cifs: handle when server starts supporting multichannel
[platform/kernel/linux-starfive.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "super.h"
23
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25
26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28         if (entry->file_offset + entry->num_bytes < entry->file_offset)
29                 return (u64)-1;
30         return entry->file_offset + entry->num_bytes;
31 }
32
33 /* returns NULL if the insertion worked, or it returns the node it did find
34  * in the tree
35  */
36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37                                    struct rb_node *node)
38 {
39         struct rb_node **p = &root->rb_node;
40         struct rb_node *parent = NULL;
41         struct btrfs_ordered_extent *entry;
42
43         while (*p) {
44                 parent = *p;
45                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46
47                 if (file_offset < entry->file_offset)
48                         p = &(*p)->rb_left;
49                 else if (file_offset >= entry_end(entry))
50                         p = &(*p)->rb_right;
51                 else
52                         return parent;
53         }
54
55         rb_link_node(node, parent, p);
56         rb_insert_color(node, root);
57         return NULL;
58 }
59
60 /*
61  * look for a given offset in the tree, and if it can't be found return the
62  * first lesser offset
63  */
64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65                                      struct rb_node **prev_ret)
66 {
67         struct rb_node *n = root->rb_node;
68         struct rb_node *prev = NULL;
69         struct rb_node *test;
70         struct btrfs_ordered_extent *entry;
71         struct btrfs_ordered_extent *prev_entry = NULL;
72
73         while (n) {
74                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75                 prev = n;
76                 prev_entry = entry;
77
78                 if (file_offset < entry->file_offset)
79                         n = n->rb_left;
80                 else if (file_offset >= entry_end(entry))
81                         n = n->rb_right;
82                 else
83                         return n;
84         }
85         if (!prev_ret)
86                 return NULL;
87
88         while (prev && file_offset >= entry_end(prev_entry)) {
89                 test = rb_next(prev);
90                 if (!test)
91                         break;
92                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93                                       rb_node);
94                 if (file_offset < entry_end(prev_entry))
95                         break;
96
97                 prev = test;
98         }
99         if (prev)
100                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101                                       rb_node);
102         while (prev && file_offset < entry_end(prev_entry)) {
103                 test = rb_prev(prev);
104                 if (!test)
105                         break;
106                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107                                       rb_node);
108                 prev = test;
109         }
110         *prev_ret = prev;
111         return NULL;
112 }
113
114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115                           u64 len)
116 {
117         if (file_offset + len <= entry->file_offset ||
118             entry->file_offset + entry->num_bytes <= file_offset)
119                 return 0;
120         return 1;
121 }
122
123 /*
124  * look find the first ordered struct that has this offset, otherwise
125  * the first one less than this offset
126  */
127 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
128                                           u64 file_offset)
129 {
130         struct rb_root *root = &tree->tree;
131         struct rb_node *prev = NULL;
132         struct rb_node *ret;
133         struct btrfs_ordered_extent *entry;
134
135         if (tree->last) {
136                 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
137                                  rb_node);
138                 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
139                         return tree->last;
140         }
141         ret = __tree_search(root, file_offset, &prev);
142         if (!ret)
143                 ret = prev;
144         if (ret)
145                 tree->last = ret;
146         return ret;
147 }
148
149 static struct btrfs_ordered_extent *alloc_ordered_extent(
150                         struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
151                         u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
152                         u64 offset, unsigned long flags, int compress_type)
153 {
154         struct btrfs_ordered_extent *entry;
155         int ret;
156         u64 qgroup_rsv = 0;
157
158         if (flags &
159             ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
160                 /* For nocow write, we can release the qgroup rsv right now */
161                 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
162                 if (ret < 0)
163                         return ERR_PTR(ret);
164         } else {
165                 /*
166                  * The ordered extent has reserved qgroup space, release now
167                  * and pass the reserved number for qgroup_record to free.
168                  */
169                 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
170                 if (ret < 0)
171                         return ERR_PTR(ret);
172         }
173         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
174         if (!entry)
175                 return ERR_PTR(-ENOMEM);
176
177         entry->file_offset = file_offset;
178         entry->num_bytes = num_bytes;
179         entry->ram_bytes = ram_bytes;
180         entry->disk_bytenr = disk_bytenr;
181         entry->disk_num_bytes = disk_num_bytes;
182         entry->offset = offset;
183         entry->bytes_left = num_bytes;
184         entry->inode = igrab(&inode->vfs_inode);
185         entry->compress_type = compress_type;
186         entry->truncated_len = (u64)-1;
187         entry->qgroup_rsv = qgroup_rsv;
188         entry->flags = flags;
189         refcount_set(&entry->refs, 1);
190         init_waitqueue_head(&entry->wait);
191         INIT_LIST_HEAD(&entry->list);
192         INIT_LIST_HEAD(&entry->log_list);
193         INIT_LIST_HEAD(&entry->root_extent_list);
194         INIT_LIST_HEAD(&entry->work_list);
195         init_completion(&entry->completion);
196
197         /*
198          * We don't need the count_max_extents here, we can assume that all of
199          * that work has been done at higher layers, so this is truly the
200          * smallest the extent is going to get.
201          */
202         spin_lock(&inode->lock);
203         btrfs_mod_outstanding_extents(inode, 1);
204         spin_unlock(&inode->lock);
205
206         return entry;
207 }
208
209 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
210 {
211         struct btrfs_inode *inode = BTRFS_I(entry->inode);
212         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
213         struct btrfs_root *root = inode->root;
214         struct btrfs_fs_info *fs_info = root->fs_info;
215         struct rb_node *node;
216
217         trace_btrfs_ordered_extent_add(inode, entry);
218
219         percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
220                                  fs_info->delalloc_batch);
221
222         /* One ref for the tree. */
223         refcount_inc(&entry->refs);
224
225         spin_lock_irq(&tree->lock);
226         node = tree_insert(&tree->tree, entry->file_offset, &entry->rb_node);
227         if (node)
228                 btrfs_panic(fs_info, -EEXIST,
229                                 "inconsistency in ordered tree at offset %llu",
230                                 entry->file_offset);
231         spin_unlock_irq(&tree->lock);
232
233         spin_lock(&root->ordered_extent_lock);
234         list_add_tail(&entry->root_extent_list,
235                       &root->ordered_extents);
236         root->nr_ordered_extents++;
237         if (root->nr_ordered_extents == 1) {
238                 spin_lock(&fs_info->ordered_root_lock);
239                 BUG_ON(!list_empty(&root->ordered_root));
240                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
241                 spin_unlock(&fs_info->ordered_root_lock);
242         }
243         spin_unlock(&root->ordered_extent_lock);
244 }
245
246 /*
247  * Add an ordered extent to the per-inode tree.
248  *
249  * @inode:           Inode that this extent is for.
250  * @file_offset:     Logical offset in file where the extent starts.
251  * @num_bytes:       Logical length of extent in file.
252  * @ram_bytes:       Full length of unencoded data.
253  * @disk_bytenr:     Offset of extent on disk.
254  * @disk_num_bytes:  Size of extent on disk.
255  * @offset:          Offset into unencoded data where file data starts.
256  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
257  * @compress_type:   Compression algorithm used for data.
258  *
259  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
260  * tree is given a single reference on the ordered extent that was inserted, and
261  * the returned pointer is given a second reference.
262  *
263  * Return: the new ordered extent or error pointer.
264  */
265 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
266                         struct btrfs_inode *inode, u64 file_offset,
267                         u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
268                         u64 disk_num_bytes, u64 offset, unsigned long flags,
269                         int compress_type)
270 {
271         struct btrfs_ordered_extent *entry;
272
273         ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
274
275         entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
276                                      disk_bytenr, disk_num_bytes, offset, flags,
277                                      compress_type);
278         if (!IS_ERR(entry))
279                 insert_ordered_extent(entry);
280         return entry;
281 }
282
283 /*
284  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
285  * when an ordered extent is finished.  If the list covers more than one
286  * ordered extent, it is split across multiples.
287  */
288 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
289                            struct btrfs_ordered_sum *sum)
290 {
291         struct btrfs_ordered_inode_tree *tree;
292
293         tree = &BTRFS_I(entry->inode)->ordered_tree;
294         spin_lock_irq(&tree->lock);
295         list_add_tail(&sum->list, &entry->list);
296         spin_unlock_irq(&tree->lock);
297 }
298
299 static void finish_ordered_fn(struct btrfs_work *work)
300 {
301         struct btrfs_ordered_extent *ordered_extent;
302
303         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
304         btrfs_finish_ordered_io(ordered_extent);
305 }
306
307 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
308                                       struct page *page, u64 file_offset,
309                                       u64 len, bool uptodate)
310 {
311         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
312         struct btrfs_fs_info *fs_info = inode->root->fs_info;
313
314         lockdep_assert_held(&inode->ordered_tree.lock);
315
316         if (page) {
317                 ASSERT(page->mapping);
318                 ASSERT(page_offset(page) <= file_offset);
319                 ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
320
321                 /*
322                  * Ordered (Private2) bit indicates whether we still have
323                  * pending io unfinished for the ordered extent.
324                  *
325                  * If there's no such bit, we need to skip to next range.
326                  */
327                 if (!btrfs_page_test_ordered(fs_info, page, file_offset, len))
328                         return false;
329                 btrfs_page_clear_ordered(fs_info, page, file_offset, len);
330         }
331
332         /* Now we're fine to update the accounting. */
333         if (WARN_ON_ONCE(len > ordered->bytes_left)) {
334                 btrfs_crit(fs_info,
335 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
336                            inode->root->root_key.objectid, btrfs_ino(inode),
337                            ordered->file_offset, ordered->num_bytes,
338                            len, ordered->bytes_left);
339                 ordered->bytes_left = 0;
340         } else {
341                 ordered->bytes_left -= len;
342         }
343
344         if (!uptodate)
345                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
346
347         if (ordered->bytes_left)
348                 return false;
349
350         /*
351          * All the IO of the ordered extent is finished, we need to queue
352          * the finish_func to be executed.
353          */
354         set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
355         cond_wake_up(&ordered->wait);
356         refcount_inc(&ordered->refs);
357         trace_btrfs_ordered_extent_mark_finished(inode, ordered);
358         return true;
359 }
360
361 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
362 {
363         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
364         struct btrfs_fs_info *fs_info = inode->root->fs_info;
365         struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
366                 fs_info->endio_freespace_worker : fs_info->endio_write_workers;
367
368         btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, NULL);
369         btrfs_queue_work(wq, &ordered->work);
370 }
371
372 bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
373                                  struct page *page, u64 file_offset, u64 len,
374                                  bool uptodate)
375 {
376         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
377         unsigned long flags;
378         bool ret;
379
380         trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
381
382         spin_lock_irqsave(&inode->ordered_tree.lock, flags);
383         ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
384         spin_unlock_irqrestore(&inode->ordered_tree.lock, flags);
385
386         if (ret)
387                 btrfs_queue_ordered_fn(ordered);
388         return ret;
389 }
390
391 /*
392  * Mark all ordered extents io inside the specified range finished.
393  *
394  * @page:        The involved page for the operation.
395  *               For uncompressed buffered IO, the page status also needs to be
396  *               updated to indicate whether the pending ordered io is finished.
397  *               Can be NULL for direct IO and compressed write.
398  *               For these cases, callers are ensured they won't execute the
399  *               endio function twice.
400  *
401  * This function is called for endio, thus the range must have ordered
402  * extent(s) covering it.
403  */
404 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
405                                     struct page *page, u64 file_offset,
406                                     u64 num_bytes, bool uptodate)
407 {
408         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
409         struct rb_node *node;
410         struct btrfs_ordered_extent *entry = NULL;
411         unsigned long flags;
412         u64 cur = file_offset;
413
414         trace_btrfs_writepage_end_io_hook(inode, file_offset,
415                                           file_offset + num_bytes - 1,
416                                           uptodate);
417
418         spin_lock_irqsave(&tree->lock, flags);
419         while (cur < file_offset + num_bytes) {
420                 u64 entry_end;
421                 u64 end;
422                 u32 len;
423
424                 node = tree_search(tree, cur);
425                 /* No ordered extents at all */
426                 if (!node)
427                         break;
428
429                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
430                 entry_end = entry->file_offset + entry->num_bytes;
431                 /*
432                  * |<-- OE --->|  |
433                  *                cur
434                  * Go to next OE.
435                  */
436                 if (cur >= entry_end) {
437                         node = rb_next(node);
438                         /* No more ordered extents, exit */
439                         if (!node)
440                                 break;
441                         entry = rb_entry(node, struct btrfs_ordered_extent,
442                                          rb_node);
443
444                         /* Go to next ordered extent and continue */
445                         cur = entry->file_offset;
446                         continue;
447                 }
448                 /*
449                  * |    |<--- OE --->|
450                  * cur
451                  * Go to the start of OE.
452                  */
453                 if (cur < entry->file_offset) {
454                         cur = entry->file_offset;
455                         continue;
456                 }
457
458                 /*
459                  * Now we are definitely inside one ordered extent.
460                  *
461                  * |<--- OE --->|
462                  *      |
463                  *      cur
464                  */
465                 end = min(entry->file_offset + entry->num_bytes,
466                           file_offset + num_bytes) - 1;
467                 ASSERT(end + 1 - cur < U32_MAX);
468                 len = end + 1 - cur;
469
470                 if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
471                         spin_unlock_irqrestore(&tree->lock, flags);
472                         btrfs_queue_ordered_fn(entry);
473                         spin_lock_irqsave(&tree->lock, flags);
474                 }
475                 cur += len;
476         }
477         spin_unlock_irqrestore(&tree->lock, flags);
478 }
479
480 /*
481  * Finish IO for one ordered extent across a given range.  The range can only
482  * contain one ordered extent.
483  *
484  * @cached:      The cached ordered extent. If not NULL, we can skip the tree
485  *               search and use the ordered extent directly.
486  *               Will be also used to store the finished ordered extent.
487  * @file_offset: File offset for the finished IO
488  * @io_size:     Length of the finish IO range
489  *
490  * Return true if the ordered extent is finished in the range, and update
491  * @cached.
492  * Return false otherwise.
493  *
494  * NOTE: The range can NOT cross multiple ordered extents.
495  * Thus caller should ensure the range doesn't cross ordered extents.
496  */
497 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
498                                     struct btrfs_ordered_extent **cached,
499                                     u64 file_offset, u64 io_size)
500 {
501         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
502         struct rb_node *node;
503         struct btrfs_ordered_extent *entry = NULL;
504         unsigned long flags;
505         bool finished = false;
506
507         spin_lock_irqsave(&tree->lock, flags);
508         if (cached && *cached) {
509                 entry = *cached;
510                 goto have_entry;
511         }
512
513         node = tree_search(tree, file_offset);
514         if (!node)
515                 goto out;
516
517         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
518 have_entry:
519         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
520                 goto out;
521
522         if (io_size > entry->bytes_left)
523                 btrfs_crit(inode->root->fs_info,
524                            "bad ordered accounting left %llu size %llu",
525                        entry->bytes_left, io_size);
526
527         entry->bytes_left -= io_size;
528
529         if (entry->bytes_left == 0) {
530                 /*
531                  * Ensure only one caller can set the flag and finished_ret
532                  * accordingly
533                  */
534                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
535                 /* test_and_set_bit implies a barrier */
536                 cond_wake_up_nomb(&entry->wait);
537         }
538 out:
539         if (finished && cached && entry) {
540                 *cached = entry;
541                 refcount_inc(&entry->refs);
542                 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
543         }
544         spin_unlock_irqrestore(&tree->lock, flags);
545         return finished;
546 }
547
548 /*
549  * used to drop a reference on an ordered extent.  This will free
550  * the extent if the last reference is dropped
551  */
552 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
553 {
554         struct list_head *cur;
555         struct btrfs_ordered_sum *sum;
556
557         trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
558
559         if (refcount_dec_and_test(&entry->refs)) {
560                 ASSERT(list_empty(&entry->root_extent_list));
561                 ASSERT(list_empty(&entry->log_list));
562                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
563                 if (entry->inode)
564                         btrfs_add_delayed_iput(BTRFS_I(entry->inode));
565                 while (!list_empty(&entry->list)) {
566                         cur = entry->list.next;
567                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
568                         list_del(&sum->list);
569                         kvfree(sum);
570                 }
571                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
572         }
573 }
574
575 /*
576  * remove an ordered extent from the tree.  No references are dropped
577  * and waiters are woken up.
578  */
579 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
580                                  struct btrfs_ordered_extent *entry)
581 {
582         struct btrfs_ordered_inode_tree *tree;
583         struct btrfs_root *root = btrfs_inode->root;
584         struct btrfs_fs_info *fs_info = root->fs_info;
585         struct rb_node *node;
586         bool pending;
587         bool freespace_inode;
588
589         /*
590          * If this is a free space inode the thread has not acquired the ordered
591          * extents lockdep map.
592          */
593         freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
594
595         btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
596         /* This is paired with btrfs_alloc_ordered_extent. */
597         spin_lock(&btrfs_inode->lock);
598         btrfs_mod_outstanding_extents(btrfs_inode, -1);
599         spin_unlock(&btrfs_inode->lock);
600         if (root != fs_info->tree_root) {
601                 u64 release;
602
603                 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
604                         release = entry->disk_num_bytes;
605                 else
606                         release = entry->num_bytes;
607                 btrfs_delalloc_release_metadata(btrfs_inode, release,
608                                                 test_bit(BTRFS_ORDERED_IOERR,
609                                                          &entry->flags));
610         }
611
612         percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
613                                  fs_info->delalloc_batch);
614
615         tree = &btrfs_inode->ordered_tree;
616         spin_lock_irq(&tree->lock);
617         node = &entry->rb_node;
618         rb_erase(node, &tree->tree);
619         RB_CLEAR_NODE(node);
620         if (tree->last == node)
621                 tree->last = NULL;
622         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
623         pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
624         spin_unlock_irq(&tree->lock);
625
626         /*
627          * The current running transaction is waiting on us, we need to let it
628          * know that we're complete and wake it up.
629          */
630         if (pending) {
631                 struct btrfs_transaction *trans;
632
633                 /*
634                  * The checks for trans are just a formality, it should be set,
635                  * but if it isn't we don't want to deref/assert under the spin
636                  * lock, so be nice and check if trans is set, but ASSERT() so
637                  * if it isn't set a developer will notice.
638                  */
639                 spin_lock(&fs_info->trans_lock);
640                 trans = fs_info->running_transaction;
641                 if (trans)
642                         refcount_inc(&trans->use_count);
643                 spin_unlock(&fs_info->trans_lock);
644
645                 ASSERT(trans || BTRFS_FS_ERROR(fs_info));
646                 if (trans) {
647                         if (atomic_dec_and_test(&trans->pending_ordered))
648                                 wake_up(&trans->pending_wait);
649                         btrfs_put_transaction(trans);
650                 }
651         }
652
653         btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
654
655         spin_lock(&root->ordered_extent_lock);
656         list_del_init(&entry->root_extent_list);
657         root->nr_ordered_extents--;
658
659         trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
660
661         if (!root->nr_ordered_extents) {
662                 spin_lock(&fs_info->ordered_root_lock);
663                 BUG_ON(list_empty(&root->ordered_root));
664                 list_del_init(&root->ordered_root);
665                 spin_unlock(&fs_info->ordered_root_lock);
666         }
667         spin_unlock(&root->ordered_extent_lock);
668         wake_up(&entry->wait);
669         if (!freespace_inode)
670                 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
671 }
672
673 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
674 {
675         struct btrfs_ordered_extent *ordered;
676
677         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
678         btrfs_start_ordered_extent(ordered);
679         complete(&ordered->completion);
680 }
681
682 /*
683  * wait for all the ordered extents in a root.  This is done when balancing
684  * space between drives.
685  */
686 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
687                                const u64 range_start, const u64 range_len)
688 {
689         struct btrfs_fs_info *fs_info = root->fs_info;
690         LIST_HEAD(splice);
691         LIST_HEAD(skipped);
692         LIST_HEAD(works);
693         struct btrfs_ordered_extent *ordered, *next;
694         u64 count = 0;
695         const u64 range_end = range_start + range_len;
696
697         mutex_lock(&root->ordered_extent_mutex);
698         spin_lock(&root->ordered_extent_lock);
699         list_splice_init(&root->ordered_extents, &splice);
700         while (!list_empty(&splice) && nr) {
701                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
702                                            root_extent_list);
703
704                 if (range_end <= ordered->disk_bytenr ||
705                     ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
706                         list_move_tail(&ordered->root_extent_list, &skipped);
707                         cond_resched_lock(&root->ordered_extent_lock);
708                         continue;
709                 }
710
711                 list_move_tail(&ordered->root_extent_list,
712                                &root->ordered_extents);
713                 refcount_inc(&ordered->refs);
714                 spin_unlock(&root->ordered_extent_lock);
715
716                 btrfs_init_work(&ordered->flush_work,
717                                 btrfs_run_ordered_extent_work, NULL, NULL);
718                 list_add_tail(&ordered->work_list, &works);
719                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
720
721                 cond_resched();
722                 spin_lock(&root->ordered_extent_lock);
723                 if (nr != U64_MAX)
724                         nr--;
725                 count++;
726         }
727         list_splice_tail(&skipped, &root->ordered_extents);
728         list_splice_tail(&splice, &root->ordered_extents);
729         spin_unlock(&root->ordered_extent_lock);
730
731         list_for_each_entry_safe(ordered, next, &works, work_list) {
732                 list_del_init(&ordered->work_list);
733                 wait_for_completion(&ordered->completion);
734                 btrfs_put_ordered_extent(ordered);
735                 cond_resched();
736         }
737         mutex_unlock(&root->ordered_extent_mutex);
738
739         return count;
740 }
741
742 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
743                              const u64 range_start, const u64 range_len)
744 {
745         struct btrfs_root *root;
746         LIST_HEAD(splice);
747         u64 done;
748
749         mutex_lock(&fs_info->ordered_operations_mutex);
750         spin_lock(&fs_info->ordered_root_lock);
751         list_splice_init(&fs_info->ordered_roots, &splice);
752         while (!list_empty(&splice) && nr) {
753                 root = list_first_entry(&splice, struct btrfs_root,
754                                         ordered_root);
755                 root = btrfs_grab_root(root);
756                 BUG_ON(!root);
757                 list_move_tail(&root->ordered_root,
758                                &fs_info->ordered_roots);
759                 spin_unlock(&fs_info->ordered_root_lock);
760
761                 done = btrfs_wait_ordered_extents(root, nr,
762                                                   range_start, range_len);
763                 btrfs_put_root(root);
764
765                 spin_lock(&fs_info->ordered_root_lock);
766                 if (nr != U64_MAX) {
767                         nr -= done;
768                 }
769         }
770         list_splice_tail(&splice, &fs_info->ordered_roots);
771         spin_unlock(&fs_info->ordered_root_lock);
772         mutex_unlock(&fs_info->ordered_operations_mutex);
773 }
774
775 /*
776  * Start IO and wait for a given ordered extent to finish.
777  *
778  * Wait on page writeback for all the pages in the extent and the IO completion
779  * code to insert metadata into the btree corresponding to the extent.
780  */
781 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
782 {
783         u64 start = entry->file_offset;
784         u64 end = start + entry->num_bytes - 1;
785         struct btrfs_inode *inode = BTRFS_I(entry->inode);
786         bool freespace_inode;
787
788         trace_btrfs_ordered_extent_start(inode, entry);
789
790         /*
791          * If this is a free space inode do not take the ordered extents lockdep
792          * map.
793          */
794         freespace_inode = btrfs_is_free_space_inode(inode);
795
796         /*
797          * pages in the range can be dirty, clean or writeback.  We
798          * start IO on any dirty ones so the wait doesn't stall waiting
799          * for the flusher thread to find them
800          */
801         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
802                 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
803
804         if (!freespace_inode)
805                 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
806         wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
807 }
808
809 /*
810  * Used to wait on ordered extents across a large range of bytes.
811  */
812 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
813 {
814         int ret = 0;
815         int ret_wb = 0;
816         u64 end;
817         u64 orig_end;
818         struct btrfs_ordered_extent *ordered;
819
820         if (start + len < start) {
821                 orig_end = OFFSET_MAX;
822         } else {
823                 orig_end = start + len - 1;
824                 if (orig_end > OFFSET_MAX)
825                         orig_end = OFFSET_MAX;
826         }
827
828         /* start IO across the range first to instantiate any delalloc
829          * extents
830          */
831         ret = btrfs_fdatawrite_range(inode, start, orig_end);
832         if (ret)
833                 return ret;
834
835         /*
836          * If we have a writeback error don't return immediately. Wait first
837          * for any ordered extents that haven't completed yet. This is to make
838          * sure no one can dirty the same page ranges and call writepages()
839          * before the ordered extents complete - to avoid failures (-EEXIST)
840          * when adding the new ordered extents to the ordered tree.
841          */
842         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
843
844         end = orig_end;
845         while (1) {
846                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
847                 if (!ordered)
848                         break;
849                 if (ordered->file_offset > orig_end) {
850                         btrfs_put_ordered_extent(ordered);
851                         break;
852                 }
853                 if (ordered->file_offset + ordered->num_bytes <= start) {
854                         btrfs_put_ordered_extent(ordered);
855                         break;
856                 }
857                 btrfs_start_ordered_extent(ordered);
858                 end = ordered->file_offset;
859                 /*
860                  * If the ordered extent had an error save the error but don't
861                  * exit without waiting first for all other ordered extents in
862                  * the range to complete.
863                  */
864                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
865                         ret = -EIO;
866                 btrfs_put_ordered_extent(ordered);
867                 if (end == 0 || end == start)
868                         break;
869                 end--;
870         }
871         return ret_wb ? ret_wb : ret;
872 }
873
874 /*
875  * find an ordered extent corresponding to file_offset.  return NULL if
876  * nothing is found, otherwise take a reference on the extent and return it
877  */
878 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
879                                                          u64 file_offset)
880 {
881         struct btrfs_ordered_inode_tree *tree;
882         struct rb_node *node;
883         struct btrfs_ordered_extent *entry = NULL;
884         unsigned long flags;
885
886         tree = &inode->ordered_tree;
887         spin_lock_irqsave(&tree->lock, flags);
888         node = tree_search(tree, file_offset);
889         if (!node)
890                 goto out;
891
892         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
893         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
894                 entry = NULL;
895         if (entry) {
896                 refcount_inc(&entry->refs);
897                 trace_btrfs_ordered_extent_lookup(inode, entry);
898         }
899 out:
900         spin_unlock_irqrestore(&tree->lock, flags);
901         return entry;
902 }
903
904 /* Since the DIO code tries to lock a wide area we need to look for any ordered
905  * extents that exist in the range, rather than just the start of the range.
906  */
907 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
908                 struct btrfs_inode *inode, u64 file_offset, u64 len)
909 {
910         struct btrfs_ordered_inode_tree *tree;
911         struct rb_node *node;
912         struct btrfs_ordered_extent *entry = NULL;
913
914         tree = &inode->ordered_tree;
915         spin_lock_irq(&tree->lock);
916         node = tree_search(tree, file_offset);
917         if (!node) {
918                 node = tree_search(tree, file_offset + len);
919                 if (!node)
920                         goto out;
921         }
922
923         while (1) {
924                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
925                 if (range_overlaps(entry, file_offset, len))
926                         break;
927
928                 if (entry->file_offset >= file_offset + len) {
929                         entry = NULL;
930                         break;
931                 }
932                 entry = NULL;
933                 node = rb_next(node);
934                 if (!node)
935                         break;
936         }
937 out:
938         if (entry) {
939                 refcount_inc(&entry->refs);
940                 trace_btrfs_ordered_extent_lookup_range(inode, entry);
941         }
942         spin_unlock_irq(&tree->lock);
943         return entry;
944 }
945
946 /*
947  * Adds all ordered extents to the given list. The list ends up sorted by the
948  * file_offset of the ordered extents.
949  */
950 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
951                                            struct list_head *list)
952 {
953         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
954         struct rb_node *n;
955
956         ASSERT(inode_is_locked(&inode->vfs_inode));
957
958         spin_lock_irq(&tree->lock);
959         for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
960                 struct btrfs_ordered_extent *ordered;
961
962                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
963
964                 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
965                         continue;
966
967                 ASSERT(list_empty(&ordered->log_list));
968                 list_add_tail(&ordered->log_list, list);
969                 refcount_inc(&ordered->refs);
970                 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
971         }
972         spin_unlock_irq(&tree->lock);
973 }
974
975 /*
976  * lookup and return any extent before 'file_offset'.  NULL is returned
977  * if none is found
978  */
979 struct btrfs_ordered_extent *
980 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
981 {
982         struct btrfs_ordered_inode_tree *tree;
983         struct rb_node *node;
984         struct btrfs_ordered_extent *entry = NULL;
985
986         tree = &inode->ordered_tree;
987         spin_lock_irq(&tree->lock);
988         node = tree_search(tree, file_offset);
989         if (!node)
990                 goto out;
991
992         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
993         refcount_inc(&entry->refs);
994         trace_btrfs_ordered_extent_lookup_first(inode, entry);
995 out:
996         spin_unlock_irq(&tree->lock);
997         return entry;
998 }
999
1000 /*
1001  * Lookup the first ordered extent that overlaps the range
1002  * [@file_offset, @file_offset + @len).
1003  *
1004  * The difference between this and btrfs_lookup_first_ordered_extent() is
1005  * that this one won't return any ordered extent that does not overlap the range.
1006  * And the difference against btrfs_lookup_ordered_extent() is, this function
1007  * ensures the first ordered extent gets returned.
1008  */
1009 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
1010                         struct btrfs_inode *inode, u64 file_offset, u64 len)
1011 {
1012         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
1013         struct rb_node *node;
1014         struct rb_node *cur;
1015         struct rb_node *prev;
1016         struct rb_node *next;
1017         struct btrfs_ordered_extent *entry = NULL;
1018
1019         spin_lock_irq(&tree->lock);
1020         node = tree->tree.rb_node;
1021         /*
1022          * Here we don't want to use tree_search() which will use tree->last
1023          * and screw up the search order.
1024          * And __tree_search() can't return the adjacent ordered extents
1025          * either, thus here we do our own search.
1026          */
1027         while (node) {
1028                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1029
1030                 if (file_offset < entry->file_offset) {
1031                         node = node->rb_left;
1032                 } else if (file_offset >= entry_end(entry)) {
1033                         node = node->rb_right;
1034                 } else {
1035                         /*
1036                          * Direct hit, got an ordered extent that starts at
1037                          * @file_offset
1038                          */
1039                         goto out;
1040                 }
1041         }
1042         if (!entry) {
1043                 /* Empty tree */
1044                 goto out;
1045         }
1046
1047         cur = &entry->rb_node;
1048         /* We got an entry around @file_offset, check adjacent entries */
1049         if (entry->file_offset < file_offset) {
1050                 prev = cur;
1051                 next = rb_next(cur);
1052         } else {
1053                 prev = rb_prev(cur);
1054                 next = cur;
1055         }
1056         if (prev) {
1057                 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1058                 if (range_overlaps(entry, file_offset, len))
1059                         goto out;
1060         }
1061         if (next) {
1062                 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1063                 if (range_overlaps(entry, file_offset, len))
1064                         goto out;
1065         }
1066         /* No ordered extent in the range */
1067         entry = NULL;
1068 out:
1069         if (entry) {
1070                 refcount_inc(&entry->refs);
1071                 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1072         }
1073
1074         spin_unlock_irq(&tree->lock);
1075         return entry;
1076 }
1077
1078 /*
1079  * Lock the passed range and ensures all pending ordered extents in it are run
1080  * to completion.
1081  *
1082  * @inode:        Inode whose ordered tree is to be searched
1083  * @start:        Beginning of range to flush
1084  * @end:          Last byte of range to lock
1085  * @cached_state: If passed, will return the extent state responsible for the
1086  *                locked range. It's the caller's responsibility to free the
1087  *                cached state.
1088  *
1089  * Always return with the given range locked, ensuring after it's called no
1090  * order extent can be pending.
1091  */
1092 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1093                                         u64 end,
1094                                         struct extent_state **cached_state)
1095 {
1096         struct btrfs_ordered_extent *ordered;
1097         struct extent_state *cache = NULL;
1098         struct extent_state **cachedp = &cache;
1099
1100         if (cached_state)
1101                 cachedp = cached_state;
1102
1103         while (1) {
1104                 lock_extent(&inode->io_tree, start, end, cachedp);
1105                 ordered = btrfs_lookup_ordered_range(inode, start,
1106                                                      end - start + 1);
1107                 if (!ordered) {
1108                         /*
1109                          * If no external cached_state has been passed then
1110                          * decrement the extra ref taken for cachedp since we
1111                          * aren't exposing it outside of this function
1112                          */
1113                         if (!cached_state)
1114                                 refcount_dec(&cache->refs);
1115                         break;
1116                 }
1117                 unlock_extent(&inode->io_tree, start, end, cachedp);
1118                 btrfs_start_ordered_extent(ordered);
1119                 btrfs_put_ordered_extent(ordered);
1120         }
1121 }
1122
1123 /*
1124  * Lock the passed range and ensure all pending ordered extents in it are run
1125  * to completion in nowait mode.
1126  *
1127  * Return true if btrfs_lock_ordered_range does not return any extents,
1128  * otherwise false.
1129  */
1130 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1131                                   struct extent_state **cached_state)
1132 {
1133         struct btrfs_ordered_extent *ordered;
1134
1135         if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1136                 return false;
1137
1138         ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1139         if (!ordered)
1140                 return true;
1141
1142         btrfs_put_ordered_extent(ordered);
1143         unlock_extent(&inode->io_tree, start, end, cached_state);
1144
1145         return false;
1146 }
1147
1148 /* Split out a new ordered extent for this first @len bytes of @ordered. */
1149 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1150                         struct btrfs_ordered_extent *ordered, u64 len)
1151 {
1152         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1153         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
1154         struct btrfs_root *root = inode->root;
1155         struct btrfs_fs_info *fs_info = root->fs_info;
1156         u64 file_offset = ordered->file_offset;
1157         u64 disk_bytenr = ordered->disk_bytenr;
1158         unsigned long flags = ordered->flags;
1159         struct btrfs_ordered_sum *sum, *tmpsum;
1160         struct btrfs_ordered_extent *new;
1161         struct rb_node *node;
1162         u64 offset = 0;
1163
1164         trace_btrfs_ordered_extent_split(inode, ordered);
1165
1166         ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1167
1168         /*
1169          * The entire bio must be covered by the ordered extent, but we can't
1170          * reduce the original extent to a zero length either.
1171          */
1172         if (WARN_ON_ONCE(len >= ordered->num_bytes))
1173                 return ERR_PTR(-EINVAL);
1174         /* We cannot split partially completed ordered extents. */
1175         if (ordered->bytes_left) {
1176                 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1177                 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1178                         return ERR_PTR(-EINVAL);
1179         }
1180         /* We cannot split a compressed ordered extent. */
1181         if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1182                 return ERR_PTR(-EINVAL);
1183
1184         new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1185                                    len, 0, flags, ordered->compress_type);
1186         if (IS_ERR(new))
1187                 return new;
1188
1189         /* One ref for the tree. */
1190         refcount_inc(&new->refs);
1191
1192         spin_lock_irq(&root->ordered_extent_lock);
1193         spin_lock(&tree->lock);
1194         /* Remove from tree once */
1195         node = &ordered->rb_node;
1196         rb_erase(node, &tree->tree);
1197         RB_CLEAR_NODE(node);
1198         if (tree->last == node)
1199                 tree->last = NULL;
1200
1201         ordered->file_offset += len;
1202         ordered->disk_bytenr += len;
1203         ordered->num_bytes -= len;
1204         ordered->disk_num_bytes -= len;
1205
1206         if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1207                 ASSERT(ordered->bytes_left == 0);
1208                 new->bytes_left = 0;
1209         } else {
1210                 ordered->bytes_left -= len;
1211         }
1212
1213         if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1214                 if (ordered->truncated_len > len) {
1215                         ordered->truncated_len -= len;
1216                 } else {
1217                         new->truncated_len = ordered->truncated_len;
1218                         ordered->truncated_len = 0;
1219                 }
1220         }
1221
1222         list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1223                 if (offset == len)
1224                         break;
1225                 list_move_tail(&sum->list, &new->list);
1226                 offset += sum->len;
1227         }
1228
1229         /* Re-insert the node */
1230         node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1231         if (node)
1232                 btrfs_panic(fs_info, -EEXIST,
1233                         "zoned: inconsistency in ordered tree at offset %llu",
1234                         ordered->file_offset);
1235
1236         node = tree_insert(&tree->tree, new->file_offset, &new->rb_node);
1237         if (node)
1238                 btrfs_panic(fs_info, -EEXIST,
1239                         "zoned: inconsistency in ordered tree at offset %llu",
1240                         new->file_offset);
1241         spin_unlock(&tree->lock);
1242
1243         list_add_tail(&new->root_extent_list, &root->ordered_extents);
1244         root->nr_ordered_extents++;
1245         spin_unlock_irq(&root->ordered_extent_lock);
1246         return new;
1247 }
1248
1249 int __init ordered_data_init(void)
1250 {
1251         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1252                                      sizeof(struct btrfs_ordered_extent), 0,
1253                                      SLAB_MEM_SPREAD,
1254                                      NULL);
1255         if (!btrfs_ordered_extent_cache)
1256                 return -ENOMEM;
1257
1258         return 0;
1259 }
1260
1261 void __cold ordered_data_exit(void)
1262 {
1263         kmem_cache_destroy(btrfs_ordered_extent_cache);
1264 }