writeback: remove nr_pages_dirtied arg from balance_dirty_pages_ratelimited_nr()
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / btrfs / ioctl.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include "compat.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58
59 /* Mask out flags that are inappropriate for the given type of inode. */
60 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
61 {
62         if (S_ISDIR(mode))
63                 return flags;
64         else if (S_ISREG(mode))
65                 return flags & ~FS_DIRSYNC_FL;
66         else
67                 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
68 }
69
70 /*
71  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
72  */
73 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
74 {
75         unsigned int iflags = 0;
76
77         if (flags & BTRFS_INODE_SYNC)
78                 iflags |= FS_SYNC_FL;
79         if (flags & BTRFS_INODE_IMMUTABLE)
80                 iflags |= FS_IMMUTABLE_FL;
81         if (flags & BTRFS_INODE_APPEND)
82                 iflags |= FS_APPEND_FL;
83         if (flags & BTRFS_INODE_NODUMP)
84                 iflags |= FS_NODUMP_FL;
85         if (flags & BTRFS_INODE_NOATIME)
86                 iflags |= FS_NOATIME_FL;
87         if (flags & BTRFS_INODE_DIRSYNC)
88                 iflags |= FS_DIRSYNC_FL;
89         if (flags & BTRFS_INODE_NODATACOW)
90                 iflags |= FS_NOCOW_FL;
91
92         if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
93                 iflags |= FS_COMPR_FL;
94         else if (flags & BTRFS_INODE_NOCOMPRESS)
95                 iflags |= FS_NOCOMP_FL;
96
97         return iflags;
98 }
99
100 /*
101  * Update inode->i_flags based on the btrfs internal flags.
102  */
103 void btrfs_update_iflags(struct inode *inode)
104 {
105         struct btrfs_inode *ip = BTRFS_I(inode);
106
107         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
108
109         if (ip->flags & BTRFS_INODE_SYNC)
110                 inode->i_flags |= S_SYNC;
111         if (ip->flags & BTRFS_INODE_IMMUTABLE)
112                 inode->i_flags |= S_IMMUTABLE;
113         if (ip->flags & BTRFS_INODE_APPEND)
114                 inode->i_flags |= S_APPEND;
115         if (ip->flags & BTRFS_INODE_NOATIME)
116                 inode->i_flags |= S_NOATIME;
117         if (ip->flags & BTRFS_INODE_DIRSYNC)
118                 inode->i_flags |= S_DIRSYNC;
119 }
120
121 /*
122  * Inherit flags from the parent inode.
123  *
124  * Currently only the compression flags and the cow flags are inherited.
125  */
126 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
127 {
128         unsigned int flags;
129
130         if (!dir)
131                 return;
132
133         flags = BTRFS_I(dir)->flags;
134
135         if (flags & BTRFS_INODE_NOCOMPRESS) {
136                 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
137                 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
138         } else if (flags & BTRFS_INODE_COMPRESS) {
139                 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
140                 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
141         }
142
143         if (flags & BTRFS_INODE_NODATACOW)
144                 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
145
146         btrfs_update_iflags(inode);
147 }
148
149 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
150 {
151         struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
152         unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
153
154         if (copy_to_user(arg, &flags, sizeof(flags)))
155                 return -EFAULT;
156         return 0;
157 }
158
159 static int check_flags(unsigned int flags)
160 {
161         if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
162                       FS_NOATIME_FL | FS_NODUMP_FL | \
163                       FS_SYNC_FL | FS_DIRSYNC_FL | \
164                       FS_NOCOMP_FL | FS_COMPR_FL |
165                       FS_NOCOW_FL))
166                 return -EOPNOTSUPP;
167
168         if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
169                 return -EINVAL;
170
171         return 0;
172 }
173
174 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
175 {
176         struct inode *inode = file->f_path.dentry->d_inode;
177         struct btrfs_inode *ip = BTRFS_I(inode);
178         struct btrfs_root *root = ip->root;
179         struct btrfs_trans_handle *trans;
180         unsigned int flags, oldflags;
181         int ret;
182         u64 ip_oldflags;
183         unsigned int i_oldflags;
184         umode_t mode;
185
186         if (btrfs_root_readonly(root))
187                 return -EROFS;
188
189         if (copy_from_user(&flags, arg, sizeof(flags)))
190                 return -EFAULT;
191
192         ret = check_flags(flags);
193         if (ret)
194                 return ret;
195
196         if (!inode_owner_or_capable(inode))
197                 return -EACCES;
198
199         ret = mnt_want_write_file(file);
200         if (ret)
201                 return ret;
202
203         mutex_lock(&inode->i_mutex);
204
205         ip_oldflags = ip->flags;
206         i_oldflags = inode->i_flags;
207         mode = inode->i_mode;
208
209         flags = btrfs_mask_flags(inode->i_mode, flags);
210         oldflags = btrfs_flags_to_ioctl(ip->flags);
211         if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
212                 if (!capable(CAP_LINUX_IMMUTABLE)) {
213                         ret = -EPERM;
214                         goto out_unlock;
215                 }
216         }
217
218         if (flags & FS_SYNC_FL)
219                 ip->flags |= BTRFS_INODE_SYNC;
220         else
221                 ip->flags &= ~BTRFS_INODE_SYNC;
222         if (flags & FS_IMMUTABLE_FL)
223                 ip->flags |= BTRFS_INODE_IMMUTABLE;
224         else
225                 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
226         if (flags & FS_APPEND_FL)
227                 ip->flags |= BTRFS_INODE_APPEND;
228         else
229                 ip->flags &= ~BTRFS_INODE_APPEND;
230         if (flags & FS_NODUMP_FL)
231                 ip->flags |= BTRFS_INODE_NODUMP;
232         else
233                 ip->flags &= ~BTRFS_INODE_NODUMP;
234         if (flags & FS_NOATIME_FL)
235                 ip->flags |= BTRFS_INODE_NOATIME;
236         else
237                 ip->flags &= ~BTRFS_INODE_NOATIME;
238         if (flags & FS_DIRSYNC_FL)
239                 ip->flags |= BTRFS_INODE_DIRSYNC;
240         else
241                 ip->flags &= ~BTRFS_INODE_DIRSYNC;
242         if (flags & FS_NOCOW_FL) {
243                 if (S_ISREG(mode)) {
244                         /*
245                          * It's safe to turn csums off here, no extents exist.
246                          * Otherwise we want the flag to reflect the real COW
247                          * status of the file and will not set it.
248                          */
249                         if (inode->i_size == 0)
250                                 ip->flags |= BTRFS_INODE_NODATACOW
251                                            | BTRFS_INODE_NODATASUM;
252                 } else {
253                         ip->flags |= BTRFS_INODE_NODATACOW;
254                 }
255         } else {
256                 /*
257                  * Revert back under same assuptions as above
258                  */
259                 if (S_ISREG(mode)) {
260                         if (inode->i_size == 0)
261                                 ip->flags &= ~(BTRFS_INODE_NODATACOW
262                                              | BTRFS_INODE_NODATASUM);
263                 } else {
264                         ip->flags &= ~BTRFS_INODE_NODATACOW;
265                 }
266         }
267
268         /*
269          * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
270          * flag may be changed automatically if compression code won't make
271          * things smaller.
272          */
273         if (flags & FS_NOCOMP_FL) {
274                 ip->flags &= ~BTRFS_INODE_COMPRESS;
275                 ip->flags |= BTRFS_INODE_NOCOMPRESS;
276         } else if (flags & FS_COMPR_FL) {
277                 ip->flags |= BTRFS_INODE_COMPRESS;
278                 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
279         } else {
280                 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
281         }
282
283         trans = btrfs_start_transaction(root, 1);
284         if (IS_ERR(trans)) {
285                 ret = PTR_ERR(trans);
286                 goto out_drop;
287         }
288
289         btrfs_update_iflags(inode);
290         inode_inc_iversion(inode);
291         inode->i_ctime = CURRENT_TIME;
292         ret = btrfs_update_inode(trans, root, inode);
293
294         btrfs_end_transaction(trans, root);
295  out_drop:
296         if (ret) {
297                 ip->flags = ip_oldflags;
298                 inode->i_flags = i_oldflags;
299         }
300
301  out_unlock:
302         mutex_unlock(&inode->i_mutex);
303         mnt_drop_write_file(file);
304         return ret;
305 }
306
307 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
308 {
309         struct inode *inode = file->f_path.dentry->d_inode;
310
311         return put_user(inode->i_generation, arg);
312 }
313
314 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
315 {
316         struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
317         struct btrfs_device *device;
318         struct request_queue *q;
319         struct fstrim_range range;
320         u64 minlen = ULLONG_MAX;
321         u64 num_devices = 0;
322         u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
323         int ret;
324
325         if (!capable(CAP_SYS_ADMIN))
326                 return -EPERM;
327
328         rcu_read_lock();
329         list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
330                                 dev_list) {
331                 if (!device->bdev)
332                         continue;
333                 q = bdev_get_queue(device->bdev);
334                 if (blk_queue_discard(q)) {
335                         num_devices++;
336                         minlen = min((u64)q->limits.discard_granularity,
337                                      minlen);
338                 }
339         }
340         rcu_read_unlock();
341
342         if (!num_devices)
343                 return -EOPNOTSUPP;
344         if (copy_from_user(&range, arg, sizeof(range)))
345                 return -EFAULT;
346         if (range.start > total_bytes ||
347             range.len < fs_info->sb->s_blocksize)
348                 return -EINVAL;
349
350         range.len = min(range.len, total_bytes - range.start);
351         range.minlen = max(range.minlen, minlen);
352         ret = btrfs_trim_fs(fs_info->tree_root, &range);
353         if (ret < 0)
354                 return ret;
355
356         if (copy_to_user(arg, &range, sizeof(range)))
357                 return -EFAULT;
358
359         return 0;
360 }
361
362 static noinline int create_subvol(struct btrfs_root *root,
363                                   struct dentry *dentry,
364                                   char *name, int namelen,
365                                   u64 *async_transid,
366                                   struct btrfs_qgroup_inherit **inherit)
367 {
368         struct btrfs_trans_handle *trans;
369         struct btrfs_key key;
370         struct btrfs_root_item root_item;
371         struct btrfs_inode_item *inode_item;
372         struct extent_buffer *leaf;
373         struct btrfs_root *new_root;
374         struct dentry *parent = dentry->d_parent;
375         struct inode *dir;
376         struct timespec cur_time = CURRENT_TIME;
377         int ret;
378         int err;
379         u64 objectid;
380         u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
381         u64 index = 0;
382         uuid_le new_uuid;
383
384         ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
385         if (ret)
386                 return ret;
387
388         dir = parent->d_inode;
389
390         /*
391          * 1 - inode item
392          * 2 - refs
393          * 1 - root item
394          * 2 - dir items
395          */
396         trans = btrfs_start_transaction(root, 6);
397         if (IS_ERR(trans))
398                 return PTR_ERR(trans);
399
400         ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid,
401                                    inherit ? *inherit : NULL);
402         if (ret)
403                 goto fail;
404
405         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
406                                       0, objectid, NULL, 0, 0, 0);
407         if (IS_ERR(leaf)) {
408                 ret = PTR_ERR(leaf);
409                 goto fail;
410         }
411
412         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
413         btrfs_set_header_bytenr(leaf, leaf->start);
414         btrfs_set_header_generation(leaf, trans->transid);
415         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
416         btrfs_set_header_owner(leaf, objectid);
417
418         write_extent_buffer(leaf, root->fs_info->fsid,
419                             (unsigned long)btrfs_header_fsid(leaf),
420                             BTRFS_FSID_SIZE);
421         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
422                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
423                             BTRFS_UUID_SIZE);
424         btrfs_mark_buffer_dirty(leaf);
425
426         memset(&root_item, 0, sizeof(root_item));
427
428         inode_item = &root_item.inode;
429         inode_item->generation = cpu_to_le64(1);
430         inode_item->size = cpu_to_le64(3);
431         inode_item->nlink = cpu_to_le32(1);
432         inode_item->nbytes = cpu_to_le64(root->leafsize);
433         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
434
435         root_item.flags = 0;
436         root_item.byte_limit = 0;
437         inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
438
439         btrfs_set_root_bytenr(&root_item, leaf->start);
440         btrfs_set_root_generation(&root_item, trans->transid);
441         btrfs_set_root_level(&root_item, 0);
442         btrfs_set_root_refs(&root_item, 1);
443         btrfs_set_root_used(&root_item, leaf->len);
444         btrfs_set_root_last_snapshot(&root_item, 0);
445
446         btrfs_set_root_generation_v2(&root_item,
447                         btrfs_root_generation(&root_item));
448         uuid_le_gen(&new_uuid);
449         memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
450         root_item.otime.sec = cpu_to_le64(cur_time.tv_sec);
451         root_item.otime.nsec = cpu_to_le32(cur_time.tv_nsec);
452         root_item.ctime = root_item.otime;
453         btrfs_set_root_ctransid(&root_item, trans->transid);
454         btrfs_set_root_otransid(&root_item, trans->transid);
455
456         btrfs_tree_unlock(leaf);
457         free_extent_buffer(leaf);
458         leaf = NULL;
459
460         btrfs_set_root_dirid(&root_item, new_dirid);
461
462         key.objectid = objectid;
463         key.offset = 0;
464         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
465         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
466                                 &root_item);
467         if (ret)
468                 goto fail;
469
470         key.offset = (u64)-1;
471         new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
472         if (IS_ERR(new_root)) {
473                 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
474                 ret = PTR_ERR(new_root);
475                 goto fail;
476         }
477
478         btrfs_record_root_in_trans(trans, new_root);
479
480         ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
481         if (ret) {
482                 /* We potentially lose an unused inode item here */
483                 btrfs_abort_transaction(trans, root, ret);
484                 goto fail;
485         }
486
487         /*
488          * insert the directory item
489          */
490         ret = btrfs_set_inode_index(dir, &index);
491         if (ret) {
492                 btrfs_abort_transaction(trans, root, ret);
493                 goto fail;
494         }
495
496         ret = btrfs_insert_dir_item(trans, root,
497                                     name, namelen, dir, &key,
498                                     BTRFS_FT_DIR, index);
499         if (ret) {
500                 btrfs_abort_transaction(trans, root, ret);
501                 goto fail;
502         }
503
504         btrfs_i_size_write(dir, dir->i_size + namelen * 2);
505         ret = btrfs_update_inode(trans, root, dir);
506         BUG_ON(ret);
507
508         ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
509                                  objectid, root->root_key.objectid,
510                                  btrfs_ino(dir), index, name, namelen);
511
512         BUG_ON(ret);
513
514         d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
515 fail:
516         if (async_transid) {
517                 *async_transid = trans->transid;
518                 err = btrfs_commit_transaction_async(trans, root, 1);
519         } else {
520                 err = btrfs_commit_transaction(trans, root);
521         }
522         if (err && !ret)
523                 ret = err;
524         return ret;
525 }
526
527 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
528                            char *name, int namelen, u64 *async_transid,
529                            bool readonly, struct btrfs_qgroup_inherit **inherit)
530 {
531         struct inode *inode;
532         struct btrfs_pending_snapshot *pending_snapshot;
533         struct btrfs_trans_handle *trans;
534         int ret;
535
536         if (!root->ref_cows)
537                 return -EINVAL;
538
539         pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
540         if (!pending_snapshot)
541                 return -ENOMEM;
542
543         btrfs_init_block_rsv(&pending_snapshot->block_rsv,
544                              BTRFS_BLOCK_RSV_TEMP);
545         pending_snapshot->dentry = dentry;
546         pending_snapshot->root = root;
547         pending_snapshot->readonly = readonly;
548         if (inherit) {
549                 pending_snapshot->inherit = *inherit;
550                 *inherit = NULL;        /* take responsibility to free it */
551         }
552
553         trans = btrfs_start_transaction(root->fs_info->extent_root, 6);
554         if (IS_ERR(trans)) {
555                 ret = PTR_ERR(trans);
556                 goto fail;
557         }
558
559         ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
560         BUG_ON(ret);
561
562         spin_lock(&root->fs_info->trans_lock);
563         list_add(&pending_snapshot->list,
564                  &trans->transaction->pending_snapshots);
565         spin_unlock(&root->fs_info->trans_lock);
566         if (async_transid) {
567                 *async_transid = trans->transid;
568                 ret = btrfs_commit_transaction_async(trans,
569                                      root->fs_info->extent_root, 1);
570         } else {
571                 ret = btrfs_commit_transaction(trans,
572                                                root->fs_info->extent_root);
573         }
574         if (ret)
575                 goto fail;
576
577         ret = pending_snapshot->error;
578         if (ret)
579                 goto fail;
580
581         ret = btrfs_orphan_cleanup(pending_snapshot->snap);
582         if (ret)
583                 goto fail;
584
585         inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
586         if (IS_ERR(inode)) {
587                 ret = PTR_ERR(inode);
588                 goto fail;
589         }
590         BUG_ON(!inode);
591         d_instantiate(dentry, inode);
592         ret = 0;
593 fail:
594         kfree(pending_snapshot);
595         return ret;
596 }
597
598 /*  copy of check_sticky in fs/namei.c()
599 * It's inline, so penalty for filesystems that don't use sticky bit is
600 * minimal.
601 */
602 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
603 {
604         kuid_t fsuid = current_fsuid();
605
606         if (!(dir->i_mode & S_ISVTX))
607                 return 0;
608         if (uid_eq(inode->i_uid, fsuid))
609                 return 0;
610         if (uid_eq(dir->i_uid, fsuid))
611                 return 0;
612         return !capable(CAP_FOWNER);
613 }
614
615 /*  copy of may_delete in fs/namei.c()
616  *      Check whether we can remove a link victim from directory dir, check
617  *  whether the type of victim is right.
618  *  1. We can't do it if dir is read-only (done in permission())
619  *  2. We should have write and exec permissions on dir
620  *  3. We can't remove anything from append-only dir
621  *  4. We can't do anything with immutable dir (done in permission())
622  *  5. If the sticky bit on dir is set we should either
623  *      a. be owner of dir, or
624  *      b. be owner of victim, or
625  *      c. have CAP_FOWNER capability
626  *  6. If the victim is append-only or immutable we can't do antyhing with
627  *     links pointing to it.
628  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
629  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
630  *  9. We can't remove a root or mountpoint.
631  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
632  *     nfs_async_unlink().
633  */
634
635 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
636 {
637         int error;
638
639         if (!victim->d_inode)
640                 return -ENOENT;
641
642         BUG_ON(victim->d_parent->d_inode != dir);
643         audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
644
645         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
646         if (error)
647                 return error;
648         if (IS_APPEND(dir))
649                 return -EPERM;
650         if (btrfs_check_sticky(dir, victim->d_inode)||
651                 IS_APPEND(victim->d_inode)||
652             IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
653                 return -EPERM;
654         if (isdir) {
655                 if (!S_ISDIR(victim->d_inode->i_mode))
656                         return -ENOTDIR;
657                 if (IS_ROOT(victim))
658                         return -EBUSY;
659         } else if (S_ISDIR(victim->d_inode->i_mode))
660                 return -EISDIR;
661         if (IS_DEADDIR(dir))
662                 return -ENOENT;
663         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
664                 return -EBUSY;
665         return 0;
666 }
667
668 /* copy of may_create in fs/namei.c() */
669 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
670 {
671         if (child->d_inode)
672                 return -EEXIST;
673         if (IS_DEADDIR(dir))
674                 return -ENOENT;
675         return inode_permission(dir, MAY_WRITE | MAY_EXEC);
676 }
677
678 /*
679  * Create a new subvolume below @parent.  This is largely modeled after
680  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
681  * inside this filesystem so it's quite a bit simpler.
682  */
683 static noinline int btrfs_mksubvol(struct path *parent,
684                                    char *name, int namelen,
685                                    struct btrfs_root *snap_src,
686                                    u64 *async_transid, bool readonly,
687                                    struct btrfs_qgroup_inherit **inherit)
688 {
689         struct inode *dir  = parent->dentry->d_inode;
690         struct dentry *dentry;
691         int error;
692
693         mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
694
695         dentry = lookup_one_len(name, parent->dentry, namelen);
696         error = PTR_ERR(dentry);
697         if (IS_ERR(dentry))
698                 goto out_unlock;
699
700         error = -EEXIST;
701         if (dentry->d_inode)
702                 goto out_dput;
703
704         error = btrfs_may_create(dir, dentry);
705         if (error)
706                 goto out_dput;
707
708         down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
709
710         if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
711                 goto out_up_read;
712
713         if (snap_src) {
714                 error = create_snapshot(snap_src, dentry, name, namelen,
715                                         async_transid, readonly, inherit);
716         } else {
717                 error = create_subvol(BTRFS_I(dir)->root, dentry,
718                                       name, namelen, async_transid, inherit);
719         }
720         if (!error)
721                 fsnotify_mkdir(dir, dentry);
722 out_up_read:
723         up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
724 out_dput:
725         dput(dentry);
726 out_unlock:
727         mutex_unlock(&dir->i_mutex);
728         return error;
729 }
730
731 /*
732  * When we're defragging a range, we don't want to kick it off again
733  * if it is really just waiting for delalloc to send it down.
734  * If we find a nice big extent or delalloc range for the bytes in the
735  * file you want to defrag, we return 0 to let you know to skip this
736  * part of the file
737  */
738 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
739 {
740         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
741         struct extent_map *em = NULL;
742         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
743         u64 end;
744
745         read_lock(&em_tree->lock);
746         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
747         read_unlock(&em_tree->lock);
748
749         if (em) {
750                 end = extent_map_end(em);
751                 free_extent_map(em);
752                 if (end - offset > thresh)
753                         return 0;
754         }
755         /* if we already have a nice delalloc here, just stop */
756         thresh /= 2;
757         end = count_range_bits(io_tree, &offset, offset + thresh,
758                                thresh, EXTENT_DELALLOC, 1);
759         if (end >= thresh)
760                 return 0;
761         return 1;
762 }
763
764 /*
765  * helper function to walk through a file and find extents
766  * newer than a specific transid, and smaller than thresh.
767  *
768  * This is used by the defragging code to find new and small
769  * extents
770  */
771 static int find_new_extents(struct btrfs_root *root,
772                             struct inode *inode, u64 newer_than,
773                             u64 *off, int thresh)
774 {
775         struct btrfs_path *path;
776         struct btrfs_key min_key;
777         struct btrfs_key max_key;
778         struct extent_buffer *leaf;
779         struct btrfs_file_extent_item *extent;
780         int type;
781         int ret;
782         u64 ino = btrfs_ino(inode);
783
784         path = btrfs_alloc_path();
785         if (!path)
786                 return -ENOMEM;
787
788         min_key.objectid = ino;
789         min_key.type = BTRFS_EXTENT_DATA_KEY;
790         min_key.offset = *off;
791
792         max_key.objectid = ino;
793         max_key.type = (u8)-1;
794         max_key.offset = (u64)-1;
795
796         path->keep_locks = 1;
797
798         while(1) {
799                 ret = btrfs_search_forward(root, &min_key, &max_key,
800                                            path, 0, newer_than);
801                 if (ret != 0)
802                         goto none;
803                 if (min_key.objectid != ino)
804                         goto none;
805                 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
806                         goto none;
807
808                 leaf = path->nodes[0];
809                 extent = btrfs_item_ptr(leaf, path->slots[0],
810                                         struct btrfs_file_extent_item);
811
812                 type = btrfs_file_extent_type(leaf, extent);
813                 if (type == BTRFS_FILE_EXTENT_REG &&
814                     btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
815                     check_defrag_in_cache(inode, min_key.offset, thresh)) {
816                         *off = min_key.offset;
817                         btrfs_free_path(path);
818                         return 0;
819                 }
820
821                 if (min_key.offset == (u64)-1)
822                         goto none;
823
824                 min_key.offset++;
825                 btrfs_release_path(path);
826         }
827 none:
828         btrfs_free_path(path);
829         return -ENOENT;
830 }
831
832 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
833 {
834         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
835         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
836         struct extent_map *em;
837         u64 len = PAGE_CACHE_SIZE;
838
839         /*
840          * hopefully we have this extent in the tree already, try without
841          * the full extent lock
842          */
843         read_lock(&em_tree->lock);
844         em = lookup_extent_mapping(em_tree, start, len);
845         read_unlock(&em_tree->lock);
846
847         if (!em) {
848                 /* get the big lock and read metadata off disk */
849                 lock_extent(io_tree, start, start + len - 1);
850                 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
851                 unlock_extent(io_tree, start, start + len - 1);
852
853                 if (IS_ERR(em))
854                         return NULL;
855         }
856
857         return em;
858 }
859
860 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
861 {
862         struct extent_map *next;
863         bool ret = true;
864
865         /* this is the last extent */
866         if (em->start + em->len >= i_size_read(inode))
867                 return false;
868
869         next = defrag_lookup_extent(inode, em->start + em->len);
870         if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
871                 ret = false;
872
873         free_extent_map(next);
874         return ret;
875 }
876
877 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
878                                u64 *last_len, u64 *skip, u64 *defrag_end,
879                                int compress)
880 {
881         struct extent_map *em;
882         int ret = 1;
883         bool next_mergeable = true;
884
885         /*
886          * make sure that once we start defragging an extent, we keep on
887          * defragging it
888          */
889         if (start < *defrag_end)
890                 return 1;
891
892         *skip = 0;
893
894         em = defrag_lookup_extent(inode, start);
895         if (!em)
896                 return 0;
897
898         /* this will cover holes, and inline extents */
899         if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
900                 ret = 0;
901                 goto out;
902         }
903
904         next_mergeable = defrag_check_next_extent(inode, em);
905
906         /*
907          * we hit a real extent, if it is big or the next extent is not a
908          * real extent, don't bother defragging it
909          */
910         if (!compress && (*last_len == 0 || *last_len >= thresh) &&
911             (em->len >= thresh || !next_mergeable))
912                 ret = 0;
913 out:
914         /*
915          * last_len ends up being a counter of how many bytes we've defragged.
916          * every time we choose not to defrag an extent, we reset *last_len
917          * so that the next tiny extent will force a defrag.
918          *
919          * The end result of this is that tiny extents before a single big
920          * extent will force at least part of that big extent to be defragged.
921          */
922         if (ret) {
923                 *defrag_end = extent_map_end(em);
924         } else {
925                 *last_len = 0;
926                 *skip = extent_map_end(em);
927                 *defrag_end = 0;
928         }
929
930         free_extent_map(em);
931         return ret;
932 }
933
934 /*
935  * it doesn't do much good to defrag one or two pages
936  * at a time.  This pulls in a nice chunk of pages
937  * to COW and defrag.
938  *
939  * It also makes sure the delalloc code has enough
940  * dirty data to avoid making new small extents as part
941  * of the defrag
942  *
943  * It's a good idea to start RA on this range
944  * before calling this.
945  */
946 static int cluster_pages_for_defrag(struct inode *inode,
947                                     struct page **pages,
948                                     unsigned long start_index,
949                                     int num_pages)
950 {
951         unsigned long file_end;
952         u64 isize = i_size_read(inode);
953         u64 page_start;
954         u64 page_end;
955         u64 page_cnt;
956         int ret;
957         int i;
958         int i_done;
959         struct btrfs_ordered_extent *ordered;
960         struct extent_state *cached_state = NULL;
961         struct extent_io_tree *tree;
962         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
963
964         file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
965         if (!isize || start_index > file_end)
966                 return 0;
967
968         page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
969
970         ret = btrfs_delalloc_reserve_space(inode,
971                                            page_cnt << PAGE_CACHE_SHIFT);
972         if (ret)
973                 return ret;
974         i_done = 0;
975         tree = &BTRFS_I(inode)->io_tree;
976
977         /* step one, lock all the pages */
978         for (i = 0; i < page_cnt; i++) {
979                 struct page *page;
980 again:
981                 page = find_or_create_page(inode->i_mapping,
982                                            start_index + i, mask);
983                 if (!page)
984                         break;
985
986                 page_start = page_offset(page);
987                 page_end = page_start + PAGE_CACHE_SIZE - 1;
988                 while (1) {
989                         lock_extent(tree, page_start, page_end);
990                         ordered = btrfs_lookup_ordered_extent(inode,
991                                                               page_start);
992                         unlock_extent(tree, page_start, page_end);
993                         if (!ordered)
994                                 break;
995
996                         unlock_page(page);
997                         btrfs_start_ordered_extent(inode, ordered, 1);
998                         btrfs_put_ordered_extent(ordered);
999                         lock_page(page);
1000                         /*
1001                          * we unlocked the page above, so we need check if
1002                          * it was released or not.
1003                          */
1004                         if (page->mapping != inode->i_mapping) {
1005                                 unlock_page(page);
1006                                 page_cache_release(page);
1007                                 goto again;
1008                         }
1009                 }
1010
1011                 if (!PageUptodate(page)) {
1012                         btrfs_readpage(NULL, page);
1013                         lock_page(page);
1014                         if (!PageUptodate(page)) {
1015                                 unlock_page(page);
1016                                 page_cache_release(page);
1017                                 ret = -EIO;
1018                                 break;
1019                         }
1020                 }
1021
1022                 if (page->mapping != inode->i_mapping) {
1023                         unlock_page(page);
1024                         page_cache_release(page);
1025                         goto again;
1026                 }
1027
1028                 pages[i] = page;
1029                 i_done++;
1030         }
1031         if (!i_done || ret)
1032                 goto out;
1033
1034         if (!(inode->i_sb->s_flags & MS_ACTIVE))
1035                 goto out;
1036
1037         /*
1038          * so now we have a nice long stream of locked
1039          * and up to date pages, lets wait on them
1040          */
1041         for (i = 0; i < i_done; i++)
1042                 wait_on_page_writeback(pages[i]);
1043
1044         page_start = page_offset(pages[0]);
1045         page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1046
1047         lock_extent_bits(&BTRFS_I(inode)->io_tree,
1048                          page_start, page_end - 1, 0, &cached_state);
1049         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1050                           page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1051                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1052                           &cached_state, GFP_NOFS);
1053
1054         if (i_done != page_cnt) {
1055                 spin_lock(&BTRFS_I(inode)->lock);
1056                 BTRFS_I(inode)->outstanding_extents++;
1057                 spin_unlock(&BTRFS_I(inode)->lock);
1058                 btrfs_delalloc_release_space(inode,
1059                                      (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1060         }
1061
1062
1063         set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1064                           &cached_state, GFP_NOFS);
1065
1066         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1067                              page_start, page_end - 1, &cached_state,
1068                              GFP_NOFS);
1069
1070         for (i = 0; i < i_done; i++) {
1071                 clear_page_dirty_for_io(pages[i]);
1072                 ClearPageChecked(pages[i]);
1073                 set_page_extent_mapped(pages[i]);
1074                 set_page_dirty(pages[i]);
1075                 unlock_page(pages[i]);
1076                 page_cache_release(pages[i]);
1077         }
1078         return i_done;
1079 out:
1080         for (i = 0; i < i_done; i++) {
1081                 unlock_page(pages[i]);
1082                 page_cache_release(pages[i]);
1083         }
1084         btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1085         return ret;
1086
1087 }
1088
1089 int btrfs_defrag_file(struct inode *inode, struct file *file,
1090                       struct btrfs_ioctl_defrag_range_args *range,
1091                       u64 newer_than, unsigned long max_to_defrag)
1092 {
1093         struct btrfs_root *root = BTRFS_I(inode)->root;
1094         struct file_ra_state *ra = NULL;
1095         unsigned long last_index;
1096         u64 isize = i_size_read(inode);
1097         u64 last_len = 0;
1098         u64 skip = 0;
1099         u64 defrag_end = 0;
1100         u64 newer_off = range->start;
1101         unsigned long i;
1102         unsigned long ra_index = 0;
1103         int ret;
1104         int defrag_count = 0;
1105         int compress_type = BTRFS_COMPRESS_ZLIB;
1106         int extent_thresh = range->extent_thresh;
1107         int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1108         int cluster = max_cluster;
1109         u64 new_align = ~((u64)128 * 1024 - 1);
1110         struct page **pages = NULL;
1111
1112         if (extent_thresh == 0)
1113                 extent_thresh = 256 * 1024;
1114
1115         if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1116                 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1117                         return -EINVAL;
1118                 if (range->compress_type)
1119                         compress_type = range->compress_type;
1120         }
1121
1122         if (isize == 0)
1123                 return 0;
1124
1125         /*
1126          * if we were not given a file, allocate a readahead
1127          * context
1128          */
1129         if (!file) {
1130                 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1131                 if (!ra)
1132                         return -ENOMEM;
1133                 file_ra_state_init(ra, inode->i_mapping);
1134         } else {
1135                 ra = &file->f_ra;
1136         }
1137
1138         pages = kmalloc(sizeof(struct page *) * max_cluster,
1139                         GFP_NOFS);
1140         if (!pages) {
1141                 ret = -ENOMEM;
1142                 goto out_ra;
1143         }
1144
1145         /* find the last page to defrag */
1146         if (range->start + range->len > range->start) {
1147                 last_index = min_t(u64, isize - 1,
1148                          range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1149         } else {
1150                 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1151         }
1152
1153         if (newer_than) {
1154                 ret = find_new_extents(root, inode, newer_than,
1155                                        &newer_off, 64 * 1024);
1156                 if (!ret) {
1157                         range->start = newer_off;
1158                         /*
1159                          * we always align our defrag to help keep
1160                          * the extents in the file evenly spaced
1161                          */
1162                         i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1163                 } else
1164                         goto out_ra;
1165         } else {
1166                 i = range->start >> PAGE_CACHE_SHIFT;
1167         }
1168         if (!max_to_defrag)
1169                 max_to_defrag = last_index + 1;
1170
1171         /*
1172          * make writeback starts from i, so the defrag range can be
1173          * written sequentially.
1174          */
1175         if (i < inode->i_mapping->writeback_index)
1176                 inode->i_mapping->writeback_index = i;
1177
1178         while (i <= last_index && defrag_count < max_to_defrag &&
1179                (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1180                 PAGE_CACHE_SHIFT)) {
1181                 /*
1182                  * make sure we stop running if someone unmounts
1183                  * the FS
1184                  */
1185                 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1186                         break;
1187
1188                 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1189                                          extent_thresh, &last_len, &skip,
1190                                          &defrag_end, range->flags &
1191                                          BTRFS_DEFRAG_RANGE_COMPRESS)) {
1192                         unsigned long next;
1193                         /*
1194                          * the should_defrag function tells us how much to skip
1195                          * bump our counter by the suggested amount
1196                          */
1197                         next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1198                         i = max(i + 1, next);
1199                         continue;
1200                 }
1201
1202                 if (!newer_than) {
1203                         cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1204                                    PAGE_CACHE_SHIFT) - i;
1205                         cluster = min(cluster, max_cluster);
1206                 } else {
1207                         cluster = max_cluster;
1208                 }
1209
1210                 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1211                         BTRFS_I(inode)->force_compress = compress_type;
1212
1213                 if (i + cluster > ra_index) {
1214                         ra_index = max(i, ra_index);
1215                         btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1216                                        cluster);
1217                         ra_index += max_cluster;
1218                 }
1219
1220                 mutex_lock(&inode->i_mutex);
1221                 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1222                 if (ret < 0) {
1223                         mutex_unlock(&inode->i_mutex);
1224                         goto out_ra;
1225                 }
1226
1227                 defrag_count += ret;
1228                 balance_dirty_pages_ratelimited(inode->i_mapping);
1229                 mutex_unlock(&inode->i_mutex);
1230
1231                 if (newer_than) {
1232                         if (newer_off == (u64)-1)
1233                                 break;
1234
1235                         if (ret > 0)
1236                                 i += ret;
1237
1238                         newer_off = max(newer_off + 1,
1239                                         (u64)i << PAGE_CACHE_SHIFT);
1240
1241                         ret = find_new_extents(root, inode,
1242                                                newer_than, &newer_off,
1243                                                64 * 1024);
1244                         if (!ret) {
1245                                 range->start = newer_off;
1246                                 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1247                         } else {
1248                                 break;
1249                         }
1250                 } else {
1251                         if (ret > 0) {
1252                                 i += ret;
1253                                 last_len += ret << PAGE_CACHE_SHIFT;
1254                         } else {
1255                                 i++;
1256                                 last_len = 0;
1257                         }
1258                 }
1259         }
1260
1261         if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1262                 filemap_flush(inode->i_mapping);
1263
1264         if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1265                 /* the filemap_flush will queue IO into the worker threads, but
1266                  * we have to make sure the IO is actually started and that
1267                  * ordered extents get created before we return
1268                  */
1269                 atomic_inc(&root->fs_info->async_submit_draining);
1270                 while (atomic_read(&root->fs_info->nr_async_submits) ||
1271                       atomic_read(&root->fs_info->async_delalloc_pages)) {
1272                         wait_event(root->fs_info->async_submit_wait,
1273                            (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1274                             atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1275                 }
1276                 atomic_dec(&root->fs_info->async_submit_draining);
1277
1278                 mutex_lock(&inode->i_mutex);
1279                 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1280                 mutex_unlock(&inode->i_mutex);
1281         }
1282
1283         if (range->compress_type == BTRFS_COMPRESS_LZO) {
1284                 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1285         }
1286
1287         ret = defrag_count;
1288
1289 out_ra:
1290         if (!file)
1291                 kfree(ra);
1292         kfree(pages);
1293         return ret;
1294 }
1295
1296 static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
1297                                         void __user *arg)
1298 {
1299         u64 new_size;
1300         u64 old_size;
1301         u64 devid = 1;
1302         struct btrfs_ioctl_vol_args *vol_args;
1303         struct btrfs_trans_handle *trans;
1304         struct btrfs_device *device = NULL;
1305         char *sizestr;
1306         char *devstr = NULL;
1307         int ret = 0;
1308         int mod = 0;
1309
1310         if (root->fs_info->sb->s_flags & MS_RDONLY)
1311                 return -EROFS;
1312
1313         if (!capable(CAP_SYS_ADMIN))
1314                 return -EPERM;
1315
1316         mutex_lock(&root->fs_info->volume_mutex);
1317         if (root->fs_info->balance_ctl) {
1318                 printk(KERN_INFO "btrfs: balance in progress\n");
1319                 ret = -EINVAL;
1320                 goto out;
1321         }
1322
1323         vol_args = memdup_user(arg, sizeof(*vol_args));
1324         if (IS_ERR(vol_args)) {
1325                 ret = PTR_ERR(vol_args);
1326                 goto out;
1327         }
1328
1329         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1330
1331         sizestr = vol_args->name;
1332         devstr = strchr(sizestr, ':');
1333         if (devstr) {
1334                 char *end;
1335                 sizestr = devstr + 1;
1336                 *devstr = '\0';
1337                 devstr = vol_args->name;
1338                 devid = simple_strtoull(devstr, &end, 10);
1339                 printk(KERN_INFO "btrfs: resizing devid %llu\n",
1340                        (unsigned long long)devid);
1341         }
1342         device = btrfs_find_device(root, devid, NULL, NULL);
1343         if (!device) {
1344                 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1345                        (unsigned long long)devid);
1346                 ret = -EINVAL;
1347                 goto out_free;
1348         }
1349         if (device->fs_devices && device->fs_devices->seeding) {
1350                 printk(KERN_INFO "btrfs: resizer unable to apply on "
1351                        "seeding device %llu\n",
1352                        (unsigned long long)devid);
1353                 ret = -EINVAL;
1354                 goto out_free;
1355         }
1356
1357         if (!strcmp(sizestr, "max"))
1358                 new_size = device->bdev->bd_inode->i_size;
1359         else {
1360                 if (sizestr[0] == '-') {
1361                         mod = -1;
1362                         sizestr++;
1363                 } else if (sizestr[0] == '+') {
1364                         mod = 1;
1365                         sizestr++;
1366                 }
1367                 new_size = memparse(sizestr, NULL);
1368                 if (new_size == 0) {
1369                         ret = -EINVAL;
1370                         goto out_free;
1371                 }
1372         }
1373
1374         old_size = device->total_bytes;
1375
1376         if (mod < 0) {
1377                 if (new_size > old_size) {
1378                         ret = -EINVAL;
1379                         goto out_free;
1380                 }
1381                 new_size = old_size - new_size;
1382         } else if (mod > 0) {
1383                 new_size = old_size + new_size;
1384         }
1385
1386         if (new_size < 256 * 1024 * 1024) {
1387                 ret = -EINVAL;
1388                 goto out_free;
1389         }
1390         if (new_size > device->bdev->bd_inode->i_size) {
1391                 ret = -EFBIG;
1392                 goto out_free;
1393         }
1394
1395         do_div(new_size, root->sectorsize);
1396         new_size *= root->sectorsize;
1397
1398         printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n",
1399                       rcu_str_deref(device->name),
1400                       (unsigned long long)new_size);
1401
1402         if (new_size > old_size) {
1403                 trans = btrfs_start_transaction(root, 0);
1404                 if (IS_ERR(trans)) {
1405                         ret = PTR_ERR(trans);
1406                         goto out_free;
1407                 }
1408                 ret = btrfs_grow_device(trans, device, new_size);
1409                 btrfs_commit_transaction(trans, root);
1410         } else if (new_size < old_size) {
1411                 ret = btrfs_shrink_device(device, new_size);
1412         }
1413
1414 out_free:
1415         kfree(vol_args);
1416 out:
1417         mutex_unlock(&root->fs_info->volume_mutex);
1418         return ret;
1419 }
1420
1421 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1422                                 char *name, unsigned long fd, int subvol,
1423                                 u64 *transid, bool readonly,
1424                                 struct btrfs_qgroup_inherit **inherit)
1425 {
1426         int namelen;
1427         int ret = 0;
1428
1429         ret = mnt_want_write_file(file);
1430         if (ret)
1431                 goto out;
1432
1433         namelen = strlen(name);
1434         if (strchr(name, '/')) {
1435                 ret = -EINVAL;
1436                 goto out_drop_write;
1437         }
1438
1439         if (name[0] == '.' &&
1440            (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1441                 ret = -EEXIST;
1442                 goto out_drop_write;
1443         }
1444
1445         if (subvol) {
1446                 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1447                                      NULL, transid, readonly, inherit);
1448         } else {
1449                 struct fd src = fdget(fd);
1450                 struct inode *src_inode;
1451                 if (!src.file) {
1452                         ret = -EINVAL;
1453                         goto out_drop_write;
1454                 }
1455
1456                 src_inode = src.file->f_path.dentry->d_inode;
1457                 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1458                         printk(KERN_INFO "btrfs: Snapshot src from "
1459                                "another FS\n");
1460                         ret = -EINVAL;
1461                 } else {
1462                         ret = btrfs_mksubvol(&file->f_path, name, namelen,
1463                                              BTRFS_I(src_inode)->root,
1464                                              transid, readonly, inherit);
1465                 }
1466                 fdput(src);
1467         }
1468 out_drop_write:
1469         mnt_drop_write_file(file);
1470 out:
1471         return ret;
1472 }
1473
1474 static noinline int btrfs_ioctl_snap_create(struct file *file,
1475                                             void __user *arg, int subvol)
1476 {
1477         struct btrfs_ioctl_vol_args *vol_args;
1478         int ret;
1479
1480         vol_args = memdup_user(arg, sizeof(*vol_args));
1481         if (IS_ERR(vol_args))
1482                 return PTR_ERR(vol_args);
1483         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1484
1485         ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1486                                               vol_args->fd, subvol,
1487                                               NULL, false, NULL);
1488
1489         kfree(vol_args);
1490         return ret;
1491 }
1492
1493 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1494                                                void __user *arg, int subvol)
1495 {
1496         struct btrfs_ioctl_vol_args_v2 *vol_args;
1497         int ret;
1498         u64 transid = 0;
1499         u64 *ptr = NULL;
1500         bool readonly = false;
1501         struct btrfs_qgroup_inherit *inherit = NULL;
1502
1503         vol_args = memdup_user(arg, sizeof(*vol_args));
1504         if (IS_ERR(vol_args))
1505                 return PTR_ERR(vol_args);
1506         vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1507
1508         if (vol_args->flags &
1509             ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1510               BTRFS_SUBVOL_QGROUP_INHERIT)) {
1511                 ret = -EOPNOTSUPP;
1512                 goto out;
1513         }
1514
1515         if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1516                 ptr = &transid;
1517         if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1518                 readonly = true;
1519         if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1520                 if (vol_args->size > PAGE_CACHE_SIZE) {
1521                         ret = -EINVAL;
1522                         goto out;
1523                 }
1524                 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1525                 if (IS_ERR(inherit)) {
1526                         ret = PTR_ERR(inherit);
1527                         goto out;
1528                 }
1529         }
1530
1531         ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1532                                               vol_args->fd, subvol, ptr,
1533                                               readonly, &inherit);
1534
1535         if (ret == 0 && ptr &&
1536             copy_to_user(arg +
1537                          offsetof(struct btrfs_ioctl_vol_args_v2,
1538                                   transid), ptr, sizeof(*ptr)))
1539                 ret = -EFAULT;
1540 out:
1541         kfree(vol_args);
1542         kfree(inherit);
1543         return ret;
1544 }
1545
1546 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1547                                                 void __user *arg)
1548 {
1549         struct inode *inode = fdentry(file)->d_inode;
1550         struct btrfs_root *root = BTRFS_I(inode)->root;
1551         int ret = 0;
1552         u64 flags = 0;
1553
1554         if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1555                 return -EINVAL;
1556
1557         down_read(&root->fs_info->subvol_sem);
1558         if (btrfs_root_readonly(root))
1559                 flags |= BTRFS_SUBVOL_RDONLY;
1560         up_read(&root->fs_info->subvol_sem);
1561
1562         if (copy_to_user(arg, &flags, sizeof(flags)))
1563                 ret = -EFAULT;
1564
1565         return ret;
1566 }
1567
1568 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1569                                               void __user *arg)
1570 {
1571         struct inode *inode = fdentry(file)->d_inode;
1572         struct btrfs_root *root = BTRFS_I(inode)->root;
1573         struct btrfs_trans_handle *trans;
1574         u64 root_flags;
1575         u64 flags;
1576         int ret = 0;
1577
1578         ret = mnt_want_write_file(file);
1579         if (ret)
1580                 goto out;
1581
1582         if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1583                 ret = -EINVAL;
1584                 goto out_drop_write;
1585         }
1586
1587         if (copy_from_user(&flags, arg, sizeof(flags))) {
1588                 ret = -EFAULT;
1589                 goto out_drop_write;
1590         }
1591
1592         if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1593                 ret = -EINVAL;
1594                 goto out_drop_write;
1595         }
1596
1597         if (flags & ~BTRFS_SUBVOL_RDONLY) {
1598                 ret = -EOPNOTSUPP;
1599                 goto out_drop_write;
1600         }
1601
1602         if (!inode_owner_or_capable(inode)) {
1603                 ret = -EACCES;
1604                 goto out_drop_write;
1605         }
1606
1607         down_write(&root->fs_info->subvol_sem);
1608
1609         /* nothing to do */
1610         if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1611                 goto out_drop_sem;
1612
1613         root_flags = btrfs_root_flags(&root->root_item);
1614         if (flags & BTRFS_SUBVOL_RDONLY)
1615                 btrfs_set_root_flags(&root->root_item,
1616                                      root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1617         else
1618                 btrfs_set_root_flags(&root->root_item,
1619                                      root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1620
1621         trans = btrfs_start_transaction(root, 1);
1622         if (IS_ERR(trans)) {
1623                 ret = PTR_ERR(trans);
1624                 goto out_reset;
1625         }
1626
1627         ret = btrfs_update_root(trans, root->fs_info->tree_root,
1628                                 &root->root_key, &root->root_item);
1629
1630         btrfs_commit_transaction(trans, root);
1631 out_reset:
1632         if (ret)
1633                 btrfs_set_root_flags(&root->root_item, root_flags);
1634 out_drop_sem:
1635         up_write(&root->fs_info->subvol_sem);
1636 out_drop_write:
1637         mnt_drop_write_file(file);
1638 out:
1639         return ret;
1640 }
1641
1642 /*
1643  * helper to check if the subvolume references other subvolumes
1644  */
1645 static noinline int may_destroy_subvol(struct btrfs_root *root)
1646 {
1647         struct btrfs_path *path;
1648         struct btrfs_key key;
1649         int ret;
1650
1651         path = btrfs_alloc_path();
1652         if (!path)
1653                 return -ENOMEM;
1654
1655         key.objectid = root->root_key.objectid;
1656         key.type = BTRFS_ROOT_REF_KEY;
1657         key.offset = (u64)-1;
1658
1659         ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1660                                 &key, path, 0, 0);
1661         if (ret < 0)
1662                 goto out;
1663         BUG_ON(ret == 0);
1664
1665         ret = 0;
1666         if (path->slots[0] > 0) {
1667                 path->slots[0]--;
1668                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1669                 if (key.objectid == root->root_key.objectid &&
1670                     key.type == BTRFS_ROOT_REF_KEY)
1671                         ret = -ENOTEMPTY;
1672         }
1673 out:
1674         btrfs_free_path(path);
1675         return ret;
1676 }
1677
1678 static noinline int key_in_sk(struct btrfs_key *key,
1679                               struct btrfs_ioctl_search_key *sk)
1680 {
1681         struct btrfs_key test;
1682         int ret;
1683
1684         test.objectid = sk->min_objectid;
1685         test.type = sk->min_type;
1686         test.offset = sk->min_offset;
1687
1688         ret = btrfs_comp_cpu_keys(key, &test);
1689         if (ret < 0)
1690                 return 0;
1691
1692         test.objectid = sk->max_objectid;
1693         test.type = sk->max_type;
1694         test.offset = sk->max_offset;
1695
1696         ret = btrfs_comp_cpu_keys(key, &test);
1697         if (ret > 0)
1698                 return 0;
1699         return 1;
1700 }
1701
1702 static noinline int copy_to_sk(struct btrfs_root *root,
1703                                struct btrfs_path *path,
1704                                struct btrfs_key *key,
1705                                struct btrfs_ioctl_search_key *sk,
1706                                char *buf,
1707                                unsigned long *sk_offset,
1708                                int *num_found)
1709 {
1710         u64 found_transid;
1711         struct extent_buffer *leaf;
1712         struct btrfs_ioctl_search_header sh;
1713         unsigned long item_off;
1714         unsigned long item_len;
1715         int nritems;
1716         int i;
1717         int slot;
1718         int ret = 0;
1719
1720         leaf = path->nodes[0];
1721         slot = path->slots[0];
1722         nritems = btrfs_header_nritems(leaf);
1723
1724         if (btrfs_header_generation(leaf) > sk->max_transid) {
1725                 i = nritems;
1726                 goto advance_key;
1727         }
1728         found_transid = btrfs_header_generation(leaf);
1729
1730         for (i = slot; i < nritems; i++) {
1731                 item_off = btrfs_item_ptr_offset(leaf, i);
1732                 item_len = btrfs_item_size_nr(leaf, i);
1733
1734                 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1735                         item_len = 0;
1736
1737                 if (sizeof(sh) + item_len + *sk_offset >
1738                     BTRFS_SEARCH_ARGS_BUFSIZE) {
1739                         ret = 1;
1740                         goto overflow;
1741                 }
1742
1743                 btrfs_item_key_to_cpu(leaf, key, i);
1744                 if (!key_in_sk(key, sk))
1745                         continue;
1746
1747                 sh.objectid = key->objectid;
1748                 sh.offset = key->offset;
1749                 sh.type = key->type;
1750                 sh.len = item_len;
1751                 sh.transid = found_transid;
1752
1753                 /* copy search result header */
1754                 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1755                 *sk_offset += sizeof(sh);
1756
1757                 if (item_len) {
1758                         char *p = buf + *sk_offset;
1759                         /* copy the item */
1760                         read_extent_buffer(leaf, p,
1761                                            item_off, item_len);
1762                         *sk_offset += item_len;
1763                 }
1764                 (*num_found)++;
1765
1766                 if (*num_found >= sk->nr_items)
1767                         break;
1768         }
1769 advance_key:
1770         ret = 0;
1771         if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1772                 key->offset++;
1773         else if (key->type < (u8)-1 && key->type < sk->max_type) {
1774                 key->offset = 0;
1775                 key->type++;
1776         } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1777                 key->offset = 0;
1778                 key->type = 0;
1779                 key->objectid++;
1780         } else
1781                 ret = 1;
1782 overflow:
1783         return ret;
1784 }
1785
1786 static noinline int search_ioctl(struct inode *inode,
1787                                  struct btrfs_ioctl_search_args *args)
1788 {
1789         struct btrfs_root *root;
1790         struct btrfs_key key;
1791         struct btrfs_key max_key;
1792         struct btrfs_path *path;
1793         struct btrfs_ioctl_search_key *sk = &args->key;
1794         struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1795         int ret;
1796         int num_found = 0;
1797         unsigned long sk_offset = 0;
1798
1799         path = btrfs_alloc_path();
1800         if (!path)
1801                 return -ENOMEM;
1802
1803         if (sk->tree_id == 0) {
1804                 /* search the root of the inode that was passed */
1805                 root = BTRFS_I(inode)->root;
1806         } else {
1807                 key.objectid = sk->tree_id;
1808                 key.type = BTRFS_ROOT_ITEM_KEY;
1809                 key.offset = (u64)-1;
1810                 root = btrfs_read_fs_root_no_name(info, &key);
1811                 if (IS_ERR(root)) {
1812                         printk(KERN_ERR "could not find root %llu\n",
1813                                sk->tree_id);
1814                         btrfs_free_path(path);
1815                         return -ENOENT;
1816                 }
1817         }
1818
1819         key.objectid = sk->min_objectid;
1820         key.type = sk->min_type;
1821         key.offset = sk->min_offset;
1822
1823         max_key.objectid = sk->max_objectid;
1824         max_key.type = sk->max_type;
1825         max_key.offset = sk->max_offset;
1826
1827         path->keep_locks = 1;
1828
1829         while(1) {
1830                 ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1831                                            sk->min_transid);
1832                 if (ret != 0) {
1833                         if (ret > 0)
1834                                 ret = 0;
1835                         goto err;
1836                 }
1837                 ret = copy_to_sk(root, path, &key, sk, args->buf,
1838                                  &sk_offset, &num_found);
1839                 btrfs_release_path(path);
1840                 if (ret || num_found >= sk->nr_items)
1841                         break;
1842
1843         }
1844         ret = 0;
1845 err:
1846         sk->nr_items = num_found;
1847         btrfs_free_path(path);
1848         return ret;
1849 }
1850
1851 static noinline int btrfs_ioctl_tree_search(struct file *file,
1852                                            void __user *argp)
1853 {
1854          struct btrfs_ioctl_search_args *args;
1855          struct inode *inode;
1856          int ret;
1857
1858         if (!capable(CAP_SYS_ADMIN))
1859                 return -EPERM;
1860
1861         args = memdup_user(argp, sizeof(*args));
1862         if (IS_ERR(args))
1863                 return PTR_ERR(args);
1864
1865         inode = fdentry(file)->d_inode;
1866         ret = search_ioctl(inode, args);
1867         if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1868                 ret = -EFAULT;
1869         kfree(args);
1870         return ret;
1871 }
1872
1873 /*
1874  * Search INODE_REFs to identify path name of 'dirid' directory
1875  * in a 'tree_id' tree. and sets path name to 'name'.
1876  */
1877 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1878                                 u64 tree_id, u64 dirid, char *name)
1879 {
1880         struct btrfs_root *root;
1881         struct btrfs_key key;
1882         char *ptr;
1883         int ret = -1;
1884         int slot;
1885         int len;
1886         int total_len = 0;
1887         struct btrfs_inode_ref *iref;
1888         struct extent_buffer *l;
1889         struct btrfs_path *path;
1890
1891         if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1892                 name[0]='\0';
1893                 return 0;
1894         }
1895
1896         path = btrfs_alloc_path();
1897         if (!path)
1898                 return -ENOMEM;
1899
1900         ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1901
1902         key.objectid = tree_id;
1903         key.type = BTRFS_ROOT_ITEM_KEY;
1904         key.offset = (u64)-1;
1905         root = btrfs_read_fs_root_no_name(info, &key);
1906         if (IS_ERR(root)) {
1907                 printk(KERN_ERR "could not find root %llu\n", tree_id);
1908                 ret = -ENOENT;
1909                 goto out;
1910         }
1911
1912         key.objectid = dirid;
1913         key.type = BTRFS_INODE_REF_KEY;
1914         key.offset = (u64)-1;
1915
1916         while(1) {
1917                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1918                 if (ret < 0)
1919                         goto out;
1920
1921                 l = path->nodes[0];
1922                 slot = path->slots[0];
1923                 if (ret > 0 && slot > 0)
1924                         slot--;
1925                 btrfs_item_key_to_cpu(l, &key, slot);
1926
1927                 if (ret > 0 && (key.objectid != dirid ||
1928                                 key.type != BTRFS_INODE_REF_KEY)) {
1929                         ret = -ENOENT;
1930                         goto out;
1931                 }
1932
1933                 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1934                 len = btrfs_inode_ref_name_len(l, iref);
1935                 ptr -= len + 1;
1936                 total_len += len + 1;
1937                 if (ptr < name)
1938                         goto out;
1939
1940                 *(ptr + len) = '/';
1941                 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1942
1943                 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1944                         break;
1945
1946                 btrfs_release_path(path);
1947                 key.objectid = key.offset;
1948                 key.offset = (u64)-1;
1949                 dirid = key.objectid;
1950         }
1951         if (ptr < name)
1952                 goto out;
1953         memmove(name, ptr, total_len);
1954         name[total_len]='\0';
1955         ret = 0;
1956 out:
1957         btrfs_free_path(path);
1958         return ret;
1959 }
1960
1961 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1962                                            void __user *argp)
1963 {
1964          struct btrfs_ioctl_ino_lookup_args *args;
1965          struct inode *inode;
1966          int ret;
1967
1968         if (!capable(CAP_SYS_ADMIN))
1969                 return -EPERM;
1970
1971         args = memdup_user(argp, sizeof(*args));
1972         if (IS_ERR(args))
1973                 return PTR_ERR(args);
1974
1975         inode = fdentry(file)->d_inode;
1976
1977         if (args->treeid == 0)
1978                 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1979
1980         ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1981                                         args->treeid, args->objectid,
1982                                         args->name);
1983
1984         if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1985                 ret = -EFAULT;
1986
1987         kfree(args);
1988         return ret;
1989 }
1990
1991 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1992                                              void __user *arg)
1993 {
1994         struct dentry *parent = fdentry(file);
1995         struct dentry *dentry;
1996         struct inode *dir = parent->d_inode;
1997         struct inode *inode;
1998         struct btrfs_root *root = BTRFS_I(dir)->root;
1999         struct btrfs_root *dest = NULL;
2000         struct btrfs_ioctl_vol_args *vol_args;
2001         struct btrfs_trans_handle *trans;
2002         int namelen;
2003         int ret;
2004         int err = 0;
2005
2006         vol_args = memdup_user(arg, sizeof(*vol_args));
2007         if (IS_ERR(vol_args))
2008                 return PTR_ERR(vol_args);
2009
2010         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2011         namelen = strlen(vol_args->name);
2012         if (strchr(vol_args->name, '/') ||
2013             strncmp(vol_args->name, "..", namelen) == 0) {
2014                 err = -EINVAL;
2015                 goto out;
2016         }
2017
2018         err = mnt_want_write_file(file);
2019         if (err)
2020                 goto out;
2021
2022         mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
2023         dentry = lookup_one_len(vol_args->name, parent, namelen);
2024         if (IS_ERR(dentry)) {
2025                 err = PTR_ERR(dentry);
2026                 goto out_unlock_dir;
2027         }
2028
2029         if (!dentry->d_inode) {
2030                 err = -ENOENT;
2031                 goto out_dput;
2032         }
2033
2034         inode = dentry->d_inode;
2035         dest = BTRFS_I(inode)->root;
2036         if (!capable(CAP_SYS_ADMIN)){
2037                 /*
2038                  * Regular user.  Only allow this with a special mount
2039                  * option, when the user has write+exec access to the
2040                  * subvol root, and when rmdir(2) would have been
2041                  * allowed.
2042                  *
2043                  * Note that this is _not_ check that the subvol is
2044                  * empty or doesn't contain data that we wouldn't
2045                  * otherwise be able to delete.
2046                  *
2047                  * Users who want to delete empty subvols should try
2048                  * rmdir(2).
2049                  */
2050                 err = -EPERM;
2051                 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2052                         goto out_dput;
2053
2054                 /*
2055                  * Do not allow deletion if the parent dir is the same
2056                  * as the dir to be deleted.  That means the ioctl
2057                  * must be called on the dentry referencing the root
2058                  * of the subvol, not a random directory contained
2059                  * within it.
2060                  */
2061                 err = -EINVAL;
2062                 if (root == dest)
2063                         goto out_dput;
2064
2065                 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2066                 if (err)
2067                         goto out_dput;
2068
2069                 /* check if subvolume may be deleted by a non-root user */
2070                 err = btrfs_may_delete(dir, dentry, 1);
2071                 if (err)
2072                         goto out_dput;
2073         }
2074
2075         if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2076                 err = -EINVAL;
2077                 goto out_dput;
2078         }
2079
2080         mutex_lock(&inode->i_mutex);
2081         err = d_invalidate(dentry);
2082         if (err)
2083                 goto out_unlock;
2084
2085         down_write(&root->fs_info->subvol_sem);
2086
2087         err = may_destroy_subvol(dest);
2088         if (err)
2089                 goto out_up_write;
2090
2091         trans = btrfs_start_transaction(root, 0);
2092         if (IS_ERR(trans)) {
2093                 err = PTR_ERR(trans);
2094                 goto out_up_write;
2095         }
2096         trans->block_rsv = &root->fs_info->global_block_rsv;
2097
2098         ret = btrfs_unlink_subvol(trans, root, dir,
2099                                 dest->root_key.objectid,
2100                                 dentry->d_name.name,
2101                                 dentry->d_name.len);
2102         if (ret) {
2103                 err = ret;
2104                 btrfs_abort_transaction(trans, root, ret);
2105                 goto out_end_trans;
2106         }
2107
2108         btrfs_record_root_in_trans(trans, dest);
2109
2110         memset(&dest->root_item.drop_progress, 0,
2111                 sizeof(dest->root_item.drop_progress));
2112         dest->root_item.drop_level = 0;
2113         btrfs_set_root_refs(&dest->root_item, 0);
2114
2115         if (!xchg(&dest->orphan_item_inserted, 1)) {
2116                 ret = btrfs_insert_orphan_item(trans,
2117                                         root->fs_info->tree_root,
2118                                         dest->root_key.objectid);
2119                 if (ret) {
2120                         btrfs_abort_transaction(trans, root, ret);
2121                         err = ret;
2122                         goto out_end_trans;
2123                 }
2124         }
2125 out_end_trans:
2126         ret = btrfs_end_transaction(trans, root);
2127         if (ret && !err)
2128                 err = ret;
2129         inode->i_flags |= S_DEAD;
2130 out_up_write:
2131         up_write(&root->fs_info->subvol_sem);
2132 out_unlock:
2133         mutex_unlock(&inode->i_mutex);
2134         if (!err) {
2135                 shrink_dcache_sb(root->fs_info->sb);
2136                 btrfs_invalidate_inodes(dest);
2137                 d_delete(dentry);
2138         }
2139 out_dput:
2140         dput(dentry);
2141 out_unlock_dir:
2142         mutex_unlock(&dir->i_mutex);
2143         mnt_drop_write_file(file);
2144 out:
2145         kfree(vol_args);
2146         return err;
2147 }
2148
2149 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2150 {
2151         struct inode *inode = fdentry(file)->d_inode;
2152         struct btrfs_root *root = BTRFS_I(inode)->root;
2153         struct btrfs_ioctl_defrag_range_args *range;
2154         int ret;
2155
2156         if (btrfs_root_readonly(root))
2157                 return -EROFS;
2158
2159         ret = mnt_want_write_file(file);
2160         if (ret)
2161                 return ret;
2162
2163         switch (inode->i_mode & S_IFMT) {
2164         case S_IFDIR:
2165                 if (!capable(CAP_SYS_ADMIN)) {
2166                         ret = -EPERM;
2167                         goto out;
2168                 }
2169                 ret = btrfs_defrag_root(root, 0);
2170                 if (ret)
2171                         goto out;
2172                 ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
2173                 break;
2174         case S_IFREG:
2175                 if (!(file->f_mode & FMODE_WRITE)) {
2176                         ret = -EINVAL;
2177                         goto out;
2178                 }
2179
2180                 range = kzalloc(sizeof(*range), GFP_KERNEL);
2181                 if (!range) {
2182                         ret = -ENOMEM;
2183                         goto out;
2184                 }
2185
2186                 if (argp) {
2187                         if (copy_from_user(range, argp,
2188                                            sizeof(*range))) {
2189                                 ret = -EFAULT;
2190                                 kfree(range);
2191                                 goto out;
2192                         }
2193                         /* compression requires us to start the IO */
2194                         if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2195                                 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2196                                 range->extent_thresh = (u32)-1;
2197                         }
2198                 } else {
2199                         /* the rest are all set to zero by kzalloc */
2200                         range->len = (u64)-1;
2201                 }
2202                 ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2203                                         range, 0, 0);
2204                 if (ret > 0)
2205                         ret = 0;
2206                 kfree(range);
2207                 break;
2208         default:
2209                 ret = -EINVAL;
2210         }
2211 out:
2212         mnt_drop_write_file(file);
2213         return ret;
2214 }
2215
2216 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2217 {
2218         struct btrfs_ioctl_vol_args *vol_args;
2219         int ret;
2220
2221         if (!capable(CAP_SYS_ADMIN))
2222                 return -EPERM;
2223
2224         mutex_lock(&root->fs_info->volume_mutex);
2225         if (root->fs_info->balance_ctl) {
2226                 printk(KERN_INFO "btrfs: balance in progress\n");
2227                 ret = -EINVAL;
2228                 goto out;
2229         }
2230
2231         vol_args = memdup_user(arg, sizeof(*vol_args));
2232         if (IS_ERR(vol_args)) {
2233                 ret = PTR_ERR(vol_args);
2234                 goto out;
2235         }
2236
2237         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2238         ret = btrfs_init_new_device(root, vol_args->name);
2239
2240         kfree(vol_args);
2241 out:
2242         mutex_unlock(&root->fs_info->volume_mutex);
2243         return ret;
2244 }
2245
2246 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
2247 {
2248         struct btrfs_ioctl_vol_args *vol_args;
2249         int ret;
2250
2251         if (!capable(CAP_SYS_ADMIN))
2252                 return -EPERM;
2253
2254         if (root->fs_info->sb->s_flags & MS_RDONLY)
2255                 return -EROFS;
2256
2257         mutex_lock(&root->fs_info->volume_mutex);
2258         if (root->fs_info->balance_ctl) {
2259                 printk(KERN_INFO "btrfs: balance in progress\n");
2260                 ret = -EINVAL;
2261                 goto out;
2262         }
2263
2264         vol_args = memdup_user(arg, sizeof(*vol_args));
2265         if (IS_ERR(vol_args)) {
2266                 ret = PTR_ERR(vol_args);
2267                 goto out;
2268         }
2269
2270         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2271         ret = btrfs_rm_device(root, vol_args->name);
2272
2273         kfree(vol_args);
2274 out:
2275         mutex_unlock(&root->fs_info->volume_mutex);
2276         return ret;
2277 }
2278
2279 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2280 {
2281         struct btrfs_ioctl_fs_info_args *fi_args;
2282         struct btrfs_device *device;
2283         struct btrfs_device *next;
2284         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2285         int ret = 0;
2286
2287         if (!capable(CAP_SYS_ADMIN))
2288                 return -EPERM;
2289
2290         fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2291         if (!fi_args)
2292                 return -ENOMEM;
2293
2294         fi_args->num_devices = fs_devices->num_devices;
2295         memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2296
2297         mutex_lock(&fs_devices->device_list_mutex);
2298         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2299                 if (device->devid > fi_args->max_id)
2300                         fi_args->max_id = device->devid;
2301         }
2302         mutex_unlock(&fs_devices->device_list_mutex);
2303
2304         if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2305                 ret = -EFAULT;
2306
2307         kfree(fi_args);
2308         return ret;
2309 }
2310
2311 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2312 {
2313         struct btrfs_ioctl_dev_info_args *di_args;
2314         struct btrfs_device *dev;
2315         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2316         int ret = 0;
2317         char *s_uuid = NULL;
2318         char empty_uuid[BTRFS_UUID_SIZE] = {0};
2319
2320         if (!capable(CAP_SYS_ADMIN))
2321                 return -EPERM;
2322
2323         di_args = memdup_user(arg, sizeof(*di_args));
2324         if (IS_ERR(di_args))
2325                 return PTR_ERR(di_args);
2326
2327         if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2328                 s_uuid = di_args->uuid;
2329
2330         mutex_lock(&fs_devices->device_list_mutex);
2331         dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
2332         mutex_unlock(&fs_devices->device_list_mutex);
2333
2334         if (!dev) {
2335                 ret = -ENODEV;
2336                 goto out;
2337         }
2338
2339         di_args->devid = dev->devid;
2340         di_args->bytes_used = dev->bytes_used;
2341         di_args->total_bytes = dev->total_bytes;
2342         memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2343         if (dev->name) {
2344                 struct rcu_string *name;
2345
2346                 rcu_read_lock();
2347                 name = rcu_dereference(dev->name);
2348                 strncpy(di_args->path, name->str, sizeof(di_args->path));
2349                 rcu_read_unlock();
2350                 di_args->path[sizeof(di_args->path) - 1] = 0;
2351         } else {
2352                 di_args->path[0] = '\0';
2353         }
2354
2355 out:
2356         if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2357                 ret = -EFAULT;
2358
2359         kfree(di_args);
2360         return ret;
2361 }
2362
2363 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2364                                        u64 off, u64 olen, u64 destoff)
2365 {
2366         struct inode *inode = fdentry(file)->d_inode;
2367         struct btrfs_root *root = BTRFS_I(inode)->root;
2368         struct fd src_file;
2369         struct inode *src;
2370         struct btrfs_trans_handle *trans;
2371         struct btrfs_path *path;
2372         struct extent_buffer *leaf;
2373         char *buf;
2374         struct btrfs_key key;
2375         u32 nritems;
2376         int slot;
2377         int ret;
2378         u64 len = olen;
2379         u64 bs = root->fs_info->sb->s_blocksize;
2380
2381         /*
2382          * TODO:
2383          * - split compressed inline extents.  annoying: we need to
2384          *   decompress into destination's address_space (the file offset
2385          *   may change, so source mapping won't do), then recompress (or
2386          *   otherwise reinsert) a subrange.
2387          * - allow ranges within the same file to be cloned (provided
2388          *   they don't overlap)?
2389          */
2390
2391         /* the destination must be opened for writing */
2392         if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2393                 return -EINVAL;
2394
2395         if (btrfs_root_readonly(root))
2396                 return -EROFS;
2397
2398         ret = mnt_want_write_file(file);
2399         if (ret)
2400                 return ret;
2401
2402         src_file = fdget(srcfd);
2403         if (!src_file.file) {
2404                 ret = -EBADF;
2405                 goto out_drop_write;
2406         }
2407
2408         ret = -EXDEV;
2409         if (src_file.file->f_path.mnt != file->f_path.mnt)
2410                 goto out_fput;
2411
2412         src = src_file.file->f_dentry->d_inode;
2413
2414         ret = -EINVAL;
2415         if (src == inode)
2416                 goto out_fput;
2417
2418         /* the src must be open for reading */
2419         if (!(src_file.file->f_mode & FMODE_READ))
2420                 goto out_fput;
2421
2422         /* don't make the dst file partly checksummed */
2423         if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2424             (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2425                 goto out_fput;
2426
2427         ret = -EISDIR;
2428         if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2429                 goto out_fput;
2430
2431         ret = -EXDEV;
2432         if (src->i_sb != inode->i_sb)
2433                 goto out_fput;
2434
2435         ret = -ENOMEM;
2436         buf = vmalloc(btrfs_level_size(root, 0));
2437         if (!buf)
2438                 goto out_fput;
2439
2440         path = btrfs_alloc_path();
2441         if (!path) {
2442                 vfree(buf);
2443                 goto out_fput;
2444         }
2445         path->reada = 2;
2446
2447         if (inode < src) {
2448                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2449                 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2450         } else {
2451                 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2452                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2453         }
2454
2455         /* determine range to clone */
2456         ret = -EINVAL;
2457         if (off + len > src->i_size || off + len < off)
2458                 goto out_unlock;
2459         if (len == 0)
2460                 olen = len = src->i_size - off;
2461         /* if we extend to eof, continue to block boundary */
2462         if (off + len == src->i_size)
2463                 len = ALIGN(src->i_size, bs) - off;
2464
2465         /* verify the end result is block aligned */
2466         if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2467             !IS_ALIGNED(destoff, bs))
2468                 goto out_unlock;
2469
2470         if (destoff > inode->i_size) {
2471                 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2472                 if (ret)
2473                         goto out_unlock;
2474         }
2475
2476         /* truncate page cache pages from target inode range */
2477         truncate_inode_pages_range(&inode->i_data, destoff,
2478                                    PAGE_CACHE_ALIGN(destoff + len) - 1);
2479
2480         /* do any pending delalloc/csum calc on src, one way or
2481            another, and lock file content */
2482         while (1) {
2483                 struct btrfs_ordered_extent *ordered;
2484                 lock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2485                 ordered = btrfs_lookup_first_ordered_extent(src, off + len - 1);
2486                 if (!ordered &&
2487                     !test_range_bit(&BTRFS_I(src)->io_tree, off, off + len - 1,
2488                                     EXTENT_DELALLOC, 0, NULL))
2489                         break;
2490                 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2491                 if (ordered)
2492                         btrfs_put_ordered_extent(ordered);
2493                 btrfs_wait_ordered_range(src, off, len);
2494         }
2495
2496         /* clone data */
2497         key.objectid = btrfs_ino(src);
2498         key.type = BTRFS_EXTENT_DATA_KEY;
2499         key.offset = 0;
2500
2501         while (1) {
2502                 /*
2503                  * note the key will change type as we walk through the
2504                  * tree.
2505                  */
2506                 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2507                                 0, 0);
2508                 if (ret < 0)
2509                         goto out;
2510
2511                 nritems = btrfs_header_nritems(path->nodes[0]);
2512                 if (path->slots[0] >= nritems) {
2513                         ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2514                         if (ret < 0)
2515                                 goto out;
2516                         if (ret > 0)
2517                                 break;
2518                         nritems = btrfs_header_nritems(path->nodes[0]);
2519                 }
2520                 leaf = path->nodes[0];
2521                 slot = path->slots[0];
2522
2523                 btrfs_item_key_to_cpu(leaf, &key, slot);
2524                 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2525                     key.objectid != btrfs_ino(src))
2526                         break;
2527
2528                 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2529                         struct btrfs_file_extent_item *extent;
2530                         int type;
2531                         u32 size;
2532                         struct btrfs_key new_key;
2533                         u64 disko = 0, diskl = 0;
2534                         u64 datao = 0, datal = 0;
2535                         u8 comp;
2536                         u64 endoff;
2537
2538                         size = btrfs_item_size_nr(leaf, slot);
2539                         read_extent_buffer(leaf, buf,
2540                                            btrfs_item_ptr_offset(leaf, slot),
2541                                            size);
2542
2543                         extent = btrfs_item_ptr(leaf, slot,
2544                                                 struct btrfs_file_extent_item);
2545                         comp = btrfs_file_extent_compression(leaf, extent);
2546                         type = btrfs_file_extent_type(leaf, extent);
2547                         if (type == BTRFS_FILE_EXTENT_REG ||
2548                             type == BTRFS_FILE_EXTENT_PREALLOC) {
2549                                 disko = btrfs_file_extent_disk_bytenr(leaf,
2550                                                                       extent);
2551                                 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2552                                                                  extent);
2553                                 datao = btrfs_file_extent_offset(leaf, extent);
2554                                 datal = btrfs_file_extent_num_bytes(leaf,
2555                                                                     extent);
2556                         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2557                                 /* take upper bound, may be compressed */
2558                                 datal = btrfs_file_extent_ram_bytes(leaf,
2559                                                                     extent);
2560                         }
2561                         btrfs_release_path(path);
2562
2563                         if (key.offset + datal <= off ||
2564                             key.offset >= off + len - 1)
2565                                 goto next;
2566
2567                         memcpy(&new_key, &key, sizeof(new_key));
2568                         new_key.objectid = btrfs_ino(inode);
2569                         if (off <= key.offset)
2570                                 new_key.offset = key.offset + destoff - off;
2571                         else
2572                                 new_key.offset = destoff;
2573
2574                         /*
2575                          * 1 - adjusting old extent (we may have to split it)
2576                          * 1 - add new extent
2577                          * 1 - inode update
2578                          */
2579                         trans = btrfs_start_transaction(root, 3);
2580                         if (IS_ERR(trans)) {
2581                                 ret = PTR_ERR(trans);
2582                                 goto out;
2583                         }
2584
2585                         if (type == BTRFS_FILE_EXTENT_REG ||
2586                             type == BTRFS_FILE_EXTENT_PREALLOC) {
2587                                 /*
2588                                  *    a  | --- range to clone ---|  b
2589                                  * | ------------- extent ------------- |
2590                                  */
2591
2592                                 /* substract range b */
2593                                 if (key.offset + datal > off + len)
2594                                         datal = off + len - key.offset;
2595
2596                                 /* substract range a */
2597                                 if (off > key.offset) {
2598                                         datao += off - key.offset;
2599                                         datal -= off - key.offset;
2600                                 }
2601
2602                                 ret = btrfs_drop_extents(trans, root, inode,
2603                                                          new_key.offset,
2604                                                          new_key.offset + datal,
2605                                                          1);
2606                                 if (ret) {
2607                                         btrfs_abort_transaction(trans, root,
2608                                                                 ret);
2609                                         btrfs_end_transaction(trans, root);
2610                                         goto out;
2611                                 }
2612
2613                                 ret = btrfs_insert_empty_item(trans, root, path,
2614                                                               &new_key, size);
2615                                 if (ret) {
2616                                         btrfs_abort_transaction(trans, root,
2617                                                                 ret);
2618                                         btrfs_end_transaction(trans, root);
2619                                         goto out;
2620                                 }
2621
2622                                 leaf = path->nodes[0];
2623                                 slot = path->slots[0];
2624                                 write_extent_buffer(leaf, buf,
2625                                             btrfs_item_ptr_offset(leaf, slot),
2626                                             size);
2627
2628                                 extent = btrfs_item_ptr(leaf, slot,
2629                                                 struct btrfs_file_extent_item);
2630
2631                                 /* disko == 0 means it's a hole */
2632                                 if (!disko)
2633                                         datao = 0;
2634
2635                                 btrfs_set_file_extent_offset(leaf, extent,
2636                                                              datao);
2637                                 btrfs_set_file_extent_num_bytes(leaf, extent,
2638                                                                 datal);
2639                                 if (disko) {
2640                                         inode_add_bytes(inode, datal);
2641                                         ret = btrfs_inc_extent_ref(trans, root,
2642                                                         disko, diskl, 0,
2643                                                         root->root_key.objectid,
2644                                                         btrfs_ino(inode),
2645                                                         new_key.offset - datao,
2646                                                         0);
2647                                         if (ret) {
2648                                                 btrfs_abort_transaction(trans,
2649                                                                         root,
2650                                                                         ret);
2651                                                 btrfs_end_transaction(trans,
2652                                                                       root);
2653                                                 goto out;
2654
2655                                         }
2656                                 }
2657                         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2658                                 u64 skip = 0;
2659                                 u64 trim = 0;
2660                                 if (off > key.offset) {
2661                                         skip = off - key.offset;
2662                                         new_key.offset += skip;
2663                                 }
2664
2665                                 if (key.offset + datal > off + len)
2666                                         trim = key.offset + datal - (off + len);
2667
2668                                 if (comp && (skip || trim)) {
2669                                         ret = -EINVAL;
2670                                         btrfs_end_transaction(trans, root);
2671                                         goto out;
2672                                 }
2673                                 size -= skip + trim;
2674                                 datal -= skip + trim;
2675
2676                                 ret = btrfs_drop_extents(trans, root, inode,
2677                                                          new_key.offset,
2678                                                          new_key.offset + datal,
2679                                                          1);
2680                                 if (ret) {
2681                                         btrfs_abort_transaction(trans, root,
2682                                                                 ret);
2683                                         btrfs_end_transaction(trans, root);
2684                                         goto out;
2685                                 }
2686
2687                                 ret = btrfs_insert_empty_item(trans, root, path,
2688                                                               &new_key, size);
2689                                 if (ret) {
2690                                         btrfs_abort_transaction(trans, root,
2691                                                                 ret);
2692                                         btrfs_end_transaction(trans, root);
2693                                         goto out;
2694                                 }
2695
2696                                 if (skip) {
2697                                         u32 start =
2698                                           btrfs_file_extent_calc_inline_size(0);
2699                                         memmove(buf+start, buf+start+skip,
2700                                                 datal);
2701                                 }
2702
2703                                 leaf = path->nodes[0];
2704                                 slot = path->slots[0];
2705                                 write_extent_buffer(leaf, buf,
2706                                             btrfs_item_ptr_offset(leaf, slot),
2707                                             size);
2708                                 inode_add_bytes(inode, datal);
2709                         }
2710
2711                         btrfs_mark_buffer_dirty(leaf);
2712                         btrfs_release_path(path);
2713
2714                         inode_inc_iversion(inode);
2715                         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2716
2717                         /*
2718                          * we round up to the block size at eof when
2719                          * determining which extents to clone above,
2720                          * but shouldn't round up the file size
2721                          */
2722                         endoff = new_key.offset + datal;
2723                         if (endoff > destoff+olen)
2724                                 endoff = destoff+olen;
2725                         if (endoff > inode->i_size)
2726                                 btrfs_i_size_write(inode, endoff);
2727
2728                         ret = btrfs_update_inode(trans, root, inode);
2729                         if (ret) {
2730                                 btrfs_abort_transaction(trans, root, ret);
2731                                 btrfs_end_transaction(trans, root);
2732                                 goto out;
2733                         }
2734                         ret = btrfs_end_transaction(trans, root);
2735                 }
2736 next:
2737                 btrfs_release_path(path);
2738                 key.offset++;
2739         }
2740         ret = 0;
2741 out:
2742         btrfs_release_path(path);
2743         unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2744 out_unlock:
2745         mutex_unlock(&src->i_mutex);
2746         mutex_unlock(&inode->i_mutex);
2747         vfree(buf);
2748         btrfs_free_path(path);
2749 out_fput:
2750         fdput(src_file);
2751 out_drop_write:
2752         mnt_drop_write_file(file);
2753         return ret;
2754 }
2755
2756 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2757 {
2758         struct btrfs_ioctl_clone_range_args args;
2759
2760         if (copy_from_user(&args, argp, sizeof(args)))
2761                 return -EFAULT;
2762         return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2763                                  args.src_length, args.dest_offset);
2764 }
2765
2766 /*
2767  * there are many ways the trans_start and trans_end ioctls can lead
2768  * to deadlocks.  They should only be used by applications that
2769  * basically own the machine, and have a very in depth understanding
2770  * of all the possible deadlocks and enospc problems.
2771  */
2772 static long btrfs_ioctl_trans_start(struct file *file)
2773 {
2774         struct inode *inode = fdentry(file)->d_inode;
2775         struct btrfs_root *root = BTRFS_I(inode)->root;
2776         struct btrfs_trans_handle *trans;
2777         int ret;
2778
2779         ret = -EPERM;
2780         if (!capable(CAP_SYS_ADMIN))
2781                 goto out;
2782
2783         ret = -EINPROGRESS;
2784         if (file->private_data)
2785                 goto out;
2786
2787         ret = -EROFS;
2788         if (btrfs_root_readonly(root))
2789                 goto out;
2790
2791         ret = mnt_want_write_file(file);
2792         if (ret)
2793                 goto out;
2794
2795         atomic_inc(&root->fs_info->open_ioctl_trans);
2796
2797         ret = -ENOMEM;
2798         trans = btrfs_start_ioctl_transaction(root);
2799         if (IS_ERR(trans))
2800                 goto out_drop;
2801
2802         file->private_data = trans;
2803         return 0;
2804
2805 out_drop:
2806         atomic_dec(&root->fs_info->open_ioctl_trans);
2807         mnt_drop_write_file(file);
2808 out:
2809         return ret;
2810 }
2811
2812 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2813 {
2814         struct inode *inode = fdentry(file)->d_inode;
2815         struct btrfs_root *root = BTRFS_I(inode)->root;
2816         struct btrfs_root *new_root;
2817         struct btrfs_dir_item *di;
2818         struct btrfs_trans_handle *trans;
2819         struct btrfs_path *path;
2820         struct btrfs_key location;
2821         struct btrfs_disk_key disk_key;
2822         u64 objectid = 0;
2823         u64 dir_id;
2824
2825         if (!capable(CAP_SYS_ADMIN))
2826                 return -EPERM;
2827
2828         if (copy_from_user(&objectid, argp, sizeof(objectid)))
2829                 return -EFAULT;
2830
2831         if (!objectid)
2832                 objectid = root->root_key.objectid;
2833
2834         location.objectid = objectid;
2835         location.type = BTRFS_ROOT_ITEM_KEY;
2836         location.offset = (u64)-1;
2837
2838         new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2839         if (IS_ERR(new_root))
2840                 return PTR_ERR(new_root);
2841
2842         if (btrfs_root_refs(&new_root->root_item) == 0)
2843                 return -ENOENT;
2844
2845         path = btrfs_alloc_path();
2846         if (!path)
2847                 return -ENOMEM;
2848         path->leave_spinning = 1;
2849
2850         trans = btrfs_start_transaction(root, 1);
2851         if (IS_ERR(trans)) {
2852                 btrfs_free_path(path);
2853                 return PTR_ERR(trans);
2854         }
2855
2856         dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
2857         di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2858                                    dir_id, "default", 7, 1);
2859         if (IS_ERR_OR_NULL(di)) {
2860                 btrfs_free_path(path);
2861                 btrfs_end_transaction(trans, root);
2862                 printk(KERN_ERR "Umm, you don't have the default dir item, "
2863                        "this isn't going to work\n");
2864                 return -ENOENT;
2865         }
2866
2867         btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2868         btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2869         btrfs_mark_buffer_dirty(path->nodes[0]);
2870         btrfs_free_path(path);
2871
2872         btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
2873         btrfs_end_transaction(trans, root);
2874
2875         return 0;
2876 }
2877
2878 void btrfs_get_block_group_info(struct list_head *groups_list,
2879                                 struct btrfs_ioctl_space_info *space)
2880 {
2881         struct btrfs_block_group_cache *block_group;
2882
2883         space->total_bytes = 0;
2884         space->used_bytes = 0;
2885         space->flags = 0;
2886         list_for_each_entry(block_group, groups_list, list) {
2887                 space->flags = block_group->flags;
2888                 space->total_bytes += block_group->key.offset;
2889                 space->used_bytes +=
2890                         btrfs_block_group_used(&block_group->item);
2891         }
2892 }
2893
2894 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2895 {
2896         struct btrfs_ioctl_space_args space_args;
2897         struct btrfs_ioctl_space_info space;
2898         struct btrfs_ioctl_space_info *dest;
2899         struct btrfs_ioctl_space_info *dest_orig;
2900         struct btrfs_ioctl_space_info __user *user_dest;
2901         struct btrfs_space_info *info;
2902         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2903                        BTRFS_BLOCK_GROUP_SYSTEM,
2904                        BTRFS_BLOCK_GROUP_METADATA,
2905                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2906         int num_types = 4;
2907         int alloc_size;
2908         int ret = 0;
2909         u64 slot_count = 0;
2910         int i, c;
2911
2912         if (copy_from_user(&space_args,
2913                            (struct btrfs_ioctl_space_args __user *)arg,
2914                            sizeof(space_args)))
2915                 return -EFAULT;
2916
2917         for (i = 0; i < num_types; i++) {
2918                 struct btrfs_space_info *tmp;
2919
2920                 info = NULL;
2921                 rcu_read_lock();
2922                 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2923                                         list) {
2924                         if (tmp->flags == types[i]) {
2925                                 info = tmp;
2926                                 break;
2927                         }
2928                 }
2929                 rcu_read_unlock();
2930
2931                 if (!info)
2932                         continue;
2933
2934                 down_read(&info->groups_sem);
2935                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2936                         if (!list_empty(&info->block_groups[c]))
2937                                 slot_count++;
2938                 }
2939                 up_read(&info->groups_sem);
2940         }
2941
2942         /* space_slots == 0 means they are asking for a count */
2943         if (space_args.space_slots == 0) {
2944                 space_args.total_spaces = slot_count;
2945                 goto out;
2946         }
2947
2948         slot_count = min_t(u64, space_args.space_slots, slot_count);
2949
2950         alloc_size = sizeof(*dest) * slot_count;
2951
2952         /* we generally have at most 6 or so space infos, one for each raid
2953          * level.  So, a whole page should be more than enough for everyone
2954          */
2955         if (alloc_size > PAGE_CACHE_SIZE)
2956                 return -ENOMEM;
2957
2958         space_args.total_spaces = 0;
2959         dest = kmalloc(alloc_size, GFP_NOFS);
2960         if (!dest)
2961                 return -ENOMEM;
2962         dest_orig = dest;
2963
2964         /* now we have a buffer to copy into */
2965         for (i = 0; i < num_types; i++) {
2966                 struct btrfs_space_info *tmp;
2967
2968                 if (!slot_count)
2969                         break;
2970
2971                 info = NULL;
2972                 rcu_read_lock();
2973                 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2974                                         list) {
2975                         if (tmp->flags == types[i]) {
2976                                 info = tmp;
2977                                 break;
2978                         }
2979                 }
2980                 rcu_read_unlock();
2981
2982                 if (!info)
2983                         continue;
2984                 down_read(&info->groups_sem);
2985                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2986                         if (!list_empty(&info->block_groups[c])) {
2987                                 btrfs_get_block_group_info(
2988                                         &info->block_groups[c], &space);
2989                                 memcpy(dest, &space, sizeof(space));
2990                                 dest++;
2991                                 space_args.total_spaces++;
2992                                 slot_count--;
2993                         }
2994                         if (!slot_count)
2995                                 break;
2996                 }
2997                 up_read(&info->groups_sem);
2998         }
2999
3000         user_dest = (struct btrfs_ioctl_space_info __user *)
3001                 (arg + sizeof(struct btrfs_ioctl_space_args));
3002
3003         if (copy_to_user(user_dest, dest_orig, alloc_size))
3004                 ret = -EFAULT;
3005
3006         kfree(dest_orig);
3007 out:
3008         if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3009                 ret = -EFAULT;
3010
3011         return ret;
3012 }
3013
3014 /*
3015  * there are many ways the trans_start and trans_end ioctls can lead
3016  * to deadlocks.  They should only be used by applications that
3017  * basically own the machine, and have a very in depth understanding
3018  * of all the possible deadlocks and enospc problems.
3019  */
3020 long btrfs_ioctl_trans_end(struct file *file)
3021 {
3022         struct inode *inode = fdentry(file)->d_inode;
3023         struct btrfs_root *root = BTRFS_I(inode)->root;
3024         struct btrfs_trans_handle *trans;
3025
3026         trans = file->private_data;
3027         if (!trans)
3028                 return -EINVAL;
3029         file->private_data = NULL;
3030
3031         btrfs_end_transaction(trans, root);
3032
3033         atomic_dec(&root->fs_info->open_ioctl_trans);
3034
3035         mnt_drop_write_file(file);
3036         return 0;
3037 }
3038
3039 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
3040 {
3041         struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
3042         struct btrfs_trans_handle *trans;
3043         u64 transid;
3044         int ret;
3045
3046         trans = btrfs_start_transaction(root, 0);
3047         if (IS_ERR(trans))
3048                 return PTR_ERR(trans);
3049         transid = trans->transid;
3050         ret = btrfs_commit_transaction_async(trans, root, 0);
3051         if (ret) {
3052                 btrfs_end_transaction(trans, root);
3053                 return ret;
3054         }
3055
3056         if (argp)
3057                 if (copy_to_user(argp, &transid, sizeof(transid)))
3058                         return -EFAULT;
3059         return 0;
3060 }
3061
3062 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
3063 {
3064         struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
3065         u64 transid;
3066
3067         if (argp) {
3068                 if (copy_from_user(&transid, argp, sizeof(transid)))
3069                         return -EFAULT;
3070         } else {
3071                 transid = 0;  /* current trans */
3072         }
3073         return btrfs_wait_for_commit(root, transid);
3074 }
3075
3076 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
3077 {
3078         int ret;
3079         struct btrfs_ioctl_scrub_args *sa;
3080
3081         if (!capable(CAP_SYS_ADMIN))
3082                 return -EPERM;
3083
3084         sa = memdup_user(arg, sizeof(*sa));
3085         if (IS_ERR(sa))
3086                 return PTR_ERR(sa);
3087
3088         ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
3089                               &sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
3090
3091         if (copy_to_user(arg, sa, sizeof(*sa)))
3092                 ret = -EFAULT;
3093
3094         kfree(sa);
3095         return ret;
3096 }
3097
3098 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3099 {
3100         if (!capable(CAP_SYS_ADMIN))
3101                 return -EPERM;
3102
3103         return btrfs_scrub_cancel(root);
3104 }
3105
3106 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3107                                        void __user *arg)
3108 {
3109         struct btrfs_ioctl_scrub_args *sa;
3110         int ret;
3111
3112         if (!capable(CAP_SYS_ADMIN))
3113                 return -EPERM;
3114
3115         sa = memdup_user(arg, sizeof(*sa));
3116         if (IS_ERR(sa))
3117                 return PTR_ERR(sa);
3118
3119         ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3120
3121         if (copy_to_user(arg, sa, sizeof(*sa)))
3122                 ret = -EFAULT;
3123
3124         kfree(sa);
3125         return ret;
3126 }
3127
3128 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3129                                       void __user *arg)
3130 {
3131         struct btrfs_ioctl_get_dev_stats *sa;
3132         int ret;
3133
3134         sa = memdup_user(arg, sizeof(*sa));
3135         if (IS_ERR(sa))
3136                 return PTR_ERR(sa);
3137
3138         if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3139                 kfree(sa);
3140                 return -EPERM;
3141         }
3142
3143         ret = btrfs_get_dev_stats(root, sa);
3144
3145         if (copy_to_user(arg, sa, sizeof(*sa)))
3146                 ret = -EFAULT;
3147
3148         kfree(sa);
3149         return ret;
3150 }
3151
3152 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3153 {
3154         int ret = 0;
3155         int i;
3156         u64 rel_ptr;
3157         int size;
3158         struct btrfs_ioctl_ino_path_args *ipa = NULL;
3159         struct inode_fs_paths *ipath = NULL;
3160         struct btrfs_path *path;
3161
3162         if (!capable(CAP_SYS_ADMIN))
3163                 return -EPERM;
3164
3165         path = btrfs_alloc_path();
3166         if (!path) {
3167                 ret = -ENOMEM;
3168                 goto out;
3169         }
3170
3171         ipa = memdup_user(arg, sizeof(*ipa));
3172         if (IS_ERR(ipa)) {
3173                 ret = PTR_ERR(ipa);
3174                 ipa = NULL;
3175                 goto out;
3176         }
3177
3178         size = min_t(u32, ipa->size, 4096);
3179         ipath = init_ipath(size, root, path);
3180         if (IS_ERR(ipath)) {
3181                 ret = PTR_ERR(ipath);
3182                 ipath = NULL;
3183                 goto out;
3184         }
3185
3186         ret = paths_from_inode(ipa->inum, ipath);
3187         if (ret < 0)
3188                 goto out;
3189
3190         for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3191                 rel_ptr = ipath->fspath->val[i] -
3192                           (u64)(unsigned long)ipath->fspath->val;
3193                 ipath->fspath->val[i] = rel_ptr;
3194         }
3195
3196         ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3197                            (void *)(unsigned long)ipath->fspath, size);
3198         if (ret) {
3199                 ret = -EFAULT;
3200                 goto out;
3201         }
3202
3203 out:
3204         btrfs_free_path(path);
3205         free_ipath(ipath);
3206         kfree(ipa);
3207
3208         return ret;
3209 }
3210
3211 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3212 {
3213         struct btrfs_data_container *inodes = ctx;
3214         const size_t c = 3 * sizeof(u64);
3215
3216         if (inodes->bytes_left >= c) {
3217                 inodes->bytes_left -= c;
3218                 inodes->val[inodes->elem_cnt] = inum;
3219                 inodes->val[inodes->elem_cnt + 1] = offset;
3220                 inodes->val[inodes->elem_cnt + 2] = root;
3221                 inodes->elem_cnt += 3;
3222         } else {
3223                 inodes->bytes_missing += c - inodes->bytes_left;
3224                 inodes->bytes_left = 0;
3225                 inodes->elem_missed += 3;
3226         }
3227
3228         return 0;
3229 }
3230
3231 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3232                                         void __user *arg)
3233 {
3234         int ret = 0;
3235         int size;
3236         struct btrfs_ioctl_logical_ino_args *loi;
3237         struct btrfs_data_container *inodes = NULL;
3238         struct btrfs_path *path = NULL;
3239
3240         if (!capable(CAP_SYS_ADMIN))
3241                 return -EPERM;
3242
3243         loi = memdup_user(arg, sizeof(*loi));
3244         if (IS_ERR(loi)) {
3245                 ret = PTR_ERR(loi);
3246                 loi = NULL;
3247                 goto out;
3248         }
3249
3250         path = btrfs_alloc_path();
3251         if (!path) {
3252                 ret = -ENOMEM;
3253                 goto out;
3254         }
3255
3256         size = min_t(u32, loi->size, 64 * 1024);
3257         inodes = init_data_container(size);
3258         if (IS_ERR(inodes)) {
3259                 ret = PTR_ERR(inodes);
3260                 inodes = NULL;
3261                 goto out;
3262         }
3263
3264         ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
3265                                           build_ino_list, inodes);
3266         if (ret == -EINVAL)
3267                 ret = -ENOENT;
3268         if (ret < 0)
3269                 goto out;
3270
3271         ret = copy_to_user((void *)(unsigned long)loi->inodes,
3272                            (void *)(unsigned long)inodes, size);
3273         if (ret)
3274                 ret = -EFAULT;
3275
3276 out:
3277         btrfs_free_path(path);
3278         vfree(inodes);
3279         kfree(loi);
3280
3281         return ret;
3282 }
3283
3284 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3285                                struct btrfs_ioctl_balance_args *bargs)
3286 {
3287         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3288
3289         bargs->flags = bctl->flags;
3290
3291         if (atomic_read(&fs_info->balance_running))
3292                 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3293         if (atomic_read(&fs_info->balance_pause_req))
3294                 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3295         if (atomic_read(&fs_info->balance_cancel_req))
3296                 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3297
3298         memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3299         memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3300         memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3301
3302         if (lock) {
3303                 spin_lock(&fs_info->balance_lock);
3304                 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3305                 spin_unlock(&fs_info->balance_lock);
3306         } else {
3307                 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3308         }
3309 }
3310
3311 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3312 {
3313         struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3314         struct btrfs_fs_info *fs_info = root->fs_info;
3315         struct btrfs_ioctl_balance_args *bargs;
3316         struct btrfs_balance_control *bctl;
3317         int ret;
3318
3319         if (!capable(CAP_SYS_ADMIN))
3320                 return -EPERM;
3321
3322         ret = mnt_want_write_file(file);
3323         if (ret)
3324                 return ret;
3325
3326         mutex_lock(&fs_info->volume_mutex);
3327         mutex_lock(&fs_info->balance_mutex);
3328
3329         if (arg) {
3330                 bargs = memdup_user(arg, sizeof(*bargs));
3331                 if (IS_ERR(bargs)) {
3332                         ret = PTR_ERR(bargs);
3333                         goto out;
3334                 }
3335
3336                 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3337                         if (!fs_info->balance_ctl) {
3338                                 ret = -ENOTCONN;
3339                                 goto out_bargs;
3340                         }
3341
3342                         bctl = fs_info->balance_ctl;
3343                         spin_lock(&fs_info->balance_lock);
3344                         bctl->flags |= BTRFS_BALANCE_RESUME;
3345                         spin_unlock(&fs_info->balance_lock);
3346
3347                         goto do_balance;
3348                 }
3349         } else {
3350                 bargs = NULL;
3351         }
3352
3353         if (fs_info->balance_ctl) {
3354                 ret = -EINPROGRESS;
3355                 goto out_bargs;
3356         }
3357
3358         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3359         if (!bctl) {
3360                 ret = -ENOMEM;
3361                 goto out_bargs;
3362         }
3363
3364         bctl->fs_info = fs_info;
3365         if (arg) {
3366                 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3367                 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3368                 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3369
3370                 bctl->flags = bargs->flags;
3371         } else {
3372                 /* balance everything - no filters */
3373                 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3374         }
3375
3376 do_balance:
3377         ret = btrfs_balance(bctl, bargs);
3378         /*
3379          * bctl is freed in __cancel_balance or in free_fs_info if
3380          * restriper was paused all the way until unmount
3381          */
3382         if (arg) {
3383                 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3384                         ret = -EFAULT;
3385         }
3386
3387 out_bargs:
3388         kfree(bargs);
3389 out:
3390         mutex_unlock(&fs_info->balance_mutex);
3391         mutex_unlock(&fs_info->volume_mutex);
3392         mnt_drop_write_file(file);
3393         return ret;
3394 }
3395
3396 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
3397 {
3398         if (!capable(CAP_SYS_ADMIN))
3399                 return -EPERM;
3400
3401         switch (cmd) {
3402         case BTRFS_BALANCE_CTL_PAUSE:
3403                 return btrfs_pause_balance(root->fs_info);
3404         case BTRFS_BALANCE_CTL_CANCEL:
3405                 return btrfs_cancel_balance(root->fs_info);
3406         }
3407
3408         return -EINVAL;
3409 }
3410
3411 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
3412                                          void __user *arg)
3413 {
3414         struct btrfs_fs_info *fs_info = root->fs_info;
3415         struct btrfs_ioctl_balance_args *bargs;
3416         int ret = 0;
3417
3418         if (!capable(CAP_SYS_ADMIN))
3419                 return -EPERM;
3420
3421         mutex_lock(&fs_info->balance_mutex);
3422         if (!fs_info->balance_ctl) {
3423                 ret = -ENOTCONN;
3424                 goto out;
3425         }
3426
3427         bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
3428         if (!bargs) {
3429                 ret = -ENOMEM;
3430                 goto out;
3431         }
3432
3433         update_ioctl_balance_args(fs_info, 1, bargs);
3434
3435         if (copy_to_user(arg, bargs, sizeof(*bargs)))
3436                 ret = -EFAULT;
3437
3438         kfree(bargs);
3439 out:
3440         mutex_unlock(&fs_info->balance_mutex);
3441         return ret;
3442 }
3443
3444 static long btrfs_ioctl_quota_ctl(struct btrfs_root *root, void __user *arg)
3445 {
3446         struct btrfs_ioctl_quota_ctl_args *sa;
3447         struct btrfs_trans_handle *trans = NULL;
3448         int ret;
3449         int err;
3450
3451         if (!capable(CAP_SYS_ADMIN))
3452                 return -EPERM;
3453
3454         if (root->fs_info->sb->s_flags & MS_RDONLY)
3455                 return -EROFS;
3456
3457         sa = memdup_user(arg, sizeof(*sa));
3458         if (IS_ERR(sa))
3459                 return PTR_ERR(sa);
3460
3461         if (sa->cmd != BTRFS_QUOTA_CTL_RESCAN) {
3462                 trans = btrfs_start_transaction(root, 2);
3463                 if (IS_ERR(trans)) {
3464                         ret = PTR_ERR(trans);
3465                         goto out;
3466                 }
3467         }
3468
3469         switch (sa->cmd) {
3470         case BTRFS_QUOTA_CTL_ENABLE:
3471                 ret = btrfs_quota_enable(trans, root->fs_info);
3472                 break;
3473         case BTRFS_QUOTA_CTL_DISABLE:
3474                 ret = btrfs_quota_disable(trans, root->fs_info);
3475                 break;
3476         case BTRFS_QUOTA_CTL_RESCAN:
3477                 ret = btrfs_quota_rescan(root->fs_info);
3478                 break;
3479         default:
3480                 ret = -EINVAL;
3481                 break;
3482         }
3483
3484         if (copy_to_user(arg, sa, sizeof(*sa)))
3485                 ret = -EFAULT;
3486
3487         if (trans) {
3488                 err = btrfs_commit_transaction(trans, root);
3489                 if (err && !ret)
3490                         ret = err;
3491         }
3492
3493 out:
3494         kfree(sa);
3495         return ret;
3496 }
3497
3498 static long btrfs_ioctl_qgroup_assign(struct btrfs_root *root, void __user *arg)
3499 {
3500         struct btrfs_ioctl_qgroup_assign_args *sa;
3501         struct btrfs_trans_handle *trans;
3502         int ret;
3503         int err;
3504
3505         if (!capable(CAP_SYS_ADMIN))
3506                 return -EPERM;
3507
3508         if (root->fs_info->sb->s_flags & MS_RDONLY)
3509                 return -EROFS;
3510
3511         sa = memdup_user(arg, sizeof(*sa));
3512         if (IS_ERR(sa))
3513                 return PTR_ERR(sa);
3514
3515         trans = btrfs_join_transaction(root);
3516         if (IS_ERR(trans)) {
3517                 ret = PTR_ERR(trans);
3518                 goto out;
3519         }
3520
3521         /* FIXME: check if the IDs really exist */
3522         if (sa->assign) {
3523                 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
3524                                                 sa->src, sa->dst);
3525         } else {
3526                 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
3527                                                 sa->src, sa->dst);
3528         }
3529
3530         err = btrfs_end_transaction(trans, root);
3531         if (err && !ret)
3532                 ret = err;
3533
3534 out:
3535         kfree(sa);
3536         return ret;
3537 }
3538
3539 static long btrfs_ioctl_qgroup_create(struct btrfs_root *root, void __user *arg)
3540 {
3541         struct btrfs_ioctl_qgroup_create_args *sa;
3542         struct btrfs_trans_handle *trans;
3543         int ret;
3544         int err;
3545
3546         if (!capable(CAP_SYS_ADMIN))
3547                 return -EPERM;
3548
3549         if (root->fs_info->sb->s_flags & MS_RDONLY)
3550                 return -EROFS;
3551
3552         sa = memdup_user(arg, sizeof(*sa));
3553         if (IS_ERR(sa))
3554                 return PTR_ERR(sa);
3555
3556         trans = btrfs_join_transaction(root);
3557         if (IS_ERR(trans)) {
3558                 ret = PTR_ERR(trans);
3559                 goto out;
3560         }
3561
3562         /* FIXME: check if the IDs really exist */
3563         if (sa->create) {
3564                 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
3565                                           NULL);
3566         } else {
3567                 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
3568         }
3569
3570         err = btrfs_end_transaction(trans, root);
3571         if (err && !ret)
3572                 ret = err;
3573
3574 out:
3575         kfree(sa);
3576         return ret;
3577 }
3578
3579 static long btrfs_ioctl_qgroup_limit(struct btrfs_root *root, void __user *arg)
3580 {
3581         struct btrfs_ioctl_qgroup_limit_args *sa;
3582         struct btrfs_trans_handle *trans;
3583         int ret;
3584         int err;
3585         u64 qgroupid;
3586
3587         if (!capable(CAP_SYS_ADMIN))
3588                 return -EPERM;
3589
3590         if (root->fs_info->sb->s_flags & MS_RDONLY)
3591                 return -EROFS;
3592
3593         sa = memdup_user(arg, sizeof(*sa));
3594         if (IS_ERR(sa))
3595                 return PTR_ERR(sa);
3596
3597         trans = btrfs_join_transaction(root);
3598         if (IS_ERR(trans)) {
3599                 ret = PTR_ERR(trans);
3600                 goto out;
3601         }
3602
3603         qgroupid = sa->qgroupid;
3604         if (!qgroupid) {
3605                 /* take the current subvol as qgroup */
3606                 qgroupid = root->root_key.objectid;
3607         }
3608
3609         /* FIXME: check if the IDs really exist */
3610         ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
3611
3612         err = btrfs_end_transaction(trans, root);
3613         if (err && !ret)
3614                 ret = err;
3615
3616 out:
3617         kfree(sa);
3618         return ret;
3619 }
3620
3621 static long btrfs_ioctl_set_received_subvol(struct file *file,
3622                                             void __user *arg)
3623 {
3624         struct btrfs_ioctl_received_subvol_args *sa = NULL;
3625         struct inode *inode = fdentry(file)->d_inode;
3626         struct btrfs_root *root = BTRFS_I(inode)->root;
3627         struct btrfs_root_item *root_item = &root->root_item;
3628         struct btrfs_trans_handle *trans;
3629         struct timespec ct = CURRENT_TIME;
3630         int ret = 0;
3631
3632         ret = mnt_want_write_file(file);
3633         if (ret < 0)
3634                 return ret;
3635
3636         down_write(&root->fs_info->subvol_sem);
3637
3638         if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
3639                 ret = -EINVAL;
3640                 goto out;
3641         }
3642
3643         if (btrfs_root_readonly(root)) {
3644                 ret = -EROFS;
3645                 goto out;
3646         }
3647
3648         if (!inode_owner_or_capable(inode)) {
3649                 ret = -EACCES;
3650                 goto out;
3651         }
3652
3653         sa = memdup_user(arg, sizeof(*sa));
3654         if (IS_ERR(sa)) {
3655                 ret = PTR_ERR(sa);
3656                 sa = NULL;
3657                 goto out;
3658         }
3659
3660         trans = btrfs_start_transaction(root, 1);
3661         if (IS_ERR(trans)) {
3662                 ret = PTR_ERR(trans);
3663                 trans = NULL;
3664                 goto out;
3665         }
3666
3667         sa->rtransid = trans->transid;
3668         sa->rtime.sec = ct.tv_sec;
3669         sa->rtime.nsec = ct.tv_nsec;
3670
3671         memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
3672         btrfs_set_root_stransid(root_item, sa->stransid);
3673         btrfs_set_root_rtransid(root_item, sa->rtransid);
3674         root_item->stime.sec = cpu_to_le64(sa->stime.sec);
3675         root_item->stime.nsec = cpu_to_le32(sa->stime.nsec);
3676         root_item->rtime.sec = cpu_to_le64(sa->rtime.sec);
3677         root_item->rtime.nsec = cpu_to_le32(sa->rtime.nsec);
3678
3679         ret = btrfs_update_root(trans, root->fs_info->tree_root,
3680                                 &root->root_key, &root->root_item);
3681         if (ret < 0) {
3682                 btrfs_end_transaction(trans, root);
3683                 trans = NULL;
3684                 goto out;
3685         } else {
3686                 ret = btrfs_commit_transaction(trans, root);
3687                 if (ret < 0)
3688                         goto out;
3689         }
3690
3691         ret = copy_to_user(arg, sa, sizeof(*sa));
3692         if (ret)
3693                 ret = -EFAULT;
3694
3695 out:
3696         kfree(sa);
3697         up_write(&root->fs_info->subvol_sem);
3698         mnt_drop_write_file(file);
3699         return ret;
3700 }
3701
3702 long btrfs_ioctl(struct file *file, unsigned int
3703                 cmd, unsigned long arg)
3704 {
3705         struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3706         void __user *argp = (void __user *)arg;
3707
3708         switch (cmd) {
3709         case FS_IOC_GETFLAGS:
3710                 return btrfs_ioctl_getflags(file, argp);
3711         case FS_IOC_SETFLAGS:
3712                 return btrfs_ioctl_setflags(file, argp);
3713         case FS_IOC_GETVERSION:
3714                 return btrfs_ioctl_getversion(file, argp);
3715         case FITRIM:
3716                 return btrfs_ioctl_fitrim(file, argp);
3717         case BTRFS_IOC_SNAP_CREATE:
3718                 return btrfs_ioctl_snap_create(file, argp, 0);
3719         case BTRFS_IOC_SNAP_CREATE_V2:
3720                 return btrfs_ioctl_snap_create_v2(file, argp, 0);
3721         case BTRFS_IOC_SUBVOL_CREATE:
3722                 return btrfs_ioctl_snap_create(file, argp, 1);
3723         case BTRFS_IOC_SUBVOL_CREATE_V2:
3724                 return btrfs_ioctl_snap_create_v2(file, argp, 1);
3725         case BTRFS_IOC_SNAP_DESTROY:
3726                 return btrfs_ioctl_snap_destroy(file, argp);
3727         case BTRFS_IOC_SUBVOL_GETFLAGS:
3728                 return btrfs_ioctl_subvol_getflags(file, argp);
3729         case BTRFS_IOC_SUBVOL_SETFLAGS:
3730                 return btrfs_ioctl_subvol_setflags(file, argp);
3731         case BTRFS_IOC_DEFAULT_SUBVOL:
3732                 return btrfs_ioctl_default_subvol(file, argp);
3733         case BTRFS_IOC_DEFRAG:
3734                 return btrfs_ioctl_defrag(file, NULL);
3735         case BTRFS_IOC_DEFRAG_RANGE:
3736                 return btrfs_ioctl_defrag(file, argp);
3737         case BTRFS_IOC_RESIZE:
3738                 return btrfs_ioctl_resize(root, argp);
3739         case BTRFS_IOC_ADD_DEV:
3740                 return btrfs_ioctl_add_dev(root, argp);
3741         case BTRFS_IOC_RM_DEV:
3742                 return btrfs_ioctl_rm_dev(root, argp);
3743         case BTRFS_IOC_FS_INFO:
3744                 return btrfs_ioctl_fs_info(root, argp);
3745         case BTRFS_IOC_DEV_INFO:
3746                 return btrfs_ioctl_dev_info(root, argp);
3747         case BTRFS_IOC_BALANCE:
3748                 return btrfs_ioctl_balance(file, NULL);
3749         case BTRFS_IOC_CLONE:
3750                 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
3751         case BTRFS_IOC_CLONE_RANGE:
3752                 return btrfs_ioctl_clone_range(file, argp);
3753         case BTRFS_IOC_TRANS_START:
3754                 return btrfs_ioctl_trans_start(file);
3755         case BTRFS_IOC_TRANS_END:
3756                 return btrfs_ioctl_trans_end(file);
3757         case BTRFS_IOC_TREE_SEARCH:
3758                 return btrfs_ioctl_tree_search(file, argp);
3759         case BTRFS_IOC_INO_LOOKUP:
3760                 return btrfs_ioctl_ino_lookup(file, argp);
3761         case BTRFS_IOC_INO_PATHS:
3762                 return btrfs_ioctl_ino_to_path(root, argp);
3763         case BTRFS_IOC_LOGICAL_INO:
3764                 return btrfs_ioctl_logical_to_ino(root, argp);
3765         case BTRFS_IOC_SPACE_INFO:
3766                 return btrfs_ioctl_space_info(root, argp);
3767         case BTRFS_IOC_SYNC:
3768                 btrfs_sync_fs(file->f_dentry->d_sb, 1);
3769                 return 0;
3770         case BTRFS_IOC_START_SYNC:
3771                 return btrfs_ioctl_start_sync(file, argp);
3772         case BTRFS_IOC_WAIT_SYNC:
3773                 return btrfs_ioctl_wait_sync(file, argp);
3774         case BTRFS_IOC_SCRUB:
3775                 return btrfs_ioctl_scrub(root, argp);
3776         case BTRFS_IOC_SCRUB_CANCEL:
3777                 return btrfs_ioctl_scrub_cancel(root, argp);
3778         case BTRFS_IOC_SCRUB_PROGRESS:
3779                 return btrfs_ioctl_scrub_progress(root, argp);
3780         case BTRFS_IOC_BALANCE_V2:
3781                 return btrfs_ioctl_balance(file, argp);
3782         case BTRFS_IOC_BALANCE_CTL:
3783                 return btrfs_ioctl_balance_ctl(root, arg);
3784         case BTRFS_IOC_BALANCE_PROGRESS:
3785                 return btrfs_ioctl_balance_progress(root, argp);
3786         case BTRFS_IOC_SET_RECEIVED_SUBVOL:
3787                 return btrfs_ioctl_set_received_subvol(file, argp);
3788         case BTRFS_IOC_SEND:
3789                 return btrfs_ioctl_send(file, argp);
3790         case BTRFS_IOC_GET_DEV_STATS:
3791                 return btrfs_ioctl_get_dev_stats(root, argp);
3792         case BTRFS_IOC_QUOTA_CTL:
3793                 return btrfs_ioctl_quota_ctl(root, argp);
3794         case BTRFS_IOC_QGROUP_ASSIGN:
3795                 return btrfs_ioctl_qgroup_assign(root, argp);
3796         case BTRFS_IOC_QGROUP_CREATE:
3797                 return btrfs_ioctl_qgroup_create(root, argp);
3798         case BTRFS_IOC_QGROUP_LIMIT:
3799                 return btrfs_ioctl_qgroup_limit(root, argp);
3800         }
3801
3802         return -ENOTTY;
3803 }