2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
28 static u64 entry_end(struct btrfs_ordered_extent *entry)
30 if (entry->file_offset + entry->len < entry->file_offset)
32 return entry->file_offset + entry->len;
35 /* returns NULL if the insertion worked, or it returns the node it did find
38 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
41 struct rb_node **p = &root->rb_node;
42 struct rb_node *parent = NULL;
43 struct btrfs_ordered_extent *entry;
47 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
49 if (file_offset < entry->file_offset)
51 else if (file_offset >= entry_end(entry))
57 rb_link_node(node, parent, p);
58 rb_insert_color(node, root);
62 static void ordered_data_tree_panic(struct inode *inode, int errno,
65 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
66 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
67 "%llu\n", (unsigned long long)offset);
71 * look for a given offset in the tree, and if it can't be found return the
74 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
75 struct rb_node **prev_ret)
77 struct rb_node *n = root->rb_node;
78 struct rb_node *prev = NULL;
80 struct btrfs_ordered_extent *entry;
81 struct btrfs_ordered_extent *prev_entry = NULL;
84 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
88 if (file_offset < entry->file_offset)
90 else if (file_offset >= entry_end(entry))
98 while (prev && file_offset >= entry_end(prev_entry)) {
102 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
104 if (file_offset < entry_end(prev_entry))
110 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
112 while (prev && file_offset < entry_end(prev_entry)) {
113 test = rb_prev(prev);
116 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
125 * helper to check if a given offset is inside a given entry
127 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
129 if (file_offset < entry->file_offset ||
130 entry->file_offset + entry->len <= file_offset)
135 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
138 if (file_offset + len <= entry->file_offset ||
139 entry->file_offset + entry->len <= file_offset)
145 * look find the first ordered struct that has this offset, otherwise
146 * the first one less than this offset
148 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
151 struct rb_root *root = &tree->tree;
152 struct rb_node *prev = NULL;
154 struct btrfs_ordered_extent *entry;
157 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
159 if (offset_in_entry(entry, file_offset))
162 ret = __tree_search(root, file_offset, &prev);
170 /* allocate and add a new ordered_extent into the per-inode tree.
171 * file_offset is the logical offset in the file
173 * start is the disk block number of an extent already reserved in the
174 * extent allocation tree
176 * len is the length of the extent
178 * The tree is given a single reference on the ordered extent that was
181 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
182 u64 start, u64 len, u64 disk_len,
183 int type, int dio, int compress_type)
185 struct btrfs_ordered_inode_tree *tree;
186 struct rb_node *node;
187 struct btrfs_ordered_extent *entry;
189 tree = &BTRFS_I(inode)->ordered_tree;
190 entry = kzalloc(sizeof(*entry), GFP_NOFS);
194 entry->file_offset = file_offset;
195 entry->start = start;
197 entry->disk_len = disk_len;
198 entry->bytes_left = len;
199 entry->inode = igrab(inode);
200 entry->compress_type = compress_type;
201 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
202 set_bit(type, &entry->flags);
205 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
207 /* one ref for the tree */
208 atomic_set(&entry->refs, 1);
209 init_waitqueue_head(&entry->wait);
210 INIT_LIST_HEAD(&entry->list);
211 INIT_LIST_HEAD(&entry->root_extent_list);
213 trace_btrfs_ordered_extent_add(inode, entry);
215 spin_lock_irq(&tree->lock);
216 node = tree_insert(&tree->tree, file_offset,
219 ordered_data_tree_panic(inode, -EEXIST, file_offset);
220 spin_unlock_irq(&tree->lock);
222 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
223 list_add_tail(&entry->root_extent_list,
224 &BTRFS_I(inode)->root->fs_info->ordered_extents);
225 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
230 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
231 u64 start, u64 len, u64 disk_len, int type)
233 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
235 BTRFS_COMPRESS_NONE);
238 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
239 u64 start, u64 len, u64 disk_len, int type)
241 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
243 BTRFS_COMPRESS_NONE);
246 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
247 u64 start, u64 len, u64 disk_len,
248 int type, int compress_type)
250 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
256 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
257 * when an ordered extent is finished. If the list covers more than one
258 * ordered extent, it is split across multiples.
260 void btrfs_add_ordered_sum(struct inode *inode,
261 struct btrfs_ordered_extent *entry,
262 struct btrfs_ordered_sum *sum)
264 struct btrfs_ordered_inode_tree *tree;
266 tree = &BTRFS_I(inode)->ordered_tree;
267 spin_lock_irq(&tree->lock);
268 list_add_tail(&sum->list, &entry->list);
269 spin_unlock_irq(&tree->lock);
273 * this is used to account for finished IO across a given range
274 * of the file. The IO may span ordered extents. If
275 * a given ordered_extent is completely done, 1 is returned, otherwise
278 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
279 * to make sure this function only returns 1 once for a given ordered extent.
281 * file_offset is updated to one byte past the range that is recorded as
282 * complete. This allows you to walk forward in the file.
284 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
285 struct btrfs_ordered_extent **cached,
286 u64 *file_offset, u64 io_size, int uptodate)
288 struct btrfs_ordered_inode_tree *tree;
289 struct rb_node *node;
290 struct btrfs_ordered_extent *entry = NULL;
297 tree = &BTRFS_I(inode)->ordered_tree;
298 spin_lock_irqsave(&tree->lock, flags);
299 node = tree_search(tree, *file_offset);
305 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
306 if (!offset_in_entry(entry, *file_offset)) {
311 dec_start = max(*file_offset, entry->file_offset);
312 dec_end = min(*file_offset + io_size, entry->file_offset +
314 *file_offset = dec_end;
315 if (dec_start > dec_end) {
316 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
317 (unsigned long long)dec_start,
318 (unsigned long long)dec_end);
320 to_dec = dec_end - dec_start;
321 if (to_dec > entry->bytes_left) {
322 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
323 (unsigned long long)entry->bytes_left,
324 (unsigned long long)to_dec);
326 entry->bytes_left -= to_dec;
328 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
330 if (entry->bytes_left == 0)
331 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
335 if (!ret && cached && entry) {
337 atomic_inc(&entry->refs);
339 spin_unlock_irqrestore(&tree->lock, flags);
344 * this is used to account for finished IO across a given range
345 * of the file. The IO should not span ordered extents. If
346 * a given ordered_extent is completely done, 1 is returned, otherwise
349 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
350 * to make sure this function only returns 1 once for a given ordered extent.
352 int btrfs_dec_test_ordered_pending(struct inode *inode,
353 struct btrfs_ordered_extent **cached,
354 u64 file_offset, u64 io_size, int uptodate)
356 struct btrfs_ordered_inode_tree *tree;
357 struct rb_node *node;
358 struct btrfs_ordered_extent *entry = NULL;
362 tree = &BTRFS_I(inode)->ordered_tree;
363 spin_lock_irqsave(&tree->lock, flags);
364 if (cached && *cached) {
369 node = tree_search(tree, file_offset);
375 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
377 if (!offset_in_entry(entry, file_offset)) {
382 if (io_size > entry->bytes_left) {
383 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
384 (unsigned long long)entry->bytes_left,
385 (unsigned long long)io_size);
387 entry->bytes_left -= io_size;
389 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
391 if (entry->bytes_left == 0)
392 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
396 if (!ret && cached && entry) {
398 atomic_inc(&entry->refs);
400 spin_unlock_irqrestore(&tree->lock, flags);
405 * used to drop a reference on an ordered extent. This will free
406 * the extent if the last reference is dropped
408 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
410 struct list_head *cur;
411 struct btrfs_ordered_sum *sum;
413 trace_btrfs_ordered_extent_put(entry->inode, entry);
415 if (atomic_dec_and_test(&entry->refs)) {
417 btrfs_add_delayed_iput(entry->inode);
418 while (!list_empty(&entry->list)) {
419 cur = entry->list.next;
420 sum = list_entry(cur, struct btrfs_ordered_sum, list);
421 list_del(&sum->list);
429 * remove an ordered extent from the tree. No references are dropped
430 * and waiters are woken up.
432 void btrfs_remove_ordered_extent(struct inode *inode,
433 struct btrfs_ordered_extent *entry)
435 struct btrfs_ordered_inode_tree *tree;
436 struct btrfs_root *root = BTRFS_I(inode)->root;
437 struct rb_node *node;
439 tree = &BTRFS_I(inode)->ordered_tree;
440 spin_lock_irq(&tree->lock);
441 node = &entry->rb_node;
442 rb_erase(node, &tree->tree);
444 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
445 spin_unlock_irq(&tree->lock);
447 spin_lock(&root->fs_info->ordered_extent_lock);
448 list_del_init(&entry->root_extent_list);
450 trace_btrfs_ordered_extent_remove(inode, entry);
453 * we have no more ordered extents for this inode and
454 * no dirty pages. We can safely remove it from the
455 * list of ordered extents
457 if (RB_EMPTY_ROOT(&tree->tree) &&
458 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
459 list_del_init(&BTRFS_I(inode)->ordered_operations);
461 spin_unlock(&root->fs_info->ordered_extent_lock);
462 wake_up(&entry->wait);
466 * wait for all the ordered extents in a root. This is done when balancing
467 * space between drives.
469 void btrfs_wait_ordered_extents(struct btrfs_root *root,
470 int nocow_only, int delay_iput)
472 struct list_head splice;
473 struct list_head *cur;
474 struct btrfs_ordered_extent *ordered;
477 INIT_LIST_HEAD(&splice);
479 spin_lock(&root->fs_info->ordered_extent_lock);
480 list_splice_init(&root->fs_info->ordered_extents, &splice);
481 while (!list_empty(&splice)) {
483 ordered = list_entry(cur, struct btrfs_ordered_extent,
486 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
487 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
488 list_move(&ordered->root_extent_list,
489 &root->fs_info->ordered_extents);
490 cond_resched_lock(&root->fs_info->ordered_extent_lock);
494 list_del_init(&ordered->root_extent_list);
495 atomic_inc(&ordered->refs);
498 * the inode may be getting freed (in sys_unlink path).
500 inode = igrab(ordered->inode);
502 spin_unlock(&root->fs_info->ordered_extent_lock);
505 btrfs_start_ordered_extent(inode, ordered, 1);
506 btrfs_put_ordered_extent(ordered);
508 btrfs_add_delayed_iput(inode);
512 btrfs_put_ordered_extent(ordered);
515 spin_lock(&root->fs_info->ordered_extent_lock);
517 spin_unlock(&root->fs_info->ordered_extent_lock);
521 * this is used during transaction commit to write all the inodes
522 * added to the ordered operation list. These files must be fully on
523 * disk before the transaction commits.
525 * we have two modes here, one is to just start the IO via filemap_flush
526 * and the other is to wait for all the io. When we wait, we have an
527 * extra check to make sure the ordered operation list really is empty
530 void btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
532 struct btrfs_inode *btrfs_inode;
534 struct list_head splice;
536 INIT_LIST_HEAD(&splice);
538 mutex_lock(&root->fs_info->ordered_operations_mutex);
539 spin_lock(&root->fs_info->ordered_extent_lock);
541 list_splice_init(&root->fs_info->ordered_operations, &splice);
543 while (!list_empty(&splice)) {
544 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
547 inode = &btrfs_inode->vfs_inode;
549 list_del_init(&btrfs_inode->ordered_operations);
552 * the inode may be getting freed (in sys_unlink path).
554 inode = igrab(inode);
556 if (!wait && inode) {
557 list_add_tail(&BTRFS_I(inode)->ordered_operations,
558 &root->fs_info->ordered_operations);
560 spin_unlock(&root->fs_info->ordered_extent_lock);
564 btrfs_wait_ordered_range(inode, 0, (u64)-1);
566 filemap_flush(inode->i_mapping);
567 btrfs_add_delayed_iput(inode);
571 spin_lock(&root->fs_info->ordered_extent_lock);
573 if (wait && !list_empty(&root->fs_info->ordered_operations))
576 spin_unlock(&root->fs_info->ordered_extent_lock);
577 mutex_unlock(&root->fs_info->ordered_operations_mutex);
581 * Used to start IO or wait for a given ordered extent to finish.
583 * If wait is one, this effectively waits on page writeback for all the pages
584 * in the extent, and it waits on the io completion code to insert
585 * metadata into the btree corresponding to the extent
587 void btrfs_start_ordered_extent(struct inode *inode,
588 struct btrfs_ordered_extent *entry,
591 u64 start = entry->file_offset;
592 u64 end = start + entry->len - 1;
594 trace_btrfs_ordered_extent_start(inode, entry);
597 * pages in the range can be dirty, clean or writeback. We
598 * start IO on any dirty ones so the wait doesn't stall waiting
599 * for the flusher thread to find them
601 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
602 filemap_fdatawrite_range(inode->i_mapping, start, end);
604 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
610 * Used to wait on ordered extents across a large range of bytes.
612 void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
616 struct btrfs_ordered_extent *ordered;
619 if (start + len < start) {
620 orig_end = INT_LIMIT(loff_t);
622 orig_end = start + len - 1;
623 if (orig_end > INT_LIMIT(loff_t))
624 orig_end = INT_LIMIT(loff_t);
627 /* start IO across the range first to instantiate any delalloc
630 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
633 * So with compression we will find and lock a dirty page and clear the
634 * first one as dirty, setup an async extent, and immediately return
635 * with the entire range locked but with nobody actually marked with
636 * writeback. So we can't just filemap_write_and_wait_range() and
637 * expect it to work since it will just kick off a thread to do the
638 * actual work. So we need to call filemap_fdatawrite_range _again_
639 * since it will wait on the page lock, which won't be unlocked until
640 * after the pages have been marked as writeback and so we're good to go
641 * from there. We have to do this otherwise we'll miss the ordered
642 * extents and that results in badness. Please Josef, do not think you
643 * know better and pull this out at some point in the future, it is
644 * right and you are wrong.
646 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
647 &BTRFS_I(inode)->runtime_flags))
648 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
650 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
655 ordered = btrfs_lookup_first_ordered_extent(inode, end);
658 if (ordered->file_offset > orig_end) {
659 btrfs_put_ordered_extent(ordered);
662 if (ordered->file_offset + ordered->len < start) {
663 btrfs_put_ordered_extent(ordered);
667 btrfs_start_ordered_extent(inode, ordered, 1);
668 end = ordered->file_offset;
669 btrfs_put_ordered_extent(ordered);
670 if (end == 0 || end == start)
677 * find an ordered extent corresponding to file_offset. return NULL if
678 * nothing is found, otherwise take a reference on the extent and return it
680 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
683 struct btrfs_ordered_inode_tree *tree;
684 struct rb_node *node;
685 struct btrfs_ordered_extent *entry = NULL;
687 tree = &BTRFS_I(inode)->ordered_tree;
688 spin_lock_irq(&tree->lock);
689 node = tree_search(tree, file_offset);
693 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
694 if (!offset_in_entry(entry, file_offset))
697 atomic_inc(&entry->refs);
699 spin_unlock_irq(&tree->lock);
703 /* Since the DIO code tries to lock a wide area we need to look for any ordered
704 * extents that exist in the range, rather than just the start of the range.
706 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
710 struct btrfs_ordered_inode_tree *tree;
711 struct rb_node *node;
712 struct btrfs_ordered_extent *entry = NULL;
714 tree = &BTRFS_I(inode)->ordered_tree;
715 spin_lock_irq(&tree->lock);
716 node = tree_search(tree, file_offset);
718 node = tree_search(tree, file_offset + len);
724 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
725 if (range_overlaps(entry, file_offset, len))
728 if (entry->file_offset >= file_offset + len) {
733 node = rb_next(node);
739 atomic_inc(&entry->refs);
740 spin_unlock_irq(&tree->lock);
745 * lookup and return any extent before 'file_offset'. NULL is returned
748 struct btrfs_ordered_extent *
749 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
751 struct btrfs_ordered_inode_tree *tree;
752 struct rb_node *node;
753 struct btrfs_ordered_extent *entry = NULL;
755 tree = &BTRFS_I(inode)->ordered_tree;
756 spin_lock_irq(&tree->lock);
757 node = tree_search(tree, file_offset);
761 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
762 atomic_inc(&entry->refs);
764 spin_unlock_irq(&tree->lock);
769 * After an extent is done, call this to conditionally update the on disk
770 * i_size. i_size is updated to cover any fully written part of the file.
772 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
773 struct btrfs_ordered_extent *ordered)
775 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
779 u64 i_size = i_size_read(inode);
780 struct rb_node *node;
781 struct rb_node *prev = NULL;
782 struct btrfs_ordered_extent *test;
786 offset = entry_end(ordered);
788 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
790 spin_lock_irq(&tree->lock);
791 disk_i_size = BTRFS_I(inode)->disk_i_size;
794 if (disk_i_size > i_size) {
795 BTRFS_I(inode)->disk_i_size = i_size;
801 * if the disk i_size is already at the inode->i_size, or
802 * this ordered extent is inside the disk i_size, we're done
804 if (disk_i_size == i_size || offset <= disk_i_size) {
809 * walk backward from this ordered extent to disk_i_size.
810 * if we find an ordered extent then we can't update disk i_size
814 node = rb_prev(&ordered->rb_node);
816 prev = tree_search(tree, offset);
818 * we insert file extents without involving ordered struct,
819 * so there should be no ordered struct cover this offset
822 test = rb_entry(prev, struct btrfs_ordered_extent,
824 BUG_ON(offset_in_entry(test, offset));
828 for (; node; node = rb_prev(node)) {
829 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
831 /* We treat this entry as if it doesnt exist */
832 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
834 if (test->file_offset + test->len <= disk_i_size)
836 if (test->file_offset >= i_size)
838 if (test->file_offset >= disk_i_size)
841 new_i_size = min_t(u64, offset, i_size);
844 * at this point, we know we can safely update i_size to at least
845 * the offset from this ordered extent. But, we need to
846 * walk forward and see if ios from higher up in the file have
850 node = rb_next(&ordered->rb_node);
853 node = rb_next(prev);
855 node = rb_first(&tree->tree);
859 * We are looking for an area between our current extent and the next
860 * ordered extent to update the i_size to. There are 3 cases here
862 * 1) We don't actually have anything and we can update to i_size.
863 * 2) We have stuff but they already did their i_size update so again we
864 * can just update to i_size.
865 * 3) We have an outstanding ordered extent so the most we can update
866 * our disk_i_size to is the start of the next offset.
868 i_size_test = i_size;
869 for (; node; node = rb_next(node)) {
870 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
872 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
874 if (test->file_offset > offset) {
875 i_size_test = test->file_offset;
881 * i_size_test is the end of a region after this ordered
882 * extent where there are no ordered extents, we can safely set
883 * disk_i_size to this.
885 if (i_size_test > offset)
886 new_i_size = min_t(u64, i_size_test, i_size);
887 BTRFS_I(inode)->disk_i_size = new_i_size;
891 * We need to do this because we can't remove ordered extents until
892 * after the i_disk_size has been updated and then the inode has been
893 * updated to reflect the change, so we need to tell anybody who finds
894 * this ordered extent that we've already done all the real work, we
895 * just haven't completed all the other work.
898 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
899 spin_unlock_irq(&tree->lock);
904 * search the ordered extents for one corresponding to 'offset' and
905 * try to find a checksum. This is used because we allow pages to
906 * be reclaimed before their checksum is actually put into the btree
908 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
911 struct btrfs_ordered_sum *ordered_sum;
912 struct btrfs_sector_sum *sector_sums;
913 struct btrfs_ordered_extent *ordered;
914 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
915 unsigned long num_sectors;
917 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
920 ordered = btrfs_lookup_ordered_extent(inode, offset);
924 spin_lock_irq(&tree->lock);
925 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
926 if (disk_bytenr >= ordered_sum->bytenr) {
927 num_sectors = ordered_sum->len / sectorsize;
928 sector_sums = ordered_sum->sums;
929 for (i = 0; i < num_sectors; i++) {
930 if (sector_sums[i].bytenr == disk_bytenr) {
931 *sum = sector_sums[i].sum;
939 spin_unlock_irq(&tree->lock);
940 btrfs_put_ordered_extent(ordered);
946 * add a given inode to the list of inodes that must be fully on
947 * disk before a transaction commit finishes.
949 * This basically gives us the ext3 style data=ordered mode, and it is mostly
950 * used to make sure renamed files are fully on disk.
952 * It is a noop if the inode is already fully on disk.
954 * If trans is not null, we'll do a friendly check for a transaction that
955 * is already flushing things and force the IO down ourselves.
957 void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
958 struct btrfs_root *root, struct inode *inode)
962 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
965 * if this file hasn't been changed since the last transaction
966 * commit, we can safely return without doing anything
968 if (last_mod < root->fs_info->last_trans_committed)
972 * the transaction is already committing. Just start the IO and
973 * don't bother with all of this list nonsense
975 if (trans && root->fs_info->running_transaction->blocked) {
976 btrfs_wait_ordered_range(inode, 0, (u64)-1);
980 spin_lock(&root->fs_info->ordered_extent_lock);
981 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
982 list_add_tail(&BTRFS_I(inode)->ordered_operations,
983 &root->fs_info->ordered_operations);
985 spin_unlock(&root->fs_info->ordered_extent_lock);