1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/file.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
41 #include "rcu-string.h"
43 #include "dev-replace.h"
48 #include "compression.h"
49 #include "space-info.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
55 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
56 * structures are incorrect, as the timespec structure from userspace
57 * is 4 bytes too small. We define these alternatives here to teach
58 * the kernel about the 32-bit struct packing.
60 struct btrfs_ioctl_timespec_32 {
63 } __attribute__ ((__packed__));
65 struct btrfs_ioctl_received_subvol_args_32 {
66 char uuid[BTRFS_UUID_SIZE]; /* in */
67 __u64 stransid; /* in */
68 __u64 rtransid; /* out */
69 struct btrfs_ioctl_timespec_32 stime; /* in */
70 struct btrfs_ioctl_timespec_32 rtime; /* out */
72 __u64 reserved[16]; /* in */
73 } __attribute__ ((__packed__));
75 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
76 struct btrfs_ioctl_received_subvol_args_32)
79 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
80 struct btrfs_ioctl_send_args_32 {
81 __s64 send_fd; /* in */
82 __u64 clone_sources_count; /* in */
83 compat_uptr_t clone_sources; /* in */
84 __u64 parent_root; /* in */
86 __u32 version; /* in */
87 __u8 reserved[28]; /* in */
88 } __attribute__ ((__packed__));
90 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
91 struct btrfs_ioctl_send_args_32)
93 struct btrfs_ioctl_encoded_io_args_32 {
95 compat_ulong_t iovcnt;
100 __u64 unencoded_offset;
106 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
107 struct btrfs_ioctl_encoded_io_args_32)
108 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
109 struct btrfs_ioctl_encoded_io_args_32)
112 /* Mask out flags that are inappropriate for the given type of inode. */
113 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
116 if (S_ISDIR(inode->i_mode))
118 else if (S_ISREG(inode->i_mode))
119 return flags & ~FS_DIRSYNC_FL;
121 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
125 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
128 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
130 unsigned int iflags = 0;
131 u32 flags = binode->flags;
132 u32 ro_flags = binode->ro_flags;
134 if (flags & BTRFS_INODE_SYNC)
135 iflags |= FS_SYNC_FL;
136 if (flags & BTRFS_INODE_IMMUTABLE)
137 iflags |= FS_IMMUTABLE_FL;
138 if (flags & BTRFS_INODE_APPEND)
139 iflags |= FS_APPEND_FL;
140 if (flags & BTRFS_INODE_NODUMP)
141 iflags |= FS_NODUMP_FL;
142 if (flags & BTRFS_INODE_NOATIME)
143 iflags |= FS_NOATIME_FL;
144 if (flags & BTRFS_INODE_DIRSYNC)
145 iflags |= FS_DIRSYNC_FL;
146 if (flags & BTRFS_INODE_NODATACOW)
147 iflags |= FS_NOCOW_FL;
148 if (ro_flags & BTRFS_INODE_RO_VERITY)
149 iflags |= FS_VERITY_FL;
151 if (flags & BTRFS_INODE_NOCOMPRESS)
152 iflags |= FS_NOCOMP_FL;
153 else if (flags & BTRFS_INODE_COMPRESS)
154 iflags |= FS_COMPR_FL;
160 * Update inode->i_flags based on the btrfs internal flags.
162 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
164 struct btrfs_inode *binode = BTRFS_I(inode);
165 unsigned int new_fl = 0;
167 if (binode->flags & BTRFS_INODE_SYNC)
169 if (binode->flags & BTRFS_INODE_IMMUTABLE)
170 new_fl |= S_IMMUTABLE;
171 if (binode->flags & BTRFS_INODE_APPEND)
173 if (binode->flags & BTRFS_INODE_NOATIME)
175 if (binode->flags & BTRFS_INODE_DIRSYNC)
177 if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
180 set_mask_bits(&inode->i_flags,
181 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
186 * Check if @flags are a supported and valid set of FS_*_FL flags and that
187 * the old and new flags are not conflicting
189 static int check_fsflags(unsigned int old_flags, unsigned int flags)
191 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
192 FS_NOATIME_FL | FS_NODUMP_FL | \
193 FS_SYNC_FL | FS_DIRSYNC_FL | \
194 FS_NOCOMP_FL | FS_COMPR_FL |
198 /* COMPR and NOCOMP on new/old are valid */
199 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
202 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
205 /* NOCOW and compression options are mutually exclusive */
206 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
208 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
214 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
217 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
224 * Set flags/xflags from the internal inode flags. The remaining items of
225 * fsxattr are zeroed.
227 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
229 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
231 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
235 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
236 struct dentry *dentry, struct fileattr *fa)
238 struct inode *inode = d_inode(dentry);
239 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
240 struct btrfs_inode *binode = BTRFS_I(inode);
241 struct btrfs_root *root = binode->root;
242 struct btrfs_trans_handle *trans;
243 unsigned int fsflags, old_fsflags;
245 const char *comp = NULL;
248 if (btrfs_root_readonly(root))
251 if (fileattr_has_fsx(fa))
254 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
255 old_fsflags = btrfs_inode_flags_to_fsflags(binode);
256 ret = check_fsflags(old_fsflags, fsflags);
260 ret = check_fsflags_compatible(fs_info, fsflags);
264 binode_flags = binode->flags;
265 if (fsflags & FS_SYNC_FL)
266 binode_flags |= BTRFS_INODE_SYNC;
268 binode_flags &= ~BTRFS_INODE_SYNC;
269 if (fsflags & FS_IMMUTABLE_FL)
270 binode_flags |= BTRFS_INODE_IMMUTABLE;
272 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
273 if (fsflags & FS_APPEND_FL)
274 binode_flags |= BTRFS_INODE_APPEND;
276 binode_flags &= ~BTRFS_INODE_APPEND;
277 if (fsflags & FS_NODUMP_FL)
278 binode_flags |= BTRFS_INODE_NODUMP;
280 binode_flags &= ~BTRFS_INODE_NODUMP;
281 if (fsflags & FS_NOATIME_FL)
282 binode_flags |= BTRFS_INODE_NOATIME;
284 binode_flags &= ~BTRFS_INODE_NOATIME;
286 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
287 if (!fa->flags_valid) {
288 /* 1 item for the inode */
289 trans = btrfs_start_transaction(root, 1);
291 return PTR_ERR(trans);
295 if (fsflags & FS_DIRSYNC_FL)
296 binode_flags |= BTRFS_INODE_DIRSYNC;
298 binode_flags &= ~BTRFS_INODE_DIRSYNC;
299 if (fsflags & FS_NOCOW_FL) {
300 if (S_ISREG(inode->i_mode)) {
302 * It's safe to turn csums off here, no extents exist.
303 * Otherwise we want the flag to reflect the real COW
304 * status of the file and will not set it.
306 if (inode->i_size == 0)
307 binode_flags |= BTRFS_INODE_NODATACOW |
308 BTRFS_INODE_NODATASUM;
310 binode_flags |= BTRFS_INODE_NODATACOW;
314 * Revert back under same assumptions as above
316 if (S_ISREG(inode->i_mode)) {
317 if (inode->i_size == 0)
318 binode_flags &= ~(BTRFS_INODE_NODATACOW |
319 BTRFS_INODE_NODATASUM);
321 binode_flags &= ~BTRFS_INODE_NODATACOW;
326 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
327 * flag may be changed automatically if compression code won't make
330 if (fsflags & FS_NOCOMP_FL) {
331 binode_flags &= ~BTRFS_INODE_COMPRESS;
332 binode_flags |= BTRFS_INODE_NOCOMPRESS;
333 } else if (fsflags & FS_COMPR_FL) {
335 if (IS_SWAPFILE(inode))
338 binode_flags |= BTRFS_INODE_COMPRESS;
339 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
341 comp = btrfs_compress_type2str(fs_info->compress_type);
342 if (!comp || comp[0] == 0)
343 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
345 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
352 trans = btrfs_start_transaction(root, 3);
354 return PTR_ERR(trans);
357 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
360 btrfs_abort_transaction(trans, ret);
364 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
366 if (ret && ret != -ENODATA) {
367 btrfs_abort_transaction(trans, ret);
373 binode->flags = binode_flags;
374 btrfs_sync_inode_flags_to_i_flags(inode);
375 inode_inc_iversion(inode);
376 inode->i_ctime = current_time(inode);
377 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
380 btrfs_end_transaction(trans);
385 * Start exclusive operation @type, return true on success
387 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
388 enum btrfs_exclusive_operation type)
392 spin_lock(&fs_info->super_lock);
393 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
394 fs_info->exclusive_operation = type;
397 spin_unlock(&fs_info->super_lock);
403 * Conditionally allow to enter the exclusive operation in case it's compatible
404 * with the running one. This must be paired with btrfs_exclop_start_unlock and
405 * btrfs_exclop_finish.
408 * - the same type is already running
409 * - when trying to add a device and balance has been paused
410 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
411 * must check the condition first that would allow none -> @type
413 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
414 enum btrfs_exclusive_operation type)
416 spin_lock(&fs_info->super_lock);
417 if (fs_info->exclusive_operation == type ||
418 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
419 type == BTRFS_EXCLOP_DEV_ADD))
422 spin_unlock(&fs_info->super_lock);
426 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
428 spin_unlock(&fs_info->super_lock);
431 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
433 spin_lock(&fs_info->super_lock);
434 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
435 spin_unlock(&fs_info->super_lock);
436 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
439 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
440 enum btrfs_exclusive_operation op)
443 case BTRFS_EXCLOP_BALANCE_PAUSED:
444 spin_lock(&fs_info->super_lock);
445 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
446 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD);
447 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
448 spin_unlock(&fs_info->super_lock);
450 case BTRFS_EXCLOP_BALANCE:
451 spin_lock(&fs_info->super_lock);
452 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
453 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
454 spin_unlock(&fs_info->super_lock);
458 "invalid exclop balance operation %d requested", op);
462 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
464 return put_user(inode->i_generation, arg);
467 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
470 struct btrfs_device *device;
471 struct request_queue *q;
472 struct fstrim_range range;
473 u64 minlen = ULLONG_MAX;
477 if (!capable(CAP_SYS_ADMIN))
481 * btrfs_trim_block_group() depends on space cache, which is not
482 * available in zoned filesystem. So, disallow fitrim on a zoned
483 * filesystem for now.
485 if (btrfs_is_zoned(fs_info))
489 * If the fs is mounted with nologreplay, which requires it to be
490 * mounted in RO mode as well, we can not allow discard on free space
491 * inside block groups, because log trees refer to extents that are not
492 * pinned in a block group's free space cache (pinning the extents is
493 * precisely the first phase of replaying a log tree).
495 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
499 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
503 q = bdev_get_queue(device->bdev);
504 if (blk_queue_discard(q)) {
506 minlen = min_t(u64, q->limits.discard_granularity,
514 if (copy_from_user(&range, arg, sizeof(range)))
518 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
519 * block group is in the logical address space, which can be any
520 * sectorsize aligned bytenr in the range [0, U64_MAX].
522 if (range.len < fs_info->sb->s_blocksize)
525 range.minlen = max(range.minlen, minlen);
526 ret = btrfs_trim_fs(fs_info, &range);
530 if (copy_to_user(arg, &range, sizeof(range)))
536 int __pure btrfs_is_empty_uuid(u8 *uuid)
540 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
547 static noinline int create_subvol(struct user_namespace *mnt_userns,
548 struct inode *dir, struct dentry *dentry,
549 const char *name, int namelen,
550 struct btrfs_qgroup_inherit *inherit)
552 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
553 struct btrfs_trans_handle *trans;
554 struct btrfs_key key;
555 struct btrfs_root_item *root_item;
556 struct btrfs_inode_item *inode_item;
557 struct extent_buffer *leaf;
558 struct btrfs_root *root = BTRFS_I(dir)->root;
559 struct btrfs_root *new_root;
560 struct btrfs_block_rsv block_rsv;
561 struct timespec64 cur_time = current_time(dir);
568 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
572 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
576 ret = get_anon_bdev(&anon_dev);
581 * Don't create subvolume whose level is not zero. Or qgroup will be
582 * screwed up since it assumes subvolume qgroup's level to be 0.
584 if (btrfs_qgroup_level(objectid)) {
589 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
591 * The same as the snapshot creation, please see the comment
592 * of create_snapshot().
594 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
598 trans = btrfs_start_transaction(root, 0);
600 ret = PTR_ERR(trans);
601 btrfs_subvolume_release_metadata(root, &block_rsv);
604 trans->block_rsv = &block_rsv;
605 trans->bytes_reserved = block_rsv.size;
607 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
611 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
612 BTRFS_NESTING_NORMAL);
618 btrfs_mark_buffer_dirty(leaf);
620 inode_item = &root_item->inode;
621 btrfs_set_stack_inode_generation(inode_item, 1);
622 btrfs_set_stack_inode_size(inode_item, 3);
623 btrfs_set_stack_inode_nlink(inode_item, 1);
624 btrfs_set_stack_inode_nbytes(inode_item,
626 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
628 btrfs_set_root_flags(root_item, 0);
629 btrfs_set_root_limit(root_item, 0);
630 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
632 btrfs_set_root_bytenr(root_item, leaf->start);
633 btrfs_set_root_generation(root_item, trans->transid);
634 btrfs_set_root_level(root_item, 0);
635 btrfs_set_root_refs(root_item, 1);
636 btrfs_set_root_used(root_item, leaf->len);
637 btrfs_set_root_last_snapshot(root_item, 0);
639 btrfs_set_root_generation_v2(root_item,
640 btrfs_root_generation(root_item));
641 generate_random_guid(root_item->uuid);
642 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
643 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
644 root_item->ctime = root_item->otime;
645 btrfs_set_root_ctransid(root_item, trans->transid);
646 btrfs_set_root_otransid(root_item, trans->transid);
648 btrfs_tree_unlock(leaf);
650 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
652 key.objectid = objectid;
654 key.type = BTRFS_ROOT_ITEM_KEY;
655 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
659 * Since we don't abort the transaction in this case, free the
660 * tree block so that we don't leak space and leave the
661 * filesystem in an inconsistent state (an extent item in the
662 * extent tree with a backreference for a root that does not
665 btrfs_tree_lock(leaf);
666 btrfs_clean_tree_block(leaf);
667 btrfs_tree_unlock(leaf);
668 btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
669 free_extent_buffer(leaf);
673 free_extent_buffer(leaf);
676 key.offset = (u64)-1;
677 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
678 if (IS_ERR(new_root)) {
679 free_anon_bdev(anon_dev);
680 ret = PTR_ERR(new_root);
681 btrfs_abort_transaction(trans, ret);
684 /* Freeing will be done in btrfs_put_root() of new_root */
687 ret = btrfs_record_root_in_trans(trans, new_root);
689 btrfs_put_root(new_root);
690 btrfs_abort_transaction(trans, ret);
694 ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns);
695 btrfs_put_root(new_root);
697 /* We potentially lose an unused inode item here */
698 btrfs_abort_transaction(trans, ret);
703 * insert the directory item
705 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
707 btrfs_abort_transaction(trans, ret);
711 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
712 BTRFS_FT_DIR, index);
714 btrfs_abort_transaction(trans, ret);
718 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
719 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
721 btrfs_abort_transaction(trans, ret);
725 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
726 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
728 btrfs_abort_transaction(trans, ret);
732 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
733 BTRFS_UUID_KEY_SUBVOL, objectid);
735 btrfs_abort_transaction(trans, ret);
739 trans->block_rsv = NULL;
740 trans->bytes_reserved = 0;
741 btrfs_subvolume_release_metadata(root, &block_rsv);
744 btrfs_end_transaction(trans);
746 ret = btrfs_commit_transaction(trans);
749 inode = btrfs_lookup_dentry(dir, dentry);
751 return PTR_ERR(inode);
752 d_instantiate(dentry, inode);
758 free_anon_bdev(anon_dev);
763 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
764 struct dentry *dentry, bool readonly,
765 struct btrfs_qgroup_inherit *inherit)
767 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
769 struct btrfs_pending_snapshot *pending_snapshot;
770 struct btrfs_trans_handle *trans;
773 /* We do not support snapshotting right now. */
774 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
776 "extent tree v2 doesn't support snapshotting yet");
780 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
783 if (atomic_read(&root->nr_swapfiles)) {
785 "cannot snapshot subvolume with active swapfile");
789 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
790 if (!pending_snapshot)
793 ret = get_anon_bdev(&pending_snapshot->anon_dev);
796 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
798 pending_snapshot->path = btrfs_alloc_path();
799 if (!pending_snapshot->root_item || !pending_snapshot->path) {
804 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
805 BTRFS_BLOCK_RSV_TEMP);
807 * 1 - parent dir inode
810 * 2 - root ref/backref
811 * 1 - root of snapshot
814 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
815 &pending_snapshot->block_rsv, 8,
820 pending_snapshot->dentry = dentry;
821 pending_snapshot->root = root;
822 pending_snapshot->readonly = readonly;
823 pending_snapshot->dir = dir;
824 pending_snapshot->inherit = inherit;
826 trans = btrfs_start_transaction(root, 0);
828 ret = PTR_ERR(trans);
832 trans->pending_snapshot = pending_snapshot;
834 ret = btrfs_commit_transaction(trans);
838 ret = pending_snapshot->error;
842 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
846 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
848 ret = PTR_ERR(inode);
852 d_instantiate(dentry, inode);
854 pending_snapshot->anon_dev = 0;
856 /* Prevent double freeing of anon_dev */
857 if (ret && pending_snapshot->snap)
858 pending_snapshot->snap->anon_dev = 0;
859 btrfs_put_root(pending_snapshot->snap);
860 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
862 if (pending_snapshot->anon_dev)
863 free_anon_bdev(pending_snapshot->anon_dev);
864 kfree(pending_snapshot->root_item);
865 btrfs_free_path(pending_snapshot->path);
866 kfree(pending_snapshot);
871 /* copy of may_delete in fs/namei.c()
872 * Check whether we can remove a link victim from directory dir, check
873 * whether the type of victim is right.
874 * 1. We can't do it if dir is read-only (done in permission())
875 * 2. We should have write and exec permissions on dir
876 * 3. We can't remove anything from append-only dir
877 * 4. We can't do anything with immutable dir (done in permission())
878 * 5. If the sticky bit on dir is set we should either
879 * a. be owner of dir, or
880 * b. be owner of victim, or
881 * c. have CAP_FOWNER capability
882 * 6. If the victim is append-only or immutable we can't do anything with
883 * links pointing to it.
884 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
885 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
886 * 9. We can't remove a root or mountpoint.
887 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
888 * nfs_async_unlink().
891 static int btrfs_may_delete(struct user_namespace *mnt_userns,
892 struct inode *dir, struct dentry *victim, int isdir)
896 if (d_really_is_negative(victim))
899 BUG_ON(d_inode(victim->d_parent) != dir);
900 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
902 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
907 if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
908 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
909 IS_SWAPFILE(d_inode(victim)))
912 if (!d_is_dir(victim))
916 } else if (d_is_dir(victim))
920 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
925 /* copy of may_create in fs/namei.c() */
926 static inline int btrfs_may_create(struct user_namespace *mnt_userns,
927 struct inode *dir, struct dentry *child)
929 if (d_really_is_positive(child))
933 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
935 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
939 * Create a new subvolume below @parent. This is largely modeled after
940 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
941 * inside this filesystem so it's quite a bit simpler.
943 static noinline int btrfs_mksubvol(const struct path *parent,
944 struct user_namespace *mnt_userns,
945 const char *name, int namelen,
946 struct btrfs_root *snap_src,
948 struct btrfs_qgroup_inherit *inherit)
950 struct inode *dir = d_inode(parent->dentry);
951 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
952 struct dentry *dentry;
955 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
959 dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
960 error = PTR_ERR(dentry);
964 error = btrfs_may_create(mnt_userns, dir, dentry);
969 * even if this name doesn't exist, we may get hash collisions.
970 * check for them now when we can safely fail
972 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
978 down_read(&fs_info->subvol_sem);
980 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
984 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
986 error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit);
989 fsnotify_mkdir(dir, dentry);
991 up_read(&fs_info->subvol_sem);
995 btrfs_inode_unlock(dir, 0);
999 static noinline int btrfs_mksnapshot(const struct path *parent,
1000 struct user_namespace *mnt_userns,
1001 const char *name, int namelen,
1002 struct btrfs_root *root,
1004 struct btrfs_qgroup_inherit *inherit)
1007 bool snapshot_force_cow = false;
1010 * Force new buffered writes to reserve space even when NOCOW is
1011 * possible. This is to avoid later writeback (running dealloc) to
1012 * fallback to COW mode and unexpectedly fail with ENOSPC.
1014 btrfs_drew_read_lock(&root->snapshot_lock);
1016 ret = btrfs_start_delalloc_snapshot(root, false);
1021 * All previous writes have started writeback in NOCOW mode, so now
1022 * we force future writes to fallback to COW mode during snapshot
1025 atomic_inc(&root->snapshot_force_cow);
1026 snapshot_force_cow = true;
1028 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1030 ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
1031 root, readonly, inherit);
1033 if (snapshot_force_cow)
1034 atomic_dec(&root->snapshot_force_cow);
1035 btrfs_drew_read_unlock(&root->snapshot_lock);
1040 * Defrag specific helper to get an extent map.
1042 * Differences between this and btrfs_get_extent() are:
1044 * - No extent_map will be added to inode->extent_tree
1045 * To reduce memory usage in the long run.
1047 * - Extra optimization to skip file extents older than @newer_than
1048 * By using btrfs_search_forward() we can skip entire file ranges that
1049 * have extents created in past transactions, because btrfs_search_forward()
1050 * will not visit leaves and nodes with a generation smaller than given
1051 * minimal generation threshold (@newer_than).
1053 * Return valid em if we find a file extent matching the requirement.
1054 * Return NULL if we can not find a file extent matching the requirement.
1056 * Return ERR_PTR() for error.
1058 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
1059 u64 start, u64 newer_than)
1061 struct btrfs_root *root = inode->root;
1062 struct btrfs_file_extent_item *fi;
1063 struct btrfs_path path = { 0 };
1064 struct extent_map *em;
1065 struct btrfs_key key;
1066 u64 ino = btrfs_ino(inode);
1069 em = alloc_extent_map();
1076 key.type = BTRFS_EXTENT_DATA_KEY;
1080 ret = btrfs_search_forward(root, &key, &path, newer_than);
1083 /* Can't find anything newer */
1087 ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
1091 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
1093 * If btrfs_search_slot() makes path to point beyond nritems,
1094 * we should not have an empty leaf, as this inode must at
1095 * least have its INODE_ITEM.
1097 ASSERT(btrfs_header_nritems(path.nodes[0]));
1098 path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
1100 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1101 /* Perfect match, no need to go one slot back */
1102 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
1103 key.offset == start)
1106 /* We didn't find a perfect match, needs to go one slot back */
1107 if (path.slots[0] > 0) {
1108 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1109 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
1114 /* Iterate through the path to find a file extent covering @start */
1118 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
1121 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1124 * We may go one slot back to INODE_REF/XATTR item, then
1125 * need to go forward until we reach an EXTENT_DATA.
1126 * But we should still has the correct ino as key.objectid.
1128 if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
1131 /* It's beyond our target range, definitely not extent found */
1132 if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
1136 * | |<- File extent ->|
1139 * This means there is a hole between start and key.offset.
1141 if (key.offset > start) {
1143 em->orig_start = start;
1144 em->block_start = EXTENT_MAP_HOLE;
1145 em->len = key.offset - start;
1149 fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
1150 struct btrfs_file_extent_item);
1151 extent_end = btrfs_file_extent_end(&path);
1154 * |<- file extent ->| |
1157 * We haven't reached start, search next slot.
1159 if (extent_end <= start)
1162 /* Now this extent covers @start, convert it to em */
1163 btrfs_extent_item_to_extent_map(inode, &path, fi, false, em);
1166 ret = btrfs_next_item(root, &path);
1172 btrfs_release_path(&path);
1176 btrfs_release_path(&path);
1177 free_extent_map(em);
1181 btrfs_release_path(&path);
1182 free_extent_map(em);
1183 return ERR_PTR(ret);
1186 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
1187 u64 newer_than, bool locked)
1189 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1190 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1191 struct extent_map *em;
1192 const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
1195 * hopefully we have this extent in the tree already, try without
1196 * the full extent lock
1198 read_lock(&em_tree->lock);
1199 em = lookup_extent_mapping(em_tree, start, sectorsize);
1200 read_unlock(&em_tree->lock);
1203 * We can get a merged extent, in that case, we need to re-search
1204 * tree to get the original em for defrag.
1206 * If @newer_than is 0 or em::generation < newer_than, we can trust
1207 * this em, as either we don't care about the generation, or the
1208 * merged extent map will be rejected anyway.
1210 if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) &&
1211 newer_than && em->generation >= newer_than) {
1212 free_extent_map(em);
1217 struct extent_state *cached = NULL;
1218 u64 end = start + sectorsize - 1;
1220 /* get the big lock and read metadata off disk */
1222 lock_extent_bits(io_tree, start, end, &cached);
1223 em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
1225 unlock_extent_cached(io_tree, start, end, &cached);
1234 static u32 get_extent_max_capacity(const struct extent_map *em)
1236 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1237 return BTRFS_MAX_COMPRESSED;
1238 return BTRFS_MAX_EXTENT_SIZE;
1241 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
1242 u32 extent_thresh, u64 newer_than, bool locked)
1244 struct extent_map *next;
1247 /* this is the last extent */
1248 if (em->start + em->len >= i_size_read(inode))
1252 * Here we need to pass @newer_then when checking the next extent, or
1253 * we will hit a case we mark current extent for defrag, but the next
1254 * one will not be a target.
1255 * This will just cause extra IO without really reducing the fragments.
1257 next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
1258 /* No more em or hole */
1259 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1261 if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags))
1264 * If the next extent is at its max capacity, defragging current extent
1265 * makes no sense, as the total number of extents won't change.
1267 if (next->len >= get_extent_max_capacity(em))
1269 /* Skip older extent */
1270 if (next->generation < newer_than)
1272 /* Also check extent size */
1273 if (next->len >= extent_thresh)
1278 free_extent_map(next);
1283 * Prepare one page to be defragged.
1287 * - Returned page is locked and has been set up properly.
1288 * - No ordered extent exists in the page.
1289 * - The page is uptodate.
1291 * NOTE: Caller should also wait for page writeback after the cluster is
1292 * prepared, here we don't do writeback wait for each page.
1294 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode,
1297 struct address_space *mapping = inode->vfs_inode.i_mapping;
1298 gfp_t mask = btrfs_alloc_write_mask(mapping);
1299 u64 page_start = (u64)index << PAGE_SHIFT;
1300 u64 page_end = page_start + PAGE_SIZE - 1;
1301 struct extent_state *cached_state = NULL;
1306 page = find_or_create_page(mapping, index, mask);
1308 return ERR_PTR(-ENOMEM);
1311 * Since we can defragment files opened read-only, we can encounter
1312 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
1313 * can't do I/O using huge pages yet, so return an error for now.
1314 * Filesystem transparent huge pages are typically only used for
1315 * executables that explicitly enable them, so this isn't very
1318 if (PageCompound(page)) {
1321 return ERR_PTR(-ETXTBSY);
1324 ret = set_page_extent_mapped(page);
1328 return ERR_PTR(ret);
1331 /* Wait for any existing ordered extent in the range */
1333 struct btrfs_ordered_extent *ordered;
1335 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
1336 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
1337 unlock_extent_cached(&inode->io_tree, page_start, page_end,
1343 btrfs_start_ordered_extent(ordered, 1);
1344 btrfs_put_ordered_extent(ordered);
1347 * We unlocked the page above, so we need check if it was
1350 if (page->mapping != mapping || !PagePrivate(page)) {
1358 * Now the page range has no ordered extent any more. Read the page to
1361 if (!PageUptodate(page)) {
1362 btrfs_readpage(NULL, page);
1364 if (page->mapping != mapping || !PagePrivate(page)) {
1369 if (!PageUptodate(page)) {
1372 return ERR_PTR(-EIO);
1378 struct defrag_target_range {
1379 struct list_head list;
1385 * Collect all valid target extents.
1387 * @start: file offset to lookup
1388 * @len: length to lookup
1389 * @extent_thresh: file extent size threshold, any extent size >= this value
1391 * @newer_than: only defrag extents newer than this value
1392 * @do_compress: whether the defrag is doing compression
1393 * if true, @extent_thresh will be ignored and all regular
1394 * file extents meeting @newer_than will be targets.
1395 * @locked: if the range has already held extent lock
1396 * @target_list: list of targets file extents
1398 static int defrag_collect_targets(struct btrfs_inode *inode,
1399 u64 start, u64 len, u32 extent_thresh,
1400 u64 newer_than, bool do_compress,
1401 bool locked, struct list_head *target_list,
1402 u64 *last_scanned_ret)
1404 bool last_is_target = false;
1408 while (cur < start + len) {
1409 struct extent_map *em;
1410 struct defrag_target_range *new;
1411 bool next_mergeable = true;
1414 last_is_target = false;
1415 em = defrag_lookup_extent(&inode->vfs_inode, cur,
1416 newer_than, locked);
1420 /* Skip hole/inline/preallocated extents */
1421 if (em->block_start >= EXTENT_MAP_LAST_BYTE ||
1422 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1425 /* Skip older extent */
1426 if (em->generation < newer_than)
1429 /* This em is under writeback, no need to defrag */
1430 if (em->generation == (u64)-1)
1434 * Our start offset might be in the middle of an existing extent
1435 * map, so take that into account.
1437 range_len = em->len - (cur - em->start);
1439 * If this range of the extent map is already flagged for delalloc,
1442 * 1) We could deadlock later, when trying to reserve space for
1443 * delalloc, because in case we can't immediately reserve space
1444 * the flusher can start delalloc and wait for the respective
1445 * ordered extents to complete. The deadlock would happen
1446 * because we do the space reservation while holding the range
1447 * locked, and starting writeback, or finishing an ordered
1448 * extent, requires locking the range;
1450 * 2) If there's delalloc there, it means there's dirty pages for
1451 * which writeback has not started yet (we clean the delalloc
1452 * flag when starting writeback and after creating an ordered
1453 * extent). If we mark pages in an adjacent range for defrag,
1454 * then we will have a larger contiguous range for delalloc,
1455 * very likely resulting in a larger extent after writeback is
1456 * triggered (except in a case of free space fragmentation).
1458 if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
1459 EXTENT_DELALLOC, 0, NULL))
1463 * For do_compress case, we want to compress all valid file
1464 * extents, thus no @extent_thresh or mergeable check.
1469 /* Skip too large extent */
1470 if (range_len >= extent_thresh)
1474 * Skip extents already at its max capacity, this is mostly for
1475 * compressed extents, which max cap is only 128K.
1477 if (em->len >= get_extent_max_capacity(em))
1480 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1481 extent_thresh, newer_than, locked);
1482 if (!next_mergeable) {
1483 struct defrag_target_range *last;
1485 /* Empty target list, no way to merge with last entry */
1486 if (list_empty(target_list))
1488 last = list_entry(target_list->prev,
1489 struct defrag_target_range, list);
1490 /* Not mergeable with last entry */
1491 if (last->start + last->len != cur)
1494 /* Mergeable, fall through to add it to @target_list. */
1498 last_is_target = true;
1499 range_len = min(extent_map_end(em), start + len) - cur;
1501 * This one is a good target, check if it can be merged into
1502 * last range of the target list.
1504 if (!list_empty(target_list)) {
1505 struct defrag_target_range *last;
1507 last = list_entry(target_list->prev,
1508 struct defrag_target_range, list);
1509 ASSERT(last->start + last->len <= cur);
1510 if (last->start + last->len == cur) {
1511 /* Mergeable, enlarge the last entry */
1512 last->len += range_len;
1515 /* Fall through to allocate a new entry */
1518 /* Allocate new defrag_target_range */
1519 new = kmalloc(sizeof(*new), GFP_NOFS);
1521 free_extent_map(em);
1526 new->len = range_len;
1527 list_add_tail(&new->list, target_list);
1530 cur = extent_map_end(em);
1531 free_extent_map(em);
1534 struct defrag_target_range *entry;
1535 struct defrag_target_range *tmp;
1537 list_for_each_entry_safe(entry, tmp, target_list, list) {
1538 list_del_init(&entry->list);
1542 if (!ret && last_scanned_ret) {
1544 * If the last extent is not a target, the caller can skip to
1545 * the end of that extent.
1546 * Otherwise, we can only go the end of the specified range.
1548 if (!last_is_target)
1549 *last_scanned_ret = max(cur, *last_scanned_ret);
1551 *last_scanned_ret = max(start + len, *last_scanned_ret);
1556 #define CLUSTER_SIZE (SZ_256K)
1557 static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1560 * Defrag one contiguous target range.
1562 * @inode: target inode
1563 * @target: target range to defrag
1564 * @pages: locked pages covering the defrag range
1565 * @nr_pages: number of locked pages
1567 * Caller should ensure:
1569 * - Pages are prepared
1570 * Pages should be locked, no ordered extent in the pages range,
1573 * - Extent bits are locked
1575 static int defrag_one_locked_target(struct btrfs_inode *inode,
1576 struct defrag_target_range *target,
1577 struct page **pages, int nr_pages,
1578 struct extent_state **cached_state)
1580 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1581 struct extent_changeset *data_reserved = NULL;
1582 const u64 start = target->start;
1583 const u64 len = target->len;
1584 unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1585 unsigned long start_index = start >> PAGE_SHIFT;
1586 unsigned long first_index = page_index(pages[0]);
1590 ASSERT(last_index - first_index + 1 <= nr_pages);
1592 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1595 clear_extent_bit(&inode->io_tree, start, start + len - 1,
1596 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1597 EXTENT_DEFRAG, 0, 0, cached_state);
1598 set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
1600 /* Update the page status */
1601 for (i = start_index - first_index; i <= last_index - first_index; i++) {
1602 ClearPageChecked(pages[i]);
1603 btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1605 btrfs_delalloc_release_extents(inode, len);
1606 extent_changeset_free(data_reserved);
1611 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1612 u32 extent_thresh, u64 newer_than, bool do_compress,
1613 u64 *last_scanned_ret)
1615 struct extent_state *cached_state = NULL;
1616 struct defrag_target_range *entry;
1617 struct defrag_target_range *tmp;
1618 LIST_HEAD(target_list);
1619 struct page **pages;
1620 const u32 sectorsize = inode->root->fs_info->sectorsize;
1621 u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1622 u64 start_index = start >> PAGE_SHIFT;
1623 unsigned int nr_pages = last_index - start_index + 1;
1627 ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1628 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1630 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1634 /* Prepare all pages */
1635 for (i = 0; i < nr_pages; i++) {
1636 pages[i] = defrag_prepare_one_page(inode, start_index + i);
1637 if (IS_ERR(pages[i])) {
1638 ret = PTR_ERR(pages[i]);
1643 for (i = 0; i < nr_pages; i++)
1644 wait_on_page_writeback(pages[i]);
1646 /* Lock the pages range */
1647 lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT,
1648 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1651 * Now we have a consistent view about the extent map, re-check
1652 * which range really needs to be defragged.
1654 * And this time we have extent locked already, pass @locked = true
1655 * so that we won't relock the extent range and cause deadlock.
1657 ret = defrag_collect_targets(inode, start, len, extent_thresh,
1658 newer_than, do_compress, true,
1659 &target_list, last_scanned_ret);
1663 list_for_each_entry(entry, &target_list, list) {
1664 ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1670 list_for_each_entry_safe(entry, tmp, &target_list, list) {
1671 list_del_init(&entry->list);
1675 unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT,
1676 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1679 for (i = 0; i < nr_pages; i++) {
1681 unlock_page(pages[i]);
1689 static int defrag_one_cluster(struct btrfs_inode *inode,
1690 struct file_ra_state *ra,
1691 u64 start, u32 len, u32 extent_thresh,
1692 u64 newer_than, bool do_compress,
1693 unsigned long *sectors_defragged,
1694 unsigned long max_sectors,
1695 u64 *last_scanned_ret)
1697 const u32 sectorsize = inode->root->fs_info->sectorsize;
1698 struct defrag_target_range *entry;
1699 struct defrag_target_range *tmp;
1700 LIST_HEAD(target_list);
1703 ret = defrag_collect_targets(inode, start, len, extent_thresh,
1704 newer_than, do_compress, false,
1705 &target_list, NULL);
1709 list_for_each_entry(entry, &target_list, list) {
1710 u32 range_len = entry->len;
1712 /* Reached or beyond the limit */
1713 if (max_sectors && *sectors_defragged >= max_sectors) {
1719 range_len = min_t(u32, range_len,
1720 (max_sectors - *sectors_defragged) * sectorsize);
1723 * If defrag_one_range() has updated last_scanned_ret,
1724 * our range may already be invalid (e.g. hole punched).
1725 * Skip if our range is before last_scanned_ret, as there is
1726 * no need to defrag the range anymore.
1728 if (entry->start + range_len <= *last_scanned_ret)
1732 page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1733 ra, NULL, entry->start >> PAGE_SHIFT,
1734 ((entry->start + range_len - 1) >> PAGE_SHIFT) -
1735 (entry->start >> PAGE_SHIFT) + 1);
1737 * Here we may not defrag any range if holes are punched before
1738 * we locked the pages.
1739 * But that's fine, it only affects the @sectors_defragged
1742 ret = defrag_one_range(inode, entry->start, range_len,
1743 extent_thresh, newer_than, do_compress,
1747 *sectors_defragged += range_len >>
1748 inode->root->fs_info->sectorsize_bits;
1751 list_for_each_entry_safe(entry, tmp, &target_list, list) {
1752 list_del_init(&entry->list);
1756 *last_scanned_ret = max(*last_scanned_ret, start + len);
1761 * Entry point to file defragmentation.
1763 * @inode: inode to be defragged
1764 * @ra: readahead state (can be NUL)
1765 * @range: defrag options including range and flags
1766 * @newer_than: minimum transid to defrag
1767 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1768 * will be defragged.
1770 * Return <0 for error.
1771 * Return >=0 for the number of sectors defragged, and range->start will be updated
1772 * to indicate the file offset where next defrag should be started at.
1773 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1774 * defragging all the range).
1776 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1777 struct btrfs_ioctl_defrag_range_args *range,
1778 u64 newer_than, unsigned long max_to_defrag)
1780 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1781 unsigned long sectors_defragged = 0;
1782 u64 isize = i_size_read(inode);
1785 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1786 bool ra_allocated = false;
1787 int compress_type = BTRFS_COMPRESS_ZLIB;
1789 u32 extent_thresh = range->extent_thresh;
1790 pgoff_t start_index;
1795 if (range->start >= isize)
1799 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1801 if (range->compress_type)
1802 compress_type = range->compress_type;
1805 if (extent_thresh == 0)
1806 extent_thresh = SZ_256K;
1808 if (range->start + range->len > range->start) {
1809 /* Got a specific range */
1810 last_byte = min(isize, range->start + range->len);
1812 /* Defrag until file end */
1816 /* Align the range */
1817 cur = round_down(range->start, fs_info->sectorsize);
1818 last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1821 * If we were not given a ra, allocate a readahead context. As
1822 * readahead is just an optimization, defrag will work without it so
1823 * we don't error out.
1826 ra_allocated = true;
1827 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1829 file_ra_state_init(ra, inode->i_mapping);
1833 * Make writeback start from the beginning of the range, so that the
1834 * defrag range can be written sequentially.
1836 start_index = cur >> PAGE_SHIFT;
1837 if (start_index < inode->i_mapping->writeback_index)
1838 inode->i_mapping->writeback_index = start_index;
1840 while (cur < last_byte) {
1841 const unsigned long prev_sectors_defragged = sectors_defragged;
1842 u64 last_scanned = cur;
1845 if (btrfs_defrag_cancelled(fs_info)) {
1850 /* We want the cluster end at page boundary when possible */
1851 cluster_end = (((cur >> PAGE_SHIFT) +
1852 (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1853 cluster_end = min(cluster_end, last_byte);
1855 btrfs_inode_lock(inode, 0);
1856 if (IS_SWAPFILE(inode)) {
1858 btrfs_inode_unlock(inode, 0);
1861 if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1862 btrfs_inode_unlock(inode, 0);
1866 BTRFS_I(inode)->defrag_compress = compress_type;
1867 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1868 cluster_end + 1 - cur, extent_thresh,
1869 newer_than, do_compress, §ors_defragged,
1870 max_to_defrag, &last_scanned);
1872 if (sectors_defragged > prev_sectors_defragged)
1873 balance_dirty_pages_ratelimited(inode->i_mapping);
1875 btrfs_inode_unlock(inode, 0);
1878 cur = max(cluster_end + 1, last_scanned);
1889 * Update range.start for autodefrag, this will indicate where to start
1893 if (sectors_defragged) {
1895 * We have defragged some sectors, for compression case they
1896 * need to be written back immediately.
1898 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1899 filemap_flush(inode->i_mapping);
1900 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1901 &BTRFS_I(inode)->runtime_flags))
1902 filemap_flush(inode->i_mapping);
1904 if (range->compress_type == BTRFS_COMPRESS_LZO)
1905 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1906 else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1907 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1908 ret = sectors_defragged;
1911 btrfs_inode_lock(inode, 0);
1912 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1913 btrfs_inode_unlock(inode, 0);
1919 * Try to start exclusive operation @type or cancel it if it's running.
1922 * 0 - normal mode, newly claimed op started
1923 * >0 - normal mode, something else is running,
1924 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1925 * ECANCELED - cancel mode, successful cancel
1926 * ENOTCONN - cancel mode, operation not running anymore
1928 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1929 enum btrfs_exclusive_operation type, bool cancel)
1932 /* Start normal op */
1933 if (!btrfs_exclop_start(fs_info, type))
1934 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1935 /* Exclusive operation is now claimed */
1939 /* Cancel running op */
1940 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1942 * This blocks any exclop finish from setting it to NONE, so we
1943 * request cancellation. Either it runs and we will wait for it,
1944 * or it has finished and no waiting will happen.
1946 atomic_inc(&fs_info->reloc_cancel_req);
1947 btrfs_exclop_start_unlock(fs_info);
1949 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1950 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1951 TASK_INTERRUPTIBLE);
1956 /* Something else is running or none */
1960 static noinline int btrfs_ioctl_resize(struct file *file,
1963 BTRFS_DEV_LOOKUP_ARGS(args);
1964 struct inode *inode = file_inode(file);
1965 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1969 struct btrfs_root *root = BTRFS_I(inode)->root;
1970 struct btrfs_ioctl_vol_args *vol_args;
1971 struct btrfs_trans_handle *trans;
1972 struct btrfs_device *device = NULL;
1975 char *devstr = NULL;
1980 if (!capable(CAP_SYS_ADMIN))
1983 ret = mnt_want_write_file(file);
1988 * Read the arguments before checking exclusivity to be able to
1989 * distinguish regular resize and cancel
1991 vol_args = memdup_user(arg, sizeof(*vol_args));
1992 if (IS_ERR(vol_args)) {
1993 ret = PTR_ERR(vol_args);
1996 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1997 sizestr = vol_args->name;
1998 cancel = (strcmp("cancel", sizestr) == 0);
1999 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
2002 /* Exclusive operation is now claimed */
2004 devstr = strchr(sizestr, ':');
2006 sizestr = devstr + 1;
2008 devstr = vol_args->name;
2009 ret = kstrtoull(devstr, 10, &devid);
2016 btrfs_info(fs_info, "resizing devid %llu", devid);
2020 device = btrfs_find_device(fs_info->fs_devices, &args);
2022 btrfs_info(fs_info, "resizer unable to find device %llu",
2028 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2030 "resizer unable to apply on readonly device %llu",
2036 if (!strcmp(sizestr, "max"))
2037 new_size = bdev_nr_bytes(device->bdev);
2039 if (sizestr[0] == '-') {
2042 } else if (sizestr[0] == '+') {
2046 new_size = memparse(sizestr, &retptr);
2047 if (*retptr != '\0' || new_size == 0) {
2053 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2058 old_size = btrfs_device_get_total_bytes(device);
2061 if (new_size > old_size) {
2065 new_size = old_size - new_size;
2066 } else if (mod > 0) {
2067 if (new_size > ULLONG_MAX - old_size) {
2071 new_size = old_size + new_size;
2074 if (new_size < SZ_256M) {
2078 if (new_size > bdev_nr_bytes(device->bdev)) {
2083 new_size = round_down(new_size, fs_info->sectorsize);
2085 if (new_size > old_size) {
2086 trans = btrfs_start_transaction(root, 0);
2087 if (IS_ERR(trans)) {
2088 ret = PTR_ERR(trans);
2091 ret = btrfs_grow_device(trans, device, new_size);
2092 btrfs_commit_transaction(trans);
2093 } else if (new_size < old_size) {
2094 ret = btrfs_shrink_device(device, new_size);
2095 } /* equal, nothing need to do */
2097 if (ret == 0 && new_size != old_size)
2098 btrfs_info_in_rcu(fs_info,
2099 "resize device %s (devid %llu) from %llu to %llu",
2100 rcu_str_deref(device->name), device->devid,
2101 old_size, new_size);
2103 btrfs_exclop_finish(fs_info);
2107 mnt_drop_write_file(file);
2111 static noinline int __btrfs_ioctl_snap_create(struct file *file,
2112 struct user_namespace *mnt_userns,
2113 const char *name, unsigned long fd, int subvol,
2115 struct btrfs_qgroup_inherit *inherit)
2120 if (!S_ISDIR(file_inode(file)->i_mode))
2123 ret = mnt_want_write_file(file);
2127 namelen = strlen(name);
2128 if (strchr(name, '/')) {
2130 goto out_drop_write;
2133 if (name[0] == '.' &&
2134 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
2136 goto out_drop_write;
2140 ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
2141 namelen, NULL, readonly, inherit);
2143 struct fd src = fdget(fd);
2144 struct inode *src_inode;
2147 goto out_drop_write;
2150 src_inode = file_inode(src.file);
2151 if (src_inode->i_sb != file_inode(file)->i_sb) {
2152 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
2153 "Snapshot src from another FS");
2155 } else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
2157 * Subvolume creation is not restricted, but snapshots
2158 * are limited to own subvolumes only
2162 ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
2164 BTRFS_I(src_inode)->root,
2170 mnt_drop_write_file(file);
2175 static noinline int btrfs_ioctl_snap_create(struct file *file,
2176 void __user *arg, int subvol)
2178 struct btrfs_ioctl_vol_args *vol_args;
2181 if (!S_ISDIR(file_inode(file)->i_mode))
2184 vol_args = memdup_user(arg, sizeof(*vol_args));
2185 if (IS_ERR(vol_args))
2186 return PTR_ERR(vol_args);
2187 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2189 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
2190 vol_args->name, vol_args->fd, subvol,
2197 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
2198 void __user *arg, int subvol)
2200 struct btrfs_ioctl_vol_args_v2 *vol_args;
2202 bool readonly = false;
2203 struct btrfs_qgroup_inherit *inherit = NULL;
2205 if (!S_ISDIR(file_inode(file)->i_mode))
2208 vol_args = memdup_user(arg, sizeof(*vol_args));
2209 if (IS_ERR(vol_args))
2210 return PTR_ERR(vol_args);
2211 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2213 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
2218 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
2220 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
2223 if (vol_args->size < sizeof(*inherit) ||
2224 vol_args->size > PAGE_SIZE) {
2228 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
2229 if (IS_ERR(inherit)) {
2230 ret = PTR_ERR(inherit);
2234 if (inherit->num_qgroups > PAGE_SIZE ||
2235 inherit->num_ref_copies > PAGE_SIZE ||
2236 inherit->num_excl_copies > PAGE_SIZE) {
2241 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
2242 2 * inherit->num_excl_copies;
2243 if (vol_args->size != struct_size(inherit, qgroups, nums)) {
2249 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
2250 vol_args->name, vol_args->fd, subvol,
2261 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
2264 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2265 struct btrfs_root *root = BTRFS_I(inode)->root;
2269 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
2272 down_read(&fs_info->subvol_sem);
2273 if (btrfs_root_readonly(root))
2274 flags |= BTRFS_SUBVOL_RDONLY;
2275 up_read(&fs_info->subvol_sem);
2277 if (copy_to_user(arg, &flags, sizeof(flags)))
2283 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
2286 struct inode *inode = file_inode(file);
2287 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2288 struct btrfs_root *root = BTRFS_I(inode)->root;
2289 struct btrfs_trans_handle *trans;
2294 if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
2297 ret = mnt_want_write_file(file);
2301 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2303 goto out_drop_write;
2306 if (copy_from_user(&flags, arg, sizeof(flags))) {
2308 goto out_drop_write;
2311 if (flags & ~BTRFS_SUBVOL_RDONLY) {
2313 goto out_drop_write;
2316 down_write(&fs_info->subvol_sem);
2319 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2322 root_flags = btrfs_root_flags(&root->root_item);
2323 if (flags & BTRFS_SUBVOL_RDONLY) {
2324 btrfs_set_root_flags(&root->root_item,
2325 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2328 * Block RO -> RW transition if this subvolume is involved in
2331 spin_lock(&root->root_item_lock);
2332 if (root->send_in_progress == 0) {
2333 btrfs_set_root_flags(&root->root_item,
2334 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2335 spin_unlock(&root->root_item_lock);
2337 spin_unlock(&root->root_item_lock);
2339 "Attempt to set subvolume %llu read-write during send",
2340 root->root_key.objectid);
2346 trans = btrfs_start_transaction(root, 1);
2347 if (IS_ERR(trans)) {
2348 ret = PTR_ERR(trans);
2352 ret = btrfs_update_root(trans, fs_info->tree_root,
2353 &root->root_key, &root->root_item);
2355 btrfs_end_transaction(trans);
2359 ret = btrfs_commit_transaction(trans);
2363 btrfs_set_root_flags(&root->root_item, root_flags);
2365 up_write(&fs_info->subvol_sem);
2367 mnt_drop_write_file(file);
2372 static noinline int key_in_sk(struct btrfs_key *key,
2373 struct btrfs_ioctl_search_key *sk)
2375 struct btrfs_key test;
2378 test.objectid = sk->min_objectid;
2379 test.type = sk->min_type;
2380 test.offset = sk->min_offset;
2382 ret = btrfs_comp_cpu_keys(key, &test);
2386 test.objectid = sk->max_objectid;
2387 test.type = sk->max_type;
2388 test.offset = sk->max_offset;
2390 ret = btrfs_comp_cpu_keys(key, &test);
2396 static noinline int copy_to_sk(struct btrfs_path *path,
2397 struct btrfs_key *key,
2398 struct btrfs_ioctl_search_key *sk,
2401 unsigned long *sk_offset,
2405 struct extent_buffer *leaf;
2406 struct btrfs_ioctl_search_header sh;
2407 struct btrfs_key test;
2408 unsigned long item_off;
2409 unsigned long item_len;
2415 leaf = path->nodes[0];
2416 slot = path->slots[0];
2417 nritems = btrfs_header_nritems(leaf);
2419 if (btrfs_header_generation(leaf) > sk->max_transid) {
2423 found_transid = btrfs_header_generation(leaf);
2425 for (i = slot; i < nritems; i++) {
2426 item_off = btrfs_item_ptr_offset(leaf, i);
2427 item_len = btrfs_item_size(leaf, i);
2429 btrfs_item_key_to_cpu(leaf, key, i);
2430 if (!key_in_sk(key, sk))
2433 if (sizeof(sh) + item_len > *buf_size) {
2440 * return one empty item back for v1, which does not
2444 *buf_size = sizeof(sh) + item_len;
2449 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2454 sh.objectid = key->objectid;
2455 sh.offset = key->offset;
2456 sh.type = key->type;
2458 sh.transid = found_transid;
2461 * Copy search result header. If we fault then loop again so we
2462 * can fault in the pages and -EFAULT there if there's a
2463 * problem. Otherwise we'll fault and then copy the buffer in
2464 * properly this next time through
2466 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2471 *sk_offset += sizeof(sh);
2474 char __user *up = ubuf + *sk_offset;
2476 * Copy the item, same behavior as above, but reset the
2477 * * sk_offset so we copy the full thing again.
2479 if (read_extent_buffer_to_user_nofault(leaf, up,
2480 item_off, item_len)) {
2482 *sk_offset -= sizeof(sh);
2486 *sk_offset += item_len;
2490 if (ret) /* -EOVERFLOW from above */
2493 if (*num_found >= sk->nr_items) {
2500 test.objectid = sk->max_objectid;
2501 test.type = sk->max_type;
2502 test.offset = sk->max_offset;
2503 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2505 else if (key->offset < (u64)-1)
2507 else if (key->type < (u8)-1) {
2510 } else if (key->objectid < (u64)-1) {
2518 * 0: all items from this leaf copied, continue with next
2519 * 1: * more items can be copied, but unused buffer is too small
2520 * * all items were found
2521 * Either way, it will stops the loop which iterates to the next
2523 * -EOVERFLOW: item was to large for buffer
2524 * -EFAULT: could not copy extent buffer back to userspace
2529 static noinline int search_ioctl(struct inode *inode,
2530 struct btrfs_ioctl_search_key *sk,
2534 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2535 struct btrfs_root *root;
2536 struct btrfs_key key;
2537 struct btrfs_path *path;
2540 unsigned long sk_offset = 0;
2542 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2543 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2547 path = btrfs_alloc_path();
2551 if (sk->tree_id == 0) {
2552 /* search the root of the inode that was passed */
2553 root = btrfs_grab_root(BTRFS_I(inode)->root);
2555 root = btrfs_get_fs_root(info, sk->tree_id, true);
2557 btrfs_free_path(path);
2558 return PTR_ERR(root);
2562 key.objectid = sk->min_objectid;
2563 key.type = sk->min_type;
2564 key.offset = sk->min_offset;
2568 if (fault_in_writeable(ubuf + sk_offset, *buf_size - sk_offset))
2571 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2577 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2578 &sk_offset, &num_found);
2579 btrfs_release_path(path);
2587 sk->nr_items = num_found;
2588 btrfs_put_root(root);
2589 btrfs_free_path(path);
2593 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
2596 struct btrfs_ioctl_search_args __user *uargs;
2597 struct btrfs_ioctl_search_key sk;
2601 if (!capable(CAP_SYS_ADMIN))
2604 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2606 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2609 buf_size = sizeof(uargs->buf);
2611 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2614 * In the origin implementation an overflow is handled by returning a
2615 * search header with a len of zero, so reset ret.
2617 if (ret == -EOVERFLOW)
2620 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2625 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
2628 struct btrfs_ioctl_search_args_v2 __user *uarg;
2629 struct btrfs_ioctl_search_args_v2 args;
2632 const size_t buf_limit = SZ_16M;
2634 if (!capable(CAP_SYS_ADMIN))
2637 /* copy search header and buffer size */
2638 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2639 if (copy_from_user(&args, uarg, sizeof(args)))
2642 buf_size = args.buf_size;
2644 /* limit result size to 16MB */
2645 if (buf_size > buf_limit)
2646 buf_size = buf_limit;
2648 ret = search_ioctl(inode, &args.key, &buf_size,
2649 (char __user *)(&uarg->buf[0]));
2650 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2652 else if (ret == -EOVERFLOW &&
2653 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2660 * Search INODE_REFs to identify path name of 'dirid' directory
2661 * in a 'tree_id' tree. and sets path name to 'name'.
2663 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2664 u64 tree_id, u64 dirid, char *name)
2666 struct btrfs_root *root;
2667 struct btrfs_key key;
2673 struct btrfs_inode_ref *iref;
2674 struct extent_buffer *l;
2675 struct btrfs_path *path;
2677 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2682 path = btrfs_alloc_path();
2686 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2688 root = btrfs_get_fs_root(info, tree_id, true);
2690 ret = PTR_ERR(root);
2695 key.objectid = dirid;
2696 key.type = BTRFS_INODE_REF_KEY;
2697 key.offset = (u64)-1;
2700 ret = btrfs_search_backwards(root, &key, path);
2709 slot = path->slots[0];
2711 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2712 len = btrfs_inode_ref_name_len(l, iref);
2714 total_len += len + 1;
2716 ret = -ENAMETOOLONG;
2721 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2723 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2726 btrfs_release_path(path);
2727 key.objectid = key.offset;
2728 key.offset = (u64)-1;
2729 dirid = key.objectid;
2731 memmove(name, ptr, total_len);
2732 name[total_len] = '\0';
2735 btrfs_put_root(root);
2736 btrfs_free_path(path);
2740 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
2741 struct inode *inode,
2742 struct btrfs_ioctl_ino_lookup_user_args *args)
2744 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2745 struct super_block *sb = inode->i_sb;
2746 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2747 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2748 u64 dirid = args->dirid;
2749 unsigned long item_off;
2750 unsigned long item_len;
2751 struct btrfs_inode_ref *iref;
2752 struct btrfs_root_ref *rref;
2753 struct btrfs_root *root = NULL;
2754 struct btrfs_path *path;
2755 struct btrfs_key key, key2;
2756 struct extent_buffer *leaf;
2757 struct inode *temp_inode;
2764 path = btrfs_alloc_path();
2769 * If the bottom subvolume does not exist directly under upper_limit,
2770 * construct the path in from the bottom up.
2772 if (dirid != upper_limit.objectid) {
2773 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2775 root = btrfs_get_fs_root(fs_info, treeid, true);
2777 ret = PTR_ERR(root);
2781 key.objectid = dirid;
2782 key.type = BTRFS_INODE_REF_KEY;
2783 key.offset = (u64)-1;
2785 ret = btrfs_search_backwards(root, &key, path);
2793 leaf = path->nodes[0];
2794 slot = path->slots[0];
2796 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2797 len = btrfs_inode_ref_name_len(leaf, iref);
2799 total_len += len + 1;
2800 if (ptr < args->path) {
2801 ret = -ENAMETOOLONG;
2806 read_extent_buffer(leaf, ptr,
2807 (unsigned long)(iref + 1), len);
2809 /* Check the read+exec permission of this directory */
2810 ret = btrfs_previous_item(root, path, dirid,
2811 BTRFS_INODE_ITEM_KEY);
2814 } else if (ret > 0) {
2819 leaf = path->nodes[0];
2820 slot = path->slots[0];
2821 btrfs_item_key_to_cpu(leaf, &key2, slot);
2822 if (key2.objectid != dirid) {
2827 temp_inode = btrfs_iget(sb, key2.objectid, root);
2828 if (IS_ERR(temp_inode)) {
2829 ret = PTR_ERR(temp_inode);
2832 ret = inode_permission(mnt_userns, temp_inode,
2833 MAY_READ | MAY_EXEC);
2840 if (key.offset == upper_limit.objectid)
2842 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2847 btrfs_release_path(path);
2848 key.objectid = key.offset;
2849 key.offset = (u64)-1;
2850 dirid = key.objectid;
2853 memmove(args->path, ptr, total_len);
2854 args->path[total_len] = '\0';
2855 btrfs_put_root(root);
2857 btrfs_release_path(path);
2860 /* Get the bottom subvolume's name from ROOT_REF */
2861 key.objectid = treeid;
2862 key.type = BTRFS_ROOT_REF_KEY;
2863 key.offset = args->treeid;
2864 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2867 } else if (ret > 0) {
2872 leaf = path->nodes[0];
2873 slot = path->slots[0];
2874 btrfs_item_key_to_cpu(leaf, &key, slot);
2876 item_off = btrfs_item_ptr_offset(leaf, slot);
2877 item_len = btrfs_item_size(leaf, slot);
2878 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2879 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2880 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2885 /* Copy subvolume's name */
2886 item_off += sizeof(struct btrfs_root_ref);
2887 item_len -= sizeof(struct btrfs_root_ref);
2888 read_extent_buffer(leaf, args->name, item_off, item_len);
2889 args->name[item_len] = 0;
2892 btrfs_put_root(root);
2894 btrfs_free_path(path);
2898 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2901 struct btrfs_ioctl_ino_lookup_args *args;
2904 args = memdup_user(argp, sizeof(*args));
2906 return PTR_ERR(args);
2909 * Unprivileged query to obtain the containing subvolume root id. The
2910 * path is reset so it's consistent with btrfs_search_path_in_tree.
2912 if (args->treeid == 0)
2913 args->treeid = root->root_key.objectid;
2915 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2920 if (!capable(CAP_SYS_ADMIN)) {
2925 ret = btrfs_search_path_in_tree(root->fs_info,
2926 args->treeid, args->objectid,
2930 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2938 * Version of ino_lookup ioctl (unprivileged)
2940 * The main differences from ino_lookup ioctl are:
2942 * 1. Read + Exec permission will be checked using inode_permission() during
2943 * path construction. -EACCES will be returned in case of failure.
2944 * 2. Path construction will be stopped at the inode number which corresponds
2945 * to the fd with which this ioctl is called. If constructed path does not
2946 * exist under fd's inode, -EACCES will be returned.
2947 * 3. The name of bottom subvolume is also searched and filled.
2949 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2951 struct btrfs_ioctl_ino_lookup_user_args *args;
2952 struct inode *inode;
2955 args = memdup_user(argp, sizeof(*args));
2957 return PTR_ERR(args);
2959 inode = file_inode(file);
2961 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2962 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2964 * The subvolume does not exist under fd with which this is
2971 ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
2973 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2980 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2981 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2983 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2984 struct btrfs_fs_info *fs_info;
2985 struct btrfs_root *root;
2986 struct btrfs_path *path;
2987 struct btrfs_key key;
2988 struct btrfs_root_item *root_item;
2989 struct btrfs_root_ref *rref;
2990 struct extent_buffer *leaf;
2991 unsigned long item_off;
2992 unsigned long item_len;
2996 path = btrfs_alloc_path();
3000 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
3002 btrfs_free_path(path);
3006 fs_info = BTRFS_I(inode)->root->fs_info;
3008 /* Get root_item of inode's subvolume */
3009 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
3010 root = btrfs_get_fs_root(fs_info, key.objectid, true);
3012 ret = PTR_ERR(root);
3015 root_item = &root->root_item;
3017 subvol_info->treeid = key.objectid;
3019 subvol_info->generation = btrfs_root_generation(root_item);
3020 subvol_info->flags = btrfs_root_flags(root_item);
3022 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
3023 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
3025 memcpy(subvol_info->received_uuid, root_item->received_uuid,
3028 subvol_info->ctransid = btrfs_root_ctransid(root_item);
3029 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
3030 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
3032 subvol_info->otransid = btrfs_root_otransid(root_item);
3033 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
3034 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
3036 subvol_info->stransid = btrfs_root_stransid(root_item);
3037 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
3038 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
3040 subvol_info->rtransid = btrfs_root_rtransid(root_item);
3041 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
3042 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
3044 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
3045 /* Search root tree for ROOT_BACKREF of this subvolume */
3046 key.type = BTRFS_ROOT_BACKREF_KEY;
3048 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3051 } else if (path->slots[0] >=
3052 btrfs_header_nritems(path->nodes[0])) {
3053 ret = btrfs_next_leaf(fs_info->tree_root, path);
3056 } else if (ret > 0) {
3062 leaf = path->nodes[0];
3063 slot = path->slots[0];
3064 btrfs_item_key_to_cpu(leaf, &key, slot);
3065 if (key.objectid == subvol_info->treeid &&
3066 key.type == BTRFS_ROOT_BACKREF_KEY) {
3067 subvol_info->parent_id = key.offset;
3069 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
3070 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
3072 item_off = btrfs_item_ptr_offset(leaf, slot)
3073 + sizeof(struct btrfs_root_ref);
3074 item_len = btrfs_item_size(leaf, slot)
3075 - sizeof(struct btrfs_root_ref);
3076 read_extent_buffer(leaf, subvol_info->name,
3077 item_off, item_len);
3084 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
3088 btrfs_put_root(root);
3090 btrfs_free_path(path);
3096 * Return ROOT_REF information of the subvolume containing this inode
3097 * except the subvolume name.
3099 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
3102 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
3103 struct btrfs_root_ref *rref;
3104 struct btrfs_path *path;
3105 struct btrfs_key key;
3106 struct extent_buffer *leaf;
3112 path = btrfs_alloc_path();
3116 rootrefs = memdup_user(argp, sizeof(*rootrefs));
3117 if (IS_ERR(rootrefs)) {
3118 btrfs_free_path(path);
3119 return PTR_ERR(rootrefs);
3122 objectid = root->root_key.objectid;
3123 key.objectid = objectid;
3124 key.type = BTRFS_ROOT_REF_KEY;
3125 key.offset = rootrefs->min_treeid;
3128 root = root->fs_info->tree_root;
3129 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3132 } else if (path->slots[0] >=
3133 btrfs_header_nritems(path->nodes[0])) {
3134 ret = btrfs_next_leaf(root, path);
3137 } else if (ret > 0) {
3143 leaf = path->nodes[0];
3144 slot = path->slots[0];
3146 btrfs_item_key_to_cpu(leaf, &key, slot);
3147 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
3152 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
3157 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
3158 rootrefs->rootref[found].treeid = key.offset;
3159 rootrefs->rootref[found].dirid =
3160 btrfs_root_ref_dirid(leaf, rref);
3163 ret = btrfs_next_item(root, path);
3166 } else if (ret > 0) {
3173 if (!ret || ret == -EOVERFLOW) {
3174 rootrefs->num_items = found;
3175 /* update min_treeid for next search */
3177 rootrefs->min_treeid =
3178 rootrefs->rootref[found - 1].treeid + 1;
3179 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
3184 btrfs_free_path(path);
3189 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
3193 struct dentry *parent = file->f_path.dentry;
3194 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
3195 struct dentry *dentry;
3196 struct inode *dir = d_inode(parent);
3197 struct inode *inode;
3198 struct btrfs_root *root = BTRFS_I(dir)->root;
3199 struct btrfs_root *dest = NULL;
3200 struct btrfs_ioctl_vol_args *vol_args = NULL;
3201 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
3202 struct user_namespace *mnt_userns = file_mnt_user_ns(file);
3203 char *subvol_name, *subvol_name_ptr = NULL;
3206 bool destroy_parent = false;
3208 /* We don't support snapshots with extent tree v2 yet. */
3209 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3211 "extent tree v2 doesn't support snapshot deletion yet");
3216 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
3217 if (IS_ERR(vol_args2))
3218 return PTR_ERR(vol_args2);
3220 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
3226 * If SPEC_BY_ID is not set, we are looking for the subvolume by
3227 * name, same as v1 currently does.
3229 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
3230 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
3231 subvol_name = vol_args2->name;
3233 err = mnt_want_write_file(file);
3237 struct inode *old_dir;
3239 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
3244 err = mnt_want_write_file(file);
3248 dentry = btrfs_get_dentry(fs_info->sb,
3249 BTRFS_FIRST_FREE_OBJECTID,
3250 vol_args2->subvolid, 0, 0);
3251 if (IS_ERR(dentry)) {
3252 err = PTR_ERR(dentry);
3253 goto out_drop_write;
3257 * Change the default parent since the subvolume being
3258 * deleted can be outside of the current mount point.
3260 parent = btrfs_get_parent(dentry);
3263 * At this point dentry->d_name can point to '/' if the
3264 * subvolume we want to destroy is outsite of the
3265 * current mount point, so we need to release the
3266 * current dentry and execute the lookup to return a new
3267 * one with ->d_name pointing to the
3268 * <mount point>/subvol_name.
3271 if (IS_ERR(parent)) {
3272 err = PTR_ERR(parent);
3273 goto out_drop_write;
3276 dir = d_inode(parent);
3279 * If v2 was used with SPEC_BY_ID, a new parent was
3280 * allocated since the subvolume can be outside of the
3281 * current mount point. Later on we need to release this
3282 * new parent dentry.
3284 destroy_parent = true;
3287 * On idmapped mounts, deletion via subvolid is
3288 * restricted to subvolumes that are immediate
3289 * ancestors of the inode referenced by the file
3290 * descriptor in the ioctl. Otherwise the idmapping
3291 * could potentially be abused to delete subvolumes
3292 * anywhere in the filesystem the user wouldn't be able
3293 * to delete without an idmapped mount.
3295 if (old_dir != dir && mnt_userns != &init_user_ns) {
3300 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
3301 fs_info, vol_args2->subvolid);
3302 if (IS_ERR(subvol_name_ptr)) {
3303 err = PTR_ERR(subvol_name_ptr);
3306 /* subvol_name_ptr is already nul terminated */
3307 subvol_name = (char *)kbasename(subvol_name_ptr);
3310 vol_args = memdup_user(arg, sizeof(*vol_args));
3311 if (IS_ERR(vol_args))
3312 return PTR_ERR(vol_args);
3314 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3315 subvol_name = vol_args->name;
3317 err = mnt_want_write_file(file);
3322 subvol_namelen = strlen(subvol_name);
3324 if (strchr(subvol_name, '/') ||
3325 strncmp(subvol_name, "..", subvol_namelen) == 0) {
3327 goto free_subvol_name;
3330 if (!S_ISDIR(dir->i_mode)) {
3332 goto free_subvol_name;
3335 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3337 goto free_subvol_name;
3338 dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
3339 if (IS_ERR(dentry)) {
3340 err = PTR_ERR(dentry);
3341 goto out_unlock_dir;
3344 if (d_really_is_negative(dentry)) {
3349 inode = d_inode(dentry);
3350 dest = BTRFS_I(inode)->root;
3351 if (!capable(CAP_SYS_ADMIN)) {
3353 * Regular user. Only allow this with a special mount
3354 * option, when the user has write+exec access to the
3355 * subvol root, and when rmdir(2) would have been
3358 * Note that this is _not_ check that the subvol is
3359 * empty or doesn't contain data that we wouldn't
3360 * otherwise be able to delete.
3362 * Users who want to delete empty subvols should try
3366 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3370 * Do not allow deletion if the parent dir is the same
3371 * as the dir to be deleted. That means the ioctl
3372 * must be called on the dentry referencing the root
3373 * of the subvol, not a random directory contained
3380 err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
3385 /* check if subvolume may be deleted by a user */
3386 err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
3390 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3395 btrfs_inode_lock(inode, 0);
3396 err = btrfs_delete_subvolume(dir, dentry);
3397 btrfs_inode_unlock(inode, 0);
3399 d_delete_notify(dir, dentry);
3404 btrfs_inode_unlock(dir, 0);
3406 kfree(subvol_name_ptr);
3411 mnt_drop_write_file(file);
3418 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3420 struct inode *inode = file_inode(file);
3421 struct btrfs_root *root = BTRFS_I(inode)->root;
3422 struct btrfs_ioctl_defrag_range_args range = {0};
3425 ret = mnt_want_write_file(file);
3429 if (btrfs_root_readonly(root)) {
3434 switch (inode->i_mode & S_IFMT) {
3436 if (!capable(CAP_SYS_ADMIN)) {
3440 ret = btrfs_defrag_root(root);
3444 * Note that this does not check the file descriptor for write
3445 * access. This prevents defragmenting executables that are
3446 * running and allows defrag on files open in read-only mode.
3448 if (!capable(CAP_SYS_ADMIN) &&
3449 inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3455 if (copy_from_user(&range, argp, sizeof(range))) {
3459 /* compression requires us to start the IO */
3460 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3461 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
3462 range.extent_thresh = (u32)-1;
3465 /* the rest are all set to zero by kzalloc */
3466 range.len = (u64)-1;
3468 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
3469 &range, BTRFS_OLDEST_GENERATION, 0);
3477 mnt_drop_write_file(file);
3481 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3483 struct btrfs_ioctl_vol_args *vol_args;
3484 bool restore_op = false;
3487 if (!capable(CAP_SYS_ADMIN))
3490 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3491 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
3495 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
3496 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
3497 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3500 * We can do the device add because we have a paused balanced,
3501 * change the exclusive op type and remember we should bring
3502 * back the paused balance
3504 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
3505 btrfs_exclop_start_unlock(fs_info);
3509 vol_args = memdup_user(arg, sizeof(*vol_args));
3510 if (IS_ERR(vol_args)) {
3511 ret = PTR_ERR(vol_args);
3515 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3516 ret = btrfs_init_new_device(fs_info, vol_args->name);
3519 btrfs_info(fs_info, "disk added %s", vol_args->name);
3524 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
3526 btrfs_exclop_finish(fs_info);
3530 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3532 BTRFS_DEV_LOOKUP_ARGS(args);
3533 struct inode *inode = file_inode(file);
3534 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3535 struct btrfs_ioctl_vol_args_v2 *vol_args;
3536 struct block_device *bdev = NULL;
3539 bool cancel = false;
3541 if (!capable(CAP_SYS_ADMIN))
3544 vol_args = memdup_user(arg, sizeof(*vol_args));
3545 if (IS_ERR(vol_args))
3546 return PTR_ERR(vol_args);
3548 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3553 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3554 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3555 args.devid = vol_args->devid;
3556 } else if (!strcmp("cancel", vol_args->name)) {
3559 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3564 ret = mnt_want_write_file(file);
3568 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3573 /* Exclusive operation is now claimed */
3574 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3576 btrfs_exclop_finish(fs_info);
3579 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3580 btrfs_info(fs_info, "device deleted: id %llu",
3583 btrfs_info(fs_info, "device deleted: %s",
3587 mnt_drop_write_file(file);
3589 blkdev_put(bdev, mode);
3591 btrfs_put_dev_args_from_path(&args);
3596 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3598 BTRFS_DEV_LOOKUP_ARGS(args);
3599 struct inode *inode = file_inode(file);
3600 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3601 struct btrfs_ioctl_vol_args *vol_args;
3602 struct block_device *bdev = NULL;
3605 bool cancel = false;
3607 if (!capable(CAP_SYS_ADMIN))
3610 vol_args = memdup_user(arg, sizeof(*vol_args));
3611 if (IS_ERR(vol_args))
3612 return PTR_ERR(vol_args);
3614 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3615 if (!strcmp("cancel", vol_args->name)) {
3618 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3623 ret = mnt_want_write_file(file);
3627 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3630 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3632 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3633 btrfs_exclop_finish(fs_info);
3636 mnt_drop_write_file(file);
3638 blkdev_put(bdev, mode);
3640 btrfs_put_dev_args_from_path(&args);
3645 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3648 struct btrfs_ioctl_fs_info_args *fi_args;
3649 struct btrfs_device *device;
3650 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3654 fi_args = memdup_user(arg, sizeof(*fi_args));
3655 if (IS_ERR(fi_args))
3656 return PTR_ERR(fi_args);
3658 flags_in = fi_args->flags;
3659 memset(fi_args, 0, sizeof(*fi_args));
3662 fi_args->num_devices = fs_devices->num_devices;
3664 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3665 if (device->devid > fi_args->max_id)
3666 fi_args->max_id = device->devid;
3670 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3671 fi_args->nodesize = fs_info->nodesize;
3672 fi_args->sectorsize = fs_info->sectorsize;
3673 fi_args->clone_alignment = fs_info->sectorsize;
3675 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3676 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3677 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3678 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3681 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3682 fi_args->generation = fs_info->generation;
3683 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3686 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3687 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3688 sizeof(fi_args->metadata_uuid));
3689 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3692 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3699 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3702 BTRFS_DEV_LOOKUP_ARGS(args);
3703 struct btrfs_ioctl_dev_info_args *di_args;
3704 struct btrfs_device *dev;
3707 di_args = memdup_user(arg, sizeof(*di_args));
3708 if (IS_ERR(di_args))
3709 return PTR_ERR(di_args);
3711 args.devid = di_args->devid;
3712 if (!btrfs_is_empty_uuid(di_args->uuid))
3713 args.uuid = di_args->uuid;
3716 dev = btrfs_find_device(fs_info->fs_devices, &args);
3722 di_args->devid = dev->devid;
3723 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3724 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3725 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3727 strncpy(di_args->path, rcu_str_deref(dev->name),
3728 sizeof(di_args->path) - 1);
3729 di_args->path[sizeof(di_args->path) - 1] = 0;
3731 di_args->path[0] = '\0';
3736 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3743 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3745 struct inode *inode = file_inode(file);
3746 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3747 struct btrfs_root *root = BTRFS_I(inode)->root;
3748 struct btrfs_root *new_root;
3749 struct btrfs_dir_item *di;
3750 struct btrfs_trans_handle *trans;
3751 struct btrfs_path *path = NULL;
3752 struct btrfs_disk_key disk_key;
3757 if (!capable(CAP_SYS_ADMIN))
3760 ret = mnt_want_write_file(file);
3764 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3770 objectid = BTRFS_FS_TREE_OBJECTID;
3772 new_root = btrfs_get_fs_root(fs_info, objectid, true);
3773 if (IS_ERR(new_root)) {
3774 ret = PTR_ERR(new_root);
3777 if (!is_fstree(new_root->root_key.objectid)) {
3782 path = btrfs_alloc_path();
3788 trans = btrfs_start_transaction(root, 1);
3789 if (IS_ERR(trans)) {
3790 ret = PTR_ERR(trans);
3794 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3795 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3796 dir_id, "default", 7, 1);
3797 if (IS_ERR_OR_NULL(di)) {
3798 btrfs_release_path(path);
3799 btrfs_end_transaction(trans);
3801 "Umm, you don't have the default diritem, this isn't going to work");
3806 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3807 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3808 btrfs_mark_buffer_dirty(path->nodes[0]);
3809 btrfs_release_path(path);
3811 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3812 btrfs_end_transaction(trans);
3814 btrfs_put_root(new_root);
3815 btrfs_free_path(path);
3817 mnt_drop_write_file(file);
3821 static void get_block_group_info(struct list_head *groups_list,
3822 struct btrfs_ioctl_space_info *space)
3824 struct btrfs_block_group *block_group;
3826 space->total_bytes = 0;
3827 space->used_bytes = 0;
3829 list_for_each_entry(block_group, groups_list, list) {
3830 space->flags = block_group->flags;
3831 space->total_bytes += block_group->length;
3832 space->used_bytes += block_group->used;
3836 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3839 struct btrfs_ioctl_space_args space_args;
3840 struct btrfs_ioctl_space_info space;
3841 struct btrfs_ioctl_space_info *dest;
3842 struct btrfs_ioctl_space_info *dest_orig;
3843 struct btrfs_ioctl_space_info __user *user_dest;
3844 struct btrfs_space_info *info;
3845 static const u64 types[] = {
3846 BTRFS_BLOCK_GROUP_DATA,
3847 BTRFS_BLOCK_GROUP_SYSTEM,
3848 BTRFS_BLOCK_GROUP_METADATA,
3849 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3857 if (copy_from_user(&space_args,
3858 (struct btrfs_ioctl_space_args __user *)arg,
3859 sizeof(space_args)))
3862 for (i = 0; i < num_types; i++) {
3863 struct btrfs_space_info *tmp;
3866 list_for_each_entry(tmp, &fs_info->space_info, list) {
3867 if (tmp->flags == types[i]) {
3876 down_read(&info->groups_sem);
3877 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3878 if (!list_empty(&info->block_groups[c]))
3881 up_read(&info->groups_sem);
3885 * Global block reserve, exported as a space_info
3889 /* space_slots == 0 means they are asking for a count */
3890 if (space_args.space_slots == 0) {
3891 space_args.total_spaces = slot_count;
3895 slot_count = min_t(u64, space_args.space_slots, slot_count);
3897 alloc_size = sizeof(*dest) * slot_count;
3899 /* we generally have at most 6 or so space infos, one for each raid
3900 * level. So, a whole page should be more than enough for everyone
3902 if (alloc_size > PAGE_SIZE)
3905 space_args.total_spaces = 0;
3906 dest = kmalloc(alloc_size, GFP_KERNEL);
3911 /* now we have a buffer to copy into */
3912 for (i = 0; i < num_types; i++) {
3913 struct btrfs_space_info *tmp;
3919 list_for_each_entry(tmp, &fs_info->space_info, list) {
3920 if (tmp->flags == types[i]) {
3928 down_read(&info->groups_sem);
3929 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3930 if (!list_empty(&info->block_groups[c])) {
3931 get_block_group_info(&info->block_groups[c],
3933 memcpy(dest, &space, sizeof(space));
3935 space_args.total_spaces++;
3941 up_read(&info->groups_sem);
3945 * Add global block reserve
3948 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3950 spin_lock(&block_rsv->lock);
3951 space.total_bytes = block_rsv->size;
3952 space.used_bytes = block_rsv->size - block_rsv->reserved;
3953 spin_unlock(&block_rsv->lock);
3954 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3955 memcpy(dest, &space, sizeof(space));
3956 space_args.total_spaces++;
3959 user_dest = (struct btrfs_ioctl_space_info __user *)
3960 (arg + sizeof(struct btrfs_ioctl_space_args));
3962 if (copy_to_user(user_dest, dest_orig, alloc_size))
3967 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3973 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3976 struct btrfs_trans_handle *trans;
3979 trans = btrfs_attach_transaction_barrier(root);
3980 if (IS_ERR(trans)) {
3981 if (PTR_ERR(trans) != -ENOENT)
3982 return PTR_ERR(trans);
3984 /* No running transaction, don't bother */
3985 transid = root->fs_info->last_trans_committed;
3988 transid = trans->transid;
3989 btrfs_commit_transaction_async(trans);
3992 if (copy_to_user(argp, &transid, sizeof(transid)))
3997 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4003 if (copy_from_user(&transid, argp, sizeof(transid)))
4006 transid = 0; /* current trans */
4008 return btrfs_wait_for_commit(fs_info, transid);
4011 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4013 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4014 struct btrfs_ioctl_scrub_args *sa;
4017 if (!capable(CAP_SYS_ADMIN))
4020 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
4021 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
4025 sa = memdup_user(arg, sizeof(*sa));
4029 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4030 ret = mnt_want_write_file(file);
4035 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4036 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4040 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
4041 * error. This is important as it allows user space to know how much
4042 * progress scrub has done. For example, if scrub is canceled we get
4043 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
4044 * space. Later user space can inspect the progress from the structure
4045 * btrfs_ioctl_scrub_args and resume scrub from where it left off
4046 * previously (btrfs-progs does this).
4047 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
4048 * then return -EFAULT to signal the structure was not copied or it may
4049 * be corrupt and unreliable due to a partial copy.
4051 if (copy_to_user(arg, sa, sizeof(*sa)))
4054 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4055 mnt_drop_write_file(file);
4061 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4063 if (!capable(CAP_SYS_ADMIN))
4066 return btrfs_scrub_cancel(fs_info);
4069 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4072 struct btrfs_ioctl_scrub_args *sa;
4075 if (!capable(CAP_SYS_ADMIN))
4078 sa = memdup_user(arg, sizeof(*sa));
4082 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4084 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4091 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4094 struct btrfs_ioctl_get_dev_stats *sa;
4097 sa = memdup_user(arg, sizeof(*sa));
4101 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4106 ret = btrfs_get_dev_stats(fs_info, sa);
4108 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4115 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4118 struct btrfs_ioctl_dev_replace_args *p;
4121 if (!capable(CAP_SYS_ADMIN))
4124 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
4125 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
4129 p = memdup_user(arg, sizeof(*p));
4134 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4135 if (sb_rdonly(fs_info->sb)) {
4139 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
4140 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4142 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4143 btrfs_exclop_finish(fs_info);
4146 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4147 btrfs_dev_replace_status(fs_info, p);
4150 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4151 p->result = btrfs_dev_replace_cancel(fs_info);
4159 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
4166 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4172 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4173 struct inode_fs_paths *ipath = NULL;
4174 struct btrfs_path *path;
4176 if (!capable(CAP_DAC_READ_SEARCH))
4179 path = btrfs_alloc_path();
4185 ipa = memdup_user(arg, sizeof(*ipa));
4192 size = min_t(u32, ipa->size, 4096);
4193 ipath = init_ipath(size, root, path);
4194 if (IS_ERR(ipath)) {
4195 ret = PTR_ERR(ipath);
4200 ret = paths_from_inode(ipa->inum, ipath);
4204 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4205 rel_ptr = ipath->fspath->val[i] -
4206 (u64)(unsigned long)ipath->fspath->val;
4207 ipath->fspath->val[i] = rel_ptr;
4210 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4211 ipath->fspath, size);
4218 btrfs_free_path(path);
4225 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4227 struct btrfs_data_container *inodes = ctx;
4228 const size_t c = 3 * sizeof(u64);
4230 if (inodes->bytes_left >= c) {
4231 inodes->bytes_left -= c;
4232 inodes->val[inodes->elem_cnt] = inum;
4233 inodes->val[inodes->elem_cnt + 1] = offset;
4234 inodes->val[inodes->elem_cnt + 2] = root;
4235 inodes->elem_cnt += 3;
4237 inodes->bytes_missing += c - inodes->bytes_left;
4238 inodes->bytes_left = 0;
4239 inodes->elem_missed += 3;
4245 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4246 void __user *arg, int version)
4250 struct btrfs_ioctl_logical_ino_args *loi;
4251 struct btrfs_data_container *inodes = NULL;
4252 struct btrfs_path *path = NULL;
4255 if (!capable(CAP_SYS_ADMIN))
4258 loi = memdup_user(arg, sizeof(*loi));
4260 return PTR_ERR(loi);
4263 ignore_offset = false;
4264 size = min_t(u32, loi->size, SZ_64K);
4266 /* All reserved bits must be 0 for now */
4267 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4271 /* Only accept flags we have defined so far */
4272 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4276 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4277 size = min_t(u32, loi->size, SZ_16M);
4280 path = btrfs_alloc_path();
4286 inodes = init_data_container(size);
4287 if (IS_ERR(inodes)) {
4288 ret = PTR_ERR(inodes);
4293 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4294 build_ino_list, inodes, ignore_offset);
4300 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4306 btrfs_free_path(path);
4314 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4315 struct btrfs_ioctl_balance_args *bargs)
4317 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4319 bargs->flags = bctl->flags;
4321 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4322 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4323 if (atomic_read(&fs_info->balance_pause_req))
4324 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4325 if (atomic_read(&fs_info->balance_cancel_req))
4326 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4328 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4329 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4330 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4332 spin_lock(&fs_info->balance_lock);
4333 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4334 spin_unlock(&fs_info->balance_lock);
4337 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4339 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4340 struct btrfs_fs_info *fs_info = root->fs_info;
4341 struct btrfs_ioctl_balance_args *bargs;
4342 struct btrfs_balance_control *bctl;
4343 bool need_unlock; /* for mut. excl. ops lock */
4348 "IOC_BALANCE ioctl (v1) is deprecated and will be removed in kernel 5.18");
4350 if (!capable(CAP_SYS_ADMIN))
4353 ret = mnt_want_write_file(file);
4358 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4359 mutex_lock(&fs_info->balance_mutex);
4365 * mut. excl. ops lock is locked. Three possibilities:
4366 * (1) some other op is running
4367 * (2) balance is running
4368 * (3) balance is paused -- special case (think resume)
4370 mutex_lock(&fs_info->balance_mutex);
4371 if (fs_info->balance_ctl) {
4372 /* this is either (2) or (3) */
4373 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4374 mutex_unlock(&fs_info->balance_mutex);
4376 * Lock released to allow other waiters to continue,
4377 * we'll reexamine the status again.
4379 mutex_lock(&fs_info->balance_mutex);
4381 if (fs_info->balance_ctl &&
4382 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4384 need_unlock = false;
4388 mutex_unlock(&fs_info->balance_mutex);
4392 mutex_unlock(&fs_info->balance_mutex);
4398 mutex_unlock(&fs_info->balance_mutex);
4399 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4406 bargs = memdup_user(arg, sizeof(*bargs));
4407 if (IS_ERR(bargs)) {
4408 ret = PTR_ERR(bargs);
4412 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4413 if (!fs_info->balance_ctl) {
4418 bctl = fs_info->balance_ctl;
4419 spin_lock(&fs_info->balance_lock);
4420 bctl->flags |= BTRFS_BALANCE_RESUME;
4421 spin_unlock(&fs_info->balance_lock);
4422 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
4430 if (fs_info->balance_ctl) {
4435 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4442 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4443 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4444 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4446 bctl->flags = bargs->flags;
4448 /* balance everything - no filters */
4449 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4452 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4459 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4460 * bctl is freed in reset_balance_state, or, if restriper was paused
4461 * all the way until unmount, in free_fs_info. The flag should be
4462 * cleared after reset_balance_state.
4464 need_unlock = false;
4466 ret = btrfs_balance(fs_info, bctl, bargs);
4469 if ((ret == 0 || ret == -ECANCELED) && arg) {
4470 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4479 mutex_unlock(&fs_info->balance_mutex);
4481 btrfs_exclop_finish(fs_info);
4483 mnt_drop_write_file(file);
4487 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4489 if (!capable(CAP_SYS_ADMIN))
4493 case BTRFS_BALANCE_CTL_PAUSE:
4494 return btrfs_pause_balance(fs_info);
4495 case BTRFS_BALANCE_CTL_CANCEL:
4496 return btrfs_cancel_balance(fs_info);
4502 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4505 struct btrfs_ioctl_balance_args *bargs;
4508 if (!capable(CAP_SYS_ADMIN))
4511 mutex_lock(&fs_info->balance_mutex);
4512 if (!fs_info->balance_ctl) {
4517 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4523 btrfs_update_ioctl_balance_args(fs_info, bargs);
4525 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4530 mutex_unlock(&fs_info->balance_mutex);
4534 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4536 struct inode *inode = file_inode(file);
4537 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4538 struct btrfs_ioctl_quota_ctl_args *sa;
4541 if (!capable(CAP_SYS_ADMIN))
4544 ret = mnt_want_write_file(file);
4548 sa = memdup_user(arg, sizeof(*sa));
4554 down_write(&fs_info->subvol_sem);
4557 case BTRFS_QUOTA_CTL_ENABLE:
4558 ret = btrfs_quota_enable(fs_info);
4560 case BTRFS_QUOTA_CTL_DISABLE:
4561 ret = btrfs_quota_disable(fs_info);
4569 up_write(&fs_info->subvol_sem);
4571 mnt_drop_write_file(file);
4575 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4577 struct inode *inode = file_inode(file);
4578 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4579 struct btrfs_root *root = BTRFS_I(inode)->root;
4580 struct btrfs_ioctl_qgroup_assign_args *sa;
4581 struct btrfs_trans_handle *trans;
4585 if (!capable(CAP_SYS_ADMIN))
4588 ret = mnt_want_write_file(file);
4592 sa = memdup_user(arg, sizeof(*sa));
4598 trans = btrfs_join_transaction(root);
4599 if (IS_ERR(trans)) {
4600 ret = PTR_ERR(trans);
4605 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4607 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4610 /* update qgroup status and info */
4611 err = btrfs_run_qgroups(trans);
4613 btrfs_handle_fs_error(fs_info, err,
4614 "failed to update qgroup status and info");
4615 err = btrfs_end_transaction(trans);
4622 mnt_drop_write_file(file);
4626 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4628 struct inode *inode = file_inode(file);
4629 struct btrfs_root *root = BTRFS_I(inode)->root;
4630 struct btrfs_ioctl_qgroup_create_args *sa;
4631 struct btrfs_trans_handle *trans;
4635 if (!capable(CAP_SYS_ADMIN))
4638 ret = mnt_want_write_file(file);
4642 sa = memdup_user(arg, sizeof(*sa));
4648 if (!sa->qgroupid) {
4653 trans = btrfs_join_transaction(root);
4654 if (IS_ERR(trans)) {
4655 ret = PTR_ERR(trans);
4660 ret = btrfs_create_qgroup(trans, sa->qgroupid);
4662 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4665 err = btrfs_end_transaction(trans);
4672 mnt_drop_write_file(file);
4676 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4678 struct inode *inode = file_inode(file);
4679 struct btrfs_root *root = BTRFS_I(inode)->root;
4680 struct btrfs_ioctl_qgroup_limit_args *sa;
4681 struct btrfs_trans_handle *trans;
4686 if (!capable(CAP_SYS_ADMIN))
4689 ret = mnt_want_write_file(file);
4693 sa = memdup_user(arg, sizeof(*sa));
4699 trans = btrfs_join_transaction(root);
4700 if (IS_ERR(trans)) {
4701 ret = PTR_ERR(trans);
4705 qgroupid = sa->qgroupid;
4707 /* take the current subvol as qgroup */
4708 qgroupid = root->root_key.objectid;
4711 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4713 err = btrfs_end_transaction(trans);
4720 mnt_drop_write_file(file);
4724 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4726 struct inode *inode = file_inode(file);
4727 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4728 struct btrfs_ioctl_quota_rescan_args *qsa;
4731 if (!capable(CAP_SYS_ADMIN))
4734 ret = mnt_want_write_file(file);
4738 qsa = memdup_user(arg, sizeof(*qsa));
4749 ret = btrfs_qgroup_rescan(fs_info);
4754 mnt_drop_write_file(file);
4758 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4761 struct btrfs_ioctl_quota_rescan_args qsa = {0};
4763 if (!capable(CAP_SYS_ADMIN))
4766 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4768 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4771 if (copy_to_user(arg, &qsa, sizeof(qsa)))
4777 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4780 if (!capable(CAP_SYS_ADMIN))
4783 return btrfs_qgroup_wait_for_completion(fs_info, true);
4786 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4787 struct user_namespace *mnt_userns,
4788 struct btrfs_ioctl_received_subvol_args *sa)
4790 struct inode *inode = file_inode(file);
4791 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4792 struct btrfs_root *root = BTRFS_I(inode)->root;
4793 struct btrfs_root_item *root_item = &root->root_item;
4794 struct btrfs_trans_handle *trans;
4795 struct timespec64 ct = current_time(inode);
4797 int received_uuid_changed;
4799 if (!inode_owner_or_capable(mnt_userns, inode))
4802 ret = mnt_want_write_file(file);
4806 down_write(&fs_info->subvol_sem);
4808 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4813 if (btrfs_root_readonly(root)) {
4820 * 2 - uuid items (received uuid + subvol uuid)
4822 trans = btrfs_start_transaction(root, 3);
4823 if (IS_ERR(trans)) {
4824 ret = PTR_ERR(trans);
4829 sa->rtransid = trans->transid;
4830 sa->rtime.sec = ct.tv_sec;
4831 sa->rtime.nsec = ct.tv_nsec;
4833 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4835 if (received_uuid_changed &&
4836 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4837 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4838 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4839 root->root_key.objectid);
4840 if (ret && ret != -ENOENT) {
4841 btrfs_abort_transaction(trans, ret);
4842 btrfs_end_transaction(trans);
4846 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4847 btrfs_set_root_stransid(root_item, sa->stransid);
4848 btrfs_set_root_rtransid(root_item, sa->rtransid);
4849 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4850 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4851 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4852 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4854 ret = btrfs_update_root(trans, fs_info->tree_root,
4855 &root->root_key, &root->root_item);
4857 btrfs_end_transaction(trans);
4860 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4861 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4862 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4863 root->root_key.objectid);
4864 if (ret < 0 && ret != -EEXIST) {
4865 btrfs_abort_transaction(trans, ret);
4866 btrfs_end_transaction(trans);
4870 ret = btrfs_commit_transaction(trans);
4872 up_write(&fs_info->subvol_sem);
4873 mnt_drop_write_file(file);
4878 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4881 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4882 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4885 args32 = memdup_user(arg, sizeof(*args32));
4887 return PTR_ERR(args32);
4889 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4895 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4896 args64->stransid = args32->stransid;
4897 args64->rtransid = args32->rtransid;
4898 args64->stime.sec = args32->stime.sec;
4899 args64->stime.nsec = args32->stime.nsec;
4900 args64->rtime.sec = args32->rtime.sec;
4901 args64->rtime.nsec = args32->rtime.nsec;
4902 args64->flags = args32->flags;
4904 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4908 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4909 args32->stransid = args64->stransid;
4910 args32->rtransid = args64->rtransid;
4911 args32->stime.sec = args64->stime.sec;
4912 args32->stime.nsec = args64->stime.nsec;
4913 args32->rtime.sec = args64->rtime.sec;
4914 args32->rtime.nsec = args64->rtime.nsec;
4915 args32->flags = args64->flags;
4917 ret = copy_to_user(arg, args32, sizeof(*args32));
4928 static long btrfs_ioctl_set_received_subvol(struct file *file,
4931 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4934 sa = memdup_user(arg, sizeof(*sa));
4938 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4943 ret = copy_to_user(arg, sa, sizeof(*sa));
4952 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4957 char label[BTRFS_LABEL_SIZE];
4959 spin_lock(&fs_info->super_lock);
4960 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4961 spin_unlock(&fs_info->super_lock);
4963 len = strnlen(label, BTRFS_LABEL_SIZE);
4965 if (len == BTRFS_LABEL_SIZE) {
4967 "label is too long, return the first %zu bytes",
4971 ret = copy_to_user(arg, label, len);
4973 return ret ? -EFAULT : 0;
4976 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4978 struct inode *inode = file_inode(file);
4979 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4980 struct btrfs_root *root = BTRFS_I(inode)->root;
4981 struct btrfs_super_block *super_block = fs_info->super_copy;
4982 struct btrfs_trans_handle *trans;
4983 char label[BTRFS_LABEL_SIZE];
4986 if (!capable(CAP_SYS_ADMIN))
4989 if (copy_from_user(label, arg, sizeof(label)))
4992 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4994 "unable to set label with more than %d bytes",
4995 BTRFS_LABEL_SIZE - 1);
4999 ret = mnt_want_write_file(file);
5003 trans = btrfs_start_transaction(root, 0);
5004 if (IS_ERR(trans)) {
5005 ret = PTR_ERR(trans);
5009 spin_lock(&fs_info->super_lock);
5010 strcpy(super_block->label, label);
5011 spin_unlock(&fs_info->super_lock);
5012 ret = btrfs_commit_transaction(trans);
5015 mnt_drop_write_file(file);
5019 #define INIT_FEATURE_FLAGS(suffix) \
5020 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5021 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5022 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5024 int btrfs_ioctl_get_supported_features(void __user *arg)
5026 static const struct btrfs_ioctl_feature_flags features[3] = {
5027 INIT_FEATURE_FLAGS(SUPP),
5028 INIT_FEATURE_FLAGS(SAFE_SET),
5029 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5032 if (copy_to_user(arg, &features, sizeof(features)))
5038 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
5041 struct btrfs_super_block *super_block = fs_info->super_copy;
5042 struct btrfs_ioctl_feature_flags features;
5044 features.compat_flags = btrfs_super_compat_flags(super_block);
5045 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5046 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5048 if (copy_to_user(arg, &features, sizeof(features)))
5054 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5055 enum btrfs_feature_set set,
5056 u64 change_mask, u64 flags, u64 supported_flags,
5057 u64 safe_set, u64 safe_clear)
5059 const char *type = btrfs_feature_set_name(set);
5061 u64 disallowed, unsupported;
5062 u64 set_mask = flags & change_mask;
5063 u64 clear_mask = ~flags & change_mask;
5065 unsupported = set_mask & ~supported_flags;
5067 names = btrfs_printable_features(set, unsupported);
5070 "this kernel does not support the %s feature bit%s",
5071 names, strchr(names, ',') ? "s" : "");
5075 "this kernel does not support %s bits 0x%llx",
5080 disallowed = set_mask & ~safe_set;
5082 names = btrfs_printable_features(set, disallowed);
5085 "can't set the %s feature bit%s while mounted",
5086 names, strchr(names, ',') ? "s" : "");
5090 "can't set %s bits 0x%llx while mounted",
5095 disallowed = clear_mask & ~safe_clear;
5097 names = btrfs_printable_features(set, disallowed);
5100 "can't clear the %s feature bit%s while mounted",
5101 names, strchr(names, ',') ? "s" : "");
5105 "can't clear %s bits 0x%llx while mounted",
5113 #define check_feature(fs_info, change_mask, flags, mask_base) \
5114 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5115 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5116 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5117 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5119 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5121 struct inode *inode = file_inode(file);
5122 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5123 struct btrfs_root *root = BTRFS_I(inode)->root;
5124 struct btrfs_super_block *super_block = fs_info->super_copy;
5125 struct btrfs_ioctl_feature_flags flags[2];
5126 struct btrfs_trans_handle *trans;
5130 if (!capable(CAP_SYS_ADMIN))
5133 if (copy_from_user(flags, arg, sizeof(flags)))
5137 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5138 !flags[0].incompat_flags)
5141 ret = check_feature(fs_info, flags[0].compat_flags,
5142 flags[1].compat_flags, COMPAT);
5146 ret = check_feature(fs_info, flags[0].compat_ro_flags,
5147 flags[1].compat_ro_flags, COMPAT_RO);
5151 ret = check_feature(fs_info, flags[0].incompat_flags,
5152 flags[1].incompat_flags, INCOMPAT);
5156 ret = mnt_want_write_file(file);
5160 trans = btrfs_start_transaction(root, 0);
5161 if (IS_ERR(trans)) {
5162 ret = PTR_ERR(trans);
5163 goto out_drop_write;
5166 spin_lock(&fs_info->super_lock);
5167 newflags = btrfs_super_compat_flags(super_block);
5168 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5169 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5170 btrfs_set_super_compat_flags(super_block, newflags);
5172 newflags = btrfs_super_compat_ro_flags(super_block);
5173 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5174 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5175 btrfs_set_super_compat_ro_flags(super_block, newflags);
5177 newflags = btrfs_super_incompat_flags(super_block);
5178 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5179 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5180 btrfs_set_super_incompat_flags(super_block, newflags);
5181 spin_unlock(&fs_info->super_lock);
5183 ret = btrfs_commit_transaction(trans);
5185 mnt_drop_write_file(file);
5190 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
5192 struct btrfs_ioctl_send_args *arg;
5196 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5197 struct btrfs_ioctl_send_args_32 args32;
5199 ret = copy_from_user(&args32, argp, sizeof(args32));
5202 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5205 arg->send_fd = args32.send_fd;
5206 arg->clone_sources_count = args32.clone_sources_count;
5207 arg->clone_sources = compat_ptr(args32.clone_sources);
5208 arg->parent_root = args32.parent_root;
5209 arg->flags = args32.flags;
5210 memcpy(arg->reserved, args32.reserved,
5211 sizeof(args32.reserved));
5216 arg = memdup_user(argp, sizeof(*arg));
5218 return PTR_ERR(arg);
5220 ret = btrfs_ioctl_send(inode, arg);
5225 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
5228 struct btrfs_ioctl_encoded_io_args args = { 0 };
5229 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
5232 struct iovec iovstack[UIO_FASTIOV];
5233 struct iovec *iov = iovstack;
5234 struct iov_iter iter;
5239 if (!capable(CAP_SYS_ADMIN)) {
5245 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5246 struct btrfs_ioctl_encoded_io_args_32 args32;
5248 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
5250 if (copy_from_user(&args32, argp, copy_end)) {
5254 args.iov = compat_ptr(args32.iov);
5255 args.iovcnt = args32.iovcnt;
5256 args.offset = args32.offset;
5257 args.flags = args32.flags;
5262 copy_end = copy_end_kernel;
5263 if (copy_from_user(&args, argp, copy_end)) {
5268 if (args.flags != 0) {
5273 ret = import_iovec(READ, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
5278 if (iov_iter_count(&iter) == 0) {
5283 ret = rw_verify_area(READ, file, &pos, args.len);
5287 init_sync_kiocb(&kiocb, file);
5290 ret = btrfs_encoded_read(&kiocb, &iter, &args);
5292 fsnotify_access(file);
5293 if (copy_to_user(argp + copy_end,
5294 (char *)&args + copy_end_kernel,
5295 sizeof(args) - copy_end_kernel))
5303 add_rchar(current, ret);
5308 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
5310 struct btrfs_ioctl_encoded_io_args args;
5311 struct iovec iovstack[UIO_FASTIOV];
5312 struct iovec *iov = iovstack;
5313 struct iov_iter iter;
5318 if (!capable(CAP_SYS_ADMIN)) {
5323 if (!(file->f_mode & FMODE_WRITE)) {
5329 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5330 struct btrfs_ioctl_encoded_io_args_32 args32;
5332 if (copy_from_user(&args32, argp, sizeof(args32))) {
5336 args.iov = compat_ptr(args32.iov);
5337 args.iovcnt = args32.iovcnt;
5338 args.offset = args32.offset;
5339 args.flags = args32.flags;
5340 args.len = args32.len;
5341 args.unencoded_len = args32.unencoded_len;
5342 args.unencoded_offset = args32.unencoded_offset;
5343 args.compression = args32.compression;
5344 args.encryption = args32.encryption;
5345 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
5350 if (copy_from_user(&args, argp, sizeof(args))) {
5357 if (args.flags != 0)
5359 if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
5361 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
5362 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
5364 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
5365 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
5367 if (args.unencoded_offset > args.unencoded_len)
5369 if (args.len > args.unencoded_len - args.unencoded_offset)
5372 ret = import_iovec(WRITE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
5377 file_start_write(file);
5379 if (iov_iter_count(&iter) == 0) {
5384 ret = rw_verify_area(WRITE, file, &pos, args.len);
5388 init_sync_kiocb(&kiocb, file);
5389 ret = kiocb_set_rw_flags(&kiocb, 0);
5394 ret = btrfs_do_write_iter(&kiocb, &iter, &args);
5396 fsnotify_modify(file);
5399 file_end_write(file);
5403 add_wchar(current, ret);
5408 long btrfs_ioctl(struct file *file, unsigned int
5409 cmd, unsigned long arg)
5411 struct inode *inode = file_inode(file);
5412 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5413 struct btrfs_root *root = BTRFS_I(inode)->root;
5414 void __user *argp = (void __user *)arg;
5417 case FS_IOC_GETVERSION:
5418 return btrfs_ioctl_getversion(inode, argp);
5419 case FS_IOC_GETFSLABEL:
5420 return btrfs_ioctl_get_fslabel(fs_info, argp);
5421 case FS_IOC_SETFSLABEL:
5422 return btrfs_ioctl_set_fslabel(file, argp);
5424 return btrfs_ioctl_fitrim(fs_info, argp);
5425 case BTRFS_IOC_SNAP_CREATE:
5426 return btrfs_ioctl_snap_create(file, argp, 0);
5427 case BTRFS_IOC_SNAP_CREATE_V2:
5428 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5429 case BTRFS_IOC_SUBVOL_CREATE:
5430 return btrfs_ioctl_snap_create(file, argp, 1);
5431 case BTRFS_IOC_SUBVOL_CREATE_V2:
5432 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5433 case BTRFS_IOC_SNAP_DESTROY:
5434 return btrfs_ioctl_snap_destroy(file, argp, false);
5435 case BTRFS_IOC_SNAP_DESTROY_V2:
5436 return btrfs_ioctl_snap_destroy(file, argp, true);
5437 case BTRFS_IOC_SUBVOL_GETFLAGS:
5438 return btrfs_ioctl_subvol_getflags(inode, argp);
5439 case BTRFS_IOC_SUBVOL_SETFLAGS:
5440 return btrfs_ioctl_subvol_setflags(file, argp);
5441 case BTRFS_IOC_DEFAULT_SUBVOL:
5442 return btrfs_ioctl_default_subvol(file, argp);
5443 case BTRFS_IOC_DEFRAG:
5444 return btrfs_ioctl_defrag(file, NULL);
5445 case BTRFS_IOC_DEFRAG_RANGE:
5446 return btrfs_ioctl_defrag(file, argp);
5447 case BTRFS_IOC_RESIZE:
5448 return btrfs_ioctl_resize(file, argp);
5449 case BTRFS_IOC_ADD_DEV:
5450 return btrfs_ioctl_add_dev(fs_info, argp);
5451 case BTRFS_IOC_RM_DEV:
5452 return btrfs_ioctl_rm_dev(file, argp);
5453 case BTRFS_IOC_RM_DEV_V2:
5454 return btrfs_ioctl_rm_dev_v2(file, argp);
5455 case BTRFS_IOC_FS_INFO:
5456 return btrfs_ioctl_fs_info(fs_info, argp);
5457 case BTRFS_IOC_DEV_INFO:
5458 return btrfs_ioctl_dev_info(fs_info, argp);
5459 case BTRFS_IOC_TREE_SEARCH:
5460 return btrfs_ioctl_tree_search(inode, argp);
5461 case BTRFS_IOC_TREE_SEARCH_V2:
5462 return btrfs_ioctl_tree_search_v2(inode, argp);
5463 case BTRFS_IOC_INO_LOOKUP:
5464 return btrfs_ioctl_ino_lookup(root, argp);
5465 case BTRFS_IOC_INO_PATHS:
5466 return btrfs_ioctl_ino_to_path(root, argp);
5467 case BTRFS_IOC_LOGICAL_INO:
5468 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5469 case BTRFS_IOC_LOGICAL_INO_V2:
5470 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5471 case BTRFS_IOC_SPACE_INFO:
5472 return btrfs_ioctl_space_info(fs_info, argp);
5473 case BTRFS_IOC_SYNC: {
5476 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5479 ret = btrfs_sync_fs(inode->i_sb, 1);
5481 * The transaction thread may want to do more work,
5482 * namely it pokes the cleaner kthread that will start
5483 * processing uncleaned subvols.
5485 wake_up_process(fs_info->transaction_kthread);
5488 case BTRFS_IOC_START_SYNC:
5489 return btrfs_ioctl_start_sync(root, argp);
5490 case BTRFS_IOC_WAIT_SYNC:
5491 return btrfs_ioctl_wait_sync(fs_info, argp);
5492 case BTRFS_IOC_SCRUB:
5493 return btrfs_ioctl_scrub(file, argp);
5494 case BTRFS_IOC_SCRUB_CANCEL:
5495 return btrfs_ioctl_scrub_cancel(fs_info);
5496 case BTRFS_IOC_SCRUB_PROGRESS:
5497 return btrfs_ioctl_scrub_progress(fs_info, argp);
5498 case BTRFS_IOC_BALANCE_V2:
5499 return btrfs_ioctl_balance(file, argp);
5500 case BTRFS_IOC_BALANCE_CTL:
5501 return btrfs_ioctl_balance_ctl(fs_info, arg);
5502 case BTRFS_IOC_BALANCE_PROGRESS:
5503 return btrfs_ioctl_balance_progress(fs_info, argp);
5504 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5505 return btrfs_ioctl_set_received_subvol(file, argp);
5507 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5508 return btrfs_ioctl_set_received_subvol_32(file, argp);
5510 case BTRFS_IOC_SEND:
5511 return _btrfs_ioctl_send(inode, argp, false);
5512 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5513 case BTRFS_IOC_SEND_32:
5514 return _btrfs_ioctl_send(inode, argp, true);
5516 case BTRFS_IOC_GET_DEV_STATS:
5517 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5518 case BTRFS_IOC_QUOTA_CTL:
5519 return btrfs_ioctl_quota_ctl(file, argp);
5520 case BTRFS_IOC_QGROUP_ASSIGN:
5521 return btrfs_ioctl_qgroup_assign(file, argp);
5522 case BTRFS_IOC_QGROUP_CREATE:
5523 return btrfs_ioctl_qgroup_create(file, argp);
5524 case BTRFS_IOC_QGROUP_LIMIT:
5525 return btrfs_ioctl_qgroup_limit(file, argp);
5526 case BTRFS_IOC_QUOTA_RESCAN:
5527 return btrfs_ioctl_quota_rescan(file, argp);
5528 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5529 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5530 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5531 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5532 case BTRFS_IOC_DEV_REPLACE:
5533 return btrfs_ioctl_dev_replace(fs_info, argp);
5534 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5535 return btrfs_ioctl_get_supported_features(argp);
5536 case BTRFS_IOC_GET_FEATURES:
5537 return btrfs_ioctl_get_features(fs_info, argp);
5538 case BTRFS_IOC_SET_FEATURES:
5539 return btrfs_ioctl_set_features(file, argp);
5540 case BTRFS_IOC_GET_SUBVOL_INFO:
5541 return btrfs_ioctl_get_subvol_info(inode, argp);
5542 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5543 return btrfs_ioctl_get_subvol_rootref(root, argp);
5544 case BTRFS_IOC_INO_LOOKUP_USER:
5545 return btrfs_ioctl_ino_lookup_user(file, argp);
5546 case FS_IOC_ENABLE_VERITY:
5547 return fsverity_ioctl_enable(file, (const void __user *)argp);
5548 case FS_IOC_MEASURE_VERITY:
5549 return fsverity_ioctl_measure(file, argp);
5550 case BTRFS_IOC_ENCODED_READ:
5551 return btrfs_ioctl_encoded_read(file, argp, false);
5552 case BTRFS_IOC_ENCODED_WRITE:
5553 return btrfs_ioctl_encoded_write(file, argp, false);
5554 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5555 case BTRFS_IOC_ENCODED_READ_32:
5556 return btrfs_ioctl_encoded_read(file, argp, true);
5557 case BTRFS_IOC_ENCODED_WRITE_32:
5558 return btrfs_ioctl_encoded_write(file, argp, true);
5565 #ifdef CONFIG_COMPAT
5566 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5569 * These all access 32-bit values anyway so no further
5570 * handling is necessary.
5573 case FS_IOC32_GETVERSION:
5574 cmd = FS_IOC_GETVERSION;
5578 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));