2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
51 #include "print-tree.h"
54 #include "inode-map.h"
56 #include "rcu-string.h"
58 #include "dev-replace.h"
60 /* Mask out flags that are inappropriate for the given type of inode. */
61 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
65 else if (S_ISREG(mode))
66 return flags & ~FS_DIRSYNC_FL;
68 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
72 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
74 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
76 unsigned int iflags = 0;
78 if (flags & BTRFS_INODE_SYNC)
80 if (flags & BTRFS_INODE_IMMUTABLE)
81 iflags |= FS_IMMUTABLE_FL;
82 if (flags & BTRFS_INODE_APPEND)
83 iflags |= FS_APPEND_FL;
84 if (flags & BTRFS_INODE_NODUMP)
85 iflags |= FS_NODUMP_FL;
86 if (flags & BTRFS_INODE_NOATIME)
87 iflags |= FS_NOATIME_FL;
88 if (flags & BTRFS_INODE_DIRSYNC)
89 iflags |= FS_DIRSYNC_FL;
90 if (flags & BTRFS_INODE_NODATACOW)
91 iflags |= FS_NOCOW_FL;
93 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
94 iflags |= FS_COMPR_FL;
95 else if (flags & BTRFS_INODE_NOCOMPRESS)
96 iflags |= FS_NOCOMP_FL;
102 * Update inode->i_flags based on the btrfs internal flags.
104 void btrfs_update_iflags(struct inode *inode)
106 struct btrfs_inode *ip = BTRFS_I(inode);
108 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
110 if (ip->flags & BTRFS_INODE_SYNC)
111 inode->i_flags |= S_SYNC;
112 if (ip->flags & BTRFS_INODE_IMMUTABLE)
113 inode->i_flags |= S_IMMUTABLE;
114 if (ip->flags & BTRFS_INODE_APPEND)
115 inode->i_flags |= S_APPEND;
116 if (ip->flags & BTRFS_INODE_NOATIME)
117 inode->i_flags |= S_NOATIME;
118 if (ip->flags & BTRFS_INODE_DIRSYNC)
119 inode->i_flags |= S_DIRSYNC;
123 * Inherit flags from the parent inode.
125 * Currently only the compression flags and the cow flags are inherited.
127 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
134 flags = BTRFS_I(dir)->flags;
136 if (flags & BTRFS_INODE_NOCOMPRESS) {
137 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
138 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
139 } else if (flags & BTRFS_INODE_COMPRESS) {
140 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
141 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
144 if (flags & BTRFS_INODE_NODATACOW) {
145 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
146 if (S_ISREG(inode->i_mode))
147 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
150 btrfs_update_iflags(inode);
153 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
155 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
156 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
158 if (copy_to_user(arg, &flags, sizeof(flags)))
163 static int check_flags(unsigned int flags)
165 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
166 FS_NOATIME_FL | FS_NODUMP_FL | \
167 FS_SYNC_FL | FS_DIRSYNC_FL | \
168 FS_NOCOMP_FL | FS_COMPR_FL |
172 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
178 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
180 struct inode *inode = file->f_path.dentry->d_inode;
181 struct btrfs_inode *ip = BTRFS_I(inode);
182 struct btrfs_root *root = ip->root;
183 struct btrfs_trans_handle *trans;
184 unsigned int flags, oldflags;
187 unsigned int i_oldflags;
190 if (btrfs_root_readonly(root))
193 if (copy_from_user(&flags, arg, sizeof(flags)))
196 ret = check_flags(flags);
200 if (!inode_owner_or_capable(inode))
203 ret = mnt_want_write_file(file);
207 mutex_lock(&inode->i_mutex);
209 ip_oldflags = ip->flags;
210 i_oldflags = inode->i_flags;
211 mode = inode->i_mode;
213 flags = btrfs_mask_flags(inode->i_mode, flags);
214 oldflags = btrfs_flags_to_ioctl(ip->flags);
215 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
216 if (!capable(CAP_LINUX_IMMUTABLE)) {
222 if (flags & FS_SYNC_FL)
223 ip->flags |= BTRFS_INODE_SYNC;
225 ip->flags &= ~BTRFS_INODE_SYNC;
226 if (flags & FS_IMMUTABLE_FL)
227 ip->flags |= BTRFS_INODE_IMMUTABLE;
229 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
230 if (flags & FS_APPEND_FL)
231 ip->flags |= BTRFS_INODE_APPEND;
233 ip->flags &= ~BTRFS_INODE_APPEND;
234 if (flags & FS_NODUMP_FL)
235 ip->flags |= BTRFS_INODE_NODUMP;
237 ip->flags &= ~BTRFS_INODE_NODUMP;
238 if (flags & FS_NOATIME_FL)
239 ip->flags |= BTRFS_INODE_NOATIME;
241 ip->flags &= ~BTRFS_INODE_NOATIME;
242 if (flags & FS_DIRSYNC_FL)
243 ip->flags |= BTRFS_INODE_DIRSYNC;
245 ip->flags &= ~BTRFS_INODE_DIRSYNC;
246 if (flags & FS_NOCOW_FL) {
249 * It's safe to turn csums off here, no extents exist.
250 * Otherwise we want the flag to reflect the real COW
251 * status of the file and will not set it.
253 if (inode->i_size == 0)
254 ip->flags |= BTRFS_INODE_NODATACOW
255 | BTRFS_INODE_NODATASUM;
257 ip->flags |= BTRFS_INODE_NODATACOW;
261 * Revert back under same assuptions as above
264 if (inode->i_size == 0)
265 ip->flags &= ~(BTRFS_INODE_NODATACOW
266 | BTRFS_INODE_NODATASUM);
268 ip->flags &= ~BTRFS_INODE_NODATACOW;
273 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
274 * flag may be changed automatically if compression code won't make
277 if (flags & FS_NOCOMP_FL) {
278 ip->flags &= ~BTRFS_INODE_COMPRESS;
279 ip->flags |= BTRFS_INODE_NOCOMPRESS;
280 } else if (flags & FS_COMPR_FL) {
281 ip->flags |= BTRFS_INODE_COMPRESS;
282 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
284 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
287 trans = btrfs_start_transaction(root, 1);
289 ret = PTR_ERR(trans);
293 btrfs_update_iflags(inode);
294 inode_inc_iversion(inode);
295 inode->i_ctime = CURRENT_TIME;
296 ret = btrfs_update_inode(trans, root, inode);
298 btrfs_end_transaction(trans, root);
301 ip->flags = ip_oldflags;
302 inode->i_flags = i_oldflags;
306 mutex_unlock(&inode->i_mutex);
307 mnt_drop_write_file(file);
311 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
313 struct inode *inode = file->f_path.dentry->d_inode;
315 return put_user(inode->i_generation, arg);
318 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
320 struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
321 struct btrfs_device *device;
322 struct request_queue *q;
323 struct fstrim_range range;
324 u64 minlen = ULLONG_MAX;
326 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
329 if (!capable(CAP_SYS_ADMIN))
333 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
337 q = bdev_get_queue(device->bdev);
338 if (blk_queue_discard(q)) {
340 minlen = min((u64)q->limits.discard_granularity,
348 if (copy_from_user(&range, arg, sizeof(range)))
350 if (range.start > total_bytes ||
351 range.len < fs_info->sb->s_blocksize)
354 range.len = min(range.len, total_bytes - range.start);
355 range.minlen = max(range.minlen, minlen);
356 ret = btrfs_trim_fs(fs_info->tree_root, &range);
360 if (copy_to_user(arg, &range, sizeof(range)))
366 static noinline int create_subvol(struct btrfs_root *root,
367 struct dentry *dentry,
368 char *name, int namelen,
370 struct btrfs_qgroup_inherit **inherit)
372 struct btrfs_trans_handle *trans;
373 struct btrfs_key key;
374 struct btrfs_root_item root_item;
375 struct btrfs_inode_item *inode_item;
376 struct extent_buffer *leaf;
377 struct btrfs_root *new_root;
378 struct dentry *parent = dentry->d_parent;
380 struct timespec cur_time = CURRENT_TIME;
384 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
388 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
392 dir = parent->d_inode;
400 trans = btrfs_start_transaction(root, 6);
402 return PTR_ERR(trans);
404 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid,
405 inherit ? *inherit : NULL);
409 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
410 0, objectid, NULL, 0, 0, 0);
416 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
417 btrfs_set_header_bytenr(leaf, leaf->start);
418 btrfs_set_header_generation(leaf, trans->transid);
419 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
420 btrfs_set_header_owner(leaf, objectid);
422 write_extent_buffer(leaf, root->fs_info->fsid,
423 (unsigned long)btrfs_header_fsid(leaf),
425 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
426 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
428 btrfs_mark_buffer_dirty(leaf);
430 memset(&root_item, 0, sizeof(root_item));
432 inode_item = &root_item.inode;
433 inode_item->generation = cpu_to_le64(1);
434 inode_item->size = cpu_to_le64(3);
435 inode_item->nlink = cpu_to_le32(1);
436 inode_item->nbytes = cpu_to_le64(root->leafsize);
437 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
440 root_item.byte_limit = 0;
441 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
443 btrfs_set_root_bytenr(&root_item, leaf->start);
444 btrfs_set_root_generation(&root_item, trans->transid);
445 btrfs_set_root_level(&root_item, 0);
446 btrfs_set_root_refs(&root_item, 1);
447 btrfs_set_root_used(&root_item, leaf->len);
448 btrfs_set_root_last_snapshot(&root_item, 0);
450 btrfs_set_root_generation_v2(&root_item,
451 btrfs_root_generation(&root_item));
452 uuid_le_gen(&new_uuid);
453 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
454 root_item.otime.sec = cpu_to_le64(cur_time.tv_sec);
455 root_item.otime.nsec = cpu_to_le32(cur_time.tv_nsec);
456 root_item.ctime = root_item.otime;
457 btrfs_set_root_ctransid(&root_item, trans->transid);
458 btrfs_set_root_otransid(&root_item, trans->transid);
460 btrfs_tree_unlock(leaf);
461 free_extent_buffer(leaf);
464 btrfs_set_root_dirid(&root_item, new_dirid);
466 key.objectid = objectid;
468 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
469 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
474 key.offset = (u64)-1;
475 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
476 if (IS_ERR(new_root)) {
477 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
478 ret = PTR_ERR(new_root);
482 btrfs_record_root_in_trans(trans, new_root);
484 ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
486 /* We potentially lose an unused inode item here */
487 btrfs_abort_transaction(trans, root, ret);
492 * insert the directory item
494 ret = btrfs_set_inode_index(dir, &index);
496 btrfs_abort_transaction(trans, root, ret);
500 ret = btrfs_insert_dir_item(trans, root,
501 name, namelen, dir, &key,
502 BTRFS_FT_DIR, index);
504 btrfs_abort_transaction(trans, root, ret);
508 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
509 ret = btrfs_update_inode(trans, root, dir);
512 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
513 objectid, root->root_key.objectid,
514 btrfs_ino(dir), index, name, namelen);
518 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
521 *async_transid = trans->transid;
522 err = btrfs_commit_transaction_async(trans, root, 1);
524 err = btrfs_commit_transaction(trans, root);
531 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
532 char *name, int namelen, u64 *async_transid,
533 bool readonly, struct btrfs_qgroup_inherit **inherit)
536 struct btrfs_pending_snapshot *pending_snapshot;
537 struct btrfs_trans_handle *trans;
543 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
544 if (!pending_snapshot)
547 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
548 BTRFS_BLOCK_RSV_TEMP);
549 pending_snapshot->dentry = dentry;
550 pending_snapshot->root = root;
551 pending_snapshot->readonly = readonly;
553 pending_snapshot->inherit = *inherit;
554 *inherit = NULL; /* take responsibility to free it */
557 trans = btrfs_start_transaction(root->fs_info->extent_root, 6);
559 ret = PTR_ERR(trans);
563 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
566 spin_lock(&root->fs_info->trans_lock);
567 list_add(&pending_snapshot->list,
568 &trans->transaction->pending_snapshots);
569 spin_unlock(&root->fs_info->trans_lock);
571 *async_transid = trans->transid;
572 ret = btrfs_commit_transaction_async(trans,
573 root->fs_info->extent_root, 1);
575 ret = btrfs_commit_transaction(trans,
576 root->fs_info->extent_root);
579 /* cleanup_transaction has freed this for us */
581 pending_snapshot = NULL;
585 ret = pending_snapshot->error;
589 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
593 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
595 ret = PTR_ERR(inode);
599 d_instantiate(dentry, inode);
602 kfree(pending_snapshot);
606 /* copy of check_sticky in fs/namei.c()
607 * It's inline, so penalty for filesystems that don't use sticky bit is
610 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
612 kuid_t fsuid = current_fsuid();
614 if (!(dir->i_mode & S_ISVTX))
616 if (uid_eq(inode->i_uid, fsuid))
618 if (uid_eq(dir->i_uid, fsuid))
620 return !capable(CAP_FOWNER);
623 /* copy of may_delete in fs/namei.c()
624 * Check whether we can remove a link victim from directory dir, check
625 * whether the type of victim is right.
626 * 1. We can't do it if dir is read-only (done in permission())
627 * 2. We should have write and exec permissions on dir
628 * 3. We can't remove anything from append-only dir
629 * 4. We can't do anything with immutable dir (done in permission())
630 * 5. If the sticky bit on dir is set we should either
631 * a. be owner of dir, or
632 * b. be owner of victim, or
633 * c. have CAP_FOWNER capability
634 * 6. If the victim is append-only or immutable we can't do antyhing with
635 * links pointing to it.
636 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
637 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
638 * 9. We can't remove a root or mountpoint.
639 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
640 * nfs_async_unlink().
643 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
647 if (!victim->d_inode)
650 BUG_ON(victim->d_parent->d_inode != dir);
651 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
653 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
658 if (btrfs_check_sticky(dir, victim->d_inode)||
659 IS_APPEND(victim->d_inode)||
660 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
663 if (!S_ISDIR(victim->d_inode->i_mode))
667 } else if (S_ISDIR(victim->d_inode->i_mode))
671 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
676 /* copy of may_create in fs/namei.c() */
677 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
683 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
687 * Create a new subvolume below @parent. This is largely modeled after
688 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
689 * inside this filesystem so it's quite a bit simpler.
691 static noinline int btrfs_mksubvol(struct path *parent,
692 char *name, int namelen,
693 struct btrfs_root *snap_src,
694 u64 *async_transid, bool readonly,
695 struct btrfs_qgroup_inherit **inherit)
697 struct inode *dir = parent->dentry->d_inode;
698 struct dentry *dentry;
701 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
703 dentry = lookup_one_len(name, parent->dentry, namelen);
704 error = PTR_ERR(dentry);
712 error = btrfs_may_create(dir, dentry);
717 * even if this name doesn't exist, we may get hash collisions.
718 * check for them now when we can safely fail
720 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
726 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
728 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
732 error = create_snapshot(snap_src, dentry, name, namelen,
733 async_transid, readonly, inherit);
735 error = create_subvol(BTRFS_I(dir)->root, dentry,
736 name, namelen, async_transid, inherit);
739 fsnotify_mkdir(dir, dentry);
741 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
745 mutex_unlock(&dir->i_mutex);
750 * When we're defragging a range, we don't want to kick it off again
751 * if it is really just waiting for delalloc to send it down.
752 * If we find a nice big extent or delalloc range for the bytes in the
753 * file you want to defrag, we return 0 to let you know to skip this
756 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
758 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
759 struct extent_map *em = NULL;
760 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
763 read_lock(&em_tree->lock);
764 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
765 read_unlock(&em_tree->lock);
768 end = extent_map_end(em);
770 if (end - offset > thresh)
773 /* if we already have a nice delalloc here, just stop */
775 end = count_range_bits(io_tree, &offset, offset + thresh,
776 thresh, EXTENT_DELALLOC, 1);
783 * helper function to walk through a file and find extents
784 * newer than a specific transid, and smaller than thresh.
786 * This is used by the defragging code to find new and small
789 static int find_new_extents(struct btrfs_root *root,
790 struct inode *inode, u64 newer_than,
791 u64 *off, int thresh)
793 struct btrfs_path *path;
794 struct btrfs_key min_key;
795 struct btrfs_key max_key;
796 struct extent_buffer *leaf;
797 struct btrfs_file_extent_item *extent;
800 u64 ino = btrfs_ino(inode);
802 path = btrfs_alloc_path();
806 min_key.objectid = ino;
807 min_key.type = BTRFS_EXTENT_DATA_KEY;
808 min_key.offset = *off;
810 max_key.objectid = ino;
811 max_key.type = (u8)-1;
812 max_key.offset = (u64)-1;
814 path->keep_locks = 1;
817 ret = btrfs_search_forward(root, &min_key, &max_key,
818 path, 0, newer_than);
821 if (min_key.objectid != ino)
823 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
826 leaf = path->nodes[0];
827 extent = btrfs_item_ptr(leaf, path->slots[0],
828 struct btrfs_file_extent_item);
830 type = btrfs_file_extent_type(leaf, extent);
831 if (type == BTRFS_FILE_EXTENT_REG &&
832 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
833 check_defrag_in_cache(inode, min_key.offset, thresh)) {
834 *off = min_key.offset;
835 btrfs_free_path(path);
839 if (min_key.offset == (u64)-1)
843 btrfs_release_path(path);
846 btrfs_free_path(path);
850 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
852 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
853 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
854 struct extent_map *em;
855 u64 len = PAGE_CACHE_SIZE;
858 * hopefully we have this extent in the tree already, try without
859 * the full extent lock
861 read_lock(&em_tree->lock);
862 em = lookup_extent_mapping(em_tree, start, len);
863 read_unlock(&em_tree->lock);
866 /* get the big lock and read metadata off disk */
867 lock_extent(io_tree, start, start + len - 1);
868 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
869 unlock_extent(io_tree, start, start + len - 1);
878 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
880 struct extent_map *next;
883 /* this is the last extent */
884 if (em->start + em->len >= i_size_read(inode))
887 next = defrag_lookup_extent(inode, em->start + em->len);
888 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
891 free_extent_map(next);
895 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
896 u64 *last_len, u64 *skip, u64 *defrag_end,
899 struct extent_map *em;
901 bool next_mergeable = true;
904 * make sure that once we start defragging an extent, we keep on
907 if (start < *defrag_end)
912 em = defrag_lookup_extent(inode, start);
916 /* this will cover holes, and inline extents */
917 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
922 next_mergeable = defrag_check_next_extent(inode, em);
925 * we hit a real extent, if it is big or the next extent is not a
926 * real extent, don't bother defragging it
928 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
929 (em->len >= thresh || !next_mergeable))
933 * last_len ends up being a counter of how many bytes we've defragged.
934 * every time we choose not to defrag an extent, we reset *last_len
935 * so that the next tiny extent will force a defrag.
937 * The end result of this is that tiny extents before a single big
938 * extent will force at least part of that big extent to be defragged.
941 *defrag_end = extent_map_end(em);
944 *skip = extent_map_end(em);
953 * it doesn't do much good to defrag one or two pages
954 * at a time. This pulls in a nice chunk of pages
957 * It also makes sure the delalloc code has enough
958 * dirty data to avoid making new small extents as part
961 * It's a good idea to start RA on this range
962 * before calling this.
964 static int cluster_pages_for_defrag(struct inode *inode,
966 unsigned long start_index,
969 unsigned long file_end;
970 u64 isize = i_size_read(inode);
977 struct btrfs_ordered_extent *ordered;
978 struct extent_state *cached_state = NULL;
979 struct extent_io_tree *tree;
980 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
982 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
983 if (!isize || start_index > file_end)
986 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
988 ret = btrfs_delalloc_reserve_space(inode,
989 page_cnt << PAGE_CACHE_SHIFT);
993 tree = &BTRFS_I(inode)->io_tree;
995 /* step one, lock all the pages */
996 for (i = 0; i < page_cnt; i++) {
999 page = find_or_create_page(inode->i_mapping,
1000 start_index + i, mask);
1004 page_start = page_offset(page);
1005 page_end = page_start + PAGE_CACHE_SIZE - 1;
1007 lock_extent(tree, page_start, page_end);
1008 ordered = btrfs_lookup_ordered_extent(inode,
1010 unlock_extent(tree, page_start, page_end);
1015 btrfs_start_ordered_extent(inode, ordered, 1);
1016 btrfs_put_ordered_extent(ordered);
1019 * we unlocked the page above, so we need check if
1020 * it was released or not.
1022 if (page->mapping != inode->i_mapping) {
1024 page_cache_release(page);
1029 if (!PageUptodate(page)) {
1030 btrfs_readpage(NULL, page);
1032 if (!PageUptodate(page)) {
1034 page_cache_release(page);
1040 if (page->mapping != inode->i_mapping) {
1042 page_cache_release(page);
1052 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1056 * so now we have a nice long stream of locked
1057 * and up to date pages, lets wait on them
1059 for (i = 0; i < i_done; i++)
1060 wait_on_page_writeback(pages[i]);
1062 page_start = page_offset(pages[0]);
1063 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1065 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1066 page_start, page_end - 1, 0, &cached_state);
1067 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1068 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1069 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1070 &cached_state, GFP_NOFS);
1072 if (i_done != page_cnt) {
1073 spin_lock(&BTRFS_I(inode)->lock);
1074 BTRFS_I(inode)->outstanding_extents++;
1075 spin_unlock(&BTRFS_I(inode)->lock);
1076 btrfs_delalloc_release_space(inode,
1077 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1081 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1082 &cached_state, GFP_NOFS);
1084 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1085 page_start, page_end - 1, &cached_state,
1088 for (i = 0; i < i_done; i++) {
1089 clear_page_dirty_for_io(pages[i]);
1090 ClearPageChecked(pages[i]);
1091 set_page_extent_mapped(pages[i]);
1092 set_page_dirty(pages[i]);
1093 unlock_page(pages[i]);
1094 page_cache_release(pages[i]);
1098 for (i = 0; i < i_done; i++) {
1099 unlock_page(pages[i]);
1100 page_cache_release(pages[i]);
1102 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1107 int btrfs_defrag_file(struct inode *inode, struct file *file,
1108 struct btrfs_ioctl_defrag_range_args *range,
1109 u64 newer_than, unsigned long max_to_defrag)
1111 struct btrfs_root *root = BTRFS_I(inode)->root;
1112 struct file_ra_state *ra = NULL;
1113 unsigned long last_index;
1114 u64 isize = i_size_read(inode);
1118 u64 newer_off = range->start;
1120 unsigned long ra_index = 0;
1122 int defrag_count = 0;
1123 int compress_type = BTRFS_COMPRESS_ZLIB;
1124 int extent_thresh = range->extent_thresh;
1125 int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1126 int cluster = max_cluster;
1127 u64 new_align = ~((u64)128 * 1024 - 1);
1128 struct page **pages = NULL;
1130 if (extent_thresh == 0)
1131 extent_thresh = 256 * 1024;
1133 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1134 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1136 if (range->compress_type)
1137 compress_type = range->compress_type;
1144 * if we were not given a file, allocate a readahead
1148 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1151 file_ra_state_init(ra, inode->i_mapping);
1156 pages = kmalloc(sizeof(struct page *) * max_cluster,
1163 /* find the last page to defrag */
1164 if (range->start + range->len > range->start) {
1165 last_index = min_t(u64, isize - 1,
1166 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1168 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1172 ret = find_new_extents(root, inode, newer_than,
1173 &newer_off, 64 * 1024);
1175 range->start = newer_off;
1177 * we always align our defrag to help keep
1178 * the extents in the file evenly spaced
1180 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1184 i = range->start >> PAGE_CACHE_SHIFT;
1187 max_to_defrag = last_index + 1;
1190 * make writeback starts from i, so the defrag range can be
1191 * written sequentially.
1193 if (i < inode->i_mapping->writeback_index)
1194 inode->i_mapping->writeback_index = i;
1196 while (i <= last_index && defrag_count < max_to_defrag &&
1197 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1198 PAGE_CACHE_SHIFT)) {
1200 * make sure we stop running if someone unmounts
1203 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1206 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1207 extent_thresh, &last_len, &skip,
1208 &defrag_end, range->flags &
1209 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1212 * the should_defrag function tells us how much to skip
1213 * bump our counter by the suggested amount
1215 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1216 i = max(i + 1, next);
1221 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1222 PAGE_CACHE_SHIFT) - i;
1223 cluster = min(cluster, max_cluster);
1225 cluster = max_cluster;
1228 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1229 BTRFS_I(inode)->force_compress = compress_type;
1231 if (i + cluster > ra_index) {
1232 ra_index = max(i, ra_index);
1233 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1235 ra_index += max_cluster;
1238 mutex_lock(&inode->i_mutex);
1239 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1241 mutex_unlock(&inode->i_mutex);
1245 defrag_count += ret;
1246 balance_dirty_pages_ratelimited(inode->i_mapping);
1247 mutex_unlock(&inode->i_mutex);
1250 if (newer_off == (u64)-1)
1256 newer_off = max(newer_off + 1,
1257 (u64)i << PAGE_CACHE_SHIFT);
1259 ret = find_new_extents(root, inode,
1260 newer_than, &newer_off,
1263 range->start = newer_off;
1264 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1271 last_len += ret << PAGE_CACHE_SHIFT;
1279 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1280 filemap_flush(inode->i_mapping);
1282 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1283 /* the filemap_flush will queue IO into the worker threads, but
1284 * we have to make sure the IO is actually started and that
1285 * ordered extents get created before we return
1287 atomic_inc(&root->fs_info->async_submit_draining);
1288 while (atomic_read(&root->fs_info->nr_async_submits) ||
1289 atomic_read(&root->fs_info->async_delalloc_pages)) {
1290 wait_event(root->fs_info->async_submit_wait,
1291 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1292 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1294 atomic_dec(&root->fs_info->async_submit_draining);
1296 mutex_lock(&inode->i_mutex);
1297 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1298 mutex_unlock(&inode->i_mutex);
1301 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1302 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1314 static noinline int btrfs_ioctl_resize(struct file *file,
1320 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1321 struct btrfs_ioctl_vol_args *vol_args;
1322 struct btrfs_trans_handle *trans;
1323 struct btrfs_device *device = NULL;
1325 char *devstr = NULL;
1329 if (root->fs_info->sb->s_flags & MS_RDONLY)
1332 if (!capable(CAP_SYS_ADMIN))
1335 ret = mnt_want_write_file(file);
1339 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1341 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
1342 return -EINPROGRESS;
1345 mutex_lock(&root->fs_info->volume_mutex);
1346 vol_args = memdup_user(arg, sizeof(*vol_args));
1347 if (IS_ERR(vol_args)) {
1348 ret = PTR_ERR(vol_args);
1352 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1354 sizestr = vol_args->name;
1355 devstr = strchr(sizestr, ':');
1358 sizestr = devstr + 1;
1360 devstr = vol_args->name;
1361 devid = simple_strtoull(devstr, &end, 10);
1362 printk(KERN_INFO "btrfs: resizing devid %llu\n",
1363 (unsigned long long)devid);
1365 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1367 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1368 (unsigned long long)devid);
1372 if (device->fs_devices && device->fs_devices->seeding) {
1373 printk(KERN_INFO "btrfs: resizer unable to apply on "
1374 "seeding device %llu\n",
1375 (unsigned long long)devid);
1380 if (!strcmp(sizestr, "max"))
1381 new_size = device->bdev->bd_inode->i_size;
1383 if (sizestr[0] == '-') {
1386 } else if (sizestr[0] == '+') {
1390 new_size = memparse(sizestr, NULL);
1391 if (new_size == 0) {
1397 if (device->is_tgtdev_for_dev_replace) {
1402 old_size = device->total_bytes;
1405 if (new_size > old_size) {
1409 new_size = old_size - new_size;
1410 } else if (mod > 0) {
1411 new_size = old_size + new_size;
1414 if (new_size < 256 * 1024 * 1024) {
1418 if (new_size > device->bdev->bd_inode->i_size) {
1423 do_div(new_size, root->sectorsize);
1424 new_size *= root->sectorsize;
1426 printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n",
1427 rcu_str_deref(device->name),
1428 (unsigned long long)new_size);
1430 if (new_size > old_size) {
1431 trans = btrfs_start_transaction(root, 0);
1432 if (IS_ERR(trans)) {
1433 ret = PTR_ERR(trans);
1436 ret = btrfs_grow_device(trans, device, new_size);
1437 btrfs_commit_transaction(trans, root);
1438 } else if (new_size < old_size) {
1439 ret = btrfs_shrink_device(device, new_size);
1440 } /* equal, nothing need to do */
1445 mutex_unlock(&root->fs_info->volume_mutex);
1446 mnt_drop_write_file(file);
1447 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1451 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1452 char *name, unsigned long fd, int subvol,
1453 u64 *transid, bool readonly,
1454 struct btrfs_qgroup_inherit **inherit)
1459 ret = mnt_want_write_file(file);
1463 namelen = strlen(name);
1464 if (strchr(name, '/')) {
1466 goto out_drop_write;
1469 if (name[0] == '.' &&
1470 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1472 goto out_drop_write;
1476 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1477 NULL, transid, readonly, inherit);
1479 struct fd src = fdget(fd);
1480 struct inode *src_inode;
1483 goto out_drop_write;
1486 src_inode = src.file->f_path.dentry->d_inode;
1487 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1488 printk(KERN_INFO "btrfs: Snapshot src from "
1492 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1493 BTRFS_I(src_inode)->root,
1494 transid, readonly, inherit);
1499 mnt_drop_write_file(file);
1504 static noinline int btrfs_ioctl_snap_create(struct file *file,
1505 void __user *arg, int subvol)
1507 struct btrfs_ioctl_vol_args *vol_args;
1510 vol_args = memdup_user(arg, sizeof(*vol_args));
1511 if (IS_ERR(vol_args))
1512 return PTR_ERR(vol_args);
1513 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1515 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1516 vol_args->fd, subvol,
1523 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1524 void __user *arg, int subvol)
1526 struct btrfs_ioctl_vol_args_v2 *vol_args;
1530 bool readonly = false;
1531 struct btrfs_qgroup_inherit *inherit = NULL;
1533 vol_args = memdup_user(arg, sizeof(*vol_args));
1534 if (IS_ERR(vol_args))
1535 return PTR_ERR(vol_args);
1536 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1538 if (vol_args->flags &
1539 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1540 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1545 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1547 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1549 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1550 if (vol_args->size > PAGE_CACHE_SIZE) {
1554 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1555 if (IS_ERR(inherit)) {
1556 ret = PTR_ERR(inherit);
1561 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1562 vol_args->fd, subvol, ptr,
1563 readonly, &inherit);
1565 if (ret == 0 && ptr &&
1567 offsetof(struct btrfs_ioctl_vol_args_v2,
1568 transid), ptr, sizeof(*ptr)))
1576 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1579 struct inode *inode = fdentry(file)->d_inode;
1580 struct btrfs_root *root = BTRFS_I(inode)->root;
1584 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1587 down_read(&root->fs_info->subvol_sem);
1588 if (btrfs_root_readonly(root))
1589 flags |= BTRFS_SUBVOL_RDONLY;
1590 up_read(&root->fs_info->subvol_sem);
1592 if (copy_to_user(arg, &flags, sizeof(flags)))
1598 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1601 struct inode *inode = fdentry(file)->d_inode;
1602 struct btrfs_root *root = BTRFS_I(inode)->root;
1603 struct btrfs_trans_handle *trans;
1608 ret = mnt_want_write_file(file);
1612 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1614 goto out_drop_write;
1617 if (copy_from_user(&flags, arg, sizeof(flags))) {
1619 goto out_drop_write;
1622 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1624 goto out_drop_write;
1627 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1629 goto out_drop_write;
1632 if (!inode_owner_or_capable(inode)) {
1634 goto out_drop_write;
1637 down_write(&root->fs_info->subvol_sem);
1640 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1643 root_flags = btrfs_root_flags(&root->root_item);
1644 if (flags & BTRFS_SUBVOL_RDONLY)
1645 btrfs_set_root_flags(&root->root_item,
1646 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1648 btrfs_set_root_flags(&root->root_item,
1649 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1651 trans = btrfs_start_transaction(root, 1);
1652 if (IS_ERR(trans)) {
1653 ret = PTR_ERR(trans);
1657 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1658 &root->root_key, &root->root_item);
1660 btrfs_commit_transaction(trans, root);
1663 btrfs_set_root_flags(&root->root_item, root_flags);
1665 up_write(&root->fs_info->subvol_sem);
1667 mnt_drop_write_file(file);
1673 * helper to check if the subvolume references other subvolumes
1675 static noinline int may_destroy_subvol(struct btrfs_root *root)
1677 struct btrfs_path *path;
1678 struct btrfs_key key;
1681 path = btrfs_alloc_path();
1685 key.objectid = root->root_key.objectid;
1686 key.type = BTRFS_ROOT_REF_KEY;
1687 key.offset = (u64)-1;
1689 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1696 if (path->slots[0] > 0) {
1698 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1699 if (key.objectid == root->root_key.objectid &&
1700 key.type == BTRFS_ROOT_REF_KEY)
1704 btrfs_free_path(path);
1708 static noinline int key_in_sk(struct btrfs_key *key,
1709 struct btrfs_ioctl_search_key *sk)
1711 struct btrfs_key test;
1714 test.objectid = sk->min_objectid;
1715 test.type = sk->min_type;
1716 test.offset = sk->min_offset;
1718 ret = btrfs_comp_cpu_keys(key, &test);
1722 test.objectid = sk->max_objectid;
1723 test.type = sk->max_type;
1724 test.offset = sk->max_offset;
1726 ret = btrfs_comp_cpu_keys(key, &test);
1732 static noinline int copy_to_sk(struct btrfs_root *root,
1733 struct btrfs_path *path,
1734 struct btrfs_key *key,
1735 struct btrfs_ioctl_search_key *sk,
1737 unsigned long *sk_offset,
1741 struct extent_buffer *leaf;
1742 struct btrfs_ioctl_search_header sh;
1743 unsigned long item_off;
1744 unsigned long item_len;
1750 leaf = path->nodes[0];
1751 slot = path->slots[0];
1752 nritems = btrfs_header_nritems(leaf);
1754 if (btrfs_header_generation(leaf) > sk->max_transid) {
1758 found_transid = btrfs_header_generation(leaf);
1760 for (i = slot; i < nritems; i++) {
1761 item_off = btrfs_item_ptr_offset(leaf, i);
1762 item_len = btrfs_item_size_nr(leaf, i);
1764 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1767 if (sizeof(sh) + item_len + *sk_offset >
1768 BTRFS_SEARCH_ARGS_BUFSIZE) {
1773 btrfs_item_key_to_cpu(leaf, key, i);
1774 if (!key_in_sk(key, sk))
1777 sh.objectid = key->objectid;
1778 sh.offset = key->offset;
1779 sh.type = key->type;
1781 sh.transid = found_transid;
1783 /* copy search result header */
1784 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1785 *sk_offset += sizeof(sh);
1788 char *p = buf + *sk_offset;
1790 read_extent_buffer(leaf, p,
1791 item_off, item_len);
1792 *sk_offset += item_len;
1796 if (*num_found >= sk->nr_items)
1801 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1803 else if (key->type < (u8)-1 && key->type < sk->max_type) {
1806 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1816 static noinline int search_ioctl(struct inode *inode,
1817 struct btrfs_ioctl_search_args *args)
1819 struct btrfs_root *root;
1820 struct btrfs_key key;
1821 struct btrfs_key max_key;
1822 struct btrfs_path *path;
1823 struct btrfs_ioctl_search_key *sk = &args->key;
1824 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1827 unsigned long sk_offset = 0;
1829 path = btrfs_alloc_path();
1833 if (sk->tree_id == 0) {
1834 /* search the root of the inode that was passed */
1835 root = BTRFS_I(inode)->root;
1837 key.objectid = sk->tree_id;
1838 key.type = BTRFS_ROOT_ITEM_KEY;
1839 key.offset = (u64)-1;
1840 root = btrfs_read_fs_root_no_name(info, &key);
1842 printk(KERN_ERR "could not find root %llu\n",
1844 btrfs_free_path(path);
1849 key.objectid = sk->min_objectid;
1850 key.type = sk->min_type;
1851 key.offset = sk->min_offset;
1853 max_key.objectid = sk->max_objectid;
1854 max_key.type = sk->max_type;
1855 max_key.offset = sk->max_offset;
1857 path->keep_locks = 1;
1860 ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1867 ret = copy_to_sk(root, path, &key, sk, args->buf,
1868 &sk_offset, &num_found);
1869 btrfs_release_path(path);
1870 if (ret || num_found >= sk->nr_items)
1876 sk->nr_items = num_found;
1877 btrfs_free_path(path);
1881 static noinline int btrfs_ioctl_tree_search(struct file *file,
1884 struct btrfs_ioctl_search_args *args;
1885 struct inode *inode;
1888 if (!capable(CAP_SYS_ADMIN))
1891 args = memdup_user(argp, sizeof(*args));
1893 return PTR_ERR(args);
1895 inode = fdentry(file)->d_inode;
1896 ret = search_ioctl(inode, args);
1897 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1904 * Search INODE_REFs to identify path name of 'dirid' directory
1905 * in a 'tree_id' tree. and sets path name to 'name'.
1907 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1908 u64 tree_id, u64 dirid, char *name)
1910 struct btrfs_root *root;
1911 struct btrfs_key key;
1917 struct btrfs_inode_ref *iref;
1918 struct extent_buffer *l;
1919 struct btrfs_path *path;
1921 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1926 path = btrfs_alloc_path();
1930 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1932 key.objectid = tree_id;
1933 key.type = BTRFS_ROOT_ITEM_KEY;
1934 key.offset = (u64)-1;
1935 root = btrfs_read_fs_root_no_name(info, &key);
1937 printk(KERN_ERR "could not find root %llu\n", tree_id);
1942 key.objectid = dirid;
1943 key.type = BTRFS_INODE_REF_KEY;
1944 key.offset = (u64)-1;
1947 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1952 slot = path->slots[0];
1953 if (ret > 0 && slot > 0)
1955 btrfs_item_key_to_cpu(l, &key, slot);
1957 if (ret > 0 && (key.objectid != dirid ||
1958 key.type != BTRFS_INODE_REF_KEY)) {
1963 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1964 len = btrfs_inode_ref_name_len(l, iref);
1966 total_len += len + 1;
1971 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1973 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1976 btrfs_release_path(path);
1977 key.objectid = key.offset;
1978 key.offset = (u64)-1;
1979 dirid = key.objectid;
1983 memmove(name, ptr, total_len);
1984 name[total_len]='\0';
1987 btrfs_free_path(path);
1991 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1994 struct btrfs_ioctl_ino_lookup_args *args;
1995 struct inode *inode;
1998 if (!capable(CAP_SYS_ADMIN))
2001 args = memdup_user(argp, sizeof(*args));
2003 return PTR_ERR(args);
2005 inode = fdentry(file)->d_inode;
2007 if (args->treeid == 0)
2008 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2010 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2011 args->treeid, args->objectid,
2014 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2021 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2024 struct dentry *parent = fdentry(file);
2025 struct dentry *dentry;
2026 struct inode *dir = parent->d_inode;
2027 struct inode *inode;
2028 struct btrfs_root *root = BTRFS_I(dir)->root;
2029 struct btrfs_root *dest = NULL;
2030 struct btrfs_ioctl_vol_args *vol_args;
2031 struct btrfs_trans_handle *trans;
2036 vol_args = memdup_user(arg, sizeof(*vol_args));
2037 if (IS_ERR(vol_args))
2038 return PTR_ERR(vol_args);
2040 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2041 namelen = strlen(vol_args->name);
2042 if (strchr(vol_args->name, '/') ||
2043 strncmp(vol_args->name, "..", namelen) == 0) {
2048 err = mnt_want_write_file(file);
2052 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
2053 dentry = lookup_one_len(vol_args->name, parent, namelen);
2054 if (IS_ERR(dentry)) {
2055 err = PTR_ERR(dentry);
2056 goto out_unlock_dir;
2059 if (!dentry->d_inode) {
2064 inode = dentry->d_inode;
2065 dest = BTRFS_I(inode)->root;
2066 if (!capable(CAP_SYS_ADMIN)){
2068 * Regular user. Only allow this with a special mount
2069 * option, when the user has write+exec access to the
2070 * subvol root, and when rmdir(2) would have been
2073 * Note that this is _not_ check that the subvol is
2074 * empty or doesn't contain data that we wouldn't
2075 * otherwise be able to delete.
2077 * Users who want to delete empty subvols should try
2081 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2085 * Do not allow deletion if the parent dir is the same
2086 * as the dir to be deleted. That means the ioctl
2087 * must be called on the dentry referencing the root
2088 * of the subvol, not a random directory contained
2095 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2099 /* check if subvolume may be deleted by a non-root user */
2100 err = btrfs_may_delete(dir, dentry, 1);
2105 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2110 mutex_lock(&inode->i_mutex);
2111 err = d_invalidate(dentry);
2115 down_write(&root->fs_info->subvol_sem);
2117 err = may_destroy_subvol(dest);
2121 trans = btrfs_start_transaction(root, 0);
2122 if (IS_ERR(trans)) {
2123 err = PTR_ERR(trans);
2126 trans->block_rsv = &root->fs_info->global_block_rsv;
2128 ret = btrfs_unlink_subvol(trans, root, dir,
2129 dest->root_key.objectid,
2130 dentry->d_name.name,
2131 dentry->d_name.len);
2134 btrfs_abort_transaction(trans, root, ret);
2138 btrfs_record_root_in_trans(trans, dest);
2140 memset(&dest->root_item.drop_progress, 0,
2141 sizeof(dest->root_item.drop_progress));
2142 dest->root_item.drop_level = 0;
2143 btrfs_set_root_refs(&dest->root_item, 0);
2145 if (!xchg(&dest->orphan_item_inserted, 1)) {
2146 ret = btrfs_insert_orphan_item(trans,
2147 root->fs_info->tree_root,
2148 dest->root_key.objectid);
2150 btrfs_abort_transaction(trans, root, ret);
2156 ret = btrfs_end_transaction(trans, root);
2159 inode->i_flags |= S_DEAD;
2161 up_write(&root->fs_info->subvol_sem);
2163 mutex_unlock(&inode->i_mutex);
2165 shrink_dcache_sb(root->fs_info->sb);
2166 btrfs_invalidate_inodes(dest);
2172 mutex_unlock(&dir->i_mutex);
2173 mnt_drop_write_file(file);
2179 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2181 struct inode *inode = fdentry(file)->d_inode;
2182 struct btrfs_root *root = BTRFS_I(inode)->root;
2183 struct btrfs_ioctl_defrag_range_args *range;
2186 if (btrfs_root_readonly(root))
2189 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2191 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2192 return -EINPROGRESS;
2194 ret = mnt_want_write_file(file);
2196 atomic_set(&root->fs_info->mutually_exclusive_operation_running,
2201 switch (inode->i_mode & S_IFMT) {
2203 if (!capable(CAP_SYS_ADMIN)) {
2207 ret = btrfs_defrag_root(root, 0);
2210 ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
2213 if (!(file->f_mode & FMODE_WRITE)) {
2218 range = kzalloc(sizeof(*range), GFP_KERNEL);
2225 if (copy_from_user(range, argp,
2231 /* compression requires us to start the IO */
2232 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2233 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2234 range->extent_thresh = (u32)-1;
2237 /* the rest are all set to zero by kzalloc */
2238 range->len = (u64)-1;
2240 ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2250 mnt_drop_write_file(file);
2251 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2255 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2257 struct btrfs_ioctl_vol_args *vol_args;
2260 if (!capable(CAP_SYS_ADMIN))
2263 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2265 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2266 return -EINPROGRESS;
2269 mutex_lock(&root->fs_info->volume_mutex);
2270 vol_args = memdup_user(arg, sizeof(*vol_args));
2271 if (IS_ERR(vol_args)) {
2272 ret = PTR_ERR(vol_args);
2276 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2277 ret = btrfs_init_new_device(root, vol_args->name);
2281 mutex_unlock(&root->fs_info->volume_mutex);
2282 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2286 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2288 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
2289 struct btrfs_ioctl_vol_args *vol_args;
2292 if (!capable(CAP_SYS_ADMIN))
2295 ret = mnt_want_write_file(file);
2299 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2301 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2302 mnt_drop_write_file(file);
2303 return -EINPROGRESS;
2306 mutex_lock(&root->fs_info->volume_mutex);
2307 vol_args = memdup_user(arg, sizeof(*vol_args));
2308 if (IS_ERR(vol_args)) {
2309 ret = PTR_ERR(vol_args);
2313 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2314 ret = btrfs_rm_device(root, vol_args->name);
2318 mutex_unlock(&root->fs_info->volume_mutex);
2319 mnt_drop_write_file(file);
2320 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2324 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2326 struct btrfs_ioctl_fs_info_args *fi_args;
2327 struct btrfs_device *device;
2328 struct btrfs_device *next;
2329 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2332 if (!capable(CAP_SYS_ADMIN))
2335 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2339 fi_args->num_devices = fs_devices->num_devices;
2340 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2342 mutex_lock(&fs_devices->device_list_mutex);
2343 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2344 if (device->devid > fi_args->max_id)
2345 fi_args->max_id = device->devid;
2347 mutex_unlock(&fs_devices->device_list_mutex);
2349 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2356 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2358 struct btrfs_ioctl_dev_info_args *di_args;
2359 struct btrfs_device *dev;
2360 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2362 char *s_uuid = NULL;
2363 char empty_uuid[BTRFS_UUID_SIZE] = {0};
2365 if (!capable(CAP_SYS_ADMIN))
2368 di_args = memdup_user(arg, sizeof(*di_args));
2369 if (IS_ERR(di_args))
2370 return PTR_ERR(di_args);
2372 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2373 s_uuid = di_args->uuid;
2375 mutex_lock(&fs_devices->device_list_mutex);
2376 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2377 mutex_unlock(&fs_devices->device_list_mutex);
2384 di_args->devid = dev->devid;
2385 di_args->bytes_used = dev->bytes_used;
2386 di_args->total_bytes = dev->total_bytes;
2387 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2389 struct rcu_string *name;
2392 name = rcu_dereference(dev->name);
2393 strncpy(di_args->path, name->str, sizeof(di_args->path));
2395 di_args->path[sizeof(di_args->path) - 1] = 0;
2397 di_args->path[0] = '\0';
2401 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2408 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2409 u64 off, u64 olen, u64 destoff)
2411 struct inode *inode = fdentry(file)->d_inode;
2412 struct btrfs_root *root = BTRFS_I(inode)->root;
2415 struct btrfs_trans_handle *trans;
2416 struct btrfs_path *path;
2417 struct extent_buffer *leaf;
2419 struct btrfs_key key;
2424 u64 bs = root->fs_info->sb->s_blocksize;
2428 * - split compressed inline extents. annoying: we need to
2429 * decompress into destination's address_space (the file offset
2430 * may change, so source mapping won't do), then recompress (or
2431 * otherwise reinsert) a subrange.
2432 * - allow ranges within the same file to be cloned (provided
2433 * they don't overlap)?
2436 /* the destination must be opened for writing */
2437 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2440 if (btrfs_root_readonly(root))
2443 ret = mnt_want_write_file(file);
2447 src_file = fdget(srcfd);
2448 if (!src_file.file) {
2450 goto out_drop_write;
2454 if (src_file.file->f_path.mnt != file->f_path.mnt)
2457 src = src_file.file->f_dentry->d_inode;
2463 /* the src must be open for reading */
2464 if (!(src_file.file->f_mode & FMODE_READ))
2467 /* don't make the dst file partly checksummed */
2468 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2469 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2473 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2477 if (src->i_sb != inode->i_sb)
2481 buf = vmalloc(btrfs_level_size(root, 0));
2485 path = btrfs_alloc_path();
2493 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2494 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2496 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2497 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2500 /* determine range to clone */
2502 if (off + len > src->i_size || off + len < off)
2505 olen = len = src->i_size - off;
2506 /* if we extend to eof, continue to block boundary */
2507 if (off + len == src->i_size)
2508 len = ALIGN(src->i_size, bs) - off;
2510 /* verify the end result is block aligned */
2511 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2512 !IS_ALIGNED(destoff, bs))
2515 if (destoff > inode->i_size) {
2516 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2521 /* truncate page cache pages from target inode range */
2522 truncate_inode_pages_range(&inode->i_data, destoff,
2523 PAGE_CACHE_ALIGN(destoff + len) - 1);
2525 /* do any pending delalloc/csum calc on src, one way or
2526 another, and lock file content */
2528 struct btrfs_ordered_extent *ordered;
2529 lock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2530 ordered = btrfs_lookup_first_ordered_extent(src, off + len - 1);
2532 !test_range_bit(&BTRFS_I(src)->io_tree, off, off + len - 1,
2533 EXTENT_DELALLOC, 0, NULL))
2535 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2537 btrfs_put_ordered_extent(ordered);
2538 btrfs_wait_ordered_range(src, off, len);
2542 key.objectid = btrfs_ino(src);
2543 key.type = BTRFS_EXTENT_DATA_KEY;
2548 * note the key will change type as we walk through the
2551 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2556 nritems = btrfs_header_nritems(path->nodes[0]);
2557 if (path->slots[0] >= nritems) {
2558 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2563 nritems = btrfs_header_nritems(path->nodes[0]);
2565 leaf = path->nodes[0];
2566 slot = path->slots[0];
2568 btrfs_item_key_to_cpu(leaf, &key, slot);
2569 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2570 key.objectid != btrfs_ino(src))
2573 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2574 struct btrfs_file_extent_item *extent;
2577 struct btrfs_key new_key;
2578 u64 disko = 0, diskl = 0;
2579 u64 datao = 0, datal = 0;
2583 size = btrfs_item_size_nr(leaf, slot);
2584 read_extent_buffer(leaf, buf,
2585 btrfs_item_ptr_offset(leaf, slot),
2588 extent = btrfs_item_ptr(leaf, slot,
2589 struct btrfs_file_extent_item);
2590 comp = btrfs_file_extent_compression(leaf, extent);
2591 type = btrfs_file_extent_type(leaf, extent);
2592 if (type == BTRFS_FILE_EXTENT_REG ||
2593 type == BTRFS_FILE_EXTENT_PREALLOC) {
2594 disko = btrfs_file_extent_disk_bytenr(leaf,
2596 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2598 datao = btrfs_file_extent_offset(leaf, extent);
2599 datal = btrfs_file_extent_num_bytes(leaf,
2601 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2602 /* take upper bound, may be compressed */
2603 datal = btrfs_file_extent_ram_bytes(leaf,
2606 btrfs_release_path(path);
2608 if (key.offset + datal <= off ||
2609 key.offset >= off + len - 1)
2612 memcpy(&new_key, &key, sizeof(new_key));
2613 new_key.objectid = btrfs_ino(inode);
2614 if (off <= key.offset)
2615 new_key.offset = key.offset + destoff - off;
2617 new_key.offset = destoff;
2620 * 1 - adjusting old extent (we may have to split it)
2621 * 1 - add new extent
2624 trans = btrfs_start_transaction(root, 3);
2625 if (IS_ERR(trans)) {
2626 ret = PTR_ERR(trans);
2630 if (type == BTRFS_FILE_EXTENT_REG ||
2631 type == BTRFS_FILE_EXTENT_PREALLOC) {
2633 * a | --- range to clone ---| b
2634 * | ------------- extent ------------- |
2637 /* substract range b */
2638 if (key.offset + datal > off + len)
2639 datal = off + len - key.offset;
2641 /* substract range a */
2642 if (off > key.offset) {
2643 datao += off - key.offset;
2644 datal -= off - key.offset;
2647 ret = btrfs_drop_extents(trans, root, inode,
2649 new_key.offset + datal,
2652 btrfs_abort_transaction(trans, root,
2654 btrfs_end_transaction(trans, root);
2658 ret = btrfs_insert_empty_item(trans, root, path,
2661 btrfs_abort_transaction(trans, root,
2663 btrfs_end_transaction(trans, root);
2667 leaf = path->nodes[0];
2668 slot = path->slots[0];
2669 write_extent_buffer(leaf, buf,
2670 btrfs_item_ptr_offset(leaf, slot),
2673 extent = btrfs_item_ptr(leaf, slot,
2674 struct btrfs_file_extent_item);
2676 /* disko == 0 means it's a hole */
2680 btrfs_set_file_extent_offset(leaf, extent,
2682 btrfs_set_file_extent_num_bytes(leaf, extent,
2685 inode_add_bytes(inode, datal);
2686 ret = btrfs_inc_extent_ref(trans, root,
2688 root->root_key.objectid,
2690 new_key.offset - datao,
2693 btrfs_abort_transaction(trans,
2696 btrfs_end_transaction(trans,
2702 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2705 if (off > key.offset) {
2706 skip = off - key.offset;
2707 new_key.offset += skip;
2710 if (key.offset + datal > off + len)
2711 trim = key.offset + datal - (off + len);
2713 if (comp && (skip || trim)) {
2715 btrfs_end_transaction(trans, root);
2718 size -= skip + trim;
2719 datal -= skip + trim;
2721 ret = btrfs_drop_extents(trans, root, inode,
2723 new_key.offset + datal,
2726 btrfs_abort_transaction(trans, root,
2728 btrfs_end_transaction(trans, root);
2732 ret = btrfs_insert_empty_item(trans, root, path,
2735 btrfs_abort_transaction(trans, root,
2737 btrfs_end_transaction(trans, root);
2743 btrfs_file_extent_calc_inline_size(0);
2744 memmove(buf+start, buf+start+skip,
2748 leaf = path->nodes[0];
2749 slot = path->slots[0];
2750 write_extent_buffer(leaf, buf,
2751 btrfs_item_ptr_offset(leaf, slot),
2753 inode_add_bytes(inode, datal);
2756 btrfs_mark_buffer_dirty(leaf);
2757 btrfs_release_path(path);
2759 inode_inc_iversion(inode);
2760 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2763 * we round up to the block size at eof when
2764 * determining which extents to clone above,
2765 * but shouldn't round up the file size
2767 endoff = new_key.offset + datal;
2768 if (endoff > destoff+olen)
2769 endoff = destoff+olen;
2770 if (endoff > inode->i_size)
2771 btrfs_i_size_write(inode, endoff);
2773 ret = btrfs_update_inode(trans, root, inode);
2775 btrfs_abort_transaction(trans, root, ret);
2776 btrfs_end_transaction(trans, root);
2779 ret = btrfs_end_transaction(trans, root);
2782 btrfs_release_path(path);
2787 btrfs_release_path(path);
2788 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2790 mutex_unlock(&src->i_mutex);
2791 mutex_unlock(&inode->i_mutex);
2793 btrfs_free_path(path);
2797 mnt_drop_write_file(file);
2801 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2803 struct btrfs_ioctl_clone_range_args args;
2805 if (copy_from_user(&args, argp, sizeof(args)))
2807 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2808 args.src_length, args.dest_offset);
2812 * there are many ways the trans_start and trans_end ioctls can lead
2813 * to deadlocks. They should only be used by applications that
2814 * basically own the machine, and have a very in depth understanding
2815 * of all the possible deadlocks and enospc problems.
2817 static long btrfs_ioctl_trans_start(struct file *file)
2819 struct inode *inode = fdentry(file)->d_inode;
2820 struct btrfs_root *root = BTRFS_I(inode)->root;
2821 struct btrfs_trans_handle *trans;
2825 if (!capable(CAP_SYS_ADMIN))
2829 if (file->private_data)
2833 if (btrfs_root_readonly(root))
2836 ret = mnt_want_write_file(file);
2840 atomic_inc(&root->fs_info->open_ioctl_trans);
2843 trans = btrfs_start_ioctl_transaction(root);
2847 file->private_data = trans;
2851 atomic_dec(&root->fs_info->open_ioctl_trans);
2852 mnt_drop_write_file(file);
2857 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2859 struct inode *inode = fdentry(file)->d_inode;
2860 struct btrfs_root *root = BTRFS_I(inode)->root;
2861 struct btrfs_root *new_root;
2862 struct btrfs_dir_item *di;
2863 struct btrfs_trans_handle *trans;
2864 struct btrfs_path *path;
2865 struct btrfs_key location;
2866 struct btrfs_disk_key disk_key;
2871 if (!capable(CAP_SYS_ADMIN))
2874 ret = mnt_want_write_file(file);
2878 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2884 objectid = root->root_key.objectid;
2886 location.objectid = objectid;
2887 location.type = BTRFS_ROOT_ITEM_KEY;
2888 location.offset = (u64)-1;
2890 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2891 if (IS_ERR(new_root)) {
2892 ret = PTR_ERR(new_root);
2896 if (btrfs_root_refs(&new_root->root_item) == 0) {
2901 path = btrfs_alloc_path();
2906 path->leave_spinning = 1;
2908 trans = btrfs_start_transaction(root, 1);
2909 if (IS_ERR(trans)) {
2910 btrfs_free_path(path);
2911 ret = PTR_ERR(trans);
2915 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
2916 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2917 dir_id, "default", 7, 1);
2918 if (IS_ERR_OR_NULL(di)) {
2919 btrfs_free_path(path);
2920 btrfs_end_transaction(trans, root);
2921 printk(KERN_ERR "Umm, you don't have the default dir item, "
2922 "this isn't going to work\n");
2927 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2928 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2929 btrfs_mark_buffer_dirty(path->nodes[0]);
2930 btrfs_free_path(path);
2932 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
2933 btrfs_end_transaction(trans, root);
2935 mnt_drop_write_file(file);
2939 void btrfs_get_block_group_info(struct list_head *groups_list,
2940 struct btrfs_ioctl_space_info *space)
2942 struct btrfs_block_group_cache *block_group;
2944 space->total_bytes = 0;
2945 space->used_bytes = 0;
2947 list_for_each_entry(block_group, groups_list, list) {
2948 space->flags = block_group->flags;
2949 space->total_bytes += block_group->key.offset;
2950 space->used_bytes +=
2951 btrfs_block_group_used(&block_group->item);
2955 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2957 struct btrfs_ioctl_space_args space_args;
2958 struct btrfs_ioctl_space_info space;
2959 struct btrfs_ioctl_space_info *dest;
2960 struct btrfs_ioctl_space_info *dest_orig;
2961 struct btrfs_ioctl_space_info __user *user_dest;
2962 struct btrfs_space_info *info;
2963 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2964 BTRFS_BLOCK_GROUP_SYSTEM,
2965 BTRFS_BLOCK_GROUP_METADATA,
2966 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2973 if (copy_from_user(&space_args,
2974 (struct btrfs_ioctl_space_args __user *)arg,
2975 sizeof(space_args)))
2978 for (i = 0; i < num_types; i++) {
2979 struct btrfs_space_info *tmp;
2983 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2985 if (tmp->flags == types[i]) {
2995 down_read(&info->groups_sem);
2996 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2997 if (!list_empty(&info->block_groups[c]))
3000 up_read(&info->groups_sem);
3003 /* space_slots == 0 means they are asking for a count */
3004 if (space_args.space_slots == 0) {
3005 space_args.total_spaces = slot_count;
3009 slot_count = min_t(u64, space_args.space_slots, slot_count);
3011 alloc_size = sizeof(*dest) * slot_count;
3013 /* we generally have at most 6 or so space infos, one for each raid
3014 * level. So, a whole page should be more than enough for everyone
3016 if (alloc_size > PAGE_CACHE_SIZE)
3019 space_args.total_spaces = 0;
3020 dest = kmalloc(alloc_size, GFP_NOFS);
3025 /* now we have a buffer to copy into */
3026 for (i = 0; i < num_types; i++) {
3027 struct btrfs_space_info *tmp;
3034 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3036 if (tmp->flags == types[i]) {
3045 down_read(&info->groups_sem);
3046 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3047 if (!list_empty(&info->block_groups[c])) {
3048 btrfs_get_block_group_info(
3049 &info->block_groups[c], &space);
3050 memcpy(dest, &space, sizeof(space));
3052 space_args.total_spaces++;
3058 up_read(&info->groups_sem);
3061 user_dest = (struct btrfs_ioctl_space_info __user *)
3062 (arg + sizeof(struct btrfs_ioctl_space_args));
3064 if (copy_to_user(user_dest, dest_orig, alloc_size))
3069 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3076 * there are many ways the trans_start and trans_end ioctls can lead
3077 * to deadlocks. They should only be used by applications that
3078 * basically own the machine, and have a very in depth understanding
3079 * of all the possible deadlocks and enospc problems.
3081 long btrfs_ioctl_trans_end(struct file *file)
3083 struct inode *inode = fdentry(file)->d_inode;
3084 struct btrfs_root *root = BTRFS_I(inode)->root;
3085 struct btrfs_trans_handle *trans;
3087 trans = file->private_data;
3090 file->private_data = NULL;
3092 btrfs_end_transaction(trans, root);
3094 atomic_dec(&root->fs_info->open_ioctl_trans);
3096 mnt_drop_write_file(file);
3100 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3103 struct btrfs_trans_handle *trans;
3107 trans = btrfs_attach_transaction(root);
3108 if (IS_ERR(trans)) {
3109 if (PTR_ERR(trans) != -ENOENT)
3110 return PTR_ERR(trans);
3112 /* No running transaction, don't bother */
3113 transid = root->fs_info->last_trans_committed;
3116 transid = trans->transid;
3117 ret = btrfs_commit_transaction_async(trans, root, 0);
3119 btrfs_end_transaction(trans, root);
3124 if (copy_to_user(argp, &transid, sizeof(transid)))
3129 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
3135 if (copy_from_user(&transid, argp, sizeof(transid)))
3138 transid = 0; /* current trans */
3140 return btrfs_wait_for_commit(root, transid);
3143 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3145 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3146 struct btrfs_ioctl_scrub_args *sa;
3149 if (!capable(CAP_SYS_ADMIN))
3152 sa = memdup_user(arg, sizeof(*sa));
3156 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3157 ret = mnt_want_write_file(file);
3162 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
3163 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3166 if (copy_to_user(arg, sa, sizeof(*sa)))
3169 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3170 mnt_drop_write_file(file);
3176 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3178 if (!capable(CAP_SYS_ADMIN))
3181 return btrfs_scrub_cancel(root->fs_info);
3184 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3187 struct btrfs_ioctl_scrub_args *sa;
3190 if (!capable(CAP_SYS_ADMIN))
3193 sa = memdup_user(arg, sizeof(*sa));
3197 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3199 if (copy_to_user(arg, sa, sizeof(*sa)))
3206 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3209 struct btrfs_ioctl_get_dev_stats *sa;
3212 sa = memdup_user(arg, sizeof(*sa));
3216 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3221 ret = btrfs_get_dev_stats(root, sa);
3223 if (copy_to_user(arg, sa, sizeof(*sa)))
3230 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
3232 struct btrfs_ioctl_dev_replace_args *p;
3235 if (!capable(CAP_SYS_ADMIN))
3238 p = memdup_user(arg, sizeof(*p));
3243 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3245 &root->fs_info->mutually_exclusive_operation_running,
3247 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3250 ret = btrfs_dev_replace_start(root, p);
3252 &root->fs_info->mutually_exclusive_operation_running,
3256 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3257 btrfs_dev_replace_status(root->fs_info, p);
3260 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3261 ret = btrfs_dev_replace_cancel(root->fs_info, p);
3268 if (copy_to_user(arg, p, sizeof(*p)))
3275 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3281 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3282 struct inode_fs_paths *ipath = NULL;
3283 struct btrfs_path *path;
3285 if (!capable(CAP_SYS_ADMIN))
3288 path = btrfs_alloc_path();
3294 ipa = memdup_user(arg, sizeof(*ipa));
3301 size = min_t(u32, ipa->size, 4096);
3302 ipath = init_ipath(size, root, path);
3303 if (IS_ERR(ipath)) {
3304 ret = PTR_ERR(ipath);
3309 ret = paths_from_inode(ipa->inum, ipath);
3313 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3314 rel_ptr = ipath->fspath->val[i] -
3315 (u64)(unsigned long)ipath->fspath->val;
3316 ipath->fspath->val[i] = rel_ptr;
3319 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3320 (void *)(unsigned long)ipath->fspath, size);
3327 btrfs_free_path(path);
3334 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3336 struct btrfs_data_container *inodes = ctx;
3337 const size_t c = 3 * sizeof(u64);
3339 if (inodes->bytes_left >= c) {
3340 inodes->bytes_left -= c;
3341 inodes->val[inodes->elem_cnt] = inum;
3342 inodes->val[inodes->elem_cnt + 1] = offset;
3343 inodes->val[inodes->elem_cnt + 2] = root;
3344 inodes->elem_cnt += 3;
3346 inodes->bytes_missing += c - inodes->bytes_left;
3347 inodes->bytes_left = 0;
3348 inodes->elem_missed += 3;
3354 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3359 struct btrfs_ioctl_logical_ino_args *loi;
3360 struct btrfs_data_container *inodes = NULL;
3361 struct btrfs_path *path = NULL;
3363 if (!capable(CAP_SYS_ADMIN))
3366 loi = memdup_user(arg, sizeof(*loi));
3373 path = btrfs_alloc_path();
3379 size = min_t(u32, loi->size, 64 * 1024);
3380 inodes = init_data_container(size);
3381 if (IS_ERR(inodes)) {
3382 ret = PTR_ERR(inodes);
3387 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
3388 build_ino_list, inodes);
3394 ret = copy_to_user((void *)(unsigned long)loi->inodes,
3395 (void *)(unsigned long)inodes, size);
3400 btrfs_free_path(path);
3407 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3408 struct btrfs_ioctl_balance_args *bargs)
3410 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3412 bargs->flags = bctl->flags;
3414 if (atomic_read(&fs_info->balance_running))
3415 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3416 if (atomic_read(&fs_info->balance_pause_req))
3417 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3418 if (atomic_read(&fs_info->balance_cancel_req))
3419 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3421 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3422 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3423 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3426 spin_lock(&fs_info->balance_lock);
3427 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3428 spin_unlock(&fs_info->balance_lock);
3430 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3434 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3436 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3437 struct btrfs_fs_info *fs_info = root->fs_info;
3438 struct btrfs_ioctl_balance_args *bargs;
3439 struct btrfs_balance_control *bctl;
3441 int need_to_clear_lock = 0;
3443 if (!capable(CAP_SYS_ADMIN))
3446 ret = mnt_want_write_file(file);
3450 mutex_lock(&fs_info->volume_mutex);
3451 mutex_lock(&fs_info->balance_mutex);
3454 bargs = memdup_user(arg, sizeof(*bargs));
3455 if (IS_ERR(bargs)) {
3456 ret = PTR_ERR(bargs);
3460 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3461 if (!fs_info->balance_ctl) {
3466 bctl = fs_info->balance_ctl;
3467 spin_lock(&fs_info->balance_lock);
3468 bctl->flags |= BTRFS_BALANCE_RESUME;
3469 spin_unlock(&fs_info->balance_lock);
3477 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
3479 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3483 need_to_clear_lock = 1;
3485 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3491 bctl->fs_info = fs_info;
3493 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3494 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3495 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3497 bctl->flags = bargs->flags;
3499 /* balance everything - no filters */
3500 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3504 ret = btrfs_balance(bctl, bargs);
3506 * bctl is freed in __cancel_balance or in free_fs_info if
3507 * restriper was paused all the way until unmount
3510 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3517 if (need_to_clear_lock)
3518 atomic_set(&root->fs_info->mutually_exclusive_operation_running,
3520 mutex_unlock(&fs_info->balance_mutex);
3521 mutex_unlock(&fs_info->volume_mutex);
3522 mnt_drop_write_file(file);
3526 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
3528 if (!capable(CAP_SYS_ADMIN))
3532 case BTRFS_BALANCE_CTL_PAUSE:
3533 return btrfs_pause_balance(root->fs_info);
3534 case BTRFS_BALANCE_CTL_CANCEL:
3535 return btrfs_cancel_balance(root->fs_info);
3541 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
3544 struct btrfs_fs_info *fs_info = root->fs_info;
3545 struct btrfs_ioctl_balance_args *bargs;
3548 if (!capable(CAP_SYS_ADMIN))
3551 mutex_lock(&fs_info->balance_mutex);
3552 if (!fs_info->balance_ctl) {
3557 bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
3563 update_ioctl_balance_args(fs_info, 1, bargs);
3565 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3570 mutex_unlock(&fs_info->balance_mutex);
3574 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3576 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3577 struct btrfs_ioctl_quota_ctl_args *sa;
3578 struct btrfs_trans_handle *trans = NULL;
3582 if (!capable(CAP_SYS_ADMIN))
3585 ret = mnt_want_write_file(file);
3589 sa = memdup_user(arg, sizeof(*sa));
3595 if (sa->cmd != BTRFS_QUOTA_CTL_RESCAN) {
3596 trans = btrfs_start_transaction(root, 2);
3597 if (IS_ERR(trans)) {
3598 ret = PTR_ERR(trans);
3604 case BTRFS_QUOTA_CTL_ENABLE:
3605 ret = btrfs_quota_enable(trans, root->fs_info);
3607 case BTRFS_QUOTA_CTL_DISABLE:
3608 ret = btrfs_quota_disable(trans, root->fs_info);
3610 case BTRFS_QUOTA_CTL_RESCAN:
3611 ret = btrfs_quota_rescan(root->fs_info);
3618 if (copy_to_user(arg, sa, sizeof(*sa)))
3622 err = btrfs_commit_transaction(trans, root);
3629 mnt_drop_write_file(file);
3633 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3635 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3636 struct btrfs_ioctl_qgroup_assign_args *sa;
3637 struct btrfs_trans_handle *trans;
3641 if (!capable(CAP_SYS_ADMIN))
3644 ret = mnt_want_write_file(file);
3648 sa = memdup_user(arg, sizeof(*sa));
3654 trans = btrfs_join_transaction(root);
3655 if (IS_ERR(trans)) {
3656 ret = PTR_ERR(trans);
3660 /* FIXME: check if the IDs really exist */
3662 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
3665 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
3669 err = btrfs_end_transaction(trans, root);
3676 mnt_drop_write_file(file);
3680 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3682 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3683 struct btrfs_ioctl_qgroup_create_args *sa;
3684 struct btrfs_trans_handle *trans;
3688 if (!capable(CAP_SYS_ADMIN))
3691 ret = mnt_want_write_file(file);
3695 sa = memdup_user(arg, sizeof(*sa));
3701 trans = btrfs_join_transaction(root);
3702 if (IS_ERR(trans)) {
3703 ret = PTR_ERR(trans);
3707 /* FIXME: check if the IDs really exist */
3709 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
3712 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
3715 err = btrfs_end_transaction(trans, root);
3722 mnt_drop_write_file(file);
3726 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3728 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3729 struct btrfs_ioctl_qgroup_limit_args *sa;
3730 struct btrfs_trans_handle *trans;
3735 if (!capable(CAP_SYS_ADMIN))
3738 ret = mnt_want_write_file(file);
3742 sa = memdup_user(arg, sizeof(*sa));
3748 trans = btrfs_join_transaction(root);
3749 if (IS_ERR(trans)) {
3750 ret = PTR_ERR(trans);
3754 qgroupid = sa->qgroupid;
3756 /* take the current subvol as qgroup */
3757 qgroupid = root->root_key.objectid;
3760 /* FIXME: check if the IDs really exist */
3761 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
3763 err = btrfs_end_transaction(trans, root);
3770 mnt_drop_write_file(file);
3774 static long btrfs_ioctl_set_received_subvol(struct file *file,
3777 struct btrfs_ioctl_received_subvol_args *sa = NULL;
3778 struct inode *inode = fdentry(file)->d_inode;
3779 struct btrfs_root *root = BTRFS_I(inode)->root;
3780 struct btrfs_root_item *root_item = &root->root_item;
3781 struct btrfs_trans_handle *trans;
3782 struct timespec ct = CURRENT_TIME;
3785 ret = mnt_want_write_file(file);
3789 down_write(&root->fs_info->subvol_sem);
3791 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
3796 if (btrfs_root_readonly(root)) {
3801 if (!inode_owner_or_capable(inode)) {
3806 sa = memdup_user(arg, sizeof(*sa));
3813 trans = btrfs_start_transaction(root, 1);
3814 if (IS_ERR(trans)) {
3815 ret = PTR_ERR(trans);
3820 sa->rtransid = trans->transid;
3821 sa->rtime.sec = ct.tv_sec;
3822 sa->rtime.nsec = ct.tv_nsec;
3824 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
3825 btrfs_set_root_stransid(root_item, sa->stransid);
3826 btrfs_set_root_rtransid(root_item, sa->rtransid);
3827 root_item->stime.sec = cpu_to_le64(sa->stime.sec);
3828 root_item->stime.nsec = cpu_to_le32(sa->stime.nsec);
3829 root_item->rtime.sec = cpu_to_le64(sa->rtime.sec);
3830 root_item->rtime.nsec = cpu_to_le32(sa->rtime.nsec);
3832 ret = btrfs_update_root(trans, root->fs_info->tree_root,
3833 &root->root_key, &root->root_item);
3835 btrfs_end_transaction(trans, root);
3839 ret = btrfs_commit_transaction(trans, root);
3844 ret = copy_to_user(arg, sa, sizeof(*sa));
3850 up_write(&root->fs_info->subvol_sem);
3851 mnt_drop_write_file(file);
3855 long btrfs_ioctl(struct file *file, unsigned int
3856 cmd, unsigned long arg)
3858 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3859 void __user *argp = (void __user *)arg;
3862 case FS_IOC_GETFLAGS:
3863 return btrfs_ioctl_getflags(file, argp);
3864 case FS_IOC_SETFLAGS:
3865 return btrfs_ioctl_setflags(file, argp);
3866 case FS_IOC_GETVERSION:
3867 return btrfs_ioctl_getversion(file, argp);
3869 return btrfs_ioctl_fitrim(file, argp);
3870 case BTRFS_IOC_SNAP_CREATE:
3871 return btrfs_ioctl_snap_create(file, argp, 0);
3872 case BTRFS_IOC_SNAP_CREATE_V2:
3873 return btrfs_ioctl_snap_create_v2(file, argp, 0);
3874 case BTRFS_IOC_SUBVOL_CREATE:
3875 return btrfs_ioctl_snap_create(file, argp, 1);
3876 case BTRFS_IOC_SUBVOL_CREATE_V2:
3877 return btrfs_ioctl_snap_create_v2(file, argp, 1);
3878 case BTRFS_IOC_SNAP_DESTROY:
3879 return btrfs_ioctl_snap_destroy(file, argp);
3880 case BTRFS_IOC_SUBVOL_GETFLAGS:
3881 return btrfs_ioctl_subvol_getflags(file, argp);
3882 case BTRFS_IOC_SUBVOL_SETFLAGS:
3883 return btrfs_ioctl_subvol_setflags(file, argp);
3884 case BTRFS_IOC_DEFAULT_SUBVOL:
3885 return btrfs_ioctl_default_subvol(file, argp);
3886 case BTRFS_IOC_DEFRAG:
3887 return btrfs_ioctl_defrag(file, NULL);
3888 case BTRFS_IOC_DEFRAG_RANGE:
3889 return btrfs_ioctl_defrag(file, argp);
3890 case BTRFS_IOC_RESIZE:
3891 return btrfs_ioctl_resize(file, argp);
3892 case BTRFS_IOC_ADD_DEV:
3893 return btrfs_ioctl_add_dev(root, argp);
3894 case BTRFS_IOC_RM_DEV:
3895 return btrfs_ioctl_rm_dev(file, argp);
3896 case BTRFS_IOC_FS_INFO:
3897 return btrfs_ioctl_fs_info(root, argp);
3898 case BTRFS_IOC_DEV_INFO:
3899 return btrfs_ioctl_dev_info(root, argp);
3900 case BTRFS_IOC_BALANCE:
3901 return btrfs_ioctl_balance(file, NULL);
3902 case BTRFS_IOC_CLONE:
3903 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
3904 case BTRFS_IOC_CLONE_RANGE:
3905 return btrfs_ioctl_clone_range(file, argp);
3906 case BTRFS_IOC_TRANS_START:
3907 return btrfs_ioctl_trans_start(file);
3908 case BTRFS_IOC_TRANS_END:
3909 return btrfs_ioctl_trans_end(file);
3910 case BTRFS_IOC_TREE_SEARCH:
3911 return btrfs_ioctl_tree_search(file, argp);
3912 case BTRFS_IOC_INO_LOOKUP:
3913 return btrfs_ioctl_ino_lookup(file, argp);
3914 case BTRFS_IOC_INO_PATHS:
3915 return btrfs_ioctl_ino_to_path(root, argp);
3916 case BTRFS_IOC_LOGICAL_INO:
3917 return btrfs_ioctl_logical_to_ino(root, argp);
3918 case BTRFS_IOC_SPACE_INFO:
3919 return btrfs_ioctl_space_info(root, argp);
3920 case BTRFS_IOC_SYNC:
3921 btrfs_sync_fs(file->f_dentry->d_sb, 1);
3923 case BTRFS_IOC_START_SYNC:
3924 return btrfs_ioctl_start_sync(root, argp);
3925 case BTRFS_IOC_WAIT_SYNC:
3926 return btrfs_ioctl_wait_sync(root, argp);
3927 case BTRFS_IOC_SCRUB:
3928 return btrfs_ioctl_scrub(file, argp);
3929 case BTRFS_IOC_SCRUB_CANCEL:
3930 return btrfs_ioctl_scrub_cancel(root, argp);
3931 case BTRFS_IOC_SCRUB_PROGRESS:
3932 return btrfs_ioctl_scrub_progress(root, argp);
3933 case BTRFS_IOC_BALANCE_V2:
3934 return btrfs_ioctl_balance(file, argp);
3935 case BTRFS_IOC_BALANCE_CTL:
3936 return btrfs_ioctl_balance_ctl(root, arg);
3937 case BTRFS_IOC_BALANCE_PROGRESS:
3938 return btrfs_ioctl_balance_progress(root, argp);
3939 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
3940 return btrfs_ioctl_set_received_subvol(file, argp);
3941 case BTRFS_IOC_SEND:
3942 return btrfs_ioctl_send(file, argp);
3943 case BTRFS_IOC_GET_DEV_STATS:
3944 return btrfs_ioctl_get_dev_stats(root, argp);
3945 case BTRFS_IOC_QUOTA_CTL:
3946 return btrfs_ioctl_quota_ctl(file, argp);
3947 case BTRFS_IOC_QGROUP_ASSIGN:
3948 return btrfs_ioctl_qgroup_assign(file, argp);
3949 case BTRFS_IOC_QGROUP_CREATE:
3950 return btrfs_ioctl_qgroup_create(file, argp);
3951 case BTRFS_IOC_QGROUP_LIMIT:
3952 return btrfs_ioctl_qgroup_limit(file, argp);
3953 case BTRFS_IOC_DEV_REPLACE:
3954 return btrfs_ioctl_dev_replace(root, argp);