2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
51 #include "print-tree.h"
54 #include "inode-map.h"
56 #include "rcu-string.h"
59 /* Mask out flags that are inappropriate for the given type of inode. */
60 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
64 else if (S_ISREG(mode))
65 return flags & ~FS_DIRSYNC_FL;
67 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
71 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
73 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
75 unsigned int iflags = 0;
77 if (flags & BTRFS_INODE_SYNC)
79 if (flags & BTRFS_INODE_IMMUTABLE)
80 iflags |= FS_IMMUTABLE_FL;
81 if (flags & BTRFS_INODE_APPEND)
82 iflags |= FS_APPEND_FL;
83 if (flags & BTRFS_INODE_NODUMP)
84 iflags |= FS_NODUMP_FL;
85 if (flags & BTRFS_INODE_NOATIME)
86 iflags |= FS_NOATIME_FL;
87 if (flags & BTRFS_INODE_DIRSYNC)
88 iflags |= FS_DIRSYNC_FL;
89 if (flags & BTRFS_INODE_NODATACOW)
90 iflags |= FS_NOCOW_FL;
92 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
93 iflags |= FS_COMPR_FL;
94 else if (flags & BTRFS_INODE_NOCOMPRESS)
95 iflags |= FS_NOCOMP_FL;
101 * Update inode->i_flags based on the btrfs internal flags.
103 void btrfs_update_iflags(struct inode *inode)
105 struct btrfs_inode *ip = BTRFS_I(inode);
107 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
109 if (ip->flags & BTRFS_INODE_SYNC)
110 inode->i_flags |= S_SYNC;
111 if (ip->flags & BTRFS_INODE_IMMUTABLE)
112 inode->i_flags |= S_IMMUTABLE;
113 if (ip->flags & BTRFS_INODE_APPEND)
114 inode->i_flags |= S_APPEND;
115 if (ip->flags & BTRFS_INODE_NOATIME)
116 inode->i_flags |= S_NOATIME;
117 if (ip->flags & BTRFS_INODE_DIRSYNC)
118 inode->i_flags |= S_DIRSYNC;
122 * Inherit flags from the parent inode.
124 * Currently only the compression flags and the cow flags are inherited.
126 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
133 flags = BTRFS_I(dir)->flags;
135 if (flags & BTRFS_INODE_NOCOMPRESS) {
136 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
137 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
138 } else if (flags & BTRFS_INODE_COMPRESS) {
139 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
140 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
143 if (flags & BTRFS_INODE_NODATACOW)
144 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
146 btrfs_update_iflags(inode);
149 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
151 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
152 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
154 if (copy_to_user(arg, &flags, sizeof(flags)))
159 static int check_flags(unsigned int flags)
161 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
162 FS_NOATIME_FL | FS_NODUMP_FL | \
163 FS_SYNC_FL | FS_DIRSYNC_FL | \
164 FS_NOCOMP_FL | FS_COMPR_FL |
168 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
174 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
176 struct inode *inode = file->f_path.dentry->d_inode;
177 struct btrfs_inode *ip = BTRFS_I(inode);
178 struct btrfs_root *root = ip->root;
179 struct btrfs_trans_handle *trans;
180 unsigned int flags, oldflags;
183 unsigned int i_oldflags;
185 if (btrfs_root_readonly(root))
188 if (copy_from_user(&flags, arg, sizeof(flags)))
191 ret = check_flags(flags);
195 if (!inode_owner_or_capable(inode))
198 ret = mnt_want_write_file(file);
202 mutex_lock(&inode->i_mutex);
204 ip_oldflags = ip->flags;
205 i_oldflags = inode->i_flags;
207 flags = btrfs_mask_flags(inode->i_mode, flags);
208 oldflags = btrfs_flags_to_ioctl(ip->flags);
209 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
210 if (!capable(CAP_LINUX_IMMUTABLE)) {
216 if (flags & FS_SYNC_FL)
217 ip->flags |= BTRFS_INODE_SYNC;
219 ip->flags &= ~BTRFS_INODE_SYNC;
220 if (flags & FS_IMMUTABLE_FL)
221 ip->flags |= BTRFS_INODE_IMMUTABLE;
223 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
224 if (flags & FS_APPEND_FL)
225 ip->flags |= BTRFS_INODE_APPEND;
227 ip->flags &= ~BTRFS_INODE_APPEND;
228 if (flags & FS_NODUMP_FL)
229 ip->flags |= BTRFS_INODE_NODUMP;
231 ip->flags &= ~BTRFS_INODE_NODUMP;
232 if (flags & FS_NOATIME_FL)
233 ip->flags |= BTRFS_INODE_NOATIME;
235 ip->flags &= ~BTRFS_INODE_NOATIME;
236 if (flags & FS_DIRSYNC_FL)
237 ip->flags |= BTRFS_INODE_DIRSYNC;
239 ip->flags &= ~BTRFS_INODE_DIRSYNC;
240 if (flags & FS_NOCOW_FL)
241 ip->flags |= BTRFS_INODE_NODATACOW;
243 ip->flags &= ~BTRFS_INODE_NODATACOW;
246 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
247 * flag may be changed automatically if compression code won't make
250 if (flags & FS_NOCOMP_FL) {
251 ip->flags &= ~BTRFS_INODE_COMPRESS;
252 ip->flags |= BTRFS_INODE_NOCOMPRESS;
253 } else if (flags & FS_COMPR_FL) {
254 ip->flags |= BTRFS_INODE_COMPRESS;
255 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
257 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
260 trans = btrfs_start_transaction(root, 1);
262 ret = PTR_ERR(trans);
266 btrfs_update_iflags(inode);
267 inode_inc_iversion(inode);
268 inode->i_ctime = CURRENT_TIME;
269 ret = btrfs_update_inode(trans, root, inode);
271 btrfs_end_transaction(trans, root);
274 ip->flags = ip_oldflags;
275 inode->i_flags = i_oldflags;
279 mutex_unlock(&inode->i_mutex);
280 mnt_drop_write_file(file);
284 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
286 struct inode *inode = file->f_path.dentry->d_inode;
288 return put_user(inode->i_generation, arg);
291 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
293 struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
294 struct btrfs_device *device;
295 struct request_queue *q;
296 struct fstrim_range range;
297 u64 minlen = ULLONG_MAX;
299 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
302 if (!capable(CAP_SYS_ADMIN))
306 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
310 q = bdev_get_queue(device->bdev);
311 if (blk_queue_discard(q)) {
313 minlen = min((u64)q->limits.discard_granularity,
321 if (copy_from_user(&range, arg, sizeof(range)))
323 if (range.start > total_bytes)
326 range.len = min(range.len, total_bytes - range.start);
327 range.minlen = max(range.minlen, minlen);
328 ret = btrfs_trim_fs(fs_info->tree_root, &range);
332 if (copy_to_user(arg, &range, sizeof(range)))
338 static noinline int create_subvol(struct btrfs_root *root,
339 struct dentry *dentry,
340 char *name, int namelen,
342 struct btrfs_qgroup_inherit **inherit)
344 struct btrfs_trans_handle *trans;
345 struct btrfs_key key;
346 struct btrfs_root_item root_item;
347 struct btrfs_inode_item *inode_item;
348 struct extent_buffer *leaf;
349 struct btrfs_root *new_root;
350 struct dentry *parent = dentry->d_parent;
352 struct timespec cur_time = CURRENT_TIME;
356 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
360 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
364 dir = parent->d_inode;
372 trans = btrfs_start_transaction(root, 6);
374 return PTR_ERR(trans);
376 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid,
377 inherit ? *inherit : NULL);
381 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
382 0, objectid, NULL, 0, 0, 0);
388 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
389 btrfs_set_header_bytenr(leaf, leaf->start);
390 btrfs_set_header_generation(leaf, trans->transid);
391 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
392 btrfs_set_header_owner(leaf, objectid);
394 write_extent_buffer(leaf, root->fs_info->fsid,
395 (unsigned long)btrfs_header_fsid(leaf),
397 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
398 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
400 btrfs_mark_buffer_dirty(leaf);
402 memset(&root_item, 0, sizeof(root_item));
404 inode_item = &root_item.inode;
405 inode_item->generation = cpu_to_le64(1);
406 inode_item->size = cpu_to_le64(3);
407 inode_item->nlink = cpu_to_le32(1);
408 inode_item->nbytes = cpu_to_le64(root->leafsize);
409 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
412 root_item.byte_limit = 0;
413 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
415 btrfs_set_root_bytenr(&root_item, leaf->start);
416 btrfs_set_root_generation(&root_item, trans->transid);
417 btrfs_set_root_level(&root_item, 0);
418 btrfs_set_root_refs(&root_item, 1);
419 btrfs_set_root_used(&root_item, leaf->len);
420 btrfs_set_root_last_snapshot(&root_item, 0);
422 btrfs_set_root_generation_v2(&root_item,
423 btrfs_root_generation(&root_item));
424 uuid_le_gen(&new_uuid);
425 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
426 root_item.otime.sec = cpu_to_le64(cur_time.tv_sec);
427 root_item.otime.nsec = cpu_to_le32(cur_time.tv_nsec);
428 root_item.ctime = root_item.otime;
429 btrfs_set_root_ctransid(&root_item, trans->transid);
430 btrfs_set_root_otransid(&root_item, trans->transid);
432 btrfs_tree_unlock(leaf);
433 free_extent_buffer(leaf);
436 btrfs_set_root_dirid(&root_item, new_dirid);
438 key.objectid = objectid;
440 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
441 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
446 key.offset = (u64)-1;
447 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
448 if (IS_ERR(new_root)) {
449 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
450 ret = PTR_ERR(new_root);
454 btrfs_record_root_in_trans(trans, new_root);
456 ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
458 /* We potentially lose an unused inode item here */
459 btrfs_abort_transaction(trans, root, ret);
464 * insert the directory item
466 ret = btrfs_set_inode_index(dir, &index);
468 btrfs_abort_transaction(trans, root, ret);
472 ret = btrfs_insert_dir_item(trans, root,
473 name, namelen, dir, &key,
474 BTRFS_FT_DIR, index);
476 btrfs_abort_transaction(trans, root, ret);
480 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
481 ret = btrfs_update_inode(trans, root, dir);
484 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
485 objectid, root->root_key.objectid,
486 btrfs_ino(dir), index, name, namelen);
490 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
493 *async_transid = trans->transid;
494 err = btrfs_commit_transaction_async(trans, root, 1);
496 err = btrfs_commit_transaction(trans, root);
503 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
504 char *name, int namelen, u64 *async_transid,
505 bool readonly, struct btrfs_qgroup_inherit **inherit)
508 struct btrfs_pending_snapshot *pending_snapshot;
509 struct btrfs_trans_handle *trans;
515 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
516 if (!pending_snapshot)
519 btrfs_init_block_rsv(&pending_snapshot->block_rsv);
520 pending_snapshot->dentry = dentry;
521 pending_snapshot->root = root;
522 pending_snapshot->readonly = readonly;
524 pending_snapshot->inherit = *inherit;
525 *inherit = NULL; /* take responsibility to free it */
528 trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
530 ret = PTR_ERR(trans);
534 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
537 spin_lock(&root->fs_info->trans_lock);
538 list_add(&pending_snapshot->list,
539 &trans->transaction->pending_snapshots);
540 spin_unlock(&root->fs_info->trans_lock);
542 *async_transid = trans->transid;
543 ret = btrfs_commit_transaction_async(trans,
544 root->fs_info->extent_root, 1);
546 ret = btrfs_commit_transaction(trans,
547 root->fs_info->extent_root);
551 ret = pending_snapshot->error;
555 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
559 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
561 ret = PTR_ERR(inode);
565 d_instantiate(dentry, inode);
568 kfree(pending_snapshot);
572 /* copy of check_sticky in fs/namei.c()
573 * It's inline, so penalty for filesystems that don't use sticky bit is
576 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
578 kuid_t fsuid = current_fsuid();
580 if (!(dir->i_mode & S_ISVTX))
582 if (uid_eq(inode->i_uid, fsuid))
584 if (uid_eq(dir->i_uid, fsuid))
586 return !capable(CAP_FOWNER);
589 /* copy of may_delete in fs/namei.c()
590 * Check whether we can remove a link victim from directory dir, check
591 * whether the type of victim is right.
592 * 1. We can't do it if dir is read-only (done in permission())
593 * 2. We should have write and exec permissions on dir
594 * 3. We can't remove anything from append-only dir
595 * 4. We can't do anything with immutable dir (done in permission())
596 * 5. If the sticky bit on dir is set we should either
597 * a. be owner of dir, or
598 * b. be owner of victim, or
599 * c. have CAP_FOWNER capability
600 * 6. If the victim is append-only or immutable we can't do antyhing with
601 * links pointing to it.
602 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
603 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
604 * 9. We can't remove a root or mountpoint.
605 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
606 * nfs_async_unlink().
609 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
613 if (!victim->d_inode)
616 BUG_ON(victim->d_parent->d_inode != dir);
617 audit_inode_child(victim, dir);
619 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
624 if (btrfs_check_sticky(dir, victim->d_inode)||
625 IS_APPEND(victim->d_inode)||
626 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
629 if (!S_ISDIR(victim->d_inode->i_mode))
633 } else if (S_ISDIR(victim->d_inode->i_mode))
637 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
642 /* copy of may_create in fs/namei.c() */
643 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
649 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
653 * Create a new subvolume below @parent. This is largely modeled after
654 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
655 * inside this filesystem so it's quite a bit simpler.
657 static noinline int btrfs_mksubvol(struct path *parent,
658 char *name, int namelen,
659 struct btrfs_root *snap_src,
660 u64 *async_transid, bool readonly,
661 struct btrfs_qgroup_inherit **inherit)
663 struct inode *dir = parent->dentry->d_inode;
664 struct dentry *dentry;
667 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
669 dentry = lookup_one_len(name, parent->dentry, namelen);
670 error = PTR_ERR(dentry);
678 error = btrfs_may_create(dir, dentry);
682 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
684 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
688 error = create_snapshot(snap_src, dentry, name, namelen,
689 async_transid, readonly, inherit);
691 error = create_subvol(BTRFS_I(dir)->root, dentry,
692 name, namelen, async_transid, inherit);
695 fsnotify_mkdir(dir, dentry);
697 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
701 mutex_unlock(&dir->i_mutex);
706 * When we're defragging a range, we don't want to kick it off again
707 * if it is really just waiting for delalloc to send it down.
708 * If we find a nice big extent or delalloc range for the bytes in the
709 * file you want to defrag, we return 0 to let you know to skip this
712 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
714 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
715 struct extent_map *em = NULL;
716 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
719 read_lock(&em_tree->lock);
720 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
721 read_unlock(&em_tree->lock);
724 end = extent_map_end(em);
726 if (end - offset > thresh)
729 /* if we already have a nice delalloc here, just stop */
731 end = count_range_bits(io_tree, &offset, offset + thresh,
732 thresh, EXTENT_DELALLOC, 1);
739 * helper function to walk through a file and find extents
740 * newer than a specific transid, and smaller than thresh.
742 * This is used by the defragging code to find new and small
745 static int find_new_extents(struct btrfs_root *root,
746 struct inode *inode, u64 newer_than,
747 u64 *off, int thresh)
749 struct btrfs_path *path;
750 struct btrfs_key min_key;
751 struct btrfs_key max_key;
752 struct extent_buffer *leaf;
753 struct btrfs_file_extent_item *extent;
756 u64 ino = btrfs_ino(inode);
758 path = btrfs_alloc_path();
762 min_key.objectid = ino;
763 min_key.type = BTRFS_EXTENT_DATA_KEY;
764 min_key.offset = *off;
766 max_key.objectid = ino;
767 max_key.type = (u8)-1;
768 max_key.offset = (u64)-1;
770 path->keep_locks = 1;
773 ret = btrfs_search_forward(root, &min_key, &max_key,
774 path, 0, newer_than);
777 if (min_key.objectid != ino)
779 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
782 leaf = path->nodes[0];
783 extent = btrfs_item_ptr(leaf, path->slots[0],
784 struct btrfs_file_extent_item);
786 type = btrfs_file_extent_type(leaf, extent);
787 if (type == BTRFS_FILE_EXTENT_REG &&
788 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
789 check_defrag_in_cache(inode, min_key.offset, thresh)) {
790 *off = min_key.offset;
791 btrfs_free_path(path);
795 if (min_key.offset == (u64)-1)
799 btrfs_release_path(path);
802 btrfs_free_path(path);
806 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
808 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
809 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
810 struct extent_map *em;
811 u64 len = PAGE_CACHE_SIZE;
814 * hopefully we have this extent in the tree already, try without
815 * the full extent lock
817 read_lock(&em_tree->lock);
818 em = lookup_extent_mapping(em_tree, start, len);
819 read_unlock(&em_tree->lock);
822 /* get the big lock and read metadata off disk */
823 lock_extent(io_tree, start, start + len - 1);
824 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
825 unlock_extent(io_tree, start, start + len - 1);
834 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
836 struct extent_map *next;
839 /* this is the last extent */
840 if (em->start + em->len >= i_size_read(inode))
843 next = defrag_lookup_extent(inode, em->start + em->len);
844 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
847 free_extent_map(next);
851 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
852 u64 *last_len, u64 *skip, u64 *defrag_end,
855 struct extent_map *em;
857 bool next_mergeable = true;
860 * make sure that once we start defragging an extent, we keep on
863 if (start < *defrag_end)
868 em = defrag_lookup_extent(inode, start);
872 /* this will cover holes, and inline extents */
873 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
878 next_mergeable = defrag_check_next_extent(inode, em);
881 * we hit a real extent, if it is big or the next extent is not a
882 * real extent, don't bother defragging it
884 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
885 (em->len >= thresh || !next_mergeable))
889 * last_len ends up being a counter of how many bytes we've defragged.
890 * every time we choose not to defrag an extent, we reset *last_len
891 * so that the next tiny extent will force a defrag.
893 * The end result of this is that tiny extents before a single big
894 * extent will force at least part of that big extent to be defragged.
897 *defrag_end = extent_map_end(em);
900 *skip = extent_map_end(em);
909 * it doesn't do much good to defrag one or two pages
910 * at a time. This pulls in a nice chunk of pages
913 * It also makes sure the delalloc code has enough
914 * dirty data to avoid making new small extents as part
917 * It's a good idea to start RA on this range
918 * before calling this.
920 static int cluster_pages_for_defrag(struct inode *inode,
922 unsigned long start_index,
925 unsigned long file_end;
926 u64 isize = i_size_read(inode);
933 struct btrfs_ordered_extent *ordered;
934 struct extent_state *cached_state = NULL;
935 struct extent_io_tree *tree;
936 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
938 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
939 if (!isize || start_index > file_end)
942 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
944 ret = btrfs_delalloc_reserve_space(inode,
945 page_cnt << PAGE_CACHE_SHIFT);
949 tree = &BTRFS_I(inode)->io_tree;
951 /* step one, lock all the pages */
952 for (i = 0; i < page_cnt; i++) {
955 page = find_or_create_page(inode->i_mapping,
956 start_index + i, mask);
960 page_start = page_offset(page);
961 page_end = page_start + PAGE_CACHE_SIZE - 1;
963 lock_extent(tree, page_start, page_end);
964 ordered = btrfs_lookup_ordered_extent(inode,
966 unlock_extent(tree, page_start, page_end);
971 btrfs_start_ordered_extent(inode, ordered, 1);
972 btrfs_put_ordered_extent(ordered);
975 * we unlocked the page above, so we need check if
976 * it was released or not.
978 if (page->mapping != inode->i_mapping) {
980 page_cache_release(page);
985 if (!PageUptodate(page)) {
986 btrfs_readpage(NULL, page);
988 if (!PageUptodate(page)) {
990 page_cache_release(page);
996 if (page->mapping != inode->i_mapping) {
998 page_cache_release(page);
1008 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1012 * so now we have a nice long stream of locked
1013 * and up to date pages, lets wait on them
1015 for (i = 0; i < i_done; i++)
1016 wait_on_page_writeback(pages[i]);
1018 page_start = page_offset(pages[0]);
1019 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1021 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1022 page_start, page_end - 1, 0, &cached_state);
1023 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1024 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1025 EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
1028 if (i_done != page_cnt) {
1029 spin_lock(&BTRFS_I(inode)->lock);
1030 BTRFS_I(inode)->outstanding_extents++;
1031 spin_unlock(&BTRFS_I(inode)->lock);
1032 btrfs_delalloc_release_space(inode,
1033 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1037 btrfs_set_extent_delalloc(inode, page_start, page_end - 1,
1040 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1041 page_start, page_end - 1, &cached_state,
1044 for (i = 0; i < i_done; i++) {
1045 clear_page_dirty_for_io(pages[i]);
1046 ClearPageChecked(pages[i]);
1047 set_page_extent_mapped(pages[i]);
1048 set_page_dirty(pages[i]);
1049 unlock_page(pages[i]);
1050 page_cache_release(pages[i]);
1054 for (i = 0; i < i_done; i++) {
1055 unlock_page(pages[i]);
1056 page_cache_release(pages[i]);
1058 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1063 int btrfs_defrag_file(struct inode *inode, struct file *file,
1064 struct btrfs_ioctl_defrag_range_args *range,
1065 u64 newer_than, unsigned long max_to_defrag)
1067 struct btrfs_root *root = BTRFS_I(inode)->root;
1068 struct file_ra_state *ra = NULL;
1069 unsigned long last_index;
1070 u64 isize = i_size_read(inode);
1074 u64 newer_off = range->start;
1076 unsigned long ra_index = 0;
1078 int defrag_count = 0;
1079 int compress_type = BTRFS_COMPRESS_ZLIB;
1080 int extent_thresh = range->extent_thresh;
1081 int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1082 int cluster = max_cluster;
1083 u64 new_align = ~((u64)128 * 1024 - 1);
1084 struct page **pages = NULL;
1086 if (extent_thresh == 0)
1087 extent_thresh = 256 * 1024;
1089 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1090 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1092 if (range->compress_type)
1093 compress_type = range->compress_type;
1100 * if we were not given a file, allocate a readahead
1104 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1107 file_ra_state_init(ra, inode->i_mapping);
1112 pages = kmalloc(sizeof(struct page *) * max_cluster,
1119 /* find the last page to defrag */
1120 if (range->start + range->len > range->start) {
1121 last_index = min_t(u64, isize - 1,
1122 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1124 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1128 ret = find_new_extents(root, inode, newer_than,
1129 &newer_off, 64 * 1024);
1131 range->start = newer_off;
1133 * we always align our defrag to help keep
1134 * the extents in the file evenly spaced
1136 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1140 i = range->start >> PAGE_CACHE_SHIFT;
1143 max_to_defrag = last_index + 1;
1146 * make writeback starts from i, so the defrag range can be
1147 * written sequentially.
1149 if (i < inode->i_mapping->writeback_index)
1150 inode->i_mapping->writeback_index = i;
1152 while (i <= last_index && defrag_count < max_to_defrag &&
1153 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1154 PAGE_CACHE_SHIFT)) {
1156 * make sure we stop running if someone unmounts
1159 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1162 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1163 extent_thresh, &last_len, &skip,
1164 &defrag_end, range->flags &
1165 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1168 * the should_defrag function tells us how much to skip
1169 * bump our counter by the suggested amount
1171 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1172 i = max(i + 1, next);
1177 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1178 PAGE_CACHE_SHIFT) - i;
1179 cluster = min(cluster, max_cluster);
1181 cluster = max_cluster;
1184 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1185 BTRFS_I(inode)->force_compress = compress_type;
1187 if (i + cluster > ra_index) {
1188 ra_index = max(i, ra_index);
1189 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1191 ra_index += max_cluster;
1194 mutex_lock(&inode->i_mutex);
1195 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1197 mutex_unlock(&inode->i_mutex);
1201 defrag_count += ret;
1202 balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
1203 mutex_unlock(&inode->i_mutex);
1206 if (newer_off == (u64)-1)
1212 newer_off = max(newer_off + 1,
1213 (u64)i << PAGE_CACHE_SHIFT);
1215 ret = find_new_extents(root, inode,
1216 newer_than, &newer_off,
1219 range->start = newer_off;
1220 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1227 last_len += ret << PAGE_CACHE_SHIFT;
1235 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1236 filemap_flush(inode->i_mapping);
1238 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1239 /* the filemap_flush will queue IO into the worker threads, but
1240 * we have to make sure the IO is actually started and that
1241 * ordered extents get created before we return
1243 atomic_inc(&root->fs_info->async_submit_draining);
1244 while (atomic_read(&root->fs_info->nr_async_submits) ||
1245 atomic_read(&root->fs_info->async_delalloc_pages)) {
1246 wait_event(root->fs_info->async_submit_wait,
1247 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1248 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1250 atomic_dec(&root->fs_info->async_submit_draining);
1252 mutex_lock(&inode->i_mutex);
1253 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1254 mutex_unlock(&inode->i_mutex);
1257 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1258 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1270 static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
1276 struct btrfs_ioctl_vol_args *vol_args;
1277 struct btrfs_trans_handle *trans;
1278 struct btrfs_device *device = NULL;
1280 char *devstr = NULL;
1284 if (root->fs_info->sb->s_flags & MS_RDONLY)
1287 if (!capable(CAP_SYS_ADMIN))
1290 mutex_lock(&root->fs_info->volume_mutex);
1291 if (root->fs_info->balance_ctl) {
1292 printk(KERN_INFO "btrfs: balance in progress\n");
1297 vol_args = memdup_user(arg, sizeof(*vol_args));
1298 if (IS_ERR(vol_args)) {
1299 ret = PTR_ERR(vol_args);
1303 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1305 sizestr = vol_args->name;
1306 devstr = strchr(sizestr, ':');
1309 sizestr = devstr + 1;
1311 devstr = vol_args->name;
1312 devid = simple_strtoull(devstr, &end, 10);
1313 printk(KERN_INFO "btrfs: resizing devid %llu\n",
1314 (unsigned long long)devid);
1316 device = btrfs_find_device(root, devid, NULL, NULL);
1318 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1319 (unsigned long long)devid);
1323 if (device->fs_devices && device->fs_devices->seeding) {
1324 printk(KERN_INFO "btrfs: resizer unable to apply on "
1325 "seeding device %llu\n",
1326 (unsigned long long)devid);
1331 if (!strcmp(sizestr, "max"))
1332 new_size = device->bdev->bd_inode->i_size;
1334 if (sizestr[0] == '-') {
1337 } else if (sizestr[0] == '+') {
1341 new_size = memparse(sizestr, NULL);
1342 if (new_size == 0) {
1348 old_size = device->total_bytes;
1351 if (new_size > old_size) {
1355 new_size = old_size - new_size;
1356 } else if (mod > 0) {
1357 new_size = old_size + new_size;
1360 if (new_size < 256 * 1024 * 1024) {
1364 if (new_size > device->bdev->bd_inode->i_size) {
1369 do_div(new_size, root->sectorsize);
1370 new_size *= root->sectorsize;
1372 printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n",
1373 rcu_str_deref(device->name),
1374 (unsigned long long)new_size);
1376 if (new_size > old_size) {
1377 trans = btrfs_start_transaction(root, 0);
1378 if (IS_ERR(trans)) {
1379 ret = PTR_ERR(trans);
1382 ret = btrfs_grow_device(trans, device, new_size);
1383 btrfs_commit_transaction(trans, root);
1384 } else if (new_size < old_size) {
1385 ret = btrfs_shrink_device(device, new_size);
1391 mutex_unlock(&root->fs_info->volume_mutex);
1395 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1396 char *name, unsigned long fd, int subvol,
1397 u64 *transid, bool readonly,
1398 struct btrfs_qgroup_inherit **inherit)
1403 ret = mnt_want_write_file(file);
1407 namelen = strlen(name);
1408 if (strchr(name, '/')) {
1410 goto out_drop_write;
1413 if (name[0] == '.' &&
1414 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1416 goto out_drop_write;
1420 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1421 NULL, transid, readonly, inherit);
1423 struct fd src = fdget(fd);
1424 struct inode *src_inode;
1427 goto out_drop_write;
1430 src_inode = src.file->f_path.dentry->d_inode;
1431 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1432 printk(KERN_INFO "btrfs: Snapshot src from "
1436 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1437 BTRFS_I(src_inode)->root,
1438 transid, readonly, inherit);
1443 mnt_drop_write_file(file);
1448 static noinline int btrfs_ioctl_snap_create(struct file *file,
1449 void __user *arg, int subvol)
1451 struct btrfs_ioctl_vol_args *vol_args;
1454 vol_args = memdup_user(arg, sizeof(*vol_args));
1455 if (IS_ERR(vol_args))
1456 return PTR_ERR(vol_args);
1457 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1459 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1460 vol_args->fd, subvol,
1467 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1468 void __user *arg, int subvol)
1470 struct btrfs_ioctl_vol_args_v2 *vol_args;
1474 bool readonly = false;
1475 struct btrfs_qgroup_inherit *inherit = NULL;
1477 vol_args = memdup_user(arg, sizeof(*vol_args));
1478 if (IS_ERR(vol_args))
1479 return PTR_ERR(vol_args);
1480 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1482 if (vol_args->flags &
1483 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1484 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1489 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1491 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1493 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1494 if (vol_args->size > PAGE_CACHE_SIZE) {
1498 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1499 if (IS_ERR(inherit)) {
1500 ret = PTR_ERR(inherit);
1505 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1506 vol_args->fd, subvol, ptr,
1507 readonly, &inherit);
1509 if (ret == 0 && ptr &&
1511 offsetof(struct btrfs_ioctl_vol_args_v2,
1512 transid), ptr, sizeof(*ptr)))
1520 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1523 struct inode *inode = fdentry(file)->d_inode;
1524 struct btrfs_root *root = BTRFS_I(inode)->root;
1528 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1531 down_read(&root->fs_info->subvol_sem);
1532 if (btrfs_root_readonly(root))
1533 flags |= BTRFS_SUBVOL_RDONLY;
1534 up_read(&root->fs_info->subvol_sem);
1536 if (copy_to_user(arg, &flags, sizeof(flags)))
1542 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1545 struct inode *inode = fdentry(file)->d_inode;
1546 struct btrfs_root *root = BTRFS_I(inode)->root;
1547 struct btrfs_trans_handle *trans;
1552 ret = mnt_want_write_file(file);
1556 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1558 goto out_drop_write;
1561 if (copy_from_user(&flags, arg, sizeof(flags))) {
1563 goto out_drop_write;
1566 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1568 goto out_drop_write;
1571 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1573 goto out_drop_write;
1576 if (!inode_owner_or_capable(inode)) {
1578 goto out_drop_write;
1581 down_write(&root->fs_info->subvol_sem);
1584 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1587 root_flags = btrfs_root_flags(&root->root_item);
1588 if (flags & BTRFS_SUBVOL_RDONLY)
1589 btrfs_set_root_flags(&root->root_item,
1590 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1592 btrfs_set_root_flags(&root->root_item,
1593 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1595 trans = btrfs_start_transaction(root, 1);
1596 if (IS_ERR(trans)) {
1597 ret = PTR_ERR(trans);
1601 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1602 &root->root_key, &root->root_item);
1604 btrfs_commit_transaction(trans, root);
1607 btrfs_set_root_flags(&root->root_item, root_flags);
1609 up_write(&root->fs_info->subvol_sem);
1611 mnt_drop_write_file(file);
1617 * helper to check if the subvolume references other subvolumes
1619 static noinline int may_destroy_subvol(struct btrfs_root *root)
1621 struct btrfs_path *path;
1622 struct btrfs_key key;
1625 path = btrfs_alloc_path();
1629 key.objectid = root->root_key.objectid;
1630 key.type = BTRFS_ROOT_REF_KEY;
1631 key.offset = (u64)-1;
1633 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1640 if (path->slots[0] > 0) {
1642 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1643 if (key.objectid == root->root_key.objectid &&
1644 key.type == BTRFS_ROOT_REF_KEY)
1648 btrfs_free_path(path);
1652 static noinline int key_in_sk(struct btrfs_key *key,
1653 struct btrfs_ioctl_search_key *sk)
1655 struct btrfs_key test;
1658 test.objectid = sk->min_objectid;
1659 test.type = sk->min_type;
1660 test.offset = sk->min_offset;
1662 ret = btrfs_comp_cpu_keys(key, &test);
1666 test.objectid = sk->max_objectid;
1667 test.type = sk->max_type;
1668 test.offset = sk->max_offset;
1670 ret = btrfs_comp_cpu_keys(key, &test);
1676 static noinline int copy_to_sk(struct btrfs_root *root,
1677 struct btrfs_path *path,
1678 struct btrfs_key *key,
1679 struct btrfs_ioctl_search_key *sk,
1681 unsigned long *sk_offset,
1685 struct extent_buffer *leaf;
1686 struct btrfs_ioctl_search_header sh;
1687 unsigned long item_off;
1688 unsigned long item_len;
1694 leaf = path->nodes[0];
1695 slot = path->slots[0];
1696 nritems = btrfs_header_nritems(leaf);
1698 if (btrfs_header_generation(leaf) > sk->max_transid) {
1702 found_transid = btrfs_header_generation(leaf);
1704 for (i = slot; i < nritems; i++) {
1705 item_off = btrfs_item_ptr_offset(leaf, i);
1706 item_len = btrfs_item_size_nr(leaf, i);
1708 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1711 if (sizeof(sh) + item_len + *sk_offset >
1712 BTRFS_SEARCH_ARGS_BUFSIZE) {
1717 btrfs_item_key_to_cpu(leaf, key, i);
1718 if (!key_in_sk(key, sk))
1721 sh.objectid = key->objectid;
1722 sh.offset = key->offset;
1723 sh.type = key->type;
1725 sh.transid = found_transid;
1727 /* copy search result header */
1728 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1729 *sk_offset += sizeof(sh);
1732 char *p = buf + *sk_offset;
1734 read_extent_buffer(leaf, p,
1735 item_off, item_len);
1736 *sk_offset += item_len;
1740 if (*num_found >= sk->nr_items)
1745 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1747 else if (key->type < (u8)-1 && key->type < sk->max_type) {
1750 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1760 static noinline int search_ioctl(struct inode *inode,
1761 struct btrfs_ioctl_search_args *args)
1763 struct btrfs_root *root;
1764 struct btrfs_key key;
1765 struct btrfs_key max_key;
1766 struct btrfs_path *path;
1767 struct btrfs_ioctl_search_key *sk = &args->key;
1768 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1771 unsigned long sk_offset = 0;
1773 path = btrfs_alloc_path();
1777 if (sk->tree_id == 0) {
1778 /* search the root of the inode that was passed */
1779 root = BTRFS_I(inode)->root;
1781 key.objectid = sk->tree_id;
1782 key.type = BTRFS_ROOT_ITEM_KEY;
1783 key.offset = (u64)-1;
1784 root = btrfs_read_fs_root_no_name(info, &key);
1786 printk(KERN_ERR "could not find root %llu\n",
1788 btrfs_free_path(path);
1793 key.objectid = sk->min_objectid;
1794 key.type = sk->min_type;
1795 key.offset = sk->min_offset;
1797 max_key.objectid = sk->max_objectid;
1798 max_key.type = sk->max_type;
1799 max_key.offset = sk->max_offset;
1801 path->keep_locks = 1;
1804 ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1811 ret = copy_to_sk(root, path, &key, sk, args->buf,
1812 &sk_offset, &num_found);
1813 btrfs_release_path(path);
1814 if (ret || num_found >= sk->nr_items)
1820 sk->nr_items = num_found;
1821 btrfs_free_path(path);
1825 static noinline int btrfs_ioctl_tree_search(struct file *file,
1828 struct btrfs_ioctl_search_args *args;
1829 struct inode *inode;
1832 if (!capable(CAP_SYS_ADMIN))
1835 args = memdup_user(argp, sizeof(*args));
1837 return PTR_ERR(args);
1839 inode = fdentry(file)->d_inode;
1840 ret = search_ioctl(inode, args);
1841 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1848 * Search INODE_REFs to identify path name of 'dirid' directory
1849 * in a 'tree_id' tree. and sets path name to 'name'.
1851 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1852 u64 tree_id, u64 dirid, char *name)
1854 struct btrfs_root *root;
1855 struct btrfs_key key;
1861 struct btrfs_inode_ref *iref;
1862 struct extent_buffer *l;
1863 struct btrfs_path *path;
1865 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1870 path = btrfs_alloc_path();
1874 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1876 key.objectid = tree_id;
1877 key.type = BTRFS_ROOT_ITEM_KEY;
1878 key.offset = (u64)-1;
1879 root = btrfs_read_fs_root_no_name(info, &key);
1881 printk(KERN_ERR "could not find root %llu\n", tree_id);
1886 key.objectid = dirid;
1887 key.type = BTRFS_INODE_REF_KEY;
1888 key.offset = (u64)-1;
1891 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1896 slot = path->slots[0];
1897 if (ret > 0 && slot > 0)
1899 btrfs_item_key_to_cpu(l, &key, slot);
1901 if (ret > 0 && (key.objectid != dirid ||
1902 key.type != BTRFS_INODE_REF_KEY)) {
1907 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1908 len = btrfs_inode_ref_name_len(l, iref);
1910 total_len += len + 1;
1915 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1917 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1920 btrfs_release_path(path);
1921 key.objectid = key.offset;
1922 key.offset = (u64)-1;
1923 dirid = key.objectid;
1927 memmove(name, ptr, total_len);
1928 name[total_len]='\0';
1931 btrfs_free_path(path);
1935 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1938 struct btrfs_ioctl_ino_lookup_args *args;
1939 struct inode *inode;
1942 if (!capable(CAP_SYS_ADMIN))
1945 args = memdup_user(argp, sizeof(*args));
1947 return PTR_ERR(args);
1949 inode = fdentry(file)->d_inode;
1951 if (args->treeid == 0)
1952 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1954 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1955 args->treeid, args->objectid,
1958 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1965 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1968 struct dentry *parent = fdentry(file);
1969 struct dentry *dentry;
1970 struct inode *dir = parent->d_inode;
1971 struct inode *inode;
1972 struct btrfs_root *root = BTRFS_I(dir)->root;
1973 struct btrfs_root *dest = NULL;
1974 struct btrfs_ioctl_vol_args *vol_args;
1975 struct btrfs_trans_handle *trans;
1980 vol_args = memdup_user(arg, sizeof(*vol_args));
1981 if (IS_ERR(vol_args))
1982 return PTR_ERR(vol_args);
1984 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1985 namelen = strlen(vol_args->name);
1986 if (strchr(vol_args->name, '/') ||
1987 strncmp(vol_args->name, "..", namelen) == 0) {
1992 err = mnt_want_write_file(file);
1996 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
1997 dentry = lookup_one_len(vol_args->name, parent, namelen);
1998 if (IS_ERR(dentry)) {
1999 err = PTR_ERR(dentry);
2000 goto out_unlock_dir;
2003 if (!dentry->d_inode) {
2008 inode = dentry->d_inode;
2009 dest = BTRFS_I(inode)->root;
2010 if (!capable(CAP_SYS_ADMIN)){
2012 * Regular user. Only allow this with a special mount
2013 * option, when the user has write+exec access to the
2014 * subvol root, and when rmdir(2) would have been
2017 * Note that this is _not_ check that the subvol is
2018 * empty or doesn't contain data that we wouldn't
2019 * otherwise be able to delete.
2021 * Users who want to delete empty subvols should try
2025 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2029 * Do not allow deletion if the parent dir is the same
2030 * as the dir to be deleted. That means the ioctl
2031 * must be called on the dentry referencing the root
2032 * of the subvol, not a random directory contained
2039 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2043 /* check if subvolume may be deleted by a non-root user */
2044 err = btrfs_may_delete(dir, dentry, 1);
2049 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2054 mutex_lock(&inode->i_mutex);
2055 err = d_invalidate(dentry);
2059 down_write(&root->fs_info->subvol_sem);
2061 err = may_destroy_subvol(dest);
2065 trans = btrfs_start_transaction(root, 0);
2066 if (IS_ERR(trans)) {
2067 err = PTR_ERR(trans);
2070 trans->block_rsv = &root->fs_info->global_block_rsv;
2072 ret = btrfs_unlink_subvol(trans, root, dir,
2073 dest->root_key.objectid,
2074 dentry->d_name.name,
2075 dentry->d_name.len);
2078 btrfs_abort_transaction(trans, root, ret);
2082 btrfs_record_root_in_trans(trans, dest);
2084 memset(&dest->root_item.drop_progress, 0,
2085 sizeof(dest->root_item.drop_progress));
2086 dest->root_item.drop_level = 0;
2087 btrfs_set_root_refs(&dest->root_item, 0);
2089 if (!xchg(&dest->orphan_item_inserted, 1)) {
2090 ret = btrfs_insert_orphan_item(trans,
2091 root->fs_info->tree_root,
2092 dest->root_key.objectid);
2094 btrfs_abort_transaction(trans, root, ret);
2100 ret = btrfs_end_transaction(trans, root);
2103 inode->i_flags |= S_DEAD;
2105 up_write(&root->fs_info->subvol_sem);
2107 mutex_unlock(&inode->i_mutex);
2109 shrink_dcache_sb(root->fs_info->sb);
2110 btrfs_invalidate_inodes(dest);
2116 mutex_unlock(&dir->i_mutex);
2117 mnt_drop_write_file(file);
2123 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2125 struct inode *inode = fdentry(file)->d_inode;
2126 struct btrfs_root *root = BTRFS_I(inode)->root;
2127 struct btrfs_ioctl_defrag_range_args *range;
2130 if (btrfs_root_readonly(root))
2133 ret = mnt_want_write_file(file);
2137 switch (inode->i_mode & S_IFMT) {
2139 if (!capable(CAP_SYS_ADMIN)) {
2143 ret = btrfs_defrag_root(root, 0);
2146 ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
2149 if (!(file->f_mode & FMODE_WRITE)) {
2154 range = kzalloc(sizeof(*range), GFP_KERNEL);
2161 if (copy_from_user(range, argp,
2167 /* compression requires us to start the IO */
2168 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2169 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2170 range->extent_thresh = (u32)-1;
2173 /* the rest are all set to zero by kzalloc */
2174 range->len = (u64)-1;
2176 ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2186 mnt_drop_write_file(file);
2190 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2192 struct btrfs_ioctl_vol_args *vol_args;
2195 if (!capable(CAP_SYS_ADMIN))
2198 mutex_lock(&root->fs_info->volume_mutex);
2199 if (root->fs_info->balance_ctl) {
2200 printk(KERN_INFO "btrfs: balance in progress\n");
2205 vol_args = memdup_user(arg, sizeof(*vol_args));
2206 if (IS_ERR(vol_args)) {
2207 ret = PTR_ERR(vol_args);
2211 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2212 ret = btrfs_init_new_device(root, vol_args->name);
2216 mutex_unlock(&root->fs_info->volume_mutex);
2220 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
2222 struct btrfs_ioctl_vol_args *vol_args;
2225 if (!capable(CAP_SYS_ADMIN))
2228 if (root->fs_info->sb->s_flags & MS_RDONLY)
2231 mutex_lock(&root->fs_info->volume_mutex);
2232 if (root->fs_info->balance_ctl) {
2233 printk(KERN_INFO "btrfs: balance in progress\n");
2238 vol_args = memdup_user(arg, sizeof(*vol_args));
2239 if (IS_ERR(vol_args)) {
2240 ret = PTR_ERR(vol_args);
2244 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2245 ret = btrfs_rm_device(root, vol_args->name);
2249 mutex_unlock(&root->fs_info->volume_mutex);
2253 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2255 struct btrfs_ioctl_fs_info_args *fi_args;
2256 struct btrfs_device *device;
2257 struct btrfs_device *next;
2258 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2261 if (!capable(CAP_SYS_ADMIN))
2264 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2268 fi_args->num_devices = fs_devices->num_devices;
2269 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2271 mutex_lock(&fs_devices->device_list_mutex);
2272 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2273 if (device->devid > fi_args->max_id)
2274 fi_args->max_id = device->devid;
2276 mutex_unlock(&fs_devices->device_list_mutex);
2278 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2285 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2287 struct btrfs_ioctl_dev_info_args *di_args;
2288 struct btrfs_device *dev;
2289 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2291 char *s_uuid = NULL;
2292 char empty_uuid[BTRFS_UUID_SIZE] = {0};
2294 if (!capable(CAP_SYS_ADMIN))
2297 di_args = memdup_user(arg, sizeof(*di_args));
2298 if (IS_ERR(di_args))
2299 return PTR_ERR(di_args);
2301 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2302 s_uuid = di_args->uuid;
2304 mutex_lock(&fs_devices->device_list_mutex);
2305 dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
2306 mutex_unlock(&fs_devices->device_list_mutex);
2313 di_args->devid = dev->devid;
2314 di_args->bytes_used = dev->bytes_used;
2315 di_args->total_bytes = dev->total_bytes;
2316 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2318 struct rcu_string *name;
2321 name = rcu_dereference(dev->name);
2322 strncpy(di_args->path, name->str, sizeof(di_args->path));
2324 di_args->path[sizeof(di_args->path) - 1] = 0;
2326 di_args->path[0] = '\0';
2330 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2337 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2338 u64 off, u64 olen, u64 destoff)
2340 struct inode *inode = fdentry(file)->d_inode;
2341 struct btrfs_root *root = BTRFS_I(inode)->root;
2344 struct btrfs_trans_handle *trans;
2345 struct btrfs_path *path;
2346 struct extent_buffer *leaf;
2348 struct btrfs_key key;
2353 u64 bs = root->fs_info->sb->s_blocksize;
2358 * - split compressed inline extents. annoying: we need to
2359 * decompress into destination's address_space (the file offset
2360 * may change, so source mapping won't do), then recompress (or
2361 * otherwise reinsert) a subrange.
2362 * - allow ranges within the same file to be cloned (provided
2363 * they don't overlap)?
2366 /* the destination must be opened for writing */
2367 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2370 if (btrfs_root_readonly(root))
2373 ret = mnt_want_write_file(file);
2377 src_file = fdget(srcfd);
2378 if (!src_file.file) {
2380 goto out_drop_write;
2384 if (src_file.file->f_path.mnt != file->f_path.mnt)
2387 src = src_file.file->f_dentry->d_inode;
2393 /* the src must be open for reading */
2394 if (!(src_file.file->f_mode & FMODE_READ))
2397 /* don't make the dst file partly checksummed */
2398 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2399 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2403 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2407 if (src->i_sb != inode->i_sb)
2411 buf = vmalloc(btrfs_level_size(root, 0));
2415 path = btrfs_alloc_path();
2423 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2424 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2426 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2427 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2430 /* determine range to clone */
2432 if (off + len > src->i_size || off + len < off)
2435 olen = len = src->i_size - off;
2436 /* if we extend to eof, continue to block boundary */
2437 if (off + len == src->i_size)
2438 len = ALIGN(src->i_size, bs) - off;
2440 /* verify the end result is block aligned */
2441 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2442 !IS_ALIGNED(destoff, bs))
2445 if (destoff > inode->i_size) {
2446 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2451 /* truncate page cache pages from target inode range */
2452 truncate_inode_pages_range(&inode->i_data, destoff,
2453 PAGE_CACHE_ALIGN(destoff + len) - 1);
2455 /* do any pending delalloc/csum calc on src, one way or
2456 another, and lock file content */
2458 struct btrfs_ordered_extent *ordered;
2459 lock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2460 ordered = btrfs_lookup_first_ordered_extent(src, off+len);
2462 !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
2463 EXTENT_DELALLOC, 0, NULL))
2465 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2467 btrfs_put_ordered_extent(ordered);
2468 btrfs_wait_ordered_range(src, off, len);
2472 key.objectid = btrfs_ino(src);
2473 key.type = BTRFS_EXTENT_DATA_KEY;
2478 * note the key will change type as we walk through the
2481 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2486 nritems = btrfs_header_nritems(path->nodes[0]);
2487 if (path->slots[0] >= nritems) {
2488 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2493 nritems = btrfs_header_nritems(path->nodes[0]);
2495 leaf = path->nodes[0];
2496 slot = path->slots[0];
2498 btrfs_item_key_to_cpu(leaf, &key, slot);
2499 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2500 key.objectid != btrfs_ino(src))
2503 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2504 struct btrfs_file_extent_item *extent;
2507 struct btrfs_key new_key;
2508 u64 disko = 0, diskl = 0;
2509 u64 datao = 0, datal = 0;
2513 size = btrfs_item_size_nr(leaf, slot);
2514 read_extent_buffer(leaf, buf,
2515 btrfs_item_ptr_offset(leaf, slot),
2518 extent = btrfs_item_ptr(leaf, slot,
2519 struct btrfs_file_extent_item);
2520 comp = btrfs_file_extent_compression(leaf, extent);
2521 type = btrfs_file_extent_type(leaf, extent);
2522 if (type == BTRFS_FILE_EXTENT_REG ||
2523 type == BTRFS_FILE_EXTENT_PREALLOC) {
2524 disko = btrfs_file_extent_disk_bytenr(leaf,
2526 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2528 datao = btrfs_file_extent_offset(leaf, extent);
2529 datal = btrfs_file_extent_num_bytes(leaf,
2531 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2532 /* take upper bound, may be compressed */
2533 datal = btrfs_file_extent_ram_bytes(leaf,
2536 btrfs_release_path(path);
2538 if (key.offset + datal <= off ||
2539 key.offset >= off+len)
2542 memcpy(&new_key, &key, sizeof(new_key));
2543 new_key.objectid = btrfs_ino(inode);
2544 if (off <= key.offset)
2545 new_key.offset = key.offset + destoff - off;
2547 new_key.offset = destoff;
2550 * 1 - adjusting old extent (we may have to split it)
2551 * 1 - add new extent
2554 trans = btrfs_start_transaction(root, 3);
2555 if (IS_ERR(trans)) {
2556 ret = PTR_ERR(trans);
2560 if (type == BTRFS_FILE_EXTENT_REG ||
2561 type == BTRFS_FILE_EXTENT_PREALLOC) {
2563 * a | --- range to clone ---| b
2564 * | ------------- extent ------------- |
2567 /* substract range b */
2568 if (key.offset + datal > off + len)
2569 datal = off + len - key.offset;
2571 /* substract range a */
2572 if (off > key.offset) {
2573 datao += off - key.offset;
2574 datal -= off - key.offset;
2577 ret = btrfs_drop_extents(trans, inode,
2579 new_key.offset + datal,
2582 btrfs_abort_transaction(trans, root,
2584 btrfs_end_transaction(trans, root);
2588 ret = btrfs_insert_empty_item(trans, root, path,
2591 btrfs_abort_transaction(trans, root,
2593 btrfs_end_transaction(trans, root);
2597 leaf = path->nodes[0];
2598 slot = path->slots[0];
2599 write_extent_buffer(leaf, buf,
2600 btrfs_item_ptr_offset(leaf, slot),
2603 extent = btrfs_item_ptr(leaf, slot,
2604 struct btrfs_file_extent_item);
2606 /* disko == 0 means it's a hole */
2610 btrfs_set_file_extent_offset(leaf, extent,
2612 btrfs_set_file_extent_num_bytes(leaf, extent,
2615 inode_add_bytes(inode, datal);
2616 ret = btrfs_inc_extent_ref(trans, root,
2618 root->root_key.objectid,
2620 new_key.offset - datao,
2623 btrfs_abort_transaction(trans,
2626 btrfs_end_transaction(trans,
2632 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2635 if (off > key.offset) {
2636 skip = off - key.offset;
2637 new_key.offset += skip;
2640 if (key.offset + datal > off+len)
2641 trim = key.offset + datal - (off+len);
2643 if (comp && (skip || trim)) {
2645 btrfs_end_transaction(trans, root);
2648 size -= skip + trim;
2649 datal -= skip + trim;
2651 ret = btrfs_drop_extents(trans, inode,
2653 new_key.offset + datal,
2656 btrfs_abort_transaction(trans, root,
2658 btrfs_end_transaction(trans, root);
2662 ret = btrfs_insert_empty_item(trans, root, path,
2665 btrfs_abort_transaction(trans, root,
2667 btrfs_end_transaction(trans, root);
2673 btrfs_file_extent_calc_inline_size(0);
2674 memmove(buf+start, buf+start+skip,
2678 leaf = path->nodes[0];
2679 slot = path->slots[0];
2680 write_extent_buffer(leaf, buf,
2681 btrfs_item_ptr_offset(leaf, slot),
2683 inode_add_bytes(inode, datal);
2686 btrfs_mark_buffer_dirty(leaf);
2687 btrfs_release_path(path);
2689 inode_inc_iversion(inode);
2690 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2693 * we round up to the block size at eof when
2694 * determining which extents to clone above,
2695 * but shouldn't round up the file size
2697 endoff = new_key.offset + datal;
2698 if (endoff > destoff+olen)
2699 endoff = destoff+olen;
2700 if (endoff > inode->i_size)
2701 btrfs_i_size_write(inode, endoff);
2703 ret = btrfs_update_inode(trans, root, inode);
2705 btrfs_abort_transaction(trans, root, ret);
2706 btrfs_end_transaction(trans, root);
2709 ret = btrfs_end_transaction(trans, root);
2712 btrfs_release_path(path);
2717 btrfs_release_path(path);
2718 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2720 mutex_unlock(&src->i_mutex);
2721 mutex_unlock(&inode->i_mutex);
2723 btrfs_free_path(path);
2727 mnt_drop_write_file(file);
2731 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2733 struct btrfs_ioctl_clone_range_args args;
2735 if (copy_from_user(&args, argp, sizeof(args)))
2737 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2738 args.src_length, args.dest_offset);
2742 * there are many ways the trans_start and trans_end ioctls can lead
2743 * to deadlocks. They should only be used by applications that
2744 * basically own the machine, and have a very in depth understanding
2745 * of all the possible deadlocks and enospc problems.
2747 static long btrfs_ioctl_trans_start(struct file *file)
2749 struct inode *inode = fdentry(file)->d_inode;
2750 struct btrfs_root *root = BTRFS_I(inode)->root;
2751 struct btrfs_trans_handle *trans;
2755 if (!capable(CAP_SYS_ADMIN))
2759 if (file->private_data)
2763 if (btrfs_root_readonly(root))
2766 ret = mnt_want_write_file(file);
2770 atomic_inc(&root->fs_info->open_ioctl_trans);
2773 trans = btrfs_start_ioctl_transaction(root);
2777 file->private_data = trans;
2781 atomic_dec(&root->fs_info->open_ioctl_trans);
2782 mnt_drop_write_file(file);
2787 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2789 struct inode *inode = fdentry(file)->d_inode;
2790 struct btrfs_root *root = BTRFS_I(inode)->root;
2791 struct btrfs_root *new_root;
2792 struct btrfs_dir_item *di;
2793 struct btrfs_trans_handle *trans;
2794 struct btrfs_path *path;
2795 struct btrfs_key location;
2796 struct btrfs_disk_key disk_key;
2800 if (!capable(CAP_SYS_ADMIN))
2803 if (copy_from_user(&objectid, argp, sizeof(objectid)))
2807 objectid = root->root_key.objectid;
2809 location.objectid = objectid;
2810 location.type = BTRFS_ROOT_ITEM_KEY;
2811 location.offset = (u64)-1;
2813 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2814 if (IS_ERR(new_root))
2815 return PTR_ERR(new_root);
2817 if (btrfs_root_refs(&new_root->root_item) == 0)
2820 path = btrfs_alloc_path();
2823 path->leave_spinning = 1;
2825 trans = btrfs_start_transaction(root, 1);
2826 if (IS_ERR(trans)) {
2827 btrfs_free_path(path);
2828 return PTR_ERR(trans);
2831 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
2832 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2833 dir_id, "default", 7, 1);
2834 if (IS_ERR_OR_NULL(di)) {
2835 btrfs_free_path(path);
2836 btrfs_end_transaction(trans, root);
2837 printk(KERN_ERR "Umm, you don't have the default dir item, "
2838 "this isn't going to work\n");
2842 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2843 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2844 btrfs_mark_buffer_dirty(path->nodes[0]);
2845 btrfs_free_path(path);
2847 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
2848 btrfs_end_transaction(trans, root);
2853 static void get_block_group_info(struct list_head *groups_list,
2854 struct btrfs_ioctl_space_info *space)
2856 struct btrfs_block_group_cache *block_group;
2858 space->total_bytes = 0;
2859 space->used_bytes = 0;
2861 list_for_each_entry(block_group, groups_list, list) {
2862 space->flags = block_group->flags;
2863 space->total_bytes += block_group->key.offset;
2864 space->used_bytes +=
2865 btrfs_block_group_used(&block_group->item);
2869 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2871 struct btrfs_ioctl_space_args space_args;
2872 struct btrfs_ioctl_space_info space;
2873 struct btrfs_ioctl_space_info *dest;
2874 struct btrfs_ioctl_space_info *dest_orig;
2875 struct btrfs_ioctl_space_info __user *user_dest;
2876 struct btrfs_space_info *info;
2877 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2878 BTRFS_BLOCK_GROUP_SYSTEM,
2879 BTRFS_BLOCK_GROUP_METADATA,
2880 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2887 if (copy_from_user(&space_args,
2888 (struct btrfs_ioctl_space_args __user *)arg,
2889 sizeof(space_args)))
2892 for (i = 0; i < num_types; i++) {
2893 struct btrfs_space_info *tmp;
2897 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2899 if (tmp->flags == types[i]) {
2909 down_read(&info->groups_sem);
2910 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2911 if (!list_empty(&info->block_groups[c]))
2914 up_read(&info->groups_sem);
2917 /* space_slots == 0 means they are asking for a count */
2918 if (space_args.space_slots == 0) {
2919 space_args.total_spaces = slot_count;
2923 slot_count = min_t(u64, space_args.space_slots, slot_count);
2925 alloc_size = sizeof(*dest) * slot_count;
2927 /* we generally have at most 6 or so space infos, one for each raid
2928 * level. So, a whole page should be more than enough for everyone
2930 if (alloc_size > PAGE_CACHE_SIZE)
2933 space_args.total_spaces = 0;
2934 dest = kmalloc(alloc_size, GFP_NOFS);
2939 /* now we have a buffer to copy into */
2940 for (i = 0; i < num_types; i++) {
2941 struct btrfs_space_info *tmp;
2948 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2950 if (tmp->flags == types[i]) {
2959 down_read(&info->groups_sem);
2960 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2961 if (!list_empty(&info->block_groups[c])) {
2962 get_block_group_info(&info->block_groups[c],
2964 memcpy(dest, &space, sizeof(space));
2966 space_args.total_spaces++;
2972 up_read(&info->groups_sem);
2975 user_dest = (struct btrfs_ioctl_space_info __user *)
2976 (arg + sizeof(struct btrfs_ioctl_space_args));
2978 if (copy_to_user(user_dest, dest_orig, alloc_size))
2983 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
2990 * there are many ways the trans_start and trans_end ioctls can lead
2991 * to deadlocks. They should only be used by applications that
2992 * basically own the machine, and have a very in depth understanding
2993 * of all the possible deadlocks and enospc problems.
2995 long btrfs_ioctl_trans_end(struct file *file)
2997 struct inode *inode = fdentry(file)->d_inode;
2998 struct btrfs_root *root = BTRFS_I(inode)->root;
2999 struct btrfs_trans_handle *trans;
3001 trans = file->private_data;
3004 file->private_data = NULL;
3006 btrfs_end_transaction(trans, root);
3008 atomic_dec(&root->fs_info->open_ioctl_trans);
3010 mnt_drop_write_file(file);
3014 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
3016 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
3017 struct btrfs_trans_handle *trans;
3021 trans = btrfs_start_transaction(root, 0);
3023 return PTR_ERR(trans);
3024 transid = trans->transid;
3025 ret = btrfs_commit_transaction_async(trans, root, 0);
3027 btrfs_end_transaction(trans, root);
3032 if (copy_to_user(argp, &transid, sizeof(transid)))
3037 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
3039 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
3043 if (copy_from_user(&transid, argp, sizeof(transid)))
3046 transid = 0; /* current trans */
3048 return btrfs_wait_for_commit(root, transid);
3051 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
3054 struct btrfs_ioctl_scrub_args *sa;
3056 if (!capable(CAP_SYS_ADMIN))
3059 sa = memdup_user(arg, sizeof(*sa));
3063 ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
3064 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
3066 if (copy_to_user(arg, sa, sizeof(*sa)))
3073 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3075 if (!capable(CAP_SYS_ADMIN))
3078 return btrfs_scrub_cancel(root);
3081 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3084 struct btrfs_ioctl_scrub_args *sa;
3087 if (!capable(CAP_SYS_ADMIN))
3090 sa = memdup_user(arg, sizeof(*sa));
3094 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3096 if (copy_to_user(arg, sa, sizeof(*sa)))
3103 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3106 struct btrfs_ioctl_get_dev_stats *sa;
3109 sa = memdup_user(arg, sizeof(*sa));
3113 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3118 ret = btrfs_get_dev_stats(root, sa);
3120 if (copy_to_user(arg, sa, sizeof(*sa)))
3127 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3133 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3134 struct inode_fs_paths *ipath = NULL;
3135 struct btrfs_path *path;
3137 if (!capable(CAP_SYS_ADMIN))
3140 path = btrfs_alloc_path();
3146 ipa = memdup_user(arg, sizeof(*ipa));
3153 size = min_t(u32, ipa->size, 4096);
3154 ipath = init_ipath(size, root, path);
3155 if (IS_ERR(ipath)) {
3156 ret = PTR_ERR(ipath);
3161 ret = paths_from_inode(ipa->inum, ipath);
3165 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3166 rel_ptr = ipath->fspath->val[i] -
3167 (u64)(unsigned long)ipath->fspath->val;
3168 ipath->fspath->val[i] = rel_ptr;
3171 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3172 (void *)(unsigned long)ipath->fspath, size);
3179 btrfs_free_path(path);
3186 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3188 struct btrfs_data_container *inodes = ctx;
3189 const size_t c = 3 * sizeof(u64);
3191 if (inodes->bytes_left >= c) {
3192 inodes->bytes_left -= c;
3193 inodes->val[inodes->elem_cnt] = inum;
3194 inodes->val[inodes->elem_cnt + 1] = offset;
3195 inodes->val[inodes->elem_cnt + 2] = root;
3196 inodes->elem_cnt += 3;
3198 inodes->bytes_missing += c - inodes->bytes_left;
3199 inodes->bytes_left = 0;
3200 inodes->elem_missed += 3;
3206 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3211 u64 extent_item_pos;
3212 struct btrfs_ioctl_logical_ino_args *loi;
3213 struct btrfs_data_container *inodes = NULL;
3214 struct btrfs_path *path = NULL;
3215 struct btrfs_key key;
3217 if (!capable(CAP_SYS_ADMIN))
3220 loi = memdup_user(arg, sizeof(*loi));
3227 path = btrfs_alloc_path();
3233 size = min_t(u32, loi->size, 4096);
3234 inodes = init_data_container(size);
3235 if (IS_ERR(inodes)) {
3236 ret = PTR_ERR(inodes);
3241 ret = extent_from_logical(root->fs_info, loi->logical, path, &key);
3242 btrfs_release_path(path);
3244 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3249 extent_item_pos = loi->logical - key.objectid;
3250 ret = iterate_extent_inodes(root->fs_info, key.objectid,
3251 extent_item_pos, 0, build_ino_list,
3257 ret = copy_to_user((void *)(unsigned long)loi->inodes,
3258 (void *)(unsigned long)inodes, size);
3263 btrfs_free_path(path);
3270 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3271 struct btrfs_ioctl_balance_args *bargs)
3273 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3275 bargs->flags = bctl->flags;
3277 if (atomic_read(&fs_info->balance_running))
3278 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3279 if (atomic_read(&fs_info->balance_pause_req))
3280 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3281 if (atomic_read(&fs_info->balance_cancel_req))
3282 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3284 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3285 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3286 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3289 spin_lock(&fs_info->balance_lock);
3290 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3291 spin_unlock(&fs_info->balance_lock);
3293 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3297 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3299 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3300 struct btrfs_fs_info *fs_info = root->fs_info;
3301 struct btrfs_ioctl_balance_args *bargs;
3302 struct btrfs_balance_control *bctl;
3305 if (!capable(CAP_SYS_ADMIN))
3308 ret = mnt_want_write_file(file);
3312 mutex_lock(&fs_info->volume_mutex);
3313 mutex_lock(&fs_info->balance_mutex);
3316 bargs = memdup_user(arg, sizeof(*bargs));
3317 if (IS_ERR(bargs)) {
3318 ret = PTR_ERR(bargs);
3322 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3323 if (!fs_info->balance_ctl) {
3328 bctl = fs_info->balance_ctl;
3329 spin_lock(&fs_info->balance_lock);
3330 bctl->flags |= BTRFS_BALANCE_RESUME;
3331 spin_unlock(&fs_info->balance_lock);
3339 if (fs_info->balance_ctl) {
3344 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3350 bctl->fs_info = fs_info;
3352 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3353 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3354 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3356 bctl->flags = bargs->flags;
3358 /* balance everything - no filters */
3359 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3363 ret = btrfs_balance(bctl, bargs);
3365 * bctl is freed in __cancel_balance or in free_fs_info if
3366 * restriper was paused all the way until unmount
3369 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3376 mutex_unlock(&fs_info->balance_mutex);
3377 mutex_unlock(&fs_info->volume_mutex);
3378 mnt_drop_write_file(file);
3382 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
3384 if (!capable(CAP_SYS_ADMIN))
3388 case BTRFS_BALANCE_CTL_PAUSE:
3389 return btrfs_pause_balance(root->fs_info);
3390 case BTRFS_BALANCE_CTL_CANCEL:
3391 return btrfs_cancel_balance(root->fs_info);
3397 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
3400 struct btrfs_fs_info *fs_info = root->fs_info;
3401 struct btrfs_ioctl_balance_args *bargs;
3404 if (!capable(CAP_SYS_ADMIN))
3407 mutex_lock(&fs_info->balance_mutex);
3408 if (!fs_info->balance_ctl) {
3413 bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
3419 update_ioctl_balance_args(fs_info, 1, bargs);
3421 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3426 mutex_unlock(&fs_info->balance_mutex);
3430 static long btrfs_ioctl_quota_ctl(struct btrfs_root *root, void __user *arg)
3432 struct btrfs_ioctl_quota_ctl_args *sa;
3433 struct btrfs_trans_handle *trans = NULL;
3437 if (!capable(CAP_SYS_ADMIN))
3440 if (root->fs_info->sb->s_flags & MS_RDONLY)
3443 sa = memdup_user(arg, sizeof(*sa));
3447 if (sa->cmd != BTRFS_QUOTA_CTL_RESCAN) {
3448 trans = btrfs_start_transaction(root, 2);
3449 if (IS_ERR(trans)) {
3450 ret = PTR_ERR(trans);
3456 case BTRFS_QUOTA_CTL_ENABLE:
3457 ret = btrfs_quota_enable(trans, root->fs_info);
3459 case BTRFS_QUOTA_CTL_DISABLE:
3460 ret = btrfs_quota_disable(trans, root->fs_info);
3462 case BTRFS_QUOTA_CTL_RESCAN:
3463 ret = btrfs_quota_rescan(root->fs_info);
3470 if (copy_to_user(arg, sa, sizeof(*sa)))
3474 err = btrfs_commit_transaction(trans, root);
3484 static long btrfs_ioctl_qgroup_assign(struct btrfs_root *root, void __user *arg)
3486 struct btrfs_ioctl_qgroup_assign_args *sa;
3487 struct btrfs_trans_handle *trans;
3491 if (!capable(CAP_SYS_ADMIN))
3494 if (root->fs_info->sb->s_flags & MS_RDONLY)
3497 sa = memdup_user(arg, sizeof(*sa));
3501 trans = btrfs_join_transaction(root);
3502 if (IS_ERR(trans)) {
3503 ret = PTR_ERR(trans);
3507 /* FIXME: check if the IDs really exist */
3509 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
3512 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
3516 err = btrfs_end_transaction(trans, root);
3525 static long btrfs_ioctl_qgroup_create(struct btrfs_root *root, void __user *arg)
3527 struct btrfs_ioctl_qgroup_create_args *sa;
3528 struct btrfs_trans_handle *trans;
3532 if (!capable(CAP_SYS_ADMIN))
3535 if (root->fs_info->sb->s_flags & MS_RDONLY)
3538 sa = memdup_user(arg, sizeof(*sa));
3542 trans = btrfs_join_transaction(root);
3543 if (IS_ERR(trans)) {
3544 ret = PTR_ERR(trans);
3548 /* FIXME: check if the IDs really exist */
3550 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
3553 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
3556 err = btrfs_end_transaction(trans, root);
3565 static long btrfs_ioctl_qgroup_limit(struct btrfs_root *root, void __user *arg)
3567 struct btrfs_ioctl_qgroup_limit_args *sa;
3568 struct btrfs_trans_handle *trans;
3573 if (!capable(CAP_SYS_ADMIN))
3576 if (root->fs_info->sb->s_flags & MS_RDONLY)
3579 sa = memdup_user(arg, sizeof(*sa));
3583 trans = btrfs_join_transaction(root);
3584 if (IS_ERR(trans)) {
3585 ret = PTR_ERR(trans);
3589 qgroupid = sa->qgroupid;
3591 /* take the current subvol as qgroup */
3592 qgroupid = root->root_key.objectid;
3595 /* FIXME: check if the IDs really exist */
3596 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
3598 err = btrfs_end_transaction(trans, root);
3607 static long btrfs_ioctl_set_received_subvol(struct file *file,
3610 struct btrfs_ioctl_received_subvol_args *sa = NULL;
3611 struct inode *inode = fdentry(file)->d_inode;
3612 struct btrfs_root *root = BTRFS_I(inode)->root;
3613 struct btrfs_root_item *root_item = &root->root_item;
3614 struct btrfs_trans_handle *trans;
3615 struct timespec ct = CURRENT_TIME;
3618 ret = mnt_want_write_file(file);
3622 down_write(&root->fs_info->subvol_sem);
3624 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
3629 if (btrfs_root_readonly(root)) {
3634 if (!inode_owner_or_capable(inode)) {
3639 sa = memdup_user(arg, sizeof(*sa));
3646 trans = btrfs_start_transaction(root, 1);
3647 if (IS_ERR(trans)) {
3648 ret = PTR_ERR(trans);
3653 sa->rtransid = trans->transid;
3654 sa->rtime.sec = ct.tv_sec;
3655 sa->rtime.nsec = ct.tv_nsec;
3657 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
3658 btrfs_set_root_stransid(root_item, sa->stransid);
3659 btrfs_set_root_rtransid(root_item, sa->rtransid);
3660 root_item->stime.sec = cpu_to_le64(sa->stime.sec);
3661 root_item->stime.nsec = cpu_to_le32(sa->stime.nsec);
3662 root_item->rtime.sec = cpu_to_le64(sa->rtime.sec);
3663 root_item->rtime.nsec = cpu_to_le32(sa->rtime.nsec);
3665 ret = btrfs_update_root(trans, root->fs_info->tree_root,
3666 &root->root_key, &root->root_item);
3668 btrfs_end_transaction(trans, root);
3672 ret = btrfs_commit_transaction(trans, root);
3677 ret = copy_to_user(arg, sa, sizeof(*sa));
3683 up_write(&root->fs_info->subvol_sem);
3684 mnt_drop_write_file(file);
3688 long btrfs_ioctl(struct file *file, unsigned int
3689 cmd, unsigned long arg)
3691 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3692 void __user *argp = (void __user *)arg;
3695 case FS_IOC_GETFLAGS:
3696 return btrfs_ioctl_getflags(file, argp);
3697 case FS_IOC_SETFLAGS:
3698 return btrfs_ioctl_setflags(file, argp);
3699 case FS_IOC_GETVERSION:
3700 return btrfs_ioctl_getversion(file, argp);
3702 return btrfs_ioctl_fitrim(file, argp);
3703 case BTRFS_IOC_SNAP_CREATE:
3704 return btrfs_ioctl_snap_create(file, argp, 0);
3705 case BTRFS_IOC_SNAP_CREATE_V2:
3706 return btrfs_ioctl_snap_create_v2(file, argp, 0);
3707 case BTRFS_IOC_SUBVOL_CREATE:
3708 return btrfs_ioctl_snap_create(file, argp, 1);
3709 case BTRFS_IOC_SUBVOL_CREATE_V2:
3710 return btrfs_ioctl_snap_create_v2(file, argp, 1);
3711 case BTRFS_IOC_SNAP_DESTROY:
3712 return btrfs_ioctl_snap_destroy(file, argp);
3713 case BTRFS_IOC_SUBVOL_GETFLAGS:
3714 return btrfs_ioctl_subvol_getflags(file, argp);
3715 case BTRFS_IOC_SUBVOL_SETFLAGS:
3716 return btrfs_ioctl_subvol_setflags(file, argp);
3717 case BTRFS_IOC_DEFAULT_SUBVOL:
3718 return btrfs_ioctl_default_subvol(file, argp);
3719 case BTRFS_IOC_DEFRAG:
3720 return btrfs_ioctl_defrag(file, NULL);
3721 case BTRFS_IOC_DEFRAG_RANGE:
3722 return btrfs_ioctl_defrag(file, argp);
3723 case BTRFS_IOC_RESIZE:
3724 return btrfs_ioctl_resize(root, argp);
3725 case BTRFS_IOC_ADD_DEV:
3726 return btrfs_ioctl_add_dev(root, argp);
3727 case BTRFS_IOC_RM_DEV:
3728 return btrfs_ioctl_rm_dev(root, argp);
3729 case BTRFS_IOC_FS_INFO:
3730 return btrfs_ioctl_fs_info(root, argp);
3731 case BTRFS_IOC_DEV_INFO:
3732 return btrfs_ioctl_dev_info(root, argp);
3733 case BTRFS_IOC_BALANCE:
3734 return btrfs_ioctl_balance(file, NULL);
3735 case BTRFS_IOC_CLONE:
3736 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
3737 case BTRFS_IOC_CLONE_RANGE:
3738 return btrfs_ioctl_clone_range(file, argp);
3739 case BTRFS_IOC_TRANS_START:
3740 return btrfs_ioctl_trans_start(file);
3741 case BTRFS_IOC_TRANS_END:
3742 return btrfs_ioctl_trans_end(file);
3743 case BTRFS_IOC_TREE_SEARCH:
3744 return btrfs_ioctl_tree_search(file, argp);
3745 case BTRFS_IOC_INO_LOOKUP:
3746 return btrfs_ioctl_ino_lookup(file, argp);
3747 case BTRFS_IOC_INO_PATHS:
3748 return btrfs_ioctl_ino_to_path(root, argp);
3749 case BTRFS_IOC_LOGICAL_INO:
3750 return btrfs_ioctl_logical_to_ino(root, argp);
3751 case BTRFS_IOC_SPACE_INFO:
3752 return btrfs_ioctl_space_info(root, argp);
3753 case BTRFS_IOC_SYNC:
3754 btrfs_sync_fs(file->f_dentry->d_sb, 1);
3756 case BTRFS_IOC_START_SYNC:
3757 return btrfs_ioctl_start_sync(file, argp);
3758 case BTRFS_IOC_WAIT_SYNC:
3759 return btrfs_ioctl_wait_sync(file, argp);
3760 case BTRFS_IOC_SCRUB:
3761 return btrfs_ioctl_scrub(root, argp);
3762 case BTRFS_IOC_SCRUB_CANCEL:
3763 return btrfs_ioctl_scrub_cancel(root, argp);
3764 case BTRFS_IOC_SCRUB_PROGRESS:
3765 return btrfs_ioctl_scrub_progress(root, argp);
3766 case BTRFS_IOC_BALANCE_V2:
3767 return btrfs_ioctl_balance(file, argp);
3768 case BTRFS_IOC_BALANCE_CTL:
3769 return btrfs_ioctl_balance_ctl(root, arg);
3770 case BTRFS_IOC_BALANCE_PROGRESS:
3771 return btrfs_ioctl_balance_progress(root, argp);
3772 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
3773 return btrfs_ioctl_set_received_subvol(file, argp);
3774 case BTRFS_IOC_SEND:
3775 return btrfs_ioctl_send(file, argp);
3776 case BTRFS_IOC_GET_DEV_STATS:
3777 return btrfs_ioctl_get_dev_stats(root, argp);
3778 case BTRFS_IOC_QUOTA_CTL:
3779 return btrfs_ioctl_quota_ctl(root, argp);
3780 case BTRFS_IOC_QGROUP_ASSIGN:
3781 return btrfs_ioctl_qgroup_assign(root, argp);
3782 case BTRFS_IOC_QGROUP_CREATE:
3783 return btrfs_ioctl_qgroup_create(root, argp);
3784 case BTRFS_IOC_QGROUP_LIMIT:
3785 return btrfs_ioctl_qgroup_limit(root, argp);