block: add a bdev_discard_granularity helper
[platform/kernel/linux-starfive.git] / fs / btrfs / ioctl.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "export.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "rcu-string.h"
42 #include "send.h"
43 #include "dev-replace.h"
44 #include "props.h"
45 #include "sysfs.h"
46 #include "qgroup.h"
47 #include "tree-log.h"
48 #include "compression.h"
49 #include "space-info.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "subpage.h"
53
54 #ifdef CONFIG_64BIT
55 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
56  * structures are incorrect, as the timespec structure from userspace
57  * is 4 bytes too small. We define these alternatives here to teach
58  * the kernel about the 32-bit struct packing.
59  */
60 struct btrfs_ioctl_timespec_32 {
61         __u64 sec;
62         __u32 nsec;
63 } __attribute__ ((__packed__));
64
65 struct btrfs_ioctl_received_subvol_args_32 {
66         char    uuid[BTRFS_UUID_SIZE];  /* in */
67         __u64   stransid;               /* in */
68         __u64   rtransid;               /* out */
69         struct btrfs_ioctl_timespec_32 stime; /* in */
70         struct btrfs_ioctl_timespec_32 rtime; /* out */
71         __u64   flags;                  /* in */
72         __u64   reserved[16];           /* in */
73 } __attribute__ ((__packed__));
74
75 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
76                                 struct btrfs_ioctl_received_subvol_args_32)
77 #endif
78
79 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
80 struct btrfs_ioctl_send_args_32 {
81         __s64 send_fd;                  /* in */
82         __u64 clone_sources_count;      /* in */
83         compat_uptr_t clone_sources;    /* in */
84         __u64 parent_root;              /* in */
85         __u64 flags;                    /* in */
86         __u32 version;                  /* in */
87         __u8  reserved[28];             /* in */
88 } __attribute__ ((__packed__));
89
90 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
91                                struct btrfs_ioctl_send_args_32)
92
93 struct btrfs_ioctl_encoded_io_args_32 {
94         compat_uptr_t iov;
95         compat_ulong_t iovcnt;
96         __s64 offset;
97         __u64 flags;
98         __u64 len;
99         __u64 unencoded_len;
100         __u64 unencoded_offset;
101         __u32 compression;
102         __u32 encryption;
103         __u8 reserved[64];
104 };
105
106 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
107                                        struct btrfs_ioctl_encoded_io_args_32)
108 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
109                                         struct btrfs_ioctl_encoded_io_args_32)
110 #endif
111
112 /* Mask out flags that are inappropriate for the given type of inode. */
113 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
114                 unsigned int flags)
115 {
116         if (S_ISDIR(inode->i_mode))
117                 return flags;
118         else if (S_ISREG(inode->i_mode))
119                 return flags & ~FS_DIRSYNC_FL;
120         else
121                 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
122 }
123
124 /*
125  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
126  * ioctl.
127  */
128 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
129 {
130         unsigned int iflags = 0;
131         u32 flags = binode->flags;
132         u32 ro_flags = binode->ro_flags;
133
134         if (flags & BTRFS_INODE_SYNC)
135                 iflags |= FS_SYNC_FL;
136         if (flags & BTRFS_INODE_IMMUTABLE)
137                 iflags |= FS_IMMUTABLE_FL;
138         if (flags & BTRFS_INODE_APPEND)
139                 iflags |= FS_APPEND_FL;
140         if (flags & BTRFS_INODE_NODUMP)
141                 iflags |= FS_NODUMP_FL;
142         if (flags & BTRFS_INODE_NOATIME)
143                 iflags |= FS_NOATIME_FL;
144         if (flags & BTRFS_INODE_DIRSYNC)
145                 iflags |= FS_DIRSYNC_FL;
146         if (flags & BTRFS_INODE_NODATACOW)
147                 iflags |= FS_NOCOW_FL;
148         if (ro_flags & BTRFS_INODE_RO_VERITY)
149                 iflags |= FS_VERITY_FL;
150
151         if (flags & BTRFS_INODE_NOCOMPRESS)
152                 iflags |= FS_NOCOMP_FL;
153         else if (flags & BTRFS_INODE_COMPRESS)
154                 iflags |= FS_COMPR_FL;
155
156         return iflags;
157 }
158
159 /*
160  * Update inode->i_flags based on the btrfs internal flags.
161  */
162 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
163 {
164         struct btrfs_inode *binode = BTRFS_I(inode);
165         unsigned int new_fl = 0;
166
167         if (binode->flags & BTRFS_INODE_SYNC)
168                 new_fl |= S_SYNC;
169         if (binode->flags & BTRFS_INODE_IMMUTABLE)
170                 new_fl |= S_IMMUTABLE;
171         if (binode->flags & BTRFS_INODE_APPEND)
172                 new_fl |= S_APPEND;
173         if (binode->flags & BTRFS_INODE_NOATIME)
174                 new_fl |= S_NOATIME;
175         if (binode->flags & BTRFS_INODE_DIRSYNC)
176                 new_fl |= S_DIRSYNC;
177         if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
178                 new_fl |= S_VERITY;
179
180         set_mask_bits(&inode->i_flags,
181                       S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
182                       S_VERITY, new_fl);
183 }
184
185 /*
186  * Check if @flags are a supported and valid set of FS_*_FL flags and that
187  * the old and new flags are not conflicting
188  */
189 static int check_fsflags(unsigned int old_flags, unsigned int flags)
190 {
191         if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
192                       FS_NOATIME_FL | FS_NODUMP_FL | \
193                       FS_SYNC_FL | FS_DIRSYNC_FL | \
194                       FS_NOCOMP_FL | FS_COMPR_FL |
195                       FS_NOCOW_FL))
196                 return -EOPNOTSUPP;
197
198         /* COMPR and NOCOMP on new/old are valid */
199         if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
200                 return -EINVAL;
201
202         if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
203                 return -EINVAL;
204
205         /* NOCOW and compression options are mutually exclusive */
206         if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
207                 return -EINVAL;
208         if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
209                 return -EINVAL;
210
211         return 0;
212 }
213
214 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
215                                     unsigned int flags)
216 {
217         if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
218                 return -EPERM;
219
220         return 0;
221 }
222
223 /*
224  * Set flags/xflags from the internal inode flags. The remaining items of
225  * fsxattr are zeroed.
226  */
227 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
228 {
229         struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
230
231         fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
232         return 0;
233 }
234
235 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
236                        struct dentry *dentry, struct fileattr *fa)
237 {
238         struct inode *inode = d_inode(dentry);
239         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
240         struct btrfs_inode *binode = BTRFS_I(inode);
241         struct btrfs_root *root = binode->root;
242         struct btrfs_trans_handle *trans;
243         unsigned int fsflags, old_fsflags;
244         int ret;
245         const char *comp = NULL;
246         u32 binode_flags;
247
248         if (btrfs_root_readonly(root))
249                 return -EROFS;
250
251         if (fileattr_has_fsx(fa))
252                 return -EOPNOTSUPP;
253
254         fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
255         old_fsflags = btrfs_inode_flags_to_fsflags(binode);
256         ret = check_fsflags(old_fsflags, fsflags);
257         if (ret)
258                 return ret;
259
260         ret = check_fsflags_compatible(fs_info, fsflags);
261         if (ret)
262                 return ret;
263
264         binode_flags = binode->flags;
265         if (fsflags & FS_SYNC_FL)
266                 binode_flags |= BTRFS_INODE_SYNC;
267         else
268                 binode_flags &= ~BTRFS_INODE_SYNC;
269         if (fsflags & FS_IMMUTABLE_FL)
270                 binode_flags |= BTRFS_INODE_IMMUTABLE;
271         else
272                 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
273         if (fsflags & FS_APPEND_FL)
274                 binode_flags |= BTRFS_INODE_APPEND;
275         else
276                 binode_flags &= ~BTRFS_INODE_APPEND;
277         if (fsflags & FS_NODUMP_FL)
278                 binode_flags |= BTRFS_INODE_NODUMP;
279         else
280                 binode_flags &= ~BTRFS_INODE_NODUMP;
281         if (fsflags & FS_NOATIME_FL)
282                 binode_flags |= BTRFS_INODE_NOATIME;
283         else
284                 binode_flags &= ~BTRFS_INODE_NOATIME;
285
286         /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
287         if (!fa->flags_valid) {
288                 /* 1 item for the inode */
289                 trans = btrfs_start_transaction(root, 1);
290                 if (IS_ERR(trans))
291                         return PTR_ERR(trans);
292                 goto update_flags;
293         }
294
295         if (fsflags & FS_DIRSYNC_FL)
296                 binode_flags |= BTRFS_INODE_DIRSYNC;
297         else
298                 binode_flags &= ~BTRFS_INODE_DIRSYNC;
299         if (fsflags & FS_NOCOW_FL) {
300                 if (S_ISREG(inode->i_mode)) {
301                         /*
302                          * It's safe to turn csums off here, no extents exist.
303                          * Otherwise we want the flag to reflect the real COW
304                          * status of the file and will not set it.
305                          */
306                         if (inode->i_size == 0)
307                                 binode_flags |= BTRFS_INODE_NODATACOW |
308                                                 BTRFS_INODE_NODATASUM;
309                 } else {
310                         binode_flags |= BTRFS_INODE_NODATACOW;
311                 }
312         } else {
313                 /*
314                  * Revert back under same assumptions as above
315                  */
316                 if (S_ISREG(inode->i_mode)) {
317                         if (inode->i_size == 0)
318                                 binode_flags &= ~(BTRFS_INODE_NODATACOW |
319                                                   BTRFS_INODE_NODATASUM);
320                 } else {
321                         binode_flags &= ~BTRFS_INODE_NODATACOW;
322                 }
323         }
324
325         /*
326          * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
327          * flag may be changed automatically if compression code won't make
328          * things smaller.
329          */
330         if (fsflags & FS_NOCOMP_FL) {
331                 binode_flags &= ~BTRFS_INODE_COMPRESS;
332                 binode_flags |= BTRFS_INODE_NOCOMPRESS;
333         } else if (fsflags & FS_COMPR_FL) {
334
335                 if (IS_SWAPFILE(inode))
336                         return -ETXTBSY;
337
338                 binode_flags |= BTRFS_INODE_COMPRESS;
339                 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
340
341                 comp = btrfs_compress_type2str(fs_info->compress_type);
342                 if (!comp || comp[0] == 0)
343                         comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
344         } else {
345                 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
346         }
347
348         /*
349          * 1 for inode item
350          * 2 for properties
351          */
352         trans = btrfs_start_transaction(root, 3);
353         if (IS_ERR(trans))
354                 return PTR_ERR(trans);
355
356         if (comp) {
357                 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
358                                      strlen(comp), 0);
359                 if (ret) {
360                         btrfs_abort_transaction(trans, ret);
361                         goto out_end_trans;
362                 }
363         } else {
364                 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
365                                      0, 0);
366                 if (ret && ret != -ENODATA) {
367                         btrfs_abort_transaction(trans, ret);
368                         goto out_end_trans;
369                 }
370         }
371
372 update_flags:
373         binode->flags = binode_flags;
374         btrfs_sync_inode_flags_to_i_flags(inode);
375         inode_inc_iversion(inode);
376         inode->i_ctime = current_time(inode);
377         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
378
379  out_end_trans:
380         btrfs_end_transaction(trans);
381         return ret;
382 }
383
384 /*
385  * Start exclusive operation @type, return true on success
386  */
387 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
388                         enum btrfs_exclusive_operation type)
389 {
390         bool ret = false;
391
392         spin_lock(&fs_info->super_lock);
393         if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
394                 fs_info->exclusive_operation = type;
395                 ret = true;
396         }
397         spin_unlock(&fs_info->super_lock);
398
399         return ret;
400 }
401
402 /*
403  * Conditionally allow to enter the exclusive operation in case it's compatible
404  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
405  * btrfs_exclop_finish.
406  *
407  * Compatibility:
408  * - the same type is already running
409  * - when trying to add a device and balance has been paused
410  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
411  *   must check the condition first that would allow none -> @type
412  */
413 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
414                                  enum btrfs_exclusive_operation type)
415 {
416         spin_lock(&fs_info->super_lock);
417         if (fs_info->exclusive_operation == type ||
418             (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
419              type == BTRFS_EXCLOP_DEV_ADD))
420                 return true;
421
422         spin_unlock(&fs_info->super_lock);
423         return false;
424 }
425
426 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
427 {
428         spin_unlock(&fs_info->super_lock);
429 }
430
431 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
432 {
433         spin_lock(&fs_info->super_lock);
434         WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
435         spin_unlock(&fs_info->super_lock);
436         sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
437 }
438
439 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
440                           enum btrfs_exclusive_operation op)
441 {
442         switch (op) {
443         case BTRFS_EXCLOP_BALANCE_PAUSED:
444                 spin_lock(&fs_info->super_lock);
445                 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
446                        fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD);
447                 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
448                 spin_unlock(&fs_info->super_lock);
449                 break;
450         case BTRFS_EXCLOP_BALANCE:
451                 spin_lock(&fs_info->super_lock);
452                 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
453                 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
454                 spin_unlock(&fs_info->super_lock);
455                 break;
456         default:
457                 btrfs_warn(fs_info,
458                         "invalid exclop balance operation %d requested", op);
459         }
460 }
461
462 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
463 {
464         return put_user(inode->i_generation, arg);
465 }
466
467 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
468                                         void __user *arg)
469 {
470         struct btrfs_device *device;
471         struct fstrim_range range;
472         u64 minlen = ULLONG_MAX;
473         u64 num_devices = 0;
474         int ret;
475
476         if (!capable(CAP_SYS_ADMIN))
477                 return -EPERM;
478
479         /*
480          * btrfs_trim_block_group() depends on space cache, which is not
481          * available in zoned filesystem. So, disallow fitrim on a zoned
482          * filesystem for now.
483          */
484         if (btrfs_is_zoned(fs_info))
485                 return -EOPNOTSUPP;
486
487         /*
488          * If the fs is mounted with nologreplay, which requires it to be
489          * mounted in RO mode as well, we can not allow discard on free space
490          * inside block groups, because log trees refer to extents that are not
491          * pinned in a block group's free space cache (pinning the extents is
492          * precisely the first phase of replaying a log tree).
493          */
494         if (btrfs_test_opt(fs_info, NOLOGREPLAY))
495                 return -EROFS;
496
497         rcu_read_lock();
498         list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
499                                 dev_list) {
500                 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
501                         continue;
502                 num_devices++;
503                 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
504                                     minlen);
505         }
506         rcu_read_unlock();
507
508         if (!num_devices)
509                 return -EOPNOTSUPP;
510         if (copy_from_user(&range, arg, sizeof(range)))
511                 return -EFAULT;
512
513         /*
514          * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
515          * block group is in the logical address space, which can be any
516          * sectorsize aligned bytenr in  the range [0, U64_MAX].
517          */
518         if (range.len < fs_info->sb->s_blocksize)
519                 return -EINVAL;
520
521         range.minlen = max(range.minlen, minlen);
522         ret = btrfs_trim_fs(fs_info, &range);
523         if (ret < 0)
524                 return ret;
525
526         if (copy_to_user(arg, &range, sizeof(range)))
527                 return -EFAULT;
528
529         return 0;
530 }
531
532 int __pure btrfs_is_empty_uuid(u8 *uuid)
533 {
534         int i;
535
536         for (i = 0; i < BTRFS_UUID_SIZE; i++) {
537                 if (uuid[i])
538                         return 0;
539         }
540         return 1;
541 }
542
543 static noinline int create_subvol(struct user_namespace *mnt_userns,
544                                   struct inode *dir, struct dentry *dentry,
545                                   const char *name, int namelen,
546                                   struct btrfs_qgroup_inherit *inherit)
547 {
548         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
549         struct btrfs_trans_handle *trans;
550         struct btrfs_key key;
551         struct btrfs_root_item *root_item;
552         struct btrfs_inode_item *inode_item;
553         struct extent_buffer *leaf;
554         struct btrfs_root *root = BTRFS_I(dir)->root;
555         struct btrfs_root *new_root;
556         struct btrfs_block_rsv block_rsv;
557         struct timespec64 cur_time = current_time(dir);
558         struct inode *inode;
559         int ret;
560         dev_t anon_dev = 0;
561         u64 objectid;
562         u64 index = 0;
563
564         root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
565         if (!root_item)
566                 return -ENOMEM;
567
568         ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
569         if (ret)
570                 goto fail_free;
571
572         ret = get_anon_bdev(&anon_dev);
573         if (ret < 0)
574                 goto fail_free;
575
576         /*
577          * Don't create subvolume whose level is not zero. Or qgroup will be
578          * screwed up since it assumes subvolume qgroup's level to be 0.
579          */
580         if (btrfs_qgroup_level(objectid)) {
581                 ret = -ENOSPC;
582                 goto fail_free;
583         }
584
585         btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
586         /*
587          * The same as the snapshot creation, please see the comment
588          * of create_snapshot().
589          */
590         ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
591         if (ret)
592                 goto fail_free;
593
594         trans = btrfs_start_transaction(root, 0);
595         if (IS_ERR(trans)) {
596                 ret = PTR_ERR(trans);
597                 btrfs_subvolume_release_metadata(root, &block_rsv);
598                 goto fail_free;
599         }
600         trans->block_rsv = &block_rsv;
601         trans->bytes_reserved = block_rsv.size;
602
603         ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
604         if (ret)
605                 goto fail;
606
607         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
608                                       BTRFS_NESTING_NORMAL);
609         if (IS_ERR(leaf)) {
610                 ret = PTR_ERR(leaf);
611                 goto fail;
612         }
613
614         btrfs_mark_buffer_dirty(leaf);
615
616         inode_item = &root_item->inode;
617         btrfs_set_stack_inode_generation(inode_item, 1);
618         btrfs_set_stack_inode_size(inode_item, 3);
619         btrfs_set_stack_inode_nlink(inode_item, 1);
620         btrfs_set_stack_inode_nbytes(inode_item,
621                                      fs_info->nodesize);
622         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
623
624         btrfs_set_root_flags(root_item, 0);
625         btrfs_set_root_limit(root_item, 0);
626         btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
627
628         btrfs_set_root_bytenr(root_item, leaf->start);
629         btrfs_set_root_generation(root_item, trans->transid);
630         btrfs_set_root_level(root_item, 0);
631         btrfs_set_root_refs(root_item, 1);
632         btrfs_set_root_used(root_item, leaf->len);
633         btrfs_set_root_last_snapshot(root_item, 0);
634
635         btrfs_set_root_generation_v2(root_item,
636                         btrfs_root_generation(root_item));
637         generate_random_guid(root_item->uuid);
638         btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
639         btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
640         root_item->ctime = root_item->otime;
641         btrfs_set_root_ctransid(root_item, trans->transid);
642         btrfs_set_root_otransid(root_item, trans->transid);
643
644         btrfs_tree_unlock(leaf);
645
646         btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
647
648         key.objectid = objectid;
649         key.offset = 0;
650         key.type = BTRFS_ROOT_ITEM_KEY;
651         ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
652                                 root_item);
653         if (ret) {
654                 /*
655                  * Since we don't abort the transaction in this case, free the
656                  * tree block so that we don't leak space and leave the
657                  * filesystem in an inconsistent state (an extent item in the
658                  * extent tree with a backreference for a root that does not
659                  * exists).
660                  */
661                 btrfs_tree_lock(leaf);
662                 btrfs_clean_tree_block(leaf);
663                 btrfs_tree_unlock(leaf);
664                 btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
665                 free_extent_buffer(leaf);
666                 goto fail;
667         }
668
669         free_extent_buffer(leaf);
670         leaf = NULL;
671
672         key.offset = (u64)-1;
673         new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
674         if (IS_ERR(new_root)) {
675                 free_anon_bdev(anon_dev);
676                 ret = PTR_ERR(new_root);
677                 btrfs_abort_transaction(trans, ret);
678                 goto fail;
679         }
680         /* Freeing will be done in btrfs_put_root() of new_root */
681         anon_dev = 0;
682
683         ret = btrfs_record_root_in_trans(trans, new_root);
684         if (ret) {
685                 btrfs_put_root(new_root);
686                 btrfs_abort_transaction(trans, ret);
687                 goto fail;
688         }
689
690         ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns);
691         btrfs_put_root(new_root);
692         if (ret) {
693                 /* We potentially lose an unused inode item here */
694                 btrfs_abort_transaction(trans, ret);
695                 goto fail;
696         }
697
698         /*
699          * insert the directory item
700          */
701         ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
702         if (ret) {
703                 btrfs_abort_transaction(trans, ret);
704                 goto fail;
705         }
706
707         ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
708                                     BTRFS_FT_DIR, index);
709         if (ret) {
710                 btrfs_abort_transaction(trans, ret);
711                 goto fail;
712         }
713
714         btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
715         ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
716         if (ret) {
717                 btrfs_abort_transaction(trans, ret);
718                 goto fail;
719         }
720
721         ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
722                                  btrfs_ino(BTRFS_I(dir)), index, name, namelen);
723         if (ret) {
724                 btrfs_abort_transaction(trans, ret);
725                 goto fail;
726         }
727
728         ret = btrfs_uuid_tree_add(trans, root_item->uuid,
729                                   BTRFS_UUID_KEY_SUBVOL, objectid);
730         if (ret)
731                 btrfs_abort_transaction(trans, ret);
732
733 fail:
734         kfree(root_item);
735         trans->block_rsv = NULL;
736         trans->bytes_reserved = 0;
737         btrfs_subvolume_release_metadata(root, &block_rsv);
738
739         if (ret)
740                 btrfs_end_transaction(trans);
741         else
742                 ret = btrfs_commit_transaction(trans);
743
744         if (!ret) {
745                 inode = btrfs_lookup_dentry(dir, dentry);
746                 if (IS_ERR(inode))
747                         return PTR_ERR(inode);
748                 d_instantiate(dentry, inode);
749         }
750         return ret;
751
752 fail_free:
753         if (anon_dev)
754                 free_anon_bdev(anon_dev);
755         kfree(root_item);
756         return ret;
757 }
758
759 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
760                            struct dentry *dentry, bool readonly,
761                            struct btrfs_qgroup_inherit *inherit)
762 {
763         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
764         struct inode *inode;
765         struct btrfs_pending_snapshot *pending_snapshot;
766         struct btrfs_trans_handle *trans;
767         int ret;
768
769         /* We do not support snapshotting right now. */
770         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
771                 btrfs_warn(fs_info,
772                            "extent tree v2 doesn't support snapshotting yet");
773                 return -EOPNOTSUPP;
774         }
775
776         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
777                 return -EINVAL;
778
779         if (atomic_read(&root->nr_swapfiles)) {
780                 btrfs_warn(fs_info,
781                            "cannot snapshot subvolume with active swapfile");
782                 return -ETXTBSY;
783         }
784
785         pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
786         if (!pending_snapshot)
787                 return -ENOMEM;
788
789         ret = get_anon_bdev(&pending_snapshot->anon_dev);
790         if (ret < 0)
791                 goto free_pending;
792         pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
793                         GFP_KERNEL);
794         pending_snapshot->path = btrfs_alloc_path();
795         if (!pending_snapshot->root_item || !pending_snapshot->path) {
796                 ret = -ENOMEM;
797                 goto free_pending;
798         }
799
800         btrfs_init_block_rsv(&pending_snapshot->block_rsv,
801                              BTRFS_BLOCK_RSV_TEMP);
802         /*
803          * 1 - parent dir inode
804          * 2 - dir entries
805          * 1 - root item
806          * 2 - root ref/backref
807          * 1 - root of snapshot
808          * 1 - UUID item
809          */
810         ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
811                                         &pending_snapshot->block_rsv, 8,
812                                         false);
813         if (ret)
814                 goto free_pending;
815
816         pending_snapshot->dentry = dentry;
817         pending_snapshot->root = root;
818         pending_snapshot->readonly = readonly;
819         pending_snapshot->dir = dir;
820         pending_snapshot->inherit = inherit;
821
822         trans = btrfs_start_transaction(root, 0);
823         if (IS_ERR(trans)) {
824                 ret = PTR_ERR(trans);
825                 goto fail;
826         }
827
828         trans->pending_snapshot = pending_snapshot;
829
830         ret = btrfs_commit_transaction(trans);
831         if (ret)
832                 goto fail;
833
834         ret = pending_snapshot->error;
835         if (ret)
836                 goto fail;
837
838         ret = btrfs_orphan_cleanup(pending_snapshot->snap);
839         if (ret)
840                 goto fail;
841
842         inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
843         if (IS_ERR(inode)) {
844                 ret = PTR_ERR(inode);
845                 goto fail;
846         }
847
848         d_instantiate(dentry, inode);
849         ret = 0;
850         pending_snapshot->anon_dev = 0;
851 fail:
852         /* Prevent double freeing of anon_dev */
853         if (ret && pending_snapshot->snap)
854                 pending_snapshot->snap->anon_dev = 0;
855         btrfs_put_root(pending_snapshot->snap);
856         btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
857 free_pending:
858         if (pending_snapshot->anon_dev)
859                 free_anon_bdev(pending_snapshot->anon_dev);
860         kfree(pending_snapshot->root_item);
861         btrfs_free_path(pending_snapshot->path);
862         kfree(pending_snapshot);
863
864         return ret;
865 }
866
867 /*  copy of may_delete in fs/namei.c()
868  *      Check whether we can remove a link victim from directory dir, check
869  *  whether the type of victim is right.
870  *  1. We can't do it if dir is read-only (done in permission())
871  *  2. We should have write and exec permissions on dir
872  *  3. We can't remove anything from append-only dir
873  *  4. We can't do anything with immutable dir (done in permission())
874  *  5. If the sticky bit on dir is set we should either
875  *      a. be owner of dir, or
876  *      b. be owner of victim, or
877  *      c. have CAP_FOWNER capability
878  *  6. If the victim is append-only or immutable we can't do anything with
879  *     links pointing to it.
880  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
881  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
882  *  9. We can't remove a root or mountpoint.
883  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
884  *     nfs_async_unlink().
885  */
886
887 static int btrfs_may_delete(struct user_namespace *mnt_userns,
888                             struct inode *dir, struct dentry *victim, int isdir)
889 {
890         int error;
891
892         if (d_really_is_negative(victim))
893                 return -ENOENT;
894
895         BUG_ON(d_inode(victim->d_parent) != dir);
896         audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
897
898         error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
899         if (error)
900                 return error;
901         if (IS_APPEND(dir))
902                 return -EPERM;
903         if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
904             IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
905             IS_SWAPFILE(d_inode(victim)))
906                 return -EPERM;
907         if (isdir) {
908                 if (!d_is_dir(victim))
909                         return -ENOTDIR;
910                 if (IS_ROOT(victim))
911                         return -EBUSY;
912         } else if (d_is_dir(victim))
913                 return -EISDIR;
914         if (IS_DEADDIR(dir))
915                 return -ENOENT;
916         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
917                 return -EBUSY;
918         return 0;
919 }
920
921 /* copy of may_create in fs/namei.c() */
922 static inline int btrfs_may_create(struct user_namespace *mnt_userns,
923                                    struct inode *dir, struct dentry *child)
924 {
925         if (d_really_is_positive(child))
926                 return -EEXIST;
927         if (IS_DEADDIR(dir))
928                 return -ENOENT;
929         if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
930                 return -EOVERFLOW;
931         return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
932 }
933
934 /*
935  * Create a new subvolume below @parent.  This is largely modeled after
936  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
937  * inside this filesystem so it's quite a bit simpler.
938  */
939 static noinline int btrfs_mksubvol(const struct path *parent,
940                                    struct user_namespace *mnt_userns,
941                                    const char *name, int namelen,
942                                    struct btrfs_root *snap_src,
943                                    bool readonly,
944                                    struct btrfs_qgroup_inherit *inherit)
945 {
946         struct inode *dir = d_inode(parent->dentry);
947         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
948         struct dentry *dentry;
949         int error;
950
951         error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
952         if (error == -EINTR)
953                 return error;
954
955         dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
956         error = PTR_ERR(dentry);
957         if (IS_ERR(dentry))
958                 goto out_unlock;
959
960         error = btrfs_may_create(mnt_userns, dir, dentry);
961         if (error)
962                 goto out_dput;
963
964         /*
965          * even if this name doesn't exist, we may get hash collisions.
966          * check for them now when we can safely fail
967          */
968         error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
969                                                dir->i_ino, name,
970                                                namelen);
971         if (error)
972                 goto out_dput;
973
974         down_read(&fs_info->subvol_sem);
975
976         if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
977                 goto out_up_read;
978
979         if (snap_src)
980                 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
981         else
982                 error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit);
983
984         if (!error)
985                 fsnotify_mkdir(dir, dentry);
986 out_up_read:
987         up_read(&fs_info->subvol_sem);
988 out_dput:
989         dput(dentry);
990 out_unlock:
991         btrfs_inode_unlock(dir, 0);
992         return error;
993 }
994
995 static noinline int btrfs_mksnapshot(const struct path *parent,
996                                    struct user_namespace *mnt_userns,
997                                    const char *name, int namelen,
998                                    struct btrfs_root *root,
999                                    bool readonly,
1000                                    struct btrfs_qgroup_inherit *inherit)
1001 {
1002         int ret;
1003         bool snapshot_force_cow = false;
1004
1005         /*
1006          * Force new buffered writes to reserve space even when NOCOW is
1007          * possible. This is to avoid later writeback (running dealloc) to
1008          * fallback to COW mode and unexpectedly fail with ENOSPC.
1009          */
1010         btrfs_drew_read_lock(&root->snapshot_lock);
1011
1012         ret = btrfs_start_delalloc_snapshot(root, false);
1013         if (ret)
1014                 goto out;
1015
1016         /*
1017          * All previous writes have started writeback in NOCOW mode, so now
1018          * we force future writes to fallback to COW mode during snapshot
1019          * creation.
1020          */
1021         atomic_inc(&root->snapshot_force_cow);
1022         snapshot_force_cow = true;
1023
1024         btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1025
1026         ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
1027                              root, readonly, inherit);
1028 out:
1029         if (snapshot_force_cow)
1030                 atomic_dec(&root->snapshot_force_cow);
1031         btrfs_drew_read_unlock(&root->snapshot_lock);
1032         return ret;
1033 }
1034
1035 /*
1036  * Defrag specific helper to get an extent map.
1037  *
1038  * Differences between this and btrfs_get_extent() are:
1039  *
1040  * - No extent_map will be added to inode->extent_tree
1041  *   To reduce memory usage in the long run.
1042  *
1043  * - Extra optimization to skip file extents older than @newer_than
1044  *   By using btrfs_search_forward() we can skip entire file ranges that
1045  *   have extents created in past transactions, because btrfs_search_forward()
1046  *   will not visit leaves and nodes with a generation smaller than given
1047  *   minimal generation threshold (@newer_than).
1048  *
1049  * Return valid em if we find a file extent matching the requirement.
1050  * Return NULL if we can not find a file extent matching the requirement.
1051  *
1052  * Return ERR_PTR() for error.
1053  */
1054 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
1055                                             u64 start, u64 newer_than)
1056 {
1057         struct btrfs_root *root = inode->root;
1058         struct btrfs_file_extent_item *fi;
1059         struct btrfs_path path = { 0 };
1060         struct extent_map *em;
1061         struct btrfs_key key;
1062         u64 ino = btrfs_ino(inode);
1063         int ret;
1064
1065         em = alloc_extent_map();
1066         if (!em) {
1067                 ret = -ENOMEM;
1068                 goto err;
1069         }
1070
1071         key.objectid = ino;
1072         key.type = BTRFS_EXTENT_DATA_KEY;
1073         key.offset = start;
1074
1075         if (newer_than) {
1076                 ret = btrfs_search_forward(root, &key, &path, newer_than);
1077                 if (ret < 0)
1078                         goto err;
1079                 /* Can't find anything newer */
1080                 if (ret > 0)
1081                         goto not_found;
1082         } else {
1083                 ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
1084                 if (ret < 0)
1085                         goto err;
1086         }
1087         if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
1088                 /*
1089                  * If btrfs_search_slot() makes path to point beyond nritems,
1090                  * we should not have an empty leaf, as this inode must at
1091                  * least have its INODE_ITEM.
1092                  */
1093                 ASSERT(btrfs_header_nritems(path.nodes[0]));
1094                 path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
1095         }
1096         btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1097         /* Perfect match, no need to go one slot back */
1098         if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
1099             key.offset == start)
1100                 goto iterate;
1101
1102         /* We didn't find a perfect match, needs to go one slot back */
1103         if (path.slots[0] > 0) {
1104                 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1105                 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
1106                         path.slots[0]--;
1107         }
1108
1109 iterate:
1110         /* Iterate through the path to find a file extent covering @start */
1111         while (true) {
1112                 u64 extent_end;
1113
1114                 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
1115                         goto next;
1116
1117                 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1118
1119                 /*
1120                  * We may go one slot back to INODE_REF/XATTR item, then
1121                  * need to go forward until we reach an EXTENT_DATA.
1122                  * But we should still has the correct ino as key.objectid.
1123                  */
1124                 if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
1125                         goto next;
1126
1127                 /* It's beyond our target range, definitely not extent found */
1128                 if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
1129                         goto not_found;
1130
1131                 /*
1132                  *      |       |<- File extent ->|
1133                  *      \- start
1134                  *
1135                  * This means there is a hole between start and key.offset.
1136                  */
1137                 if (key.offset > start) {
1138                         em->start = start;
1139                         em->orig_start = start;
1140                         em->block_start = EXTENT_MAP_HOLE;
1141                         em->len = key.offset - start;
1142                         break;
1143                 }
1144
1145                 fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
1146                                     struct btrfs_file_extent_item);
1147                 extent_end = btrfs_file_extent_end(&path);
1148
1149                 /*
1150                  *      |<- file extent ->|     |
1151                  *                              \- start
1152                  *
1153                  * We haven't reached start, search next slot.
1154                  */
1155                 if (extent_end <= start)
1156                         goto next;
1157
1158                 /* Now this extent covers @start, convert it to em */
1159                 btrfs_extent_item_to_extent_map(inode, &path, fi, false, em);
1160                 break;
1161 next:
1162                 ret = btrfs_next_item(root, &path);
1163                 if (ret < 0)
1164                         goto err;
1165                 if (ret > 0)
1166                         goto not_found;
1167         }
1168         btrfs_release_path(&path);
1169         return em;
1170
1171 not_found:
1172         btrfs_release_path(&path);
1173         free_extent_map(em);
1174         return NULL;
1175
1176 err:
1177         btrfs_release_path(&path);
1178         free_extent_map(em);
1179         return ERR_PTR(ret);
1180 }
1181
1182 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
1183                                                u64 newer_than, bool locked)
1184 {
1185         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1186         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1187         struct extent_map *em;
1188         const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
1189
1190         /*
1191          * hopefully we have this extent in the tree already, try without
1192          * the full extent lock
1193          */
1194         read_lock(&em_tree->lock);
1195         em = lookup_extent_mapping(em_tree, start, sectorsize);
1196         read_unlock(&em_tree->lock);
1197
1198         /*
1199          * We can get a merged extent, in that case, we need to re-search
1200          * tree to get the original em for defrag.
1201          *
1202          * If @newer_than is 0 or em::generation < newer_than, we can trust
1203          * this em, as either we don't care about the generation, or the
1204          * merged extent map will be rejected anyway.
1205          */
1206         if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) &&
1207             newer_than && em->generation >= newer_than) {
1208                 free_extent_map(em);
1209                 em = NULL;
1210         }
1211
1212         if (!em) {
1213                 struct extent_state *cached = NULL;
1214                 u64 end = start + sectorsize - 1;
1215
1216                 /* get the big lock and read metadata off disk */
1217                 if (!locked)
1218                         lock_extent_bits(io_tree, start, end, &cached);
1219                 em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
1220                 if (!locked)
1221                         unlock_extent_cached(io_tree, start, end, &cached);
1222
1223                 if (IS_ERR(em))
1224                         return NULL;
1225         }
1226
1227         return em;
1228 }
1229
1230 static u32 get_extent_max_capacity(const struct extent_map *em)
1231 {
1232         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1233                 return BTRFS_MAX_COMPRESSED;
1234         return BTRFS_MAX_EXTENT_SIZE;
1235 }
1236
1237 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
1238                                      u32 extent_thresh, u64 newer_than, bool locked)
1239 {
1240         struct extent_map *next;
1241         bool ret = false;
1242
1243         /* this is the last extent */
1244         if (em->start + em->len >= i_size_read(inode))
1245                 return false;
1246
1247         /*
1248          * Here we need to pass @newer_then when checking the next extent, or
1249          * we will hit a case we mark current extent for defrag, but the next
1250          * one will not be a target.
1251          * This will just cause extra IO without really reducing the fragments.
1252          */
1253         next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
1254         /* No more em or hole */
1255         if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1256                 goto out;
1257         if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags))
1258                 goto out;
1259         /*
1260          * If the next extent is at its max capacity, defragging current extent
1261          * makes no sense, as the total number of extents won't change.
1262          */
1263         if (next->len >= get_extent_max_capacity(em))
1264                 goto out;
1265         /* Skip older extent */
1266         if (next->generation < newer_than)
1267                 goto out;
1268         /* Also check extent size */
1269         if (next->len >= extent_thresh)
1270                 goto out;
1271
1272         ret = true;
1273 out:
1274         free_extent_map(next);
1275         return ret;
1276 }
1277
1278 /*
1279  * Prepare one page to be defragged.
1280  *
1281  * This will ensure:
1282  *
1283  * - Returned page is locked and has been set up properly.
1284  * - No ordered extent exists in the page.
1285  * - The page is uptodate.
1286  *
1287  * NOTE: Caller should also wait for page writeback after the cluster is
1288  * prepared, here we don't do writeback wait for each page.
1289  */
1290 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode,
1291                                             pgoff_t index)
1292 {
1293         struct address_space *mapping = inode->vfs_inode.i_mapping;
1294         gfp_t mask = btrfs_alloc_write_mask(mapping);
1295         u64 page_start = (u64)index << PAGE_SHIFT;
1296         u64 page_end = page_start + PAGE_SIZE - 1;
1297         struct extent_state *cached_state = NULL;
1298         struct page *page;
1299         int ret;
1300
1301 again:
1302         page = find_or_create_page(mapping, index, mask);
1303         if (!page)
1304                 return ERR_PTR(-ENOMEM);
1305
1306         /*
1307          * Since we can defragment files opened read-only, we can encounter
1308          * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
1309          * can't do I/O using huge pages yet, so return an error for now.
1310          * Filesystem transparent huge pages are typically only used for
1311          * executables that explicitly enable them, so this isn't very
1312          * restrictive.
1313          */
1314         if (PageCompound(page)) {
1315                 unlock_page(page);
1316                 put_page(page);
1317                 return ERR_PTR(-ETXTBSY);
1318         }
1319
1320         ret = set_page_extent_mapped(page);
1321         if (ret < 0) {
1322                 unlock_page(page);
1323                 put_page(page);
1324                 return ERR_PTR(ret);
1325         }
1326
1327         /* Wait for any existing ordered extent in the range */
1328         while (1) {
1329                 struct btrfs_ordered_extent *ordered;
1330
1331                 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
1332                 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
1333                 unlock_extent_cached(&inode->io_tree, page_start, page_end,
1334                                      &cached_state);
1335                 if (!ordered)
1336                         break;
1337
1338                 unlock_page(page);
1339                 btrfs_start_ordered_extent(ordered, 1);
1340                 btrfs_put_ordered_extent(ordered);
1341                 lock_page(page);
1342                 /*
1343                  * We unlocked the page above, so we need check if it was
1344                  * released or not.
1345                  */
1346                 if (page->mapping != mapping || !PagePrivate(page)) {
1347                         unlock_page(page);
1348                         put_page(page);
1349                         goto again;
1350                 }
1351         }
1352
1353         /*
1354          * Now the page range has no ordered extent any more.  Read the page to
1355          * make it uptodate.
1356          */
1357         if (!PageUptodate(page)) {
1358                 btrfs_readpage(NULL, page);
1359                 lock_page(page);
1360                 if (page->mapping != mapping || !PagePrivate(page)) {
1361                         unlock_page(page);
1362                         put_page(page);
1363                         goto again;
1364                 }
1365                 if (!PageUptodate(page)) {
1366                         unlock_page(page);
1367                         put_page(page);
1368                         return ERR_PTR(-EIO);
1369                 }
1370         }
1371         return page;
1372 }
1373
1374 struct defrag_target_range {
1375         struct list_head list;
1376         u64 start;
1377         u64 len;
1378 };
1379
1380 /*
1381  * Collect all valid target extents.
1382  *
1383  * @start:         file offset to lookup
1384  * @len:           length to lookup
1385  * @extent_thresh: file extent size threshold, any extent size >= this value
1386  *                 will be ignored
1387  * @newer_than:    only defrag extents newer than this value
1388  * @do_compress:   whether the defrag is doing compression
1389  *                 if true, @extent_thresh will be ignored and all regular
1390  *                 file extents meeting @newer_than will be targets.
1391  * @locked:        if the range has already held extent lock
1392  * @target_list:   list of targets file extents
1393  */
1394 static int defrag_collect_targets(struct btrfs_inode *inode,
1395                                   u64 start, u64 len, u32 extent_thresh,
1396                                   u64 newer_than, bool do_compress,
1397                                   bool locked, struct list_head *target_list,
1398                                   u64 *last_scanned_ret)
1399 {
1400         bool last_is_target = false;
1401         u64 cur = start;
1402         int ret = 0;
1403
1404         while (cur < start + len) {
1405                 struct extent_map *em;
1406                 struct defrag_target_range *new;
1407                 bool next_mergeable = true;
1408                 u64 range_len;
1409
1410                 last_is_target = false;
1411                 em = defrag_lookup_extent(&inode->vfs_inode, cur,
1412                                           newer_than, locked);
1413                 if (!em)
1414                         break;
1415
1416                 /* Skip hole/inline/preallocated extents */
1417                 if (em->block_start >= EXTENT_MAP_LAST_BYTE ||
1418                     test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1419                         goto next;
1420
1421                 /* Skip older extent */
1422                 if (em->generation < newer_than)
1423                         goto next;
1424
1425                 /* This em is under writeback, no need to defrag */
1426                 if (em->generation == (u64)-1)
1427                         goto next;
1428
1429                 /*
1430                  * Our start offset might be in the middle of an existing extent
1431                  * map, so take that into account.
1432                  */
1433                 range_len = em->len - (cur - em->start);
1434                 /*
1435                  * If this range of the extent map is already flagged for delalloc,
1436                  * skip it, because:
1437                  *
1438                  * 1) We could deadlock later, when trying to reserve space for
1439                  *    delalloc, because in case we can't immediately reserve space
1440                  *    the flusher can start delalloc and wait for the respective
1441                  *    ordered extents to complete. The deadlock would happen
1442                  *    because we do the space reservation while holding the range
1443                  *    locked, and starting writeback, or finishing an ordered
1444                  *    extent, requires locking the range;
1445                  *
1446                  * 2) If there's delalloc there, it means there's dirty pages for
1447                  *    which writeback has not started yet (we clean the delalloc
1448                  *    flag when starting writeback and after creating an ordered
1449                  *    extent). If we mark pages in an adjacent range for defrag,
1450                  *    then we will have a larger contiguous range for delalloc,
1451                  *    very likely resulting in a larger extent after writeback is
1452                  *    triggered (except in a case of free space fragmentation).
1453                  */
1454                 if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
1455                                    EXTENT_DELALLOC, 0, NULL))
1456                         goto next;
1457
1458                 /*
1459                  * For do_compress case, we want to compress all valid file
1460                  * extents, thus no @extent_thresh or mergeable check.
1461                  */
1462                 if (do_compress)
1463                         goto add;
1464
1465                 /* Skip too large extent */
1466                 if (range_len >= extent_thresh)
1467                         goto next;
1468
1469                 /*
1470                  * Skip extents already at its max capacity, this is mostly for
1471                  * compressed extents, which max cap is only 128K.
1472                  */
1473                 if (em->len >= get_extent_max_capacity(em))
1474                         goto next;
1475
1476                 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1477                                                 extent_thresh, newer_than, locked);
1478                 if (!next_mergeable) {
1479                         struct defrag_target_range *last;
1480
1481                         /* Empty target list, no way to merge with last entry */
1482                         if (list_empty(target_list))
1483                                 goto next;
1484                         last = list_entry(target_list->prev,
1485                                           struct defrag_target_range, list);
1486                         /* Not mergeable with last entry */
1487                         if (last->start + last->len != cur)
1488                                 goto next;
1489
1490                         /* Mergeable, fall through to add it to @target_list. */
1491                 }
1492
1493 add:
1494                 last_is_target = true;
1495                 range_len = min(extent_map_end(em), start + len) - cur;
1496                 /*
1497                  * This one is a good target, check if it can be merged into
1498                  * last range of the target list.
1499                  */
1500                 if (!list_empty(target_list)) {
1501                         struct defrag_target_range *last;
1502
1503                         last = list_entry(target_list->prev,
1504                                           struct defrag_target_range, list);
1505                         ASSERT(last->start + last->len <= cur);
1506                         if (last->start + last->len == cur) {
1507                                 /* Mergeable, enlarge the last entry */
1508                                 last->len += range_len;
1509                                 goto next;
1510                         }
1511                         /* Fall through to allocate a new entry */
1512                 }
1513
1514                 /* Allocate new defrag_target_range */
1515                 new = kmalloc(sizeof(*new), GFP_NOFS);
1516                 if (!new) {
1517                         free_extent_map(em);
1518                         ret = -ENOMEM;
1519                         break;
1520                 }
1521                 new->start = cur;
1522                 new->len = range_len;
1523                 list_add_tail(&new->list, target_list);
1524
1525 next:
1526                 cur = extent_map_end(em);
1527                 free_extent_map(em);
1528         }
1529         if (ret < 0) {
1530                 struct defrag_target_range *entry;
1531                 struct defrag_target_range *tmp;
1532
1533                 list_for_each_entry_safe(entry, tmp, target_list, list) {
1534                         list_del_init(&entry->list);
1535                         kfree(entry);
1536                 }
1537         }
1538         if (!ret && last_scanned_ret) {
1539                 /*
1540                  * If the last extent is not a target, the caller can skip to
1541                  * the end of that extent.
1542                  * Otherwise, we can only go the end of the specified range.
1543                  */
1544                 if (!last_is_target)
1545                         *last_scanned_ret = max(cur, *last_scanned_ret);
1546                 else
1547                         *last_scanned_ret = max(start + len, *last_scanned_ret);
1548         }
1549         return ret;
1550 }
1551
1552 #define CLUSTER_SIZE    (SZ_256K)
1553 static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1554
1555 /*
1556  * Defrag one contiguous target range.
1557  *
1558  * @inode:      target inode
1559  * @target:     target range to defrag
1560  * @pages:      locked pages covering the defrag range
1561  * @nr_pages:   number of locked pages
1562  *
1563  * Caller should ensure:
1564  *
1565  * - Pages are prepared
1566  *   Pages should be locked, no ordered extent in the pages range,
1567  *   no writeback.
1568  *
1569  * - Extent bits are locked
1570  */
1571 static int defrag_one_locked_target(struct btrfs_inode *inode,
1572                                     struct defrag_target_range *target,
1573                                     struct page **pages, int nr_pages,
1574                                     struct extent_state **cached_state)
1575 {
1576         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1577         struct extent_changeset *data_reserved = NULL;
1578         const u64 start = target->start;
1579         const u64 len = target->len;
1580         unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1581         unsigned long start_index = start >> PAGE_SHIFT;
1582         unsigned long first_index = page_index(pages[0]);
1583         int ret = 0;
1584         int i;
1585
1586         ASSERT(last_index - first_index + 1 <= nr_pages);
1587
1588         ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1589         if (ret < 0)
1590                 return ret;
1591         clear_extent_bit(&inode->io_tree, start, start + len - 1,
1592                          EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1593                          EXTENT_DEFRAG, 0, 0, cached_state);
1594         set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
1595
1596         /* Update the page status */
1597         for (i = start_index - first_index; i <= last_index - first_index; i++) {
1598                 ClearPageChecked(pages[i]);
1599                 btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1600         }
1601         btrfs_delalloc_release_extents(inode, len);
1602         extent_changeset_free(data_reserved);
1603
1604         return ret;
1605 }
1606
1607 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1608                             u32 extent_thresh, u64 newer_than, bool do_compress,
1609                             u64 *last_scanned_ret)
1610 {
1611         struct extent_state *cached_state = NULL;
1612         struct defrag_target_range *entry;
1613         struct defrag_target_range *tmp;
1614         LIST_HEAD(target_list);
1615         struct page **pages;
1616         const u32 sectorsize = inode->root->fs_info->sectorsize;
1617         u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1618         u64 start_index = start >> PAGE_SHIFT;
1619         unsigned int nr_pages = last_index - start_index + 1;
1620         int ret = 0;
1621         int i;
1622
1623         ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1624         ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1625
1626         pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1627         if (!pages)
1628                 return -ENOMEM;
1629
1630         /* Prepare all pages */
1631         for (i = 0; i < nr_pages; i++) {
1632                 pages[i] = defrag_prepare_one_page(inode, start_index + i);
1633                 if (IS_ERR(pages[i])) {
1634                         ret = PTR_ERR(pages[i]);
1635                         pages[i] = NULL;
1636                         goto free_pages;
1637                 }
1638         }
1639         for (i = 0; i < nr_pages; i++)
1640                 wait_on_page_writeback(pages[i]);
1641
1642         /* Lock the pages range */
1643         lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT,
1644                          (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1645                          &cached_state);
1646         /*
1647          * Now we have a consistent view about the extent map, re-check
1648          * which range really needs to be defragged.
1649          *
1650          * And this time we have extent locked already, pass @locked = true
1651          * so that we won't relock the extent range and cause deadlock.
1652          */
1653         ret = defrag_collect_targets(inode, start, len, extent_thresh,
1654                                      newer_than, do_compress, true,
1655                                      &target_list, last_scanned_ret);
1656         if (ret < 0)
1657                 goto unlock_extent;
1658
1659         list_for_each_entry(entry, &target_list, list) {
1660                 ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1661                                                &cached_state);
1662                 if (ret < 0)
1663                         break;
1664         }
1665
1666         list_for_each_entry_safe(entry, tmp, &target_list, list) {
1667                 list_del_init(&entry->list);
1668                 kfree(entry);
1669         }
1670 unlock_extent:
1671         unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT,
1672                              (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1673                              &cached_state);
1674 free_pages:
1675         for (i = 0; i < nr_pages; i++) {
1676                 if (pages[i]) {
1677                         unlock_page(pages[i]);
1678                         put_page(pages[i]);
1679                 }
1680         }
1681         kfree(pages);
1682         return ret;
1683 }
1684
1685 static int defrag_one_cluster(struct btrfs_inode *inode,
1686                               struct file_ra_state *ra,
1687                               u64 start, u32 len, u32 extent_thresh,
1688                               u64 newer_than, bool do_compress,
1689                               unsigned long *sectors_defragged,
1690                               unsigned long max_sectors,
1691                               u64 *last_scanned_ret)
1692 {
1693         const u32 sectorsize = inode->root->fs_info->sectorsize;
1694         struct defrag_target_range *entry;
1695         struct defrag_target_range *tmp;
1696         LIST_HEAD(target_list);
1697         int ret;
1698
1699         ret = defrag_collect_targets(inode, start, len, extent_thresh,
1700                                      newer_than, do_compress, false,
1701                                      &target_list, NULL);
1702         if (ret < 0)
1703                 goto out;
1704
1705         list_for_each_entry(entry, &target_list, list) {
1706                 u32 range_len = entry->len;
1707
1708                 /* Reached or beyond the limit */
1709                 if (max_sectors && *sectors_defragged >= max_sectors) {
1710                         ret = 1;
1711                         break;
1712                 }
1713
1714                 if (max_sectors)
1715                         range_len = min_t(u32, range_len,
1716                                 (max_sectors - *sectors_defragged) * sectorsize);
1717
1718                 /*
1719                  * If defrag_one_range() has updated last_scanned_ret,
1720                  * our range may already be invalid (e.g. hole punched).
1721                  * Skip if our range is before last_scanned_ret, as there is
1722                  * no need to defrag the range anymore.
1723                  */
1724                 if (entry->start + range_len <= *last_scanned_ret)
1725                         continue;
1726
1727                 if (ra)
1728                         page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1729                                 ra, NULL, entry->start >> PAGE_SHIFT,
1730                                 ((entry->start + range_len - 1) >> PAGE_SHIFT) -
1731                                 (entry->start >> PAGE_SHIFT) + 1);
1732                 /*
1733                  * Here we may not defrag any range if holes are punched before
1734                  * we locked the pages.
1735                  * But that's fine, it only affects the @sectors_defragged
1736                  * accounting.
1737                  */
1738                 ret = defrag_one_range(inode, entry->start, range_len,
1739                                        extent_thresh, newer_than, do_compress,
1740                                        last_scanned_ret);
1741                 if (ret < 0)
1742                         break;
1743                 *sectors_defragged += range_len >>
1744                                       inode->root->fs_info->sectorsize_bits;
1745         }
1746 out:
1747         list_for_each_entry_safe(entry, tmp, &target_list, list) {
1748                 list_del_init(&entry->list);
1749                 kfree(entry);
1750         }
1751         if (ret >= 0)
1752                 *last_scanned_ret = max(*last_scanned_ret, start + len);
1753         return ret;
1754 }
1755
1756 /*
1757  * Entry point to file defragmentation.
1758  *
1759  * @inode:         inode to be defragged
1760  * @ra:            readahead state (can be NUL)
1761  * @range:         defrag options including range and flags
1762  * @newer_than:    minimum transid to defrag
1763  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1764  *                 will be defragged.
1765  *
1766  * Return <0 for error.
1767  * Return >=0 for the number of sectors defragged, and range->start will be updated
1768  * to indicate the file offset where next defrag should be started at.
1769  * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1770  *  defragging all the range).
1771  */
1772 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1773                       struct btrfs_ioctl_defrag_range_args *range,
1774                       u64 newer_than, unsigned long max_to_defrag)
1775 {
1776         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1777         unsigned long sectors_defragged = 0;
1778         u64 isize = i_size_read(inode);
1779         u64 cur;
1780         u64 last_byte;
1781         bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1782         bool ra_allocated = false;
1783         int compress_type = BTRFS_COMPRESS_ZLIB;
1784         int ret = 0;
1785         u32 extent_thresh = range->extent_thresh;
1786         pgoff_t start_index;
1787
1788         if (isize == 0)
1789                 return 0;
1790
1791         if (range->start >= isize)
1792                 return -EINVAL;
1793
1794         if (do_compress) {
1795                 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1796                         return -EINVAL;
1797                 if (range->compress_type)
1798                         compress_type = range->compress_type;
1799         }
1800
1801         if (extent_thresh == 0)
1802                 extent_thresh = SZ_256K;
1803
1804         if (range->start + range->len > range->start) {
1805                 /* Got a specific range */
1806                 last_byte = min(isize, range->start + range->len);
1807         } else {
1808                 /* Defrag until file end */
1809                 last_byte = isize;
1810         }
1811
1812         /* Align the range */
1813         cur = round_down(range->start, fs_info->sectorsize);
1814         last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1815
1816         /*
1817          * If we were not given a ra, allocate a readahead context. As
1818          * readahead is just an optimization, defrag will work without it so
1819          * we don't error out.
1820          */
1821         if (!ra) {
1822                 ra_allocated = true;
1823                 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1824                 if (ra)
1825                         file_ra_state_init(ra, inode->i_mapping);
1826         }
1827
1828         /*
1829          * Make writeback start from the beginning of the range, so that the
1830          * defrag range can be written sequentially.
1831          */
1832         start_index = cur >> PAGE_SHIFT;
1833         if (start_index < inode->i_mapping->writeback_index)
1834                 inode->i_mapping->writeback_index = start_index;
1835
1836         while (cur < last_byte) {
1837                 const unsigned long prev_sectors_defragged = sectors_defragged;
1838                 u64 last_scanned = cur;
1839                 u64 cluster_end;
1840
1841                 if (btrfs_defrag_cancelled(fs_info)) {
1842                         ret = -EAGAIN;
1843                         break;
1844                 }
1845
1846                 /* We want the cluster end at page boundary when possible */
1847                 cluster_end = (((cur >> PAGE_SHIFT) +
1848                                (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1849                 cluster_end = min(cluster_end, last_byte);
1850
1851                 btrfs_inode_lock(inode, 0);
1852                 if (IS_SWAPFILE(inode)) {
1853                         ret = -ETXTBSY;
1854                         btrfs_inode_unlock(inode, 0);
1855                         break;
1856                 }
1857                 if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1858                         btrfs_inode_unlock(inode, 0);
1859                         break;
1860                 }
1861                 if (do_compress)
1862                         BTRFS_I(inode)->defrag_compress = compress_type;
1863                 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1864                                 cluster_end + 1 - cur, extent_thresh,
1865                                 newer_than, do_compress, &sectors_defragged,
1866                                 max_to_defrag, &last_scanned);
1867
1868                 if (sectors_defragged > prev_sectors_defragged)
1869                         balance_dirty_pages_ratelimited(inode->i_mapping);
1870
1871                 btrfs_inode_unlock(inode, 0);
1872                 if (ret < 0)
1873                         break;
1874                 cur = max(cluster_end + 1, last_scanned);
1875                 if (ret > 0) {
1876                         ret = 0;
1877                         break;
1878                 }
1879                 cond_resched();
1880         }
1881
1882         if (ra_allocated)
1883                 kfree(ra);
1884         /*
1885          * Update range.start for autodefrag, this will indicate where to start
1886          * in next run.
1887          */
1888         range->start = cur;
1889         if (sectors_defragged) {
1890                 /*
1891                  * We have defragged some sectors, for compression case they
1892                  * need to be written back immediately.
1893                  */
1894                 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1895                         filemap_flush(inode->i_mapping);
1896                         if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1897                                      &BTRFS_I(inode)->runtime_flags))
1898                                 filemap_flush(inode->i_mapping);
1899                 }
1900                 if (range->compress_type == BTRFS_COMPRESS_LZO)
1901                         btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1902                 else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1903                         btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1904                 ret = sectors_defragged;
1905         }
1906         if (do_compress) {
1907                 btrfs_inode_lock(inode, 0);
1908                 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1909                 btrfs_inode_unlock(inode, 0);
1910         }
1911         return ret;
1912 }
1913
1914 /*
1915  * Try to start exclusive operation @type or cancel it if it's running.
1916  *
1917  * Return:
1918  *   0        - normal mode, newly claimed op started
1919  *  >0        - normal mode, something else is running,
1920  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1921  * ECANCELED  - cancel mode, successful cancel
1922  * ENOTCONN   - cancel mode, operation not running anymore
1923  */
1924 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1925                         enum btrfs_exclusive_operation type, bool cancel)
1926 {
1927         if (!cancel) {
1928                 /* Start normal op */
1929                 if (!btrfs_exclop_start(fs_info, type))
1930                         return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1931                 /* Exclusive operation is now claimed */
1932                 return 0;
1933         }
1934
1935         /* Cancel running op */
1936         if (btrfs_exclop_start_try_lock(fs_info, type)) {
1937                 /*
1938                  * This blocks any exclop finish from setting it to NONE, so we
1939                  * request cancellation. Either it runs and we will wait for it,
1940                  * or it has finished and no waiting will happen.
1941                  */
1942                 atomic_inc(&fs_info->reloc_cancel_req);
1943                 btrfs_exclop_start_unlock(fs_info);
1944
1945                 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1946                         wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1947                                     TASK_INTERRUPTIBLE);
1948
1949                 return -ECANCELED;
1950         }
1951
1952         /* Something else is running or none */
1953         return -ENOTCONN;
1954 }
1955
1956 static noinline int btrfs_ioctl_resize(struct file *file,
1957                                         void __user *arg)
1958 {
1959         BTRFS_DEV_LOOKUP_ARGS(args);
1960         struct inode *inode = file_inode(file);
1961         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1962         u64 new_size;
1963         u64 old_size;
1964         u64 devid = 1;
1965         struct btrfs_root *root = BTRFS_I(inode)->root;
1966         struct btrfs_ioctl_vol_args *vol_args;
1967         struct btrfs_trans_handle *trans;
1968         struct btrfs_device *device = NULL;
1969         char *sizestr;
1970         char *retptr;
1971         char *devstr = NULL;
1972         int ret = 0;
1973         int mod = 0;
1974         bool cancel;
1975
1976         if (!capable(CAP_SYS_ADMIN))
1977                 return -EPERM;
1978
1979         ret = mnt_want_write_file(file);
1980         if (ret)
1981                 return ret;
1982
1983         /*
1984          * Read the arguments before checking exclusivity to be able to
1985          * distinguish regular resize and cancel
1986          */
1987         vol_args = memdup_user(arg, sizeof(*vol_args));
1988         if (IS_ERR(vol_args)) {
1989                 ret = PTR_ERR(vol_args);
1990                 goto out_drop;
1991         }
1992         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1993         sizestr = vol_args->name;
1994         cancel = (strcmp("cancel", sizestr) == 0);
1995         ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1996         if (ret)
1997                 goto out_free;
1998         /* Exclusive operation is now claimed */
1999
2000         devstr = strchr(sizestr, ':');
2001         if (devstr) {
2002                 sizestr = devstr + 1;
2003                 *devstr = '\0';
2004                 devstr = vol_args->name;
2005                 ret = kstrtoull(devstr, 10, &devid);
2006                 if (ret)
2007                         goto out_finish;
2008                 if (!devid) {
2009                         ret = -EINVAL;
2010                         goto out_finish;
2011                 }
2012                 btrfs_info(fs_info, "resizing devid %llu", devid);
2013         }
2014
2015         args.devid = devid;
2016         device = btrfs_find_device(fs_info->fs_devices, &args);
2017         if (!device) {
2018                 btrfs_info(fs_info, "resizer unable to find device %llu",
2019                            devid);
2020                 ret = -ENODEV;
2021                 goto out_finish;
2022         }
2023
2024         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2025                 btrfs_info(fs_info,
2026                            "resizer unable to apply on readonly device %llu",
2027                        devid);
2028                 ret = -EPERM;
2029                 goto out_finish;
2030         }
2031
2032         if (!strcmp(sizestr, "max"))
2033                 new_size = bdev_nr_bytes(device->bdev);
2034         else {
2035                 if (sizestr[0] == '-') {
2036                         mod = -1;
2037                         sizestr++;
2038                 } else if (sizestr[0] == '+') {
2039                         mod = 1;
2040                         sizestr++;
2041                 }
2042                 new_size = memparse(sizestr, &retptr);
2043                 if (*retptr != '\0' || new_size == 0) {
2044                         ret = -EINVAL;
2045                         goto out_finish;
2046                 }
2047         }
2048
2049         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2050                 ret = -EPERM;
2051                 goto out_finish;
2052         }
2053
2054         old_size = btrfs_device_get_total_bytes(device);
2055
2056         if (mod < 0) {
2057                 if (new_size > old_size) {
2058                         ret = -EINVAL;
2059                         goto out_finish;
2060                 }
2061                 new_size = old_size - new_size;
2062         } else if (mod > 0) {
2063                 if (new_size > ULLONG_MAX - old_size) {
2064                         ret = -ERANGE;
2065                         goto out_finish;
2066                 }
2067                 new_size = old_size + new_size;
2068         }
2069
2070         if (new_size < SZ_256M) {
2071                 ret = -EINVAL;
2072                 goto out_finish;
2073         }
2074         if (new_size > bdev_nr_bytes(device->bdev)) {
2075                 ret = -EFBIG;
2076                 goto out_finish;
2077         }
2078
2079         new_size = round_down(new_size, fs_info->sectorsize);
2080
2081         if (new_size > old_size) {
2082                 trans = btrfs_start_transaction(root, 0);
2083                 if (IS_ERR(trans)) {
2084                         ret = PTR_ERR(trans);
2085                         goto out_finish;
2086                 }
2087                 ret = btrfs_grow_device(trans, device, new_size);
2088                 btrfs_commit_transaction(trans);
2089         } else if (new_size < old_size) {
2090                 ret = btrfs_shrink_device(device, new_size);
2091         } /* equal, nothing need to do */
2092
2093         if (ret == 0 && new_size != old_size)
2094                 btrfs_info_in_rcu(fs_info,
2095                         "resize device %s (devid %llu) from %llu to %llu",
2096                         rcu_str_deref(device->name), device->devid,
2097                         old_size, new_size);
2098 out_finish:
2099         btrfs_exclop_finish(fs_info);
2100 out_free:
2101         kfree(vol_args);
2102 out_drop:
2103         mnt_drop_write_file(file);
2104         return ret;
2105 }
2106
2107 static noinline int __btrfs_ioctl_snap_create(struct file *file,
2108                                 struct user_namespace *mnt_userns,
2109                                 const char *name, unsigned long fd, int subvol,
2110                                 bool readonly,
2111                                 struct btrfs_qgroup_inherit *inherit)
2112 {
2113         int namelen;
2114         int ret = 0;
2115
2116         if (!S_ISDIR(file_inode(file)->i_mode))
2117                 return -ENOTDIR;
2118
2119         ret = mnt_want_write_file(file);
2120         if (ret)
2121                 goto out;
2122
2123         namelen = strlen(name);
2124         if (strchr(name, '/')) {
2125                 ret = -EINVAL;
2126                 goto out_drop_write;
2127         }
2128
2129         if (name[0] == '.' &&
2130            (namelen == 1 || (name[1] == '.' && namelen == 2))) {
2131                 ret = -EEXIST;
2132                 goto out_drop_write;
2133         }
2134
2135         if (subvol) {
2136                 ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
2137                                      namelen, NULL, readonly, inherit);
2138         } else {
2139                 struct fd src = fdget(fd);
2140                 struct inode *src_inode;
2141                 if (!src.file) {
2142                         ret = -EINVAL;
2143                         goto out_drop_write;
2144                 }
2145
2146                 src_inode = file_inode(src.file);
2147                 if (src_inode->i_sb != file_inode(file)->i_sb) {
2148                         btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
2149                                    "Snapshot src from another FS");
2150                         ret = -EXDEV;
2151                 } else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
2152                         /*
2153                          * Subvolume creation is not restricted, but snapshots
2154                          * are limited to own subvolumes only
2155                          */
2156                         ret = -EPERM;
2157                 } else {
2158                         ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
2159                                                name, namelen,
2160                                                BTRFS_I(src_inode)->root,
2161                                                readonly, inherit);
2162                 }
2163                 fdput(src);
2164         }
2165 out_drop_write:
2166         mnt_drop_write_file(file);
2167 out:
2168         return ret;
2169 }
2170
2171 static noinline int btrfs_ioctl_snap_create(struct file *file,
2172                                             void __user *arg, int subvol)
2173 {
2174         struct btrfs_ioctl_vol_args *vol_args;
2175         int ret;
2176
2177         if (!S_ISDIR(file_inode(file)->i_mode))
2178                 return -ENOTDIR;
2179
2180         vol_args = memdup_user(arg, sizeof(*vol_args));
2181         if (IS_ERR(vol_args))
2182                 return PTR_ERR(vol_args);
2183         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2184
2185         ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
2186                                         vol_args->name, vol_args->fd, subvol,
2187                                         false, NULL);
2188
2189         kfree(vol_args);
2190         return ret;
2191 }
2192
2193 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
2194                                                void __user *arg, int subvol)
2195 {
2196         struct btrfs_ioctl_vol_args_v2 *vol_args;
2197         int ret;
2198         bool readonly = false;
2199         struct btrfs_qgroup_inherit *inherit = NULL;
2200
2201         if (!S_ISDIR(file_inode(file)->i_mode))
2202                 return -ENOTDIR;
2203
2204         vol_args = memdup_user(arg, sizeof(*vol_args));
2205         if (IS_ERR(vol_args))
2206                 return PTR_ERR(vol_args);
2207         vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2208
2209         if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
2210                 ret = -EOPNOTSUPP;
2211                 goto free_args;
2212         }
2213
2214         if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
2215                 readonly = true;
2216         if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
2217                 u64 nums;
2218
2219                 if (vol_args->size < sizeof(*inherit) ||
2220                     vol_args->size > PAGE_SIZE) {
2221                         ret = -EINVAL;
2222                         goto free_args;
2223                 }
2224                 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
2225                 if (IS_ERR(inherit)) {
2226                         ret = PTR_ERR(inherit);
2227                         goto free_args;
2228                 }
2229
2230                 if (inherit->num_qgroups > PAGE_SIZE ||
2231                     inherit->num_ref_copies > PAGE_SIZE ||
2232                     inherit->num_excl_copies > PAGE_SIZE) {
2233                         ret = -EINVAL;
2234                         goto free_inherit;
2235                 }
2236
2237                 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
2238                        2 * inherit->num_excl_copies;
2239                 if (vol_args->size != struct_size(inherit, qgroups, nums)) {
2240                         ret = -EINVAL;
2241                         goto free_inherit;
2242                 }
2243         }
2244
2245         ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
2246                                         vol_args->name, vol_args->fd, subvol,
2247                                         readonly, inherit);
2248         if (ret)
2249                 goto free_inherit;
2250 free_inherit:
2251         kfree(inherit);
2252 free_args:
2253         kfree(vol_args);
2254         return ret;
2255 }
2256
2257 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
2258                                                 void __user *arg)
2259 {
2260         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2261         struct btrfs_root *root = BTRFS_I(inode)->root;
2262         int ret = 0;
2263         u64 flags = 0;
2264
2265         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
2266                 return -EINVAL;
2267
2268         down_read(&fs_info->subvol_sem);
2269         if (btrfs_root_readonly(root))
2270                 flags |= BTRFS_SUBVOL_RDONLY;
2271         up_read(&fs_info->subvol_sem);
2272
2273         if (copy_to_user(arg, &flags, sizeof(flags)))
2274                 ret = -EFAULT;
2275
2276         return ret;
2277 }
2278
2279 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
2280                                               void __user *arg)
2281 {
2282         struct inode *inode = file_inode(file);
2283         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2284         struct btrfs_root *root = BTRFS_I(inode)->root;
2285         struct btrfs_trans_handle *trans;
2286         u64 root_flags;
2287         u64 flags;
2288         int ret = 0;
2289
2290         if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
2291                 return -EPERM;
2292
2293         ret = mnt_want_write_file(file);
2294         if (ret)
2295                 goto out;
2296
2297         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2298                 ret = -EINVAL;
2299                 goto out_drop_write;
2300         }
2301
2302         if (copy_from_user(&flags, arg, sizeof(flags))) {
2303                 ret = -EFAULT;
2304                 goto out_drop_write;
2305         }
2306
2307         if (flags & ~BTRFS_SUBVOL_RDONLY) {
2308                 ret = -EOPNOTSUPP;
2309                 goto out_drop_write;
2310         }
2311
2312         down_write(&fs_info->subvol_sem);
2313
2314         /* nothing to do */
2315         if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2316                 goto out_drop_sem;
2317
2318         root_flags = btrfs_root_flags(&root->root_item);
2319         if (flags & BTRFS_SUBVOL_RDONLY) {
2320                 btrfs_set_root_flags(&root->root_item,
2321                                      root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2322         } else {
2323                 /*
2324                  * Block RO -> RW transition if this subvolume is involved in
2325                  * send
2326                  */
2327                 spin_lock(&root->root_item_lock);
2328                 if (root->send_in_progress == 0) {
2329                         btrfs_set_root_flags(&root->root_item,
2330                                      root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2331                         spin_unlock(&root->root_item_lock);
2332                 } else {
2333                         spin_unlock(&root->root_item_lock);
2334                         btrfs_warn(fs_info,
2335                                    "Attempt to set subvolume %llu read-write during send",
2336                                    root->root_key.objectid);
2337                         ret = -EPERM;
2338                         goto out_drop_sem;
2339                 }
2340         }
2341
2342         trans = btrfs_start_transaction(root, 1);
2343         if (IS_ERR(trans)) {
2344                 ret = PTR_ERR(trans);
2345                 goto out_reset;
2346         }
2347
2348         ret = btrfs_update_root(trans, fs_info->tree_root,
2349                                 &root->root_key, &root->root_item);
2350         if (ret < 0) {
2351                 btrfs_end_transaction(trans);
2352                 goto out_reset;
2353         }
2354
2355         ret = btrfs_commit_transaction(trans);
2356
2357 out_reset:
2358         if (ret)
2359                 btrfs_set_root_flags(&root->root_item, root_flags);
2360 out_drop_sem:
2361         up_write(&fs_info->subvol_sem);
2362 out_drop_write:
2363         mnt_drop_write_file(file);
2364 out:
2365         return ret;
2366 }
2367
2368 static noinline int key_in_sk(struct btrfs_key *key,
2369                               struct btrfs_ioctl_search_key *sk)
2370 {
2371         struct btrfs_key test;
2372         int ret;
2373
2374         test.objectid = sk->min_objectid;
2375         test.type = sk->min_type;
2376         test.offset = sk->min_offset;
2377
2378         ret = btrfs_comp_cpu_keys(key, &test);
2379         if (ret < 0)
2380                 return 0;
2381
2382         test.objectid = sk->max_objectid;
2383         test.type = sk->max_type;
2384         test.offset = sk->max_offset;
2385
2386         ret = btrfs_comp_cpu_keys(key, &test);
2387         if (ret > 0)
2388                 return 0;
2389         return 1;
2390 }
2391
2392 static noinline int copy_to_sk(struct btrfs_path *path,
2393                                struct btrfs_key *key,
2394                                struct btrfs_ioctl_search_key *sk,
2395                                size_t *buf_size,
2396                                char __user *ubuf,
2397                                unsigned long *sk_offset,
2398                                int *num_found)
2399 {
2400         u64 found_transid;
2401         struct extent_buffer *leaf;
2402         struct btrfs_ioctl_search_header sh;
2403         struct btrfs_key test;
2404         unsigned long item_off;
2405         unsigned long item_len;
2406         int nritems;
2407         int i;
2408         int slot;
2409         int ret = 0;
2410
2411         leaf = path->nodes[0];
2412         slot = path->slots[0];
2413         nritems = btrfs_header_nritems(leaf);
2414
2415         if (btrfs_header_generation(leaf) > sk->max_transid) {
2416                 i = nritems;
2417                 goto advance_key;
2418         }
2419         found_transid = btrfs_header_generation(leaf);
2420
2421         for (i = slot; i < nritems; i++) {
2422                 item_off = btrfs_item_ptr_offset(leaf, i);
2423                 item_len = btrfs_item_size(leaf, i);
2424
2425                 btrfs_item_key_to_cpu(leaf, key, i);
2426                 if (!key_in_sk(key, sk))
2427                         continue;
2428
2429                 if (sizeof(sh) + item_len > *buf_size) {
2430                         if (*num_found) {
2431                                 ret = 1;
2432                                 goto out;
2433                         }
2434
2435                         /*
2436                          * return one empty item back for v1, which does not
2437                          * handle -EOVERFLOW
2438                          */
2439
2440                         *buf_size = sizeof(sh) + item_len;
2441                         item_len = 0;
2442                         ret = -EOVERFLOW;
2443                 }
2444
2445                 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2446                         ret = 1;
2447                         goto out;
2448                 }
2449
2450                 sh.objectid = key->objectid;
2451                 sh.offset = key->offset;
2452                 sh.type = key->type;
2453                 sh.len = item_len;
2454                 sh.transid = found_transid;
2455
2456                 /*
2457                  * Copy search result header. If we fault then loop again so we
2458                  * can fault in the pages and -EFAULT there if there's a
2459                  * problem. Otherwise we'll fault and then copy the buffer in
2460                  * properly this next time through
2461                  */
2462                 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2463                         ret = 0;
2464                         goto out;
2465                 }
2466
2467                 *sk_offset += sizeof(sh);
2468
2469                 if (item_len) {
2470                         char __user *up = ubuf + *sk_offset;
2471                         /*
2472                          * Copy the item, same behavior as above, but reset the
2473                          * * sk_offset so we copy the full thing again.
2474                          */
2475                         if (read_extent_buffer_to_user_nofault(leaf, up,
2476                                                 item_off, item_len)) {
2477                                 ret = 0;
2478                                 *sk_offset -= sizeof(sh);
2479                                 goto out;
2480                         }
2481
2482                         *sk_offset += item_len;
2483                 }
2484                 (*num_found)++;
2485
2486                 if (ret) /* -EOVERFLOW from above */
2487                         goto out;
2488
2489                 if (*num_found >= sk->nr_items) {
2490                         ret = 1;
2491                         goto out;
2492                 }
2493         }
2494 advance_key:
2495         ret = 0;
2496         test.objectid = sk->max_objectid;
2497         test.type = sk->max_type;
2498         test.offset = sk->max_offset;
2499         if (btrfs_comp_cpu_keys(key, &test) >= 0)
2500                 ret = 1;
2501         else if (key->offset < (u64)-1)
2502                 key->offset++;
2503         else if (key->type < (u8)-1) {
2504                 key->offset = 0;
2505                 key->type++;
2506         } else if (key->objectid < (u64)-1) {
2507                 key->offset = 0;
2508                 key->type = 0;
2509                 key->objectid++;
2510         } else
2511                 ret = 1;
2512 out:
2513         /*
2514          *  0: all items from this leaf copied, continue with next
2515          *  1: * more items can be copied, but unused buffer is too small
2516          *     * all items were found
2517          *     Either way, it will stops the loop which iterates to the next
2518          *     leaf
2519          *  -EOVERFLOW: item was to large for buffer
2520          *  -EFAULT: could not copy extent buffer back to userspace
2521          */
2522         return ret;
2523 }
2524
2525 static noinline int search_ioctl(struct inode *inode,
2526                                  struct btrfs_ioctl_search_key *sk,
2527                                  size_t *buf_size,
2528                                  char __user *ubuf)
2529 {
2530         struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2531         struct btrfs_root *root;
2532         struct btrfs_key key;
2533         struct btrfs_path *path;
2534         int ret;
2535         int num_found = 0;
2536         unsigned long sk_offset = 0;
2537
2538         if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2539                 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2540                 return -EOVERFLOW;
2541         }
2542
2543         path = btrfs_alloc_path();
2544         if (!path)
2545                 return -ENOMEM;
2546
2547         if (sk->tree_id == 0) {
2548                 /* search the root of the inode that was passed */
2549                 root = btrfs_grab_root(BTRFS_I(inode)->root);
2550         } else {
2551                 root = btrfs_get_fs_root(info, sk->tree_id, true);
2552                 if (IS_ERR(root)) {
2553                         btrfs_free_path(path);
2554                         return PTR_ERR(root);
2555                 }
2556         }
2557
2558         key.objectid = sk->min_objectid;
2559         key.type = sk->min_type;
2560         key.offset = sk->min_offset;
2561
2562         while (1) {
2563                 ret = -EFAULT;
2564                 if (fault_in_writeable(ubuf + sk_offset, *buf_size - sk_offset))
2565                         break;
2566
2567                 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2568                 if (ret != 0) {
2569                         if (ret > 0)
2570                                 ret = 0;
2571                         goto err;
2572                 }
2573                 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2574                                  &sk_offset, &num_found);
2575                 btrfs_release_path(path);
2576                 if (ret)
2577                         break;
2578
2579         }
2580         if (ret > 0)
2581                 ret = 0;
2582 err:
2583         sk->nr_items = num_found;
2584         btrfs_put_root(root);
2585         btrfs_free_path(path);
2586         return ret;
2587 }
2588
2589 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
2590                                             void __user *argp)
2591 {
2592         struct btrfs_ioctl_search_args __user *uargs;
2593         struct btrfs_ioctl_search_key sk;
2594         int ret;
2595         size_t buf_size;
2596
2597         if (!capable(CAP_SYS_ADMIN))
2598                 return -EPERM;
2599
2600         uargs = (struct btrfs_ioctl_search_args __user *)argp;
2601
2602         if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2603                 return -EFAULT;
2604
2605         buf_size = sizeof(uargs->buf);
2606
2607         ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2608
2609         /*
2610          * In the origin implementation an overflow is handled by returning a
2611          * search header with a len of zero, so reset ret.
2612          */
2613         if (ret == -EOVERFLOW)
2614                 ret = 0;
2615
2616         if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2617                 ret = -EFAULT;
2618         return ret;
2619 }
2620
2621 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
2622                                                void __user *argp)
2623 {
2624         struct btrfs_ioctl_search_args_v2 __user *uarg;
2625         struct btrfs_ioctl_search_args_v2 args;
2626         int ret;
2627         size_t buf_size;
2628         const size_t buf_limit = SZ_16M;
2629
2630         if (!capable(CAP_SYS_ADMIN))
2631                 return -EPERM;
2632
2633         /* copy search header and buffer size */
2634         uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2635         if (copy_from_user(&args, uarg, sizeof(args)))
2636                 return -EFAULT;
2637
2638         buf_size = args.buf_size;
2639
2640         /* limit result size to 16MB */
2641         if (buf_size > buf_limit)
2642                 buf_size = buf_limit;
2643
2644         ret = search_ioctl(inode, &args.key, &buf_size,
2645                            (char __user *)(&uarg->buf[0]));
2646         if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2647                 ret = -EFAULT;
2648         else if (ret == -EOVERFLOW &&
2649                 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2650                 ret = -EFAULT;
2651
2652         return ret;
2653 }
2654
2655 /*
2656  * Search INODE_REFs to identify path name of 'dirid' directory
2657  * in a 'tree_id' tree. and sets path name to 'name'.
2658  */
2659 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2660                                 u64 tree_id, u64 dirid, char *name)
2661 {
2662         struct btrfs_root *root;
2663         struct btrfs_key key;
2664         char *ptr;
2665         int ret = -1;
2666         int slot;
2667         int len;
2668         int total_len = 0;
2669         struct btrfs_inode_ref *iref;
2670         struct extent_buffer *l;
2671         struct btrfs_path *path;
2672
2673         if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2674                 name[0]='\0';
2675                 return 0;
2676         }
2677
2678         path = btrfs_alloc_path();
2679         if (!path)
2680                 return -ENOMEM;
2681
2682         ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2683
2684         root = btrfs_get_fs_root(info, tree_id, true);
2685         if (IS_ERR(root)) {
2686                 ret = PTR_ERR(root);
2687                 root = NULL;
2688                 goto out;
2689         }
2690
2691         key.objectid = dirid;
2692         key.type = BTRFS_INODE_REF_KEY;
2693         key.offset = (u64)-1;
2694
2695         while (1) {
2696                 ret = btrfs_search_backwards(root, &key, path);
2697                 if (ret < 0)
2698                         goto out;
2699                 else if (ret > 0) {
2700                         ret = -ENOENT;
2701                         goto out;
2702                 }
2703
2704                 l = path->nodes[0];
2705                 slot = path->slots[0];
2706
2707                 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2708                 len = btrfs_inode_ref_name_len(l, iref);
2709                 ptr -= len + 1;
2710                 total_len += len + 1;
2711                 if (ptr < name) {
2712                         ret = -ENAMETOOLONG;
2713                         goto out;
2714                 }
2715
2716                 *(ptr + len) = '/';
2717                 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2718
2719                 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2720                         break;
2721
2722                 btrfs_release_path(path);
2723                 key.objectid = key.offset;
2724                 key.offset = (u64)-1;
2725                 dirid = key.objectid;
2726         }
2727         memmove(name, ptr, total_len);
2728         name[total_len] = '\0';
2729         ret = 0;
2730 out:
2731         btrfs_put_root(root);
2732         btrfs_free_path(path);
2733         return ret;
2734 }
2735
2736 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
2737                                 struct inode *inode,
2738                                 struct btrfs_ioctl_ino_lookup_user_args *args)
2739 {
2740         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2741         struct super_block *sb = inode->i_sb;
2742         struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2743         u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2744         u64 dirid = args->dirid;
2745         unsigned long item_off;
2746         unsigned long item_len;
2747         struct btrfs_inode_ref *iref;
2748         struct btrfs_root_ref *rref;
2749         struct btrfs_root *root = NULL;
2750         struct btrfs_path *path;
2751         struct btrfs_key key, key2;
2752         struct extent_buffer *leaf;
2753         struct inode *temp_inode;
2754         char *ptr;
2755         int slot;
2756         int len;
2757         int total_len = 0;
2758         int ret;
2759
2760         path = btrfs_alloc_path();
2761         if (!path)
2762                 return -ENOMEM;
2763
2764         /*
2765          * If the bottom subvolume does not exist directly under upper_limit,
2766          * construct the path in from the bottom up.
2767          */
2768         if (dirid != upper_limit.objectid) {
2769                 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2770
2771                 root = btrfs_get_fs_root(fs_info, treeid, true);
2772                 if (IS_ERR(root)) {
2773                         ret = PTR_ERR(root);
2774                         goto out;
2775                 }
2776
2777                 key.objectid = dirid;
2778                 key.type = BTRFS_INODE_REF_KEY;
2779                 key.offset = (u64)-1;
2780                 while (1) {
2781                         ret = btrfs_search_backwards(root, &key, path);
2782                         if (ret < 0)
2783                                 goto out_put;
2784                         else if (ret > 0) {
2785                                 ret = -ENOENT;
2786                                 goto out_put;
2787                         }
2788
2789                         leaf = path->nodes[0];
2790                         slot = path->slots[0];
2791
2792                         iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2793                         len = btrfs_inode_ref_name_len(leaf, iref);
2794                         ptr -= len + 1;
2795                         total_len += len + 1;
2796                         if (ptr < args->path) {
2797                                 ret = -ENAMETOOLONG;
2798                                 goto out_put;
2799                         }
2800
2801                         *(ptr + len) = '/';
2802                         read_extent_buffer(leaf, ptr,
2803                                         (unsigned long)(iref + 1), len);
2804
2805                         /* Check the read+exec permission of this directory */
2806                         ret = btrfs_previous_item(root, path, dirid,
2807                                                   BTRFS_INODE_ITEM_KEY);
2808                         if (ret < 0) {
2809                                 goto out_put;
2810                         } else if (ret > 0) {
2811                                 ret = -ENOENT;
2812                                 goto out_put;
2813                         }
2814
2815                         leaf = path->nodes[0];
2816                         slot = path->slots[0];
2817                         btrfs_item_key_to_cpu(leaf, &key2, slot);
2818                         if (key2.objectid != dirid) {
2819                                 ret = -ENOENT;
2820                                 goto out_put;
2821                         }
2822
2823                         temp_inode = btrfs_iget(sb, key2.objectid, root);
2824                         if (IS_ERR(temp_inode)) {
2825                                 ret = PTR_ERR(temp_inode);
2826                                 goto out_put;
2827                         }
2828                         ret = inode_permission(mnt_userns, temp_inode,
2829                                                MAY_READ | MAY_EXEC);
2830                         iput(temp_inode);
2831                         if (ret) {
2832                                 ret = -EACCES;
2833                                 goto out_put;
2834                         }
2835
2836                         if (key.offset == upper_limit.objectid)
2837                                 break;
2838                         if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2839                                 ret = -EACCES;
2840                                 goto out_put;
2841                         }
2842
2843                         btrfs_release_path(path);
2844                         key.objectid = key.offset;
2845                         key.offset = (u64)-1;
2846                         dirid = key.objectid;
2847                 }
2848
2849                 memmove(args->path, ptr, total_len);
2850                 args->path[total_len] = '\0';
2851                 btrfs_put_root(root);
2852                 root = NULL;
2853                 btrfs_release_path(path);
2854         }
2855
2856         /* Get the bottom subvolume's name from ROOT_REF */
2857         key.objectid = treeid;
2858         key.type = BTRFS_ROOT_REF_KEY;
2859         key.offset = args->treeid;
2860         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2861         if (ret < 0) {
2862                 goto out;
2863         } else if (ret > 0) {
2864                 ret = -ENOENT;
2865                 goto out;
2866         }
2867
2868         leaf = path->nodes[0];
2869         slot = path->slots[0];
2870         btrfs_item_key_to_cpu(leaf, &key, slot);
2871
2872         item_off = btrfs_item_ptr_offset(leaf, slot);
2873         item_len = btrfs_item_size(leaf, slot);
2874         /* Check if dirid in ROOT_REF corresponds to passed dirid */
2875         rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2876         if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2877                 ret = -EINVAL;
2878                 goto out;
2879         }
2880
2881         /* Copy subvolume's name */
2882         item_off += sizeof(struct btrfs_root_ref);
2883         item_len -= sizeof(struct btrfs_root_ref);
2884         read_extent_buffer(leaf, args->name, item_off, item_len);
2885         args->name[item_len] = 0;
2886
2887 out_put:
2888         btrfs_put_root(root);
2889 out:
2890         btrfs_free_path(path);
2891         return ret;
2892 }
2893
2894 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2895                                            void __user *argp)
2896 {
2897         struct btrfs_ioctl_ino_lookup_args *args;
2898         int ret = 0;
2899
2900         args = memdup_user(argp, sizeof(*args));
2901         if (IS_ERR(args))
2902                 return PTR_ERR(args);
2903
2904         /*
2905          * Unprivileged query to obtain the containing subvolume root id. The
2906          * path is reset so it's consistent with btrfs_search_path_in_tree.
2907          */
2908         if (args->treeid == 0)
2909                 args->treeid = root->root_key.objectid;
2910
2911         if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2912                 args->name[0] = 0;
2913                 goto out;
2914         }
2915
2916         if (!capable(CAP_SYS_ADMIN)) {
2917                 ret = -EPERM;
2918                 goto out;
2919         }
2920
2921         ret = btrfs_search_path_in_tree(root->fs_info,
2922                                         args->treeid, args->objectid,
2923                                         args->name);
2924
2925 out:
2926         if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2927                 ret = -EFAULT;
2928
2929         kfree(args);
2930         return ret;
2931 }
2932
2933 /*
2934  * Version of ino_lookup ioctl (unprivileged)
2935  *
2936  * The main differences from ino_lookup ioctl are:
2937  *
2938  *   1. Read + Exec permission will be checked using inode_permission() during
2939  *      path construction. -EACCES will be returned in case of failure.
2940  *   2. Path construction will be stopped at the inode number which corresponds
2941  *      to the fd with which this ioctl is called. If constructed path does not
2942  *      exist under fd's inode, -EACCES will be returned.
2943  *   3. The name of bottom subvolume is also searched and filled.
2944  */
2945 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2946 {
2947         struct btrfs_ioctl_ino_lookup_user_args *args;
2948         struct inode *inode;
2949         int ret;
2950
2951         args = memdup_user(argp, sizeof(*args));
2952         if (IS_ERR(args))
2953                 return PTR_ERR(args);
2954
2955         inode = file_inode(file);
2956
2957         if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2958             BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2959                 /*
2960                  * The subvolume does not exist under fd with which this is
2961                  * called
2962                  */
2963                 kfree(args);
2964                 return -EACCES;
2965         }
2966
2967         ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
2968
2969         if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2970                 ret = -EFAULT;
2971
2972         kfree(args);
2973         return ret;
2974 }
2975
2976 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2977 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2978 {
2979         struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2980         struct btrfs_fs_info *fs_info;
2981         struct btrfs_root *root;
2982         struct btrfs_path *path;
2983         struct btrfs_key key;
2984         struct btrfs_root_item *root_item;
2985         struct btrfs_root_ref *rref;
2986         struct extent_buffer *leaf;
2987         unsigned long item_off;
2988         unsigned long item_len;
2989         int slot;
2990         int ret = 0;
2991
2992         path = btrfs_alloc_path();
2993         if (!path)
2994                 return -ENOMEM;
2995
2996         subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2997         if (!subvol_info) {
2998                 btrfs_free_path(path);
2999                 return -ENOMEM;
3000         }
3001
3002         fs_info = BTRFS_I(inode)->root->fs_info;
3003
3004         /* Get root_item of inode's subvolume */
3005         key.objectid = BTRFS_I(inode)->root->root_key.objectid;
3006         root = btrfs_get_fs_root(fs_info, key.objectid, true);
3007         if (IS_ERR(root)) {
3008                 ret = PTR_ERR(root);
3009                 goto out_free;
3010         }
3011         root_item = &root->root_item;
3012
3013         subvol_info->treeid = key.objectid;
3014
3015         subvol_info->generation = btrfs_root_generation(root_item);
3016         subvol_info->flags = btrfs_root_flags(root_item);
3017
3018         memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
3019         memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
3020                                                     BTRFS_UUID_SIZE);
3021         memcpy(subvol_info->received_uuid, root_item->received_uuid,
3022                                                     BTRFS_UUID_SIZE);
3023
3024         subvol_info->ctransid = btrfs_root_ctransid(root_item);
3025         subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
3026         subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
3027
3028         subvol_info->otransid = btrfs_root_otransid(root_item);
3029         subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
3030         subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
3031
3032         subvol_info->stransid = btrfs_root_stransid(root_item);
3033         subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
3034         subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
3035
3036         subvol_info->rtransid = btrfs_root_rtransid(root_item);
3037         subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
3038         subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
3039
3040         if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
3041                 /* Search root tree for ROOT_BACKREF of this subvolume */
3042                 key.type = BTRFS_ROOT_BACKREF_KEY;
3043                 key.offset = 0;
3044                 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3045                 if (ret < 0) {
3046                         goto out;
3047                 } else if (path->slots[0] >=
3048                            btrfs_header_nritems(path->nodes[0])) {
3049                         ret = btrfs_next_leaf(fs_info->tree_root, path);
3050                         if (ret < 0) {
3051                                 goto out;
3052                         } else if (ret > 0) {
3053                                 ret = -EUCLEAN;
3054                                 goto out;
3055                         }
3056                 }
3057
3058                 leaf = path->nodes[0];
3059                 slot = path->slots[0];
3060                 btrfs_item_key_to_cpu(leaf, &key, slot);
3061                 if (key.objectid == subvol_info->treeid &&
3062                     key.type == BTRFS_ROOT_BACKREF_KEY) {
3063                         subvol_info->parent_id = key.offset;
3064
3065                         rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
3066                         subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
3067
3068                         item_off = btrfs_item_ptr_offset(leaf, slot)
3069                                         + sizeof(struct btrfs_root_ref);
3070                         item_len = btrfs_item_size(leaf, slot)
3071                                         - sizeof(struct btrfs_root_ref);
3072                         read_extent_buffer(leaf, subvol_info->name,
3073                                            item_off, item_len);
3074                 } else {
3075                         ret = -ENOENT;
3076                         goto out;
3077                 }
3078         }
3079
3080         if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
3081                 ret = -EFAULT;
3082
3083 out:
3084         btrfs_put_root(root);
3085 out_free:
3086         btrfs_free_path(path);
3087         kfree(subvol_info);
3088         return ret;
3089 }
3090
3091 /*
3092  * Return ROOT_REF information of the subvolume containing this inode
3093  * except the subvolume name.
3094  */
3095 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
3096                                           void __user *argp)
3097 {
3098         struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
3099         struct btrfs_root_ref *rref;
3100         struct btrfs_path *path;
3101         struct btrfs_key key;
3102         struct extent_buffer *leaf;
3103         u64 objectid;
3104         int slot;
3105         int ret;
3106         u8 found;
3107
3108         path = btrfs_alloc_path();
3109         if (!path)
3110                 return -ENOMEM;
3111
3112         rootrefs = memdup_user(argp, sizeof(*rootrefs));
3113         if (IS_ERR(rootrefs)) {
3114                 btrfs_free_path(path);
3115                 return PTR_ERR(rootrefs);
3116         }
3117
3118         objectid = root->root_key.objectid;
3119         key.objectid = objectid;
3120         key.type = BTRFS_ROOT_REF_KEY;
3121         key.offset = rootrefs->min_treeid;
3122         found = 0;
3123
3124         root = root->fs_info->tree_root;
3125         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3126         if (ret < 0) {
3127                 goto out;
3128         } else if (path->slots[0] >=
3129                    btrfs_header_nritems(path->nodes[0])) {
3130                 ret = btrfs_next_leaf(root, path);
3131                 if (ret < 0) {
3132                         goto out;
3133                 } else if (ret > 0) {
3134                         ret = -EUCLEAN;
3135                         goto out;
3136                 }
3137         }
3138         while (1) {
3139                 leaf = path->nodes[0];
3140                 slot = path->slots[0];
3141
3142                 btrfs_item_key_to_cpu(leaf, &key, slot);
3143                 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
3144                         ret = 0;
3145                         goto out;
3146                 }
3147
3148                 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
3149                         ret = -EOVERFLOW;
3150                         goto out;
3151                 }
3152
3153                 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
3154                 rootrefs->rootref[found].treeid = key.offset;
3155                 rootrefs->rootref[found].dirid =
3156                                   btrfs_root_ref_dirid(leaf, rref);
3157                 found++;
3158
3159                 ret = btrfs_next_item(root, path);
3160                 if (ret < 0) {
3161                         goto out;
3162                 } else if (ret > 0) {
3163                         ret = -EUCLEAN;
3164                         goto out;
3165                 }
3166         }
3167
3168 out:
3169         if (!ret || ret == -EOVERFLOW) {
3170                 rootrefs->num_items = found;
3171                 /* update min_treeid for next search */
3172                 if (found)
3173                         rootrefs->min_treeid =
3174                                 rootrefs->rootref[found - 1].treeid + 1;
3175                 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
3176                         ret = -EFAULT;
3177         }
3178
3179         kfree(rootrefs);
3180         btrfs_free_path(path);
3181
3182         return ret;
3183 }
3184
3185 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
3186                                              void __user *arg,
3187                                              bool destroy_v2)
3188 {
3189         struct dentry *parent = file->f_path.dentry;
3190         struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
3191         struct dentry *dentry;
3192         struct inode *dir = d_inode(parent);
3193         struct inode *inode;
3194         struct btrfs_root *root = BTRFS_I(dir)->root;
3195         struct btrfs_root *dest = NULL;
3196         struct btrfs_ioctl_vol_args *vol_args = NULL;
3197         struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
3198         struct user_namespace *mnt_userns = file_mnt_user_ns(file);
3199         char *subvol_name, *subvol_name_ptr = NULL;
3200         int subvol_namelen;
3201         int err = 0;
3202         bool destroy_parent = false;
3203
3204         /* We don't support snapshots with extent tree v2 yet. */
3205         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3206                 btrfs_err(fs_info,
3207                           "extent tree v2 doesn't support snapshot deletion yet");
3208                 return -EOPNOTSUPP;
3209         }
3210
3211         if (destroy_v2) {
3212                 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
3213                 if (IS_ERR(vol_args2))
3214                         return PTR_ERR(vol_args2);
3215
3216                 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
3217                         err = -EOPNOTSUPP;
3218                         goto out;
3219                 }
3220
3221                 /*
3222                  * If SPEC_BY_ID is not set, we are looking for the subvolume by
3223                  * name, same as v1 currently does.
3224                  */
3225                 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
3226                         vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
3227                         subvol_name = vol_args2->name;
3228
3229                         err = mnt_want_write_file(file);
3230                         if (err)
3231                                 goto out;
3232                 } else {
3233                         struct inode *old_dir;
3234
3235                         if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
3236                                 err = -EINVAL;
3237                                 goto out;
3238                         }
3239
3240                         err = mnt_want_write_file(file);
3241                         if (err)
3242                                 goto out;
3243
3244                         dentry = btrfs_get_dentry(fs_info->sb,
3245                                         BTRFS_FIRST_FREE_OBJECTID,
3246                                         vol_args2->subvolid, 0, 0);
3247                         if (IS_ERR(dentry)) {
3248                                 err = PTR_ERR(dentry);
3249                                 goto out_drop_write;
3250                         }
3251
3252                         /*
3253                          * Change the default parent since the subvolume being
3254                          * deleted can be outside of the current mount point.
3255                          */
3256                         parent = btrfs_get_parent(dentry);
3257
3258                         /*
3259                          * At this point dentry->d_name can point to '/' if the
3260                          * subvolume we want to destroy is outsite of the
3261                          * current mount point, so we need to release the
3262                          * current dentry and execute the lookup to return a new
3263                          * one with ->d_name pointing to the
3264                          * <mount point>/subvol_name.
3265                          */
3266                         dput(dentry);
3267                         if (IS_ERR(parent)) {
3268                                 err = PTR_ERR(parent);
3269                                 goto out_drop_write;
3270                         }
3271                         old_dir = dir;
3272                         dir = d_inode(parent);
3273
3274                         /*
3275                          * If v2 was used with SPEC_BY_ID, a new parent was
3276                          * allocated since the subvolume can be outside of the
3277                          * current mount point. Later on we need to release this
3278                          * new parent dentry.
3279                          */
3280                         destroy_parent = true;
3281
3282                         /*
3283                          * On idmapped mounts, deletion via subvolid is
3284                          * restricted to subvolumes that are immediate
3285                          * ancestors of the inode referenced by the file
3286                          * descriptor in the ioctl. Otherwise the idmapping
3287                          * could potentially be abused to delete subvolumes
3288                          * anywhere in the filesystem the user wouldn't be able
3289                          * to delete without an idmapped mount.
3290                          */
3291                         if (old_dir != dir && mnt_userns != &init_user_ns) {
3292                                 err = -EOPNOTSUPP;
3293                                 goto free_parent;
3294                         }
3295
3296                         subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
3297                                                 fs_info, vol_args2->subvolid);
3298                         if (IS_ERR(subvol_name_ptr)) {
3299                                 err = PTR_ERR(subvol_name_ptr);
3300                                 goto free_parent;
3301                         }
3302                         /* subvol_name_ptr is already nul terminated */
3303                         subvol_name = (char *)kbasename(subvol_name_ptr);
3304                 }
3305         } else {
3306                 vol_args = memdup_user(arg, sizeof(*vol_args));
3307                 if (IS_ERR(vol_args))
3308                         return PTR_ERR(vol_args);
3309
3310                 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3311                 subvol_name = vol_args->name;
3312
3313                 err = mnt_want_write_file(file);
3314                 if (err)
3315                         goto out;
3316         }
3317
3318         subvol_namelen = strlen(subvol_name);
3319
3320         if (strchr(subvol_name, '/') ||
3321             strncmp(subvol_name, "..", subvol_namelen) == 0) {
3322                 err = -EINVAL;
3323                 goto free_subvol_name;
3324         }
3325
3326         if (!S_ISDIR(dir->i_mode)) {
3327                 err = -ENOTDIR;
3328                 goto free_subvol_name;
3329         }
3330
3331         err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3332         if (err == -EINTR)
3333                 goto free_subvol_name;
3334         dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
3335         if (IS_ERR(dentry)) {
3336                 err = PTR_ERR(dentry);
3337                 goto out_unlock_dir;
3338         }
3339
3340         if (d_really_is_negative(dentry)) {
3341                 err = -ENOENT;
3342                 goto out_dput;
3343         }
3344
3345         inode = d_inode(dentry);
3346         dest = BTRFS_I(inode)->root;
3347         if (!capable(CAP_SYS_ADMIN)) {
3348                 /*
3349                  * Regular user.  Only allow this with a special mount
3350                  * option, when the user has write+exec access to the
3351                  * subvol root, and when rmdir(2) would have been
3352                  * allowed.
3353                  *
3354                  * Note that this is _not_ check that the subvol is
3355                  * empty or doesn't contain data that we wouldn't
3356                  * otherwise be able to delete.
3357                  *
3358                  * Users who want to delete empty subvols should try
3359                  * rmdir(2).
3360                  */
3361                 err = -EPERM;
3362                 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3363                         goto out_dput;
3364
3365                 /*
3366                  * Do not allow deletion if the parent dir is the same
3367                  * as the dir to be deleted.  That means the ioctl
3368                  * must be called on the dentry referencing the root
3369                  * of the subvol, not a random directory contained
3370                  * within it.
3371                  */
3372                 err = -EINVAL;
3373                 if (root == dest)
3374                         goto out_dput;
3375
3376                 err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
3377                 if (err)
3378                         goto out_dput;
3379         }
3380
3381         /* check if subvolume may be deleted by a user */
3382         err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
3383         if (err)
3384                 goto out_dput;
3385
3386         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3387                 err = -EINVAL;
3388                 goto out_dput;
3389         }
3390
3391         btrfs_inode_lock(inode, 0);
3392         err = btrfs_delete_subvolume(dir, dentry);
3393         btrfs_inode_unlock(inode, 0);
3394         if (!err)
3395                 d_delete_notify(dir, dentry);
3396
3397 out_dput:
3398         dput(dentry);
3399 out_unlock_dir:
3400         btrfs_inode_unlock(dir, 0);
3401 free_subvol_name:
3402         kfree(subvol_name_ptr);
3403 free_parent:
3404         if (destroy_parent)
3405                 dput(parent);
3406 out_drop_write:
3407         mnt_drop_write_file(file);
3408 out:
3409         kfree(vol_args2);
3410         kfree(vol_args);
3411         return err;
3412 }
3413
3414 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3415 {
3416         struct inode *inode = file_inode(file);
3417         struct btrfs_root *root = BTRFS_I(inode)->root;
3418         struct btrfs_ioctl_defrag_range_args range = {0};
3419         int ret;
3420
3421         ret = mnt_want_write_file(file);
3422         if (ret)
3423                 return ret;
3424
3425         if (btrfs_root_readonly(root)) {
3426                 ret = -EROFS;
3427                 goto out;
3428         }
3429
3430         switch (inode->i_mode & S_IFMT) {
3431         case S_IFDIR:
3432                 if (!capable(CAP_SYS_ADMIN)) {
3433                         ret = -EPERM;
3434                         goto out;
3435                 }
3436                 ret = btrfs_defrag_root(root);
3437                 break;
3438         case S_IFREG:
3439                 /*
3440                  * Note that this does not check the file descriptor for write
3441                  * access. This prevents defragmenting executables that are
3442                  * running and allows defrag on files open in read-only mode.
3443                  */
3444                 if (!capable(CAP_SYS_ADMIN) &&
3445                     inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3446                         ret = -EPERM;
3447                         goto out;
3448                 }
3449
3450                 if (argp) {
3451                         if (copy_from_user(&range, argp, sizeof(range))) {
3452                                 ret = -EFAULT;
3453                                 goto out;
3454                         }
3455                         /* compression requires us to start the IO */
3456                         if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3457                                 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
3458                                 range.extent_thresh = (u32)-1;
3459                         }
3460                 } else {
3461                         /* the rest are all set to zero by kzalloc */
3462                         range.len = (u64)-1;
3463                 }
3464                 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
3465                                         &range, BTRFS_OLDEST_GENERATION, 0);
3466                 if (ret > 0)
3467                         ret = 0;
3468                 break;
3469         default:
3470                 ret = -EINVAL;
3471         }
3472 out:
3473         mnt_drop_write_file(file);
3474         return ret;
3475 }
3476
3477 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3478 {
3479         struct btrfs_ioctl_vol_args *vol_args;
3480         bool restore_op = false;
3481         int ret;
3482
3483         if (!capable(CAP_SYS_ADMIN))
3484                 return -EPERM;
3485
3486         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3487                 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
3488                 return -EINVAL;
3489         }
3490
3491         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
3492                 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
3493                         return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3494
3495                 /*
3496                  * We can do the device add because we have a paused balanced,
3497                  * change the exclusive op type and remember we should bring
3498                  * back the paused balance
3499                  */
3500                 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
3501                 btrfs_exclop_start_unlock(fs_info);
3502                 restore_op = true;
3503         }
3504
3505         vol_args = memdup_user(arg, sizeof(*vol_args));
3506         if (IS_ERR(vol_args)) {
3507                 ret = PTR_ERR(vol_args);
3508                 goto out;
3509         }
3510
3511         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3512         ret = btrfs_init_new_device(fs_info, vol_args->name);
3513
3514         if (!ret)
3515                 btrfs_info(fs_info, "disk added %s", vol_args->name);
3516
3517         kfree(vol_args);
3518 out:
3519         if (restore_op)
3520                 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
3521         else
3522                 btrfs_exclop_finish(fs_info);
3523         return ret;
3524 }
3525
3526 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3527 {
3528         BTRFS_DEV_LOOKUP_ARGS(args);
3529         struct inode *inode = file_inode(file);
3530         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3531         struct btrfs_ioctl_vol_args_v2 *vol_args;
3532         struct block_device *bdev = NULL;
3533         fmode_t mode;
3534         int ret;
3535         bool cancel = false;
3536
3537         if (!capable(CAP_SYS_ADMIN))
3538                 return -EPERM;
3539
3540         vol_args = memdup_user(arg, sizeof(*vol_args));
3541         if (IS_ERR(vol_args))
3542                 return PTR_ERR(vol_args);
3543
3544         if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3545                 ret = -EOPNOTSUPP;
3546                 goto out;
3547         }
3548
3549         vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3550         if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3551                 args.devid = vol_args->devid;
3552         } else if (!strcmp("cancel", vol_args->name)) {
3553                 cancel = true;
3554         } else {
3555                 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3556                 if (ret)
3557                         goto out;
3558         }
3559
3560         ret = mnt_want_write_file(file);
3561         if (ret)
3562                 goto out;
3563
3564         ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3565                                            cancel);
3566         if (ret)
3567                 goto err_drop;
3568
3569         /* Exclusive operation is now claimed */
3570         ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3571
3572         btrfs_exclop_finish(fs_info);
3573
3574         if (!ret) {
3575                 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3576                         btrfs_info(fs_info, "device deleted: id %llu",
3577                                         vol_args->devid);
3578                 else
3579                         btrfs_info(fs_info, "device deleted: %s",
3580                                         vol_args->name);
3581         }
3582 err_drop:
3583         mnt_drop_write_file(file);
3584         if (bdev)
3585                 blkdev_put(bdev, mode);
3586 out:
3587         btrfs_put_dev_args_from_path(&args);
3588         kfree(vol_args);
3589         return ret;
3590 }
3591
3592 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3593 {
3594         BTRFS_DEV_LOOKUP_ARGS(args);
3595         struct inode *inode = file_inode(file);
3596         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3597         struct btrfs_ioctl_vol_args *vol_args;
3598         struct block_device *bdev = NULL;
3599         fmode_t mode;
3600         int ret;
3601         bool cancel = false;
3602
3603         if (!capable(CAP_SYS_ADMIN))
3604                 return -EPERM;
3605
3606         vol_args = memdup_user(arg, sizeof(*vol_args));
3607         if (IS_ERR(vol_args))
3608                 return PTR_ERR(vol_args);
3609
3610         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3611         if (!strcmp("cancel", vol_args->name)) {
3612                 cancel = true;
3613         } else {
3614                 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3615                 if (ret)
3616                         goto out;
3617         }
3618
3619         ret = mnt_want_write_file(file);
3620         if (ret)
3621                 goto out;
3622
3623         ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3624                                            cancel);
3625         if (ret == 0) {
3626                 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3627                 if (!ret)
3628                         btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3629                 btrfs_exclop_finish(fs_info);
3630         }
3631
3632         mnt_drop_write_file(file);
3633         if (bdev)
3634                 blkdev_put(bdev, mode);
3635 out:
3636         btrfs_put_dev_args_from_path(&args);
3637         kfree(vol_args);
3638         return ret;
3639 }
3640
3641 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3642                                 void __user *arg)
3643 {
3644         struct btrfs_ioctl_fs_info_args *fi_args;
3645         struct btrfs_device *device;
3646         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3647         u64 flags_in;
3648         int ret = 0;
3649
3650         fi_args = memdup_user(arg, sizeof(*fi_args));
3651         if (IS_ERR(fi_args))
3652                 return PTR_ERR(fi_args);
3653
3654         flags_in = fi_args->flags;
3655         memset(fi_args, 0, sizeof(*fi_args));
3656
3657         rcu_read_lock();
3658         fi_args->num_devices = fs_devices->num_devices;
3659
3660         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3661                 if (device->devid > fi_args->max_id)
3662                         fi_args->max_id = device->devid;
3663         }
3664         rcu_read_unlock();
3665
3666         memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3667         fi_args->nodesize = fs_info->nodesize;
3668         fi_args->sectorsize = fs_info->sectorsize;
3669         fi_args->clone_alignment = fs_info->sectorsize;
3670
3671         if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3672                 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3673                 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3674                 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3675         }
3676
3677         if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3678                 fi_args->generation = fs_info->generation;
3679                 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3680         }
3681
3682         if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3683                 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3684                        sizeof(fi_args->metadata_uuid));
3685                 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3686         }
3687
3688         if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3689                 ret = -EFAULT;
3690
3691         kfree(fi_args);
3692         return ret;
3693 }
3694
3695 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3696                                  void __user *arg)
3697 {
3698         BTRFS_DEV_LOOKUP_ARGS(args);
3699         struct btrfs_ioctl_dev_info_args *di_args;
3700         struct btrfs_device *dev;
3701         int ret = 0;
3702
3703         di_args = memdup_user(arg, sizeof(*di_args));
3704         if (IS_ERR(di_args))
3705                 return PTR_ERR(di_args);
3706
3707         args.devid = di_args->devid;
3708         if (!btrfs_is_empty_uuid(di_args->uuid))
3709                 args.uuid = di_args->uuid;
3710
3711         rcu_read_lock();
3712         dev = btrfs_find_device(fs_info->fs_devices, &args);
3713         if (!dev) {
3714                 ret = -ENODEV;
3715                 goto out;
3716         }
3717
3718         di_args->devid = dev->devid;
3719         di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3720         di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3721         memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3722         if (dev->name) {
3723                 strncpy(di_args->path, rcu_str_deref(dev->name),
3724                                 sizeof(di_args->path) - 1);
3725                 di_args->path[sizeof(di_args->path) - 1] = 0;
3726         } else {
3727                 di_args->path[0] = '\0';
3728         }
3729
3730 out:
3731         rcu_read_unlock();
3732         if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3733                 ret = -EFAULT;
3734
3735         kfree(di_args);
3736         return ret;
3737 }
3738
3739 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3740 {
3741         struct inode *inode = file_inode(file);
3742         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3743         struct btrfs_root *root = BTRFS_I(inode)->root;
3744         struct btrfs_root *new_root;
3745         struct btrfs_dir_item *di;
3746         struct btrfs_trans_handle *trans;
3747         struct btrfs_path *path = NULL;
3748         struct btrfs_disk_key disk_key;
3749         u64 objectid = 0;
3750         u64 dir_id;
3751         int ret;
3752
3753         if (!capable(CAP_SYS_ADMIN))
3754                 return -EPERM;
3755
3756         ret = mnt_want_write_file(file);
3757         if (ret)
3758                 return ret;
3759
3760         if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3761                 ret = -EFAULT;
3762                 goto out;
3763         }
3764
3765         if (!objectid)
3766                 objectid = BTRFS_FS_TREE_OBJECTID;
3767
3768         new_root = btrfs_get_fs_root(fs_info, objectid, true);
3769         if (IS_ERR(new_root)) {
3770                 ret = PTR_ERR(new_root);
3771                 goto out;
3772         }
3773         if (!is_fstree(new_root->root_key.objectid)) {
3774                 ret = -ENOENT;
3775                 goto out_free;
3776         }
3777
3778         path = btrfs_alloc_path();
3779         if (!path) {
3780                 ret = -ENOMEM;
3781                 goto out_free;
3782         }
3783
3784         trans = btrfs_start_transaction(root, 1);
3785         if (IS_ERR(trans)) {
3786                 ret = PTR_ERR(trans);
3787                 goto out_free;
3788         }
3789
3790         dir_id = btrfs_super_root_dir(fs_info->super_copy);
3791         di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3792                                    dir_id, "default", 7, 1);
3793         if (IS_ERR_OR_NULL(di)) {
3794                 btrfs_release_path(path);
3795                 btrfs_end_transaction(trans);
3796                 btrfs_err(fs_info,
3797                           "Umm, you don't have the default diritem, this isn't going to work");
3798                 ret = -ENOENT;
3799                 goto out_free;
3800         }
3801
3802         btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3803         btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3804         btrfs_mark_buffer_dirty(path->nodes[0]);
3805         btrfs_release_path(path);
3806
3807         btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3808         btrfs_end_transaction(trans);
3809 out_free:
3810         btrfs_put_root(new_root);
3811         btrfs_free_path(path);
3812 out:
3813         mnt_drop_write_file(file);
3814         return ret;
3815 }
3816
3817 static void get_block_group_info(struct list_head *groups_list,
3818                                  struct btrfs_ioctl_space_info *space)
3819 {
3820         struct btrfs_block_group *block_group;
3821
3822         space->total_bytes = 0;
3823         space->used_bytes = 0;
3824         space->flags = 0;
3825         list_for_each_entry(block_group, groups_list, list) {
3826                 space->flags = block_group->flags;
3827                 space->total_bytes += block_group->length;
3828                 space->used_bytes += block_group->used;
3829         }
3830 }
3831
3832 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3833                                    void __user *arg)
3834 {
3835         struct btrfs_ioctl_space_args space_args;
3836         struct btrfs_ioctl_space_info space;
3837         struct btrfs_ioctl_space_info *dest;
3838         struct btrfs_ioctl_space_info *dest_orig;
3839         struct btrfs_ioctl_space_info __user *user_dest;
3840         struct btrfs_space_info *info;
3841         static const u64 types[] = {
3842                 BTRFS_BLOCK_GROUP_DATA,
3843                 BTRFS_BLOCK_GROUP_SYSTEM,
3844                 BTRFS_BLOCK_GROUP_METADATA,
3845                 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3846         };
3847         int num_types = 4;
3848         int alloc_size;
3849         int ret = 0;
3850         u64 slot_count = 0;
3851         int i, c;
3852
3853         if (copy_from_user(&space_args,
3854                            (struct btrfs_ioctl_space_args __user *)arg,
3855                            sizeof(space_args)))
3856                 return -EFAULT;
3857
3858         for (i = 0; i < num_types; i++) {
3859                 struct btrfs_space_info *tmp;
3860
3861                 info = NULL;
3862                 list_for_each_entry(tmp, &fs_info->space_info, list) {
3863                         if (tmp->flags == types[i]) {
3864                                 info = tmp;
3865                                 break;
3866                         }
3867                 }
3868
3869                 if (!info)
3870                         continue;
3871
3872                 down_read(&info->groups_sem);
3873                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3874                         if (!list_empty(&info->block_groups[c]))
3875                                 slot_count++;
3876                 }
3877                 up_read(&info->groups_sem);
3878         }
3879
3880         /*
3881          * Global block reserve, exported as a space_info
3882          */
3883         slot_count++;
3884
3885         /* space_slots == 0 means they are asking for a count */
3886         if (space_args.space_slots == 0) {
3887                 space_args.total_spaces = slot_count;
3888                 goto out;
3889         }
3890
3891         slot_count = min_t(u64, space_args.space_slots, slot_count);
3892
3893         alloc_size = sizeof(*dest) * slot_count;
3894
3895         /* we generally have at most 6 or so space infos, one for each raid
3896          * level.  So, a whole page should be more than enough for everyone
3897          */
3898         if (alloc_size > PAGE_SIZE)
3899                 return -ENOMEM;
3900
3901         space_args.total_spaces = 0;
3902         dest = kmalloc(alloc_size, GFP_KERNEL);
3903         if (!dest)
3904                 return -ENOMEM;
3905         dest_orig = dest;
3906
3907         /* now we have a buffer to copy into */
3908         for (i = 0; i < num_types; i++) {
3909                 struct btrfs_space_info *tmp;
3910
3911                 if (!slot_count)
3912                         break;
3913
3914                 info = NULL;
3915                 list_for_each_entry(tmp, &fs_info->space_info, list) {
3916                         if (tmp->flags == types[i]) {
3917                                 info = tmp;
3918                                 break;
3919                         }
3920                 }
3921
3922                 if (!info)
3923                         continue;
3924                 down_read(&info->groups_sem);
3925                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3926                         if (!list_empty(&info->block_groups[c])) {
3927                                 get_block_group_info(&info->block_groups[c],
3928                                                      &space);
3929                                 memcpy(dest, &space, sizeof(space));
3930                                 dest++;
3931                                 space_args.total_spaces++;
3932                                 slot_count--;
3933                         }
3934                         if (!slot_count)
3935                                 break;
3936                 }
3937                 up_read(&info->groups_sem);
3938         }
3939
3940         /*
3941          * Add global block reserve
3942          */
3943         if (slot_count) {
3944                 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3945
3946                 spin_lock(&block_rsv->lock);
3947                 space.total_bytes = block_rsv->size;
3948                 space.used_bytes = block_rsv->size - block_rsv->reserved;
3949                 spin_unlock(&block_rsv->lock);
3950                 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3951                 memcpy(dest, &space, sizeof(space));
3952                 space_args.total_spaces++;
3953         }
3954
3955         user_dest = (struct btrfs_ioctl_space_info __user *)
3956                 (arg + sizeof(struct btrfs_ioctl_space_args));
3957
3958         if (copy_to_user(user_dest, dest_orig, alloc_size))
3959                 ret = -EFAULT;
3960
3961         kfree(dest_orig);
3962 out:
3963         if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3964                 ret = -EFAULT;
3965
3966         return ret;
3967 }
3968
3969 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3970                                             void __user *argp)
3971 {
3972         struct btrfs_trans_handle *trans;
3973         u64 transid;
3974
3975         trans = btrfs_attach_transaction_barrier(root);
3976         if (IS_ERR(trans)) {
3977                 if (PTR_ERR(trans) != -ENOENT)
3978                         return PTR_ERR(trans);
3979
3980                 /* No running transaction, don't bother */
3981                 transid = root->fs_info->last_trans_committed;
3982                 goto out;
3983         }
3984         transid = trans->transid;
3985         btrfs_commit_transaction_async(trans);
3986 out:
3987         if (argp)
3988                 if (copy_to_user(argp, &transid, sizeof(transid)))
3989                         return -EFAULT;
3990         return 0;
3991 }
3992
3993 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3994                                            void __user *argp)
3995 {
3996         u64 transid;
3997
3998         if (argp) {
3999                 if (copy_from_user(&transid, argp, sizeof(transid)))
4000                         return -EFAULT;
4001         } else {
4002                 transid = 0;  /* current trans */
4003         }
4004         return btrfs_wait_for_commit(fs_info, transid);
4005 }
4006
4007 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4008 {
4009         struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4010         struct btrfs_ioctl_scrub_args *sa;
4011         int ret;
4012
4013         if (!capable(CAP_SYS_ADMIN))
4014                 return -EPERM;
4015
4016         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
4017                 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
4018                 return -EINVAL;
4019         }
4020
4021         sa = memdup_user(arg, sizeof(*sa));
4022         if (IS_ERR(sa))
4023                 return PTR_ERR(sa);
4024
4025         if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4026                 ret = mnt_want_write_file(file);
4027                 if (ret)
4028                         goto out;
4029         }
4030
4031         ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4032                               &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4033                               0);
4034
4035         /*
4036          * Copy scrub args to user space even if btrfs_scrub_dev() returned an
4037          * error. This is important as it allows user space to know how much
4038          * progress scrub has done. For example, if scrub is canceled we get
4039          * -ECANCELED from btrfs_scrub_dev() and return that error back to user
4040          * space. Later user space can inspect the progress from the structure
4041          * btrfs_ioctl_scrub_args and resume scrub from where it left off
4042          * previously (btrfs-progs does this).
4043          * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
4044          * then return -EFAULT to signal the structure was not copied or it may
4045          * be corrupt and unreliable due to a partial copy.
4046          */
4047         if (copy_to_user(arg, sa, sizeof(*sa)))
4048                 ret = -EFAULT;
4049
4050         if (!(sa->flags & BTRFS_SCRUB_READONLY))
4051                 mnt_drop_write_file(file);
4052 out:
4053         kfree(sa);
4054         return ret;
4055 }
4056
4057 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4058 {
4059         if (!capable(CAP_SYS_ADMIN))
4060                 return -EPERM;
4061
4062         return btrfs_scrub_cancel(fs_info);
4063 }
4064
4065 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4066                                        void __user *arg)
4067 {
4068         struct btrfs_ioctl_scrub_args *sa;
4069         int ret;
4070
4071         if (!capable(CAP_SYS_ADMIN))
4072                 return -EPERM;
4073
4074         sa = memdup_user(arg, sizeof(*sa));
4075         if (IS_ERR(sa))
4076                 return PTR_ERR(sa);
4077
4078         ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4079
4080         if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4081                 ret = -EFAULT;
4082
4083         kfree(sa);
4084         return ret;
4085 }
4086
4087 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4088                                       void __user *arg)
4089 {
4090         struct btrfs_ioctl_get_dev_stats *sa;
4091         int ret;
4092
4093         sa = memdup_user(arg, sizeof(*sa));
4094         if (IS_ERR(sa))
4095                 return PTR_ERR(sa);
4096
4097         if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4098                 kfree(sa);
4099                 return -EPERM;
4100         }
4101
4102         ret = btrfs_get_dev_stats(fs_info, sa);
4103
4104         if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4105                 ret = -EFAULT;
4106
4107         kfree(sa);
4108         return ret;
4109 }
4110
4111 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4112                                     void __user *arg)
4113 {
4114         struct btrfs_ioctl_dev_replace_args *p;
4115         int ret;
4116
4117         if (!capable(CAP_SYS_ADMIN))
4118                 return -EPERM;
4119
4120         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
4121                 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
4122                 return -EINVAL;
4123         }
4124
4125         p = memdup_user(arg, sizeof(*p));
4126         if (IS_ERR(p))
4127                 return PTR_ERR(p);
4128
4129         switch (p->cmd) {
4130         case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4131                 if (sb_rdonly(fs_info->sb)) {
4132                         ret = -EROFS;
4133                         goto out;
4134                 }
4135                 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
4136                         ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4137                 } else {
4138                         ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4139                         btrfs_exclop_finish(fs_info);
4140                 }
4141                 break;
4142         case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4143                 btrfs_dev_replace_status(fs_info, p);
4144                 ret = 0;
4145                 break;
4146         case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4147                 p->result = btrfs_dev_replace_cancel(fs_info);
4148                 ret = 0;
4149                 break;
4150         default:
4151                 ret = -EINVAL;
4152                 break;
4153         }
4154
4155         if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
4156                 ret = -EFAULT;
4157 out:
4158         kfree(p);
4159         return ret;
4160 }
4161
4162 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4163 {
4164         int ret = 0;
4165         int i;
4166         u64 rel_ptr;
4167         int size;
4168         struct btrfs_ioctl_ino_path_args *ipa = NULL;
4169         struct inode_fs_paths *ipath = NULL;
4170         struct btrfs_path *path;
4171
4172         if (!capable(CAP_DAC_READ_SEARCH))
4173                 return -EPERM;
4174
4175         path = btrfs_alloc_path();
4176         if (!path) {
4177                 ret = -ENOMEM;
4178                 goto out;
4179         }
4180
4181         ipa = memdup_user(arg, sizeof(*ipa));
4182         if (IS_ERR(ipa)) {
4183                 ret = PTR_ERR(ipa);
4184                 ipa = NULL;
4185                 goto out;
4186         }
4187
4188         size = min_t(u32, ipa->size, 4096);
4189         ipath = init_ipath(size, root, path);
4190         if (IS_ERR(ipath)) {
4191                 ret = PTR_ERR(ipath);
4192                 ipath = NULL;
4193                 goto out;
4194         }
4195
4196         ret = paths_from_inode(ipa->inum, ipath);
4197         if (ret < 0)
4198                 goto out;
4199
4200         for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4201                 rel_ptr = ipath->fspath->val[i] -
4202                           (u64)(unsigned long)ipath->fspath->val;
4203                 ipath->fspath->val[i] = rel_ptr;
4204         }
4205
4206         ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4207                            ipath->fspath, size);
4208         if (ret) {
4209                 ret = -EFAULT;
4210                 goto out;
4211         }
4212
4213 out:
4214         btrfs_free_path(path);
4215         free_ipath(ipath);
4216         kfree(ipa);
4217
4218         return ret;
4219 }
4220
4221 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4222 {
4223         struct btrfs_data_container *inodes = ctx;
4224         const size_t c = 3 * sizeof(u64);
4225
4226         if (inodes->bytes_left >= c) {
4227                 inodes->bytes_left -= c;
4228                 inodes->val[inodes->elem_cnt] = inum;
4229                 inodes->val[inodes->elem_cnt + 1] = offset;
4230                 inodes->val[inodes->elem_cnt + 2] = root;
4231                 inodes->elem_cnt += 3;
4232         } else {
4233                 inodes->bytes_missing += c - inodes->bytes_left;
4234                 inodes->bytes_left = 0;
4235                 inodes->elem_missed += 3;
4236         }
4237
4238         return 0;
4239 }
4240
4241 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4242                                         void __user *arg, int version)
4243 {
4244         int ret = 0;
4245         int size;
4246         struct btrfs_ioctl_logical_ino_args *loi;
4247         struct btrfs_data_container *inodes = NULL;
4248         struct btrfs_path *path = NULL;
4249         bool ignore_offset;
4250
4251         if (!capable(CAP_SYS_ADMIN))
4252                 return -EPERM;
4253
4254         loi = memdup_user(arg, sizeof(*loi));
4255         if (IS_ERR(loi))
4256                 return PTR_ERR(loi);
4257
4258         if (version == 1) {
4259                 ignore_offset = false;
4260                 size = min_t(u32, loi->size, SZ_64K);
4261         } else {
4262                 /* All reserved bits must be 0 for now */
4263                 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4264                         ret = -EINVAL;
4265                         goto out_loi;
4266                 }
4267                 /* Only accept flags we have defined so far */
4268                 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4269                         ret = -EINVAL;
4270                         goto out_loi;
4271                 }
4272                 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4273                 size = min_t(u32, loi->size, SZ_16M);
4274         }
4275
4276         path = btrfs_alloc_path();
4277         if (!path) {
4278                 ret = -ENOMEM;
4279                 goto out;
4280         }
4281
4282         inodes = init_data_container(size);
4283         if (IS_ERR(inodes)) {
4284                 ret = PTR_ERR(inodes);
4285                 inodes = NULL;
4286                 goto out;
4287         }
4288
4289         ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4290                                           build_ino_list, inodes, ignore_offset);
4291         if (ret == -EINVAL)
4292                 ret = -ENOENT;
4293         if (ret < 0)
4294                 goto out;
4295
4296         ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4297                            size);
4298         if (ret)
4299                 ret = -EFAULT;
4300
4301 out:
4302         btrfs_free_path(path);
4303         kvfree(inodes);
4304 out_loi:
4305         kfree(loi);
4306
4307         return ret;
4308 }
4309
4310 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4311                                struct btrfs_ioctl_balance_args *bargs)
4312 {
4313         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4314
4315         bargs->flags = bctl->flags;
4316
4317         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4318                 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4319         if (atomic_read(&fs_info->balance_pause_req))
4320                 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4321         if (atomic_read(&fs_info->balance_cancel_req))
4322                 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4323
4324         memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4325         memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4326         memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4327
4328         spin_lock(&fs_info->balance_lock);
4329         memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4330         spin_unlock(&fs_info->balance_lock);
4331 }
4332
4333 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4334 {
4335         struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4336         struct btrfs_fs_info *fs_info = root->fs_info;
4337         struct btrfs_ioctl_balance_args *bargs;
4338         struct btrfs_balance_control *bctl;
4339         bool need_unlock; /* for mut. excl. ops lock */
4340         int ret;
4341
4342         if (!arg)
4343                 btrfs_warn(fs_info,
4344         "IOC_BALANCE ioctl (v1) is deprecated and will be removed in kernel 5.18");
4345
4346         if (!capable(CAP_SYS_ADMIN))
4347                 return -EPERM;
4348
4349         ret = mnt_want_write_file(file);
4350         if (ret)
4351                 return ret;
4352
4353 again:
4354         if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4355                 mutex_lock(&fs_info->balance_mutex);
4356                 need_unlock = true;
4357                 goto locked;
4358         }
4359
4360         /*
4361          * mut. excl. ops lock is locked.  Three possibilities:
4362          *   (1) some other op is running
4363          *   (2) balance is running
4364          *   (3) balance is paused -- special case (think resume)
4365          */
4366         mutex_lock(&fs_info->balance_mutex);
4367         if (fs_info->balance_ctl) {
4368                 /* this is either (2) or (3) */
4369                 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4370                         mutex_unlock(&fs_info->balance_mutex);
4371                         /*
4372                          * Lock released to allow other waiters to continue,
4373                          * we'll reexamine the status again.
4374                          */
4375                         mutex_lock(&fs_info->balance_mutex);
4376
4377                         if (fs_info->balance_ctl &&
4378                             !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4379                                 /* this is (3) */
4380                                 need_unlock = false;
4381                                 goto locked;
4382                         }
4383
4384                         mutex_unlock(&fs_info->balance_mutex);
4385                         goto again;
4386                 } else {
4387                         /* this is (2) */
4388                         mutex_unlock(&fs_info->balance_mutex);
4389                         ret = -EINPROGRESS;
4390                         goto out;
4391                 }
4392         } else {
4393                 /* this is (1) */
4394                 mutex_unlock(&fs_info->balance_mutex);
4395                 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4396                 goto out;
4397         }
4398
4399 locked:
4400
4401         if (arg) {
4402                 bargs = memdup_user(arg, sizeof(*bargs));
4403                 if (IS_ERR(bargs)) {
4404                         ret = PTR_ERR(bargs);
4405                         goto out_unlock;
4406                 }
4407
4408                 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4409                         if (!fs_info->balance_ctl) {
4410                                 ret = -ENOTCONN;
4411                                 goto out_bargs;
4412                         }
4413
4414                         bctl = fs_info->balance_ctl;
4415                         spin_lock(&fs_info->balance_lock);
4416                         bctl->flags |= BTRFS_BALANCE_RESUME;
4417                         spin_unlock(&fs_info->balance_lock);
4418                         btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
4419
4420                         goto do_balance;
4421                 }
4422         } else {
4423                 bargs = NULL;
4424         }
4425
4426         if (fs_info->balance_ctl) {
4427                 ret = -EINPROGRESS;
4428                 goto out_bargs;
4429         }
4430
4431         bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4432         if (!bctl) {
4433                 ret = -ENOMEM;
4434                 goto out_bargs;
4435         }
4436
4437         if (arg) {
4438                 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4439                 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4440                 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4441
4442                 bctl->flags = bargs->flags;
4443         } else {
4444                 /* balance everything - no filters */
4445                 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4446         }
4447
4448         if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4449                 ret = -EINVAL;
4450                 goto out_bctl;
4451         }
4452
4453 do_balance:
4454         /*
4455          * Ownership of bctl and exclusive operation goes to btrfs_balance.
4456          * bctl is freed in reset_balance_state, or, if restriper was paused
4457          * all the way until unmount, in free_fs_info.  The flag should be
4458          * cleared after reset_balance_state.
4459          */
4460         need_unlock = false;
4461
4462         ret = btrfs_balance(fs_info, bctl, bargs);
4463         bctl = NULL;
4464
4465         if ((ret == 0 || ret == -ECANCELED) && arg) {
4466                 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4467                         ret = -EFAULT;
4468         }
4469
4470 out_bctl:
4471         kfree(bctl);
4472 out_bargs:
4473         kfree(bargs);
4474 out_unlock:
4475         mutex_unlock(&fs_info->balance_mutex);
4476         if (need_unlock)
4477                 btrfs_exclop_finish(fs_info);
4478 out:
4479         mnt_drop_write_file(file);
4480         return ret;
4481 }
4482
4483 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4484 {
4485         if (!capable(CAP_SYS_ADMIN))
4486                 return -EPERM;
4487
4488         switch (cmd) {
4489         case BTRFS_BALANCE_CTL_PAUSE:
4490                 return btrfs_pause_balance(fs_info);
4491         case BTRFS_BALANCE_CTL_CANCEL:
4492                 return btrfs_cancel_balance(fs_info);
4493         }
4494
4495         return -EINVAL;
4496 }
4497
4498 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4499                                          void __user *arg)
4500 {
4501         struct btrfs_ioctl_balance_args *bargs;
4502         int ret = 0;
4503
4504         if (!capable(CAP_SYS_ADMIN))
4505                 return -EPERM;
4506
4507         mutex_lock(&fs_info->balance_mutex);
4508         if (!fs_info->balance_ctl) {
4509                 ret = -ENOTCONN;
4510                 goto out;
4511         }
4512
4513         bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4514         if (!bargs) {
4515                 ret = -ENOMEM;
4516                 goto out;
4517         }
4518
4519         btrfs_update_ioctl_balance_args(fs_info, bargs);
4520
4521         if (copy_to_user(arg, bargs, sizeof(*bargs)))
4522                 ret = -EFAULT;
4523
4524         kfree(bargs);
4525 out:
4526         mutex_unlock(&fs_info->balance_mutex);
4527         return ret;
4528 }
4529
4530 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4531 {
4532         struct inode *inode = file_inode(file);
4533         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4534         struct btrfs_ioctl_quota_ctl_args *sa;
4535         int ret;
4536
4537         if (!capable(CAP_SYS_ADMIN))
4538                 return -EPERM;
4539
4540         ret = mnt_want_write_file(file);
4541         if (ret)
4542                 return ret;
4543
4544         sa = memdup_user(arg, sizeof(*sa));
4545         if (IS_ERR(sa)) {
4546                 ret = PTR_ERR(sa);
4547                 goto drop_write;
4548         }
4549
4550         down_write(&fs_info->subvol_sem);
4551
4552         switch (sa->cmd) {
4553         case BTRFS_QUOTA_CTL_ENABLE:
4554                 ret = btrfs_quota_enable(fs_info);
4555                 break;
4556         case BTRFS_QUOTA_CTL_DISABLE:
4557                 ret = btrfs_quota_disable(fs_info);
4558                 break;
4559         default:
4560                 ret = -EINVAL;
4561                 break;
4562         }
4563
4564         kfree(sa);
4565         up_write(&fs_info->subvol_sem);
4566 drop_write:
4567         mnt_drop_write_file(file);
4568         return ret;
4569 }
4570
4571 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4572 {
4573         struct inode *inode = file_inode(file);
4574         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4575         struct btrfs_root *root = BTRFS_I(inode)->root;
4576         struct btrfs_ioctl_qgroup_assign_args *sa;
4577         struct btrfs_trans_handle *trans;
4578         int ret;
4579         int err;
4580
4581         if (!capable(CAP_SYS_ADMIN))
4582                 return -EPERM;
4583
4584         ret = mnt_want_write_file(file);
4585         if (ret)
4586                 return ret;
4587
4588         sa = memdup_user(arg, sizeof(*sa));
4589         if (IS_ERR(sa)) {
4590                 ret = PTR_ERR(sa);
4591                 goto drop_write;
4592         }
4593
4594         trans = btrfs_join_transaction(root);
4595         if (IS_ERR(trans)) {
4596                 ret = PTR_ERR(trans);
4597                 goto out;
4598         }
4599
4600         if (sa->assign) {
4601                 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4602         } else {
4603                 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4604         }
4605
4606         /* update qgroup status and info */
4607         err = btrfs_run_qgroups(trans);
4608         if (err < 0)
4609                 btrfs_handle_fs_error(fs_info, err,
4610                                       "failed to update qgroup status and info");
4611         err = btrfs_end_transaction(trans);
4612         if (err && !ret)
4613                 ret = err;
4614
4615 out:
4616         kfree(sa);
4617 drop_write:
4618         mnt_drop_write_file(file);
4619         return ret;
4620 }
4621
4622 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4623 {
4624         struct inode *inode = file_inode(file);
4625         struct btrfs_root *root = BTRFS_I(inode)->root;
4626         struct btrfs_ioctl_qgroup_create_args *sa;
4627         struct btrfs_trans_handle *trans;
4628         int ret;
4629         int err;
4630
4631         if (!capable(CAP_SYS_ADMIN))
4632                 return -EPERM;
4633
4634         ret = mnt_want_write_file(file);
4635         if (ret)
4636                 return ret;
4637
4638         sa = memdup_user(arg, sizeof(*sa));
4639         if (IS_ERR(sa)) {
4640                 ret = PTR_ERR(sa);
4641                 goto drop_write;
4642         }
4643
4644         if (!sa->qgroupid) {
4645                 ret = -EINVAL;
4646                 goto out;
4647         }
4648
4649         trans = btrfs_join_transaction(root);
4650         if (IS_ERR(trans)) {
4651                 ret = PTR_ERR(trans);
4652                 goto out;
4653         }
4654
4655         if (sa->create) {
4656                 ret = btrfs_create_qgroup(trans, sa->qgroupid);
4657         } else {
4658                 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4659         }
4660
4661         err = btrfs_end_transaction(trans);
4662         if (err && !ret)
4663                 ret = err;
4664
4665 out:
4666         kfree(sa);
4667 drop_write:
4668         mnt_drop_write_file(file);
4669         return ret;
4670 }
4671
4672 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4673 {
4674         struct inode *inode = file_inode(file);
4675         struct btrfs_root *root = BTRFS_I(inode)->root;
4676         struct btrfs_ioctl_qgroup_limit_args *sa;
4677         struct btrfs_trans_handle *trans;
4678         int ret;
4679         int err;
4680         u64 qgroupid;
4681
4682         if (!capable(CAP_SYS_ADMIN))
4683                 return -EPERM;
4684
4685         ret = mnt_want_write_file(file);
4686         if (ret)
4687                 return ret;
4688
4689         sa = memdup_user(arg, sizeof(*sa));
4690         if (IS_ERR(sa)) {
4691                 ret = PTR_ERR(sa);
4692                 goto drop_write;
4693         }
4694
4695         trans = btrfs_join_transaction(root);
4696         if (IS_ERR(trans)) {
4697                 ret = PTR_ERR(trans);
4698                 goto out;
4699         }
4700
4701         qgroupid = sa->qgroupid;
4702         if (!qgroupid) {
4703                 /* take the current subvol as qgroup */
4704                 qgroupid = root->root_key.objectid;
4705         }
4706
4707         ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4708
4709         err = btrfs_end_transaction(trans);
4710         if (err && !ret)
4711                 ret = err;
4712
4713 out:
4714         kfree(sa);
4715 drop_write:
4716         mnt_drop_write_file(file);
4717         return ret;
4718 }
4719
4720 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4721 {
4722         struct inode *inode = file_inode(file);
4723         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4724         struct btrfs_ioctl_quota_rescan_args *qsa;
4725         int ret;
4726
4727         if (!capable(CAP_SYS_ADMIN))
4728                 return -EPERM;
4729
4730         ret = mnt_want_write_file(file);
4731         if (ret)
4732                 return ret;
4733
4734         qsa = memdup_user(arg, sizeof(*qsa));
4735         if (IS_ERR(qsa)) {
4736                 ret = PTR_ERR(qsa);
4737                 goto drop_write;
4738         }
4739
4740         if (qsa->flags) {
4741                 ret = -EINVAL;
4742                 goto out;
4743         }
4744
4745         ret = btrfs_qgroup_rescan(fs_info);
4746
4747 out:
4748         kfree(qsa);
4749 drop_write:
4750         mnt_drop_write_file(file);
4751         return ret;
4752 }
4753
4754 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4755                                                 void __user *arg)
4756 {
4757         struct btrfs_ioctl_quota_rescan_args qsa = {0};
4758
4759         if (!capable(CAP_SYS_ADMIN))
4760                 return -EPERM;
4761
4762         if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4763                 qsa.flags = 1;
4764                 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4765         }
4766
4767         if (copy_to_user(arg, &qsa, sizeof(qsa)))
4768                 return -EFAULT;
4769
4770         return 0;
4771 }
4772
4773 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4774                                                 void __user *arg)
4775 {
4776         if (!capable(CAP_SYS_ADMIN))
4777                 return -EPERM;
4778
4779         return btrfs_qgroup_wait_for_completion(fs_info, true);
4780 }
4781
4782 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4783                                             struct user_namespace *mnt_userns,
4784                                             struct btrfs_ioctl_received_subvol_args *sa)
4785 {
4786         struct inode *inode = file_inode(file);
4787         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4788         struct btrfs_root *root = BTRFS_I(inode)->root;
4789         struct btrfs_root_item *root_item = &root->root_item;
4790         struct btrfs_trans_handle *trans;
4791         struct timespec64 ct = current_time(inode);
4792         int ret = 0;
4793         int received_uuid_changed;
4794
4795         if (!inode_owner_or_capable(mnt_userns, inode))
4796                 return -EPERM;
4797
4798         ret = mnt_want_write_file(file);
4799         if (ret < 0)
4800                 return ret;
4801
4802         down_write(&fs_info->subvol_sem);
4803
4804         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4805                 ret = -EINVAL;
4806                 goto out;
4807         }
4808
4809         if (btrfs_root_readonly(root)) {
4810                 ret = -EROFS;
4811                 goto out;
4812         }
4813
4814         /*
4815          * 1 - root item
4816          * 2 - uuid items (received uuid + subvol uuid)
4817          */
4818         trans = btrfs_start_transaction(root, 3);
4819         if (IS_ERR(trans)) {
4820                 ret = PTR_ERR(trans);
4821                 trans = NULL;
4822                 goto out;
4823         }
4824
4825         sa->rtransid = trans->transid;
4826         sa->rtime.sec = ct.tv_sec;
4827         sa->rtime.nsec = ct.tv_nsec;
4828
4829         received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4830                                        BTRFS_UUID_SIZE);
4831         if (received_uuid_changed &&
4832             !btrfs_is_empty_uuid(root_item->received_uuid)) {
4833                 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4834                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4835                                           root->root_key.objectid);
4836                 if (ret && ret != -ENOENT) {
4837                         btrfs_abort_transaction(trans, ret);
4838                         btrfs_end_transaction(trans);
4839                         goto out;
4840                 }
4841         }
4842         memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4843         btrfs_set_root_stransid(root_item, sa->stransid);
4844         btrfs_set_root_rtransid(root_item, sa->rtransid);
4845         btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4846         btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4847         btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4848         btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4849
4850         ret = btrfs_update_root(trans, fs_info->tree_root,
4851                                 &root->root_key, &root->root_item);
4852         if (ret < 0) {
4853                 btrfs_end_transaction(trans);
4854                 goto out;
4855         }
4856         if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4857                 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4858                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4859                                           root->root_key.objectid);
4860                 if (ret < 0 && ret != -EEXIST) {
4861                         btrfs_abort_transaction(trans, ret);
4862                         btrfs_end_transaction(trans);
4863                         goto out;
4864                 }
4865         }
4866         ret = btrfs_commit_transaction(trans);
4867 out:
4868         up_write(&fs_info->subvol_sem);
4869         mnt_drop_write_file(file);
4870         return ret;
4871 }
4872
4873 #ifdef CONFIG_64BIT
4874 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4875                                                 void __user *arg)
4876 {
4877         struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4878         struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4879         int ret = 0;
4880
4881         args32 = memdup_user(arg, sizeof(*args32));
4882         if (IS_ERR(args32))
4883                 return PTR_ERR(args32);
4884
4885         args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4886         if (!args64) {
4887                 ret = -ENOMEM;
4888                 goto out;
4889         }
4890
4891         memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4892         args64->stransid = args32->stransid;
4893         args64->rtransid = args32->rtransid;
4894         args64->stime.sec = args32->stime.sec;
4895         args64->stime.nsec = args32->stime.nsec;
4896         args64->rtime.sec = args32->rtime.sec;
4897         args64->rtime.nsec = args32->rtime.nsec;
4898         args64->flags = args32->flags;
4899
4900         ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4901         if (ret)
4902                 goto out;
4903
4904         memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4905         args32->stransid = args64->stransid;
4906         args32->rtransid = args64->rtransid;
4907         args32->stime.sec = args64->stime.sec;
4908         args32->stime.nsec = args64->stime.nsec;
4909         args32->rtime.sec = args64->rtime.sec;
4910         args32->rtime.nsec = args64->rtime.nsec;
4911         args32->flags = args64->flags;
4912
4913         ret = copy_to_user(arg, args32, sizeof(*args32));
4914         if (ret)
4915                 ret = -EFAULT;
4916
4917 out:
4918         kfree(args32);
4919         kfree(args64);
4920         return ret;
4921 }
4922 #endif
4923
4924 static long btrfs_ioctl_set_received_subvol(struct file *file,
4925                                             void __user *arg)
4926 {
4927         struct btrfs_ioctl_received_subvol_args *sa = NULL;
4928         int ret = 0;
4929
4930         sa = memdup_user(arg, sizeof(*sa));
4931         if (IS_ERR(sa))
4932                 return PTR_ERR(sa);
4933
4934         ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4935
4936         if (ret)
4937                 goto out;
4938
4939         ret = copy_to_user(arg, sa, sizeof(*sa));
4940         if (ret)
4941                 ret = -EFAULT;
4942
4943 out:
4944         kfree(sa);
4945         return ret;
4946 }
4947
4948 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4949                                         void __user *arg)
4950 {
4951         size_t len;
4952         int ret;
4953         char label[BTRFS_LABEL_SIZE];
4954
4955         spin_lock(&fs_info->super_lock);
4956         memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4957         spin_unlock(&fs_info->super_lock);
4958
4959         len = strnlen(label, BTRFS_LABEL_SIZE);
4960
4961         if (len == BTRFS_LABEL_SIZE) {
4962                 btrfs_warn(fs_info,
4963                            "label is too long, return the first %zu bytes",
4964                            --len);
4965         }
4966
4967         ret = copy_to_user(arg, label, len);
4968
4969         return ret ? -EFAULT : 0;
4970 }
4971
4972 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4973 {
4974         struct inode *inode = file_inode(file);
4975         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4976         struct btrfs_root *root = BTRFS_I(inode)->root;
4977         struct btrfs_super_block *super_block = fs_info->super_copy;
4978         struct btrfs_trans_handle *trans;
4979         char label[BTRFS_LABEL_SIZE];
4980         int ret;
4981
4982         if (!capable(CAP_SYS_ADMIN))
4983                 return -EPERM;
4984
4985         if (copy_from_user(label, arg, sizeof(label)))
4986                 return -EFAULT;
4987
4988         if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4989                 btrfs_err(fs_info,
4990                           "unable to set label with more than %d bytes",
4991                           BTRFS_LABEL_SIZE - 1);
4992                 return -EINVAL;
4993         }
4994
4995         ret = mnt_want_write_file(file);
4996         if (ret)
4997                 return ret;
4998
4999         trans = btrfs_start_transaction(root, 0);
5000         if (IS_ERR(trans)) {
5001                 ret = PTR_ERR(trans);
5002                 goto out_unlock;
5003         }
5004
5005         spin_lock(&fs_info->super_lock);
5006         strcpy(super_block->label, label);
5007         spin_unlock(&fs_info->super_lock);
5008         ret = btrfs_commit_transaction(trans);
5009
5010 out_unlock:
5011         mnt_drop_write_file(file);
5012         return ret;
5013 }
5014
5015 #define INIT_FEATURE_FLAGS(suffix) \
5016         { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5017           .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5018           .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5019
5020 int btrfs_ioctl_get_supported_features(void __user *arg)
5021 {
5022         static const struct btrfs_ioctl_feature_flags features[3] = {
5023                 INIT_FEATURE_FLAGS(SUPP),
5024                 INIT_FEATURE_FLAGS(SAFE_SET),
5025                 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5026         };
5027
5028         if (copy_to_user(arg, &features, sizeof(features)))
5029                 return -EFAULT;
5030
5031         return 0;
5032 }
5033
5034 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
5035                                         void __user *arg)
5036 {
5037         struct btrfs_super_block *super_block = fs_info->super_copy;
5038         struct btrfs_ioctl_feature_flags features;
5039
5040         features.compat_flags = btrfs_super_compat_flags(super_block);
5041         features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5042         features.incompat_flags = btrfs_super_incompat_flags(super_block);
5043
5044         if (copy_to_user(arg, &features, sizeof(features)))
5045                 return -EFAULT;
5046
5047         return 0;
5048 }
5049
5050 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5051                               enum btrfs_feature_set set,
5052                               u64 change_mask, u64 flags, u64 supported_flags,
5053                               u64 safe_set, u64 safe_clear)
5054 {
5055         const char *type = btrfs_feature_set_name(set);
5056         char *names;
5057         u64 disallowed, unsupported;
5058         u64 set_mask = flags & change_mask;
5059         u64 clear_mask = ~flags & change_mask;
5060
5061         unsupported = set_mask & ~supported_flags;
5062         if (unsupported) {
5063                 names = btrfs_printable_features(set, unsupported);
5064                 if (names) {
5065                         btrfs_warn(fs_info,
5066                                    "this kernel does not support the %s feature bit%s",
5067                                    names, strchr(names, ',') ? "s" : "");
5068                         kfree(names);
5069                 } else
5070                         btrfs_warn(fs_info,
5071                                    "this kernel does not support %s bits 0x%llx",
5072                                    type, unsupported);
5073                 return -EOPNOTSUPP;
5074         }
5075
5076         disallowed = set_mask & ~safe_set;
5077         if (disallowed) {
5078                 names = btrfs_printable_features(set, disallowed);
5079                 if (names) {
5080                         btrfs_warn(fs_info,
5081                                    "can't set the %s feature bit%s while mounted",
5082                                    names, strchr(names, ',') ? "s" : "");
5083                         kfree(names);
5084                 } else
5085                         btrfs_warn(fs_info,
5086                                    "can't set %s bits 0x%llx while mounted",
5087                                    type, disallowed);
5088                 return -EPERM;
5089         }
5090
5091         disallowed = clear_mask & ~safe_clear;
5092         if (disallowed) {
5093                 names = btrfs_printable_features(set, disallowed);
5094                 if (names) {
5095                         btrfs_warn(fs_info,
5096                                    "can't clear the %s feature bit%s while mounted",
5097                                    names, strchr(names, ',') ? "s" : "");
5098                         kfree(names);
5099                 } else
5100                         btrfs_warn(fs_info,
5101                                    "can't clear %s bits 0x%llx while mounted",
5102                                    type, disallowed);
5103                 return -EPERM;
5104         }
5105
5106         return 0;
5107 }
5108
5109 #define check_feature(fs_info, change_mask, flags, mask_base)   \
5110 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,       \
5111                    BTRFS_FEATURE_ ## mask_base ## _SUPP,        \
5112                    BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,    \
5113                    BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5114
5115 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5116 {
5117         struct inode *inode = file_inode(file);
5118         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5119         struct btrfs_root *root = BTRFS_I(inode)->root;
5120         struct btrfs_super_block *super_block = fs_info->super_copy;
5121         struct btrfs_ioctl_feature_flags flags[2];
5122         struct btrfs_trans_handle *trans;
5123         u64 newflags;
5124         int ret;
5125
5126         if (!capable(CAP_SYS_ADMIN))
5127                 return -EPERM;
5128
5129         if (copy_from_user(flags, arg, sizeof(flags)))
5130                 return -EFAULT;
5131
5132         /* Nothing to do */
5133         if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5134             !flags[0].incompat_flags)
5135                 return 0;
5136
5137         ret = check_feature(fs_info, flags[0].compat_flags,
5138                             flags[1].compat_flags, COMPAT);
5139         if (ret)
5140                 return ret;
5141
5142         ret = check_feature(fs_info, flags[0].compat_ro_flags,
5143                             flags[1].compat_ro_flags, COMPAT_RO);
5144         if (ret)
5145                 return ret;
5146
5147         ret = check_feature(fs_info, flags[0].incompat_flags,
5148                             flags[1].incompat_flags, INCOMPAT);
5149         if (ret)
5150                 return ret;
5151
5152         ret = mnt_want_write_file(file);
5153         if (ret)
5154                 return ret;
5155
5156         trans = btrfs_start_transaction(root, 0);
5157         if (IS_ERR(trans)) {
5158                 ret = PTR_ERR(trans);
5159                 goto out_drop_write;
5160         }
5161
5162         spin_lock(&fs_info->super_lock);
5163         newflags = btrfs_super_compat_flags(super_block);
5164         newflags |= flags[0].compat_flags & flags[1].compat_flags;
5165         newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5166         btrfs_set_super_compat_flags(super_block, newflags);
5167
5168         newflags = btrfs_super_compat_ro_flags(super_block);
5169         newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5170         newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5171         btrfs_set_super_compat_ro_flags(super_block, newflags);
5172
5173         newflags = btrfs_super_incompat_flags(super_block);
5174         newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5175         newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5176         btrfs_set_super_incompat_flags(super_block, newflags);
5177         spin_unlock(&fs_info->super_lock);
5178
5179         ret = btrfs_commit_transaction(trans);
5180 out_drop_write:
5181         mnt_drop_write_file(file);
5182
5183         return ret;
5184 }
5185
5186 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
5187 {
5188         struct btrfs_ioctl_send_args *arg;
5189         int ret;
5190
5191         if (compat) {
5192 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5193                 struct btrfs_ioctl_send_args_32 args32;
5194
5195                 ret = copy_from_user(&args32, argp, sizeof(args32));
5196                 if (ret)
5197                         return -EFAULT;
5198                 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5199                 if (!arg)
5200                         return -ENOMEM;
5201                 arg->send_fd = args32.send_fd;
5202                 arg->clone_sources_count = args32.clone_sources_count;
5203                 arg->clone_sources = compat_ptr(args32.clone_sources);
5204                 arg->parent_root = args32.parent_root;
5205                 arg->flags = args32.flags;
5206                 memcpy(arg->reserved, args32.reserved,
5207                        sizeof(args32.reserved));
5208 #else
5209                 return -ENOTTY;
5210 #endif
5211         } else {
5212                 arg = memdup_user(argp, sizeof(*arg));
5213                 if (IS_ERR(arg))
5214                         return PTR_ERR(arg);
5215         }
5216         ret = btrfs_ioctl_send(inode, arg);
5217         kfree(arg);
5218         return ret;
5219 }
5220
5221 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
5222                                     bool compat)
5223 {
5224         struct btrfs_ioctl_encoded_io_args args = { 0 };
5225         size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
5226                                              flags);
5227         size_t copy_end;
5228         struct iovec iovstack[UIO_FASTIOV];
5229         struct iovec *iov = iovstack;
5230         struct iov_iter iter;
5231         loff_t pos;
5232         struct kiocb kiocb;
5233         ssize_t ret;
5234
5235         if (!capable(CAP_SYS_ADMIN)) {
5236                 ret = -EPERM;
5237                 goto out_acct;
5238         }
5239
5240         if (compat) {
5241 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5242                 struct btrfs_ioctl_encoded_io_args_32 args32;
5243
5244                 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
5245                                        flags);
5246                 if (copy_from_user(&args32, argp, copy_end)) {
5247                         ret = -EFAULT;
5248                         goto out_acct;
5249                 }
5250                 args.iov = compat_ptr(args32.iov);
5251                 args.iovcnt = args32.iovcnt;
5252                 args.offset = args32.offset;
5253                 args.flags = args32.flags;
5254 #else
5255                 return -ENOTTY;
5256 #endif
5257         } else {
5258                 copy_end = copy_end_kernel;
5259                 if (copy_from_user(&args, argp, copy_end)) {
5260                         ret = -EFAULT;
5261                         goto out_acct;
5262                 }
5263         }
5264         if (args.flags != 0) {
5265                 ret = -EINVAL;
5266                 goto out_acct;
5267         }
5268
5269         ret = import_iovec(READ, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
5270                            &iov, &iter);
5271         if (ret < 0)
5272                 goto out_acct;
5273
5274         if (iov_iter_count(&iter) == 0) {
5275                 ret = 0;
5276                 goto out_iov;
5277         }
5278         pos = args.offset;
5279         ret = rw_verify_area(READ, file, &pos, args.len);
5280         if (ret < 0)
5281                 goto out_iov;
5282
5283         init_sync_kiocb(&kiocb, file);
5284         kiocb.ki_pos = pos;
5285
5286         ret = btrfs_encoded_read(&kiocb, &iter, &args);
5287         if (ret >= 0) {
5288                 fsnotify_access(file);
5289                 if (copy_to_user(argp + copy_end,
5290                                  (char *)&args + copy_end_kernel,
5291                                  sizeof(args) - copy_end_kernel))
5292                         ret = -EFAULT;
5293         }
5294
5295 out_iov:
5296         kfree(iov);
5297 out_acct:
5298         if (ret > 0)
5299                 add_rchar(current, ret);
5300         inc_syscr(current);
5301         return ret;
5302 }
5303
5304 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
5305 {
5306         struct btrfs_ioctl_encoded_io_args args;
5307         struct iovec iovstack[UIO_FASTIOV];
5308         struct iovec *iov = iovstack;
5309         struct iov_iter iter;
5310         loff_t pos;
5311         struct kiocb kiocb;
5312         ssize_t ret;
5313
5314         if (!capable(CAP_SYS_ADMIN)) {
5315                 ret = -EPERM;
5316                 goto out_acct;
5317         }
5318
5319         if (!(file->f_mode & FMODE_WRITE)) {
5320                 ret = -EBADF;
5321                 goto out_acct;
5322         }
5323
5324         if (compat) {
5325 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5326                 struct btrfs_ioctl_encoded_io_args_32 args32;
5327
5328                 if (copy_from_user(&args32, argp, sizeof(args32))) {
5329                         ret = -EFAULT;
5330                         goto out_acct;
5331                 }
5332                 args.iov = compat_ptr(args32.iov);
5333                 args.iovcnt = args32.iovcnt;
5334                 args.offset = args32.offset;
5335                 args.flags = args32.flags;
5336                 args.len = args32.len;
5337                 args.unencoded_len = args32.unencoded_len;
5338                 args.unencoded_offset = args32.unencoded_offset;
5339                 args.compression = args32.compression;
5340                 args.encryption = args32.encryption;
5341                 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
5342 #else
5343                 return -ENOTTY;
5344 #endif
5345         } else {
5346                 if (copy_from_user(&args, argp, sizeof(args))) {
5347                         ret = -EFAULT;
5348                         goto out_acct;
5349                 }
5350         }
5351
5352         ret = -EINVAL;
5353         if (args.flags != 0)
5354                 goto out_acct;
5355         if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
5356                 goto out_acct;
5357         if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
5358             args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
5359                 goto out_acct;
5360         if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
5361             args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
5362                 goto out_acct;
5363         if (args.unencoded_offset > args.unencoded_len)
5364                 goto out_acct;
5365         if (args.len > args.unencoded_len - args.unencoded_offset)
5366                 goto out_acct;
5367
5368         ret = import_iovec(WRITE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
5369                            &iov, &iter);
5370         if (ret < 0)
5371                 goto out_acct;
5372
5373         file_start_write(file);
5374
5375         if (iov_iter_count(&iter) == 0) {
5376                 ret = 0;
5377                 goto out_end_write;
5378         }
5379         pos = args.offset;
5380         ret = rw_verify_area(WRITE, file, &pos, args.len);
5381         if (ret < 0)
5382                 goto out_end_write;
5383
5384         init_sync_kiocb(&kiocb, file);
5385         ret = kiocb_set_rw_flags(&kiocb, 0);
5386         if (ret)
5387                 goto out_end_write;
5388         kiocb.ki_pos = pos;
5389
5390         ret = btrfs_do_write_iter(&kiocb, &iter, &args);
5391         if (ret > 0)
5392                 fsnotify_modify(file);
5393
5394 out_end_write:
5395         file_end_write(file);
5396         kfree(iov);
5397 out_acct:
5398         if (ret > 0)
5399                 add_wchar(current, ret);
5400         inc_syscw(current);
5401         return ret;
5402 }
5403
5404 long btrfs_ioctl(struct file *file, unsigned int
5405                 cmd, unsigned long arg)
5406 {
5407         struct inode *inode = file_inode(file);
5408         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5409         struct btrfs_root *root = BTRFS_I(inode)->root;
5410         void __user *argp = (void __user *)arg;
5411
5412         switch (cmd) {
5413         case FS_IOC_GETVERSION:
5414                 return btrfs_ioctl_getversion(inode, argp);
5415         case FS_IOC_GETFSLABEL:
5416                 return btrfs_ioctl_get_fslabel(fs_info, argp);
5417         case FS_IOC_SETFSLABEL:
5418                 return btrfs_ioctl_set_fslabel(file, argp);
5419         case FITRIM:
5420                 return btrfs_ioctl_fitrim(fs_info, argp);
5421         case BTRFS_IOC_SNAP_CREATE:
5422                 return btrfs_ioctl_snap_create(file, argp, 0);
5423         case BTRFS_IOC_SNAP_CREATE_V2:
5424                 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5425         case BTRFS_IOC_SUBVOL_CREATE:
5426                 return btrfs_ioctl_snap_create(file, argp, 1);
5427         case BTRFS_IOC_SUBVOL_CREATE_V2:
5428                 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5429         case BTRFS_IOC_SNAP_DESTROY:
5430                 return btrfs_ioctl_snap_destroy(file, argp, false);
5431         case BTRFS_IOC_SNAP_DESTROY_V2:
5432                 return btrfs_ioctl_snap_destroy(file, argp, true);
5433         case BTRFS_IOC_SUBVOL_GETFLAGS:
5434                 return btrfs_ioctl_subvol_getflags(inode, argp);
5435         case BTRFS_IOC_SUBVOL_SETFLAGS:
5436                 return btrfs_ioctl_subvol_setflags(file, argp);
5437         case BTRFS_IOC_DEFAULT_SUBVOL:
5438                 return btrfs_ioctl_default_subvol(file, argp);
5439         case BTRFS_IOC_DEFRAG:
5440                 return btrfs_ioctl_defrag(file, NULL);
5441         case BTRFS_IOC_DEFRAG_RANGE:
5442                 return btrfs_ioctl_defrag(file, argp);
5443         case BTRFS_IOC_RESIZE:
5444                 return btrfs_ioctl_resize(file, argp);
5445         case BTRFS_IOC_ADD_DEV:
5446                 return btrfs_ioctl_add_dev(fs_info, argp);
5447         case BTRFS_IOC_RM_DEV:
5448                 return btrfs_ioctl_rm_dev(file, argp);
5449         case BTRFS_IOC_RM_DEV_V2:
5450                 return btrfs_ioctl_rm_dev_v2(file, argp);
5451         case BTRFS_IOC_FS_INFO:
5452                 return btrfs_ioctl_fs_info(fs_info, argp);
5453         case BTRFS_IOC_DEV_INFO:
5454                 return btrfs_ioctl_dev_info(fs_info, argp);
5455         case BTRFS_IOC_TREE_SEARCH:
5456                 return btrfs_ioctl_tree_search(inode, argp);
5457         case BTRFS_IOC_TREE_SEARCH_V2:
5458                 return btrfs_ioctl_tree_search_v2(inode, argp);
5459         case BTRFS_IOC_INO_LOOKUP:
5460                 return btrfs_ioctl_ino_lookup(root, argp);
5461         case BTRFS_IOC_INO_PATHS:
5462                 return btrfs_ioctl_ino_to_path(root, argp);
5463         case BTRFS_IOC_LOGICAL_INO:
5464                 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5465         case BTRFS_IOC_LOGICAL_INO_V2:
5466                 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5467         case BTRFS_IOC_SPACE_INFO:
5468                 return btrfs_ioctl_space_info(fs_info, argp);
5469         case BTRFS_IOC_SYNC: {
5470                 int ret;
5471
5472                 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5473                 if (ret)
5474                         return ret;
5475                 ret = btrfs_sync_fs(inode->i_sb, 1);
5476                 /*
5477                  * The transaction thread may want to do more work,
5478                  * namely it pokes the cleaner kthread that will start
5479                  * processing uncleaned subvols.
5480                  */
5481                 wake_up_process(fs_info->transaction_kthread);
5482                 return ret;
5483         }
5484         case BTRFS_IOC_START_SYNC:
5485                 return btrfs_ioctl_start_sync(root, argp);
5486         case BTRFS_IOC_WAIT_SYNC:
5487                 return btrfs_ioctl_wait_sync(fs_info, argp);
5488         case BTRFS_IOC_SCRUB:
5489                 return btrfs_ioctl_scrub(file, argp);
5490         case BTRFS_IOC_SCRUB_CANCEL:
5491                 return btrfs_ioctl_scrub_cancel(fs_info);
5492         case BTRFS_IOC_SCRUB_PROGRESS:
5493                 return btrfs_ioctl_scrub_progress(fs_info, argp);
5494         case BTRFS_IOC_BALANCE_V2:
5495                 return btrfs_ioctl_balance(file, argp);
5496         case BTRFS_IOC_BALANCE_CTL:
5497                 return btrfs_ioctl_balance_ctl(fs_info, arg);
5498         case BTRFS_IOC_BALANCE_PROGRESS:
5499                 return btrfs_ioctl_balance_progress(fs_info, argp);
5500         case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5501                 return btrfs_ioctl_set_received_subvol(file, argp);
5502 #ifdef CONFIG_64BIT
5503         case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5504                 return btrfs_ioctl_set_received_subvol_32(file, argp);
5505 #endif
5506         case BTRFS_IOC_SEND:
5507                 return _btrfs_ioctl_send(inode, argp, false);
5508 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5509         case BTRFS_IOC_SEND_32:
5510                 return _btrfs_ioctl_send(inode, argp, true);
5511 #endif
5512         case BTRFS_IOC_GET_DEV_STATS:
5513                 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5514         case BTRFS_IOC_QUOTA_CTL:
5515                 return btrfs_ioctl_quota_ctl(file, argp);
5516         case BTRFS_IOC_QGROUP_ASSIGN:
5517                 return btrfs_ioctl_qgroup_assign(file, argp);
5518         case BTRFS_IOC_QGROUP_CREATE:
5519                 return btrfs_ioctl_qgroup_create(file, argp);
5520         case BTRFS_IOC_QGROUP_LIMIT:
5521                 return btrfs_ioctl_qgroup_limit(file, argp);
5522         case BTRFS_IOC_QUOTA_RESCAN:
5523                 return btrfs_ioctl_quota_rescan(file, argp);
5524         case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5525                 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5526         case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5527                 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5528         case BTRFS_IOC_DEV_REPLACE:
5529                 return btrfs_ioctl_dev_replace(fs_info, argp);
5530         case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5531                 return btrfs_ioctl_get_supported_features(argp);
5532         case BTRFS_IOC_GET_FEATURES:
5533                 return btrfs_ioctl_get_features(fs_info, argp);
5534         case BTRFS_IOC_SET_FEATURES:
5535                 return btrfs_ioctl_set_features(file, argp);
5536         case BTRFS_IOC_GET_SUBVOL_INFO:
5537                 return btrfs_ioctl_get_subvol_info(inode, argp);
5538         case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5539                 return btrfs_ioctl_get_subvol_rootref(root, argp);
5540         case BTRFS_IOC_INO_LOOKUP_USER:
5541                 return btrfs_ioctl_ino_lookup_user(file, argp);
5542         case FS_IOC_ENABLE_VERITY:
5543                 return fsverity_ioctl_enable(file, (const void __user *)argp);
5544         case FS_IOC_MEASURE_VERITY:
5545                 return fsverity_ioctl_measure(file, argp);
5546         case BTRFS_IOC_ENCODED_READ:
5547                 return btrfs_ioctl_encoded_read(file, argp, false);
5548         case BTRFS_IOC_ENCODED_WRITE:
5549                 return btrfs_ioctl_encoded_write(file, argp, false);
5550 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5551         case BTRFS_IOC_ENCODED_READ_32:
5552                 return btrfs_ioctl_encoded_read(file, argp, true);
5553         case BTRFS_IOC_ENCODED_WRITE_32:
5554                 return btrfs_ioctl_encoded_write(file, argp, true);
5555 #endif
5556         }
5557
5558         return -ENOTTY;
5559 }
5560
5561 #ifdef CONFIG_COMPAT
5562 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5563 {
5564         /*
5565          * These all access 32-bit values anyway so no further
5566          * handling is necessary.
5567          */
5568         switch (cmd) {
5569         case FS_IOC32_GETVERSION:
5570                 cmd = FS_IOC_GETVERSION;
5571                 break;
5572         }
5573
5574         return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5575 }
5576 #endif