Merge tag 'kbuild-v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[platform/kernel/linux-starfive.git] / fs / btrfs / ioctl.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "export.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "rcu-string.h"
42 #include "send.h"
43 #include "dev-replace.h"
44 #include "props.h"
45 #include "sysfs.h"
46 #include "qgroup.h"
47 #include "tree-log.h"
48 #include "compression.h"
49 #include "space-info.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "subpage.h"
53 #include "fs.h"
54 #include "accessors.h"
55 #include "extent-tree.h"
56 #include "root-tree.h"
57 #include "defrag.h"
58 #include "dir-item.h"
59 #include "uuid-tree.h"
60 #include "ioctl.h"
61 #include "file.h"
62 #include "scrub.h"
63 #include "super.h"
64
65 #ifdef CONFIG_64BIT
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67  * structures are incorrect, as the timespec structure from userspace
68  * is 4 bytes too small. We define these alternatives here to teach
69  * the kernel about the 32-bit struct packing.
70  */
71 struct btrfs_ioctl_timespec_32 {
72         __u64 sec;
73         __u32 nsec;
74 } __attribute__ ((__packed__));
75
76 struct btrfs_ioctl_received_subvol_args_32 {
77         char    uuid[BTRFS_UUID_SIZE];  /* in */
78         __u64   stransid;               /* in */
79         __u64   rtransid;               /* out */
80         struct btrfs_ioctl_timespec_32 stime; /* in */
81         struct btrfs_ioctl_timespec_32 rtime; /* out */
82         __u64   flags;                  /* in */
83         __u64   reserved[16];           /* in */
84 } __attribute__ ((__packed__));
85
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87                                 struct btrfs_ioctl_received_subvol_args_32)
88 #endif
89
90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
91 struct btrfs_ioctl_send_args_32 {
92         __s64 send_fd;                  /* in */
93         __u64 clone_sources_count;      /* in */
94         compat_uptr_t clone_sources;    /* in */
95         __u64 parent_root;              /* in */
96         __u64 flags;                    /* in */
97         __u32 version;                  /* in */
98         __u8  reserved[28];             /* in */
99 } __attribute__ ((__packed__));
100
101 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
102                                struct btrfs_ioctl_send_args_32)
103
104 struct btrfs_ioctl_encoded_io_args_32 {
105         compat_uptr_t iov;
106         compat_ulong_t iovcnt;
107         __s64 offset;
108         __u64 flags;
109         __u64 len;
110         __u64 unencoded_len;
111         __u64 unencoded_offset;
112         __u32 compression;
113         __u32 encryption;
114         __u8 reserved[64];
115 };
116
117 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
118                                        struct btrfs_ioctl_encoded_io_args_32)
119 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
120                                         struct btrfs_ioctl_encoded_io_args_32)
121 #endif
122
123 /* Mask out flags that are inappropriate for the given type of inode. */
124 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
125                 unsigned int flags)
126 {
127         if (S_ISDIR(inode->i_mode))
128                 return flags;
129         else if (S_ISREG(inode->i_mode))
130                 return flags & ~FS_DIRSYNC_FL;
131         else
132                 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
133 }
134
135 /*
136  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
137  * ioctl.
138  */
139 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
140 {
141         unsigned int iflags = 0;
142         u32 flags = binode->flags;
143         u32 ro_flags = binode->ro_flags;
144
145         if (flags & BTRFS_INODE_SYNC)
146                 iflags |= FS_SYNC_FL;
147         if (flags & BTRFS_INODE_IMMUTABLE)
148                 iflags |= FS_IMMUTABLE_FL;
149         if (flags & BTRFS_INODE_APPEND)
150                 iflags |= FS_APPEND_FL;
151         if (flags & BTRFS_INODE_NODUMP)
152                 iflags |= FS_NODUMP_FL;
153         if (flags & BTRFS_INODE_NOATIME)
154                 iflags |= FS_NOATIME_FL;
155         if (flags & BTRFS_INODE_DIRSYNC)
156                 iflags |= FS_DIRSYNC_FL;
157         if (flags & BTRFS_INODE_NODATACOW)
158                 iflags |= FS_NOCOW_FL;
159         if (ro_flags & BTRFS_INODE_RO_VERITY)
160                 iflags |= FS_VERITY_FL;
161
162         if (flags & BTRFS_INODE_NOCOMPRESS)
163                 iflags |= FS_NOCOMP_FL;
164         else if (flags & BTRFS_INODE_COMPRESS)
165                 iflags |= FS_COMPR_FL;
166
167         return iflags;
168 }
169
170 /*
171  * Update inode->i_flags based on the btrfs internal flags.
172  */
173 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
174 {
175         struct btrfs_inode *binode = BTRFS_I(inode);
176         unsigned int new_fl = 0;
177
178         if (binode->flags & BTRFS_INODE_SYNC)
179                 new_fl |= S_SYNC;
180         if (binode->flags & BTRFS_INODE_IMMUTABLE)
181                 new_fl |= S_IMMUTABLE;
182         if (binode->flags & BTRFS_INODE_APPEND)
183                 new_fl |= S_APPEND;
184         if (binode->flags & BTRFS_INODE_NOATIME)
185                 new_fl |= S_NOATIME;
186         if (binode->flags & BTRFS_INODE_DIRSYNC)
187                 new_fl |= S_DIRSYNC;
188         if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
189                 new_fl |= S_VERITY;
190
191         set_mask_bits(&inode->i_flags,
192                       S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
193                       S_VERITY, new_fl);
194 }
195
196 /*
197  * Check if @flags are a supported and valid set of FS_*_FL flags and that
198  * the old and new flags are not conflicting
199  */
200 static int check_fsflags(unsigned int old_flags, unsigned int flags)
201 {
202         if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203                       FS_NOATIME_FL | FS_NODUMP_FL | \
204                       FS_SYNC_FL | FS_DIRSYNC_FL | \
205                       FS_NOCOMP_FL | FS_COMPR_FL |
206                       FS_NOCOW_FL))
207                 return -EOPNOTSUPP;
208
209         /* COMPR and NOCOMP on new/old are valid */
210         if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211                 return -EINVAL;
212
213         if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
214                 return -EINVAL;
215
216         /* NOCOW and compression options are mutually exclusive */
217         if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
218                 return -EINVAL;
219         if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
220                 return -EINVAL;
221
222         return 0;
223 }
224
225 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
226                                     unsigned int flags)
227 {
228         if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
229                 return -EPERM;
230
231         return 0;
232 }
233
234 /*
235  * Set flags/xflags from the internal inode flags. The remaining items of
236  * fsxattr are zeroed.
237  */
238 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
239 {
240         struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
241
242         fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
243         return 0;
244 }
245
246 int btrfs_fileattr_set(struct mnt_idmap *idmap,
247                        struct dentry *dentry, struct fileattr *fa)
248 {
249         struct inode *inode = d_inode(dentry);
250         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
251         struct btrfs_inode *binode = BTRFS_I(inode);
252         struct btrfs_root *root = binode->root;
253         struct btrfs_trans_handle *trans;
254         unsigned int fsflags, old_fsflags;
255         int ret;
256         const char *comp = NULL;
257         u32 binode_flags;
258
259         if (btrfs_root_readonly(root))
260                 return -EROFS;
261
262         if (fileattr_has_fsx(fa))
263                 return -EOPNOTSUPP;
264
265         fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
266         old_fsflags = btrfs_inode_flags_to_fsflags(binode);
267         ret = check_fsflags(old_fsflags, fsflags);
268         if (ret)
269                 return ret;
270
271         ret = check_fsflags_compatible(fs_info, fsflags);
272         if (ret)
273                 return ret;
274
275         binode_flags = binode->flags;
276         if (fsflags & FS_SYNC_FL)
277                 binode_flags |= BTRFS_INODE_SYNC;
278         else
279                 binode_flags &= ~BTRFS_INODE_SYNC;
280         if (fsflags & FS_IMMUTABLE_FL)
281                 binode_flags |= BTRFS_INODE_IMMUTABLE;
282         else
283                 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
284         if (fsflags & FS_APPEND_FL)
285                 binode_flags |= BTRFS_INODE_APPEND;
286         else
287                 binode_flags &= ~BTRFS_INODE_APPEND;
288         if (fsflags & FS_NODUMP_FL)
289                 binode_flags |= BTRFS_INODE_NODUMP;
290         else
291                 binode_flags &= ~BTRFS_INODE_NODUMP;
292         if (fsflags & FS_NOATIME_FL)
293                 binode_flags |= BTRFS_INODE_NOATIME;
294         else
295                 binode_flags &= ~BTRFS_INODE_NOATIME;
296
297         /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
298         if (!fa->flags_valid) {
299                 /* 1 item for the inode */
300                 trans = btrfs_start_transaction(root, 1);
301                 if (IS_ERR(trans))
302                         return PTR_ERR(trans);
303                 goto update_flags;
304         }
305
306         if (fsflags & FS_DIRSYNC_FL)
307                 binode_flags |= BTRFS_INODE_DIRSYNC;
308         else
309                 binode_flags &= ~BTRFS_INODE_DIRSYNC;
310         if (fsflags & FS_NOCOW_FL) {
311                 if (S_ISREG(inode->i_mode)) {
312                         /*
313                          * It's safe to turn csums off here, no extents exist.
314                          * Otherwise we want the flag to reflect the real COW
315                          * status of the file and will not set it.
316                          */
317                         if (inode->i_size == 0)
318                                 binode_flags |= BTRFS_INODE_NODATACOW |
319                                                 BTRFS_INODE_NODATASUM;
320                 } else {
321                         binode_flags |= BTRFS_INODE_NODATACOW;
322                 }
323         } else {
324                 /*
325                  * Revert back under same assumptions as above
326                  */
327                 if (S_ISREG(inode->i_mode)) {
328                         if (inode->i_size == 0)
329                                 binode_flags &= ~(BTRFS_INODE_NODATACOW |
330                                                   BTRFS_INODE_NODATASUM);
331                 } else {
332                         binode_flags &= ~BTRFS_INODE_NODATACOW;
333                 }
334         }
335
336         /*
337          * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
338          * flag may be changed automatically if compression code won't make
339          * things smaller.
340          */
341         if (fsflags & FS_NOCOMP_FL) {
342                 binode_flags &= ~BTRFS_INODE_COMPRESS;
343                 binode_flags |= BTRFS_INODE_NOCOMPRESS;
344         } else if (fsflags & FS_COMPR_FL) {
345
346                 if (IS_SWAPFILE(inode))
347                         return -ETXTBSY;
348
349                 binode_flags |= BTRFS_INODE_COMPRESS;
350                 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
351
352                 comp = btrfs_compress_type2str(fs_info->compress_type);
353                 if (!comp || comp[0] == 0)
354                         comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
355         } else {
356                 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
357         }
358
359         /*
360          * 1 for inode item
361          * 2 for properties
362          */
363         trans = btrfs_start_transaction(root, 3);
364         if (IS_ERR(trans))
365                 return PTR_ERR(trans);
366
367         if (comp) {
368                 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
369                                      strlen(comp), 0);
370                 if (ret) {
371                         btrfs_abort_transaction(trans, ret);
372                         goto out_end_trans;
373                 }
374         } else {
375                 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
376                                      0, 0);
377                 if (ret && ret != -ENODATA) {
378                         btrfs_abort_transaction(trans, ret);
379                         goto out_end_trans;
380                 }
381         }
382
383 update_flags:
384         binode->flags = binode_flags;
385         btrfs_sync_inode_flags_to_i_flags(inode);
386         inode_inc_iversion(inode);
387         inode->i_ctime = current_time(inode);
388         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
389
390  out_end_trans:
391         btrfs_end_transaction(trans);
392         return ret;
393 }
394
395 /*
396  * Start exclusive operation @type, return true on success
397  */
398 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
399                         enum btrfs_exclusive_operation type)
400 {
401         bool ret = false;
402
403         spin_lock(&fs_info->super_lock);
404         if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
405                 fs_info->exclusive_operation = type;
406                 ret = true;
407         }
408         spin_unlock(&fs_info->super_lock);
409
410         return ret;
411 }
412
413 /*
414  * Conditionally allow to enter the exclusive operation in case it's compatible
415  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
416  * btrfs_exclop_finish.
417  *
418  * Compatibility:
419  * - the same type is already running
420  * - when trying to add a device and balance has been paused
421  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
422  *   must check the condition first that would allow none -> @type
423  */
424 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
425                                  enum btrfs_exclusive_operation type)
426 {
427         spin_lock(&fs_info->super_lock);
428         if (fs_info->exclusive_operation == type ||
429             (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
430              type == BTRFS_EXCLOP_DEV_ADD))
431                 return true;
432
433         spin_unlock(&fs_info->super_lock);
434         return false;
435 }
436
437 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
438 {
439         spin_unlock(&fs_info->super_lock);
440 }
441
442 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
443 {
444         spin_lock(&fs_info->super_lock);
445         WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
446         spin_unlock(&fs_info->super_lock);
447         sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
448 }
449
450 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
451                           enum btrfs_exclusive_operation op)
452 {
453         switch (op) {
454         case BTRFS_EXCLOP_BALANCE_PAUSED:
455                 spin_lock(&fs_info->super_lock);
456                 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
457                        fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
458                        fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
459                        fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
460                 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
461                 spin_unlock(&fs_info->super_lock);
462                 break;
463         case BTRFS_EXCLOP_BALANCE:
464                 spin_lock(&fs_info->super_lock);
465                 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
466                 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
467                 spin_unlock(&fs_info->super_lock);
468                 break;
469         default:
470                 btrfs_warn(fs_info,
471                         "invalid exclop balance operation %d requested", op);
472         }
473 }
474
475 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
476 {
477         return put_user(inode->i_generation, arg);
478 }
479
480 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
481                                         void __user *arg)
482 {
483         struct btrfs_device *device;
484         struct fstrim_range range;
485         u64 minlen = ULLONG_MAX;
486         u64 num_devices = 0;
487         int ret;
488
489         if (!capable(CAP_SYS_ADMIN))
490                 return -EPERM;
491
492         /*
493          * btrfs_trim_block_group() depends on space cache, which is not
494          * available in zoned filesystem. So, disallow fitrim on a zoned
495          * filesystem for now.
496          */
497         if (btrfs_is_zoned(fs_info))
498                 return -EOPNOTSUPP;
499
500         /*
501          * If the fs is mounted with nologreplay, which requires it to be
502          * mounted in RO mode as well, we can not allow discard on free space
503          * inside block groups, because log trees refer to extents that are not
504          * pinned in a block group's free space cache (pinning the extents is
505          * precisely the first phase of replaying a log tree).
506          */
507         if (btrfs_test_opt(fs_info, NOLOGREPLAY))
508                 return -EROFS;
509
510         rcu_read_lock();
511         list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
512                                 dev_list) {
513                 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
514                         continue;
515                 num_devices++;
516                 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
517                                     minlen);
518         }
519         rcu_read_unlock();
520
521         if (!num_devices)
522                 return -EOPNOTSUPP;
523         if (copy_from_user(&range, arg, sizeof(range)))
524                 return -EFAULT;
525
526         /*
527          * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
528          * block group is in the logical address space, which can be any
529          * sectorsize aligned bytenr in  the range [0, U64_MAX].
530          */
531         if (range.len < fs_info->sb->s_blocksize)
532                 return -EINVAL;
533
534         range.minlen = max(range.minlen, minlen);
535         ret = btrfs_trim_fs(fs_info, &range);
536         if (ret < 0)
537                 return ret;
538
539         if (copy_to_user(arg, &range, sizeof(range)))
540                 return -EFAULT;
541
542         return 0;
543 }
544
545 int __pure btrfs_is_empty_uuid(u8 *uuid)
546 {
547         int i;
548
549         for (i = 0; i < BTRFS_UUID_SIZE; i++) {
550                 if (uuid[i])
551                         return 0;
552         }
553         return 1;
554 }
555
556 /*
557  * Calculate the number of transaction items to reserve for creating a subvolume
558  * or snapshot, not including the inode, directory entries, or parent directory.
559  */
560 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
561 {
562         /*
563          * 1 to add root block
564          * 1 to add root item
565          * 1 to add root ref
566          * 1 to add root backref
567          * 1 to add UUID item
568          * 1 to add qgroup info
569          * 1 to add qgroup limit
570          *
571          * Ideally the last two would only be accounted if qgroups are enabled,
572          * but that can change between now and the time we would insert them.
573          */
574         unsigned int num_items = 7;
575
576         if (inherit) {
577                 /* 2 to add qgroup relations for each inherited qgroup */
578                 num_items += 2 * inherit->num_qgroups;
579         }
580         return num_items;
581 }
582
583 static noinline int create_subvol(struct mnt_idmap *idmap,
584                                   struct inode *dir, struct dentry *dentry,
585                                   struct btrfs_qgroup_inherit *inherit)
586 {
587         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
588         struct btrfs_trans_handle *trans;
589         struct btrfs_key key;
590         struct btrfs_root_item *root_item;
591         struct btrfs_inode_item *inode_item;
592         struct extent_buffer *leaf;
593         struct btrfs_root *root = BTRFS_I(dir)->root;
594         struct btrfs_root *new_root;
595         struct btrfs_block_rsv block_rsv;
596         struct timespec64 cur_time = current_time(dir);
597         struct btrfs_new_inode_args new_inode_args = {
598                 .dir = dir,
599                 .dentry = dentry,
600                 .subvol = true,
601         };
602         unsigned int trans_num_items;
603         int ret;
604         dev_t anon_dev;
605         u64 objectid;
606
607         root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
608         if (!root_item)
609                 return -ENOMEM;
610
611         ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
612         if (ret)
613                 goto out_root_item;
614
615         /*
616          * Don't create subvolume whose level is not zero. Or qgroup will be
617          * screwed up since it assumes subvolume qgroup's level to be 0.
618          */
619         if (btrfs_qgroup_level(objectid)) {
620                 ret = -ENOSPC;
621                 goto out_root_item;
622         }
623
624         ret = get_anon_bdev(&anon_dev);
625         if (ret < 0)
626                 goto out_root_item;
627
628         new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
629         if (!new_inode_args.inode) {
630                 ret = -ENOMEM;
631                 goto out_anon_dev;
632         }
633         ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
634         if (ret)
635                 goto out_inode;
636         trans_num_items += create_subvol_num_items(inherit);
637
638         btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
639         ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
640                                                trans_num_items, false);
641         if (ret)
642                 goto out_new_inode_args;
643
644         trans = btrfs_start_transaction(root, 0);
645         if (IS_ERR(trans)) {
646                 ret = PTR_ERR(trans);
647                 btrfs_subvolume_release_metadata(root, &block_rsv);
648                 goto out_new_inode_args;
649         }
650         trans->block_rsv = &block_rsv;
651         trans->bytes_reserved = block_rsv.size;
652         /* Tree log can't currently deal with an inode which is a new root. */
653         btrfs_set_log_full_commit(trans);
654
655         ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
656         if (ret)
657                 goto out;
658
659         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
660                                       BTRFS_NESTING_NORMAL);
661         if (IS_ERR(leaf)) {
662                 ret = PTR_ERR(leaf);
663                 goto out;
664         }
665
666         btrfs_mark_buffer_dirty(leaf);
667
668         inode_item = &root_item->inode;
669         btrfs_set_stack_inode_generation(inode_item, 1);
670         btrfs_set_stack_inode_size(inode_item, 3);
671         btrfs_set_stack_inode_nlink(inode_item, 1);
672         btrfs_set_stack_inode_nbytes(inode_item,
673                                      fs_info->nodesize);
674         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
675
676         btrfs_set_root_flags(root_item, 0);
677         btrfs_set_root_limit(root_item, 0);
678         btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
679
680         btrfs_set_root_bytenr(root_item, leaf->start);
681         btrfs_set_root_generation(root_item, trans->transid);
682         btrfs_set_root_level(root_item, 0);
683         btrfs_set_root_refs(root_item, 1);
684         btrfs_set_root_used(root_item, leaf->len);
685         btrfs_set_root_last_snapshot(root_item, 0);
686
687         btrfs_set_root_generation_v2(root_item,
688                         btrfs_root_generation(root_item));
689         generate_random_guid(root_item->uuid);
690         btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
691         btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
692         root_item->ctime = root_item->otime;
693         btrfs_set_root_ctransid(root_item, trans->transid);
694         btrfs_set_root_otransid(root_item, trans->transid);
695
696         btrfs_tree_unlock(leaf);
697
698         btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
699
700         key.objectid = objectid;
701         key.offset = 0;
702         key.type = BTRFS_ROOT_ITEM_KEY;
703         ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
704                                 root_item);
705         if (ret) {
706                 /*
707                  * Since we don't abort the transaction in this case, free the
708                  * tree block so that we don't leak space and leave the
709                  * filesystem in an inconsistent state (an extent item in the
710                  * extent tree with a backreference for a root that does not
711                  * exists).
712                  */
713                 btrfs_tree_lock(leaf);
714                 btrfs_clear_buffer_dirty(trans, leaf);
715                 btrfs_tree_unlock(leaf);
716                 btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
717                 free_extent_buffer(leaf);
718                 goto out;
719         }
720
721         free_extent_buffer(leaf);
722         leaf = NULL;
723
724         new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
725         if (IS_ERR(new_root)) {
726                 ret = PTR_ERR(new_root);
727                 btrfs_abort_transaction(trans, ret);
728                 goto out;
729         }
730         /* anon_dev is owned by new_root now. */
731         anon_dev = 0;
732         BTRFS_I(new_inode_args.inode)->root = new_root;
733         /* ... and new_root is owned by new_inode_args.inode now. */
734
735         ret = btrfs_record_root_in_trans(trans, new_root);
736         if (ret) {
737                 btrfs_abort_transaction(trans, ret);
738                 goto out;
739         }
740
741         ret = btrfs_uuid_tree_add(trans, root_item->uuid,
742                                   BTRFS_UUID_KEY_SUBVOL, objectid);
743         if (ret) {
744                 btrfs_abort_transaction(trans, ret);
745                 goto out;
746         }
747
748         ret = btrfs_create_new_inode(trans, &new_inode_args);
749         if (ret) {
750                 btrfs_abort_transaction(trans, ret);
751                 goto out;
752         }
753
754         d_instantiate_new(dentry, new_inode_args.inode);
755         new_inode_args.inode = NULL;
756
757 out:
758         trans->block_rsv = NULL;
759         trans->bytes_reserved = 0;
760         btrfs_subvolume_release_metadata(root, &block_rsv);
761
762         btrfs_end_transaction(trans);
763 out_new_inode_args:
764         btrfs_new_inode_args_destroy(&new_inode_args);
765 out_inode:
766         iput(new_inode_args.inode);
767 out_anon_dev:
768         if (anon_dev)
769                 free_anon_bdev(anon_dev);
770 out_root_item:
771         kfree(root_item);
772         return ret;
773 }
774
775 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
776                            struct dentry *dentry, bool readonly,
777                            struct btrfs_qgroup_inherit *inherit)
778 {
779         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
780         struct inode *inode;
781         struct btrfs_pending_snapshot *pending_snapshot;
782         unsigned int trans_num_items;
783         struct btrfs_trans_handle *trans;
784         int ret;
785
786         /* We do not support snapshotting right now. */
787         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
788                 btrfs_warn(fs_info,
789                            "extent tree v2 doesn't support snapshotting yet");
790                 return -EOPNOTSUPP;
791         }
792
793         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
794                 return -EINVAL;
795
796         if (atomic_read(&root->nr_swapfiles)) {
797                 btrfs_warn(fs_info,
798                            "cannot snapshot subvolume with active swapfile");
799                 return -ETXTBSY;
800         }
801
802         pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
803         if (!pending_snapshot)
804                 return -ENOMEM;
805
806         ret = get_anon_bdev(&pending_snapshot->anon_dev);
807         if (ret < 0)
808                 goto free_pending;
809         pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
810                         GFP_KERNEL);
811         pending_snapshot->path = btrfs_alloc_path();
812         if (!pending_snapshot->root_item || !pending_snapshot->path) {
813                 ret = -ENOMEM;
814                 goto free_pending;
815         }
816
817         btrfs_init_block_rsv(&pending_snapshot->block_rsv,
818                              BTRFS_BLOCK_RSV_TEMP);
819         /*
820          * 1 to add dir item
821          * 1 to add dir index
822          * 1 to update parent inode item
823          */
824         trans_num_items = create_subvol_num_items(inherit) + 3;
825         ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
826                                                &pending_snapshot->block_rsv,
827                                                trans_num_items, false);
828         if (ret)
829                 goto free_pending;
830
831         pending_snapshot->dentry = dentry;
832         pending_snapshot->root = root;
833         pending_snapshot->readonly = readonly;
834         pending_snapshot->dir = dir;
835         pending_snapshot->inherit = inherit;
836
837         trans = btrfs_start_transaction(root, 0);
838         if (IS_ERR(trans)) {
839                 ret = PTR_ERR(trans);
840                 goto fail;
841         }
842
843         trans->pending_snapshot = pending_snapshot;
844
845         ret = btrfs_commit_transaction(trans);
846         if (ret)
847                 goto fail;
848
849         ret = pending_snapshot->error;
850         if (ret)
851                 goto fail;
852
853         ret = btrfs_orphan_cleanup(pending_snapshot->snap);
854         if (ret)
855                 goto fail;
856
857         inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
858         if (IS_ERR(inode)) {
859                 ret = PTR_ERR(inode);
860                 goto fail;
861         }
862
863         d_instantiate(dentry, inode);
864         ret = 0;
865         pending_snapshot->anon_dev = 0;
866 fail:
867         /* Prevent double freeing of anon_dev */
868         if (ret && pending_snapshot->snap)
869                 pending_snapshot->snap->anon_dev = 0;
870         btrfs_put_root(pending_snapshot->snap);
871         btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
872 free_pending:
873         if (pending_snapshot->anon_dev)
874                 free_anon_bdev(pending_snapshot->anon_dev);
875         kfree(pending_snapshot->root_item);
876         btrfs_free_path(pending_snapshot->path);
877         kfree(pending_snapshot);
878
879         return ret;
880 }
881
882 /*  copy of may_delete in fs/namei.c()
883  *      Check whether we can remove a link victim from directory dir, check
884  *  whether the type of victim is right.
885  *  1. We can't do it if dir is read-only (done in permission())
886  *  2. We should have write and exec permissions on dir
887  *  3. We can't remove anything from append-only dir
888  *  4. We can't do anything with immutable dir (done in permission())
889  *  5. If the sticky bit on dir is set we should either
890  *      a. be owner of dir, or
891  *      b. be owner of victim, or
892  *      c. have CAP_FOWNER capability
893  *  6. If the victim is append-only or immutable we can't do anything with
894  *     links pointing to it.
895  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
896  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
897  *  9. We can't remove a root or mountpoint.
898  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
899  *     nfs_async_unlink().
900  */
901
902 static int btrfs_may_delete(struct mnt_idmap *idmap,
903                             struct inode *dir, struct dentry *victim, int isdir)
904 {
905         int error;
906
907         if (d_really_is_negative(victim))
908                 return -ENOENT;
909
910         BUG_ON(d_inode(victim->d_parent) != dir);
911         audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
912
913         error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
914         if (error)
915                 return error;
916         if (IS_APPEND(dir))
917                 return -EPERM;
918         if (check_sticky(idmap, dir, d_inode(victim)) ||
919             IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
920             IS_SWAPFILE(d_inode(victim)))
921                 return -EPERM;
922         if (isdir) {
923                 if (!d_is_dir(victim))
924                         return -ENOTDIR;
925                 if (IS_ROOT(victim))
926                         return -EBUSY;
927         } else if (d_is_dir(victim))
928                 return -EISDIR;
929         if (IS_DEADDIR(dir))
930                 return -ENOENT;
931         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
932                 return -EBUSY;
933         return 0;
934 }
935
936 /* copy of may_create in fs/namei.c() */
937 static inline int btrfs_may_create(struct mnt_idmap *idmap,
938                                    struct inode *dir, struct dentry *child)
939 {
940         if (d_really_is_positive(child))
941                 return -EEXIST;
942         if (IS_DEADDIR(dir))
943                 return -ENOENT;
944         if (!fsuidgid_has_mapping(dir->i_sb, idmap))
945                 return -EOVERFLOW;
946         return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
947 }
948
949 /*
950  * Create a new subvolume below @parent.  This is largely modeled after
951  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
952  * inside this filesystem so it's quite a bit simpler.
953  */
954 static noinline int btrfs_mksubvol(const struct path *parent,
955                                    struct mnt_idmap *idmap,
956                                    const char *name, int namelen,
957                                    struct btrfs_root *snap_src,
958                                    bool readonly,
959                                    struct btrfs_qgroup_inherit *inherit)
960 {
961         struct inode *dir = d_inode(parent->dentry);
962         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
963         struct dentry *dentry;
964         struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
965         int error;
966
967         error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
968         if (error == -EINTR)
969                 return error;
970
971         dentry = lookup_one(idmap, name, parent->dentry, namelen);
972         error = PTR_ERR(dentry);
973         if (IS_ERR(dentry))
974                 goto out_unlock;
975
976         error = btrfs_may_create(idmap, dir, dentry);
977         if (error)
978                 goto out_dput;
979
980         /*
981          * even if this name doesn't exist, we may get hash collisions.
982          * check for them now when we can safely fail
983          */
984         error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
985                                                dir->i_ino, &name_str);
986         if (error)
987                 goto out_dput;
988
989         down_read(&fs_info->subvol_sem);
990
991         if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
992                 goto out_up_read;
993
994         if (snap_src)
995                 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
996         else
997                 error = create_subvol(idmap, dir, dentry, inherit);
998
999         if (!error)
1000                 fsnotify_mkdir(dir, dentry);
1001 out_up_read:
1002         up_read(&fs_info->subvol_sem);
1003 out_dput:
1004         dput(dentry);
1005 out_unlock:
1006         btrfs_inode_unlock(BTRFS_I(dir), 0);
1007         return error;
1008 }
1009
1010 static noinline int btrfs_mksnapshot(const struct path *parent,
1011                                    struct mnt_idmap *idmap,
1012                                    const char *name, int namelen,
1013                                    struct btrfs_root *root,
1014                                    bool readonly,
1015                                    struct btrfs_qgroup_inherit *inherit)
1016 {
1017         int ret;
1018         bool snapshot_force_cow = false;
1019
1020         /*
1021          * Force new buffered writes to reserve space even when NOCOW is
1022          * possible. This is to avoid later writeback (running dealloc) to
1023          * fallback to COW mode and unexpectedly fail with ENOSPC.
1024          */
1025         btrfs_drew_read_lock(&root->snapshot_lock);
1026
1027         ret = btrfs_start_delalloc_snapshot(root, false);
1028         if (ret)
1029                 goto out;
1030
1031         /*
1032          * All previous writes have started writeback in NOCOW mode, so now
1033          * we force future writes to fallback to COW mode during snapshot
1034          * creation.
1035          */
1036         atomic_inc(&root->snapshot_force_cow);
1037         snapshot_force_cow = true;
1038
1039         btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1040
1041         ret = btrfs_mksubvol(parent, idmap, name, namelen,
1042                              root, readonly, inherit);
1043 out:
1044         if (snapshot_force_cow)
1045                 atomic_dec(&root->snapshot_force_cow);
1046         btrfs_drew_read_unlock(&root->snapshot_lock);
1047         return ret;
1048 }
1049
1050 /*
1051  * Try to start exclusive operation @type or cancel it if it's running.
1052  *
1053  * Return:
1054  *   0        - normal mode, newly claimed op started
1055  *  >0        - normal mode, something else is running,
1056  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1057  * ECANCELED  - cancel mode, successful cancel
1058  * ENOTCONN   - cancel mode, operation not running anymore
1059  */
1060 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1061                         enum btrfs_exclusive_operation type, bool cancel)
1062 {
1063         if (!cancel) {
1064                 /* Start normal op */
1065                 if (!btrfs_exclop_start(fs_info, type))
1066                         return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1067                 /* Exclusive operation is now claimed */
1068                 return 0;
1069         }
1070
1071         /* Cancel running op */
1072         if (btrfs_exclop_start_try_lock(fs_info, type)) {
1073                 /*
1074                  * This blocks any exclop finish from setting it to NONE, so we
1075                  * request cancellation. Either it runs and we will wait for it,
1076                  * or it has finished and no waiting will happen.
1077                  */
1078                 atomic_inc(&fs_info->reloc_cancel_req);
1079                 btrfs_exclop_start_unlock(fs_info);
1080
1081                 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1082                         wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1083                                     TASK_INTERRUPTIBLE);
1084
1085                 return -ECANCELED;
1086         }
1087
1088         /* Something else is running or none */
1089         return -ENOTCONN;
1090 }
1091
1092 static noinline int btrfs_ioctl_resize(struct file *file,
1093                                         void __user *arg)
1094 {
1095         BTRFS_DEV_LOOKUP_ARGS(args);
1096         struct inode *inode = file_inode(file);
1097         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1098         u64 new_size;
1099         u64 old_size;
1100         u64 devid = 1;
1101         struct btrfs_root *root = BTRFS_I(inode)->root;
1102         struct btrfs_ioctl_vol_args *vol_args;
1103         struct btrfs_trans_handle *trans;
1104         struct btrfs_device *device = NULL;
1105         char *sizestr;
1106         char *retptr;
1107         char *devstr = NULL;
1108         int ret = 0;
1109         int mod = 0;
1110         bool cancel;
1111
1112         if (!capable(CAP_SYS_ADMIN))
1113                 return -EPERM;
1114
1115         ret = mnt_want_write_file(file);
1116         if (ret)
1117                 return ret;
1118
1119         /*
1120          * Read the arguments before checking exclusivity to be able to
1121          * distinguish regular resize and cancel
1122          */
1123         vol_args = memdup_user(arg, sizeof(*vol_args));
1124         if (IS_ERR(vol_args)) {
1125                 ret = PTR_ERR(vol_args);
1126                 goto out_drop;
1127         }
1128         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1129         sizestr = vol_args->name;
1130         cancel = (strcmp("cancel", sizestr) == 0);
1131         ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1132         if (ret)
1133                 goto out_free;
1134         /* Exclusive operation is now claimed */
1135
1136         devstr = strchr(sizestr, ':');
1137         if (devstr) {
1138                 sizestr = devstr + 1;
1139                 *devstr = '\0';
1140                 devstr = vol_args->name;
1141                 ret = kstrtoull(devstr, 10, &devid);
1142                 if (ret)
1143                         goto out_finish;
1144                 if (!devid) {
1145                         ret = -EINVAL;
1146                         goto out_finish;
1147                 }
1148                 btrfs_info(fs_info, "resizing devid %llu", devid);
1149         }
1150
1151         args.devid = devid;
1152         device = btrfs_find_device(fs_info->fs_devices, &args);
1153         if (!device) {
1154                 btrfs_info(fs_info, "resizer unable to find device %llu",
1155                            devid);
1156                 ret = -ENODEV;
1157                 goto out_finish;
1158         }
1159
1160         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1161                 btrfs_info(fs_info,
1162                            "resizer unable to apply on readonly device %llu",
1163                        devid);
1164                 ret = -EPERM;
1165                 goto out_finish;
1166         }
1167
1168         if (!strcmp(sizestr, "max"))
1169                 new_size = bdev_nr_bytes(device->bdev);
1170         else {
1171                 if (sizestr[0] == '-') {
1172                         mod = -1;
1173                         sizestr++;
1174                 } else if (sizestr[0] == '+') {
1175                         mod = 1;
1176                         sizestr++;
1177                 }
1178                 new_size = memparse(sizestr, &retptr);
1179                 if (*retptr != '\0' || new_size == 0) {
1180                         ret = -EINVAL;
1181                         goto out_finish;
1182                 }
1183         }
1184
1185         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1186                 ret = -EPERM;
1187                 goto out_finish;
1188         }
1189
1190         old_size = btrfs_device_get_total_bytes(device);
1191
1192         if (mod < 0) {
1193                 if (new_size > old_size) {
1194                         ret = -EINVAL;
1195                         goto out_finish;
1196                 }
1197                 new_size = old_size - new_size;
1198         } else if (mod > 0) {
1199                 if (new_size > ULLONG_MAX - old_size) {
1200                         ret = -ERANGE;
1201                         goto out_finish;
1202                 }
1203                 new_size = old_size + new_size;
1204         }
1205
1206         if (new_size < SZ_256M) {
1207                 ret = -EINVAL;
1208                 goto out_finish;
1209         }
1210         if (new_size > bdev_nr_bytes(device->bdev)) {
1211                 ret = -EFBIG;
1212                 goto out_finish;
1213         }
1214
1215         new_size = round_down(new_size, fs_info->sectorsize);
1216
1217         if (new_size > old_size) {
1218                 trans = btrfs_start_transaction(root, 0);
1219                 if (IS_ERR(trans)) {
1220                         ret = PTR_ERR(trans);
1221                         goto out_finish;
1222                 }
1223                 ret = btrfs_grow_device(trans, device, new_size);
1224                 btrfs_commit_transaction(trans);
1225         } else if (new_size < old_size) {
1226                 ret = btrfs_shrink_device(device, new_size);
1227         } /* equal, nothing need to do */
1228
1229         if (ret == 0 && new_size != old_size)
1230                 btrfs_info_in_rcu(fs_info,
1231                         "resize device %s (devid %llu) from %llu to %llu",
1232                         btrfs_dev_name(device), device->devid,
1233                         old_size, new_size);
1234 out_finish:
1235         btrfs_exclop_finish(fs_info);
1236 out_free:
1237         kfree(vol_args);
1238 out_drop:
1239         mnt_drop_write_file(file);
1240         return ret;
1241 }
1242
1243 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1244                                 struct mnt_idmap *idmap,
1245                                 const char *name, unsigned long fd, int subvol,
1246                                 bool readonly,
1247                                 struct btrfs_qgroup_inherit *inherit)
1248 {
1249         int namelen;
1250         int ret = 0;
1251
1252         if (!S_ISDIR(file_inode(file)->i_mode))
1253                 return -ENOTDIR;
1254
1255         ret = mnt_want_write_file(file);
1256         if (ret)
1257                 goto out;
1258
1259         namelen = strlen(name);
1260         if (strchr(name, '/')) {
1261                 ret = -EINVAL;
1262                 goto out_drop_write;
1263         }
1264
1265         if (name[0] == '.' &&
1266            (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1267                 ret = -EEXIST;
1268                 goto out_drop_write;
1269         }
1270
1271         if (subvol) {
1272                 ret = btrfs_mksubvol(&file->f_path, idmap, name,
1273                                      namelen, NULL, readonly, inherit);
1274         } else {
1275                 struct fd src = fdget(fd);
1276                 struct inode *src_inode;
1277                 if (!src.file) {
1278                         ret = -EINVAL;
1279                         goto out_drop_write;
1280                 }
1281
1282                 src_inode = file_inode(src.file);
1283                 if (src_inode->i_sb != file_inode(file)->i_sb) {
1284                         btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1285                                    "Snapshot src from another FS");
1286                         ret = -EXDEV;
1287                 } else if (!inode_owner_or_capable(idmap, src_inode)) {
1288                         /*
1289                          * Subvolume creation is not restricted, but snapshots
1290                          * are limited to own subvolumes only
1291                          */
1292                         ret = -EPERM;
1293                 } else {
1294                         ret = btrfs_mksnapshot(&file->f_path, idmap,
1295                                                name, namelen,
1296                                                BTRFS_I(src_inode)->root,
1297                                                readonly, inherit);
1298                 }
1299                 fdput(src);
1300         }
1301 out_drop_write:
1302         mnt_drop_write_file(file);
1303 out:
1304         return ret;
1305 }
1306
1307 static noinline int btrfs_ioctl_snap_create(struct file *file,
1308                                             void __user *arg, int subvol)
1309 {
1310         struct btrfs_ioctl_vol_args *vol_args;
1311         int ret;
1312
1313         if (!S_ISDIR(file_inode(file)->i_mode))
1314                 return -ENOTDIR;
1315
1316         vol_args = memdup_user(arg, sizeof(*vol_args));
1317         if (IS_ERR(vol_args))
1318                 return PTR_ERR(vol_args);
1319         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1320
1321         ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1322                                         vol_args->name, vol_args->fd, subvol,
1323                                         false, NULL);
1324
1325         kfree(vol_args);
1326         return ret;
1327 }
1328
1329 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1330                                                void __user *arg, int subvol)
1331 {
1332         struct btrfs_ioctl_vol_args_v2 *vol_args;
1333         int ret;
1334         bool readonly = false;
1335         struct btrfs_qgroup_inherit *inherit = NULL;
1336
1337         if (!S_ISDIR(file_inode(file)->i_mode))
1338                 return -ENOTDIR;
1339
1340         vol_args = memdup_user(arg, sizeof(*vol_args));
1341         if (IS_ERR(vol_args))
1342                 return PTR_ERR(vol_args);
1343         vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1344
1345         if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1346                 ret = -EOPNOTSUPP;
1347                 goto free_args;
1348         }
1349
1350         if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1351                 readonly = true;
1352         if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1353                 u64 nums;
1354
1355                 if (vol_args->size < sizeof(*inherit) ||
1356                     vol_args->size > PAGE_SIZE) {
1357                         ret = -EINVAL;
1358                         goto free_args;
1359                 }
1360                 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1361                 if (IS_ERR(inherit)) {
1362                         ret = PTR_ERR(inherit);
1363                         goto free_args;
1364                 }
1365
1366                 if (inherit->num_qgroups > PAGE_SIZE ||
1367                     inherit->num_ref_copies > PAGE_SIZE ||
1368                     inherit->num_excl_copies > PAGE_SIZE) {
1369                         ret = -EINVAL;
1370                         goto free_inherit;
1371                 }
1372
1373                 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1374                        2 * inherit->num_excl_copies;
1375                 if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1376                         ret = -EINVAL;
1377                         goto free_inherit;
1378                 }
1379         }
1380
1381         ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1382                                         vol_args->name, vol_args->fd, subvol,
1383                                         readonly, inherit);
1384         if (ret)
1385                 goto free_inherit;
1386 free_inherit:
1387         kfree(inherit);
1388 free_args:
1389         kfree(vol_args);
1390         return ret;
1391 }
1392
1393 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1394                                                 void __user *arg)
1395 {
1396         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1397         struct btrfs_root *root = BTRFS_I(inode)->root;
1398         int ret = 0;
1399         u64 flags = 0;
1400
1401         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1402                 return -EINVAL;
1403
1404         down_read(&fs_info->subvol_sem);
1405         if (btrfs_root_readonly(root))
1406                 flags |= BTRFS_SUBVOL_RDONLY;
1407         up_read(&fs_info->subvol_sem);
1408
1409         if (copy_to_user(arg, &flags, sizeof(flags)))
1410                 ret = -EFAULT;
1411
1412         return ret;
1413 }
1414
1415 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1416                                               void __user *arg)
1417 {
1418         struct inode *inode = file_inode(file);
1419         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1420         struct btrfs_root *root = BTRFS_I(inode)->root;
1421         struct btrfs_trans_handle *trans;
1422         u64 root_flags;
1423         u64 flags;
1424         int ret = 0;
1425
1426         if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1427                 return -EPERM;
1428
1429         ret = mnt_want_write_file(file);
1430         if (ret)
1431                 goto out;
1432
1433         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1434                 ret = -EINVAL;
1435                 goto out_drop_write;
1436         }
1437
1438         if (copy_from_user(&flags, arg, sizeof(flags))) {
1439                 ret = -EFAULT;
1440                 goto out_drop_write;
1441         }
1442
1443         if (flags & ~BTRFS_SUBVOL_RDONLY) {
1444                 ret = -EOPNOTSUPP;
1445                 goto out_drop_write;
1446         }
1447
1448         down_write(&fs_info->subvol_sem);
1449
1450         /* nothing to do */
1451         if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1452                 goto out_drop_sem;
1453
1454         root_flags = btrfs_root_flags(&root->root_item);
1455         if (flags & BTRFS_SUBVOL_RDONLY) {
1456                 btrfs_set_root_flags(&root->root_item,
1457                                      root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1458         } else {
1459                 /*
1460                  * Block RO -> RW transition if this subvolume is involved in
1461                  * send
1462                  */
1463                 spin_lock(&root->root_item_lock);
1464                 if (root->send_in_progress == 0) {
1465                         btrfs_set_root_flags(&root->root_item,
1466                                      root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1467                         spin_unlock(&root->root_item_lock);
1468                 } else {
1469                         spin_unlock(&root->root_item_lock);
1470                         btrfs_warn(fs_info,
1471                                    "Attempt to set subvolume %llu read-write during send",
1472                                    root->root_key.objectid);
1473                         ret = -EPERM;
1474                         goto out_drop_sem;
1475                 }
1476         }
1477
1478         trans = btrfs_start_transaction(root, 1);
1479         if (IS_ERR(trans)) {
1480                 ret = PTR_ERR(trans);
1481                 goto out_reset;
1482         }
1483
1484         ret = btrfs_update_root(trans, fs_info->tree_root,
1485                                 &root->root_key, &root->root_item);
1486         if (ret < 0) {
1487                 btrfs_end_transaction(trans);
1488                 goto out_reset;
1489         }
1490
1491         ret = btrfs_commit_transaction(trans);
1492
1493 out_reset:
1494         if (ret)
1495                 btrfs_set_root_flags(&root->root_item, root_flags);
1496 out_drop_sem:
1497         up_write(&fs_info->subvol_sem);
1498 out_drop_write:
1499         mnt_drop_write_file(file);
1500 out:
1501         return ret;
1502 }
1503
1504 static noinline int key_in_sk(struct btrfs_key *key,
1505                               struct btrfs_ioctl_search_key *sk)
1506 {
1507         struct btrfs_key test;
1508         int ret;
1509
1510         test.objectid = sk->min_objectid;
1511         test.type = sk->min_type;
1512         test.offset = sk->min_offset;
1513
1514         ret = btrfs_comp_cpu_keys(key, &test);
1515         if (ret < 0)
1516                 return 0;
1517
1518         test.objectid = sk->max_objectid;
1519         test.type = sk->max_type;
1520         test.offset = sk->max_offset;
1521
1522         ret = btrfs_comp_cpu_keys(key, &test);
1523         if (ret > 0)
1524                 return 0;
1525         return 1;
1526 }
1527
1528 static noinline int copy_to_sk(struct btrfs_path *path,
1529                                struct btrfs_key *key,
1530                                struct btrfs_ioctl_search_key *sk,
1531                                size_t *buf_size,
1532                                char __user *ubuf,
1533                                unsigned long *sk_offset,
1534                                int *num_found)
1535 {
1536         u64 found_transid;
1537         struct extent_buffer *leaf;
1538         struct btrfs_ioctl_search_header sh;
1539         struct btrfs_key test;
1540         unsigned long item_off;
1541         unsigned long item_len;
1542         int nritems;
1543         int i;
1544         int slot;
1545         int ret = 0;
1546
1547         leaf = path->nodes[0];
1548         slot = path->slots[0];
1549         nritems = btrfs_header_nritems(leaf);
1550
1551         if (btrfs_header_generation(leaf) > sk->max_transid) {
1552                 i = nritems;
1553                 goto advance_key;
1554         }
1555         found_transid = btrfs_header_generation(leaf);
1556
1557         for (i = slot; i < nritems; i++) {
1558                 item_off = btrfs_item_ptr_offset(leaf, i);
1559                 item_len = btrfs_item_size(leaf, i);
1560
1561                 btrfs_item_key_to_cpu(leaf, key, i);
1562                 if (!key_in_sk(key, sk))
1563                         continue;
1564
1565                 if (sizeof(sh) + item_len > *buf_size) {
1566                         if (*num_found) {
1567                                 ret = 1;
1568                                 goto out;
1569                         }
1570
1571                         /*
1572                          * return one empty item back for v1, which does not
1573                          * handle -EOVERFLOW
1574                          */
1575
1576                         *buf_size = sizeof(sh) + item_len;
1577                         item_len = 0;
1578                         ret = -EOVERFLOW;
1579                 }
1580
1581                 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1582                         ret = 1;
1583                         goto out;
1584                 }
1585
1586                 sh.objectid = key->objectid;
1587                 sh.offset = key->offset;
1588                 sh.type = key->type;
1589                 sh.len = item_len;
1590                 sh.transid = found_transid;
1591
1592                 /*
1593                  * Copy search result header. If we fault then loop again so we
1594                  * can fault in the pages and -EFAULT there if there's a
1595                  * problem. Otherwise we'll fault and then copy the buffer in
1596                  * properly this next time through
1597                  */
1598                 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1599                         ret = 0;
1600                         goto out;
1601                 }
1602
1603                 *sk_offset += sizeof(sh);
1604
1605                 if (item_len) {
1606                         char __user *up = ubuf + *sk_offset;
1607                         /*
1608                          * Copy the item, same behavior as above, but reset the
1609                          * * sk_offset so we copy the full thing again.
1610                          */
1611                         if (read_extent_buffer_to_user_nofault(leaf, up,
1612                                                 item_off, item_len)) {
1613                                 ret = 0;
1614                                 *sk_offset -= sizeof(sh);
1615                                 goto out;
1616                         }
1617
1618                         *sk_offset += item_len;
1619                 }
1620                 (*num_found)++;
1621
1622                 if (ret) /* -EOVERFLOW from above */
1623                         goto out;
1624
1625                 if (*num_found >= sk->nr_items) {
1626                         ret = 1;
1627                         goto out;
1628                 }
1629         }
1630 advance_key:
1631         ret = 0;
1632         test.objectid = sk->max_objectid;
1633         test.type = sk->max_type;
1634         test.offset = sk->max_offset;
1635         if (btrfs_comp_cpu_keys(key, &test) >= 0)
1636                 ret = 1;
1637         else if (key->offset < (u64)-1)
1638                 key->offset++;
1639         else if (key->type < (u8)-1) {
1640                 key->offset = 0;
1641                 key->type++;
1642         } else if (key->objectid < (u64)-1) {
1643                 key->offset = 0;
1644                 key->type = 0;
1645                 key->objectid++;
1646         } else
1647                 ret = 1;
1648 out:
1649         /*
1650          *  0: all items from this leaf copied, continue with next
1651          *  1: * more items can be copied, but unused buffer is too small
1652          *     * all items were found
1653          *     Either way, it will stops the loop which iterates to the next
1654          *     leaf
1655          *  -EOVERFLOW: item was to large for buffer
1656          *  -EFAULT: could not copy extent buffer back to userspace
1657          */
1658         return ret;
1659 }
1660
1661 static noinline int search_ioctl(struct inode *inode,
1662                                  struct btrfs_ioctl_search_key *sk,
1663                                  size_t *buf_size,
1664                                  char __user *ubuf)
1665 {
1666         struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
1667         struct btrfs_root *root;
1668         struct btrfs_key key;
1669         struct btrfs_path *path;
1670         int ret;
1671         int num_found = 0;
1672         unsigned long sk_offset = 0;
1673
1674         if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1675                 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1676                 return -EOVERFLOW;
1677         }
1678
1679         path = btrfs_alloc_path();
1680         if (!path)
1681                 return -ENOMEM;
1682
1683         if (sk->tree_id == 0) {
1684                 /* search the root of the inode that was passed */
1685                 root = btrfs_grab_root(BTRFS_I(inode)->root);
1686         } else {
1687                 root = btrfs_get_fs_root(info, sk->tree_id, true);
1688                 if (IS_ERR(root)) {
1689                         btrfs_free_path(path);
1690                         return PTR_ERR(root);
1691                 }
1692         }
1693
1694         key.objectid = sk->min_objectid;
1695         key.type = sk->min_type;
1696         key.offset = sk->min_offset;
1697
1698         while (1) {
1699                 ret = -EFAULT;
1700                 /*
1701                  * Ensure that the whole user buffer is faulted in at sub-page
1702                  * granularity, otherwise the loop may live-lock.
1703                  */
1704                 if (fault_in_subpage_writeable(ubuf + sk_offset,
1705                                                *buf_size - sk_offset))
1706                         break;
1707
1708                 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1709                 if (ret != 0) {
1710                         if (ret > 0)
1711                                 ret = 0;
1712                         goto err;
1713                 }
1714                 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1715                                  &sk_offset, &num_found);
1716                 btrfs_release_path(path);
1717                 if (ret)
1718                         break;
1719
1720         }
1721         if (ret > 0)
1722                 ret = 0;
1723 err:
1724         sk->nr_items = num_found;
1725         btrfs_put_root(root);
1726         btrfs_free_path(path);
1727         return ret;
1728 }
1729
1730 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1731                                             void __user *argp)
1732 {
1733         struct btrfs_ioctl_search_args __user *uargs = argp;
1734         struct btrfs_ioctl_search_key sk;
1735         int ret;
1736         size_t buf_size;
1737
1738         if (!capable(CAP_SYS_ADMIN))
1739                 return -EPERM;
1740
1741         if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1742                 return -EFAULT;
1743
1744         buf_size = sizeof(uargs->buf);
1745
1746         ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1747
1748         /*
1749          * In the origin implementation an overflow is handled by returning a
1750          * search header with a len of zero, so reset ret.
1751          */
1752         if (ret == -EOVERFLOW)
1753                 ret = 0;
1754
1755         if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1756                 ret = -EFAULT;
1757         return ret;
1758 }
1759
1760 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1761                                                void __user *argp)
1762 {
1763         struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1764         struct btrfs_ioctl_search_args_v2 args;
1765         int ret;
1766         size_t buf_size;
1767         const size_t buf_limit = SZ_16M;
1768
1769         if (!capable(CAP_SYS_ADMIN))
1770                 return -EPERM;
1771
1772         /* copy search header and buffer size */
1773         if (copy_from_user(&args, uarg, sizeof(args)))
1774                 return -EFAULT;
1775
1776         buf_size = args.buf_size;
1777
1778         /* limit result size to 16MB */
1779         if (buf_size > buf_limit)
1780                 buf_size = buf_limit;
1781
1782         ret = search_ioctl(inode, &args.key, &buf_size,
1783                            (char __user *)(&uarg->buf[0]));
1784         if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1785                 ret = -EFAULT;
1786         else if (ret == -EOVERFLOW &&
1787                 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1788                 ret = -EFAULT;
1789
1790         return ret;
1791 }
1792
1793 /*
1794  * Search INODE_REFs to identify path name of 'dirid' directory
1795  * in a 'tree_id' tree. and sets path name to 'name'.
1796  */
1797 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1798                                 u64 tree_id, u64 dirid, char *name)
1799 {
1800         struct btrfs_root *root;
1801         struct btrfs_key key;
1802         char *ptr;
1803         int ret = -1;
1804         int slot;
1805         int len;
1806         int total_len = 0;
1807         struct btrfs_inode_ref *iref;
1808         struct extent_buffer *l;
1809         struct btrfs_path *path;
1810
1811         if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1812                 name[0]='\0';
1813                 return 0;
1814         }
1815
1816         path = btrfs_alloc_path();
1817         if (!path)
1818                 return -ENOMEM;
1819
1820         ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1821
1822         root = btrfs_get_fs_root(info, tree_id, true);
1823         if (IS_ERR(root)) {
1824                 ret = PTR_ERR(root);
1825                 root = NULL;
1826                 goto out;
1827         }
1828
1829         key.objectid = dirid;
1830         key.type = BTRFS_INODE_REF_KEY;
1831         key.offset = (u64)-1;
1832
1833         while (1) {
1834                 ret = btrfs_search_backwards(root, &key, path);
1835                 if (ret < 0)
1836                         goto out;
1837                 else if (ret > 0) {
1838                         ret = -ENOENT;
1839                         goto out;
1840                 }
1841
1842                 l = path->nodes[0];
1843                 slot = path->slots[0];
1844
1845                 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1846                 len = btrfs_inode_ref_name_len(l, iref);
1847                 ptr -= len + 1;
1848                 total_len += len + 1;
1849                 if (ptr < name) {
1850                         ret = -ENAMETOOLONG;
1851                         goto out;
1852                 }
1853
1854                 *(ptr + len) = '/';
1855                 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1856
1857                 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1858                         break;
1859
1860                 btrfs_release_path(path);
1861                 key.objectid = key.offset;
1862                 key.offset = (u64)-1;
1863                 dirid = key.objectid;
1864         }
1865         memmove(name, ptr, total_len);
1866         name[total_len] = '\0';
1867         ret = 0;
1868 out:
1869         btrfs_put_root(root);
1870         btrfs_free_path(path);
1871         return ret;
1872 }
1873
1874 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1875                                 struct inode *inode,
1876                                 struct btrfs_ioctl_ino_lookup_user_args *args)
1877 {
1878         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1879         struct super_block *sb = inode->i_sb;
1880         struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1881         u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1882         u64 dirid = args->dirid;
1883         unsigned long item_off;
1884         unsigned long item_len;
1885         struct btrfs_inode_ref *iref;
1886         struct btrfs_root_ref *rref;
1887         struct btrfs_root *root = NULL;
1888         struct btrfs_path *path;
1889         struct btrfs_key key, key2;
1890         struct extent_buffer *leaf;
1891         struct inode *temp_inode;
1892         char *ptr;
1893         int slot;
1894         int len;
1895         int total_len = 0;
1896         int ret;
1897
1898         path = btrfs_alloc_path();
1899         if (!path)
1900                 return -ENOMEM;
1901
1902         /*
1903          * If the bottom subvolume does not exist directly under upper_limit,
1904          * construct the path in from the bottom up.
1905          */
1906         if (dirid != upper_limit.objectid) {
1907                 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1908
1909                 root = btrfs_get_fs_root(fs_info, treeid, true);
1910                 if (IS_ERR(root)) {
1911                         ret = PTR_ERR(root);
1912                         goto out;
1913                 }
1914
1915                 key.objectid = dirid;
1916                 key.type = BTRFS_INODE_REF_KEY;
1917                 key.offset = (u64)-1;
1918                 while (1) {
1919                         ret = btrfs_search_backwards(root, &key, path);
1920                         if (ret < 0)
1921                                 goto out_put;
1922                         else if (ret > 0) {
1923                                 ret = -ENOENT;
1924                                 goto out_put;
1925                         }
1926
1927                         leaf = path->nodes[0];
1928                         slot = path->slots[0];
1929
1930                         iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1931                         len = btrfs_inode_ref_name_len(leaf, iref);
1932                         ptr -= len + 1;
1933                         total_len += len + 1;
1934                         if (ptr < args->path) {
1935                                 ret = -ENAMETOOLONG;
1936                                 goto out_put;
1937                         }
1938
1939                         *(ptr + len) = '/';
1940                         read_extent_buffer(leaf, ptr,
1941                                         (unsigned long)(iref + 1), len);
1942
1943                         /* Check the read+exec permission of this directory */
1944                         ret = btrfs_previous_item(root, path, dirid,
1945                                                   BTRFS_INODE_ITEM_KEY);
1946                         if (ret < 0) {
1947                                 goto out_put;
1948                         } else if (ret > 0) {
1949                                 ret = -ENOENT;
1950                                 goto out_put;
1951                         }
1952
1953                         leaf = path->nodes[0];
1954                         slot = path->slots[0];
1955                         btrfs_item_key_to_cpu(leaf, &key2, slot);
1956                         if (key2.objectid != dirid) {
1957                                 ret = -ENOENT;
1958                                 goto out_put;
1959                         }
1960
1961                         temp_inode = btrfs_iget(sb, key2.objectid, root);
1962                         if (IS_ERR(temp_inode)) {
1963                                 ret = PTR_ERR(temp_inode);
1964                                 goto out_put;
1965                         }
1966                         ret = inode_permission(idmap, temp_inode,
1967                                                MAY_READ | MAY_EXEC);
1968                         iput(temp_inode);
1969                         if (ret) {
1970                                 ret = -EACCES;
1971                                 goto out_put;
1972                         }
1973
1974                         if (key.offset == upper_limit.objectid)
1975                                 break;
1976                         if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1977                                 ret = -EACCES;
1978                                 goto out_put;
1979                         }
1980
1981                         btrfs_release_path(path);
1982                         key.objectid = key.offset;
1983                         key.offset = (u64)-1;
1984                         dirid = key.objectid;
1985                 }
1986
1987                 memmove(args->path, ptr, total_len);
1988                 args->path[total_len] = '\0';
1989                 btrfs_put_root(root);
1990                 root = NULL;
1991                 btrfs_release_path(path);
1992         }
1993
1994         /* Get the bottom subvolume's name from ROOT_REF */
1995         key.objectid = treeid;
1996         key.type = BTRFS_ROOT_REF_KEY;
1997         key.offset = args->treeid;
1998         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1999         if (ret < 0) {
2000                 goto out;
2001         } else if (ret > 0) {
2002                 ret = -ENOENT;
2003                 goto out;
2004         }
2005
2006         leaf = path->nodes[0];
2007         slot = path->slots[0];
2008         btrfs_item_key_to_cpu(leaf, &key, slot);
2009
2010         item_off = btrfs_item_ptr_offset(leaf, slot);
2011         item_len = btrfs_item_size(leaf, slot);
2012         /* Check if dirid in ROOT_REF corresponds to passed dirid */
2013         rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2014         if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2015                 ret = -EINVAL;
2016                 goto out;
2017         }
2018
2019         /* Copy subvolume's name */
2020         item_off += sizeof(struct btrfs_root_ref);
2021         item_len -= sizeof(struct btrfs_root_ref);
2022         read_extent_buffer(leaf, args->name, item_off, item_len);
2023         args->name[item_len] = 0;
2024
2025 out_put:
2026         btrfs_put_root(root);
2027 out:
2028         btrfs_free_path(path);
2029         return ret;
2030 }
2031
2032 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2033                                            void __user *argp)
2034 {
2035         struct btrfs_ioctl_ino_lookup_args *args;
2036         int ret = 0;
2037
2038         args = memdup_user(argp, sizeof(*args));
2039         if (IS_ERR(args))
2040                 return PTR_ERR(args);
2041
2042         /*
2043          * Unprivileged query to obtain the containing subvolume root id. The
2044          * path is reset so it's consistent with btrfs_search_path_in_tree.
2045          */
2046         if (args->treeid == 0)
2047                 args->treeid = root->root_key.objectid;
2048
2049         if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2050                 args->name[0] = 0;
2051                 goto out;
2052         }
2053
2054         if (!capable(CAP_SYS_ADMIN)) {
2055                 ret = -EPERM;
2056                 goto out;
2057         }
2058
2059         ret = btrfs_search_path_in_tree(root->fs_info,
2060                                         args->treeid, args->objectid,
2061                                         args->name);
2062
2063 out:
2064         if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2065                 ret = -EFAULT;
2066
2067         kfree(args);
2068         return ret;
2069 }
2070
2071 /*
2072  * Version of ino_lookup ioctl (unprivileged)
2073  *
2074  * The main differences from ino_lookup ioctl are:
2075  *
2076  *   1. Read + Exec permission will be checked using inode_permission() during
2077  *      path construction. -EACCES will be returned in case of failure.
2078  *   2. Path construction will be stopped at the inode number which corresponds
2079  *      to the fd with which this ioctl is called. If constructed path does not
2080  *      exist under fd's inode, -EACCES will be returned.
2081  *   3. The name of bottom subvolume is also searched and filled.
2082  */
2083 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2084 {
2085         struct btrfs_ioctl_ino_lookup_user_args *args;
2086         struct inode *inode;
2087         int ret;
2088
2089         args = memdup_user(argp, sizeof(*args));
2090         if (IS_ERR(args))
2091                 return PTR_ERR(args);
2092
2093         inode = file_inode(file);
2094
2095         if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2096             BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2097                 /*
2098                  * The subvolume does not exist under fd with which this is
2099                  * called
2100                  */
2101                 kfree(args);
2102                 return -EACCES;
2103         }
2104
2105         ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2106
2107         if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2108                 ret = -EFAULT;
2109
2110         kfree(args);
2111         return ret;
2112 }
2113
2114 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2115 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2116 {
2117         struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2118         struct btrfs_fs_info *fs_info;
2119         struct btrfs_root *root;
2120         struct btrfs_path *path;
2121         struct btrfs_key key;
2122         struct btrfs_root_item *root_item;
2123         struct btrfs_root_ref *rref;
2124         struct extent_buffer *leaf;
2125         unsigned long item_off;
2126         unsigned long item_len;
2127         int slot;
2128         int ret = 0;
2129
2130         path = btrfs_alloc_path();
2131         if (!path)
2132                 return -ENOMEM;
2133
2134         subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2135         if (!subvol_info) {
2136                 btrfs_free_path(path);
2137                 return -ENOMEM;
2138         }
2139
2140         fs_info = BTRFS_I(inode)->root->fs_info;
2141
2142         /* Get root_item of inode's subvolume */
2143         key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2144         root = btrfs_get_fs_root(fs_info, key.objectid, true);
2145         if (IS_ERR(root)) {
2146                 ret = PTR_ERR(root);
2147                 goto out_free;
2148         }
2149         root_item = &root->root_item;
2150
2151         subvol_info->treeid = key.objectid;
2152
2153         subvol_info->generation = btrfs_root_generation(root_item);
2154         subvol_info->flags = btrfs_root_flags(root_item);
2155
2156         memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2157         memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2158                                                     BTRFS_UUID_SIZE);
2159         memcpy(subvol_info->received_uuid, root_item->received_uuid,
2160                                                     BTRFS_UUID_SIZE);
2161
2162         subvol_info->ctransid = btrfs_root_ctransid(root_item);
2163         subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2164         subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2165
2166         subvol_info->otransid = btrfs_root_otransid(root_item);
2167         subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2168         subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2169
2170         subvol_info->stransid = btrfs_root_stransid(root_item);
2171         subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2172         subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2173
2174         subvol_info->rtransid = btrfs_root_rtransid(root_item);
2175         subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2176         subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2177
2178         if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2179                 /* Search root tree for ROOT_BACKREF of this subvolume */
2180                 key.type = BTRFS_ROOT_BACKREF_KEY;
2181                 key.offset = 0;
2182                 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2183                 if (ret < 0) {
2184                         goto out;
2185                 } else if (path->slots[0] >=
2186                            btrfs_header_nritems(path->nodes[0])) {
2187                         ret = btrfs_next_leaf(fs_info->tree_root, path);
2188                         if (ret < 0) {
2189                                 goto out;
2190                         } else if (ret > 0) {
2191                                 ret = -EUCLEAN;
2192                                 goto out;
2193                         }
2194                 }
2195
2196                 leaf = path->nodes[0];
2197                 slot = path->slots[0];
2198                 btrfs_item_key_to_cpu(leaf, &key, slot);
2199                 if (key.objectid == subvol_info->treeid &&
2200                     key.type == BTRFS_ROOT_BACKREF_KEY) {
2201                         subvol_info->parent_id = key.offset;
2202
2203                         rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2204                         subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2205
2206                         item_off = btrfs_item_ptr_offset(leaf, slot)
2207                                         + sizeof(struct btrfs_root_ref);
2208                         item_len = btrfs_item_size(leaf, slot)
2209                                         - sizeof(struct btrfs_root_ref);
2210                         read_extent_buffer(leaf, subvol_info->name,
2211                                            item_off, item_len);
2212                 } else {
2213                         ret = -ENOENT;
2214                         goto out;
2215                 }
2216         }
2217
2218         btrfs_free_path(path);
2219         path = NULL;
2220         if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2221                 ret = -EFAULT;
2222
2223 out:
2224         btrfs_put_root(root);
2225 out_free:
2226         btrfs_free_path(path);
2227         kfree(subvol_info);
2228         return ret;
2229 }
2230
2231 /*
2232  * Return ROOT_REF information of the subvolume containing this inode
2233  * except the subvolume name.
2234  */
2235 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2236                                           void __user *argp)
2237 {
2238         struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2239         struct btrfs_root_ref *rref;
2240         struct btrfs_path *path;
2241         struct btrfs_key key;
2242         struct extent_buffer *leaf;
2243         u64 objectid;
2244         int slot;
2245         int ret;
2246         u8 found;
2247
2248         path = btrfs_alloc_path();
2249         if (!path)
2250                 return -ENOMEM;
2251
2252         rootrefs = memdup_user(argp, sizeof(*rootrefs));
2253         if (IS_ERR(rootrefs)) {
2254                 btrfs_free_path(path);
2255                 return PTR_ERR(rootrefs);
2256         }
2257
2258         objectid = root->root_key.objectid;
2259         key.objectid = objectid;
2260         key.type = BTRFS_ROOT_REF_KEY;
2261         key.offset = rootrefs->min_treeid;
2262         found = 0;
2263
2264         root = root->fs_info->tree_root;
2265         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2266         if (ret < 0) {
2267                 goto out;
2268         } else if (path->slots[0] >=
2269                    btrfs_header_nritems(path->nodes[0])) {
2270                 ret = btrfs_next_leaf(root, path);
2271                 if (ret < 0) {
2272                         goto out;
2273                 } else if (ret > 0) {
2274                         ret = -EUCLEAN;
2275                         goto out;
2276                 }
2277         }
2278         while (1) {
2279                 leaf = path->nodes[0];
2280                 slot = path->slots[0];
2281
2282                 btrfs_item_key_to_cpu(leaf, &key, slot);
2283                 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2284                         ret = 0;
2285                         goto out;
2286                 }
2287
2288                 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2289                         ret = -EOVERFLOW;
2290                         goto out;
2291                 }
2292
2293                 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2294                 rootrefs->rootref[found].treeid = key.offset;
2295                 rootrefs->rootref[found].dirid =
2296                                   btrfs_root_ref_dirid(leaf, rref);
2297                 found++;
2298
2299                 ret = btrfs_next_item(root, path);
2300                 if (ret < 0) {
2301                         goto out;
2302                 } else if (ret > 0) {
2303                         ret = -EUCLEAN;
2304                         goto out;
2305                 }
2306         }
2307
2308 out:
2309         btrfs_free_path(path);
2310
2311         if (!ret || ret == -EOVERFLOW) {
2312                 rootrefs->num_items = found;
2313                 /* update min_treeid for next search */
2314                 if (found)
2315                         rootrefs->min_treeid =
2316                                 rootrefs->rootref[found - 1].treeid + 1;
2317                 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2318                         ret = -EFAULT;
2319         }
2320
2321         kfree(rootrefs);
2322
2323         return ret;
2324 }
2325
2326 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2327                                              void __user *arg,
2328                                              bool destroy_v2)
2329 {
2330         struct dentry *parent = file->f_path.dentry;
2331         struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2332         struct dentry *dentry;
2333         struct inode *dir = d_inode(parent);
2334         struct inode *inode;
2335         struct btrfs_root *root = BTRFS_I(dir)->root;
2336         struct btrfs_root *dest = NULL;
2337         struct btrfs_ioctl_vol_args *vol_args = NULL;
2338         struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2339         struct mnt_idmap *idmap = file_mnt_idmap(file);
2340         char *subvol_name, *subvol_name_ptr = NULL;
2341         int subvol_namelen;
2342         int err = 0;
2343         bool destroy_parent = false;
2344
2345         /* We don't support snapshots with extent tree v2 yet. */
2346         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2347                 btrfs_err(fs_info,
2348                           "extent tree v2 doesn't support snapshot deletion yet");
2349                 return -EOPNOTSUPP;
2350         }
2351
2352         if (destroy_v2) {
2353                 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2354                 if (IS_ERR(vol_args2))
2355                         return PTR_ERR(vol_args2);
2356
2357                 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2358                         err = -EOPNOTSUPP;
2359                         goto out;
2360                 }
2361
2362                 /*
2363                  * If SPEC_BY_ID is not set, we are looking for the subvolume by
2364                  * name, same as v1 currently does.
2365                  */
2366                 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2367                         vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2368                         subvol_name = vol_args2->name;
2369
2370                         err = mnt_want_write_file(file);
2371                         if (err)
2372                                 goto out;
2373                 } else {
2374                         struct inode *old_dir;
2375
2376                         if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2377                                 err = -EINVAL;
2378                                 goto out;
2379                         }
2380
2381                         err = mnt_want_write_file(file);
2382                         if (err)
2383                                 goto out;
2384
2385                         dentry = btrfs_get_dentry(fs_info->sb,
2386                                         BTRFS_FIRST_FREE_OBJECTID,
2387                                         vol_args2->subvolid, 0);
2388                         if (IS_ERR(dentry)) {
2389                                 err = PTR_ERR(dentry);
2390                                 goto out_drop_write;
2391                         }
2392
2393                         /*
2394                          * Change the default parent since the subvolume being
2395                          * deleted can be outside of the current mount point.
2396                          */
2397                         parent = btrfs_get_parent(dentry);
2398
2399                         /*
2400                          * At this point dentry->d_name can point to '/' if the
2401                          * subvolume we want to destroy is outsite of the
2402                          * current mount point, so we need to release the
2403                          * current dentry and execute the lookup to return a new
2404                          * one with ->d_name pointing to the
2405                          * <mount point>/subvol_name.
2406                          */
2407                         dput(dentry);
2408                         if (IS_ERR(parent)) {
2409                                 err = PTR_ERR(parent);
2410                                 goto out_drop_write;
2411                         }
2412                         old_dir = dir;
2413                         dir = d_inode(parent);
2414
2415                         /*
2416                          * If v2 was used with SPEC_BY_ID, a new parent was
2417                          * allocated since the subvolume can be outside of the
2418                          * current mount point. Later on we need to release this
2419                          * new parent dentry.
2420                          */
2421                         destroy_parent = true;
2422
2423                         /*
2424                          * On idmapped mounts, deletion via subvolid is
2425                          * restricted to subvolumes that are immediate
2426                          * ancestors of the inode referenced by the file
2427                          * descriptor in the ioctl. Otherwise the idmapping
2428                          * could potentially be abused to delete subvolumes
2429                          * anywhere in the filesystem the user wouldn't be able
2430                          * to delete without an idmapped mount.
2431                          */
2432                         if (old_dir != dir && idmap != &nop_mnt_idmap) {
2433                                 err = -EOPNOTSUPP;
2434                                 goto free_parent;
2435                         }
2436
2437                         subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2438                                                 fs_info, vol_args2->subvolid);
2439                         if (IS_ERR(subvol_name_ptr)) {
2440                                 err = PTR_ERR(subvol_name_ptr);
2441                                 goto free_parent;
2442                         }
2443                         /* subvol_name_ptr is already nul terminated */
2444                         subvol_name = (char *)kbasename(subvol_name_ptr);
2445                 }
2446         } else {
2447                 vol_args = memdup_user(arg, sizeof(*vol_args));
2448                 if (IS_ERR(vol_args))
2449                         return PTR_ERR(vol_args);
2450
2451                 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2452                 subvol_name = vol_args->name;
2453
2454                 err = mnt_want_write_file(file);
2455                 if (err)
2456                         goto out;
2457         }
2458
2459         subvol_namelen = strlen(subvol_name);
2460
2461         if (strchr(subvol_name, '/') ||
2462             strncmp(subvol_name, "..", subvol_namelen) == 0) {
2463                 err = -EINVAL;
2464                 goto free_subvol_name;
2465         }
2466
2467         if (!S_ISDIR(dir->i_mode)) {
2468                 err = -ENOTDIR;
2469                 goto free_subvol_name;
2470         }
2471
2472         err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2473         if (err == -EINTR)
2474                 goto free_subvol_name;
2475         dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2476         if (IS_ERR(dentry)) {
2477                 err = PTR_ERR(dentry);
2478                 goto out_unlock_dir;
2479         }
2480
2481         if (d_really_is_negative(dentry)) {
2482                 err = -ENOENT;
2483                 goto out_dput;
2484         }
2485
2486         inode = d_inode(dentry);
2487         dest = BTRFS_I(inode)->root;
2488         if (!capable(CAP_SYS_ADMIN)) {
2489                 /*
2490                  * Regular user.  Only allow this with a special mount
2491                  * option, when the user has write+exec access to the
2492                  * subvol root, and when rmdir(2) would have been
2493                  * allowed.
2494                  *
2495                  * Note that this is _not_ check that the subvol is
2496                  * empty or doesn't contain data that we wouldn't
2497                  * otherwise be able to delete.
2498                  *
2499                  * Users who want to delete empty subvols should try
2500                  * rmdir(2).
2501                  */
2502                 err = -EPERM;
2503                 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2504                         goto out_dput;
2505
2506                 /*
2507                  * Do not allow deletion if the parent dir is the same
2508                  * as the dir to be deleted.  That means the ioctl
2509                  * must be called on the dentry referencing the root
2510                  * of the subvol, not a random directory contained
2511                  * within it.
2512                  */
2513                 err = -EINVAL;
2514                 if (root == dest)
2515                         goto out_dput;
2516
2517                 err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2518                 if (err)
2519                         goto out_dput;
2520         }
2521
2522         /* check if subvolume may be deleted by a user */
2523         err = btrfs_may_delete(idmap, dir, dentry, 1);
2524         if (err)
2525                 goto out_dput;
2526
2527         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2528                 err = -EINVAL;
2529                 goto out_dput;
2530         }
2531
2532         btrfs_inode_lock(BTRFS_I(inode), 0);
2533         err = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2534         btrfs_inode_unlock(BTRFS_I(inode), 0);
2535         if (!err)
2536                 d_delete_notify(dir, dentry);
2537
2538 out_dput:
2539         dput(dentry);
2540 out_unlock_dir:
2541         btrfs_inode_unlock(BTRFS_I(dir), 0);
2542 free_subvol_name:
2543         kfree(subvol_name_ptr);
2544 free_parent:
2545         if (destroy_parent)
2546                 dput(parent);
2547 out_drop_write:
2548         mnt_drop_write_file(file);
2549 out:
2550         kfree(vol_args2);
2551         kfree(vol_args);
2552         return err;
2553 }
2554
2555 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2556 {
2557         struct inode *inode = file_inode(file);
2558         struct btrfs_root *root = BTRFS_I(inode)->root;
2559         struct btrfs_ioctl_defrag_range_args range = {0};
2560         int ret;
2561
2562         ret = mnt_want_write_file(file);
2563         if (ret)
2564                 return ret;
2565
2566         if (btrfs_root_readonly(root)) {
2567                 ret = -EROFS;
2568                 goto out;
2569         }
2570
2571         switch (inode->i_mode & S_IFMT) {
2572         case S_IFDIR:
2573                 if (!capable(CAP_SYS_ADMIN)) {
2574                         ret = -EPERM;
2575                         goto out;
2576                 }
2577                 ret = btrfs_defrag_root(root);
2578                 break;
2579         case S_IFREG:
2580                 /*
2581                  * Note that this does not check the file descriptor for write
2582                  * access. This prevents defragmenting executables that are
2583                  * running and allows defrag on files open in read-only mode.
2584                  */
2585                 if (!capable(CAP_SYS_ADMIN) &&
2586                     inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2587                         ret = -EPERM;
2588                         goto out;
2589                 }
2590
2591                 if (argp) {
2592                         if (copy_from_user(&range, argp, sizeof(range))) {
2593                                 ret = -EFAULT;
2594                                 goto out;
2595                         }
2596                         /* compression requires us to start the IO */
2597                         if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2598                                 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2599                                 range.extent_thresh = (u32)-1;
2600                         }
2601                 } else {
2602                         /* the rest are all set to zero by kzalloc */
2603                         range.len = (u64)-1;
2604                 }
2605                 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2606                                         &range, BTRFS_OLDEST_GENERATION, 0);
2607                 if (ret > 0)
2608                         ret = 0;
2609                 break;
2610         default:
2611                 ret = -EINVAL;
2612         }
2613 out:
2614         mnt_drop_write_file(file);
2615         return ret;
2616 }
2617
2618 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2619 {
2620         struct btrfs_ioctl_vol_args *vol_args;
2621         bool restore_op = false;
2622         int ret;
2623
2624         if (!capable(CAP_SYS_ADMIN))
2625                 return -EPERM;
2626
2627         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2628                 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2629                 return -EINVAL;
2630         }
2631
2632         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2633                 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2634                         return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2635
2636                 /*
2637                  * We can do the device add because we have a paused balanced,
2638                  * change the exclusive op type and remember we should bring
2639                  * back the paused balance
2640                  */
2641                 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2642                 btrfs_exclop_start_unlock(fs_info);
2643                 restore_op = true;
2644         }
2645
2646         vol_args = memdup_user(arg, sizeof(*vol_args));
2647         if (IS_ERR(vol_args)) {
2648                 ret = PTR_ERR(vol_args);
2649                 goto out;
2650         }
2651
2652         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2653         ret = btrfs_init_new_device(fs_info, vol_args->name);
2654
2655         if (!ret)
2656                 btrfs_info(fs_info, "disk added %s", vol_args->name);
2657
2658         kfree(vol_args);
2659 out:
2660         if (restore_op)
2661                 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2662         else
2663                 btrfs_exclop_finish(fs_info);
2664         return ret;
2665 }
2666
2667 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2668 {
2669         BTRFS_DEV_LOOKUP_ARGS(args);
2670         struct inode *inode = file_inode(file);
2671         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2672         struct btrfs_ioctl_vol_args_v2 *vol_args;
2673         struct block_device *bdev = NULL;
2674         void *holder;
2675         int ret;
2676         bool cancel = false;
2677
2678         if (!capable(CAP_SYS_ADMIN))
2679                 return -EPERM;
2680
2681         vol_args = memdup_user(arg, sizeof(*vol_args));
2682         if (IS_ERR(vol_args))
2683                 return PTR_ERR(vol_args);
2684
2685         if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2686                 ret = -EOPNOTSUPP;
2687                 goto out;
2688         }
2689
2690         vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2691         if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2692                 args.devid = vol_args->devid;
2693         } else if (!strcmp("cancel", vol_args->name)) {
2694                 cancel = true;
2695         } else {
2696                 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2697                 if (ret)
2698                         goto out;
2699         }
2700
2701         ret = mnt_want_write_file(file);
2702         if (ret)
2703                 goto out;
2704
2705         ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2706                                            cancel);
2707         if (ret)
2708                 goto err_drop;
2709
2710         /* Exclusive operation is now claimed */
2711         ret = btrfs_rm_device(fs_info, &args, &bdev, &holder);
2712
2713         btrfs_exclop_finish(fs_info);
2714
2715         if (!ret) {
2716                 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2717                         btrfs_info(fs_info, "device deleted: id %llu",
2718                                         vol_args->devid);
2719                 else
2720                         btrfs_info(fs_info, "device deleted: %s",
2721                                         vol_args->name);
2722         }
2723 err_drop:
2724         mnt_drop_write_file(file);
2725         if (bdev)
2726                 blkdev_put(bdev, holder);
2727 out:
2728         btrfs_put_dev_args_from_path(&args);
2729         kfree(vol_args);
2730         return ret;
2731 }
2732
2733 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2734 {
2735         BTRFS_DEV_LOOKUP_ARGS(args);
2736         struct inode *inode = file_inode(file);
2737         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2738         struct btrfs_ioctl_vol_args *vol_args;
2739         struct block_device *bdev = NULL;
2740         void *holder;
2741         int ret;
2742         bool cancel = false;
2743
2744         if (!capable(CAP_SYS_ADMIN))
2745                 return -EPERM;
2746
2747         vol_args = memdup_user(arg, sizeof(*vol_args));
2748         if (IS_ERR(vol_args))
2749                 return PTR_ERR(vol_args);
2750
2751         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2752         if (!strcmp("cancel", vol_args->name)) {
2753                 cancel = true;
2754         } else {
2755                 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2756                 if (ret)
2757                         goto out;
2758         }
2759
2760         ret = mnt_want_write_file(file);
2761         if (ret)
2762                 goto out;
2763
2764         ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2765                                            cancel);
2766         if (ret == 0) {
2767                 ret = btrfs_rm_device(fs_info, &args, &bdev, &holder);
2768                 if (!ret)
2769                         btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2770                 btrfs_exclop_finish(fs_info);
2771         }
2772
2773         mnt_drop_write_file(file);
2774         if (bdev)
2775                 blkdev_put(bdev, holder);
2776 out:
2777         btrfs_put_dev_args_from_path(&args);
2778         kfree(vol_args);
2779         return ret;
2780 }
2781
2782 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2783                                 void __user *arg)
2784 {
2785         struct btrfs_ioctl_fs_info_args *fi_args;
2786         struct btrfs_device *device;
2787         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2788         u64 flags_in;
2789         int ret = 0;
2790
2791         fi_args = memdup_user(arg, sizeof(*fi_args));
2792         if (IS_ERR(fi_args))
2793                 return PTR_ERR(fi_args);
2794
2795         flags_in = fi_args->flags;
2796         memset(fi_args, 0, sizeof(*fi_args));
2797
2798         rcu_read_lock();
2799         fi_args->num_devices = fs_devices->num_devices;
2800
2801         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2802                 if (device->devid > fi_args->max_id)
2803                         fi_args->max_id = device->devid;
2804         }
2805         rcu_read_unlock();
2806
2807         memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2808         fi_args->nodesize = fs_info->nodesize;
2809         fi_args->sectorsize = fs_info->sectorsize;
2810         fi_args->clone_alignment = fs_info->sectorsize;
2811
2812         if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2813                 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2814                 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2815                 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2816         }
2817
2818         if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2819                 fi_args->generation = fs_info->generation;
2820                 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2821         }
2822
2823         if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2824                 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2825                        sizeof(fi_args->metadata_uuid));
2826                 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2827         }
2828
2829         if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2830                 ret = -EFAULT;
2831
2832         kfree(fi_args);
2833         return ret;
2834 }
2835
2836 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2837                                  void __user *arg)
2838 {
2839         BTRFS_DEV_LOOKUP_ARGS(args);
2840         struct btrfs_ioctl_dev_info_args *di_args;
2841         struct btrfs_device *dev;
2842         int ret = 0;
2843
2844         di_args = memdup_user(arg, sizeof(*di_args));
2845         if (IS_ERR(di_args))
2846                 return PTR_ERR(di_args);
2847
2848         args.devid = di_args->devid;
2849         if (!btrfs_is_empty_uuid(di_args->uuid))
2850                 args.uuid = di_args->uuid;
2851
2852         rcu_read_lock();
2853         dev = btrfs_find_device(fs_info->fs_devices, &args);
2854         if (!dev) {
2855                 ret = -ENODEV;
2856                 goto out;
2857         }
2858
2859         di_args->devid = dev->devid;
2860         di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2861         di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2862         memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2863         memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2864         if (dev->name)
2865                 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2866         else
2867                 di_args->path[0] = '\0';
2868
2869 out:
2870         rcu_read_unlock();
2871         if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2872                 ret = -EFAULT;
2873
2874         kfree(di_args);
2875         return ret;
2876 }
2877
2878 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2879 {
2880         struct inode *inode = file_inode(file);
2881         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2882         struct btrfs_root *root = BTRFS_I(inode)->root;
2883         struct btrfs_root *new_root;
2884         struct btrfs_dir_item *di;
2885         struct btrfs_trans_handle *trans;
2886         struct btrfs_path *path = NULL;
2887         struct btrfs_disk_key disk_key;
2888         struct fscrypt_str name = FSTR_INIT("default", 7);
2889         u64 objectid = 0;
2890         u64 dir_id;
2891         int ret;
2892
2893         if (!capable(CAP_SYS_ADMIN))
2894                 return -EPERM;
2895
2896         ret = mnt_want_write_file(file);
2897         if (ret)
2898                 return ret;
2899
2900         if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2901                 ret = -EFAULT;
2902                 goto out;
2903         }
2904
2905         if (!objectid)
2906                 objectid = BTRFS_FS_TREE_OBJECTID;
2907
2908         new_root = btrfs_get_fs_root(fs_info, objectid, true);
2909         if (IS_ERR(new_root)) {
2910                 ret = PTR_ERR(new_root);
2911                 goto out;
2912         }
2913         if (!is_fstree(new_root->root_key.objectid)) {
2914                 ret = -ENOENT;
2915                 goto out_free;
2916         }
2917
2918         path = btrfs_alloc_path();
2919         if (!path) {
2920                 ret = -ENOMEM;
2921                 goto out_free;
2922         }
2923
2924         trans = btrfs_start_transaction(root, 1);
2925         if (IS_ERR(trans)) {
2926                 ret = PTR_ERR(trans);
2927                 goto out_free;
2928         }
2929
2930         dir_id = btrfs_super_root_dir(fs_info->super_copy);
2931         di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2932                                    dir_id, &name, 1);
2933         if (IS_ERR_OR_NULL(di)) {
2934                 btrfs_release_path(path);
2935                 btrfs_end_transaction(trans);
2936                 btrfs_err(fs_info,
2937                           "Umm, you don't have the default diritem, this isn't going to work");
2938                 ret = -ENOENT;
2939                 goto out_free;
2940         }
2941
2942         btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2943         btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2944         btrfs_mark_buffer_dirty(path->nodes[0]);
2945         btrfs_release_path(path);
2946
2947         btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2948         btrfs_end_transaction(trans);
2949 out_free:
2950         btrfs_put_root(new_root);
2951         btrfs_free_path(path);
2952 out:
2953         mnt_drop_write_file(file);
2954         return ret;
2955 }
2956
2957 static void get_block_group_info(struct list_head *groups_list,
2958                                  struct btrfs_ioctl_space_info *space)
2959 {
2960         struct btrfs_block_group *block_group;
2961
2962         space->total_bytes = 0;
2963         space->used_bytes = 0;
2964         space->flags = 0;
2965         list_for_each_entry(block_group, groups_list, list) {
2966                 space->flags = block_group->flags;
2967                 space->total_bytes += block_group->length;
2968                 space->used_bytes += block_group->used;
2969         }
2970 }
2971
2972 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2973                                    void __user *arg)
2974 {
2975         struct btrfs_ioctl_space_args space_args;
2976         struct btrfs_ioctl_space_info space;
2977         struct btrfs_ioctl_space_info *dest;
2978         struct btrfs_ioctl_space_info *dest_orig;
2979         struct btrfs_ioctl_space_info __user *user_dest;
2980         struct btrfs_space_info *info;
2981         static const u64 types[] = {
2982                 BTRFS_BLOCK_GROUP_DATA,
2983                 BTRFS_BLOCK_GROUP_SYSTEM,
2984                 BTRFS_BLOCK_GROUP_METADATA,
2985                 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
2986         };
2987         int num_types = 4;
2988         int alloc_size;
2989         int ret = 0;
2990         u64 slot_count = 0;
2991         int i, c;
2992
2993         if (copy_from_user(&space_args,
2994                            (struct btrfs_ioctl_space_args __user *)arg,
2995                            sizeof(space_args)))
2996                 return -EFAULT;
2997
2998         for (i = 0; i < num_types; i++) {
2999                 struct btrfs_space_info *tmp;
3000
3001                 info = NULL;
3002                 list_for_each_entry(tmp, &fs_info->space_info, list) {
3003                         if (tmp->flags == types[i]) {
3004                                 info = tmp;
3005                                 break;
3006                         }
3007                 }
3008
3009                 if (!info)
3010                         continue;
3011
3012                 down_read(&info->groups_sem);
3013                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3014                         if (!list_empty(&info->block_groups[c]))
3015                                 slot_count++;
3016                 }
3017                 up_read(&info->groups_sem);
3018         }
3019
3020         /*
3021          * Global block reserve, exported as a space_info
3022          */
3023         slot_count++;
3024
3025         /* space_slots == 0 means they are asking for a count */
3026         if (space_args.space_slots == 0) {
3027                 space_args.total_spaces = slot_count;
3028                 goto out;
3029         }
3030
3031         slot_count = min_t(u64, space_args.space_slots, slot_count);
3032
3033         alloc_size = sizeof(*dest) * slot_count;
3034
3035         /* we generally have at most 6 or so space infos, one for each raid
3036          * level.  So, a whole page should be more than enough for everyone
3037          */
3038         if (alloc_size > PAGE_SIZE)
3039                 return -ENOMEM;
3040
3041         space_args.total_spaces = 0;
3042         dest = kmalloc(alloc_size, GFP_KERNEL);
3043         if (!dest)
3044                 return -ENOMEM;
3045         dest_orig = dest;
3046
3047         /* now we have a buffer to copy into */
3048         for (i = 0; i < num_types; i++) {
3049                 struct btrfs_space_info *tmp;
3050
3051                 if (!slot_count)
3052                         break;
3053
3054                 info = NULL;
3055                 list_for_each_entry(tmp, &fs_info->space_info, list) {
3056                         if (tmp->flags == types[i]) {
3057                                 info = tmp;
3058                                 break;
3059                         }
3060                 }
3061
3062                 if (!info)
3063                         continue;
3064                 down_read(&info->groups_sem);
3065                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3066                         if (!list_empty(&info->block_groups[c])) {
3067                                 get_block_group_info(&info->block_groups[c],
3068                                                      &space);
3069                                 memcpy(dest, &space, sizeof(space));
3070                                 dest++;
3071                                 space_args.total_spaces++;
3072                                 slot_count--;
3073                         }
3074                         if (!slot_count)
3075                                 break;
3076                 }
3077                 up_read(&info->groups_sem);
3078         }
3079
3080         /*
3081          * Add global block reserve
3082          */
3083         if (slot_count) {
3084                 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3085
3086                 spin_lock(&block_rsv->lock);
3087                 space.total_bytes = block_rsv->size;
3088                 space.used_bytes = block_rsv->size - block_rsv->reserved;
3089                 spin_unlock(&block_rsv->lock);
3090                 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3091                 memcpy(dest, &space, sizeof(space));
3092                 space_args.total_spaces++;
3093         }
3094
3095         user_dest = (struct btrfs_ioctl_space_info __user *)
3096                 (arg + sizeof(struct btrfs_ioctl_space_args));
3097
3098         if (copy_to_user(user_dest, dest_orig, alloc_size))
3099                 ret = -EFAULT;
3100
3101         kfree(dest_orig);
3102 out:
3103         if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3104                 ret = -EFAULT;
3105
3106         return ret;
3107 }
3108
3109 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3110                                             void __user *argp)
3111 {
3112         struct btrfs_trans_handle *trans;
3113         u64 transid;
3114
3115         /*
3116          * Start orphan cleanup here for the given root in case it hasn't been
3117          * started already by other means. Errors are handled in the other
3118          * functions during transaction commit.
3119          */
3120         btrfs_orphan_cleanup(root);
3121
3122         trans = btrfs_attach_transaction_barrier(root);
3123         if (IS_ERR(trans)) {
3124                 if (PTR_ERR(trans) != -ENOENT)
3125                         return PTR_ERR(trans);
3126
3127                 /* No running transaction, don't bother */
3128                 transid = root->fs_info->last_trans_committed;
3129                 goto out;
3130         }
3131         transid = trans->transid;
3132         btrfs_commit_transaction_async(trans);
3133 out:
3134         if (argp)
3135                 if (copy_to_user(argp, &transid, sizeof(transid)))
3136                         return -EFAULT;
3137         return 0;
3138 }
3139
3140 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3141                                            void __user *argp)
3142 {
3143         /* By default wait for the current transaction. */
3144         u64 transid = 0;
3145
3146         if (argp)
3147                 if (copy_from_user(&transid, argp, sizeof(transid)))
3148                         return -EFAULT;
3149
3150         return btrfs_wait_for_commit(fs_info, transid);
3151 }
3152
3153 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3154 {
3155         struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3156         struct btrfs_ioctl_scrub_args *sa;
3157         int ret;
3158
3159         if (!capable(CAP_SYS_ADMIN))
3160                 return -EPERM;
3161
3162         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3163                 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3164                 return -EINVAL;
3165         }
3166
3167         sa = memdup_user(arg, sizeof(*sa));
3168         if (IS_ERR(sa))
3169                 return PTR_ERR(sa);
3170
3171         if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3172                 ret = -EOPNOTSUPP;
3173                 goto out;
3174         }
3175
3176         if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3177                 ret = mnt_want_write_file(file);
3178                 if (ret)
3179                         goto out;
3180         }
3181
3182         ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3183                               &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3184                               0);
3185
3186         /*
3187          * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3188          * error. This is important as it allows user space to know how much
3189          * progress scrub has done. For example, if scrub is canceled we get
3190          * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3191          * space. Later user space can inspect the progress from the structure
3192          * btrfs_ioctl_scrub_args and resume scrub from where it left off
3193          * previously (btrfs-progs does this).
3194          * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3195          * then return -EFAULT to signal the structure was not copied or it may
3196          * be corrupt and unreliable due to a partial copy.
3197          */
3198         if (copy_to_user(arg, sa, sizeof(*sa)))
3199                 ret = -EFAULT;
3200
3201         if (!(sa->flags & BTRFS_SCRUB_READONLY))
3202                 mnt_drop_write_file(file);
3203 out:
3204         kfree(sa);
3205         return ret;
3206 }
3207
3208 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3209 {
3210         if (!capable(CAP_SYS_ADMIN))
3211                 return -EPERM;
3212
3213         return btrfs_scrub_cancel(fs_info);
3214 }
3215
3216 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3217                                        void __user *arg)
3218 {
3219         struct btrfs_ioctl_scrub_args *sa;
3220         int ret;
3221
3222         if (!capable(CAP_SYS_ADMIN))
3223                 return -EPERM;
3224
3225         sa = memdup_user(arg, sizeof(*sa));
3226         if (IS_ERR(sa))
3227                 return PTR_ERR(sa);
3228
3229         ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3230
3231         if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3232                 ret = -EFAULT;
3233
3234         kfree(sa);
3235         return ret;
3236 }
3237
3238 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3239                                       void __user *arg)
3240 {
3241         struct btrfs_ioctl_get_dev_stats *sa;
3242         int ret;
3243
3244         sa = memdup_user(arg, sizeof(*sa));
3245         if (IS_ERR(sa))
3246                 return PTR_ERR(sa);
3247
3248         if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3249                 kfree(sa);
3250                 return -EPERM;
3251         }
3252
3253         ret = btrfs_get_dev_stats(fs_info, sa);
3254
3255         if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3256                 ret = -EFAULT;
3257
3258         kfree(sa);
3259         return ret;
3260 }
3261
3262 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3263                                     void __user *arg)
3264 {
3265         struct btrfs_ioctl_dev_replace_args *p;
3266         int ret;
3267
3268         if (!capable(CAP_SYS_ADMIN))
3269                 return -EPERM;
3270
3271         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3272                 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3273                 return -EINVAL;
3274         }
3275
3276         p = memdup_user(arg, sizeof(*p));
3277         if (IS_ERR(p))
3278                 return PTR_ERR(p);
3279
3280         switch (p->cmd) {
3281         case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3282                 if (sb_rdonly(fs_info->sb)) {
3283                         ret = -EROFS;
3284                         goto out;
3285                 }
3286                 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3287                         ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3288                 } else {
3289                         ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3290                         btrfs_exclop_finish(fs_info);
3291                 }
3292                 break;
3293         case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3294                 btrfs_dev_replace_status(fs_info, p);
3295                 ret = 0;
3296                 break;
3297         case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3298                 p->result = btrfs_dev_replace_cancel(fs_info);
3299                 ret = 0;
3300                 break;
3301         default:
3302                 ret = -EINVAL;
3303                 break;
3304         }
3305
3306         if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3307                 ret = -EFAULT;
3308 out:
3309         kfree(p);
3310         return ret;
3311 }
3312
3313 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3314 {
3315         int ret = 0;
3316         int i;
3317         u64 rel_ptr;
3318         int size;
3319         struct btrfs_ioctl_ino_path_args *ipa = NULL;
3320         struct inode_fs_paths *ipath = NULL;
3321         struct btrfs_path *path;
3322
3323         if (!capable(CAP_DAC_READ_SEARCH))
3324                 return -EPERM;
3325
3326         path = btrfs_alloc_path();
3327         if (!path) {
3328                 ret = -ENOMEM;
3329                 goto out;
3330         }
3331
3332         ipa = memdup_user(arg, sizeof(*ipa));
3333         if (IS_ERR(ipa)) {
3334                 ret = PTR_ERR(ipa);
3335                 ipa = NULL;
3336                 goto out;
3337         }
3338
3339         size = min_t(u32, ipa->size, 4096);
3340         ipath = init_ipath(size, root, path);
3341         if (IS_ERR(ipath)) {
3342                 ret = PTR_ERR(ipath);
3343                 ipath = NULL;
3344                 goto out;
3345         }
3346
3347         ret = paths_from_inode(ipa->inum, ipath);
3348         if (ret < 0)
3349                 goto out;
3350
3351         for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3352                 rel_ptr = ipath->fspath->val[i] -
3353                           (u64)(unsigned long)ipath->fspath->val;
3354                 ipath->fspath->val[i] = rel_ptr;
3355         }
3356
3357         btrfs_free_path(path);
3358         path = NULL;
3359         ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3360                            ipath->fspath, size);
3361         if (ret) {
3362                 ret = -EFAULT;
3363                 goto out;
3364         }
3365
3366 out:
3367         btrfs_free_path(path);
3368         free_ipath(ipath);
3369         kfree(ipa);
3370
3371         return ret;
3372 }
3373
3374 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3375                                         void __user *arg, int version)
3376 {
3377         int ret = 0;
3378         int size;
3379         struct btrfs_ioctl_logical_ino_args *loi;
3380         struct btrfs_data_container *inodes = NULL;
3381         struct btrfs_path *path = NULL;
3382         bool ignore_offset;
3383
3384         if (!capable(CAP_SYS_ADMIN))
3385                 return -EPERM;
3386
3387         loi = memdup_user(arg, sizeof(*loi));
3388         if (IS_ERR(loi))
3389                 return PTR_ERR(loi);
3390
3391         if (version == 1) {
3392                 ignore_offset = false;
3393                 size = min_t(u32, loi->size, SZ_64K);
3394         } else {
3395                 /* All reserved bits must be 0 for now */
3396                 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3397                         ret = -EINVAL;
3398                         goto out_loi;
3399                 }
3400                 /* Only accept flags we have defined so far */
3401                 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3402                         ret = -EINVAL;
3403                         goto out_loi;
3404                 }
3405                 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3406                 size = min_t(u32, loi->size, SZ_16M);
3407         }
3408
3409         inodes = init_data_container(size);
3410         if (IS_ERR(inodes)) {
3411                 ret = PTR_ERR(inodes);
3412                 goto out_loi;
3413         }
3414
3415         path = btrfs_alloc_path();
3416         if (!path) {
3417                 ret = -ENOMEM;
3418                 goto out;
3419         }
3420         ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3421                                           inodes, ignore_offset);
3422         btrfs_free_path(path);
3423         if (ret == -EINVAL)
3424                 ret = -ENOENT;
3425         if (ret < 0)
3426                 goto out;
3427
3428         ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3429                            size);
3430         if (ret)
3431                 ret = -EFAULT;
3432
3433 out:
3434         kvfree(inodes);
3435 out_loi:
3436         kfree(loi);
3437
3438         return ret;
3439 }
3440
3441 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3442                                struct btrfs_ioctl_balance_args *bargs)
3443 {
3444         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3445
3446         bargs->flags = bctl->flags;
3447
3448         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3449                 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3450         if (atomic_read(&fs_info->balance_pause_req))
3451                 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3452         if (atomic_read(&fs_info->balance_cancel_req))
3453                 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3454
3455         memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3456         memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3457         memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3458
3459         spin_lock(&fs_info->balance_lock);
3460         memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3461         spin_unlock(&fs_info->balance_lock);
3462 }
3463
3464 /*
3465  * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3466  * required.
3467  *
3468  * @fs_info:       the filesystem
3469  * @excl_acquired: ptr to boolean value which is set to false in case balance
3470  *                 is being resumed
3471  *
3472  * Return 0 on success in which case both fs_info::balance is acquired as well
3473  * as exclusive ops are blocked. In case of failure return an error code.
3474  */
3475 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3476 {
3477         int ret;
3478
3479         /*
3480          * Exclusive operation is locked. Three possibilities:
3481          *   (1) some other op is running
3482          *   (2) balance is running
3483          *   (3) balance is paused -- special case (think resume)
3484          */
3485         while (1) {
3486                 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3487                         *excl_acquired = true;
3488                         mutex_lock(&fs_info->balance_mutex);
3489                         return 0;
3490                 }
3491
3492                 mutex_lock(&fs_info->balance_mutex);
3493                 if (fs_info->balance_ctl) {
3494                         /* This is either (2) or (3) */
3495                         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3496                                 /* This is (2) */
3497                                 ret = -EINPROGRESS;
3498                                 goto out_failure;
3499
3500                         } else {
3501                                 mutex_unlock(&fs_info->balance_mutex);
3502                                 /*
3503                                  * Lock released to allow other waiters to
3504                                  * continue, we'll reexamine the status again.
3505                                  */
3506                                 mutex_lock(&fs_info->balance_mutex);
3507
3508                                 if (fs_info->balance_ctl &&
3509                                     !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3510                                         /* This is (3) */
3511                                         *excl_acquired = false;
3512                                         return 0;
3513                                 }
3514                         }
3515                 } else {
3516                         /* This is (1) */
3517                         ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3518                         goto out_failure;
3519                 }
3520
3521                 mutex_unlock(&fs_info->balance_mutex);
3522         }
3523
3524 out_failure:
3525         mutex_unlock(&fs_info->balance_mutex);
3526         *excl_acquired = false;
3527         return ret;
3528 }
3529
3530 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3531 {
3532         struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3533         struct btrfs_fs_info *fs_info = root->fs_info;
3534         struct btrfs_ioctl_balance_args *bargs;
3535         struct btrfs_balance_control *bctl;
3536         bool need_unlock = true;
3537         int ret;
3538
3539         if (!capable(CAP_SYS_ADMIN))
3540                 return -EPERM;
3541
3542         ret = mnt_want_write_file(file);
3543         if (ret)
3544                 return ret;
3545
3546         bargs = memdup_user(arg, sizeof(*bargs));
3547         if (IS_ERR(bargs)) {
3548                 ret = PTR_ERR(bargs);
3549                 bargs = NULL;
3550                 goto out;
3551         }
3552
3553         ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3554         if (ret)
3555                 goto out;
3556
3557         lockdep_assert_held(&fs_info->balance_mutex);
3558
3559         if (bargs->flags & BTRFS_BALANCE_RESUME) {
3560                 if (!fs_info->balance_ctl) {
3561                         ret = -ENOTCONN;
3562                         goto out_unlock;
3563                 }
3564
3565                 bctl = fs_info->balance_ctl;
3566                 spin_lock(&fs_info->balance_lock);
3567                 bctl->flags |= BTRFS_BALANCE_RESUME;
3568                 spin_unlock(&fs_info->balance_lock);
3569                 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3570
3571                 goto do_balance;
3572         }
3573
3574         if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3575                 ret = -EINVAL;
3576                 goto out_unlock;
3577         }
3578
3579         if (fs_info->balance_ctl) {
3580                 ret = -EINPROGRESS;
3581                 goto out_unlock;
3582         }
3583
3584         bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3585         if (!bctl) {
3586                 ret = -ENOMEM;
3587                 goto out_unlock;
3588         }
3589
3590         memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3591         memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3592         memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3593
3594         bctl->flags = bargs->flags;
3595 do_balance:
3596         /*
3597          * Ownership of bctl and exclusive operation goes to btrfs_balance.
3598          * bctl is freed in reset_balance_state, or, if restriper was paused
3599          * all the way until unmount, in free_fs_info.  The flag should be
3600          * cleared after reset_balance_state.
3601          */
3602         need_unlock = false;
3603
3604         ret = btrfs_balance(fs_info, bctl, bargs);
3605         bctl = NULL;
3606
3607         if (ret == 0 || ret == -ECANCELED) {
3608                 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3609                         ret = -EFAULT;
3610         }
3611
3612         kfree(bctl);
3613 out_unlock:
3614         mutex_unlock(&fs_info->balance_mutex);
3615         if (need_unlock)
3616                 btrfs_exclop_finish(fs_info);
3617 out:
3618         mnt_drop_write_file(file);
3619         kfree(bargs);
3620         return ret;
3621 }
3622
3623 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3624 {
3625         if (!capable(CAP_SYS_ADMIN))
3626                 return -EPERM;
3627
3628         switch (cmd) {
3629         case BTRFS_BALANCE_CTL_PAUSE:
3630                 return btrfs_pause_balance(fs_info);
3631         case BTRFS_BALANCE_CTL_CANCEL:
3632                 return btrfs_cancel_balance(fs_info);
3633         }
3634
3635         return -EINVAL;
3636 }
3637
3638 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3639                                          void __user *arg)
3640 {
3641         struct btrfs_ioctl_balance_args *bargs;
3642         int ret = 0;
3643
3644         if (!capable(CAP_SYS_ADMIN))
3645                 return -EPERM;
3646
3647         mutex_lock(&fs_info->balance_mutex);
3648         if (!fs_info->balance_ctl) {
3649                 ret = -ENOTCONN;
3650                 goto out;
3651         }
3652
3653         bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3654         if (!bargs) {
3655                 ret = -ENOMEM;
3656                 goto out;
3657         }
3658
3659         btrfs_update_ioctl_balance_args(fs_info, bargs);
3660
3661         if (copy_to_user(arg, bargs, sizeof(*bargs)))
3662                 ret = -EFAULT;
3663
3664         kfree(bargs);
3665 out:
3666         mutex_unlock(&fs_info->balance_mutex);
3667         return ret;
3668 }
3669
3670 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3671 {
3672         struct inode *inode = file_inode(file);
3673         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3674         struct btrfs_ioctl_quota_ctl_args *sa;
3675         int ret;
3676
3677         if (!capable(CAP_SYS_ADMIN))
3678                 return -EPERM;
3679
3680         ret = mnt_want_write_file(file);
3681         if (ret)
3682                 return ret;
3683
3684         sa = memdup_user(arg, sizeof(*sa));
3685         if (IS_ERR(sa)) {
3686                 ret = PTR_ERR(sa);
3687                 goto drop_write;
3688         }
3689
3690         down_write(&fs_info->subvol_sem);
3691
3692         switch (sa->cmd) {
3693         case BTRFS_QUOTA_CTL_ENABLE:
3694                 ret = btrfs_quota_enable(fs_info);
3695                 break;
3696         case BTRFS_QUOTA_CTL_DISABLE:
3697                 ret = btrfs_quota_disable(fs_info);
3698                 break;
3699         default:
3700                 ret = -EINVAL;
3701                 break;
3702         }
3703
3704         kfree(sa);
3705         up_write(&fs_info->subvol_sem);
3706 drop_write:
3707         mnt_drop_write_file(file);
3708         return ret;
3709 }
3710
3711 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3712 {
3713         struct inode *inode = file_inode(file);
3714         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3715         struct btrfs_root *root = BTRFS_I(inode)->root;
3716         struct btrfs_ioctl_qgroup_assign_args *sa;
3717         struct btrfs_trans_handle *trans;
3718         int ret;
3719         int err;
3720
3721         if (!capable(CAP_SYS_ADMIN))
3722                 return -EPERM;
3723
3724         ret = mnt_want_write_file(file);
3725         if (ret)
3726                 return ret;
3727
3728         sa = memdup_user(arg, sizeof(*sa));
3729         if (IS_ERR(sa)) {
3730                 ret = PTR_ERR(sa);
3731                 goto drop_write;
3732         }
3733
3734         trans = btrfs_join_transaction(root);
3735         if (IS_ERR(trans)) {
3736                 ret = PTR_ERR(trans);
3737                 goto out;
3738         }
3739
3740         if (sa->assign) {
3741                 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
3742         } else {
3743                 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3744         }
3745
3746         /* update qgroup status and info */
3747         mutex_lock(&fs_info->qgroup_ioctl_lock);
3748         err = btrfs_run_qgroups(trans);
3749         mutex_unlock(&fs_info->qgroup_ioctl_lock);
3750         if (err < 0)
3751                 btrfs_handle_fs_error(fs_info, err,
3752                                       "failed to update qgroup status and info");
3753         err = btrfs_end_transaction(trans);
3754         if (err && !ret)
3755                 ret = err;
3756
3757 out:
3758         kfree(sa);
3759 drop_write:
3760         mnt_drop_write_file(file);
3761         return ret;
3762 }
3763
3764 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3765 {
3766         struct inode *inode = file_inode(file);
3767         struct btrfs_root *root = BTRFS_I(inode)->root;
3768         struct btrfs_ioctl_qgroup_create_args *sa;
3769         struct btrfs_trans_handle *trans;
3770         int ret;
3771         int err;
3772
3773         if (!capable(CAP_SYS_ADMIN))
3774                 return -EPERM;
3775
3776         ret = mnt_want_write_file(file);
3777         if (ret)
3778                 return ret;
3779
3780         sa = memdup_user(arg, sizeof(*sa));
3781         if (IS_ERR(sa)) {
3782                 ret = PTR_ERR(sa);
3783                 goto drop_write;
3784         }
3785
3786         if (!sa->qgroupid) {
3787                 ret = -EINVAL;
3788                 goto out;
3789         }
3790
3791         trans = btrfs_join_transaction(root);
3792         if (IS_ERR(trans)) {
3793                 ret = PTR_ERR(trans);
3794                 goto out;
3795         }
3796
3797         if (sa->create) {
3798                 ret = btrfs_create_qgroup(trans, sa->qgroupid);
3799         } else {
3800                 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3801         }
3802
3803         err = btrfs_end_transaction(trans);
3804         if (err && !ret)
3805                 ret = err;
3806
3807 out:
3808         kfree(sa);
3809 drop_write:
3810         mnt_drop_write_file(file);
3811         return ret;
3812 }
3813
3814 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3815 {
3816         struct inode *inode = file_inode(file);
3817         struct btrfs_root *root = BTRFS_I(inode)->root;
3818         struct btrfs_ioctl_qgroup_limit_args *sa;
3819         struct btrfs_trans_handle *trans;
3820         int ret;
3821         int err;
3822         u64 qgroupid;
3823
3824         if (!capable(CAP_SYS_ADMIN))
3825                 return -EPERM;
3826
3827         ret = mnt_want_write_file(file);
3828         if (ret)
3829                 return ret;
3830
3831         sa = memdup_user(arg, sizeof(*sa));
3832         if (IS_ERR(sa)) {
3833                 ret = PTR_ERR(sa);
3834                 goto drop_write;
3835         }
3836
3837         trans = btrfs_join_transaction(root);
3838         if (IS_ERR(trans)) {
3839                 ret = PTR_ERR(trans);
3840                 goto out;
3841         }
3842
3843         qgroupid = sa->qgroupid;
3844         if (!qgroupid) {
3845                 /* take the current subvol as qgroup */
3846                 qgroupid = root->root_key.objectid;
3847         }
3848
3849         ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3850
3851         err = btrfs_end_transaction(trans);
3852         if (err && !ret)
3853                 ret = err;
3854
3855 out:
3856         kfree(sa);
3857 drop_write:
3858         mnt_drop_write_file(file);
3859         return ret;
3860 }
3861
3862 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3863 {
3864         struct inode *inode = file_inode(file);
3865         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3866         struct btrfs_ioctl_quota_rescan_args *qsa;
3867         int ret;
3868
3869         if (!capable(CAP_SYS_ADMIN))
3870                 return -EPERM;
3871
3872         ret = mnt_want_write_file(file);
3873         if (ret)
3874                 return ret;
3875
3876         qsa = memdup_user(arg, sizeof(*qsa));
3877         if (IS_ERR(qsa)) {
3878                 ret = PTR_ERR(qsa);
3879                 goto drop_write;
3880         }
3881
3882         if (qsa->flags) {
3883                 ret = -EINVAL;
3884                 goto out;
3885         }
3886
3887         ret = btrfs_qgroup_rescan(fs_info);
3888
3889 out:
3890         kfree(qsa);
3891 drop_write:
3892         mnt_drop_write_file(file);
3893         return ret;
3894 }
3895
3896 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3897                                                 void __user *arg)
3898 {
3899         struct btrfs_ioctl_quota_rescan_args qsa = {0};
3900
3901         if (!capable(CAP_SYS_ADMIN))
3902                 return -EPERM;
3903
3904         if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3905                 qsa.flags = 1;
3906                 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3907         }
3908
3909         if (copy_to_user(arg, &qsa, sizeof(qsa)))
3910                 return -EFAULT;
3911
3912         return 0;
3913 }
3914
3915 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
3916                                                 void __user *arg)
3917 {
3918         if (!capable(CAP_SYS_ADMIN))
3919                 return -EPERM;
3920
3921         return btrfs_qgroup_wait_for_completion(fs_info, true);
3922 }
3923
3924 static long _btrfs_ioctl_set_received_subvol(struct file *file,
3925                                             struct mnt_idmap *idmap,
3926                                             struct btrfs_ioctl_received_subvol_args *sa)
3927 {
3928         struct inode *inode = file_inode(file);
3929         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3930         struct btrfs_root *root = BTRFS_I(inode)->root;
3931         struct btrfs_root_item *root_item = &root->root_item;
3932         struct btrfs_trans_handle *trans;
3933         struct timespec64 ct = current_time(inode);
3934         int ret = 0;
3935         int received_uuid_changed;
3936
3937         if (!inode_owner_or_capable(idmap, inode))
3938                 return -EPERM;
3939
3940         ret = mnt_want_write_file(file);
3941         if (ret < 0)
3942                 return ret;
3943
3944         down_write(&fs_info->subvol_sem);
3945
3946         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3947                 ret = -EINVAL;
3948                 goto out;
3949         }
3950
3951         if (btrfs_root_readonly(root)) {
3952                 ret = -EROFS;
3953                 goto out;
3954         }
3955
3956         /*
3957          * 1 - root item
3958          * 2 - uuid items (received uuid + subvol uuid)
3959          */
3960         trans = btrfs_start_transaction(root, 3);
3961         if (IS_ERR(trans)) {
3962                 ret = PTR_ERR(trans);
3963                 trans = NULL;
3964                 goto out;
3965         }
3966
3967         sa->rtransid = trans->transid;
3968         sa->rtime.sec = ct.tv_sec;
3969         sa->rtime.nsec = ct.tv_nsec;
3970
3971         received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
3972                                        BTRFS_UUID_SIZE);
3973         if (received_uuid_changed &&
3974             !btrfs_is_empty_uuid(root_item->received_uuid)) {
3975                 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
3976                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3977                                           root->root_key.objectid);
3978                 if (ret && ret != -ENOENT) {
3979                         btrfs_abort_transaction(trans, ret);
3980                         btrfs_end_transaction(trans);
3981                         goto out;
3982                 }
3983         }
3984         memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
3985         btrfs_set_root_stransid(root_item, sa->stransid);
3986         btrfs_set_root_rtransid(root_item, sa->rtransid);
3987         btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
3988         btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
3989         btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
3990         btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
3991
3992         ret = btrfs_update_root(trans, fs_info->tree_root,
3993                                 &root->root_key, &root->root_item);
3994         if (ret < 0) {
3995                 btrfs_end_transaction(trans);
3996                 goto out;
3997         }
3998         if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
3999                 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4000                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4001                                           root->root_key.objectid);
4002                 if (ret < 0 && ret != -EEXIST) {
4003                         btrfs_abort_transaction(trans, ret);
4004                         btrfs_end_transaction(trans);
4005                         goto out;
4006                 }
4007         }
4008         ret = btrfs_commit_transaction(trans);
4009 out:
4010         up_write(&fs_info->subvol_sem);
4011         mnt_drop_write_file(file);
4012         return ret;
4013 }
4014
4015 #ifdef CONFIG_64BIT
4016 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4017                                                 void __user *arg)
4018 {
4019         struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4020         struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4021         int ret = 0;
4022
4023         args32 = memdup_user(arg, sizeof(*args32));
4024         if (IS_ERR(args32))
4025                 return PTR_ERR(args32);
4026
4027         args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4028         if (!args64) {
4029                 ret = -ENOMEM;
4030                 goto out;
4031         }
4032
4033         memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4034         args64->stransid = args32->stransid;
4035         args64->rtransid = args32->rtransid;
4036         args64->stime.sec = args32->stime.sec;
4037         args64->stime.nsec = args32->stime.nsec;
4038         args64->rtime.sec = args32->rtime.sec;
4039         args64->rtime.nsec = args32->rtime.nsec;
4040         args64->flags = args32->flags;
4041
4042         ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4043         if (ret)
4044                 goto out;
4045
4046         memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4047         args32->stransid = args64->stransid;
4048         args32->rtransid = args64->rtransid;
4049         args32->stime.sec = args64->stime.sec;
4050         args32->stime.nsec = args64->stime.nsec;
4051         args32->rtime.sec = args64->rtime.sec;
4052         args32->rtime.nsec = args64->rtime.nsec;
4053         args32->flags = args64->flags;
4054
4055         ret = copy_to_user(arg, args32, sizeof(*args32));
4056         if (ret)
4057                 ret = -EFAULT;
4058
4059 out:
4060         kfree(args32);
4061         kfree(args64);
4062         return ret;
4063 }
4064 #endif
4065
4066 static long btrfs_ioctl_set_received_subvol(struct file *file,
4067                                             void __user *arg)
4068 {
4069         struct btrfs_ioctl_received_subvol_args *sa = NULL;
4070         int ret = 0;
4071
4072         sa = memdup_user(arg, sizeof(*sa));
4073         if (IS_ERR(sa))
4074                 return PTR_ERR(sa);
4075
4076         ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4077
4078         if (ret)
4079                 goto out;
4080
4081         ret = copy_to_user(arg, sa, sizeof(*sa));
4082         if (ret)
4083                 ret = -EFAULT;
4084
4085 out:
4086         kfree(sa);
4087         return ret;
4088 }
4089
4090 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4091                                         void __user *arg)
4092 {
4093         size_t len;
4094         int ret;
4095         char label[BTRFS_LABEL_SIZE];
4096
4097         spin_lock(&fs_info->super_lock);
4098         memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4099         spin_unlock(&fs_info->super_lock);
4100
4101         len = strnlen(label, BTRFS_LABEL_SIZE);
4102
4103         if (len == BTRFS_LABEL_SIZE) {
4104                 btrfs_warn(fs_info,
4105                            "label is too long, return the first %zu bytes",
4106                            --len);
4107         }
4108
4109         ret = copy_to_user(arg, label, len);
4110
4111         return ret ? -EFAULT : 0;
4112 }
4113
4114 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4115 {
4116         struct inode *inode = file_inode(file);
4117         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4118         struct btrfs_root *root = BTRFS_I(inode)->root;
4119         struct btrfs_super_block *super_block = fs_info->super_copy;
4120         struct btrfs_trans_handle *trans;
4121         char label[BTRFS_LABEL_SIZE];
4122         int ret;
4123
4124         if (!capable(CAP_SYS_ADMIN))
4125                 return -EPERM;
4126
4127         if (copy_from_user(label, arg, sizeof(label)))
4128                 return -EFAULT;
4129
4130         if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4131                 btrfs_err(fs_info,
4132                           "unable to set label with more than %d bytes",
4133                           BTRFS_LABEL_SIZE - 1);
4134                 return -EINVAL;
4135         }
4136
4137         ret = mnt_want_write_file(file);
4138         if (ret)
4139                 return ret;
4140
4141         trans = btrfs_start_transaction(root, 0);
4142         if (IS_ERR(trans)) {
4143                 ret = PTR_ERR(trans);
4144                 goto out_unlock;
4145         }
4146
4147         spin_lock(&fs_info->super_lock);
4148         strcpy(super_block->label, label);
4149         spin_unlock(&fs_info->super_lock);
4150         ret = btrfs_commit_transaction(trans);
4151
4152 out_unlock:
4153         mnt_drop_write_file(file);
4154         return ret;
4155 }
4156
4157 #define INIT_FEATURE_FLAGS(suffix) \
4158         { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4159           .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4160           .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4161
4162 int btrfs_ioctl_get_supported_features(void __user *arg)
4163 {
4164         static const struct btrfs_ioctl_feature_flags features[3] = {
4165                 INIT_FEATURE_FLAGS(SUPP),
4166                 INIT_FEATURE_FLAGS(SAFE_SET),
4167                 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4168         };
4169
4170         if (copy_to_user(arg, &features, sizeof(features)))
4171                 return -EFAULT;
4172
4173         return 0;
4174 }
4175
4176 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4177                                         void __user *arg)
4178 {
4179         struct btrfs_super_block *super_block = fs_info->super_copy;
4180         struct btrfs_ioctl_feature_flags features;
4181
4182         features.compat_flags = btrfs_super_compat_flags(super_block);
4183         features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4184         features.incompat_flags = btrfs_super_incompat_flags(super_block);
4185
4186         if (copy_to_user(arg, &features, sizeof(features)))
4187                 return -EFAULT;
4188
4189         return 0;
4190 }
4191
4192 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4193                               enum btrfs_feature_set set,
4194                               u64 change_mask, u64 flags, u64 supported_flags,
4195                               u64 safe_set, u64 safe_clear)
4196 {
4197         const char *type = btrfs_feature_set_name(set);
4198         char *names;
4199         u64 disallowed, unsupported;
4200         u64 set_mask = flags & change_mask;
4201         u64 clear_mask = ~flags & change_mask;
4202
4203         unsupported = set_mask & ~supported_flags;
4204         if (unsupported) {
4205                 names = btrfs_printable_features(set, unsupported);
4206                 if (names) {
4207                         btrfs_warn(fs_info,
4208                                    "this kernel does not support the %s feature bit%s",
4209                                    names, strchr(names, ',') ? "s" : "");
4210                         kfree(names);
4211                 } else
4212                         btrfs_warn(fs_info,
4213                                    "this kernel does not support %s bits 0x%llx",
4214                                    type, unsupported);
4215                 return -EOPNOTSUPP;
4216         }
4217
4218         disallowed = set_mask & ~safe_set;
4219         if (disallowed) {
4220                 names = btrfs_printable_features(set, disallowed);
4221                 if (names) {
4222                         btrfs_warn(fs_info,
4223                                    "can't set the %s feature bit%s while mounted",
4224                                    names, strchr(names, ',') ? "s" : "");
4225                         kfree(names);
4226                 } else
4227                         btrfs_warn(fs_info,
4228                                    "can't set %s bits 0x%llx while mounted",
4229                                    type, disallowed);
4230                 return -EPERM;
4231         }
4232
4233         disallowed = clear_mask & ~safe_clear;
4234         if (disallowed) {
4235                 names = btrfs_printable_features(set, disallowed);
4236                 if (names) {
4237                         btrfs_warn(fs_info,
4238                                    "can't clear the %s feature bit%s while mounted",
4239                                    names, strchr(names, ',') ? "s" : "");
4240                         kfree(names);
4241                 } else
4242                         btrfs_warn(fs_info,
4243                                    "can't clear %s bits 0x%llx while mounted",
4244                                    type, disallowed);
4245                 return -EPERM;
4246         }
4247
4248         return 0;
4249 }
4250
4251 #define check_feature(fs_info, change_mask, flags, mask_base)   \
4252 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,       \
4253                    BTRFS_FEATURE_ ## mask_base ## _SUPP,        \
4254                    BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,    \
4255                    BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4256
4257 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4258 {
4259         struct inode *inode = file_inode(file);
4260         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4261         struct btrfs_root *root = BTRFS_I(inode)->root;
4262         struct btrfs_super_block *super_block = fs_info->super_copy;
4263         struct btrfs_ioctl_feature_flags flags[2];
4264         struct btrfs_trans_handle *trans;
4265         u64 newflags;
4266         int ret;
4267
4268         if (!capable(CAP_SYS_ADMIN))
4269                 return -EPERM;
4270
4271         if (copy_from_user(flags, arg, sizeof(flags)))
4272                 return -EFAULT;
4273
4274         /* Nothing to do */
4275         if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4276             !flags[0].incompat_flags)
4277                 return 0;
4278
4279         ret = check_feature(fs_info, flags[0].compat_flags,
4280                             flags[1].compat_flags, COMPAT);
4281         if (ret)
4282                 return ret;
4283
4284         ret = check_feature(fs_info, flags[0].compat_ro_flags,
4285                             flags[1].compat_ro_flags, COMPAT_RO);
4286         if (ret)
4287                 return ret;
4288
4289         ret = check_feature(fs_info, flags[0].incompat_flags,
4290                             flags[1].incompat_flags, INCOMPAT);
4291         if (ret)
4292                 return ret;
4293
4294         ret = mnt_want_write_file(file);
4295         if (ret)
4296                 return ret;
4297
4298         trans = btrfs_start_transaction(root, 0);
4299         if (IS_ERR(trans)) {
4300                 ret = PTR_ERR(trans);
4301                 goto out_drop_write;
4302         }
4303
4304         spin_lock(&fs_info->super_lock);
4305         newflags = btrfs_super_compat_flags(super_block);
4306         newflags |= flags[0].compat_flags & flags[1].compat_flags;
4307         newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4308         btrfs_set_super_compat_flags(super_block, newflags);
4309
4310         newflags = btrfs_super_compat_ro_flags(super_block);
4311         newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4312         newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4313         btrfs_set_super_compat_ro_flags(super_block, newflags);
4314
4315         newflags = btrfs_super_incompat_flags(super_block);
4316         newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4317         newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4318         btrfs_set_super_incompat_flags(super_block, newflags);
4319         spin_unlock(&fs_info->super_lock);
4320
4321         ret = btrfs_commit_transaction(trans);
4322 out_drop_write:
4323         mnt_drop_write_file(file);
4324
4325         return ret;
4326 }
4327
4328 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4329 {
4330         struct btrfs_ioctl_send_args *arg;
4331         int ret;
4332
4333         if (compat) {
4334 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4335                 struct btrfs_ioctl_send_args_32 args32;
4336
4337                 ret = copy_from_user(&args32, argp, sizeof(args32));
4338                 if (ret)
4339                         return -EFAULT;
4340                 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4341                 if (!arg)
4342                         return -ENOMEM;
4343                 arg->send_fd = args32.send_fd;
4344                 arg->clone_sources_count = args32.clone_sources_count;
4345                 arg->clone_sources = compat_ptr(args32.clone_sources);
4346                 arg->parent_root = args32.parent_root;
4347                 arg->flags = args32.flags;
4348                 memcpy(arg->reserved, args32.reserved,
4349                        sizeof(args32.reserved));
4350 #else
4351                 return -ENOTTY;
4352 #endif
4353         } else {
4354                 arg = memdup_user(argp, sizeof(*arg));
4355                 if (IS_ERR(arg))
4356                         return PTR_ERR(arg);
4357         }
4358         ret = btrfs_ioctl_send(inode, arg);
4359         kfree(arg);
4360         return ret;
4361 }
4362
4363 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4364                                     bool compat)
4365 {
4366         struct btrfs_ioctl_encoded_io_args args = { 0 };
4367         size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4368                                              flags);
4369         size_t copy_end;
4370         struct iovec iovstack[UIO_FASTIOV];
4371         struct iovec *iov = iovstack;
4372         struct iov_iter iter;
4373         loff_t pos;
4374         struct kiocb kiocb;
4375         ssize_t ret;
4376
4377         if (!capable(CAP_SYS_ADMIN)) {
4378                 ret = -EPERM;
4379                 goto out_acct;
4380         }
4381
4382         if (compat) {
4383 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4384                 struct btrfs_ioctl_encoded_io_args_32 args32;
4385
4386                 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4387                                        flags);
4388                 if (copy_from_user(&args32, argp, copy_end)) {
4389                         ret = -EFAULT;
4390                         goto out_acct;
4391                 }
4392                 args.iov = compat_ptr(args32.iov);
4393                 args.iovcnt = args32.iovcnt;
4394                 args.offset = args32.offset;
4395                 args.flags = args32.flags;
4396 #else
4397                 return -ENOTTY;
4398 #endif
4399         } else {
4400                 copy_end = copy_end_kernel;
4401                 if (copy_from_user(&args, argp, copy_end)) {
4402                         ret = -EFAULT;
4403                         goto out_acct;
4404                 }
4405         }
4406         if (args.flags != 0) {
4407                 ret = -EINVAL;
4408                 goto out_acct;
4409         }
4410
4411         ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4412                            &iov, &iter);
4413         if (ret < 0)
4414                 goto out_acct;
4415
4416         if (iov_iter_count(&iter) == 0) {
4417                 ret = 0;
4418                 goto out_iov;
4419         }
4420         pos = args.offset;
4421         ret = rw_verify_area(READ, file, &pos, args.len);
4422         if (ret < 0)
4423                 goto out_iov;
4424
4425         init_sync_kiocb(&kiocb, file);
4426         kiocb.ki_pos = pos;
4427
4428         ret = btrfs_encoded_read(&kiocb, &iter, &args);
4429         if (ret >= 0) {
4430                 fsnotify_access(file);
4431                 if (copy_to_user(argp + copy_end,
4432                                  (char *)&args + copy_end_kernel,
4433                                  sizeof(args) - copy_end_kernel))
4434                         ret = -EFAULT;
4435         }
4436
4437 out_iov:
4438         kfree(iov);
4439 out_acct:
4440         if (ret > 0)
4441                 add_rchar(current, ret);
4442         inc_syscr(current);
4443         return ret;
4444 }
4445
4446 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4447 {
4448         struct btrfs_ioctl_encoded_io_args args;
4449         struct iovec iovstack[UIO_FASTIOV];
4450         struct iovec *iov = iovstack;
4451         struct iov_iter iter;
4452         loff_t pos;
4453         struct kiocb kiocb;
4454         ssize_t ret;
4455
4456         if (!capable(CAP_SYS_ADMIN)) {
4457                 ret = -EPERM;
4458                 goto out_acct;
4459         }
4460
4461         if (!(file->f_mode & FMODE_WRITE)) {
4462                 ret = -EBADF;
4463                 goto out_acct;
4464         }
4465
4466         if (compat) {
4467 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4468                 struct btrfs_ioctl_encoded_io_args_32 args32;
4469
4470                 if (copy_from_user(&args32, argp, sizeof(args32))) {
4471                         ret = -EFAULT;
4472                         goto out_acct;
4473                 }
4474                 args.iov = compat_ptr(args32.iov);
4475                 args.iovcnt = args32.iovcnt;
4476                 args.offset = args32.offset;
4477                 args.flags = args32.flags;
4478                 args.len = args32.len;
4479                 args.unencoded_len = args32.unencoded_len;
4480                 args.unencoded_offset = args32.unencoded_offset;
4481                 args.compression = args32.compression;
4482                 args.encryption = args32.encryption;
4483                 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4484 #else
4485                 return -ENOTTY;
4486 #endif
4487         } else {
4488                 if (copy_from_user(&args, argp, sizeof(args))) {
4489                         ret = -EFAULT;
4490                         goto out_acct;
4491                 }
4492         }
4493
4494         ret = -EINVAL;
4495         if (args.flags != 0)
4496                 goto out_acct;
4497         if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4498                 goto out_acct;
4499         if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4500             args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4501                 goto out_acct;
4502         if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4503             args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4504                 goto out_acct;
4505         if (args.unencoded_offset > args.unencoded_len)
4506                 goto out_acct;
4507         if (args.len > args.unencoded_len - args.unencoded_offset)
4508                 goto out_acct;
4509
4510         ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4511                            &iov, &iter);
4512         if (ret < 0)
4513                 goto out_acct;
4514
4515         file_start_write(file);
4516
4517         if (iov_iter_count(&iter) == 0) {
4518                 ret = 0;
4519                 goto out_end_write;
4520         }
4521         pos = args.offset;
4522         ret = rw_verify_area(WRITE, file, &pos, args.len);
4523         if (ret < 0)
4524                 goto out_end_write;
4525
4526         init_sync_kiocb(&kiocb, file);
4527         ret = kiocb_set_rw_flags(&kiocb, 0);
4528         if (ret)
4529                 goto out_end_write;
4530         kiocb.ki_pos = pos;
4531
4532         ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4533         if (ret > 0)
4534                 fsnotify_modify(file);
4535
4536 out_end_write:
4537         file_end_write(file);
4538         kfree(iov);
4539 out_acct:
4540         if (ret > 0)
4541                 add_wchar(current, ret);
4542         inc_syscw(current);
4543         return ret;
4544 }
4545
4546 long btrfs_ioctl(struct file *file, unsigned int
4547                 cmd, unsigned long arg)
4548 {
4549         struct inode *inode = file_inode(file);
4550         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4551         struct btrfs_root *root = BTRFS_I(inode)->root;
4552         void __user *argp = (void __user *)arg;
4553
4554         switch (cmd) {
4555         case FS_IOC_GETVERSION:
4556                 return btrfs_ioctl_getversion(inode, argp);
4557         case FS_IOC_GETFSLABEL:
4558                 return btrfs_ioctl_get_fslabel(fs_info, argp);
4559         case FS_IOC_SETFSLABEL:
4560                 return btrfs_ioctl_set_fslabel(file, argp);
4561         case FITRIM:
4562                 return btrfs_ioctl_fitrim(fs_info, argp);
4563         case BTRFS_IOC_SNAP_CREATE:
4564                 return btrfs_ioctl_snap_create(file, argp, 0);
4565         case BTRFS_IOC_SNAP_CREATE_V2:
4566                 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4567         case BTRFS_IOC_SUBVOL_CREATE:
4568                 return btrfs_ioctl_snap_create(file, argp, 1);
4569         case BTRFS_IOC_SUBVOL_CREATE_V2:
4570                 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4571         case BTRFS_IOC_SNAP_DESTROY:
4572                 return btrfs_ioctl_snap_destroy(file, argp, false);
4573         case BTRFS_IOC_SNAP_DESTROY_V2:
4574                 return btrfs_ioctl_snap_destroy(file, argp, true);
4575         case BTRFS_IOC_SUBVOL_GETFLAGS:
4576                 return btrfs_ioctl_subvol_getflags(inode, argp);
4577         case BTRFS_IOC_SUBVOL_SETFLAGS:
4578                 return btrfs_ioctl_subvol_setflags(file, argp);
4579         case BTRFS_IOC_DEFAULT_SUBVOL:
4580                 return btrfs_ioctl_default_subvol(file, argp);
4581         case BTRFS_IOC_DEFRAG:
4582                 return btrfs_ioctl_defrag(file, NULL);
4583         case BTRFS_IOC_DEFRAG_RANGE:
4584                 return btrfs_ioctl_defrag(file, argp);
4585         case BTRFS_IOC_RESIZE:
4586                 return btrfs_ioctl_resize(file, argp);
4587         case BTRFS_IOC_ADD_DEV:
4588                 return btrfs_ioctl_add_dev(fs_info, argp);
4589         case BTRFS_IOC_RM_DEV:
4590                 return btrfs_ioctl_rm_dev(file, argp);
4591         case BTRFS_IOC_RM_DEV_V2:
4592                 return btrfs_ioctl_rm_dev_v2(file, argp);
4593         case BTRFS_IOC_FS_INFO:
4594                 return btrfs_ioctl_fs_info(fs_info, argp);
4595         case BTRFS_IOC_DEV_INFO:
4596                 return btrfs_ioctl_dev_info(fs_info, argp);
4597         case BTRFS_IOC_TREE_SEARCH:
4598                 return btrfs_ioctl_tree_search(inode, argp);
4599         case BTRFS_IOC_TREE_SEARCH_V2:
4600                 return btrfs_ioctl_tree_search_v2(inode, argp);
4601         case BTRFS_IOC_INO_LOOKUP:
4602                 return btrfs_ioctl_ino_lookup(root, argp);
4603         case BTRFS_IOC_INO_PATHS:
4604                 return btrfs_ioctl_ino_to_path(root, argp);
4605         case BTRFS_IOC_LOGICAL_INO:
4606                 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4607         case BTRFS_IOC_LOGICAL_INO_V2:
4608                 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4609         case BTRFS_IOC_SPACE_INFO:
4610                 return btrfs_ioctl_space_info(fs_info, argp);
4611         case BTRFS_IOC_SYNC: {
4612                 int ret;
4613
4614                 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4615                 if (ret)
4616                         return ret;
4617                 ret = btrfs_sync_fs(inode->i_sb, 1);
4618                 /*
4619                  * The transaction thread may want to do more work,
4620                  * namely it pokes the cleaner kthread that will start
4621                  * processing uncleaned subvols.
4622                  */
4623                 wake_up_process(fs_info->transaction_kthread);
4624                 return ret;
4625         }
4626         case BTRFS_IOC_START_SYNC:
4627                 return btrfs_ioctl_start_sync(root, argp);
4628         case BTRFS_IOC_WAIT_SYNC:
4629                 return btrfs_ioctl_wait_sync(fs_info, argp);
4630         case BTRFS_IOC_SCRUB:
4631                 return btrfs_ioctl_scrub(file, argp);
4632         case BTRFS_IOC_SCRUB_CANCEL:
4633                 return btrfs_ioctl_scrub_cancel(fs_info);
4634         case BTRFS_IOC_SCRUB_PROGRESS:
4635                 return btrfs_ioctl_scrub_progress(fs_info, argp);
4636         case BTRFS_IOC_BALANCE_V2:
4637                 return btrfs_ioctl_balance(file, argp);
4638         case BTRFS_IOC_BALANCE_CTL:
4639                 return btrfs_ioctl_balance_ctl(fs_info, arg);
4640         case BTRFS_IOC_BALANCE_PROGRESS:
4641                 return btrfs_ioctl_balance_progress(fs_info, argp);
4642         case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4643                 return btrfs_ioctl_set_received_subvol(file, argp);
4644 #ifdef CONFIG_64BIT
4645         case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4646                 return btrfs_ioctl_set_received_subvol_32(file, argp);
4647 #endif
4648         case BTRFS_IOC_SEND:
4649                 return _btrfs_ioctl_send(inode, argp, false);
4650 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4651         case BTRFS_IOC_SEND_32:
4652                 return _btrfs_ioctl_send(inode, argp, true);
4653 #endif
4654         case BTRFS_IOC_GET_DEV_STATS:
4655                 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4656         case BTRFS_IOC_QUOTA_CTL:
4657                 return btrfs_ioctl_quota_ctl(file, argp);
4658         case BTRFS_IOC_QGROUP_ASSIGN:
4659                 return btrfs_ioctl_qgroup_assign(file, argp);
4660         case BTRFS_IOC_QGROUP_CREATE:
4661                 return btrfs_ioctl_qgroup_create(file, argp);
4662         case BTRFS_IOC_QGROUP_LIMIT:
4663                 return btrfs_ioctl_qgroup_limit(file, argp);
4664         case BTRFS_IOC_QUOTA_RESCAN:
4665                 return btrfs_ioctl_quota_rescan(file, argp);
4666         case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4667                 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4668         case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4669                 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4670         case BTRFS_IOC_DEV_REPLACE:
4671                 return btrfs_ioctl_dev_replace(fs_info, argp);
4672         case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4673                 return btrfs_ioctl_get_supported_features(argp);
4674         case BTRFS_IOC_GET_FEATURES:
4675                 return btrfs_ioctl_get_features(fs_info, argp);
4676         case BTRFS_IOC_SET_FEATURES:
4677                 return btrfs_ioctl_set_features(file, argp);
4678         case BTRFS_IOC_GET_SUBVOL_INFO:
4679                 return btrfs_ioctl_get_subvol_info(inode, argp);
4680         case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4681                 return btrfs_ioctl_get_subvol_rootref(root, argp);
4682         case BTRFS_IOC_INO_LOOKUP_USER:
4683                 return btrfs_ioctl_ino_lookup_user(file, argp);
4684         case FS_IOC_ENABLE_VERITY:
4685                 return fsverity_ioctl_enable(file, (const void __user *)argp);
4686         case FS_IOC_MEASURE_VERITY:
4687                 return fsverity_ioctl_measure(file, argp);
4688         case BTRFS_IOC_ENCODED_READ:
4689                 return btrfs_ioctl_encoded_read(file, argp, false);
4690         case BTRFS_IOC_ENCODED_WRITE:
4691                 return btrfs_ioctl_encoded_write(file, argp, false);
4692 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4693         case BTRFS_IOC_ENCODED_READ_32:
4694                 return btrfs_ioctl_encoded_read(file, argp, true);
4695         case BTRFS_IOC_ENCODED_WRITE_32:
4696                 return btrfs_ioctl_encoded_write(file, argp, true);
4697 #endif
4698         }
4699
4700         return -ENOTTY;
4701 }
4702
4703 #ifdef CONFIG_COMPAT
4704 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4705 {
4706         /*
4707          * These all access 32-bit values anyway so no further
4708          * handling is necessary.
4709          */
4710         switch (cmd) {
4711         case FS_IOC32_GETVERSION:
4712                 cmd = FS_IOC_GETVERSION;
4713                 break;
4714         }
4715
4716         return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4717 }
4718 #endif