1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/file.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
41 #include "rcu-string.h"
43 #include "dev-replace.h"
48 #include "compression.h"
49 #include "space-info.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
54 #include "accessors.h"
55 #include "extent-tree.h"
56 #include "root-tree.h"
59 #include "uuid-tree.h"
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
71 struct btrfs_ioctl_timespec_32 {
74 } __attribute__ ((__packed__));
76 struct btrfs_ioctl_received_subvol_args_32 {
77 char uuid[BTRFS_UUID_SIZE]; /* in */
78 __u64 stransid; /* in */
79 __u64 rtransid; /* out */
80 struct btrfs_ioctl_timespec_32 stime; /* in */
81 struct btrfs_ioctl_timespec_32 rtime; /* out */
83 __u64 reserved[16]; /* in */
84 } __attribute__ ((__packed__));
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 struct btrfs_ioctl_received_subvol_args_32)
90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
91 struct btrfs_ioctl_send_args_32 {
92 __s64 send_fd; /* in */
93 __u64 clone_sources_count; /* in */
94 compat_uptr_t clone_sources; /* in */
95 __u64 parent_root; /* in */
97 __u32 version; /* in */
98 __u8 reserved[28]; /* in */
99 } __attribute__ ((__packed__));
101 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
102 struct btrfs_ioctl_send_args_32)
104 struct btrfs_ioctl_encoded_io_args_32 {
106 compat_ulong_t iovcnt;
111 __u64 unencoded_offset;
117 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
118 struct btrfs_ioctl_encoded_io_args_32)
119 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
120 struct btrfs_ioctl_encoded_io_args_32)
123 /* Mask out flags that are inappropriate for the given type of inode. */
124 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
127 if (S_ISDIR(inode->i_mode))
129 else if (S_ISREG(inode->i_mode))
130 return flags & ~FS_DIRSYNC_FL;
132 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
136 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
139 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
141 unsigned int iflags = 0;
142 u32 flags = binode->flags;
143 u32 ro_flags = binode->ro_flags;
145 if (flags & BTRFS_INODE_SYNC)
146 iflags |= FS_SYNC_FL;
147 if (flags & BTRFS_INODE_IMMUTABLE)
148 iflags |= FS_IMMUTABLE_FL;
149 if (flags & BTRFS_INODE_APPEND)
150 iflags |= FS_APPEND_FL;
151 if (flags & BTRFS_INODE_NODUMP)
152 iflags |= FS_NODUMP_FL;
153 if (flags & BTRFS_INODE_NOATIME)
154 iflags |= FS_NOATIME_FL;
155 if (flags & BTRFS_INODE_DIRSYNC)
156 iflags |= FS_DIRSYNC_FL;
157 if (flags & BTRFS_INODE_NODATACOW)
158 iflags |= FS_NOCOW_FL;
159 if (ro_flags & BTRFS_INODE_RO_VERITY)
160 iflags |= FS_VERITY_FL;
162 if (flags & BTRFS_INODE_NOCOMPRESS)
163 iflags |= FS_NOCOMP_FL;
164 else if (flags & BTRFS_INODE_COMPRESS)
165 iflags |= FS_COMPR_FL;
171 * Update inode->i_flags based on the btrfs internal flags.
173 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
175 struct btrfs_inode *binode = BTRFS_I(inode);
176 unsigned int new_fl = 0;
178 if (binode->flags & BTRFS_INODE_SYNC)
180 if (binode->flags & BTRFS_INODE_IMMUTABLE)
181 new_fl |= S_IMMUTABLE;
182 if (binode->flags & BTRFS_INODE_APPEND)
184 if (binode->flags & BTRFS_INODE_NOATIME)
186 if (binode->flags & BTRFS_INODE_DIRSYNC)
188 if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
191 set_mask_bits(&inode->i_flags,
192 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
197 * Check if @flags are a supported and valid set of FS_*_FL flags and that
198 * the old and new flags are not conflicting
200 static int check_fsflags(unsigned int old_flags, unsigned int flags)
202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203 FS_NOATIME_FL | FS_NODUMP_FL | \
204 FS_SYNC_FL | FS_DIRSYNC_FL | \
205 FS_NOCOMP_FL | FS_COMPR_FL |
209 /* COMPR and NOCOMP on new/old are valid */
210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
213 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
216 /* NOCOW and compression options are mutually exclusive */
217 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
219 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
225 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
228 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
235 * Set flags/xflags from the internal inode flags. The remaining items of
236 * fsxattr are zeroed.
238 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
240 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
242 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
246 int btrfs_fileattr_set(struct mnt_idmap *idmap,
247 struct dentry *dentry, struct fileattr *fa)
249 struct inode *inode = d_inode(dentry);
250 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
251 struct btrfs_inode *binode = BTRFS_I(inode);
252 struct btrfs_root *root = binode->root;
253 struct btrfs_trans_handle *trans;
254 unsigned int fsflags, old_fsflags;
256 const char *comp = NULL;
259 if (btrfs_root_readonly(root))
262 if (fileattr_has_fsx(fa))
265 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
266 old_fsflags = btrfs_inode_flags_to_fsflags(binode);
267 ret = check_fsflags(old_fsflags, fsflags);
271 ret = check_fsflags_compatible(fs_info, fsflags);
275 binode_flags = binode->flags;
276 if (fsflags & FS_SYNC_FL)
277 binode_flags |= BTRFS_INODE_SYNC;
279 binode_flags &= ~BTRFS_INODE_SYNC;
280 if (fsflags & FS_IMMUTABLE_FL)
281 binode_flags |= BTRFS_INODE_IMMUTABLE;
283 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
284 if (fsflags & FS_APPEND_FL)
285 binode_flags |= BTRFS_INODE_APPEND;
287 binode_flags &= ~BTRFS_INODE_APPEND;
288 if (fsflags & FS_NODUMP_FL)
289 binode_flags |= BTRFS_INODE_NODUMP;
291 binode_flags &= ~BTRFS_INODE_NODUMP;
292 if (fsflags & FS_NOATIME_FL)
293 binode_flags |= BTRFS_INODE_NOATIME;
295 binode_flags &= ~BTRFS_INODE_NOATIME;
297 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
298 if (!fa->flags_valid) {
299 /* 1 item for the inode */
300 trans = btrfs_start_transaction(root, 1);
302 return PTR_ERR(trans);
306 if (fsflags & FS_DIRSYNC_FL)
307 binode_flags |= BTRFS_INODE_DIRSYNC;
309 binode_flags &= ~BTRFS_INODE_DIRSYNC;
310 if (fsflags & FS_NOCOW_FL) {
311 if (S_ISREG(inode->i_mode)) {
313 * It's safe to turn csums off here, no extents exist.
314 * Otherwise we want the flag to reflect the real COW
315 * status of the file and will not set it.
317 if (inode->i_size == 0)
318 binode_flags |= BTRFS_INODE_NODATACOW |
319 BTRFS_INODE_NODATASUM;
321 binode_flags |= BTRFS_INODE_NODATACOW;
325 * Revert back under same assumptions as above
327 if (S_ISREG(inode->i_mode)) {
328 if (inode->i_size == 0)
329 binode_flags &= ~(BTRFS_INODE_NODATACOW |
330 BTRFS_INODE_NODATASUM);
332 binode_flags &= ~BTRFS_INODE_NODATACOW;
337 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
338 * flag may be changed automatically if compression code won't make
341 if (fsflags & FS_NOCOMP_FL) {
342 binode_flags &= ~BTRFS_INODE_COMPRESS;
343 binode_flags |= BTRFS_INODE_NOCOMPRESS;
344 } else if (fsflags & FS_COMPR_FL) {
346 if (IS_SWAPFILE(inode))
349 binode_flags |= BTRFS_INODE_COMPRESS;
350 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
352 comp = btrfs_compress_type2str(fs_info->compress_type);
353 if (!comp || comp[0] == 0)
354 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
356 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
363 trans = btrfs_start_transaction(root, 3);
365 return PTR_ERR(trans);
368 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
371 btrfs_abort_transaction(trans, ret);
375 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
377 if (ret && ret != -ENODATA) {
378 btrfs_abort_transaction(trans, ret);
384 binode->flags = binode_flags;
385 btrfs_sync_inode_flags_to_i_flags(inode);
386 inode_inc_iversion(inode);
387 inode_set_ctime_current(inode);
388 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
391 btrfs_end_transaction(trans);
396 * Start exclusive operation @type, return true on success
398 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
399 enum btrfs_exclusive_operation type)
403 spin_lock(&fs_info->super_lock);
404 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
405 fs_info->exclusive_operation = type;
408 spin_unlock(&fs_info->super_lock);
414 * Conditionally allow to enter the exclusive operation in case it's compatible
415 * with the running one. This must be paired with btrfs_exclop_start_unlock and
416 * btrfs_exclop_finish.
419 * - the same type is already running
420 * - when trying to add a device and balance has been paused
421 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
422 * must check the condition first that would allow none -> @type
424 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
425 enum btrfs_exclusive_operation type)
427 spin_lock(&fs_info->super_lock);
428 if (fs_info->exclusive_operation == type ||
429 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
430 type == BTRFS_EXCLOP_DEV_ADD))
433 spin_unlock(&fs_info->super_lock);
437 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
439 spin_unlock(&fs_info->super_lock);
442 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
444 spin_lock(&fs_info->super_lock);
445 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
446 spin_unlock(&fs_info->super_lock);
447 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
450 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
451 enum btrfs_exclusive_operation op)
454 case BTRFS_EXCLOP_BALANCE_PAUSED:
455 spin_lock(&fs_info->super_lock);
456 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
457 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
458 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
459 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
460 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
461 spin_unlock(&fs_info->super_lock);
463 case BTRFS_EXCLOP_BALANCE:
464 spin_lock(&fs_info->super_lock);
465 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
466 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
467 spin_unlock(&fs_info->super_lock);
471 "invalid exclop balance operation %d requested", op);
475 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
477 return put_user(inode->i_generation, arg);
480 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
483 struct btrfs_device *device;
484 struct fstrim_range range;
485 u64 minlen = ULLONG_MAX;
489 if (!capable(CAP_SYS_ADMIN))
493 * btrfs_trim_block_group() depends on space cache, which is not
494 * available in zoned filesystem. So, disallow fitrim on a zoned
495 * filesystem for now.
497 if (btrfs_is_zoned(fs_info))
501 * If the fs is mounted with nologreplay, which requires it to be
502 * mounted in RO mode as well, we can not allow discard on free space
503 * inside block groups, because log trees refer to extents that are not
504 * pinned in a block group's free space cache (pinning the extents is
505 * precisely the first phase of replaying a log tree).
507 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
511 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
513 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
516 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
523 if (copy_from_user(&range, arg, sizeof(range)))
527 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
528 * block group is in the logical address space, which can be any
529 * sectorsize aligned bytenr in the range [0, U64_MAX].
531 if (range.len < fs_info->sb->s_blocksize)
534 range.minlen = max(range.minlen, minlen);
535 ret = btrfs_trim_fs(fs_info, &range);
539 if (copy_to_user(arg, &range, sizeof(range)))
545 int __pure btrfs_is_empty_uuid(u8 *uuid)
549 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
557 * Calculate the number of transaction items to reserve for creating a subvolume
558 * or snapshot, not including the inode, directory entries, or parent directory.
560 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
563 * 1 to add root block
566 * 1 to add root backref
568 * 1 to add qgroup info
569 * 1 to add qgroup limit
571 * Ideally the last two would only be accounted if qgroups are enabled,
572 * but that can change between now and the time we would insert them.
574 unsigned int num_items = 7;
577 /* 2 to add qgroup relations for each inherited qgroup */
578 num_items += 2 * inherit->num_qgroups;
583 static noinline int create_subvol(struct mnt_idmap *idmap,
584 struct inode *dir, struct dentry *dentry,
585 struct btrfs_qgroup_inherit *inherit)
587 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
588 struct btrfs_trans_handle *trans;
589 struct btrfs_key key;
590 struct btrfs_root_item *root_item;
591 struct btrfs_inode_item *inode_item;
592 struct extent_buffer *leaf;
593 struct btrfs_root *root = BTRFS_I(dir)->root;
594 struct btrfs_root *new_root;
595 struct btrfs_block_rsv block_rsv;
596 struct timespec64 cur_time = current_time(dir);
597 struct btrfs_new_inode_args new_inode_args = {
602 unsigned int trans_num_items;
607 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
611 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
616 * Don't create subvolume whose level is not zero. Or qgroup will be
617 * screwed up since it assumes subvolume qgroup's level to be 0.
619 if (btrfs_qgroup_level(objectid)) {
624 ret = get_anon_bdev(&anon_dev);
628 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
629 if (!new_inode_args.inode) {
633 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
636 trans_num_items += create_subvol_num_items(inherit);
638 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
639 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
640 trans_num_items, false);
642 goto out_new_inode_args;
644 trans = btrfs_start_transaction(root, 0);
646 ret = PTR_ERR(trans);
647 btrfs_subvolume_release_metadata(root, &block_rsv);
648 goto out_new_inode_args;
650 trans->block_rsv = &block_rsv;
651 trans->bytes_reserved = block_rsv.size;
652 /* Tree log can't currently deal with an inode which is a new root. */
653 btrfs_set_log_full_commit(trans);
655 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
659 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
660 BTRFS_NESTING_NORMAL);
666 btrfs_mark_buffer_dirty(leaf);
668 inode_item = &root_item->inode;
669 btrfs_set_stack_inode_generation(inode_item, 1);
670 btrfs_set_stack_inode_size(inode_item, 3);
671 btrfs_set_stack_inode_nlink(inode_item, 1);
672 btrfs_set_stack_inode_nbytes(inode_item,
674 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
676 btrfs_set_root_flags(root_item, 0);
677 btrfs_set_root_limit(root_item, 0);
678 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
680 btrfs_set_root_bytenr(root_item, leaf->start);
681 btrfs_set_root_generation(root_item, trans->transid);
682 btrfs_set_root_level(root_item, 0);
683 btrfs_set_root_refs(root_item, 1);
684 btrfs_set_root_used(root_item, leaf->len);
685 btrfs_set_root_last_snapshot(root_item, 0);
687 btrfs_set_root_generation_v2(root_item,
688 btrfs_root_generation(root_item));
689 generate_random_guid(root_item->uuid);
690 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
691 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
692 root_item->ctime = root_item->otime;
693 btrfs_set_root_ctransid(root_item, trans->transid);
694 btrfs_set_root_otransid(root_item, trans->transid);
696 btrfs_tree_unlock(leaf);
698 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
700 key.objectid = objectid;
702 key.type = BTRFS_ROOT_ITEM_KEY;
703 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
707 * Since we don't abort the transaction in this case, free the
708 * tree block so that we don't leak space and leave the
709 * filesystem in an inconsistent state (an extent item in the
710 * extent tree with a backreference for a root that does not
713 btrfs_tree_lock(leaf);
714 btrfs_clear_buffer_dirty(trans, leaf);
715 btrfs_tree_unlock(leaf);
716 btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
717 free_extent_buffer(leaf);
721 free_extent_buffer(leaf);
724 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
725 if (IS_ERR(new_root)) {
726 ret = PTR_ERR(new_root);
727 btrfs_abort_transaction(trans, ret);
730 /* anon_dev is owned by new_root now. */
732 BTRFS_I(new_inode_args.inode)->root = new_root;
733 /* ... and new_root is owned by new_inode_args.inode now. */
735 ret = btrfs_record_root_in_trans(trans, new_root);
737 btrfs_abort_transaction(trans, ret);
741 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
742 BTRFS_UUID_KEY_SUBVOL, objectid);
744 btrfs_abort_transaction(trans, ret);
748 ret = btrfs_create_new_inode(trans, &new_inode_args);
750 btrfs_abort_transaction(trans, ret);
754 d_instantiate_new(dentry, new_inode_args.inode);
755 new_inode_args.inode = NULL;
758 trans->block_rsv = NULL;
759 trans->bytes_reserved = 0;
760 btrfs_subvolume_release_metadata(root, &block_rsv);
762 btrfs_end_transaction(trans);
764 btrfs_new_inode_args_destroy(&new_inode_args);
766 iput(new_inode_args.inode);
769 free_anon_bdev(anon_dev);
775 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
776 struct dentry *dentry, bool readonly,
777 struct btrfs_qgroup_inherit *inherit)
779 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
781 struct btrfs_pending_snapshot *pending_snapshot;
782 unsigned int trans_num_items;
783 struct btrfs_trans_handle *trans;
786 /* We do not support snapshotting right now. */
787 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
789 "extent tree v2 doesn't support snapshotting yet");
793 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
796 if (atomic_read(&root->nr_swapfiles)) {
798 "cannot snapshot subvolume with active swapfile");
802 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
803 if (!pending_snapshot)
806 ret = get_anon_bdev(&pending_snapshot->anon_dev);
809 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
811 pending_snapshot->path = btrfs_alloc_path();
812 if (!pending_snapshot->root_item || !pending_snapshot->path) {
817 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
818 BTRFS_BLOCK_RSV_TEMP);
822 * 1 to update parent inode item
824 trans_num_items = create_subvol_num_items(inherit) + 3;
825 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
826 &pending_snapshot->block_rsv,
827 trans_num_items, false);
831 pending_snapshot->dentry = dentry;
832 pending_snapshot->root = root;
833 pending_snapshot->readonly = readonly;
834 pending_snapshot->dir = dir;
835 pending_snapshot->inherit = inherit;
837 trans = btrfs_start_transaction(root, 0);
839 ret = PTR_ERR(trans);
843 trans->pending_snapshot = pending_snapshot;
845 ret = btrfs_commit_transaction(trans);
849 ret = pending_snapshot->error;
853 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
857 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
859 ret = PTR_ERR(inode);
863 d_instantiate(dentry, inode);
865 pending_snapshot->anon_dev = 0;
867 /* Prevent double freeing of anon_dev */
868 if (ret && pending_snapshot->snap)
869 pending_snapshot->snap->anon_dev = 0;
870 btrfs_put_root(pending_snapshot->snap);
871 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
873 if (pending_snapshot->anon_dev)
874 free_anon_bdev(pending_snapshot->anon_dev);
875 kfree(pending_snapshot->root_item);
876 btrfs_free_path(pending_snapshot->path);
877 kfree(pending_snapshot);
882 /* copy of may_delete in fs/namei.c()
883 * Check whether we can remove a link victim from directory dir, check
884 * whether the type of victim is right.
885 * 1. We can't do it if dir is read-only (done in permission())
886 * 2. We should have write and exec permissions on dir
887 * 3. We can't remove anything from append-only dir
888 * 4. We can't do anything with immutable dir (done in permission())
889 * 5. If the sticky bit on dir is set we should either
890 * a. be owner of dir, or
891 * b. be owner of victim, or
892 * c. have CAP_FOWNER capability
893 * 6. If the victim is append-only or immutable we can't do anything with
894 * links pointing to it.
895 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
896 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
897 * 9. We can't remove a root or mountpoint.
898 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
899 * nfs_async_unlink().
902 static int btrfs_may_delete(struct mnt_idmap *idmap,
903 struct inode *dir, struct dentry *victim, int isdir)
907 if (d_really_is_negative(victim))
910 BUG_ON(d_inode(victim->d_parent) != dir);
911 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
913 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
918 if (check_sticky(idmap, dir, d_inode(victim)) ||
919 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
920 IS_SWAPFILE(d_inode(victim)))
923 if (!d_is_dir(victim))
927 } else if (d_is_dir(victim))
931 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
936 /* copy of may_create in fs/namei.c() */
937 static inline int btrfs_may_create(struct mnt_idmap *idmap,
938 struct inode *dir, struct dentry *child)
940 if (d_really_is_positive(child))
944 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
946 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
950 * Create a new subvolume below @parent. This is largely modeled after
951 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
952 * inside this filesystem so it's quite a bit simpler.
954 static noinline int btrfs_mksubvol(const struct path *parent,
955 struct mnt_idmap *idmap,
956 const char *name, int namelen,
957 struct btrfs_root *snap_src,
959 struct btrfs_qgroup_inherit *inherit)
961 struct inode *dir = d_inode(parent->dentry);
962 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
963 struct dentry *dentry;
964 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
967 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
971 dentry = lookup_one(idmap, name, parent->dentry, namelen);
972 error = PTR_ERR(dentry);
976 error = btrfs_may_create(idmap, dir, dentry);
981 * even if this name doesn't exist, we may get hash collisions.
982 * check for them now when we can safely fail
984 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
985 dir->i_ino, &name_str);
989 down_read(&fs_info->subvol_sem);
991 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
995 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
997 error = create_subvol(idmap, dir, dentry, inherit);
1000 fsnotify_mkdir(dir, dentry);
1002 up_read(&fs_info->subvol_sem);
1006 btrfs_inode_unlock(BTRFS_I(dir), 0);
1010 static noinline int btrfs_mksnapshot(const struct path *parent,
1011 struct mnt_idmap *idmap,
1012 const char *name, int namelen,
1013 struct btrfs_root *root,
1015 struct btrfs_qgroup_inherit *inherit)
1018 bool snapshot_force_cow = false;
1021 * Force new buffered writes to reserve space even when NOCOW is
1022 * possible. This is to avoid later writeback (running dealloc) to
1023 * fallback to COW mode and unexpectedly fail with ENOSPC.
1025 btrfs_drew_read_lock(&root->snapshot_lock);
1027 ret = btrfs_start_delalloc_snapshot(root, false);
1032 * All previous writes have started writeback in NOCOW mode, so now
1033 * we force future writes to fallback to COW mode during snapshot
1036 atomic_inc(&root->snapshot_force_cow);
1037 snapshot_force_cow = true;
1039 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1041 ret = btrfs_mksubvol(parent, idmap, name, namelen,
1042 root, readonly, inherit);
1044 if (snapshot_force_cow)
1045 atomic_dec(&root->snapshot_force_cow);
1046 btrfs_drew_read_unlock(&root->snapshot_lock);
1051 * Try to start exclusive operation @type or cancel it if it's running.
1054 * 0 - normal mode, newly claimed op started
1055 * >0 - normal mode, something else is running,
1056 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1057 * ECANCELED - cancel mode, successful cancel
1058 * ENOTCONN - cancel mode, operation not running anymore
1060 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1061 enum btrfs_exclusive_operation type, bool cancel)
1064 /* Start normal op */
1065 if (!btrfs_exclop_start(fs_info, type))
1066 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1067 /* Exclusive operation is now claimed */
1071 /* Cancel running op */
1072 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1074 * This blocks any exclop finish from setting it to NONE, so we
1075 * request cancellation. Either it runs and we will wait for it,
1076 * or it has finished and no waiting will happen.
1078 atomic_inc(&fs_info->reloc_cancel_req);
1079 btrfs_exclop_start_unlock(fs_info);
1081 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1082 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1083 TASK_INTERRUPTIBLE);
1088 /* Something else is running or none */
1092 static noinline int btrfs_ioctl_resize(struct file *file,
1095 BTRFS_DEV_LOOKUP_ARGS(args);
1096 struct inode *inode = file_inode(file);
1097 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1101 struct btrfs_root *root = BTRFS_I(inode)->root;
1102 struct btrfs_ioctl_vol_args *vol_args;
1103 struct btrfs_trans_handle *trans;
1104 struct btrfs_device *device = NULL;
1107 char *devstr = NULL;
1112 if (!capable(CAP_SYS_ADMIN))
1115 ret = mnt_want_write_file(file);
1120 * Read the arguments before checking exclusivity to be able to
1121 * distinguish regular resize and cancel
1123 vol_args = memdup_user(arg, sizeof(*vol_args));
1124 if (IS_ERR(vol_args)) {
1125 ret = PTR_ERR(vol_args);
1128 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1129 sizestr = vol_args->name;
1130 cancel = (strcmp("cancel", sizestr) == 0);
1131 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1134 /* Exclusive operation is now claimed */
1136 devstr = strchr(sizestr, ':');
1138 sizestr = devstr + 1;
1140 devstr = vol_args->name;
1141 ret = kstrtoull(devstr, 10, &devid);
1148 btrfs_info(fs_info, "resizing devid %llu", devid);
1152 device = btrfs_find_device(fs_info->fs_devices, &args);
1154 btrfs_info(fs_info, "resizer unable to find device %llu",
1160 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1162 "resizer unable to apply on readonly device %llu",
1168 if (!strcmp(sizestr, "max"))
1169 new_size = bdev_nr_bytes(device->bdev);
1171 if (sizestr[0] == '-') {
1174 } else if (sizestr[0] == '+') {
1178 new_size = memparse(sizestr, &retptr);
1179 if (*retptr != '\0' || new_size == 0) {
1185 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1190 old_size = btrfs_device_get_total_bytes(device);
1193 if (new_size > old_size) {
1197 new_size = old_size - new_size;
1198 } else if (mod > 0) {
1199 if (new_size > ULLONG_MAX - old_size) {
1203 new_size = old_size + new_size;
1206 if (new_size < SZ_256M) {
1210 if (new_size > bdev_nr_bytes(device->bdev)) {
1215 new_size = round_down(new_size, fs_info->sectorsize);
1217 if (new_size > old_size) {
1218 trans = btrfs_start_transaction(root, 0);
1219 if (IS_ERR(trans)) {
1220 ret = PTR_ERR(trans);
1223 ret = btrfs_grow_device(trans, device, new_size);
1224 btrfs_commit_transaction(trans);
1225 } else if (new_size < old_size) {
1226 ret = btrfs_shrink_device(device, new_size);
1227 } /* equal, nothing need to do */
1229 if (ret == 0 && new_size != old_size)
1230 btrfs_info_in_rcu(fs_info,
1231 "resize device %s (devid %llu) from %llu to %llu",
1232 btrfs_dev_name(device), device->devid,
1233 old_size, new_size);
1235 btrfs_exclop_finish(fs_info);
1239 mnt_drop_write_file(file);
1243 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1244 struct mnt_idmap *idmap,
1245 const char *name, unsigned long fd, int subvol,
1247 struct btrfs_qgroup_inherit *inherit)
1252 if (!S_ISDIR(file_inode(file)->i_mode))
1255 ret = mnt_want_write_file(file);
1259 namelen = strlen(name);
1260 if (strchr(name, '/')) {
1262 goto out_drop_write;
1265 if (name[0] == '.' &&
1266 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1268 goto out_drop_write;
1272 ret = btrfs_mksubvol(&file->f_path, idmap, name,
1273 namelen, NULL, readonly, inherit);
1275 struct fd src = fdget(fd);
1276 struct inode *src_inode;
1279 goto out_drop_write;
1282 src_inode = file_inode(src.file);
1283 if (src_inode->i_sb != file_inode(file)->i_sb) {
1284 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1285 "Snapshot src from another FS");
1287 } else if (!inode_owner_or_capable(idmap, src_inode)) {
1289 * Subvolume creation is not restricted, but snapshots
1290 * are limited to own subvolumes only
1294 ret = btrfs_mksnapshot(&file->f_path, idmap,
1296 BTRFS_I(src_inode)->root,
1302 mnt_drop_write_file(file);
1307 static noinline int btrfs_ioctl_snap_create(struct file *file,
1308 void __user *arg, int subvol)
1310 struct btrfs_ioctl_vol_args *vol_args;
1313 if (!S_ISDIR(file_inode(file)->i_mode))
1316 vol_args = memdup_user(arg, sizeof(*vol_args));
1317 if (IS_ERR(vol_args))
1318 return PTR_ERR(vol_args);
1319 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1321 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1322 vol_args->name, vol_args->fd, subvol,
1329 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1330 void __user *arg, int subvol)
1332 struct btrfs_ioctl_vol_args_v2 *vol_args;
1334 bool readonly = false;
1335 struct btrfs_qgroup_inherit *inherit = NULL;
1337 if (!S_ISDIR(file_inode(file)->i_mode))
1340 vol_args = memdup_user(arg, sizeof(*vol_args));
1341 if (IS_ERR(vol_args))
1342 return PTR_ERR(vol_args);
1343 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1345 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1350 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1352 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1355 if (vol_args->size < sizeof(*inherit) ||
1356 vol_args->size > PAGE_SIZE) {
1360 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1361 if (IS_ERR(inherit)) {
1362 ret = PTR_ERR(inherit);
1366 if (inherit->num_qgroups > PAGE_SIZE ||
1367 inherit->num_ref_copies > PAGE_SIZE ||
1368 inherit->num_excl_copies > PAGE_SIZE) {
1373 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1374 2 * inherit->num_excl_copies;
1375 if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1381 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1382 vol_args->name, vol_args->fd, subvol,
1393 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1396 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1397 struct btrfs_root *root = BTRFS_I(inode)->root;
1401 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1404 down_read(&fs_info->subvol_sem);
1405 if (btrfs_root_readonly(root))
1406 flags |= BTRFS_SUBVOL_RDONLY;
1407 up_read(&fs_info->subvol_sem);
1409 if (copy_to_user(arg, &flags, sizeof(flags)))
1415 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1418 struct inode *inode = file_inode(file);
1419 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1420 struct btrfs_root *root = BTRFS_I(inode)->root;
1421 struct btrfs_trans_handle *trans;
1426 if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1429 ret = mnt_want_write_file(file);
1433 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1435 goto out_drop_write;
1438 if (copy_from_user(&flags, arg, sizeof(flags))) {
1440 goto out_drop_write;
1443 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1445 goto out_drop_write;
1448 down_write(&fs_info->subvol_sem);
1451 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1454 root_flags = btrfs_root_flags(&root->root_item);
1455 if (flags & BTRFS_SUBVOL_RDONLY) {
1456 btrfs_set_root_flags(&root->root_item,
1457 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1460 * Block RO -> RW transition if this subvolume is involved in
1463 spin_lock(&root->root_item_lock);
1464 if (root->send_in_progress == 0) {
1465 btrfs_set_root_flags(&root->root_item,
1466 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1467 spin_unlock(&root->root_item_lock);
1469 spin_unlock(&root->root_item_lock);
1471 "Attempt to set subvolume %llu read-write during send",
1472 root->root_key.objectid);
1478 trans = btrfs_start_transaction(root, 1);
1479 if (IS_ERR(trans)) {
1480 ret = PTR_ERR(trans);
1484 ret = btrfs_update_root(trans, fs_info->tree_root,
1485 &root->root_key, &root->root_item);
1487 btrfs_end_transaction(trans);
1491 ret = btrfs_commit_transaction(trans);
1495 btrfs_set_root_flags(&root->root_item, root_flags);
1497 up_write(&fs_info->subvol_sem);
1499 mnt_drop_write_file(file);
1504 static noinline int key_in_sk(struct btrfs_key *key,
1505 struct btrfs_ioctl_search_key *sk)
1507 struct btrfs_key test;
1510 test.objectid = sk->min_objectid;
1511 test.type = sk->min_type;
1512 test.offset = sk->min_offset;
1514 ret = btrfs_comp_cpu_keys(key, &test);
1518 test.objectid = sk->max_objectid;
1519 test.type = sk->max_type;
1520 test.offset = sk->max_offset;
1522 ret = btrfs_comp_cpu_keys(key, &test);
1528 static noinline int copy_to_sk(struct btrfs_path *path,
1529 struct btrfs_key *key,
1530 struct btrfs_ioctl_search_key *sk,
1533 unsigned long *sk_offset,
1537 struct extent_buffer *leaf;
1538 struct btrfs_ioctl_search_header sh;
1539 struct btrfs_key test;
1540 unsigned long item_off;
1541 unsigned long item_len;
1547 leaf = path->nodes[0];
1548 slot = path->slots[0];
1549 nritems = btrfs_header_nritems(leaf);
1551 if (btrfs_header_generation(leaf) > sk->max_transid) {
1555 found_transid = btrfs_header_generation(leaf);
1557 for (i = slot; i < nritems; i++) {
1558 item_off = btrfs_item_ptr_offset(leaf, i);
1559 item_len = btrfs_item_size(leaf, i);
1561 btrfs_item_key_to_cpu(leaf, key, i);
1562 if (!key_in_sk(key, sk))
1565 if (sizeof(sh) + item_len > *buf_size) {
1572 * return one empty item back for v1, which does not
1576 *buf_size = sizeof(sh) + item_len;
1581 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1586 sh.objectid = key->objectid;
1587 sh.offset = key->offset;
1588 sh.type = key->type;
1590 sh.transid = found_transid;
1593 * Copy search result header. If we fault then loop again so we
1594 * can fault in the pages and -EFAULT there if there's a
1595 * problem. Otherwise we'll fault and then copy the buffer in
1596 * properly this next time through
1598 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1603 *sk_offset += sizeof(sh);
1606 char __user *up = ubuf + *sk_offset;
1608 * Copy the item, same behavior as above, but reset the
1609 * * sk_offset so we copy the full thing again.
1611 if (read_extent_buffer_to_user_nofault(leaf, up,
1612 item_off, item_len)) {
1614 *sk_offset -= sizeof(sh);
1618 *sk_offset += item_len;
1622 if (ret) /* -EOVERFLOW from above */
1625 if (*num_found >= sk->nr_items) {
1632 test.objectid = sk->max_objectid;
1633 test.type = sk->max_type;
1634 test.offset = sk->max_offset;
1635 if (btrfs_comp_cpu_keys(key, &test) >= 0)
1637 else if (key->offset < (u64)-1)
1639 else if (key->type < (u8)-1) {
1642 } else if (key->objectid < (u64)-1) {
1650 * 0: all items from this leaf copied, continue with next
1651 * 1: * more items can be copied, but unused buffer is too small
1652 * * all items were found
1653 * Either way, it will stops the loop which iterates to the next
1655 * -EOVERFLOW: item was to large for buffer
1656 * -EFAULT: could not copy extent buffer back to userspace
1661 static noinline int search_ioctl(struct inode *inode,
1662 struct btrfs_ioctl_search_key *sk,
1666 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
1667 struct btrfs_root *root;
1668 struct btrfs_key key;
1669 struct btrfs_path *path;
1672 unsigned long sk_offset = 0;
1674 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1675 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1679 path = btrfs_alloc_path();
1683 if (sk->tree_id == 0) {
1684 /* search the root of the inode that was passed */
1685 root = btrfs_grab_root(BTRFS_I(inode)->root);
1687 root = btrfs_get_fs_root(info, sk->tree_id, true);
1689 btrfs_free_path(path);
1690 return PTR_ERR(root);
1694 key.objectid = sk->min_objectid;
1695 key.type = sk->min_type;
1696 key.offset = sk->min_offset;
1701 * Ensure that the whole user buffer is faulted in at sub-page
1702 * granularity, otherwise the loop may live-lock.
1704 if (fault_in_subpage_writeable(ubuf + sk_offset,
1705 *buf_size - sk_offset))
1708 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1714 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1715 &sk_offset, &num_found);
1716 btrfs_release_path(path);
1724 sk->nr_items = num_found;
1725 btrfs_put_root(root);
1726 btrfs_free_path(path);
1730 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1733 struct btrfs_ioctl_search_args __user *uargs = argp;
1734 struct btrfs_ioctl_search_key sk;
1738 if (!capable(CAP_SYS_ADMIN))
1741 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1744 buf_size = sizeof(uargs->buf);
1746 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1749 * In the origin implementation an overflow is handled by returning a
1750 * search header with a len of zero, so reset ret.
1752 if (ret == -EOVERFLOW)
1755 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1760 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1763 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1764 struct btrfs_ioctl_search_args_v2 args;
1767 const size_t buf_limit = SZ_16M;
1769 if (!capable(CAP_SYS_ADMIN))
1772 /* copy search header and buffer size */
1773 if (copy_from_user(&args, uarg, sizeof(args)))
1776 buf_size = args.buf_size;
1778 /* limit result size to 16MB */
1779 if (buf_size > buf_limit)
1780 buf_size = buf_limit;
1782 ret = search_ioctl(inode, &args.key, &buf_size,
1783 (char __user *)(&uarg->buf[0]));
1784 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1786 else if (ret == -EOVERFLOW &&
1787 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1794 * Search INODE_REFs to identify path name of 'dirid' directory
1795 * in a 'tree_id' tree. and sets path name to 'name'.
1797 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1798 u64 tree_id, u64 dirid, char *name)
1800 struct btrfs_root *root;
1801 struct btrfs_key key;
1807 struct btrfs_inode_ref *iref;
1808 struct extent_buffer *l;
1809 struct btrfs_path *path;
1811 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1816 path = btrfs_alloc_path();
1820 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1822 root = btrfs_get_fs_root(info, tree_id, true);
1824 ret = PTR_ERR(root);
1829 key.objectid = dirid;
1830 key.type = BTRFS_INODE_REF_KEY;
1831 key.offset = (u64)-1;
1834 ret = btrfs_search_backwards(root, &key, path);
1843 slot = path->slots[0];
1845 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1846 len = btrfs_inode_ref_name_len(l, iref);
1848 total_len += len + 1;
1850 ret = -ENAMETOOLONG;
1855 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1857 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1860 btrfs_release_path(path);
1861 key.objectid = key.offset;
1862 key.offset = (u64)-1;
1863 dirid = key.objectid;
1865 memmove(name, ptr, total_len);
1866 name[total_len] = '\0';
1869 btrfs_put_root(root);
1870 btrfs_free_path(path);
1874 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1875 struct inode *inode,
1876 struct btrfs_ioctl_ino_lookup_user_args *args)
1878 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1879 struct super_block *sb = inode->i_sb;
1880 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1881 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1882 u64 dirid = args->dirid;
1883 unsigned long item_off;
1884 unsigned long item_len;
1885 struct btrfs_inode_ref *iref;
1886 struct btrfs_root_ref *rref;
1887 struct btrfs_root *root = NULL;
1888 struct btrfs_path *path;
1889 struct btrfs_key key, key2;
1890 struct extent_buffer *leaf;
1891 struct inode *temp_inode;
1898 path = btrfs_alloc_path();
1903 * If the bottom subvolume does not exist directly under upper_limit,
1904 * construct the path in from the bottom up.
1906 if (dirid != upper_limit.objectid) {
1907 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1909 root = btrfs_get_fs_root(fs_info, treeid, true);
1911 ret = PTR_ERR(root);
1915 key.objectid = dirid;
1916 key.type = BTRFS_INODE_REF_KEY;
1917 key.offset = (u64)-1;
1919 ret = btrfs_search_backwards(root, &key, path);
1927 leaf = path->nodes[0];
1928 slot = path->slots[0];
1930 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1931 len = btrfs_inode_ref_name_len(leaf, iref);
1933 total_len += len + 1;
1934 if (ptr < args->path) {
1935 ret = -ENAMETOOLONG;
1940 read_extent_buffer(leaf, ptr,
1941 (unsigned long)(iref + 1), len);
1943 /* Check the read+exec permission of this directory */
1944 ret = btrfs_previous_item(root, path, dirid,
1945 BTRFS_INODE_ITEM_KEY);
1948 } else if (ret > 0) {
1953 leaf = path->nodes[0];
1954 slot = path->slots[0];
1955 btrfs_item_key_to_cpu(leaf, &key2, slot);
1956 if (key2.objectid != dirid) {
1961 temp_inode = btrfs_iget(sb, key2.objectid, root);
1962 if (IS_ERR(temp_inode)) {
1963 ret = PTR_ERR(temp_inode);
1966 ret = inode_permission(idmap, temp_inode,
1967 MAY_READ | MAY_EXEC);
1974 if (key.offset == upper_limit.objectid)
1976 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1981 btrfs_release_path(path);
1982 key.objectid = key.offset;
1983 key.offset = (u64)-1;
1984 dirid = key.objectid;
1987 memmove(args->path, ptr, total_len);
1988 args->path[total_len] = '\0';
1989 btrfs_put_root(root);
1991 btrfs_release_path(path);
1994 /* Get the bottom subvolume's name from ROOT_REF */
1995 key.objectid = treeid;
1996 key.type = BTRFS_ROOT_REF_KEY;
1997 key.offset = args->treeid;
1998 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2001 } else if (ret > 0) {
2006 leaf = path->nodes[0];
2007 slot = path->slots[0];
2008 btrfs_item_key_to_cpu(leaf, &key, slot);
2010 item_off = btrfs_item_ptr_offset(leaf, slot);
2011 item_len = btrfs_item_size(leaf, slot);
2012 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2013 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2014 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2019 /* Copy subvolume's name */
2020 item_off += sizeof(struct btrfs_root_ref);
2021 item_len -= sizeof(struct btrfs_root_ref);
2022 read_extent_buffer(leaf, args->name, item_off, item_len);
2023 args->name[item_len] = 0;
2026 btrfs_put_root(root);
2028 btrfs_free_path(path);
2032 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2035 struct btrfs_ioctl_ino_lookup_args *args;
2038 args = memdup_user(argp, sizeof(*args));
2040 return PTR_ERR(args);
2043 * Unprivileged query to obtain the containing subvolume root id. The
2044 * path is reset so it's consistent with btrfs_search_path_in_tree.
2046 if (args->treeid == 0)
2047 args->treeid = root->root_key.objectid;
2049 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2054 if (!capable(CAP_SYS_ADMIN)) {
2059 ret = btrfs_search_path_in_tree(root->fs_info,
2060 args->treeid, args->objectid,
2064 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2072 * Version of ino_lookup ioctl (unprivileged)
2074 * The main differences from ino_lookup ioctl are:
2076 * 1. Read + Exec permission will be checked using inode_permission() during
2077 * path construction. -EACCES will be returned in case of failure.
2078 * 2. Path construction will be stopped at the inode number which corresponds
2079 * to the fd with which this ioctl is called. If constructed path does not
2080 * exist under fd's inode, -EACCES will be returned.
2081 * 3. The name of bottom subvolume is also searched and filled.
2083 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2085 struct btrfs_ioctl_ino_lookup_user_args *args;
2086 struct inode *inode;
2089 args = memdup_user(argp, sizeof(*args));
2091 return PTR_ERR(args);
2093 inode = file_inode(file);
2095 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2096 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2098 * The subvolume does not exist under fd with which this is
2105 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2107 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2114 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2115 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2117 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2118 struct btrfs_fs_info *fs_info;
2119 struct btrfs_root *root;
2120 struct btrfs_path *path;
2121 struct btrfs_key key;
2122 struct btrfs_root_item *root_item;
2123 struct btrfs_root_ref *rref;
2124 struct extent_buffer *leaf;
2125 unsigned long item_off;
2126 unsigned long item_len;
2130 path = btrfs_alloc_path();
2134 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2136 btrfs_free_path(path);
2140 fs_info = BTRFS_I(inode)->root->fs_info;
2142 /* Get root_item of inode's subvolume */
2143 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2144 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2146 ret = PTR_ERR(root);
2149 root_item = &root->root_item;
2151 subvol_info->treeid = key.objectid;
2153 subvol_info->generation = btrfs_root_generation(root_item);
2154 subvol_info->flags = btrfs_root_flags(root_item);
2156 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2157 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2159 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2162 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2163 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2164 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2166 subvol_info->otransid = btrfs_root_otransid(root_item);
2167 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2168 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2170 subvol_info->stransid = btrfs_root_stransid(root_item);
2171 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2172 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2174 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2175 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2176 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2178 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2179 /* Search root tree for ROOT_BACKREF of this subvolume */
2180 key.type = BTRFS_ROOT_BACKREF_KEY;
2182 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2185 } else if (path->slots[0] >=
2186 btrfs_header_nritems(path->nodes[0])) {
2187 ret = btrfs_next_leaf(fs_info->tree_root, path);
2190 } else if (ret > 0) {
2196 leaf = path->nodes[0];
2197 slot = path->slots[0];
2198 btrfs_item_key_to_cpu(leaf, &key, slot);
2199 if (key.objectid == subvol_info->treeid &&
2200 key.type == BTRFS_ROOT_BACKREF_KEY) {
2201 subvol_info->parent_id = key.offset;
2203 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2204 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2206 item_off = btrfs_item_ptr_offset(leaf, slot)
2207 + sizeof(struct btrfs_root_ref);
2208 item_len = btrfs_item_size(leaf, slot)
2209 - sizeof(struct btrfs_root_ref);
2210 read_extent_buffer(leaf, subvol_info->name,
2211 item_off, item_len);
2218 btrfs_free_path(path);
2220 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2224 btrfs_put_root(root);
2226 btrfs_free_path(path);
2232 * Return ROOT_REF information of the subvolume containing this inode
2233 * except the subvolume name.
2235 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2238 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2239 struct btrfs_root_ref *rref;
2240 struct btrfs_path *path;
2241 struct btrfs_key key;
2242 struct extent_buffer *leaf;
2248 path = btrfs_alloc_path();
2252 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2253 if (IS_ERR(rootrefs)) {
2254 btrfs_free_path(path);
2255 return PTR_ERR(rootrefs);
2258 objectid = root->root_key.objectid;
2259 key.objectid = objectid;
2260 key.type = BTRFS_ROOT_REF_KEY;
2261 key.offset = rootrefs->min_treeid;
2264 root = root->fs_info->tree_root;
2265 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2268 } else if (path->slots[0] >=
2269 btrfs_header_nritems(path->nodes[0])) {
2270 ret = btrfs_next_leaf(root, path);
2273 } else if (ret > 0) {
2279 leaf = path->nodes[0];
2280 slot = path->slots[0];
2282 btrfs_item_key_to_cpu(leaf, &key, slot);
2283 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2288 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2293 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2294 rootrefs->rootref[found].treeid = key.offset;
2295 rootrefs->rootref[found].dirid =
2296 btrfs_root_ref_dirid(leaf, rref);
2299 ret = btrfs_next_item(root, path);
2302 } else if (ret > 0) {
2309 btrfs_free_path(path);
2311 if (!ret || ret == -EOVERFLOW) {
2312 rootrefs->num_items = found;
2313 /* update min_treeid for next search */
2315 rootrefs->min_treeid =
2316 rootrefs->rootref[found - 1].treeid + 1;
2317 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2326 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2330 struct dentry *parent = file->f_path.dentry;
2331 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2332 struct dentry *dentry;
2333 struct inode *dir = d_inode(parent);
2334 struct inode *inode;
2335 struct btrfs_root *root = BTRFS_I(dir)->root;
2336 struct btrfs_root *dest = NULL;
2337 struct btrfs_ioctl_vol_args *vol_args = NULL;
2338 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2339 struct mnt_idmap *idmap = file_mnt_idmap(file);
2340 char *subvol_name, *subvol_name_ptr = NULL;
2343 bool destroy_parent = false;
2345 /* We don't support snapshots with extent tree v2 yet. */
2346 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2348 "extent tree v2 doesn't support snapshot deletion yet");
2353 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2354 if (IS_ERR(vol_args2))
2355 return PTR_ERR(vol_args2);
2357 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2363 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2364 * name, same as v1 currently does.
2366 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2367 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2368 subvol_name = vol_args2->name;
2370 err = mnt_want_write_file(file);
2374 struct inode *old_dir;
2376 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2381 err = mnt_want_write_file(file);
2385 dentry = btrfs_get_dentry(fs_info->sb,
2386 BTRFS_FIRST_FREE_OBJECTID,
2387 vol_args2->subvolid, 0);
2388 if (IS_ERR(dentry)) {
2389 err = PTR_ERR(dentry);
2390 goto out_drop_write;
2394 * Change the default parent since the subvolume being
2395 * deleted can be outside of the current mount point.
2397 parent = btrfs_get_parent(dentry);
2400 * At this point dentry->d_name can point to '/' if the
2401 * subvolume we want to destroy is outsite of the
2402 * current mount point, so we need to release the
2403 * current dentry and execute the lookup to return a new
2404 * one with ->d_name pointing to the
2405 * <mount point>/subvol_name.
2408 if (IS_ERR(parent)) {
2409 err = PTR_ERR(parent);
2410 goto out_drop_write;
2413 dir = d_inode(parent);
2416 * If v2 was used with SPEC_BY_ID, a new parent was
2417 * allocated since the subvolume can be outside of the
2418 * current mount point. Later on we need to release this
2419 * new parent dentry.
2421 destroy_parent = true;
2424 * On idmapped mounts, deletion via subvolid is
2425 * restricted to subvolumes that are immediate
2426 * ancestors of the inode referenced by the file
2427 * descriptor in the ioctl. Otherwise the idmapping
2428 * could potentially be abused to delete subvolumes
2429 * anywhere in the filesystem the user wouldn't be able
2430 * to delete without an idmapped mount.
2432 if (old_dir != dir && idmap != &nop_mnt_idmap) {
2437 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2438 fs_info, vol_args2->subvolid);
2439 if (IS_ERR(subvol_name_ptr)) {
2440 err = PTR_ERR(subvol_name_ptr);
2443 /* subvol_name_ptr is already nul terminated */
2444 subvol_name = (char *)kbasename(subvol_name_ptr);
2447 vol_args = memdup_user(arg, sizeof(*vol_args));
2448 if (IS_ERR(vol_args))
2449 return PTR_ERR(vol_args);
2451 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2452 subvol_name = vol_args->name;
2454 err = mnt_want_write_file(file);
2459 subvol_namelen = strlen(subvol_name);
2461 if (strchr(subvol_name, '/') ||
2462 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2464 goto free_subvol_name;
2467 if (!S_ISDIR(dir->i_mode)) {
2469 goto free_subvol_name;
2472 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2474 goto free_subvol_name;
2475 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2476 if (IS_ERR(dentry)) {
2477 err = PTR_ERR(dentry);
2478 goto out_unlock_dir;
2481 if (d_really_is_negative(dentry)) {
2486 inode = d_inode(dentry);
2487 dest = BTRFS_I(inode)->root;
2488 if (!capable(CAP_SYS_ADMIN)) {
2490 * Regular user. Only allow this with a special mount
2491 * option, when the user has write+exec access to the
2492 * subvol root, and when rmdir(2) would have been
2495 * Note that this is _not_ check that the subvol is
2496 * empty or doesn't contain data that we wouldn't
2497 * otherwise be able to delete.
2499 * Users who want to delete empty subvols should try
2503 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2507 * Do not allow deletion if the parent dir is the same
2508 * as the dir to be deleted. That means the ioctl
2509 * must be called on the dentry referencing the root
2510 * of the subvol, not a random directory contained
2517 err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2522 /* check if subvolume may be deleted by a user */
2523 err = btrfs_may_delete(idmap, dir, dentry, 1);
2527 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2532 btrfs_inode_lock(BTRFS_I(inode), 0);
2533 err = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2534 btrfs_inode_unlock(BTRFS_I(inode), 0);
2536 d_delete_notify(dir, dentry);
2541 btrfs_inode_unlock(BTRFS_I(dir), 0);
2543 kfree(subvol_name_ptr);
2548 mnt_drop_write_file(file);
2555 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2557 struct inode *inode = file_inode(file);
2558 struct btrfs_root *root = BTRFS_I(inode)->root;
2559 struct btrfs_ioctl_defrag_range_args range = {0};
2562 ret = mnt_want_write_file(file);
2566 if (btrfs_root_readonly(root)) {
2571 switch (inode->i_mode & S_IFMT) {
2573 if (!capable(CAP_SYS_ADMIN)) {
2577 ret = btrfs_defrag_root(root);
2581 * Note that this does not check the file descriptor for write
2582 * access. This prevents defragmenting executables that are
2583 * running and allows defrag on files open in read-only mode.
2585 if (!capable(CAP_SYS_ADMIN) &&
2586 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2592 if (copy_from_user(&range, argp, sizeof(range))) {
2596 /* compression requires us to start the IO */
2597 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2598 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2599 range.extent_thresh = (u32)-1;
2602 /* the rest are all set to zero by kzalloc */
2603 range.len = (u64)-1;
2605 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2606 &range, BTRFS_OLDEST_GENERATION, 0);
2614 mnt_drop_write_file(file);
2618 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2620 struct btrfs_ioctl_vol_args *vol_args;
2621 bool restore_op = false;
2624 if (!capable(CAP_SYS_ADMIN))
2627 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2628 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2632 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2633 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2634 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2637 * We can do the device add because we have a paused balanced,
2638 * change the exclusive op type and remember we should bring
2639 * back the paused balance
2641 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2642 btrfs_exclop_start_unlock(fs_info);
2646 vol_args = memdup_user(arg, sizeof(*vol_args));
2647 if (IS_ERR(vol_args)) {
2648 ret = PTR_ERR(vol_args);
2652 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2653 ret = btrfs_init_new_device(fs_info, vol_args->name);
2656 btrfs_info(fs_info, "disk added %s", vol_args->name);
2661 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2663 btrfs_exclop_finish(fs_info);
2667 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2669 BTRFS_DEV_LOOKUP_ARGS(args);
2670 struct inode *inode = file_inode(file);
2671 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2672 struct btrfs_ioctl_vol_args_v2 *vol_args;
2673 struct block_device *bdev = NULL;
2676 bool cancel = false;
2678 if (!capable(CAP_SYS_ADMIN))
2681 vol_args = memdup_user(arg, sizeof(*vol_args));
2682 if (IS_ERR(vol_args))
2683 return PTR_ERR(vol_args);
2685 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2690 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2691 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2692 args.devid = vol_args->devid;
2693 } else if (!strcmp("cancel", vol_args->name)) {
2696 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2701 ret = mnt_want_write_file(file);
2705 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2710 /* Exclusive operation is now claimed */
2711 ret = btrfs_rm_device(fs_info, &args, &bdev, &holder);
2713 btrfs_exclop_finish(fs_info);
2716 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2717 btrfs_info(fs_info, "device deleted: id %llu",
2720 btrfs_info(fs_info, "device deleted: %s",
2724 mnt_drop_write_file(file);
2726 blkdev_put(bdev, holder);
2728 btrfs_put_dev_args_from_path(&args);
2733 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2735 BTRFS_DEV_LOOKUP_ARGS(args);
2736 struct inode *inode = file_inode(file);
2737 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2738 struct btrfs_ioctl_vol_args *vol_args;
2739 struct block_device *bdev = NULL;
2742 bool cancel = false;
2744 if (!capable(CAP_SYS_ADMIN))
2747 vol_args = memdup_user(arg, sizeof(*vol_args));
2748 if (IS_ERR(vol_args))
2749 return PTR_ERR(vol_args);
2751 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2752 if (!strcmp("cancel", vol_args->name)) {
2755 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2760 ret = mnt_want_write_file(file);
2764 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2767 ret = btrfs_rm_device(fs_info, &args, &bdev, &holder);
2769 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2770 btrfs_exclop_finish(fs_info);
2773 mnt_drop_write_file(file);
2775 blkdev_put(bdev, holder);
2777 btrfs_put_dev_args_from_path(&args);
2782 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2785 struct btrfs_ioctl_fs_info_args *fi_args;
2786 struct btrfs_device *device;
2787 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2791 fi_args = memdup_user(arg, sizeof(*fi_args));
2792 if (IS_ERR(fi_args))
2793 return PTR_ERR(fi_args);
2795 flags_in = fi_args->flags;
2796 memset(fi_args, 0, sizeof(*fi_args));
2799 fi_args->num_devices = fs_devices->num_devices;
2801 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2802 if (device->devid > fi_args->max_id)
2803 fi_args->max_id = device->devid;
2807 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2808 fi_args->nodesize = fs_info->nodesize;
2809 fi_args->sectorsize = fs_info->sectorsize;
2810 fi_args->clone_alignment = fs_info->sectorsize;
2812 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2813 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2814 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2815 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2818 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2819 fi_args->generation = fs_info->generation;
2820 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2823 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2824 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2825 sizeof(fi_args->metadata_uuid));
2826 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2829 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2836 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2839 BTRFS_DEV_LOOKUP_ARGS(args);
2840 struct btrfs_ioctl_dev_info_args *di_args;
2841 struct btrfs_device *dev;
2844 di_args = memdup_user(arg, sizeof(*di_args));
2845 if (IS_ERR(di_args))
2846 return PTR_ERR(di_args);
2848 args.devid = di_args->devid;
2849 if (!btrfs_is_empty_uuid(di_args->uuid))
2850 args.uuid = di_args->uuid;
2853 dev = btrfs_find_device(fs_info->fs_devices, &args);
2859 di_args->devid = dev->devid;
2860 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2861 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2862 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2863 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2865 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2867 di_args->path[0] = '\0';
2871 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2878 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2880 struct inode *inode = file_inode(file);
2881 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2882 struct btrfs_root *root = BTRFS_I(inode)->root;
2883 struct btrfs_root *new_root;
2884 struct btrfs_dir_item *di;
2885 struct btrfs_trans_handle *trans;
2886 struct btrfs_path *path = NULL;
2887 struct btrfs_disk_key disk_key;
2888 struct fscrypt_str name = FSTR_INIT("default", 7);
2893 if (!capable(CAP_SYS_ADMIN))
2896 ret = mnt_want_write_file(file);
2900 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2906 objectid = BTRFS_FS_TREE_OBJECTID;
2908 new_root = btrfs_get_fs_root(fs_info, objectid, true);
2909 if (IS_ERR(new_root)) {
2910 ret = PTR_ERR(new_root);
2913 if (!is_fstree(new_root->root_key.objectid)) {
2918 path = btrfs_alloc_path();
2924 trans = btrfs_start_transaction(root, 1);
2925 if (IS_ERR(trans)) {
2926 ret = PTR_ERR(trans);
2930 dir_id = btrfs_super_root_dir(fs_info->super_copy);
2931 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2933 if (IS_ERR_OR_NULL(di)) {
2934 btrfs_release_path(path);
2935 btrfs_end_transaction(trans);
2937 "Umm, you don't have the default diritem, this isn't going to work");
2942 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2943 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2944 btrfs_mark_buffer_dirty(path->nodes[0]);
2945 btrfs_release_path(path);
2947 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2948 btrfs_end_transaction(trans);
2950 btrfs_put_root(new_root);
2951 btrfs_free_path(path);
2953 mnt_drop_write_file(file);
2957 static void get_block_group_info(struct list_head *groups_list,
2958 struct btrfs_ioctl_space_info *space)
2960 struct btrfs_block_group *block_group;
2962 space->total_bytes = 0;
2963 space->used_bytes = 0;
2965 list_for_each_entry(block_group, groups_list, list) {
2966 space->flags = block_group->flags;
2967 space->total_bytes += block_group->length;
2968 space->used_bytes += block_group->used;
2972 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2975 struct btrfs_ioctl_space_args space_args;
2976 struct btrfs_ioctl_space_info space;
2977 struct btrfs_ioctl_space_info *dest;
2978 struct btrfs_ioctl_space_info *dest_orig;
2979 struct btrfs_ioctl_space_info __user *user_dest;
2980 struct btrfs_space_info *info;
2981 static const u64 types[] = {
2982 BTRFS_BLOCK_GROUP_DATA,
2983 BTRFS_BLOCK_GROUP_SYSTEM,
2984 BTRFS_BLOCK_GROUP_METADATA,
2985 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
2993 if (copy_from_user(&space_args,
2994 (struct btrfs_ioctl_space_args __user *)arg,
2995 sizeof(space_args)))
2998 for (i = 0; i < num_types; i++) {
2999 struct btrfs_space_info *tmp;
3002 list_for_each_entry(tmp, &fs_info->space_info, list) {
3003 if (tmp->flags == types[i]) {
3012 down_read(&info->groups_sem);
3013 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3014 if (!list_empty(&info->block_groups[c]))
3017 up_read(&info->groups_sem);
3021 * Global block reserve, exported as a space_info
3025 /* space_slots == 0 means they are asking for a count */
3026 if (space_args.space_slots == 0) {
3027 space_args.total_spaces = slot_count;
3031 slot_count = min_t(u64, space_args.space_slots, slot_count);
3033 alloc_size = sizeof(*dest) * slot_count;
3035 /* we generally have at most 6 or so space infos, one for each raid
3036 * level. So, a whole page should be more than enough for everyone
3038 if (alloc_size > PAGE_SIZE)
3041 space_args.total_spaces = 0;
3042 dest = kmalloc(alloc_size, GFP_KERNEL);
3047 /* now we have a buffer to copy into */
3048 for (i = 0; i < num_types; i++) {
3049 struct btrfs_space_info *tmp;
3055 list_for_each_entry(tmp, &fs_info->space_info, list) {
3056 if (tmp->flags == types[i]) {
3064 down_read(&info->groups_sem);
3065 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3066 if (!list_empty(&info->block_groups[c])) {
3067 get_block_group_info(&info->block_groups[c],
3069 memcpy(dest, &space, sizeof(space));
3071 space_args.total_spaces++;
3077 up_read(&info->groups_sem);
3081 * Add global block reserve
3084 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3086 spin_lock(&block_rsv->lock);
3087 space.total_bytes = block_rsv->size;
3088 space.used_bytes = block_rsv->size - block_rsv->reserved;
3089 spin_unlock(&block_rsv->lock);
3090 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3091 memcpy(dest, &space, sizeof(space));
3092 space_args.total_spaces++;
3095 user_dest = (struct btrfs_ioctl_space_info __user *)
3096 (arg + sizeof(struct btrfs_ioctl_space_args));
3098 if (copy_to_user(user_dest, dest_orig, alloc_size))
3103 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3109 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3112 struct btrfs_trans_handle *trans;
3116 * Start orphan cleanup here for the given root in case it hasn't been
3117 * started already by other means. Errors are handled in the other
3118 * functions during transaction commit.
3120 btrfs_orphan_cleanup(root);
3122 trans = btrfs_attach_transaction_barrier(root);
3123 if (IS_ERR(trans)) {
3124 if (PTR_ERR(trans) != -ENOENT)
3125 return PTR_ERR(trans);
3127 /* No running transaction, don't bother */
3128 transid = root->fs_info->last_trans_committed;
3131 transid = trans->transid;
3132 btrfs_commit_transaction_async(trans);
3135 if (copy_to_user(argp, &transid, sizeof(transid)))
3140 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3143 /* By default wait for the current transaction. */
3147 if (copy_from_user(&transid, argp, sizeof(transid)))
3150 return btrfs_wait_for_commit(fs_info, transid);
3153 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3155 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3156 struct btrfs_ioctl_scrub_args *sa;
3159 if (!capable(CAP_SYS_ADMIN))
3162 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3163 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3167 sa = memdup_user(arg, sizeof(*sa));
3171 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3176 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3177 ret = mnt_want_write_file(file);
3182 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3183 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3187 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3188 * error. This is important as it allows user space to know how much
3189 * progress scrub has done. For example, if scrub is canceled we get
3190 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3191 * space. Later user space can inspect the progress from the structure
3192 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3193 * previously (btrfs-progs does this).
3194 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3195 * then return -EFAULT to signal the structure was not copied or it may
3196 * be corrupt and unreliable due to a partial copy.
3198 if (copy_to_user(arg, sa, sizeof(*sa)))
3201 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3202 mnt_drop_write_file(file);
3208 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3210 if (!capable(CAP_SYS_ADMIN))
3213 return btrfs_scrub_cancel(fs_info);
3216 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3219 struct btrfs_ioctl_scrub_args *sa;
3222 if (!capable(CAP_SYS_ADMIN))
3225 sa = memdup_user(arg, sizeof(*sa));
3229 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3231 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3238 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3241 struct btrfs_ioctl_get_dev_stats *sa;
3244 sa = memdup_user(arg, sizeof(*sa));
3248 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3253 ret = btrfs_get_dev_stats(fs_info, sa);
3255 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3262 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3265 struct btrfs_ioctl_dev_replace_args *p;
3268 if (!capable(CAP_SYS_ADMIN))
3271 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3272 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3276 p = memdup_user(arg, sizeof(*p));
3281 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3282 if (sb_rdonly(fs_info->sb)) {
3286 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3287 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3289 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3290 btrfs_exclop_finish(fs_info);
3293 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3294 btrfs_dev_replace_status(fs_info, p);
3297 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3298 p->result = btrfs_dev_replace_cancel(fs_info);
3306 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3313 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3319 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3320 struct inode_fs_paths *ipath = NULL;
3321 struct btrfs_path *path;
3323 if (!capable(CAP_DAC_READ_SEARCH))
3326 path = btrfs_alloc_path();
3332 ipa = memdup_user(arg, sizeof(*ipa));
3339 size = min_t(u32, ipa->size, 4096);
3340 ipath = init_ipath(size, root, path);
3341 if (IS_ERR(ipath)) {
3342 ret = PTR_ERR(ipath);
3347 ret = paths_from_inode(ipa->inum, ipath);
3351 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3352 rel_ptr = ipath->fspath->val[i] -
3353 (u64)(unsigned long)ipath->fspath->val;
3354 ipath->fspath->val[i] = rel_ptr;
3357 btrfs_free_path(path);
3359 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3360 ipath->fspath, size);
3367 btrfs_free_path(path);
3374 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3375 void __user *arg, int version)
3379 struct btrfs_ioctl_logical_ino_args *loi;
3380 struct btrfs_data_container *inodes = NULL;
3381 struct btrfs_path *path = NULL;
3384 if (!capable(CAP_SYS_ADMIN))
3387 loi = memdup_user(arg, sizeof(*loi));
3389 return PTR_ERR(loi);
3392 ignore_offset = false;
3393 size = min_t(u32, loi->size, SZ_64K);
3395 /* All reserved bits must be 0 for now */
3396 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3400 /* Only accept flags we have defined so far */
3401 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3405 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3406 size = min_t(u32, loi->size, SZ_16M);
3409 inodes = init_data_container(size);
3410 if (IS_ERR(inodes)) {
3411 ret = PTR_ERR(inodes);
3415 path = btrfs_alloc_path();
3420 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3421 inodes, ignore_offset);
3422 btrfs_free_path(path);
3428 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3441 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3442 struct btrfs_ioctl_balance_args *bargs)
3444 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3446 bargs->flags = bctl->flags;
3448 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3449 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3450 if (atomic_read(&fs_info->balance_pause_req))
3451 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3452 if (atomic_read(&fs_info->balance_cancel_req))
3453 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3455 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3456 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3457 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3459 spin_lock(&fs_info->balance_lock);
3460 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3461 spin_unlock(&fs_info->balance_lock);
3465 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3468 * @fs_info: the filesystem
3469 * @excl_acquired: ptr to boolean value which is set to false in case balance
3472 * Return 0 on success in which case both fs_info::balance is acquired as well
3473 * as exclusive ops are blocked. In case of failure return an error code.
3475 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3480 * Exclusive operation is locked. Three possibilities:
3481 * (1) some other op is running
3482 * (2) balance is running
3483 * (3) balance is paused -- special case (think resume)
3486 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3487 *excl_acquired = true;
3488 mutex_lock(&fs_info->balance_mutex);
3492 mutex_lock(&fs_info->balance_mutex);
3493 if (fs_info->balance_ctl) {
3494 /* This is either (2) or (3) */
3495 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3501 mutex_unlock(&fs_info->balance_mutex);
3503 * Lock released to allow other waiters to
3504 * continue, we'll reexamine the status again.
3506 mutex_lock(&fs_info->balance_mutex);
3508 if (fs_info->balance_ctl &&
3509 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3511 *excl_acquired = false;
3517 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3521 mutex_unlock(&fs_info->balance_mutex);
3525 mutex_unlock(&fs_info->balance_mutex);
3526 *excl_acquired = false;
3530 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3532 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3533 struct btrfs_fs_info *fs_info = root->fs_info;
3534 struct btrfs_ioctl_balance_args *bargs;
3535 struct btrfs_balance_control *bctl;
3536 bool need_unlock = true;
3539 if (!capable(CAP_SYS_ADMIN))
3542 ret = mnt_want_write_file(file);
3546 bargs = memdup_user(arg, sizeof(*bargs));
3547 if (IS_ERR(bargs)) {
3548 ret = PTR_ERR(bargs);
3553 ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3557 lockdep_assert_held(&fs_info->balance_mutex);
3559 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3560 if (!fs_info->balance_ctl) {
3565 bctl = fs_info->balance_ctl;
3566 spin_lock(&fs_info->balance_lock);
3567 bctl->flags |= BTRFS_BALANCE_RESUME;
3568 spin_unlock(&fs_info->balance_lock);
3569 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3574 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3579 if (fs_info->balance_ctl) {
3584 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3590 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3591 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3592 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3594 bctl->flags = bargs->flags;
3597 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3598 * bctl is freed in reset_balance_state, or, if restriper was paused
3599 * all the way until unmount, in free_fs_info. The flag should be
3600 * cleared after reset_balance_state.
3602 need_unlock = false;
3604 ret = btrfs_balance(fs_info, bctl, bargs);
3607 if (ret == 0 || ret == -ECANCELED) {
3608 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3614 mutex_unlock(&fs_info->balance_mutex);
3616 btrfs_exclop_finish(fs_info);
3618 mnt_drop_write_file(file);
3623 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3625 if (!capable(CAP_SYS_ADMIN))
3629 case BTRFS_BALANCE_CTL_PAUSE:
3630 return btrfs_pause_balance(fs_info);
3631 case BTRFS_BALANCE_CTL_CANCEL:
3632 return btrfs_cancel_balance(fs_info);
3638 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3641 struct btrfs_ioctl_balance_args *bargs;
3644 if (!capable(CAP_SYS_ADMIN))
3647 mutex_lock(&fs_info->balance_mutex);
3648 if (!fs_info->balance_ctl) {
3653 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3659 btrfs_update_ioctl_balance_args(fs_info, bargs);
3661 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3666 mutex_unlock(&fs_info->balance_mutex);
3670 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3672 struct inode *inode = file_inode(file);
3673 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3674 struct btrfs_ioctl_quota_ctl_args *sa;
3677 if (!capable(CAP_SYS_ADMIN))
3680 ret = mnt_want_write_file(file);
3684 sa = memdup_user(arg, sizeof(*sa));
3690 down_write(&fs_info->subvol_sem);
3693 case BTRFS_QUOTA_CTL_ENABLE:
3694 ret = btrfs_quota_enable(fs_info);
3696 case BTRFS_QUOTA_CTL_DISABLE:
3697 ret = btrfs_quota_disable(fs_info);
3705 up_write(&fs_info->subvol_sem);
3707 mnt_drop_write_file(file);
3711 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3713 struct inode *inode = file_inode(file);
3714 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3715 struct btrfs_root *root = BTRFS_I(inode)->root;
3716 struct btrfs_ioctl_qgroup_assign_args *sa;
3717 struct btrfs_trans_handle *trans;
3721 if (!capable(CAP_SYS_ADMIN))
3724 ret = mnt_want_write_file(file);
3728 sa = memdup_user(arg, sizeof(*sa));
3734 trans = btrfs_join_transaction(root);
3735 if (IS_ERR(trans)) {
3736 ret = PTR_ERR(trans);
3741 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
3743 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3746 /* update qgroup status and info */
3747 mutex_lock(&fs_info->qgroup_ioctl_lock);
3748 err = btrfs_run_qgroups(trans);
3749 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3751 btrfs_handle_fs_error(fs_info, err,
3752 "failed to update qgroup status and info");
3753 err = btrfs_end_transaction(trans);
3760 mnt_drop_write_file(file);
3764 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3766 struct inode *inode = file_inode(file);
3767 struct btrfs_root *root = BTRFS_I(inode)->root;
3768 struct btrfs_ioctl_qgroup_create_args *sa;
3769 struct btrfs_trans_handle *trans;
3773 if (!capable(CAP_SYS_ADMIN))
3776 ret = mnt_want_write_file(file);
3780 sa = memdup_user(arg, sizeof(*sa));
3786 if (!sa->qgroupid) {
3791 trans = btrfs_join_transaction(root);
3792 if (IS_ERR(trans)) {
3793 ret = PTR_ERR(trans);
3798 ret = btrfs_create_qgroup(trans, sa->qgroupid);
3800 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3803 err = btrfs_end_transaction(trans);
3810 mnt_drop_write_file(file);
3814 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3816 struct inode *inode = file_inode(file);
3817 struct btrfs_root *root = BTRFS_I(inode)->root;
3818 struct btrfs_ioctl_qgroup_limit_args *sa;
3819 struct btrfs_trans_handle *trans;
3824 if (!capable(CAP_SYS_ADMIN))
3827 ret = mnt_want_write_file(file);
3831 sa = memdup_user(arg, sizeof(*sa));
3837 trans = btrfs_join_transaction(root);
3838 if (IS_ERR(trans)) {
3839 ret = PTR_ERR(trans);
3843 qgroupid = sa->qgroupid;
3845 /* take the current subvol as qgroup */
3846 qgroupid = root->root_key.objectid;
3849 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3851 err = btrfs_end_transaction(trans);
3858 mnt_drop_write_file(file);
3862 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3864 struct inode *inode = file_inode(file);
3865 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3866 struct btrfs_ioctl_quota_rescan_args *qsa;
3869 if (!capable(CAP_SYS_ADMIN))
3872 ret = mnt_want_write_file(file);
3876 qsa = memdup_user(arg, sizeof(*qsa));
3887 ret = btrfs_qgroup_rescan(fs_info);
3892 mnt_drop_write_file(file);
3896 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3899 struct btrfs_ioctl_quota_rescan_args qsa = {0};
3901 if (!capable(CAP_SYS_ADMIN))
3904 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3906 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3909 if (copy_to_user(arg, &qsa, sizeof(qsa)))
3915 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
3918 if (!capable(CAP_SYS_ADMIN))
3921 return btrfs_qgroup_wait_for_completion(fs_info, true);
3924 static long _btrfs_ioctl_set_received_subvol(struct file *file,
3925 struct mnt_idmap *idmap,
3926 struct btrfs_ioctl_received_subvol_args *sa)
3928 struct inode *inode = file_inode(file);
3929 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3930 struct btrfs_root *root = BTRFS_I(inode)->root;
3931 struct btrfs_root_item *root_item = &root->root_item;
3932 struct btrfs_trans_handle *trans;
3933 struct timespec64 ct = current_time(inode);
3935 int received_uuid_changed;
3937 if (!inode_owner_or_capable(idmap, inode))
3940 ret = mnt_want_write_file(file);
3944 down_write(&fs_info->subvol_sem);
3946 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3951 if (btrfs_root_readonly(root)) {
3958 * 2 - uuid items (received uuid + subvol uuid)
3960 trans = btrfs_start_transaction(root, 3);
3961 if (IS_ERR(trans)) {
3962 ret = PTR_ERR(trans);
3967 sa->rtransid = trans->transid;
3968 sa->rtime.sec = ct.tv_sec;
3969 sa->rtime.nsec = ct.tv_nsec;
3971 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
3973 if (received_uuid_changed &&
3974 !btrfs_is_empty_uuid(root_item->received_uuid)) {
3975 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
3976 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3977 root->root_key.objectid);
3978 if (ret && ret != -ENOENT) {
3979 btrfs_abort_transaction(trans, ret);
3980 btrfs_end_transaction(trans);
3984 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
3985 btrfs_set_root_stransid(root_item, sa->stransid);
3986 btrfs_set_root_rtransid(root_item, sa->rtransid);
3987 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
3988 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
3989 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
3990 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
3992 ret = btrfs_update_root(trans, fs_info->tree_root,
3993 &root->root_key, &root->root_item);
3995 btrfs_end_transaction(trans);
3998 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
3999 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4000 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4001 root->root_key.objectid);
4002 if (ret < 0 && ret != -EEXIST) {
4003 btrfs_abort_transaction(trans, ret);
4004 btrfs_end_transaction(trans);
4008 ret = btrfs_commit_transaction(trans);
4010 up_write(&fs_info->subvol_sem);
4011 mnt_drop_write_file(file);
4016 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4019 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4020 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4023 args32 = memdup_user(arg, sizeof(*args32));
4025 return PTR_ERR(args32);
4027 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4033 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4034 args64->stransid = args32->stransid;
4035 args64->rtransid = args32->rtransid;
4036 args64->stime.sec = args32->stime.sec;
4037 args64->stime.nsec = args32->stime.nsec;
4038 args64->rtime.sec = args32->rtime.sec;
4039 args64->rtime.nsec = args32->rtime.nsec;
4040 args64->flags = args32->flags;
4042 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4046 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4047 args32->stransid = args64->stransid;
4048 args32->rtransid = args64->rtransid;
4049 args32->stime.sec = args64->stime.sec;
4050 args32->stime.nsec = args64->stime.nsec;
4051 args32->rtime.sec = args64->rtime.sec;
4052 args32->rtime.nsec = args64->rtime.nsec;
4053 args32->flags = args64->flags;
4055 ret = copy_to_user(arg, args32, sizeof(*args32));
4066 static long btrfs_ioctl_set_received_subvol(struct file *file,
4069 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4072 sa = memdup_user(arg, sizeof(*sa));
4076 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4081 ret = copy_to_user(arg, sa, sizeof(*sa));
4090 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4095 char label[BTRFS_LABEL_SIZE];
4097 spin_lock(&fs_info->super_lock);
4098 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4099 spin_unlock(&fs_info->super_lock);
4101 len = strnlen(label, BTRFS_LABEL_SIZE);
4103 if (len == BTRFS_LABEL_SIZE) {
4105 "label is too long, return the first %zu bytes",
4109 ret = copy_to_user(arg, label, len);
4111 return ret ? -EFAULT : 0;
4114 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4116 struct inode *inode = file_inode(file);
4117 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4118 struct btrfs_root *root = BTRFS_I(inode)->root;
4119 struct btrfs_super_block *super_block = fs_info->super_copy;
4120 struct btrfs_trans_handle *trans;
4121 char label[BTRFS_LABEL_SIZE];
4124 if (!capable(CAP_SYS_ADMIN))
4127 if (copy_from_user(label, arg, sizeof(label)))
4130 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4132 "unable to set label with more than %d bytes",
4133 BTRFS_LABEL_SIZE - 1);
4137 ret = mnt_want_write_file(file);
4141 trans = btrfs_start_transaction(root, 0);
4142 if (IS_ERR(trans)) {
4143 ret = PTR_ERR(trans);
4147 spin_lock(&fs_info->super_lock);
4148 strcpy(super_block->label, label);
4149 spin_unlock(&fs_info->super_lock);
4150 ret = btrfs_commit_transaction(trans);
4153 mnt_drop_write_file(file);
4157 #define INIT_FEATURE_FLAGS(suffix) \
4158 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4159 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4160 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4162 int btrfs_ioctl_get_supported_features(void __user *arg)
4164 static const struct btrfs_ioctl_feature_flags features[3] = {
4165 INIT_FEATURE_FLAGS(SUPP),
4166 INIT_FEATURE_FLAGS(SAFE_SET),
4167 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4170 if (copy_to_user(arg, &features, sizeof(features)))
4176 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4179 struct btrfs_super_block *super_block = fs_info->super_copy;
4180 struct btrfs_ioctl_feature_flags features;
4182 features.compat_flags = btrfs_super_compat_flags(super_block);
4183 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4184 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4186 if (copy_to_user(arg, &features, sizeof(features)))
4192 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4193 enum btrfs_feature_set set,
4194 u64 change_mask, u64 flags, u64 supported_flags,
4195 u64 safe_set, u64 safe_clear)
4197 const char *type = btrfs_feature_set_name(set);
4199 u64 disallowed, unsupported;
4200 u64 set_mask = flags & change_mask;
4201 u64 clear_mask = ~flags & change_mask;
4203 unsupported = set_mask & ~supported_flags;
4205 names = btrfs_printable_features(set, unsupported);
4208 "this kernel does not support the %s feature bit%s",
4209 names, strchr(names, ',') ? "s" : "");
4213 "this kernel does not support %s bits 0x%llx",
4218 disallowed = set_mask & ~safe_set;
4220 names = btrfs_printable_features(set, disallowed);
4223 "can't set the %s feature bit%s while mounted",
4224 names, strchr(names, ',') ? "s" : "");
4228 "can't set %s bits 0x%llx while mounted",
4233 disallowed = clear_mask & ~safe_clear;
4235 names = btrfs_printable_features(set, disallowed);
4238 "can't clear the %s feature bit%s while mounted",
4239 names, strchr(names, ',') ? "s" : "");
4243 "can't clear %s bits 0x%llx while mounted",
4251 #define check_feature(fs_info, change_mask, flags, mask_base) \
4252 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4253 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4254 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4255 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4257 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4259 struct inode *inode = file_inode(file);
4260 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4261 struct btrfs_root *root = BTRFS_I(inode)->root;
4262 struct btrfs_super_block *super_block = fs_info->super_copy;
4263 struct btrfs_ioctl_feature_flags flags[2];
4264 struct btrfs_trans_handle *trans;
4268 if (!capable(CAP_SYS_ADMIN))
4271 if (copy_from_user(flags, arg, sizeof(flags)))
4275 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4276 !flags[0].incompat_flags)
4279 ret = check_feature(fs_info, flags[0].compat_flags,
4280 flags[1].compat_flags, COMPAT);
4284 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4285 flags[1].compat_ro_flags, COMPAT_RO);
4289 ret = check_feature(fs_info, flags[0].incompat_flags,
4290 flags[1].incompat_flags, INCOMPAT);
4294 ret = mnt_want_write_file(file);
4298 trans = btrfs_start_transaction(root, 0);
4299 if (IS_ERR(trans)) {
4300 ret = PTR_ERR(trans);
4301 goto out_drop_write;
4304 spin_lock(&fs_info->super_lock);
4305 newflags = btrfs_super_compat_flags(super_block);
4306 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4307 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4308 btrfs_set_super_compat_flags(super_block, newflags);
4310 newflags = btrfs_super_compat_ro_flags(super_block);
4311 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4312 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4313 btrfs_set_super_compat_ro_flags(super_block, newflags);
4315 newflags = btrfs_super_incompat_flags(super_block);
4316 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4317 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4318 btrfs_set_super_incompat_flags(super_block, newflags);
4319 spin_unlock(&fs_info->super_lock);
4321 ret = btrfs_commit_transaction(trans);
4323 mnt_drop_write_file(file);
4328 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4330 struct btrfs_ioctl_send_args *arg;
4334 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4335 struct btrfs_ioctl_send_args_32 args32;
4337 ret = copy_from_user(&args32, argp, sizeof(args32));
4340 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4343 arg->send_fd = args32.send_fd;
4344 arg->clone_sources_count = args32.clone_sources_count;
4345 arg->clone_sources = compat_ptr(args32.clone_sources);
4346 arg->parent_root = args32.parent_root;
4347 arg->flags = args32.flags;
4348 memcpy(arg->reserved, args32.reserved,
4349 sizeof(args32.reserved));
4354 arg = memdup_user(argp, sizeof(*arg));
4356 return PTR_ERR(arg);
4358 ret = btrfs_ioctl_send(inode, arg);
4363 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4366 struct btrfs_ioctl_encoded_io_args args = { 0 };
4367 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4370 struct iovec iovstack[UIO_FASTIOV];
4371 struct iovec *iov = iovstack;
4372 struct iov_iter iter;
4377 if (!capable(CAP_SYS_ADMIN)) {
4383 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4384 struct btrfs_ioctl_encoded_io_args_32 args32;
4386 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4388 if (copy_from_user(&args32, argp, copy_end)) {
4392 args.iov = compat_ptr(args32.iov);
4393 args.iovcnt = args32.iovcnt;
4394 args.offset = args32.offset;
4395 args.flags = args32.flags;
4400 copy_end = copy_end_kernel;
4401 if (copy_from_user(&args, argp, copy_end)) {
4406 if (args.flags != 0) {
4411 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4416 if (iov_iter_count(&iter) == 0) {
4421 ret = rw_verify_area(READ, file, &pos, args.len);
4425 init_sync_kiocb(&kiocb, file);
4428 ret = btrfs_encoded_read(&kiocb, &iter, &args);
4430 fsnotify_access(file);
4431 if (copy_to_user(argp + copy_end,
4432 (char *)&args + copy_end_kernel,
4433 sizeof(args) - copy_end_kernel))
4441 add_rchar(current, ret);
4446 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4448 struct btrfs_ioctl_encoded_io_args args;
4449 struct iovec iovstack[UIO_FASTIOV];
4450 struct iovec *iov = iovstack;
4451 struct iov_iter iter;
4456 if (!capable(CAP_SYS_ADMIN)) {
4461 if (!(file->f_mode & FMODE_WRITE)) {
4467 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4468 struct btrfs_ioctl_encoded_io_args_32 args32;
4470 if (copy_from_user(&args32, argp, sizeof(args32))) {
4474 args.iov = compat_ptr(args32.iov);
4475 args.iovcnt = args32.iovcnt;
4476 args.offset = args32.offset;
4477 args.flags = args32.flags;
4478 args.len = args32.len;
4479 args.unencoded_len = args32.unencoded_len;
4480 args.unencoded_offset = args32.unencoded_offset;
4481 args.compression = args32.compression;
4482 args.encryption = args32.encryption;
4483 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4488 if (copy_from_user(&args, argp, sizeof(args))) {
4495 if (args.flags != 0)
4497 if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4499 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4500 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4502 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4503 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4505 if (args.unencoded_offset > args.unencoded_len)
4507 if (args.len > args.unencoded_len - args.unencoded_offset)
4510 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4515 file_start_write(file);
4517 if (iov_iter_count(&iter) == 0) {
4522 ret = rw_verify_area(WRITE, file, &pos, args.len);
4526 init_sync_kiocb(&kiocb, file);
4527 ret = kiocb_set_rw_flags(&kiocb, 0);
4532 ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4534 fsnotify_modify(file);
4537 file_end_write(file);
4541 add_wchar(current, ret);
4546 long btrfs_ioctl(struct file *file, unsigned int
4547 cmd, unsigned long arg)
4549 struct inode *inode = file_inode(file);
4550 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4551 struct btrfs_root *root = BTRFS_I(inode)->root;
4552 void __user *argp = (void __user *)arg;
4555 case FS_IOC_GETVERSION:
4556 return btrfs_ioctl_getversion(inode, argp);
4557 case FS_IOC_GETFSLABEL:
4558 return btrfs_ioctl_get_fslabel(fs_info, argp);
4559 case FS_IOC_SETFSLABEL:
4560 return btrfs_ioctl_set_fslabel(file, argp);
4562 return btrfs_ioctl_fitrim(fs_info, argp);
4563 case BTRFS_IOC_SNAP_CREATE:
4564 return btrfs_ioctl_snap_create(file, argp, 0);
4565 case BTRFS_IOC_SNAP_CREATE_V2:
4566 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4567 case BTRFS_IOC_SUBVOL_CREATE:
4568 return btrfs_ioctl_snap_create(file, argp, 1);
4569 case BTRFS_IOC_SUBVOL_CREATE_V2:
4570 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4571 case BTRFS_IOC_SNAP_DESTROY:
4572 return btrfs_ioctl_snap_destroy(file, argp, false);
4573 case BTRFS_IOC_SNAP_DESTROY_V2:
4574 return btrfs_ioctl_snap_destroy(file, argp, true);
4575 case BTRFS_IOC_SUBVOL_GETFLAGS:
4576 return btrfs_ioctl_subvol_getflags(inode, argp);
4577 case BTRFS_IOC_SUBVOL_SETFLAGS:
4578 return btrfs_ioctl_subvol_setflags(file, argp);
4579 case BTRFS_IOC_DEFAULT_SUBVOL:
4580 return btrfs_ioctl_default_subvol(file, argp);
4581 case BTRFS_IOC_DEFRAG:
4582 return btrfs_ioctl_defrag(file, NULL);
4583 case BTRFS_IOC_DEFRAG_RANGE:
4584 return btrfs_ioctl_defrag(file, argp);
4585 case BTRFS_IOC_RESIZE:
4586 return btrfs_ioctl_resize(file, argp);
4587 case BTRFS_IOC_ADD_DEV:
4588 return btrfs_ioctl_add_dev(fs_info, argp);
4589 case BTRFS_IOC_RM_DEV:
4590 return btrfs_ioctl_rm_dev(file, argp);
4591 case BTRFS_IOC_RM_DEV_V2:
4592 return btrfs_ioctl_rm_dev_v2(file, argp);
4593 case BTRFS_IOC_FS_INFO:
4594 return btrfs_ioctl_fs_info(fs_info, argp);
4595 case BTRFS_IOC_DEV_INFO:
4596 return btrfs_ioctl_dev_info(fs_info, argp);
4597 case BTRFS_IOC_TREE_SEARCH:
4598 return btrfs_ioctl_tree_search(inode, argp);
4599 case BTRFS_IOC_TREE_SEARCH_V2:
4600 return btrfs_ioctl_tree_search_v2(inode, argp);
4601 case BTRFS_IOC_INO_LOOKUP:
4602 return btrfs_ioctl_ino_lookup(root, argp);
4603 case BTRFS_IOC_INO_PATHS:
4604 return btrfs_ioctl_ino_to_path(root, argp);
4605 case BTRFS_IOC_LOGICAL_INO:
4606 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4607 case BTRFS_IOC_LOGICAL_INO_V2:
4608 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4609 case BTRFS_IOC_SPACE_INFO:
4610 return btrfs_ioctl_space_info(fs_info, argp);
4611 case BTRFS_IOC_SYNC: {
4614 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4617 ret = btrfs_sync_fs(inode->i_sb, 1);
4619 * The transaction thread may want to do more work,
4620 * namely it pokes the cleaner kthread that will start
4621 * processing uncleaned subvols.
4623 wake_up_process(fs_info->transaction_kthread);
4626 case BTRFS_IOC_START_SYNC:
4627 return btrfs_ioctl_start_sync(root, argp);
4628 case BTRFS_IOC_WAIT_SYNC:
4629 return btrfs_ioctl_wait_sync(fs_info, argp);
4630 case BTRFS_IOC_SCRUB:
4631 return btrfs_ioctl_scrub(file, argp);
4632 case BTRFS_IOC_SCRUB_CANCEL:
4633 return btrfs_ioctl_scrub_cancel(fs_info);
4634 case BTRFS_IOC_SCRUB_PROGRESS:
4635 return btrfs_ioctl_scrub_progress(fs_info, argp);
4636 case BTRFS_IOC_BALANCE_V2:
4637 return btrfs_ioctl_balance(file, argp);
4638 case BTRFS_IOC_BALANCE_CTL:
4639 return btrfs_ioctl_balance_ctl(fs_info, arg);
4640 case BTRFS_IOC_BALANCE_PROGRESS:
4641 return btrfs_ioctl_balance_progress(fs_info, argp);
4642 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4643 return btrfs_ioctl_set_received_subvol(file, argp);
4645 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4646 return btrfs_ioctl_set_received_subvol_32(file, argp);
4648 case BTRFS_IOC_SEND:
4649 return _btrfs_ioctl_send(inode, argp, false);
4650 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4651 case BTRFS_IOC_SEND_32:
4652 return _btrfs_ioctl_send(inode, argp, true);
4654 case BTRFS_IOC_GET_DEV_STATS:
4655 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4656 case BTRFS_IOC_QUOTA_CTL:
4657 return btrfs_ioctl_quota_ctl(file, argp);
4658 case BTRFS_IOC_QGROUP_ASSIGN:
4659 return btrfs_ioctl_qgroup_assign(file, argp);
4660 case BTRFS_IOC_QGROUP_CREATE:
4661 return btrfs_ioctl_qgroup_create(file, argp);
4662 case BTRFS_IOC_QGROUP_LIMIT:
4663 return btrfs_ioctl_qgroup_limit(file, argp);
4664 case BTRFS_IOC_QUOTA_RESCAN:
4665 return btrfs_ioctl_quota_rescan(file, argp);
4666 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4667 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4668 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4669 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4670 case BTRFS_IOC_DEV_REPLACE:
4671 return btrfs_ioctl_dev_replace(fs_info, argp);
4672 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4673 return btrfs_ioctl_get_supported_features(argp);
4674 case BTRFS_IOC_GET_FEATURES:
4675 return btrfs_ioctl_get_features(fs_info, argp);
4676 case BTRFS_IOC_SET_FEATURES:
4677 return btrfs_ioctl_set_features(file, argp);
4678 case BTRFS_IOC_GET_SUBVOL_INFO:
4679 return btrfs_ioctl_get_subvol_info(inode, argp);
4680 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4681 return btrfs_ioctl_get_subvol_rootref(root, argp);
4682 case BTRFS_IOC_INO_LOOKUP_USER:
4683 return btrfs_ioctl_ino_lookup_user(file, argp);
4684 case FS_IOC_ENABLE_VERITY:
4685 return fsverity_ioctl_enable(file, (const void __user *)argp);
4686 case FS_IOC_MEASURE_VERITY:
4687 return fsverity_ioctl_measure(file, argp);
4688 case BTRFS_IOC_ENCODED_READ:
4689 return btrfs_ioctl_encoded_read(file, argp, false);
4690 case BTRFS_IOC_ENCODED_WRITE:
4691 return btrfs_ioctl_encoded_write(file, argp, false);
4692 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4693 case BTRFS_IOC_ENCODED_READ_32:
4694 return btrfs_ioctl_encoded_read(file, argp, true);
4695 case BTRFS_IOC_ENCODED_WRITE_32:
4696 return btrfs_ioctl_encoded_write(file, argp, true);
4703 #ifdef CONFIG_COMPAT
4704 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4707 * These all access 32-bit values anyway so no further
4708 * handling is necessary.
4711 case FS_IOC32_GETVERSION:
4712 cmd = FS_IOC_GETVERSION;
4716 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));