                 btrfs_page_clear_ordered(fs_info, page, file_offset, len);
329         }
330
331         /* Now we're fine to update the accounting. */
332         if (WARN_ON_ONCE(len > ordered->bytes_left)) {
333                 btrfs_crit(fs_info,
334 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
335                            inode->root->root_key.objectid, btrfs_ino(inode),
336                            ordered->file_offset, ordered->num_bytes,
337                            len, ordered->bytes_left);
338                 ordered->bytes_left = 0;
339         } else {
340                 ordered->bytes_left -= len;
341         }
342
343         if (!uptodate)
344                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
345
346         if (ordered->bytes_left)
347                 return false;
348
349         /*
350          * All the IO of the ordered extent is finished, we need to queue
351          * the finish_func to be executed.
352          */
353         set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
354         cond_wake_up(&ordered->wait);
355         refcount_inc(&ordered->refs);
356         trace_btrfs_ordered_extent_mark_finished(inode, ordered);
357         return true;
358 }
359
360 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
361 {
362         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
363         struct btrfs_fs_info *fs_info = inode->root->fs_info;
364         struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
365                 fs_info->endio_freespace_worker : fs_info->endio_write_workers;
366
367         btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, NULL);
368         btrfs_queue_work(wq, &ordered->work);
369 }
370
371 bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
372                                  struct page *page, u64 file_offset, u64 len,
373                                  bool uptodate)
374 {
375         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
376         unsigned long flags;
377         bool ret;
378
379         trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
380
381         spin_lock_irqsave(&inode->ordered_tree.lock, flags);
382         ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
383         spin_unlock_irqrestore(&inode->ordered_tree.lock, flags);
384
385         if (ret)
386                 btrfs_queue_ordered_fn(ordered);
387         return ret;
388 }
389
390 /*
391  * Mark all ordered extents io inside the specified range finished.
392  *
393  * @page:        The involved page for the operation.
394  *               For uncompressed buffered IO, the page status also needs to be
395  *               updated to indicate whether the pending ordered io is finished.
396  *               Can be NULL for direct IO and compressed write.
397  *               For these cases, callers are ensured they won't execute the
398  *               endio function twice.
399  *
400  * This function is called for endio, thus the range must have ordered
401  * extent(s) covering it.
402  */
403 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
404                                     struct page *page, u64 file_offset,
405                                     u64 num_bytes, bool uptodate)
406 {
407         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
408         struct rb_node *node;
409         struct btrfs_ordered_extent *entry = NULL;
410         unsigned long flags;
411         u64 cur = file_offset;
412
413         trace_btrfs_writepage_end_io_hook(inode, file_offset,
414                                           file_offset + num_bytes - 1,
415                                           uptodate);
416
417         spin_lock_irqsave(&tree->lock, flags);
418         while (cur < file_offset + num_bytes) {
419                 u64 entry_end;
420                 u64 end;
421                 u32 len;
422
423                 node = tree_search(tree, cur);
424                 /* No ordered extents at all */
425                 if (!node)
426                         break;
427
428                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
429                 entry_end = entry->file_offset + entry->num_bytes;
430                 /*
431                  * |<-- OE --->|  |
432                  *                cur
433                  * Go to next OE.
434                  */
435                 if (cur >= entry_end) {
436                         node = rb_next(node);
437                         /* No more ordered extents, exit */
438                         if (!node)
439                                 break;
440                         entry = rb_entry(node, struct btrfs_ordered_extent,
441                                          rb_node);
442
443                         /* Go to next ordered extent and continue */
444                         cur = entry->file_offset;
445                         continue;
446                 }
447                 /*
448                  * |    |<--- OE --->|
449                  * cur
450                  * Go to the start of OE.
451                  */
452                 if (cur < entry->file_offset) {
453                         cur = entry->file_offset;
454                         continue;
455                 }
456
457                 /*
458                  * Now we are definitely inside one ordered extent.
459                  *
460                  * |<--- OE --->|
461                  *      |
462                  *      cur
463                  */
464                 end = min(entry->file_offset + entry->num_bytes,
465                           file_offset + num_bytes) - 1;
466                 ASSERT(end + 1 - cur < U32_MAX);
467                 len = end + 1 - cur;
468
469                 if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
470                         spin_unlock_irqrestore(&tree->lock, flags);
471                         btrfs_queue_ordered_fn(entry);
472                         spin_lock_irqsave(&tree->lock, flags);
473                 }
474                 cur += len;
475         }
476         spin_unlock_irqrestore(&tree->lock, flags);
477 }
478
479 /*
480  * Finish IO for one ordered extent across a given range.  The range can only
481  * contain one ordered extent.
482  *
483  * @cached:      The cached ordered extent. If not NULL, we can skip the tree
484  *               search and use the ordered extent directly.
485  *               Will be also used to store the finished ordered extent.
486  * @file_offset: File offset for the finished IO
487  * @io_size:     Length of the finish IO range
488  *
489  * Return true if the ordered extent is finished in the range, and update
490  * @cached.
491  * Return false otherwise.
492  *
493  * NOTE: The range can NOT cross multiple ordered extents.
494  * Thus caller should ensure the range doesn't cross ordered extents.
495  */
496 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
497                                     struct btrfs_ordered_extent **cached,
498                                     u64 file_offset, u64 io_size)
499 {
500         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
501         struct rb_node *node;
502         struct btrfs_ordered_extent *entry = NULL;
503         unsigned long flags;
504         bool finished = false;
505
506         spin_lock_irqsave(&tree->lock, flags);
507         if (cached && *cached) {
508                 entry = *cached;
509                 goto have_entry;
510         }
511
512         node = tree_search(tree, file_offset);
513         if (!node)
514                 goto out;
515
516         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
517 have_entry:
518         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
519                 goto out;
520
521         if (io_size > entry->bytes_left)
522                 btrfs_crit(inode->root->fs_info,
523                            "bad ordered accounting left %llu size %llu",
524                        entry->bytes_left, io_size);
525
526         entry->bytes_left -= io_size;
527
528         if (entry->bytes_left == 0) {
529                 /*
530                  * Ensure only one caller can set the flag and finished_ret
531                  * accordingly
532                  */
533                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
534                 /* test_and_set_bit implies a barrier */
535                 cond_wake_up_nomb(&entry->wait);
536         }
537 out:
538         if (finished && cached && entry) {
539                 *cached = entry;
540                 refcount_inc(&entry->refs);
541                 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
542         }
543         spin_unlock_irqrestore(&tree->lock, flags);
544         return finished;
545 }
546
547 /*
548  * used to drop a reference on an ordered extent.  This will free
549  * the extent if the last reference is dropped
550  */
551 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
552 {
553         struct list_head *cur;
554         struct btrfs_ordered_sum *sum;
555
556         trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
557
558         if (refcount_dec_and_test(&entry->refs)) {
559                 ASSERT(list_empty(&entry->root_extent_list));
560                 ASSERT(list_empty(&entry->log_list));
561                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
562                 if (entry->inode)
563                         btrfs_add_delayed_iput(BTRFS_I(entry->inode));
564                 while (!list_empty(&entry->list)) {
565                         cur = entry->list.next;
566                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
567                         list_del(&sum->list);
568                         kvfree(sum);
569                 }
570                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
571         }
572 }
573
574 /*
575  * remove an ordered extent from the tree.  No references are dropped
576  * and waiters are woken up.
577  */
578 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
579                                  struct btrfs_ordered_extent *entry)
580 {
581         struct btrfs_ordered_inode_tree *tree;
582         struct btrfs_root *root = btrfs_inode->root;
583         struct btrfs_fs_info *fs_info = root->fs_info;
584         struct rb_node *node;
585         bool pending;
586         bool freespace_inode;
587
588         /*
589          * If this is a free space inode the thread has not acquired the ordered
590          * extents lockdep map.
591          */
592         freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
593
594         btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
595         /* This is paired with btrfs_alloc_ordered_extent. */
596         spin_lock(&btrfs_inode->lock);
597         btrfs_mod_outstanding_extents(btrfs_inode, -1);
598         spin_unlock(&btrfs_inode->lock);
599         if (root != fs_info->tree_root) {
600                 u64 release;
601
602                 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
603                         release = entry->disk_num_bytes;
604                 else
605                         release = entry->num_bytes;
606                 btrfs_delalloc_release_metadata(btrfs_inode, release, false);
607         }
608
609         percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
610                                  fs_info->delalloc_batch);
611
612         tree = &btrfs_inode->ordered_tree;
613         spin_lock_irq(&tree->lock);
614         node = &entry->rb_node;
615         rb_erase(node, &tree->tree);
616         RB_CLEAR_NODE(node);
617         if (tree->last == node)
618                 tree->last = NULL;
619         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
620         pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
621         spin_unlock_irq(&tree->lock);
622
623         /*
624          * The current running transaction is waiting on us, we need to let it
625          * know that we're complete and wake it up.
626          */
627         if (pending) {
628                 struct btrfs_transaction *trans;
629
630                 /*
631                  * The checks for trans are just a formality, it should be set,
632                  * but if it isn't we don't want to deref/assert under the spin
633                  * lock, so be nice and check if trans is set, but ASSERT() so
634                  * if it isn't set a developer will notice.
635                  */
636                 spin_lock(&fs_info->trans_lock);
637                 trans = fs_info->running_transaction;
638                 if (trans)
639                         refcount_inc(&trans->use_count);
640                 spin_unlock(&fs_info->trans_lock);
641
642                 ASSERT(trans || BTRFS_FS_ERROR(fs_info));
643                 if (trans) {
644                         if (atomic_dec_and_test(&trans->pending_ordered))
645                                 wake_up(&trans->pending_wait);
646                         btrfs_put_transaction(trans);
647                 }
648         }
649
650         btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
651
652         spin_lock(&root->ordered_extent_lock);
653         list_del_init(&entry->root_extent_list);
654         root->nr_ordered_extents--;
655
656         trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
657
658         if (!root->nr_ordered_extents) {
659                 spin_lock(&fs_info->ordered_root_lock);
660                 BUG_ON(list_empty(&root->ordered_root));
661                 list_del_init(&root->ordered_root);
662                 spin_unlock(&fs_info->ordered_root_lock);
663         }
664         spin_unlock(&root->ordered_extent_lock);
665         wake_up(&entry->wait);
666         if (!freespace_inode)
667                 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
668 }
669
670 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
671 {
672         struct btrfs_ordered_extent *ordered;
673
674         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
675         btrfs_start_ordered_extent(ordered);
676         complete(&ordered->completion);
677 }
678
679 /*
680  * wait for all the ordered extents in a root.  This is done when balancing
681  * space between drives.
682  */
683 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
684                                const u64 range_start, const u64 range_len)
685 {
686         struct btrfs_fs_info *fs_info = root->fs_info;
687         LIST_HEAD(splice);
688         LIST_HEAD(skipped);
689         LIST_HEAD(works);
690         struct btrfs_ordered_extent *ordered, *next;
691         u64 count = 0;
692         const u64 range_end = range_start + range_len;
693
694         mutex_lock(&root->ordered_extent_mutex);
695         spin_lock(&root->ordered_extent_lock);
696         list_splice_init(&root->ordered_extents, &splice);
697         while (!list_empty(&splice) && nr) {
698                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
699                                            root_extent_list);
700
701                 if (range_end <= ordered->disk_bytenr ||
702                     ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
703                         list_move_tail(&ordered->root_extent_list, &skipped);
704                         cond_resched_lock(&root->ordered_extent_lock);
705                         continue;
706                 }
707
708                 list_move_tail(&ordered->root_extent_list,
709                                &root->ordered_extents);
710                 refcount_inc(&ordered->refs);
711                 spin_unlock(&root->ordered_extent_lock);
712
713                 btrfs_init_work(&ordered->flush_work,
714                                 btrfs_run_ordered_extent_work, NULL, NULL);
715                 list_add_tail(&ordered->work_list, &works);
716                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
717
718                 cond_resched();
719                 spin_lock(&root->ordered_extent_lock);
720                 if (nr != U64_MAX)
721                         nr--;
722                 count++;
723         }
724         list_splice_tail(&skipped, &root->ordered_extents);
725         list_splice_tail(&splice, &root->ordered_extents);
726         spin_unlock(&root->ordered_extent_lock);
727
728         list_for_each_entry_safe(ordered, next, &works, work_list) {
729                 list_del_init(&ordered->work_list);
730                 wait_for_completion(&ordered->completion);
731                 btrfs_put_ordered_extent(ordered);
732                 cond_resched();
733         }
734         mutex_unlock(&root->ordered_extent_mutex);
735
736         return count;
737 }
738
739 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
740                              const u64 range_start, const u64 range_len)
741 {
742         struct btrfs_root *root;
743         LIST_HEAD(splice);
744         u64 done;
745
746         mutex_lock(&fs_info->ordered_operations_mutex);
747         spin_lock(&fs_info->ordered_root_lock);
748         list_splice_init(&fs_info->ordered_roots, &splice);
749         while (!list_empty(&splice) && nr) {
750                 root = list_first_entry(&splice, struct btrfs_root,
751                                         ordered_root);
752                 root = btrfs_grab_root(root);
753                 BUG_ON(!root);
754                 list_move_tail(&root->ordered_root,
755                                &fs_info->ordered_roots);
756                 spin_unlock(&fs_info->ordered_root_lock);
757
758                 done = btrfs_wait_ordered_extents(root, nr,
759                                                   range_start, range_len);
760                 btrfs_put_root(root);
761
762                 spin_lock(&fs_info->ordered_root_lock);
763                 if (nr != U64_MAX) {
764                         nr -= done;
765                 }
766         }
767         list_splice_tail(&splice, &fs_info->ordered_roots);
768         spin_unlock(&fs_info->ordered_root_lock);
769         mutex_unlock(&fs_info->ordered_operations_mutex);
770 }
771
772 /*
773  * Start IO and wait for a given ordered extent to finish.
774  *
775  * Wait on page writeback for all the pages in the extent and the IO completion
776  * code to insert metadata into the btree corresponding to the extent.
777  */
778 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
779 {
780         u64 start = entry->file_offset;
781         u64 end = start + entry->num_bytes - 1;
782         struct btrfs_inode *inode = BTRFS_I(entry->inode);
783         bool freespace_inode;
784
785         trace_btrfs_ordered_extent_start(inode, entry);
786
787         /*
788          * If this is a free space inode do not take the ordered extents lockdep
789          * map.
790          */
791         freespace_inode = btrfs_is_free_space_inode(inode);
792
793         /*
794          * pages in the range can be dirty, clean or writeback.  We
795          * start IO on any dirty ones so the wait doesn't stall waiting
796          * for the flusher thread to find them
797          */
798         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
799                 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
800
801         if (!freespace_inode)
802                 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
803         wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
804 }
805
806 /*
807  * Used to wait on ordered extents across a large range of bytes.
808  */
809 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
810 {
811         int ret = 0;
812         int ret_wb = 0;
813         u64 end;
814         u64 orig_end;
815         struct btrfs_ordered_extent *ordered;
816
817         if (start + len < start) {
818                 orig_end = OFFSET_MAX;
819         } else {
820                 orig_end = start + len - 1;
821                 if (orig_end > OFFSET_MAX)
822                         orig_end = OFFSET_MAX;
823         }
824
825         /* start IO across the range first to instantiate any delalloc
826          * extents
827          */
828         ret = btrfs_fdatawrite_range(inode, start, orig_end);
829         if (ret)
830                 return ret;
831
832         /*
833          * If we have a writeback error don't return immediately. Wait first
834          * for any ordered extents that haven't completed yet. This is to make
835          * sure no one can dirty the same page ranges and call writepages()
836          * before the ordered extents complete - to avoid failures (-EEXIST)
837          * when adding the new ordered extents to the ordered tree.
838          */
839         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
840
841         end = orig_end;
842         while (1) {
843                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
844                 if (!ordered)
845                         break;
846                 if (ordered->file_offset > orig_end) {
847                         btrfs_put_ordered_extent(ordered);
848                         break;
849                 }
850                 if (ordered->file_offset + ordered->num_bytes <= start) {
851                         btrfs_put_ordered_extent(ordered);
852                         break;
853                 }
854                 btrfs_start_ordered_extent(ordered);
855                 end = ordered->file_offset;
856                 /*
857                  * If the ordered extent had an error save the error but don't
858                  * exit without waiting first for all other ordered extents in
859                  * the range to complete.
860                  */
861                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
862                         ret = -EIO;
863                 btrfs_put_ordered_extent(ordered);
864                 if (end == 0 || end == start)
865                         break;
866                 end--;
867         }
868         return ret_wb ? ret_wb : ret;
869 }
870
871 /*
872  * find an ordered extent corresponding to file_offset.  return NULL if
873  * nothing is found, otherwise take a reference on the extent and return it
874  */
875 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
876                                                          u64 file_offset)
877 {
878         struct btrfs_ordered_inode_tree *tree;
879         struct rb_node *node;
880         struct btrfs_ordered_extent *entry = NULL;
881         unsigned long flags;
882
883         tree = &inode->ordered_tree;
884         spin_lock_irqsave(&tree->lock, flags);
885         node = tree_search(tree, file_offset);
886         if (!node)
887                 goto out;
888
889         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
890         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
891                 entry = NULL;
892         if (entry) {
893                 refcount_inc(&entry->refs);
894                 trace_btrfs_ordered_extent_lookup(inode, entry);
895         }
896 out:
897         spin_unlock_irqrestore(&tree->lock, flags);
898         return entry;
899 }
900
901 /* Since the DIO code tries to lock a wide area we need to look for any ordered
902  * extents that exist in the range, rather than just the start of the range.
903  */
904 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
905                 struct btrfs_inode *inode, u64 file_offset, u64 len)
906 {
907         struct btrfs_ordered_inode_tree *tree;
908         struct rb_node *node;
909         struct btrfs_ordered_extent *entry = NULL;
910
911         tree = &inode->ordered_tree;
912         spin_lock_irq(&tree->lock);
913         node = tree_search(tree, file_offset);
914         if (!node) {
915                 node = tree_search(tree, file_offset + len);
916                 if (!node)
917                         goto out;
918         }
919
920         while (1) {
921                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
922                 if (range_overlaps(entry, file_offset, len))
923                         break;
924
925                 if (entry->file_offset >= file_offset + len) {
926                         entry = NULL;
927                         break;
928                 }
929                 entry = NULL;
930                 node = rb_next(node);
931                 if (!node)
932                         break;
933         }
934 out:
935         if (entry) {
936                 refcount_inc(&entry->refs);
937                 trace_btrfs_ordered_extent_lookup_range(inode, entry);
938         }
939         spin_unlock_irq(&tree->lock);
940         return entry;
941 }
942
943 /*
944  * Adds all ordered extents to the given list. The list ends up sorted by the
945  * file_offset of the ordered extents.
946  */
947 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
948                                            struct list_head *list)
949 {
950         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
951         struct rb_node *n;
952
953         ASSERT(inode_is_locked(&inode->vfs_inode));
954
955         spin_lock_irq(&tree->lock);
956         for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
957                 struct btrfs_ordered_extent *ordered;
958
959                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
960
961                 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
962                         continue;
963
964                 ASSERT(list_empty(&ordered->log_list));
965                 list_add_tail(&ordered->log_list, list);
966                 refcount_inc(&ordered->refs);
967                 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
968         }
969         spin_unlock_irq(&tree->lock);
970 }
971
972 /*
973  * lookup and return any extent before 'file_offset'.  NULL is returned
974  * if none is found
975  */
976 struct btrfs_ordered_extent *
977 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
978 {
979         struct btrfs_ordered_inode_tree *tree;
980         struct rb_node *node;
981         struct btrfs_ordered_extent *entry = NULL;
982
983         tree = &inode->ordered_tree;
984         spin_lock_irq(&tree->lock);
985         node = tree_search(tree, file_offset);
986         if (!node)
987                 goto out;
988
989         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
990         refcount_inc(&entry->refs);
991         trace_btrfs_ordered_extent_lookup_first(inode, entry);
992 out:
993         spin_unlock_irq(&tree->lock);
994         return entry;
995 }
996
997 /*
998  * Lookup the first ordered extent that overlaps the range
999  * [@file_offset, @file_offset + @len).
1000  *
1001  * The difference between this and btrfs_lookup_first_ordered_extent() is
1002  * that this one won't return any ordered extent that does not overlap the range.
1003  * And the difference against btrfs_lookup_ordered_extent() is, this function
1004  * ensures the first ordered extent gets returned.
1005  */
1006 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
1007                         struct btrfs_inode *inode, u64 file_offset, u64 len)
1008 {
1009         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
1010         struct rb_node *node;
1011         struct rb_node *cur;
1012         struct rb_node *prev;
1013         struct rb_node *next;
1014         struct btrfs_ordered_extent *entry = NULL;
1015
1016         spin_lock_irq(&tree->lock);
1017         node = tree->tree.rb_node;
1018         /*
1019          * Here we don't want to use tree_search() which will use tree->last
1020          * and screw up the search order.
1021          * And __tree_search() can't return the adjacent ordered extents
1022          * either, thus here we do our own search.
1023          */
1024         while (node) {
1025                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1026
1027                 if (file_offset < entry->file_offset) {
1028                         node = node->rb_left;
1029                 } else if (file_offset >= entry_end(entry)) {
1030                         node = node->rb_right;
1031                 } else {
1032                         /*
1033                          * Direct hit, got an ordered extent that starts at
1034                          * @file_offset
1035                          */
1036                         goto out;
1037                 }
1038         }
1039         if (!entry) {
1040                 /* Empty tree */
1041                 goto out;
1042         }
1043
1044         cur = &entry->rb_node;
1045         /* We got an entry around @file_offset, check adjacent entries */
1046         if (entry->file_offset < file_offset) {
1047                 prev = cur;
1048                 next = rb_next(cur);
1049         } else {
1050                 prev = rb_prev(cur);
1051                 next = cur;
1052         }
1053         if (prev) {
1054                 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1055                 if (range_overlaps(entry, file_offset, len))
1056                         goto out;
1057         }
1058         if (next) {
1059                 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1060                 if (range_overlaps(entry, file_offset, len))
1061                         goto out;
1062         }
1063         /* No ordered extent in the range */
1064         entry = NULL;
1065 out:
1066         if (entry) {
1067                 refcount_inc(&entry->refs);
1068                 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1069         }
1070
1071         spin_unlock_irq(&tree->lock);
1072         return entry;
1073 }
1074
1075 /*
1076  * Lock the passed range and ensures all pending ordered extents in it are run
1077  * to completion.
1078  *
1079  * @inode:        Inode whose ordered tree is to be searched
1080  * @start:        Beginning of range to flush
1081  * @end:          Last byte of range to lock
1082  * @cached_state: If passed, will return the extent state responsible for the
1083  *                locked range. It's the caller's responsibility to free the
1084  *                cached state.
1085  *
1086  * Always return with the given range locked, ensuring after it's called no
1087  * order extent can be pending.
1088  */
1089 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1090                                         u64 end,
1091                                         struct extent_state **cached_state)
1092 {
1093         struct btrfs_ordered_extent *ordered;
1094         struct extent_state *cache = NULL;
1095         struct extent_state **cachedp = &cache;
1096
1097         if (cached_state)
1098                 cachedp = cached_state;
1099
1100         while (1) {
1101                 lock_extent(&inode->io_tree, start, end, cachedp);
1102                 ordered = btrfs_lookup_ordered_range(inode, start,
1103                                                      end - start + 1);
1104                 if (!ordered) {
1105                         /*
1106                          * If no external cached_state has been passed then
1107                          * decrement the extra ref taken for cachedp since we
1108                          * aren't exposing it outside of this function
1109                          */
1110                         if (!cached_state)
1111                                 refcount_dec(&cache->refs);
1112                         break;
1113                 }
1114                 unlock_extent(&inode->io_tree, start, end, cachedp);
1115                 btrfs_start_ordered_extent(ordered);
1116                 btrfs_put_ordered_extent(ordered);
1117         }
1118 }
1119
1120 /*
1121  * Lock the passed range and ensure all pending ordered extents in it are run
1122  * to completion in nowait mode.
1123  *
1124  * Return true if btrfs_lock_ordered_range does not return any extents,
1125  * otherwise false.
1126  */
1127 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1128                                   struct extent_state **cached_state)
1129 {
1130         struct btrfs_ordered_extent *ordered;
1131
1132         if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1133                 return false;
1134
1135         ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1136         if (!ordered)
1137                 return true;
1138
1139         btrfs_put_ordered_extent(ordered);
1140         unlock_extent(&inode->io_tree, start, end, cached_state);
1141
1142         return false;
1143 }
1144
1145 /* Split out a new ordered extent for this first @len bytes of @ordered. */
1146 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1147                         struct btrfs_ordered_extent *ordered, u64 len)
1148 {
1149         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1150         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
1151         struct btrfs_root *root = inode->root;
1152         struct btrfs_fs_info *fs_info = root->fs_info;
1153         u64 file_offset = ordered->file_offset;
1154         u64 disk_bytenr = ordered->disk_bytenr;
1155         unsigned long flags = ordered->flags;
1156         struct btrfs_ordered_sum *sum, *tmpsum;
1157         struct btrfs_ordered_extent *new;
1158         struct rb_node *node;
1159         u64 offset = 0;
1160
1161         trace_btrfs_ordered_extent_split(inode, ordered);
1162
1163         ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1164
1165         /*
1166          * The entire bio must be covered by the ordered extent, but we can't
1167          * reduce the original extent to a zero length either.
1168          */
1169         if (WARN_ON_ONCE(len >= ordered->num_bytes))
1170                 return ERR_PTR(-EINVAL);
1171         /* We cannot split partially completed ordered extents. */
1172         if (ordered->bytes_left) {
1173                 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1174                 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1175                         return ERR_PTR(-EINVAL);
1176         }
1177         /* We cannot split a compressed ordered extent. */
1178         if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1179                 return ERR_PTR(-EINVAL);
1180
1181         new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1182                                    len, 0, flags, ordered->compress_type);
1183         if (IS_ERR(new))
1184                 return new;
1185
1186         /* One ref for the tree. */
1187         refcount_inc(&new->refs);
1188
1189         spin_lock_irq(&root->ordered_extent_lock);
1190         spin_lock(&tree->lock);
1191         /* Remove from tree once */
1192         node = &ordered->rb_node;
1193         rb_erase(node, &tree->tree);
1194         RB_CLEAR_NODE(node);
1195         if (tree->last == node)
1196                 tree->last = NULL;
1197
1198         ordered->file_offset += len;
1199         ordered->disk_bytenr += len;
1200         ordered->num_bytes -= len;
1201         ordered->disk_num_bytes -= len;
1202
1203         if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1204                 ASSERT(ordered->bytes_left == 0);
1205                 new->bytes_left = 0;
1206         } else {
1207                 ordered->bytes_left -= len;
1208         }
1209
1210         if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1211                 if (ordered->truncated_len > len) {
1212                         ordered->truncated_len -= len;
1213                 } else {
1214                         new->truncated_len = ordered->truncated_len;
1215                         ordered->truncated_len = 0;
1216                 }
1217         }
1218
1219         list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1220                 if (offset == len)
1221                         break;
1222                 list_move_tail(&sum->list, &new->list);
1223                 offset += sum->len;
1224         }
1225
1226         /* Re-insert the node */
1227         node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1228         if (node)
1229                 btrfs_panic(fs_info, -EEXIST,
1230                         "zoned: inconsistency in ordered tree at offset %llu",
1231                         ordered->file_offset);
1232
1233         node = tree_insert(&tree->tree, new->file_offset, &new->rb_node);
1234         if (node)
1235                 btrfs_panic(fs_info, -EEXIST,
1236                         "zoned: inconsistency in ordered tree at offset %llu",
1237                         new->file_offset);
1238         spin_unlock(&tree->lock);
1239
1240         list_add_tail(&new->root_extent_list, &root->ordered_extents);
1241         root->nr_ordered_extents++;
1242         spin_unlock_irq(&root->ordered_extent_lock);
1243         return new;
1244 }
1245
1246 int __init ordered_data_init(void)
1247 {
1248         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1249                                      sizeof(struct btrfs_ordered_extent), 0,
1250                                      SLAB_MEM_SPREAD,
1251                                      NULL);
1252         if (!btrfs_ordered_extent_cache)
1253                 return -ENOMEM;
1254
1255         return 0;
1256 }
1257
1258 void __cold ordered_data_exit(void)
1259 {
1260         kmem_cache_destroy(btrfs_ordered_extent_cache);
1261 }