proc: Supply a function to remove a proc entry by PDE
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / btrfs / ioctl.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include "compat.h"
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59
60 /* Mask out flags that are inappropriate for the given type of inode. */
61 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
62 {
63         if (S_ISDIR(mode))
64                 return flags;
65         else if (S_ISREG(mode))
66                 return flags & ~FS_DIRSYNC_FL;
67         else
68                 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
69 }
70
71 /*
72  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
73  */
74 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
75 {
76         unsigned int iflags = 0;
77
78         if (flags & BTRFS_INODE_SYNC)
79                 iflags |= FS_SYNC_FL;
80         if (flags & BTRFS_INODE_IMMUTABLE)
81                 iflags |= FS_IMMUTABLE_FL;
82         if (flags & BTRFS_INODE_APPEND)
83                 iflags |= FS_APPEND_FL;
84         if (flags & BTRFS_INODE_NODUMP)
85                 iflags |= FS_NODUMP_FL;
86         if (flags & BTRFS_INODE_NOATIME)
87                 iflags |= FS_NOATIME_FL;
88         if (flags & BTRFS_INODE_DIRSYNC)
89                 iflags |= FS_DIRSYNC_FL;
90         if (flags & BTRFS_INODE_NODATACOW)
91                 iflags |= FS_NOCOW_FL;
92
93         if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
94                 iflags |= FS_COMPR_FL;
95         else if (flags & BTRFS_INODE_NOCOMPRESS)
96                 iflags |= FS_NOCOMP_FL;
97
98         return iflags;
99 }
100
101 /*
102  * Update inode->i_flags based on the btrfs internal flags.
103  */
104 void btrfs_update_iflags(struct inode *inode)
105 {
106         struct btrfs_inode *ip = BTRFS_I(inode);
107
108         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
109
110         if (ip->flags & BTRFS_INODE_SYNC)
111                 inode->i_flags |= S_SYNC;
112         if (ip->flags & BTRFS_INODE_IMMUTABLE)
113                 inode->i_flags |= S_IMMUTABLE;
114         if (ip->flags & BTRFS_INODE_APPEND)
115                 inode->i_flags |= S_APPEND;
116         if (ip->flags & BTRFS_INODE_NOATIME)
117                 inode->i_flags |= S_NOATIME;
118         if (ip->flags & BTRFS_INODE_DIRSYNC)
119                 inode->i_flags |= S_DIRSYNC;
120 }
121
122 /*
123  * Inherit flags from the parent inode.
124  *
125  * Currently only the compression flags and the cow flags are inherited.
126  */
127 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
128 {
129         unsigned int flags;
130
131         if (!dir)
132                 return;
133
134         flags = BTRFS_I(dir)->flags;
135
136         if (flags & BTRFS_INODE_NOCOMPRESS) {
137                 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
138                 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
139         } else if (flags & BTRFS_INODE_COMPRESS) {
140                 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
141                 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
142         }
143
144         if (flags & BTRFS_INODE_NODATACOW) {
145                 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
146                 if (S_ISREG(inode->i_mode))
147                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
148         }
149
150         btrfs_update_iflags(inode);
151 }
152
153 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
154 {
155         struct btrfs_inode *ip = BTRFS_I(file_inode(file));
156         unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
157
158         if (copy_to_user(arg, &flags, sizeof(flags)))
159                 return -EFAULT;
160         return 0;
161 }
162
163 static int check_flags(unsigned int flags)
164 {
165         if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
166                       FS_NOATIME_FL | FS_NODUMP_FL | \
167                       FS_SYNC_FL | FS_DIRSYNC_FL | \
168                       FS_NOCOMP_FL | FS_COMPR_FL |
169                       FS_NOCOW_FL))
170                 return -EOPNOTSUPP;
171
172         if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
173                 return -EINVAL;
174
175         return 0;
176 }
177
178 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
179 {
180         struct inode *inode = file_inode(file);
181         struct btrfs_inode *ip = BTRFS_I(inode);
182         struct btrfs_root *root = ip->root;
183         struct btrfs_trans_handle *trans;
184         unsigned int flags, oldflags;
185         int ret;
186         u64 ip_oldflags;
187         unsigned int i_oldflags;
188         umode_t mode;
189
190         if (btrfs_root_readonly(root))
191                 return -EROFS;
192
193         if (copy_from_user(&flags, arg, sizeof(flags)))
194                 return -EFAULT;
195
196         ret = check_flags(flags);
197         if (ret)
198                 return ret;
199
200         if (!inode_owner_or_capable(inode))
201                 return -EACCES;
202
203         ret = mnt_want_write_file(file);
204         if (ret)
205                 return ret;
206
207         mutex_lock(&inode->i_mutex);
208
209         ip_oldflags = ip->flags;
210         i_oldflags = inode->i_flags;
211         mode = inode->i_mode;
212
213         flags = btrfs_mask_flags(inode->i_mode, flags);
214         oldflags = btrfs_flags_to_ioctl(ip->flags);
215         if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
216                 if (!capable(CAP_LINUX_IMMUTABLE)) {
217                         ret = -EPERM;
218                         goto out_unlock;
219                 }
220         }
221
222         if (flags & FS_SYNC_FL)
223                 ip->flags |= BTRFS_INODE_SYNC;
224         else
225                 ip->flags &= ~BTRFS_INODE_SYNC;
226         if (flags & FS_IMMUTABLE_FL)
227                 ip->flags |= BTRFS_INODE_IMMUTABLE;
228         else
229                 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
230         if (flags & FS_APPEND_FL)
231                 ip->flags |= BTRFS_INODE_APPEND;
232         else
233                 ip->flags &= ~BTRFS_INODE_APPEND;
234         if (flags & FS_NODUMP_FL)
235                 ip->flags |= BTRFS_INODE_NODUMP;
236         else
237                 ip->flags &= ~BTRFS_INODE_NODUMP;
238         if (flags & FS_NOATIME_FL)
239                 ip->flags |= BTRFS_INODE_NOATIME;
240         else
241                 ip->flags &= ~BTRFS_INODE_NOATIME;
242         if (flags & FS_DIRSYNC_FL)
243                 ip->flags |= BTRFS_INODE_DIRSYNC;
244         else
245                 ip->flags &= ~BTRFS_INODE_DIRSYNC;
246         if (flags & FS_NOCOW_FL) {
247                 if (S_ISREG(mode)) {
248                         /*
249                          * It's safe to turn csums off here, no extents exist.
250                          * Otherwise we want the flag to reflect the real COW
251                          * status of the file and will not set it.
252                          */
253                         if (inode->i_size == 0)
254                                 ip->flags |= BTRFS_INODE_NODATACOW
255                                            | BTRFS_INODE_NODATASUM;
256                 } else {
257                         ip->flags |= BTRFS_INODE_NODATACOW;
258                 }
259         } else {
260                 /*
261                  * Revert back under same assuptions as above
262                  */
263                 if (S_ISREG(mode)) {
264                         if (inode->i_size == 0)
265                                 ip->flags &= ~(BTRFS_INODE_NODATACOW
266                                              | BTRFS_INODE_NODATASUM);
267                 } else {
268                         ip->flags &= ~BTRFS_INODE_NODATACOW;
269                 }
270         }
271
272         /*
273          * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
274          * flag may be changed automatically if compression code won't make
275          * things smaller.
276          */
277         if (flags & FS_NOCOMP_FL) {
278                 ip->flags &= ~BTRFS_INODE_COMPRESS;
279                 ip->flags |= BTRFS_INODE_NOCOMPRESS;
280         } else if (flags & FS_COMPR_FL) {
281                 ip->flags |= BTRFS_INODE_COMPRESS;
282                 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
283         } else {
284                 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
285         }
286
287         trans = btrfs_start_transaction(root, 1);
288         if (IS_ERR(trans)) {
289                 ret = PTR_ERR(trans);
290                 goto out_drop;
291         }
292
293         btrfs_update_iflags(inode);
294         inode_inc_iversion(inode);
295         inode->i_ctime = CURRENT_TIME;
296         ret = btrfs_update_inode(trans, root, inode);
297
298         btrfs_end_transaction(trans, root);
299  out_drop:
300         if (ret) {
301                 ip->flags = ip_oldflags;
302                 inode->i_flags = i_oldflags;
303         }
304
305  out_unlock:
306         mutex_unlock(&inode->i_mutex);
307         mnt_drop_write_file(file);
308         return ret;
309 }
310
311 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
312 {
313         struct inode *inode = file_inode(file);
314
315         return put_user(inode->i_generation, arg);
316 }
317
318 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
319 {
320         struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
321         struct btrfs_device *device;
322         struct request_queue *q;
323         struct fstrim_range range;
324         u64 minlen = ULLONG_MAX;
325         u64 num_devices = 0;
326         u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
327         int ret;
328
329         if (!capable(CAP_SYS_ADMIN))
330                 return -EPERM;
331
332         rcu_read_lock();
333         list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
334                                 dev_list) {
335                 if (!device->bdev)
336                         continue;
337                 q = bdev_get_queue(device->bdev);
338                 if (blk_queue_discard(q)) {
339                         num_devices++;
340                         minlen = min((u64)q->limits.discard_granularity,
341                                      minlen);
342                 }
343         }
344         rcu_read_unlock();
345
346         if (!num_devices)
347                 return -EOPNOTSUPP;
348         if (copy_from_user(&range, arg, sizeof(range)))
349                 return -EFAULT;
350         if (range.start > total_bytes ||
351             range.len < fs_info->sb->s_blocksize)
352                 return -EINVAL;
353
354         range.len = min(range.len, total_bytes - range.start);
355         range.minlen = max(range.minlen, minlen);
356         ret = btrfs_trim_fs(fs_info->tree_root, &range);
357         if (ret < 0)
358                 return ret;
359
360         if (copy_to_user(arg, &range, sizeof(range)))
361                 return -EFAULT;
362
363         return 0;
364 }
365
366 static noinline int create_subvol(struct inode *dir,
367                                   struct dentry *dentry,
368                                   char *name, int namelen,
369                                   u64 *async_transid,
370                                   struct btrfs_qgroup_inherit *inherit)
371 {
372         struct btrfs_trans_handle *trans;
373         struct btrfs_key key;
374         struct btrfs_root_item root_item;
375         struct btrfs_inode_item *inode_item;
376         struct extent_buffer *leaf;
377         struct btrfs_root *root = BTRFS_I(dir)->root;
378         struct btrfs_root *new_root;
379         struct btrfs_block_rsv block_rsv;
380         struct timespec cur_time = CURRENT_TIME;
381         int ret;
382         int err;
383         u64 objectid;
384         u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
385         u64 index = 0;
386         u64 qgroup_reserved;
387         uuid_le new_uuid;
388
389         ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
390         if (ret)
391                 return ret;
392
393         btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
394         /*
395          * The same as the snapshot creation, please see the comment
396          * of create_snapshot().
397          */
398         ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
399                                                7, &qgroup_reserved);
400         if (ret)
401                 return ret;
402
403         trans = btrfs_start_transaction(root, 0);
404         if (IS_ERR(trans)) {
405                 ret = PTR_ERR(trans);
406                 goto out;
407         }
408         trans->block_rsv = &block_rsv;
409         trans->bytes_reserved = block_rsv.size;
410
411         ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
412         if (ret)
413                 goto fail;
414
415         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
416                                       0, objectid, NULL, 0, 0, 0);
417         if (IS_ERR(leaf)) {
418                 ret = PTR_ERR(leaf);
419                 goto fail;
420         }
421
422         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
423         btrfs_set_header_bytenr(leaf, leaf->start);
424         btrfs_set_header_generation(leaf, trans->transid);
425         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
426         btrfs_set_header_owner(leaf, objectid);
427
428         write_extent_buffer(leaf, root->fs_info->fsid,
429                             (unsigned long)btrfs_header_fsid(leaf),
430                             BTRFS_FSID_SIZE);
431         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
432                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
433                             BTRFS_UUID_SIZE);
434         btrfs_mark_buffer_dirty(leaf);
435
436         memset(&root_item, 0, sizeof(root_item));
437
438         inode_item = &root_item.inode;
439         inode_item->generation = cpu_to_le64(1);
440         inode_item->size = cpu_to_le64(3);
441         inode_item->nlink = cpu_to_le32(1);
442         inode_item->nbytes = cpu_to_le64(root->leafsize);
443         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
444
445         root_item.flags = 0;
446         root_item.byte_limit = 0;
447         inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
448
449         btrfs_set_root_bytenr(&root_item, leaf->start);
450         btrfs_set_root_generation(&root_item, trans->transid);
451         btrfs_set_root_level(&root_item, 0);
452         btrfs_set_root_refs(&root_item, 1);
453         btrfs_set_root_used(&root_item, leaf->len);
454         btrfs_set_root_last_snapshot(&root_item, 0);
455
456         btrfs_set_root_generation_v2(&root_item,
457                         btrfs_root_generation(&root_item));
458         uuid_le_gen(&new_uuid);
459         memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
460         root_item.otime.sec = cpu_to_le64(cur_time.tv_sec);
461         root_item.otime.nsec = cpu_to_le32(cur_time.tv_nsec);
462         root_item.ctime = root_item.otime;
463         btrfs_set_root_ctransid(&root_item, trans->transid);
464         btrfs_set_root_otransid(&root_item, trans->transid);
465
466         btrfs_tree_unlock(leaf);
467         free_extent_buffer(leaf);
468         leaf = NULL;
469
470         btrfs_set_root_dirid(&root_item, new_dirid);
471
472         key.objectid = objectid;
473         key.offset = 0;
474         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
475         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
476                                 &root_item);
477         if (ret)
478                 goto fail;
479
480         key.offset = (u64)-1;
481         new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
482         if (IS_ERR(new_root)) {
483                 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
484                 ret = PTR_ERR(new_root);
485                 goto fail;
486         }
487
488         btrfs_record_root_in_trans(trans, new_root);
489
490         ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
491         if (ret) {
492                 /* We potentially lose an unused inode item here */
493                 btrfs_abort_transaction(trans, root, ret);
494                 goto fail;
495         }
496
497         /*
498          * insert the directory item
499          */
500         ret = btrfs_set_inode_index(dir, &index);
501         if (ret) {
502                 btrfs_abort_transaction(trans, root, ret);
503                 goto fail;
504         }
505
506         ret = btrfs_insert_dir_item(trans, root,
507                                     name, namelen, dir, &key,
508                                     BTRFS_FT_DIR, index);
509         if (ret) {
510                 btrfs_abort_transaction(trans, root, ret);
511                 goto fail;
512         }
513
514         btrfs_i_size_write(dir, dir->i_size + namelen * 2);
515         ret = btrfs_update_inode(trans, root, dir);
516         BUG_ON(ret);
517
518         ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
519                                  objectid, root->root_key.objectid,
520                                  btrfs_ino(dir), index, name, namelen);
521
522         BUG_ON(ret);
523
524 fail:
525         trans->block_rsv = NULL;
526         trans->bytes_reserved = 0;
527         if (async_transid) {
528                 *async_transid = trans->transid;
529                 err = btrfs_commit_transaction_async(trans, root, 1);
530                 if (err)
531                         err = btrfs_commit_transaction(trans, root);
532         } else {
533                 err = btrfs_commit_transaction(trans, root);
534         }
535         if (err && !ret)
536                 ret = err;
537
538         if (!ret)
539                 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
540 out:
541         btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
542         return ret;
543 }
544
545 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
546                            struct dentry *dentry, char *name, int namelen,
547                            u64 *async_transid, bool readonly,
548                            struct btrfs_qgroup_inherit *inherit)
549 {
550         struct inode *inode;
551         struct btrfs_pending_snapshot *pending_snapshot;
552         struct btrfs_trans_handle *trans;
553         int ret;
554
555         if (!root->ref_cows)
556                 return -EINVAL;
557
558         pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
559         if (!pending_snapshot)
560                 return -ENOMEM;
561
562         btrfs_init_block_rsv(&pending_snapshot->block_rsv,
563                              BTRFS_BLOCK_RSV_TEMP);
564         /*
565          * 1 - parent dir inode
566          * 2 - dir entries
567          * 1 - root item
568          * 2 - root ref/backref
569          * 1 - root of snapshot
570          */
571         ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
572                                         &pending_snapshot->block_rsv, 7,
573                                         &pending_snapshot->qgroup_reserved);
574         if (ret)
575                 goto out;
576
577         pending_snapshot->dentry = dentry;
578         pending_snapshot->root = root;
579         pending_snapshot->readonly = readonly;
580         pending_snapshot->dir = dir;
581         pending_snapshot->inherit = inherit;
582
583         trans = btrfs_start_transaction(root, 0);
584         if (IS_ERR(trans)) {
585                 ret = PTR_ERR(trans);
586                 goto fail;
587         }
588
589         spin_lock(&root->fs_info->trans_lock);
590         list_add(&pending_snapshot->list,
591                  &trans->transaction->pending_snapshots);
592         spin_unlock(&root->fs_info->trans_lock);
593         if (async_transid) {
594                 *async_transid = trans->transid;
595                 ret = btrfs_commit_transaction_async(trans,
596                                      root->fs_info->extent_root, 1);
597                 if (ret)
598                         ret = btrfs_commit_transaction(trans, root);
599         } else {
600                 ret = btrfs_commit_transaction(trans,
601                                                root->fs_info->extent_root);
602         }
603         if (ret)
604                 goto fail;
605
606         ret = pending_snapshot->error;
607         if (ret)
608                 goto fail;
609
610         ret = btrfs_orphan_cleanup(pending_snapshot->snap);
611         if (ret)
612                 goto fail;
613
614         inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
615         if (IS_ERR(inode)) {
616                 ret = PTR_ERR(inode);
617                 goto fail;
618         }
619         BUG_ON(!inode);
620         d_instantiate(dentry, inode);
621         ret = 0;
622 fail:
623         btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
624                                          &pending_snapshot->block_rsv,
625                                          pending_snapshot->qgroup_reserved);
626 out:
627         kfree(pending_snapshot);
628         return ret;
629 }
630
631 /*  copy of check_sticky in fs/namei.c()
632 * It's inline, so penalty for filesystems that don't use sticky bit is
633 * minimal.
634 */
635 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
636 {
637         kuid_t fsuid = current_fsuid();
638
639         if (!(dir->i_mode & S_ISVTX))
640                 return 0;
641         if (uid_eq(inode->i_uid, fsuid))
642                 return 0;
643         if (uid_eq(dir->i_uid, fsuid))
644                 return 0;
645         return !capable(CAP_FOWNER);
646 }
647
648 /*  copy of may_delete in fs/namei.c()
649  *      Check whether we can remove a link victim from directory dir, check
650  *  whether the type of victim is right.
651  *  1. We can't do it if dir is read-only (done in permission())
652  *  2. We should have write and exec permissions on dir
653  *  3. We can't remove anything from append-only dir
654  *  4. We can't do anything with immutable dir (done in permission())
655  *  5. If the sticky bit on dir is set we should either
656  *      a. be owner of dir, or
657  *      b. be owner of victim, or
658  *      c. have CAP_FOWNER capability
659  *  6. If the victim is append-only or immutable we can't do antyhing with
660  *     links pointing to it.
661  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
662  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
663  *  9. We can't remove a root or mountpoint.
664  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
665  *     nfs_async_unlink().
666  */
667
668 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
669 {
670         int error;
671
672         if (!victim->d_inode)
673                 return -ENOENT;
674
675         BUG_ON(victim->d_parent->d_inode != dir);
676         audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
677
678         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
679         if (error)
680                 return error;
681         if (IS_APPEND(dir))
682                 return -EPERM;
683         if (btrfs_check_sticky(dir, victim->d_inode)||
684                 IS_APPEND(victim->d_inode)||
685             IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
686                 return -EPERM;
687         if (isdir) {
688                 if (!S_ISDIR(victim->d_inode->i_mode))
689                         return -ENOTDIR;
690                 if (IS_ROOT(victim))
691                         return -EBUSY;
692         } else if (S_ISDIR(victim->d_inode->i_mode))
693                 return -EISDIR;
694         if (IS_DEADDIR(dir))
695                 return -ENOENT;
696         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
697                 return -EBUSY;
698         return 0;
699 }
700
701 /* copy of may_create in fs/namei.c() */
702 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
703 {
704         if (child->d_inode)
705                 return -EEXIST;
706         if (IS_DEADDIR(dir))
707                 return -ENOENT;
708         return inode_permission(dir, MAY_WRITE | MAY_EXEC);
709 }
710
711 /*
712  * Create a new subvolume below @parent.  This is largely modeled after
713  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
714  * inside this filesystem so it's quite a bit simpler.
715  */
716 static noinline int btrfs_mksubvol(struct path *parent,
717                                    char *name, int namelen,
718                                    struct btrfs_root *snap_src,
719                                    u64 *async_transid, bool readonly,
720                                    struct btrfs_qgroup_inherit *inherit)
721 {
722         struct inode *dir  = parent->dentry->d_inode;
723         struct dentry *dentry;
724         int error;
725
726         mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
727
728         dentry = lookup_one_len(name, parent->dentry, namelen);
729         error = PTR_ERR(dentry);
730         if (IS_ERR(dentry))
731                 goto out_unlock;
732
733         error = -EEXIST;
734         if (dentry->d_inode)
735                 goto out_dput;
736
737         error = btrfs_may_create(dir, dentry);
738         if (error)
739                 goto out_dput;
740
741         /*
742          * even if this name doesn't exist, we may get hash collisions.
743          * check for them now when we can safely fail
744          */
745         error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
746                                                dir->i_ino, name,
747                                                namelen);
748         if (error)
749                 goto out_dput;
750
751         down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
752
753         if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
754                 goto out_up_read;
755
756         if (snap_src) {
757                 error = create_snapshot(snap_src, dir, dentry, name, namelen,
758                                         async_transid, readonly, inherit);
759         } else {
760                 error = create_subvol(dir, dentry, name, namelen,
761                                       async_transid, inherit);
762         }
763         if (!error)
764                 fsnotify_mkdir(dir, dentry);
765 out_up_read:
766         up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
767 out_dput:
768         dput(dentry);
769 out_unlock:
770         mutex_unlock(&dir->i_mutex);
771         return error;
772 }
773
774 /*
775  * When we're defragging a range, we don't want to kick it off again
776  * if it is really just waiting for delalloc to send it down.
777  * If we find a nice big extent or delalloc range for the bytes in the
778  * file you want to defrag, we return 0 to let you know to skip this
779  * part of the file
780  */
781 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
782 {
783         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
784         struct extent_map *em = NULL;
785         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
786         u64 end;
787
788         read_lock(&em_tree->lock);
789         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
790         read_unlock(&em_tree->lock);
791
792         if (em) {
793                 end = extent_map_end(em);
794                 free_extent_map(em);
795                 if (end - offset > thresh)
796                         return 0;
797         }
798         /* if we already have a nice delalloc here, just stop */
799         thresh /= 2;
800         end = count_range_bits(io_tree, &offset, offset + thresh,
801                                thresh, EXTENT_DELALLOC, 1);
802         if (end >= thresh)
803                 return 0;
804         return 1;
805 }
806
807 /*
808  * helper function to walk through a file and find extents
809  * newer than a specific transid, and smaller than thresh.
810  *
811  * This is used by the defragging code to find new and small
812  * extents
813  */
814 static int find_new_extents(struct btrfs_root *root,
815                             struct inode *inode, u64 newer_than,
816                             u64 *off, int thresh)
817 {
818         struct btrfs_path *path;
819         struct btrfs_key min_key;
820         struct btrfs_key max_key;
821         struct extent_buffer *leaf;
822         struct btrfs_file_extent_item *extent;
823         int type;
824         int ret;
825         u64 ino = btrfs_ino(inode);
826
827         path = btrfs_alloc_path();
828         if (!path)
829                 return -ENOMEM;
830
831         min_key.objectid = ino;
832         min_key.type = BTRFS_EXTENT_DATA_KEY;
833         min_key.offset = *off;
834
835         max_key.objectid = ino;
836         max_key.type = (u8)-1;
837         max_key.offset = (u64)-1;
838
839         path->keep_locks = 1;
840
841         while(1) {
842                 ret = btrfs_search_forward(root, &min_key, &max_key,
843                                            path, newer_than);
844                 if (ret != 0)
845                         goto none;
846                 if (min_key.objectid != ino)
847                         goto none;
848                 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
849                         goto none;
850
851                 leaf = path->nodes[0];
852                 extent = btrfs_item_ptr(leaf, path->slots[0],
853                                         struct btrfs_file_extent_item);
854
855                 type = btrfs_file_extent_type(leaf, extent);
856                 if (type == BTRFS_FILE_EXTENT_REG &&
857                     btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
858                     check_defrag_in_cache(inode, min_key.offset, thresh)) {
859                         *off = min_key.offset;
860                         btrfs_free_path(path);
861                         return 0;
862                 }
863
864                 if (min_key.offset == (u64)-1)
865                         goto none;
866
867                 min_key.offset++;
868                 btrfs_release_path(path);
869         }
870 none:
871         btrfs_free_path(path);
872         return -ENOENT;
873 }
874
875 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
876 {
877         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
878         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
879         struct extent_map *em;
880         u64 len = PAGE_CACHE_SIZE;
881
882         /*
883          * hopefully we have this extent in the tree already, try without
884          * the full extent lock
885          */
886         read_lock(&em_tree->lock);
887         em = lookup_extent_mapping(em_tree, start, len);
888         read_unlock(&em_tree->lock);
889
890         if (!em) {
891                 /* get the big lock and read metadata off disk */
892                 lock_extent(io_tree, start, start + len - 1);
893                 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
894                 unlock_extent(io_tree, start, start + len - 1);
895
896                 if (IS_ERR(em))
897                         return NULL;
898         }
899
900         return em;
901 }
902
903 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
904 {
905         struct extent_map *next;
906         bool ret = true;
907
908         /* this is the last extent */
909         if (em->start + em->len >= i_size_read(inode))
910                 return false;
911
912         next = defrag_lookup_extent(inode, em->start + em->len);
913         if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
914                 ret = false;
915
916         free_extent_map(next);
917         return ret;
918 }
919
920 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
921                                u64 *last_len, u64 *skip, u64 *defrag_end,
922                                int compress)
923 {
924         struct extent_map *em;
925         int ret = 1;
926         bool next_mergeable = true;
927
928         /*
929          * make sure that once we start defragging an extent, we keep on
930          * defragging it
931          */
932         if (start < *defrag_end)
933                 return 1;
934
935         *skip = 0;
936
937         em = defrag_lookup_extent(inode, start);
938         if (!em)
939                 return 0;
940
941         /* this will cover holes, and inline extents */
942         if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
943                 ret = 0;
944                 goto out;
945         }
946
947         next_mergeable = defrag_check_next_extent(inode, em);
948
949         /*
950          * we hit a real extent, if it is big or the next extent is not a
951          * real extent, don't bother defragging it
952          */
953         if (!compress && (*last_len == 0 || *last_len >= thresh) &&
954             (em->len >= thresh || !next_mergeable))
955                 ret = 0;
956 out:
957         /*
958          * last_len ends up being a counter of how many bytes we've defragged.
959          * every time we choose not to defrag an extent, we reset *last_len
960          * so that the next tiny extent will force a defrag.
961          *
962          * The end result of this is that tiny extents before a single big
963          * extent will force at least part of that big extent to be defragged.
964          */
965         if (ret) {
966                 *defrag_end = extent_map_end(em);
967         } else {
968                 *last_len = 0;
969                 *skip = extent_map_end(em);
970                 *defrag_end = 0;
971         }
972
973         free_extent_map(em);
974         return ret;
975 }
976
977 /*
978  * it doesn't do much good to defrag one or two pages
979  * at a time.  This pulls in a nice chunk of pages
980  * to COW and defrag.
981  *
982  * It also makes sure the delalloc code has enough
983  * dirty data to avoid making new small extents as part
984  * of the defrag
985  *
986  * It's a good idea to start RA on this range
987  * before calling this.
988  */
989 static int cluster_pages_for_defrag(struct inode *inode,
990                                     struct page **pages,
991                                     unsigned long start_index,
992                                     int num_pages)
993 {
994         unsigned long file_end;
995         u64 isize = i_size_read(inode);
996         u64 page_start;
997         u64 page_end;
998         u64 page_cnt;
999         int ret;
1000         int i;
1001         int i_done;
1002         struct btrfs_ordered_extent *ordered;
1003         struct extent_state *cached_state = NULL;
1004         struct extent_io_tree *tree;
1005         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1006
1007         file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1008         if (!isize || start_index > file_end)
1009                 return 0;
1010
1011         page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1012
1013         ret = btrfs_delalloc_reserve_space(inode,
1014                                            page_cnt << PAGE_CACHE_SHIFT);
1015         if (ret)
1016                 return ret;
1017         i_done = 0;
1018         tree = &BTRFS_I(inode)->io_tree;
1019
1020         /* step one, lock all the pages */
1021         for (i = 0; i < page_cnt; i++) {
1022                 struct page *page;
1023 again:
1024                 page = find_or_create_page(inode->i_mapping,
1025                                            start_index + i, mask);
1026                 if (!page)
1027                         break;
1028
1029                 page_start = page_offset(page);
1030                 page_end = page_start + PAGE_CACHE_SIZE - 1;
1031                 while (1) {
1032                         lock_extent(tree, page_start, page_end);
1033                         ordered = btrfs_lookup_ordered_extent(inode,
1034                                                               page_start);
1035                         unlock_extent(tree, page_start, page_end);
1036                         if (!ordered)
1037                                 break;
1038
1039                         unlock_page(page);
1040                         btrfs_start_ordered_extent(inode, ordered, 1);
1041                         btrfs_put_ordered_extent(ordered);
1042                         lock_page(page);
1043                         /*
1044                          * we unlocked the page above, so we need check if
1045                          * it was released or not.
1046                          */
1047                         if (page->mapping != inode->i_mapping) {
1048                                 unlock_page(page);
1049                                 page_cache_release(page);
1050                                 goto again;
1051                         }
1052                 }
1053
1054                 if (!PageUptodate(page)) {
1055                         btrfs_readpage(NULL, page);
1056                         lock_page(page);
1057                         if (!PageUptodate(page)) {
1058                                 unlock_page(page);
1059                                 page_cache_release(page);
1060                                 ret = -EIO;
1061                                 break;
1062                         }
1063                 }
1064
1065                 if (page->mapping != inode->i_mapping) {
1066                         unlock_page(page);
1067                         page_cache_release(page);
1068                         goto again;
1069                 }
1070
1071                 pages[i] = page;
1072                 i_done++;
1073         }
1074         if (!i_done || ret)
1075                 goto out;
1076
1077         if (!(inode->i_sb->s_flags & MS_ACTIVE))
1078                 goto out;
1079
1080         /*
1081          * so now we have a nice long stream of locked
1082          * and up to date pages, lets wait on them
1083          */
1084         for (i = 0; i < i_done; i++)
1085                 wait_on_page_writeback(pages[i]);
1086
1087         page_start = page_offset(pages[0]);
1088         page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1089
1090         lock_extent_bits(&BTRFS_I(inode)->io_tree,
1091                          page_start, page_end - 1, 0, &cached_state);
1092         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1093                           page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1094                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1095                           &cached_state, GFP_NOFS);
1096
1097         if (i_done != page_cnt) {
1098                 spin_lock(&BTRFS_I(inode)->lock);
1099                 BTRFS_I(inode)->outstanding_extents++;
1100                 spin_unlock(&BTRFS_I(inode)->lock);
1101                 btrfs_delalloc_release_space(inode,
1102                                      (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1103         }
1104
1105
1106         set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1107                           &cached_state, GFP_NOFS);
1108
1109         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1110                              page_start, page_end - 1, &cached_state,
1111                              GFP_NOFS);
1112
1113         for (i = 0; i < i_done; i++) {
1114                 clear_page_dirty_for_io(pages[i]);
1115                 ClearPageChecked(pages[i]);
1116                 set_page_extent_mapped(pages[i]);
1117                 set_page_dirty(pages[i]);
1118                 unlock_page(pages[i]);
1119                 page_cache_release(pages[i]);
1120         }
1121         return i_done;
1122 out:
1123         for (i = 0; i < i_done; i++) {
1124                 unlock_page(pages[i]);
1125                 page_cache_release(pages[i]);
1126         }
1127         btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1128         return ret;
1129
1130 }
1131
1132 int btrfs_defrag_file(struct inode *inode, struct file *file,
1133                       struct btrfs_ioctl_defrag_range_args *range,
1134                       u64 newer_than, unsigned long max_to_defrag)
1135 {
1136         struct btrfs_root *root = BTRFS_I(inode)->root;
1137         struct file_ra_state *ra = NULL;
1138         unsigned long last_index;
1139         u64 isize = i_size_read(inode);
1140         u64 last_len = 0;
1141         u64 skip = 0;
1142         u64 defrag_end = 0;
1143         u64 newer_off = range->start;
1144         unsigned long i;
1145         unsigned long ra_index = 0;
1146         int ret;
1147         int defrag_count = 0;
1148         int compress_type = BTRFS_COMPRESS_ZLIB;
1149         int extent_thresh = range->extent_thresh;
1150         int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1151         int cluster = max_cluster;
1152         u64 new_align = ~((u64)128 * 1024 - 1);
1153         struct page **pages = NULL;
1154
1155         if (extent_thresh == 0)
1156                 extent_thresh = 256 * 1024;
1157
1158         if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1159                 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1160                         return -EINVAL;
1161                 if (range->compress_type)
1162                         compress_type = range->compress_type;
1163         }
1164
1165         if (isize == 0)
1166                 return 0;
1167
1168         /*
1169          * if we were not given a file, allocate a readahead
1170          * context
1171          */
1172         if (!file) {
1173                 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1174                 if (!ra)
1175                         return -ENOMEM;
1176                 file_ra_state_init(ra, inode->i_mapping);
1177         } else {
1178                 ra = &file->f_ra;
1179         }
1180
1181         pages = kmalloc(sizeof(struct page *) * max_cluster,
1182                         GFP_NOFS);
1183         if (!pages) {
1184                 ret = -ENOMEM;
1185                 goto out_ra;
1186         }
1187
1188         /* find the last page to defrag */
1189         if (range->start + range->len > range->start) {
1190                 last_index = min_t(u64, isize - 1,
1191                          range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1192         } else {
1193                 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1194         }
1195
1196         if (newer_than) {
1197                 ret = find_new_extents(root, inode, newer_than,
1198                                        &newer_off, 64 * 1024);
1199                 if (!ret) {
1200                         range->start = newer_off;
1201                         /*
1202                          * we always align our defrag to help keep
1203                          * the extents in the file evenly spaced
1204                          */
1205                         i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1206                 } else
1207                         goto out_ra;
1208         } else {
1209                 i = range->start >> PAGE_CACHE_SHIFT;
1210         }
1211         if (!max_to_defrag)
1212                 max_to_defrag = last_index + 1;
1213
1214         /*
1215          * make writeback starts from i, so the defrag range can be
1216          * written sequentially.
1217          */
1218         if (i < inode->i_mapping->writeback_index)
1219                 inode->i_mapping->writeback_index = i;
1220
1221         while (i <= last_index && defrag_count < max_to_defrag &&
1222                (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1223                 PAGE_CACHE_SHIFT)) {
1224                 /*
1225                  * make sure we stop running if someone unmounts
1226                  * the FS
1227                  */
1228                 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1229                         break;
1230
1231                 if (btrfs_defrag_cancelled(root->fs_info)) {
1232                         printk(KERN_DEBUG "btrfs: defrag_file cancelled\n");
1233                         ret = -EAGAIN;
1234                         break;
1235                 }
1236
1237                 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1238                                          extent_thresh, &last_len, &skip,
1239                                          &defrag_end, range->flags &
1240                                          BTRFS_DEFRAG_RANGE_COMPRESS)) {
1241                         unsigned long next;
1242                         /*
1243                          * the should_defrag function tells us how much to skip
1244                          * bump our counter by the suggested amount
1245                          */
1246                         next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1247                         i = max(i + 1, next);
1248                         continue;
1249                 }
1250
1251                 if (!newer_than) {
1252                         cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1253                                    PAGE_CACHE_SHIFT) - i;
1254                         cluster = min(cluster, max_cluster);
1255                 } else {
1256                         cluster = max_cluster;
1257                 }
1258
1259                 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1260                         BTRFS_I(inode)->force_compress = compress_type;
1261
1262                 if (i + cluster > ra_index) {
1263                         ra_index = max(i, ra_index);
1264                         btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1265                                        cluster);
1266                         ra_index += max_cluster;
1267                 }
1268
1269                 mutex_lock(&inode->i_mutex);
1270                 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1271                 if (ret < 0) {
1272                         mutex_unlock(&inode->i_mutex);
1273                         goto out_ra;
1274                 }
1275
1276                 defrag_count += ret;
1277                 balance_dirty_pages_ratelimited(inode->i_mapping);
1278                 mutex_unlock(&inode->i_mutex);
1279
1280                 if (newer_than) {
1281                         if (newer_off == (u64)-1)
1282                                 break;
1283
1284                         if (ret > 0)
1285                                 i += ret;
1286
1287                         newer_off = max(newer_off + 1,
1288                                         (u64)i << PAGE_CACHE_SHIFT);
1289
1290                         ret = find_new_extents(root, inode,
1291                                                newer_than, &newer_off,
1292                                                64 * 1024);
1293                         if (!ret) {
1294                                 range->start = newer_off;
1295                                 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1296                         } else {
1297                                 break;
1298                         }
1299                 } else {
1300                         if (ret > 0) {
1301                                 i += ret;
1302                                 last_len += ret << PAGE_CACHE_SHIFT;
1303                         } else {
1304                                 i++;
1305                                 last_len = 0;
1306                         }
1307                 }
1308         }
1309
1310         if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1311                 filemap_flush(inode->i_mapping);
1312
1313         if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1314                 /* the filemap_flush will queue IO into the worker threads, but
1315                  * we have to make sure the IO is actually started and that
1316                  * ordered extents get created before we return
1317                  */
1318                 atomic_inc(&root->fs_info->async_submit_draining);
1319                 while (atomic_read(&root->fs_info->nr_async_submits) ||
1320                       atomic_read(&root->fs_info->async_delalloc_pages)) {
1321                         wait_event(root->fs_info->async_submit_wait,
1322                            (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1323                             atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1324                 }
1325                 atomic_dec(&root->fs_info->async_submit_draining);
1326
1327                 mutex_lock(&inode->i_mutex);
1328                 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1329                 mutex_unlock(&inode->i_mutex);
1330         }
1331
1332         if (range->compress_type == BTRFS_COMPRESS_LZO) {
1333                 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1334         }
1335
1336         ret = defrag_count;
1337
1338 out_ra:
1339         if (!file)
1340                 kfree(ra);
1341         kfree(pages);
1342         return ret;
1343 }
1344
1345 static noinline int btrfs_ioctl_resize(struct file *file,
1346                                         void __user *arg)
1347 {
1348         u64 new_size;
1349         u64 old_size;
1350         u64 devid = 1;
1351         struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1352         struct btrfs_ioctl_vol_args *vol_args;
1353         struct btrfs_trans_handle *trans;
1354         struct btrfs_device *device = NULL;
1355         char *sizestr;
1356         char *devstr = NULL;
1357         int ret = 0;
1358         int mod = 0;
1359
1360         if (!capable(CAP_SYS_ADMIN))
1361                 return -EPERM;
1362
1363         ret = mnt_want_write_file(file);
1364         if (ret)
1365                 return ret;
1366
1367         if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1368                         1)) {
1369                 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
1370                 mnt_drop_write_file(file);
1371                 return -EINVAL;
1372         }
1373
1374         mutex_lock(&root->fs_info->volume_mutex);
1375         vol_args = memdup_user(arg, sizeof(*vol_args));
1376         if (IS_ERR(vol_args)) {
1377                 ret = PTR_ERR(vol_args);
1378                 goto out;
1379         }
1380
1381         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1382
1383         sizestr = vol_args->name;
1384         devstr = strchr(sizestr, ':');
1385         if (devstr) {
1386                 char *end;
1387                 sizestr = devstr + 1;
1388                 *devstr = '\0';
1389                 devstr = vol_args->name;
1390                 devid = simple_strtoull(devstr, &end, 10);
1391                 if (!devid) {
1392                         ret = -EINVAL;
1393                         goto out_free;
1394                 }
1395                 printk(KERN_INFO "btrfs: resizing devid %llu\n",
1396                        (unsigned long long)devid);
1397         }
1398
1399         device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1400         if (!device) {
1401                 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1402                        (unsigned long long)devid);
1403                 ret = -ENODEV;
1404                 goto out_free;
1405         }
1406
1407         if (!device->writeable) {
1408                 printk(KERN_INFO "btrfs: resizer unable to apply on "
1409                        "readonly device %llu\n",
1410                        (unsigned long long)devid);
1411                 ret = -EPERM;
1412                 goto out_free;
1413         }
1414
1415         if (!strcmp(sizestr, "max"))
1416                 new_size = device->bdev->bd_inode->i_size;
1417         else {
1418                 if (sizestr[0] == '-') {
1419                         mod = -1;
1420                         sizestr++;
1421                 } else if (sizestr[0] == '+') {
1422                         mod = 1;
1423                         sizestr++;
1424                 }
1425                 new_size = memparse(sizestr, NULL);
1426                 if (new_size == 0) {
1427                         ret = -EINVAL;
1428                         goto out_free;
1429                 }
1430         }
1431
1432         if (device->is_tgtdev_for_dev_replace) {
1433                 ret = -EPERM;
1434                 goto out_free;
1435         }
1436
1437         old_size = device->total_bytes;
1438
1439         if (mod < 0) {
1440                 if (new_size > old_size) {
1441                         ret = -EINVAL;
1442                         goto out_free;
1443                 }
1444                 new_size = old_size - new_size;
1445         } else if (mod > 0) {
1446                 new_size = old_size + new_size;
1447         }
1448
1449         if (new_size < 256 * 1024 * 1024) {
1450                 ret = -EINVAL;
1451                 goto out_free;
1452         }
1453         if (new_size > device->bdev->bd_inode->i_size) {
1454                 ret = -EFBIG;
1455                 goto out_free;
1456         }
1457
1458         do_div(new_size, root->sectorsize);
1459         new_size *= root->sectorsize;
1460
1461         printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n",
1462                       rcu_str_deref(device->name),
1463                       (unsigned long long)new_size);
1464
1465         if (new_size > old_size) {
1466                 trans = btrfs_start_transaction(root, 0);
1467                 if (IS_ERR(trans)) {
1468                         ret = PTR_ERR(trans);
1469                         goto out_free;
1470                 }
1471                 ret = btrfs_grow_device(trans, device, new_size);
1472                 btrfs_commit_transaction(trans, root);
1473         } else if (new_size < old_size) {
1474                 ret = btrfs_shrink_device(device, new_size);
1475         } /* equal, nothing need to do */
1476
1477 out_free:
1478         kfree(vol_args);
1479 out:
1480         mutex_unlock(&root->fs_info->volume_mutex);
1481         atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1482         mnt_drop_write_file(file);
1483         return ret;
1484 }
1485
1486 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1487                                 char *name, unsigned long fd, int subvol,
1488                                 u64 *transid, bool readonly,
1489                                 struct btrfs_qgroup_inherit *inherit)
1490 {
1491         int namelen;
1492         int ret = 0;
1493
1494         ret = mnt_want_write_file(file);
1495         if (ret)
1496                 goto out;
1497
1498         namelen = strlen(name);
1499         if (strchr(name, '/')) {
1500                 ret = -EINVAL;
1501                 goto out_drop_write;
1502         }
1503
1504         if (name[0] == '.' &&
1505            (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1506                 ret = -EEXIST;
1507                 goto out_drop_write;
1508         }
1509
1510         if (subvol) {
1511                 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1512                                      NULL, transid, readonly, inherit);
1513         } else {
1514                 struct fd src = fdget(fd);
1515                 struct inode *src_inode;
1516                 if (!src.file) {
1517                         ret = -EINVAL;
1518                         goto out_drop_write;
1519                 }
1520
1521                 src_inode = file_inode(src.file);
1522                 if (src_inode->i_sb != file_inode(file)->i_sb) {
1523                         printk(KERN_INFO "btrfs: Snapshot src from "
1524                                "another FS\n");
1525                         ret = -EINVAL;
1526                 } else {
1527                         ret = btrfs_mksubvol(&file->f_path, name, namelen,
1528                                              BTRFS_I(src_inode)->root,
1529                                              transid, readonly, inherit);
1530                 }
1531                 fdput(src);
1532         }
1533 out_drop_write:
1534         mnt_drop_write_file(file);
1535 out:
1536         return ret;
1537 }
1538
1539 static noinline int btrfs_ioctl_snap_create(struct file *file,
1540                                             void __user *arg, int subvol)
1541 {
1542         struct btrfs_ioctl_vol_args *vol_args;
1543         int ret;
1544
1545         vol_args = memdup_user(arg, sizeof(*vol_args));
1546         if (IS_ERR(vol_args))
1547                 return PTR_ERR(vol_args);
1548         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1549
1550         ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1551                                               vol_args->fd, subvol,
1552                                               NULL, false, NULL);
1553
1554         kfree(vol_args);
1555         return ret;
1556 }
1557
1558 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1559                                                void __user *arg, int subvol)
1560 {
1561         struct btrfs_ioctl_vol_args_v2 *vol_args;
1562         int ret;
1563         u64 transid = 0;
1564         u64 *ptr = NULL;
1565         bool readonly = false;
1566         struct btrfs_qgroup_inherit *inherit = NULL;
1567
1568         vol_args = memdup_user(arg, sizeof(*vol_args));
1569         if (IS_ERR(vol_args))
1570                 return PTR_ERR(vol_args);
1571         vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1572
1573         if (vol_args->flags &
1574             ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1575               BTRFS_SUBVOL_QGROUP_INHERIT)) {
1576                 ret = -EOPNOTSUPP;
1577                 goto out;
1578         }
1579
1580         if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1581                 ptr = &transid;
1582         if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1583                 readonly = true;
1584         if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1585                 if (vol_args->size > PAGE_CACHE_SIZE) {
1586                         ret = -EINVAL;
1587                         goto out;
1588                 }
1589                 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1590                 if (IS_ERR(inherit)) {
1591                         ret = PTR_ERR(inherit);
1592                         goto out;
1593                 }
1594         }
1595
1596         ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1597                                               vol_args->fd, subvol, ptr,
1598                                               readonly, inherit);
1599
1600         if (ret == 0 && ptr &&
1601             copy_to_user(arg +
1602                          offsetof(struct btrfs_ioctl_vol_args_v2,
1603                                   transid), ptr, sizeof(*ptr)))
1604                 ret = -EFAULT;
1605 out:
1606         kfree(vol_args);
1607         kfree(inherit);
1608         return ret;
1609 }
1610
1611 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1612                                                 void __user *arg)
1613 {
1614         struct inode *inode = file_inode(file);
1615         struct btrfs_root *root = BTRFS_I(inode)->root;
1616         int ret = 0;
1617         u64 flags = 0;
1618
1619         if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1620                 return -EINVAL;
1621
1622         down_read(&root->fs_info->subvol_sem);
1623         if (btrfs_root_readonly(root))
1624                 flags |= BTRFS_SUBVOL_RDONLY;
1625         up_read(&root->fs_info->subvol_sem);
1626
1627         if (copy_to_user(arg, &flags, sizeof(flags)))
1628                 ret = -EFAULT;
1629
1630         return ret;
1631 }
1632
1633 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1634                                               void __user *arg)
1635 {
1636         struct inode *inode = file_inode(file);
1637         struct btrfs_root *root = BTRFS_I(inode)->root;
1638         struct btrfs_trans_handle *trans;
1639         u64 root_flags;
1640         u64 flags;
1641         int ret = 0;
1642
1643         ret = mnt_want_write_file(file);
1644         if (ret)
1645                 goto out;
1646
1647         if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1648                 ret = -EINVAL;
1649                 goto out_drop_write;
1650         }
1651
1652         if (copy_from_user(&flags, arg, sizeof(flags))) {
1653                 ret = -EFAULT;
1654                 goto out_drop_write;
1655         }
1656
1657         if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1658                 ret = -EINVAL;
1659                 goto out_drop_write;
1660         }
1661
1662         if (flags & ~BTRFS_SUBVOL_RDONLY) {
1663                 ret = -EOPNOTSUPP;
1664                 goto out_drop_write;
1665         }
1666
1667         if (!inode_owner_or_capable(inode)) {
1668                 ret = -EACCES;
1669                 goto out_drop_write;
1670         }
1671
1672         down_write(&root->fs_info->subvol_sem);
1673
1674         /* nothing to do */
1675         if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1676                 goto out_drop_sem;
1677
1678         root_flags = btrfs_root_flags(&root->root_item);
1679         if (flags & BTRFS_SUBVOL_RDONLY)
1680                 btrfs_set_root_flags(&root->root_item,
1681                                      root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1682         else
1683                 btrfs_set_root_flags(&root->root_item,
1684                                      root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1685
1686         trans = btrfs_start_transaction(root, 1);
1687         if (IS_ERR(trans)) {
1688                 ret = PTR_ERR(trans);
1689                 goto out_reset;
1690         }
1691
1692         ret = btrfs_update_root(trans, root->fs_info->tree_root,
1693                                 &root->root_key, &root->root_item);
1694
1695         btrfs_commit_transaction(trans, root);
1696 out_reset:
1697         if (ret)
1698                 btrfs_set_root_flags(&root->root_item, root_flags);
1699 out_drop_sem:
1700         up_write(&root->fs_info->subvol_sem);
1701 out_drop_write:
1702         mnt_drop_write_file(file);
1703 out:
1704         return ret;
1705 }
1706
1707 /*
1708  * helper to check if the subvolume references other subvolumes
1709  */
1710 static noinline int may_destroy_subvol(struct btrfs_root *root)
1711 {
1712         struct btrfs_path *path;
1713         struct btrfs_key key;
1714         int ret;
1715
1716         path = btrfs_alloc_path();
1717         if (!path)
1718                 return -ENOMEM;
1719
1720         key.objectid = root->root_key.objectid;
1721         key.type = BTRFS_ROOT_REF_KEY;
1722         key.offset = (u64)-1;
1723
1724         ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1725                                 &key, path, 0, 0);
1726         if (ret < 0)
1727                 goto out;
1728         BUG_ON(ret == 0);
1729
1730         ret = 0;
1731         if (path->slots[0] > 0) {
1732                 path->slots[0]--;
1733                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1734                 if (key.objectid == root->root_key.objectid &&
1735                     key.type == BTRFS_ROOT_REF_KEY)
1736                         ret = -ENOTEMPTY;
1737         }
1738 out:
1739         btrfs_free_path(path);
1740         return ret;
1741 }
1742
1743 static noinline int key_in_sk(struct btrfs_key *key,
1744                               struct btrfs_ioctl_search_key *sk)
1745 {
1746         struct btrfs_key test;
1747         int ret;
1748
1749         test.objectid = sk->min_objectid;
1750         test.type = sk->min_type;
1751         test.offset = sk->min_offset;
1752
1753         ret = btrfs_comp_cpu_keys(key, &test);
1754         if (ret < 0)
1755                 return 0;
1756
1757         test.objectid = sk->max_objectid;
1758         test.type = sk->max_type;
1759         test.offset = sk->max_offset;
1760
1761         ret = btrfs_comp_cpu_keys(key, &test);
1762         if (ret > 0)
1763                 return 0;
1764         return 1;
1765 }
1766
1767 static noinline int copy_to_sk(struct btrfs_root *root,
1768                                struct btrfs_path *path,
1769                                struct btrfs_key *key,
1770                                struct btrfs_ioctl_search_key *sk,
1771                                char *buf,
1772                                unsigned long *sk_offset,
1773                                int *num_found)
1774 {
1775         u64 found_transid;
1776         struct extent_buffer *leaf;
1777         struct btrfs_ioctl_search_header sh;
1778         unsigned long item_off;
1779         unsigned long item_len;
1780         int nritems;
1781         int i;
1782         int slot;
1783         int ret = 0;
1784
1785         leaf = path->nodes[0];
1786         slot = path->slots[0];
1787         nritems = btrfs_header_nritems(leaf);
1788
1789         if (btrfs_header_generation(leaf) > sk->max_transid) {
1790                 i = nritems;
1791                 goto advance_key;
1792         }
1793         found_transid = btrfs_header_generation(leaf);
1794
1795         for (i = slot; i < nritems; i++) {
1796                 item_off = btrfs_item_ptr_offset(leaf, i);
1797                 item_len = btrfs_item_size_nr(leaf, i);
1798
1799                 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1800                         item_len = 0;
1801
1802                 if (sizeof(sh) + item_len + *sk_offset >
1803                     BTRFS_SEARCH_ARGS_BUFSIZE) {
1804                         ret = 1;
1805                         goto overflow;
1806                 }
1807
1808                 btrfs_item_key_to_cpu(leaf, key, i);
1809                 if (!key_in_sk(key, sk))
1810                         continue;
1811
1812                 sh.objectid = key->objectid;
1813                 sh.offset = key->offset;
1814                 sh.type = key->type;
1815                 sh.len = item_len;
1816                 sh.transid = found_transid;
1817
1818                 /* copy search result header */
1819                 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1820                 *sk_offset += sizeof(sh);
1821
1822                 if (item_len) {
1823                         char *p = buf + *sk_offset;
1824                         /* copy the item */
1825                         read_extent_buffer(leaf, p,
1826                                            item_off, item_len);
1827                         *sk_offset += item_len;
1828                 }
1829                 (*num_found)++;
1830
1831                 if (*num_found >= sk->nr_items)
1832                         break;
1833         }
1834 advance_key:
1835         ret = 0;
1836         if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1837                 key->offset++;
1838         else if (key->type < (u8)-1 && key->type < sk->max_type) {
1839                 key->offset = 0;
1840                 key->type++;
1841         } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1842                 key->offset = 0;
1843                 key->type = 0;
1844                 key->objectid++;
1845         } else
1846                 ret = 1;
1847 overflow:
1848         return ret;
1849 }
1850
1851 static noinline int search_ioctl(struct inode *inode,
1852                                  struct btrfs_ioctl_search_args *args)
1853 {
1854         struct btrfs_root *root;
1855         struct btrfs_key key;
1856         struct btrfs_key max_key;
1857         struct btrfs_path *path;
1858         struct btrfs_ioctl_search_key *sk = &args->key;
1859         struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1860         int ret;
1861         int num_found = 0;
1862         unsigned long sk_offset = 0;
1863
1864         path = btrfs_alloc_path();
1865         if (!path)
1866                 return -ENOMEM;
1867
1868         if (sk->tree_id == 0) {
1869                 /* search the root of the inode that was passed */
1870                 root = BTRFS_I(inode)->root;
1871         } else {
1872                 key.objectid = sk->tree_id;
1873                 key.type = BTRFS_ROOT_ITEM_KEY;
1874                 key.offset = (u64)-1;
1875                 root = btrfs_read_fs_root_no_name(info, &key);
1876                 if (IS_ERR(root)) {
1877                         printk(KERN_ERR "could not find root %llu\n",
1878                                sk->tree_id);
1879                         btrfs_free_path(path);
1880                         return -ENOENT;
1881                 }
1882         }
1883
1884         key.objectid = sk->min_objectid;
1885         key.type = sk->min_type;
1886         key.offset = sk->min_offset;
1887
1888         max_key.objectid = sk->max_objectid;
1889         max_key.type = sk->max_type;
1890         max_key.offset = sk->max_offset;
1891
1892         path->keep_locks = 1;
1893
1894         while(1) {
1895                 ret = btrfs_search_forward(root, &key, &max_key, path,
1896                                            sk->min_transid);
1897                 if (ret != 0) {
1898                         if (ret > 0)
1899                                 ret = 0;
1900                         goto err;
1901                 }
1902                 ret = copy_to_sk(root, path, &key, sk, args->buf,
1903                                  &sk_offset, &num_found);
1904                 btrfs_release_path(path);
1905                 if (ret || num_found >= sk->nr_items)
1906                         break;
1907
1908         }
1909         ret = 0;
1910 err:
1911         sk->nr_items = num_found;
1912         btrfs_free_path(path);
1913         return ret;
1914 }
1915
1916 static noinline int btrfs_ioctl_tree_search(struct file *file,
1917                                            void __user *argp)
1918 {
1919          struct btrfs_ioctl_search_args *args;
1920          struct inode *inode;
1921          int ret;
1922
1923         if (!capable(CAP_SYS_ADMIN))
1924                 return -EPERM;
1925
1926         args = memdup_user(argp, sizeof(*args));
1927         if (IS_ERR(args))
1928                 return PTR_ERR(args);
1929
1930         inode = file_inode(file);
1931         ret = search_ioctl(inode, args);
1932         if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1933                 ret = -EFAULT;
1934         kfree(args);
1935         return ret;
1936 }
1937
1938 /*
1939  * Search INODE_REFs to identify path name of 'dirid' directory
1940  * in a 'tree_id' tree. and sets path name to 'name'.
1941  */
1942 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1943                                 u64 tree_id, u64 dirid, char *name)
1944 {
1945         struct btrfs_root *root;
1946         struct btrfs_key key;
1947         char *ptr;
1948         int ret = -1;
1949         int slot;
1950         int len;
1951         int total_len = 0;
1952         struct btrfs_inode_ref *iref;
1953         struct extent_buffer *l;
1954         struct btrfs_path *path;
1955
1956         if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1957                 name[0]='\0';
1958                 return 0;
1959         }
1960
1961         path = btrfs_alloc_path();
1962         if (!path)
1963                 return -ENOMEM;
1964
1965         ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1966
1967         key.objectid = tree_id;
1968         key.type = BTRFS_ROOT_ITEM_KEY;
1969         key.offset = (u64)-1;
1970         root = btrfs_read_fs_root_no_name(info, &key);
1971         if (IS_ERR(root)) {
1972                 printk(KERN_ERR "could not find root %llu\n", tree_id);
1973                 ret = -ENOENT;
1974                 goto out;
1975         }
1976
1977         key.objectid = dirid;
1978         key.type = BTRFS_INODE_REF_KEY;
1979         key.offset = (u64)-1;
1980
1981         while(1) {
1982                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1983                 if (ret < 0)
1984                         goto out;
1985
1986                 l = path->nodes[0];
1987                 slot = path->slots[0];
1988                 if (ret > 0 && slot > 0)
1989                         slot--;
1990                 btrfs_item_key_to_cpu(l, &key, slot);
1991
1992                 if (ret > 0 && (key.objectid != dirid ||
1993                                 key.type != BTRFS_INODE_REF_KEY)) {
1994                         ret = -ENOENT;
1995                         goto out;
1996                 }
1997
1998                 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1999                 len = btrfs_inode_ref_name_len(l, iref);
2000                 ptr -= len + 1;
2001                 total_len += len + 1;
2002                 if (ptr < name)
2003                         goto out;
2004
2005                 *(ptr + len) = '/';
2006                 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
2007
2008                 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2009                         break;
2010
2011                 btrfs_release_path(path);
2012                 key.objectid = key.offset;
2013                 key.offset = (u64)-1;
2014                 dirid = key.objectid;
2015         }
2016         if (ptr < name)
2017                 goto out;
2018         memmove(name, ptr, total_len);
2019         name[total_len]='\0';
2020         ret = 0;
2021 out:
2022         btrfs_free_path(path);
2023         return ret;
2024 }
2025
2026 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2027                                            void __user *argp)
2028 {
2029          struct btrfs_ioctl_ino_lookup_args *args;
2030          struct inode *inode;
2031          int ret;
2032
2033         if (!capable(CAP_SYS_ADMIN))
2034                 return -EPERM;
2035
2036         args = memdup_user(argp, sizeof(*args));
2037         if (IS_ERR(args))
2038                 return PTR_ERR(args);
2039
2040         inode = file_inode(file);
2041
2042         if (args->treeid == 0)
2043                 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2044
2045         ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2046                                         args->treeid, args->objectid,
2047                                         args->name);
2048
2049         if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2050                 ret = -EFAULT;
2051
2052         kfree(args);
2053         return ret;
2054 }
2055
2056 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2057                                              void __user *arg)
2058 {
2059         struct dentry *parent = fdentry(file);
2060         struct dentry *dentry;
2061         struct inode *dir = parent->d_inode;
2062         struct inode *inode;
2063         struct btrfs_root *root = BTRFS_I(dir)->root;
2064         struct btrfs_root *dest = NULL;
2065         struct btrfs_ioctl_vol_args *vol_args;
2066         struct btrfs_trans_handle *trans;
2067         struct btrfs_block_rsv block_rsv;
2068         u64 qgroup_reserved;
2069         int namelen;
2070         int ret;
2071         int err = 0;
2072
2073         vol_args = memdup_user(arg, sizeof(*vol_args));
2074         if (IS_ERR(vol_args))
2075                 return PTR_ERR(vol_args);
2076
2077         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2078         namelen = strlen(vol_args->name);
2079         if (strchr(vol_args->name, '/') ||
2080             strncmp(vol_args->name, "..", namelen) == 0) {
2081                 err = -EINVAL;
2082                 goto out;
2083         }
2084
2085         err = mnt_want_write_file(file);
2086         if (err)
2087                 goto out;
2088
2089         mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
2090         dentry = lookup_one_len(vol_args->name, parent, namelen);
2091         if (IS_ERR(dentry)) {
2092                 err = PTR_ERR(dentry);
2093                 goto out_unlock_dir;
2094         }
2095
2096         if (!dentry->d_inode) {
2097                 err = -ENOENT;
2098                 goto out_dput;
2099         }
2100
2101         inode = dentry->d_inode;
2102         dest = BTRFS_I(inode)->root;
2103         if (!capable(CAP_SYS_ADMIN)){
2104                 /*
2105                  * Regular user.  Only allow this with a special mount
2106                  * option, when the user has write+exec access to the
2107                  * subvol root, and when rmdir(2) would have been
2108                  * allowed.
2109                  *
2110                  * Note that this is _not_ check that the subvol is
2111                  * empty or doesn't contain data that we wouldn't
2112                  * otherwise be able to delete.
2113                  *
2114                  * Users who want to delete empty subvols should try
2115                  * rmdir(2).
2116                  */
2117                 err = -EPERM;
2118                 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2119                         goto out_dput;
2120
2121                 /*
2122                  * Do not allow deletion if the parent dir is the same
2123                  * as the dir to be deleted.  That means the ioctl
2124                  * must be called on the dentry referencing the root
2125                  * of the subvol, not a random directory contained
2126                  * within it.
2127                  */
2128                 err = -EINVAL;
2129                 if (root == dest)
2130                         goto out_dput;
2131
2132                 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2133                 if (err)
2134                         goto out_dput;
2135         }
2136
2137         /* check if subvolume may be deleted by a user */
2138         err = btrfs_may_delete(dir, dentry, 1);
2139         if (err)
2140                 goto out_dput;
2141
2142         if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2143                 err = -EINVAL;
2144                 goto out_dput;
2145         }
2146
2147         mutex_lock(&inode->i_mutex);
2148         err = d_invalidate(dentry);
2149         if (err)
2150                 goto out_unlock;
2151
2152         down_write(&root->fs_info->subvol_sem);
2153
2154         err = may_destroy_subvol(dest);
2155         if (err)
2156                 goto out_up_write;
2157
2158         btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2159         /*
2160          * One for dir inode, two for dir entries, two for root
2161          * ref/backref.
2162          */
2163         err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2164                                                5, &qgroup_reserved);
2165         if (err)
2166                 goto out_up_write;
2167
2168         trans = btrfs_start_transaction(root, 0);
2169         if (IS_ERR(trans)) {
2170                 err = PTR_ERR(trans);
2171                 goto out_release;
2172         }
2173         trans->block_rsv = &block_rsv;
2174         trans->bytes_reserved = block_rsv.size;
2175
2176         ret = btrfs_unlink_subvol(trans, root, dir,
2177                                 dest->root_key.objectid,
2178                                 dentry->d_name.name,
2179                                 dentry->d_name.len);
2180         if (ret) {
2181                 err = ret;
2182                 btrfs_abort_transaction(trans, root, ret);
2183                 goto out_end_trans;
2184         }
2185
2186         btrfs_record_root_in_trans(trans, dest);
2187
2188         memset(&dest->root_item.drop_progress, 0,
2189                 sizeof(dest->root_item.drop_progress));
2190         dest->root_item.drop_level = 0;
2191         btrfs_set_root_refs(&dest->root_item, 0);
2192
2193         if (!xchg(&dest->orphan_item_inserted, 1)) {
2194                 ret = btrfs_insert_orphan_item(trans,
2195                                         root->fs_info->tree_root,
2196                                         dest->root_key.objectid);
2197                 if (ret) {
2198                         btrfs_abort_transaction(trans, root, ret);
2199                         err = ret;
2200                         goto out_end_trans;
2201                 }
2202         }
2203 out_end_trans:
2204         trans->block_rsv = NULL;
2205         trans->bytes_reserved = 0;
2206         ret = btrfs_end_transaction(trans, root);
2207         if (ret && !err)
2208                 err = ret;
2209         inode->i_flags |= S_DEAD;
2210 out_release:
2211         btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2212 out_up_write:
2213         up_write(&root->fs_info->subvol_sem);
2214 out_unlock:
2215         mutex_unlock(&inode->i_mutex);
2216         if (!err) {
2217                 shrink_dcache_sb(root->fs_info->sb);
2218                 btrfs_invalidate_inodes(dest);
2219                 d_delete(dentry);
2220
2221                 /* the last ref */
2222                 if (dest->cache_inode) {
2223                         iput(dest->cache_inode);
2224                         dest->cache_inode = NULL;
2225                 }
2226         }
2227 out_dput:
2228         dput(dentry);
2229 out_unlock_dir:
2230         mutex_unlock(&dir->i_mutex);
2231         mnt_drop_write_file(file);
2232 out:
2233         kfree(vol_args);
2234         return err;
2235 }
2236
2237 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2238 {
2239         struct inode *inode = file_inode(file);
2240         struct btrfs_root *root = BTRFS_I(inode)->root;
2241         struct btrfs_ioctl_defrag_range_args *range;
2242         int ret;
2243
2244         ret = mnt_want_write_file(file);
2245         if (ret)
2246                 return ret;
2247
2248         if (btrfs_root_readonly(root)) {
2249                 ret = -EROFS;
2250                 goto out;
2251         }
2252
2253         switch (inode->i_mode & S_IFMT) {
2254         case S_IFDIR:
2255                 if (!capable(CAP_SYS_ADMIN)) {
2256                         ret = -EPERM;
2257                         goto out;
2258                 }
2259                 ret = btrfs_defrag_root(root);
2260                 if (ret)
2261                         goto out;
2262                 ret = btrfs_defrag_root(root->fs_info->extent_root);
2263                 break;
2264         case S_IFREG:
2265                 if (!(file->f_mode & FMODE_WRITE)) {
2266                         ret = -EINVAL;
2267                         goto out;
2268                 }
2269
2270                 range = kzalloc(sizeof(*range), GFP_KERNEL);
2271                 if (!range) {
2272                         ret = -ENOMEM;
2273                         goto out;
2274                 }
2275
2276                 if (argp) {
2277                         if (copy_from_user(range, argp,
2278                                            sizeof(*range))) {
2279                                 ret = -EFAULT;
2280                                 kfree(range);
2281                                 goto out;
2282                         }
2283                         /* compression requires us to start the IO */
2284                         if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2285                                 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2286                                 range->extent_thresh = (u32)-1;
2287                         }
2288                 } else {
2289                         /* the rest are all set to zero by kzalloc */
2290                         range->len = (u64)-1;
2291                 }
2292                 ret = btrfs_defrag_file(file_inode(file), file,
2293                                         range, 0, 0);
2294                 if (ret > 0)
2295                         ret = 0;
2296                 kfree(range);
2297                 break;
2298         default:
2299                 ret = -EINVAL;
2300         }
2301 out:
2302         mnt_drop_write_file(file);
2303         return ret;
2304 }
2305
2306 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2307 {
2308         struct btrfs_ioctl_vol_args *vol_args;
2309         int ret;
2310
2311         if (!capable(CAP_SYS_ADMIN))
2312                 return -EPERM;
2313
2314         if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2315                         1)) {
2316                 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2317                 return -EINVAL;
2318         }
2319
2320         mutex_lock(&root->fs_info->volume_mutex);
2321         vol_args = memdup_user(arg, sizeof(*vol_args));
2322         if (IS_ERR(vol_args)) {
2323                 ret = PTR_ERR(vol_args);
2324                 goto out;
2325         }
2326
2327         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2328         ret = btrfs_init_new_device(root, vol_args->name);
2329
2330         kfree(vol_args);
2331 out:
2332         mutex_unlock(&root->fs_info->volume_mutex);
2333         atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2334         return ret;
2335 }
2336
2337 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2338 {
2339         struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2340         struct btrfs_ioctl_vol_args *vol_args;
2341         int ret;
2342
2343         if (!capable(CAP_SYS_ADMIN))
2344                 return -EPERM;
2345
2346         ret = mnt_want_write_file(file);
2347         if (ret)
2348                 return ret;
2349
2350         if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2351                         1)) {
2352                 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2353                 mnt_drop_write_file(file);
2354                 return -EINVAL;
2355         }
2356
2357         mutex_lock(&root->fs_info->volume_mutex);
2358         vol_args = memdup_user(arg, sizeof(*vol_args));
2359         if (IS_ERR(vol_args)) {
2360                 ret = PTR_ERR(vol_args);
2361                 goto out;
2362         }
2363
2364         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2365         ret = btrfs_rm_device(root, vol_args->name);
2366
2367         kfree(vol_args);
2368 out:
2369         mutex_unlock(&root->fs_info->volume_mutex);
2370         atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2371         mnt_drop_write_file(file);
2372         return ret;
2373 }
2374
2375 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2376 {
2377         struct btrfs_ioctl_fs_info_args *fi_args;
2378         struct btrfs_device *device;
2379         struct btrfs_device *next;
2380         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2381         int ret = 0;
2382
2383         if (!capable(CAP_SYS_ADMIN))
2384                 return -EPERM;
2385
2386         fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2387         if (!fi_args)
2388                 return -ENOMEM;
2389
2390         fi_args->num_devices = fs_devices->num_devices;
2391         memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2392
2393         mutex_lock(&fs_devices->device_list_mutex);
2394         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2395                 if (device->devid > fi_args->max_id)
2396                         fi_args->max_id = device->devid;
2397         }
2398         mutex_unlock(&fs_devices->device_list_mutex);
2399
2400         if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2401                 ret = -EFAULT;
2402
2403         kfree(fi_args);
2404         return ret;
2405 }
2406
2407 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2408 {
2409         struct btrfs_ioctl_dev_info_args *di_args;
2410         struct btrfs_device *dev;
2411         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2412         int ret = 0;
2413         char *s_uuid = NULL;
2414         char empty_uuid[BTRFS_UUID_SIZE] = {0};
2415
2416         if (!capable(CAP_SYS_ADMIN))
2417                 return -EPERM;
2418
2419         di_args = memdup_user(arg, sizeof(*di_args));
2420         if (IS_ERR(di_args))
2421                 return PTR_ERR(di_args);
2422
2423         if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2424                 s_uuid = di_args->uuid;
2425
2426         mutex_lock(&fs_devices->device_list_mutex);
2427         dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2428         mutex_unlock(&fs_devices->device_list_mutex);
2429
2430         if (!dev) {
2431                 ret = -ENODEV;
2432                 goto out;
2433         }
2434
2435         di_args->devid = dev->devid;
2436         di_args->bytes_used = dev->bytes_used;
2437         di_args->total_bytes = dev->total_bytes;
2438         memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2439         if (dev->name) {
2440                 struct rcu_string *name;
2441
2442                 rcu_read_lock();
2443                 name = rcu_dereference(dev->name);
2444                 strncpy(di_args->path, name->str, sizeof(di_args->path));
2445                 rcu_read_unlock();
2446                 di_args->path[sizeof(di_args->path) - 1] = 0;
2447         } else {
2448                 di_args->path[0] = '\0';
2449         }
2450
2451 out:
2452         if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2453                 ret = -EFAULT;
2454
2455         kfree(di_args);
2456         return ret;
2457 }
2458
2459 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2460                                        u64 off, u64 olen, u64 destoff)
2461 {
2462         struct inode *inode = file_inode(file);
2463         struct btrfs_root *root = BTRFS_I(inode)->root;
2464         struct fd src_file;
2465         struct inode *src;
2466         struct btrfs_trans_handle *trans;
2467         struct btrfs_path *path;
2468         struct extent_buffer *leaf;
2469         char *buf;
2470         struct btrfs_key key;
2471         u32 nritems;
2472         int slot;
2473         int ret;
2474         u64 len = olen;
2475         u64 bs = root->fs_info->sb->s_blocksize;
2476
2477         /*
2478          * TODO:
2479          * - split compressed inline extents.  annoying: we need to
2480          *   decompress into destination's address_space (the file offset
2481          *   may change, so source mapping won't do), then recompress (or
2482          *   otherwise reinsert) a subrange.
2483          * - allow ranges within the same file to be cloned (provided
2484          *   they don't overlap)?
2485          */
2486
2487         /* the destination must be opened for writing */
2488         if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2489                 return -EINVAL;
2490
2491         if (btrfs_root_readonly(root))
2492                 return -EROFS;
2493
2494         ret = mnt_want_write_file(file);
2495         if (ret)
2496                 return ret;
2497
2498         src_file = fdget(srcfd);
2499         if (!src_file.file) {
2500                 ret = -EBADF;
2501                 goto out_drop_write;
2502         }
2503
2504         ret = -EXDEV;
2505         if (src_file.file->f_path.mnt != file->f_path.mnt)
2506                 goto out_fput;
2507
2508         src = file_inode(src_file.file);
2509
2510         ret = -EINVAL;
2511         if (src == inode)
2512                 goto out_fput;
2513
2514         /* the src must be open for reading */
2515         if (!(src_file.file->f_mode & FMODE_READ))
2516                 goto out_fput;
2517
2518         /* don't make the dst file partly checksummed */
2519         if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2520             (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2521                 goto out_fput;
2522
2523         ret = -EISDIR;
2524         if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2525                 goto out_fput;
2526
2527         ret = -EXDEV;
2528         if (src->i_sb != inode->i_sb)
2529                 goto out_fput;
2530
2531         ret = -ENOMEM;
2532         buf = vmalloc(btrfs_level_size(root, 0));
2533         if (!buf)
2534                 goto out_fput;
2535
2536         path = btrfs_alloc_path();
2537         if (!path) {
2538                 vfree(buf);
2539                 goto out_fput;
2540         }
2541         path->reada = 2;
2542
2543         if (inode < src) {
2544                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2545                 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2546         } else {
2547                 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2548                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2549         }
2550
2551         /* determine range to clone */
2552         ret = -EINVAL;
2553         if (off + len > src->i_size || off + len < off)
2554                 goto out_unlock;
2555         if (len == 0)
2556                 olen = len = src->i_size - off;
2557         /* if we extend to eof, continue to block boundary */
2558         if (off + len == src->i_size)
2559                 len = ALIGN(src->i_size, bs) - off;
2560
2561         /* verify the end result is block aligned */
2562         if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2563             !IS_ALIGNED(destoff, bs))
2564                 goto out_unlock;
2565
2566         if (destoff > inode->i_size) {
2567                 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2568                 if (ret)
2569                         goto out_unlock;
2570         }
2571
2572         /* truncate page cache pages from target inode range */
2573         truncate_inode_pages_range(&inode->i_data, destoff,
2574                                    PAGE_CACHE_ALIGN(destoff + len) - 1);
2575
2576         /* do any pending delalloc/csum calc on src, one way or
2577            another, and lock file content */
2578         while (1) {
2579                 struct btrfs_ordered_extent *ordered;
2580                 lock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2581                 ordered = btrfs_lookup_first_ordered_extent(src, off + len - 1);
2582                 if (!ordered &&
2583                     !test_range_bit(&BTRFS_I(src)->io_tree, off, off + len - 1,
2584                                     EXTENT_DELALLOC, 0, NULL))
2585                         break;
2586                 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2587                 if (ordered)
2588                         btrfs_put_ordered_extent(ordered);
2589                 btrfs_wait_ordered_range(src, off, len);
2590         }
2591
2592         /* clone data */
2593         key.objectid = btrfs_ino(src);
2594         key.type = BTRFS_EXTENT_DATA_KEY;
2595         key.offset = 0;
2596
2597         while (1) {
2598                 /*
2599                  * note the key will change type as we walk through the
2600                  * tree.
2601                  */
2602                 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2603                                 0, 0);
2604                 if (ret < 0)
2605                         goto out;
2606
2607                 nritems = btrfs_header_nritems(path->nodes[0]);
2608                 if (path->slots[0] >= nritems) {
2609                         ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2610                         if (ret < 0)
2611                                 goto out;
2612                         if (ret > 0)
2613                                 break;
2614                         nritems = btrfs_header_nritems(path->nodes[0]);
2615                 }
2616                 leaf = path->nodes[0];
2617                 slot = path->slots[0];
2618
2619                 btrfs_item_key_to_cpu(leaf, &key, slot);
2620                 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2621                     key.objectid != btrfs_ino(src))
2622                         break;
2623
2624                 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2625                         struct btrfs_file_extent_item *extent;
2626                         int type;
2627                         u32 size;
2628                         struct btrfs_key new_key;
2629                         u64 disko = 0, diskl = 0;
2630                         u64 datao = 0, datal = 0;
2631                         u8 comp;
2632                         u64 endoff;
2633
2634                         size = btrfs_item_size_nr(leaf, slot);
2635                         read_extent_buffer(leaf, buf,
2636                                            btrfs_item_ptr_offset(leaf, slot),
2637                                            size);
2638
2639                         extent = btrfs_item_ptr(leaf, slot,
2640                                                 struct btrfs_file_extent_item);
2641                         comp = btrfs_file_extent_compression(leaf, extent);
2642                         type = btrfs_file_extent_type(leaf, extent);
2643                         if (type == BTRFS_FILE_EXTENT_REG ||
2644                             type == BTRFS_FILE_EXTENT_PREALLOC) {
2645                                 disko = btrfs_file_extent_disk_bytenr(leaf,
2646                                                                       extent);
2647                                 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2648                                                                  extent);
2649                                 datao = btrfs_file_extent_offset(leaf, extent);
2650                                 datal = btrfs_file_extent_num_bytes(leaf,
2651                                                                     extent);
2652                         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2653                                 /* take upper bound, may be compressed */
2654                                 datal = btrfs_file_extent_ram_bytes(leaf,
2655                                                                     extent);
2656                         }
2657                         btrfs_release_path(path);
2658
2659                         if (key.offset + datal <= off ||
2660                             key.offset >= off + len - 1)
2661                                 goto next;
2662
2663                         memcpy(&new_key, &key, sizeof(new_key));
2664                         new_key.objectid = btrfs_ino(inode);
2665                         if (off <= key.offset)
2666                                 new_key.offset = key.offset + destoff - off;
2667                         else
2668                                 new_key.offset = destoff;
2669
2670                         /*
2671                          * 1 - adjusting old extent (we may have to split it)
2672                          * 1 - add new extent
2673                          * 1 - inode update
2674                          */
2675                         trans = btrfs_start_transaction(root, 3);
2676                         if (IS_ERR(trans)) {
2677                                 ret = PTR_ERR(trans);
2678                                 goto out;
2679                         }
2680
2681                         if (type == BTRFS_FILE_EXTENT_REG ||
2682                             type == BTRFS_FILE_EXTENT_PREALLOC) {
2683                                 /*
2684                                  *    a  | --- range to clone ---|  b
2685                                  * | ------------- extent ------------- |
2686                                  */
2687
2688                                 /* substract range b */
2689                                 if (key.offset + datal > off + len)
2690                                         datal = off + len - key.offset;
2691
2692                                 /* substract range a */
2693                                 if (off > key.offset) {
2694                                         datao += off - key.offset;
2695                                         datal -= off - key.offset;
2696                                 }
2697
2698                                 ret = btrfs_drop_extents(trans, root, inode,
2699                                                          new_key.offset,
2700                                                          new_key.offset + datal,
2701                                                          1);
2702                                 if (ret) {
2703                                         btrfs_abort_transaction(trans, root,
2704                                                                 ret);
2705                                         btrfs_end_transaction(trans, root);
2706                                         goto out;
2707                                 }
2708
2709                                 ret = btrfs_insert_empty_item(trans, root, path,
2710                                                               &new_key, size);
2711                                 if (ret) {
2712                                         btrfs_abort_transaction(trans, root,
2713                                                                 ret);
2714                                         btrfs_end_transaction(trans, root);
2715                                         goto out;
2716                                 }
2717
2718                                 leaf = path->nodes[0];
2719                                 slot = path->slots[0];
2720                                 write_extent_buffer(leaf, buf,
2721                                             btrfs_item_ptr_offset(leaf, slot),
2722                                             size);
2723
2724                                 extent = btrfs_item_ptr(leaf, slot,
2725                                                 struct btrfs_file_extent_item);
2726
2727                                 /* disko == 0 means it's a hole */
2728                                 if (!disko)
2729                                         datao = 0;
2730
2731                                 btrfs_set_file_extent_offset(leaf, extent,
2732                                                              datao);
2733                                 btrfs_set_file_extent_num_bytes(leaf, extent,
2734                                                                 datal);
2735                                 if (disko) {
2736                                         inode_add_bytes(inode, datal);
2737                                         ret = btrfs_inc_extent_ref(trans, root,
2738                                                         disko, diskl, 0,
2739                                                         root->root_key.objectid,
2740                                                         btrfs_ino(inode),
2741                                                         new_key.offset - datao,
2742                                                         0);
2743                                         if (ret) {
2744                                                 btrfs_abort_transaction(trans,
2745                                                                         root,
2746                                                                         ret);
2747                                                 btrfs_end_transaction(trans,
2748                                                                       root);
2749                                                 goto out;
2750
2751                                         }
2752                                 }
2753                         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2754                                 u64 skip = 0;
2755                                 u64 trim = 0;
2756                                 if (off > key.offset) {
2757                                         skip = off - key.offset;
2758                                         new_key.offset += skip;
2759                                 }
2760
2761                                 if (key.offset + datal > off + len)
2762                                         trim = key.offset + datal - (off + len);
2763
2764                                 if (comp && (skip || trim)) {
2765                                         ret = -EINVAL;
2766                                         btrfs_end_transaction(trans, root);
2767                                         goto out;
2768                                 }
2769                                 size -= skip + trim;
2770                                 datal -= skip + trim;
2771
2772                                 ret = btrfs_drop_extents(trans, root, inode,
2773                                                          new_key.offset,
2774                                                          new_key.offset + datal,
2775                                                          1);
2776                                 if (ret) {
2777                                         btrfs_abort_transaction(trans, root,
2778                                                                 ret);
2779                                         btrfs_end_transaction(trans, root);
2780                                         goto out;
2781                                 }
2782
2783                                 ret = btrfs_insert_empty_item(trans, root, path,
2784                                                               &new_key, size);
2785                                 if (ret) {
2786                                         btrfs_abort_transaction(trans, root,
2787                                                                 ret);
2788                                         btrfs_end_transaction(trans, root);
2789                                         goto out;
2790                                 }
2791
2792                                 if (skip) {
2793                                         u32 start =
2794                                           btrfs_file_extent_calc_inline_size(0);
2795                                         memmove(buf+start, buf+start+skip,
2796                                                 datal);
2797                                 }
2798
2799                                 leaf = path->nodes[0];
2800                                 slot = path->slots[0];
2801                                 write_extent_buffer(leaf, buf,
2802                                             btrfs_item_ptr_offset(leaf, slot),
2803                                             size);
2804                                 inode_add_bytes(inode, datal);
2805                         }
2806
2807                         btrfs_mark_buffer_dirty(leaf);
2808                         btrfs_release_path(path);
2809
2810                         inode_inc_iversion(inode);
2811                         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2812
2813                         /*
2814                          * we round up to the block size at eof when
2815                          * determining which extents to clone above,
2816                          * but shouldn't round up the file size
2817                          */
2818                         endoff = new_key.offset + datal;
2819                         if (endoff > destoff+olen)
2820                                 endoff = destoff+olen;
2821                         if (endoff > inode->i_size)
2822                                 btrfs_i_size_write(inode, endoff);
2823
2824                         ret = btrfs_update_inode(trans, root, inode);
2825                         if (ret) {
2826                                 btrfs_abort_transaction(trans, root, ret);
2827                                 btrfs_end_transaction(trans, root);
2828                                 goto out;
2829                         }
2830                         ret = btrfs_end_transaction(trans, root);
2831                 }
2832 next:
2833                 btrfs_release_path(path);
2834                 key.offset++;
2835         }
2836         ret = 0;
2837 out:
2838         btrfs_release_path(path);
2839         unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2840 out_unlock:
2841         mutex_unlock(&src->i_mutex);
2842         mutex_unlock(&inode->i_mutex);
2843         vfree(buf);
2844         btrfs_free_path(path);
2845 out_fput:
2846         fdput(src_file);
2847 out_drop_write:
2848         mnt_drop_write_file(file);
2849         return ret;
2850 }
2851
2852 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2853 {
2854         struct btrfs_ioctl_clone_range_args args;
2855
2856         if (copy_from_user(&args, argp, sizeof(args)))
2857                 return -EFAULT;
2858         return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2859                                  args.src_length, args.dest_offset);
2860 }
2861
2862 /*
2863  * there are many ways the trans_start and trans_end ioctls can lead
2864  * to deadlocks.  They should only be used by applications that
2865  * basically own the machine, and have a very in depth understanding
2866  * of all the possible deadlocks and enospc problems.
2867  */
2868 static long btrfs_ioctl_trans_start(struct file *file)
2869 {
2870         struct inode *inode = file_inode(file);
2871         struct btrfs_root *root = BTRFS_I(inode)->root;
2872         struct btrfs_trans_handle *trans;
2873         int ret;
2874
2875         ret = -EPERM;
2876         if (!capable(CAP_SYS_ADMIN))
2877                 goto out;
2878
2879         ret = -EINPROGRESS;
2880         if (file->private_data)
2881                 goto out;
2882
2883         ret = -EROFS;
2884         if (btrfs_root_readonly(root))
2885                 goto out;
2886
2887         ret = mnt_want_write_file(file);
2888         if (ret)
2889                 goto out;
2890
2891         atomic_inc(&root->fs_info->open_ioctl_trans);
2892
2893         ret = -ENOMEM;
2894         trans = btrfs_start_ioctl_transaction(root);
2895         if (IS_ERR(trans))
2896                 goto out_drop;
2897
2898         file->private_data = trans;
2899         return 0;
2900
2901 out_drop:
2902         atomic_dec(&root->fs_info->open_ioctl_trans);
2903         mnt_drop_write_file(file);
2904 out:
2905         return ret;
2906 }
2907
2908 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2909 {
2910         struct inode *inode = file_inode(file);
2911         struct btrfs_root *root = BTRFS_I(inode)->root;
2912         struct btrfs_root *new_root;
2913         struct btrfs_dir_item *di;
2914         struct btrfs_trans_handle *trans;
2915         struct btrfs_path *path;
2916         struct btrfs_key location;
2917         struct btrfs_disk_key disk_key;
2918         u64 objectid = 0;
2919         u64 dir_id;
2920         int ret;
2921
2922         if (!capable(CAP_SYS_ADMIN))
2923                 return -EPERM;
2924
2925         ret = mnt_want_write_file(file);
2926         if (ret)
2927                 return ret;
2928
2929         if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2930                 ret = -EFAULT;
2931                 goto out;
2932         }
2933
2934         if (!objectid)
2935                 objectid = root->root_key.objectid;
2936
2937         location.objectid = objectid;
2938         location.type = BTRFS_ROOT_ITEM_KEY;
2939         location.offset = (u64)-1;
2940
2941         new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2942         if (IS_ERR(new_root)) {
2943                 ret = PTR_ERR(new_root);
2944                 goto out;
2945         }
2946
2947         if (btrfs_root_refs(&new_root->root_item) == 0) {
2948                 ret = -ENOENT;
2949                 goto out;
2950         }
2951
2952         path = btrfs_alloc_path();
2953         if (!path) {
2954                 ret = -ENOMEM;
2955                 goto out;
2956         }
2957         path->leave_spinning = 1;
2958
2959         trans = btrfs_start_transaction(root, 1);
2960         if (IS_ERR(trans)) {
2961                 btrfs_free_path(path);
2962                 ret = PTR_ERR(trans);
2963                 goto out;
2964         }
2965
2966         dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
2967         di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2968                                    dir_id, "default", 7, 1);
2969         if (IS_ERR_OR_NULL(di)) {
2970                 btrfs_free_path(path);
2971                 btrfs_end_transaction(trans, root);
2972                 printk(KERN_ERR "Umm, you don't have the default dir item, "
2973                        "this isn't going to work\n");
2974                 ret = -ENOENT;
2975                 goto out;
2976         }
2977
2978         btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2979         btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2980         btrfs_mark_buffer_dirty(path->nodes[0]);
2981         btrfs_free_path(path);
2982
2983         btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
2984         btrfs_end_transaction(trans, root);
2985 out:
2986         mnt_drop_write_file(file);
2987         return ret;
2988 }
2989
2990 void btrfs_get_block_group_info(struct list_head *groups_list,
2991                                 struct btrfs_ioctl_space_info *space)
2992 {
2993         struct btrfs_block_group_cache *block_group;
2994
2995         space->total_bytes = 0;
2996         space->used_bytes = 0;
2997         space->flags = 0;
2998         list_for_each_entry(block_group, groups_list, list) {
2999                 space->flags = block_group->flags;
3000                 space->total_bytes += block_group->key.offset;
3001                 space->used_bytes +=
3002                         btrfs_block_group_used(&block_group->item);
3003         }
3004 }
3005
3006 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3007 {
3008         struct btrfs_ioctl_space_args space_args;
3009         struct btrfs_ioctl_space_info space;
3010         struct btrfs_ioctl_space_info *dest;
3011         struct btrfs_ioctl_space_info *dest_orig;
3012         struct btrfs_ioctl_space_info __user *user_dest;
3013         struct btrfs_space_info *info;
3014         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3015                        BTRFS_BLOCK_GROUP_SYSTEM,
3016                        BTRFS_BLOCK_GROUP_METADATA,
3017                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3018         int num_types = 4;
3019         int alloc_size;
3020         int ret = 0;
3021         u64 slot_count = 0;
3022         int i, c;
3023
3024         if (copy_from_user(&space_args,
3025                            (struct btrfs_ioctl_space_args __user *)arg,
3026                            sizeof(space_args)))
3027                 return -EFAULT;
3028
3029         for (i = 0; i < num_types; i++) {
3030                 struct btrfs_space_info *tmp;
3031
3032                 info = NULL;
3033                 rcu_read_lock();
3034                 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3035                                         list) {
3036                         if (tmp->flags == types[i]) {
3037                                 info = tmp;
3038                                 break;
3039                         }
3040                 }
3041                 rcu_read_unlock();
3042
3043                 if (!info)
3044                         continue;
3045
3046                 down_read(&info->groups_sem);
3047                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3048                         if (!list_empty(&info->block_groups[c]))
3049                                 slot_count++;
3050                 }
3051                 up_read(&info->groups_sem);
3052         }
3053
3054         /* space_slots == 0 means they are asking for a count */
3055         if (space_args.space_slots == 0) {
3056                 space_args.total_spaces = slot_count;
3057                 goto out;
3058         }
3059
3060         slot_count = min_t(u64, space_args.space_slots, slot_count);
3061
3062         alloc_size = sizeof(*dest) * slot_count;
3063
3064         /* we generally have at most 6 or so space infos, one for each raid
3065          * level.  So, a whole page should be more than enough for everyone
3066          */
3067         if (alloc_size > PAGE_CACHE_SIZE)
3068                 return -ENOMEM;
3069
3070         space_args.total_spaces = 0;
3071         dest = kmalloc(alloc_size, GFP_NOFS);
3072         if (!dest)
3073                 return -ENOMEM;
3074         dest_orig = dest;
3075
3076         /* now we have a buffer to copy into */
3077         for (i = 0; i < num_types; i++) {
3078                 struct btrfs_space_info *tmp;
3079
3080                 if (!slot_count)
3081                         break;
3082
3083                 info = NULL;
3084                 rcu_read_lock();
3085                 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3086                                         list) {
3087                         if (tmp->flags == types[i]) {
3088                                 info = tmp;
3089                                 break;
3090                         }
3091                 }
3092                 rcu_read_unlock();
3093
3094                 if (!info)
3095                         continue;
3096                 down_read(&info->groups_sem);
3097                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3098                         if (!list_empty(&info->block_groups[c])) {
3099                                 btrfs_get_block_group_info(
3100                                         &info->block_groups[c], &space);
3101                                 memcpy(dest, &space, sizeof(space));
3102                                 dest++;
3103                                 space_args.total_spaces++;
3104                                 slot_count--;
3105                         }
3106                         if (!slot_count)
3107                                 break;
3108                 }
3109                 up_read(&info->groups_sem);
3110         }
3111
3112         user_dest = (struct btrfs_ioctl_space_info __user *)
3113                 (arg + sizeof(struct btrfs_ioctl_space_args));
3114
3115         if (copy_to_user(user_dest, dest_orig, alloc_size))
3116                 ret = -EFAULT;
3117
3118         kfree(dest_orig);
3119 out:
3120         if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3121                 ret = -EFAULT;
3122
3123         return ret;
3124 }
3125
3126 /*
3127  * there are many ways the trans_start and trans_end ioctls can lead
3128  * to deadlocks.  They should only be used by applications that
3129  * basically own the machine, and have a very in depth understanding
3130  * of all the possible deadlocks and enospc problems.
3131  */
3132 long btrfs_ioctl_trans_end(struct file *file)
3133 {
3134         struct inode *inode = file_inode(file);
3135         struct btrfs_root *root = BTRFS_I(inode)->root;
3136         struct btrfs_trans_handle *trans;
3137
3138         trans = file->private_data;
3139         if (!trans)
3140                 return -EINVAL;
3141         file->private_data = NULL;
3142
3143         btrfs_end_transaction(trans, root);
3144
3145         atomic_dec(&root->fs_info->open_ioctl_trans);
3146
3147         mnt_drop_write_file(file);
3148         return 0;
3149 }
3150
3151 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3152                                             void __user *argp)
3153 {
3154         struct btrfs_trans_handle *trans;
3155         u64 transid;
3156         int ret;
3157
3158         trans = btrfs_attach_transaction_barrier(root);
3159         if (IS_ERR(trans)) {
3160                 if (PTR_ERR(trans) != -ENOENT)
3161                         return PTR_ERR(trans);
3162
3163                 /* No running transaction, don't bother */
3164                 transid = root->fs_info->last_trans_committed;
3165                 goto out;
3166         }
3167         transid = trans->transid;
3168         ret = btrfs_commit_transaction_async(trans, root, 0);
3169         if (ret) {
3170                 btrfs_end_transaction(trans, root);
3171                 return ret;
3172         }
3173 out:
3174         if (argp)
3175                 if (copy_to_user(argp, &transid, sizeof(transid)))
3176                         return -EFAULT;
3177         return 0;
3178 }
3179
3180 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
3181                                            void __user *argp)
3182 {
3183         u64 transid;
3184
3185         if (argp) {
3186                 if (copy_from_user(&transid, argp, sizeof(transid)))
3187                         return -EFAULT;
3188         } else {
3189                 transid = 0;  /* current trans */
3190         }
3191         return btrfs_wait_for_commit(root, transid);
3192 }
3193
3194 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3195 {
3196         struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3197         struct btrfs_ioctl_scrub_args *sa;
3198         int ret;
3199
3200         if (!capable(CAP_SYS_ADMIN))
3201                 return -EPERM;
3202
3203         sa = memdup_user(arg, sizeof(*sa));
3204         if (IS_ERR(sa))
3205                 return PTR_ERR(sa);
3206
3207         if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3208                 ret = mnt_want_write_file(file);
3209                 if (ret)
3210                         goto out;
3211         }
3212
3213         ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
3214                               &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3215                               0);
3216
3217         if (copy_to_user(arg, sa, sizeof(*sa)))
3218                 ret = -EFAULT;
3219
3220         if (!(sa->flags & BTRFS_SCRUB_READONLY))
3221                 mnt_drop_write_file(file);
3222 out:
3223         kfree(sa);
3224         return ret;
3225 }
3226
3227 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3228 {
3229         if (!capable(CAP_SYS_ADMIN))
3230                 return -EPERM;
3231
3232         return btrfs_scrub_cancel(root->fs_info);
3233 }
3234
3235 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3236                                        void __user *arg)
3237 {
3238         struct btrfs_ioctl_scrub_args *sa;
3239         int ret;
3240
3241         if (!capable(CAP_SYS_ADMIN))
3242                 return -EPERM;
3243
3244         sa = memdup_user(arg, sizeof(*sa));
3245         if (IS_ERR(sa))
3246                 return PTR_ERR(sa);
3247
3248         ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3249
3250         if (copy_to_user(arg, sa, sizeof(*sa)))
3251                 ret = -EFAULT;
3252
3253         kfree(sa);
3254         return ret;
3255 }
3256
3257 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3258                                       void __user *arg)
3259 {
3260         struct btrfs_ioctl_get_dev_stats *sa;
3261         int ret;
3262
3263         sa = memdup_user(arg, sizeof(*sa));
3264         if (IS_ERR(sa))
3265                 return PTR_ERR(sa);
3266
3267         if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3268                 kfree(sa);
3269                 return -EPERM;
3270         }
3271
3272         ret = btrfs_get_dev_stats(root, sa);
3273
3274         if (copy_to_user(arg, sa, sizeof(*sa)))
3275                 ret = -EFAULT;
3276
3277         kfree(sa);
3278         return ret;
3279 }
3280
3281 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
3282 {
3283         struct btrfs_ioctl_dev_replace_args *p;
3284         int ret;
3285
3286         if (!capable(CAP_SYS_ADMIN))
3287                 return -EPERM;
3288
3289         p = memdup_user(arg, sizeof(*p));
3290         if (IS_ERR(p))
3291                 return PTR_ERR(p);
3292
3293         switch (p->cmd) {
3294         case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3295                 if (atomic_xchg(
3296                         &root->fs_info->mutually_exclusive_operation_running,
3297                         1)) {
3298                         pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3299                         ret = -EINPROGRESS;
3300                 } else {
3301                         ret = btrfs_dev_replace_start(root, p);
3302                         atomic_set(
3303                          &root->fs_info->mutually_exclusive_operation_running,
3304                          0);
3305                 }
3306                 break;
3307         case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3308                 btrfs_dev_replace_status(root->fs_info, p);
3309                 ret = 0;
3310                 break;
3311         case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3312                 ret = btrfs_dev_replace_cancel(root->fs_info, p);
3313                 break;
3314         default:
3315                 ret = -EINVAL;
3316                 break;
3317         }
3318
3319         if (copy_to_user(arg, p, sizeof(*p)))
3320                 ret = -EFAULT;
3321
3322         kfree(p);
3323         return ret;
3324 }
3325
3326 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3327 {
3328         int ret = 0;
3329         int i;
3330         u64 rel_ptr;
3331         int size;
3332         struct btrfs_ioctl_ino_path_args *ipa = NULL;
3333         struct inode_fs_paths *ipath = NULL;
3334         struct btrfs_path *path;
3335
3336         if (!capable(CAP_DAC_READ_SEARCH))
3337                 return -EPERM;
3338
3339         path = btrfs_alloc_path();
3340         if (!path) {
3341                 ret = -ENOMEM;
3342                 goto out;
3343         }
3344
3345         ipa = memdup_user(arg, sizeof(*ipa));
3346         if (IS_ERR(ipa)) {
3347                 ret = PTR_ERR(ipa);
3348                 ipa = NULL;
3349                 goto out;
3350         }
3351
3352         size = min_t(u32, ipa->size, 4096);
3353         ipath = init_ipath(size, root, path);
3354         if (IS_ERR(ipath)) {
3355                 ret = PTR_ERR(ipath);
3356                 ipath = NULL;
3357                 goto out;
3358         }
3359
3360         ret = paths_from_inode(ipa->inum, ipath);
3361         if (ret < 0)
3362                 goto out;
3363
3364         for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3365                 rel_ptr = ipath->fspath->val[i] -
3366                           (u64)(unsigned long)ipath->fspath->val;
3367                 ipath->fspath->val[i] = rel_ptr;
3368         }
3369
3370         ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3371                            (void *)(unsigned long)ipath->fspath, size);
3372         if (ret) {
3373                 ret = -EFAULT;
3374                 goto out;
3375         }
3376
3377 out:
3378         btrfs_free_path(path);
3379         free_ipath(ipath);
3380         kfree(ipa);
3381
3382         return ret;
3383 }
3384
3385 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3386 {
3387         struct btrfs_data_container *inodes = ctx;
3388         const size_t c = 3 * sizeof(u64);
3389
3390         if (inodes->bytes_left >= c) {
3391                 inodes->bytes_left -= c;
3392                 inodes->val[inodes->elem_cnt] = inum;
3393                 inodes->val[inodes->elem_cnt + 1] = offset;
3394                 inodes->val[inodes->elem_cnt + 2] = root;
3395                 inodes->elem_cnt += 3;
3396         } else {
3397                 inodes->bytes_missing += c - inodes->bytes_left;
3398                 inodes->bytes_left = 0;
3399                 inodes->elem_missed += 3;
3400         }
3401
3402         return 0;
3403 }
3404
3405 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3406                                         void __user *arg)
3407 {
3408         int ret = 0;
3409         int size;
3410         struct btrfs_ioctl_logical_ino_args *loi;
3411         struct btrfs_data_container *inodes = NULL;
3412         struct btrfs_path *path = NULL;
3413
3414         if (!capable(CAP_SYS_ADMIN))
3415                 return -EPERM;
3416
3417         loi = memdup_user(arg, sizeof(*loi));
3418         if (IS_ERR(loi)) {
3419                 ret = PTR_ERR(loi);
3420                 loi = NULL;
3421                 goto out;
3422         }
3423
3424         path = btrfs_alloc_path();
3425         if (!path) {
3426                 ret = -ENOMEM;
3427                 goto out;
3428         }
3429
3430         size = min_t(u32, loi->size, 64 * 1024);
3431         inodes = init_data_container(size);
3432         if (IS_ERR(inodes)) {
3433                 ret = PTR_ERR(inodes);
3434                 inodes = NULL;
3435                 goto out;
3436         }
3437
3438         ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
3439                                           build_ino_list, inodes);
3440         if (ret == -EINVAL)
3441                 ret = -ENOENT;
3442         if (ret < 0)
3443                 goto out;
3444
3445         ret = copy_to_user((void *)(unsigned long)loi->inodes,
3446                            (void *)(unsigned long)inodes, size);
3447         if (ret)
3448                 ret = -EFAULT;
3449
3450 out:
3451         btrfs_free_path(path);
3452         vfree(inodes);
3453         kfree(loi);
3454
3455         return ret;
3456 }
3457
3458 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3459                                struct btrfs_ioctl_balance_args *bargs)
3460 {
3461         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3462
3463         bargs->flags = bctl->flags;
3464
3465         if (atomic_read(&fs_info->balance_running))
3466                 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3467         if (atomic_read(&fs_info->balance_pause_req))
3468                 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3469         if (atomic_read(&fs_info->balance_cancel_req))
3470                 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3471
3472         memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3473         memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3474         memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3475
3476         if (lock) {
3477                 spin_lock(&fs_info->balance_lock);
3478                 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3479                 spin_unlock(&fs_info->balance_lock);
3480         } else {
3481                 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3482         }
3483 }
3484
3485 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3486 {
3487         struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3488         struct btrfs_fs_info *fs_info = root->fs_info;
3489         struct btrfs_ioctl_balance_args *bargs;
3490         struct btrfs_balance_control *bctl;
3491         bool need_unlock; /* for mut. excl. ops lock */
3492         int ret;
3493
3494         if (!capable(CAP_SYS_ADMIN))
3495                 return -EPERM;
3496
3497         ret = mnt_want_write_file(file);
3498         if (ret)
3499                 return ret;
3500
3501 again:
3502         if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
3503                 mutex_lock(&fs_info->volume_mutex);
3504                 mutex_lock(&fs_info->balance_mutex);
3505                 need_unlock = true;
3506                 goto locked;
3507         }
3508
3509         /*
3510          * mut. excl. ops lock is locked.  Three possibilites:
3511          *   (1) some other op is running
3512          *   (2) balance is running
3513          *   (3) balance is paused -- special case (think resume)
3514          */
3515         mutex_lock(&fs_info->balance_mutex);
3516         if (fs_info->balance_ctl) {
3517                 /* this is either (2) or (3) */
3518                 if (!atomic_read(&fs_info->balance_running)) {
3519                         mutex_unlock(&fs_info->balance_mutex);
3520                         if (!mutex_trylock(&fs_info->volume_mutex))
3521                                 goto again;
3522                         mutex_lock(&fs_info->balance_mutex);
3523
3524                         if (fs_info->balance_ctl &&
3525                             !atomic_read(&fs_info->balance_running)) {
3526                                 /* this is (3) */
3527                                 need_unlock = false;
3528                                 goto locked;
3529                         }
3530
3531                         mutex_unlock(&fs_info->balance_mutex);
3532                         mutex_unlock(&fs_info->volume_mutex);
3533                         goto again;
3534                 } else {
3535                         /* this is (2) */
3536                         mutex_unlock(&fs_info->balance_mutex);
3537                         ret = -EINPROGRESS;
3538                         goto out;
3539                 }
3540         } else {
3541                 /* this is (1) */
3542                 mutex_unlock(&fs_info->balance_mutex);
3543                 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3544                 ret = -EINVAL;
3545                 goto out;
3546         }
3547
3548 locked:
3549         BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
3550
3551         if (arg) {
3552                 bargs = memdup_user(arg, sizeof(*bargs));
3553                 if (IS_ERR(bargs)) {
3554                         ret = PTR_ERR(bargs);
3555                         goto out_unlock;
3556                 }
3557
3558                 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3559                         if (!fs_info->balance_ctl) {
3560                                 ret = -ENOTCONN;
3561                                 goto out_bargs;
3562                         }
3563
3564                         bctl = fs_info->balance_ctl;
3565                         spin_lock(&fs_info->balance_lock);
3566                         bctl->flags |= BTRFS_BALANCE_RESUME;
3567                         spin_unlock(&fs_info->balance_lock);
3568
3569                         goto do_balance;
3570                 }
3571         } else {
3572                 bargs = NULL;
3573         }
3574
3575         if (fs_info->balance_ctl) {
3576                 ret = -EINPROGRESS;
3577                 goto out_bargs;
3578         }
3579
3580         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3581         if (!bctl) {
3582                 ret = -ENOMEM;
3583                 goto out_bargs;
3584         }
3585
3586         bctl->fs_info = fs_info;
3587         if (arg) {
3588                 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3589                 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3590                 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3591
3592                 bctl->flags = bargs->flags;
3593         } else {
3594                 /* balance everything - no filters */
3595                 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3596         }
3597
3598 do_balance:
3599         /*
3600          * Ownership of bctl and mutually_exclusive_operation_running
3601          * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
3602          * or, if restriper was paused all the way until unmount, in
3603          * free_fs_info.  mutually_exclusive_operation_running is
3604          * cleared in __cancel_balance.
3605          */
3606         need_unlock = false;
3607
3608         ret = btrfs_balance(bctl, bargs);
3609
3610         if (arg) {
3611                 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3612                         ret = -EFAULT;
3613         }
3614
3615 out_bargs:
3616         kfree(bargs);
3617 out_unlock:
3618         mutex_unlock(&fs_info->balance_mutex);
3619         mutex_unlock(&fs_info->volume_mutex);
3620         if (need_unlock)
3621                 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3622 out:
3623         mnt_drop_write_file(file);
3624         return ret;
3625 }
3626
3627 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
3628 {
3629         if (!capable(CAP_SYS_ADMIN))
3630                 return -EPERM;
3631
3632         switch (cmd) {
3633         case BTRFS_BALANCE_CTL_PAUSE:
3634                 return btrfs_pause_balance(root->fs_info);
3635         case BTRFS_BALANCE_CTL_CANCEL:
3636                 return btrfs_cancel_balance(root->fs_info);
3637         }
3638
3639         return -EINVAL;
3640 }
3641
3642 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
3643                                          void __user *arg)
3644 {
3645         struct btrfs_fs_info *fs_info = root->fs_info;
3646         struct btrfs_ioctl_balance_args *bargs;
3647         int ret = 0;
3648
3649         if (!capable(CAP_SYS_ADMIN))
3650                 return -EPERM;
3651
3652         mutex_lock(&fs_info->balance_mutex);
3653         if (!fs_info->balance_ctl) {
3654                 ret = -ENOTCONN;
3655                 goto out;
3656         }
3657
3658         bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
3659         if (!bargs) {
3660                 ret = -ENOMEM;
3661                 goto out;
3662         }
3663
3664         update_ioctl_balance_args(fs_info, 1, bargs);
3665
3666         if (copy_to_user(arg, bargs, sizeof(*bargs)))
3667                 ret = -EFAULT;
3668
3669         kfree(bargs);
3670 out:
3671         mutex_unlock(&fs_info->balance_mutex);
3672         return ret;
3673 }
3674
3675 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3676 {
3677         struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3678         struct btrfs_ioctl_quota_ctl_args *sa;
3679         struct btrfs_trans_handle *trans = NULL;
3680         int ret;
3681         int err;
3682
3683         if (!capable(CAP_SYS_ADMIN))
3684                 return -EPERM;
3685
3686         ret = mnt_want_write_file(file);
3687         if (ret)
3688                 return ret;
3689
3690         sa = memdup_user(arg, sizeof(*sa));
3691         if (IS_ERR(sa)) {
3692                 ret = PTR_ERR(sa);
3693                 goto drop_write;
3694         }
3695
3696         if (sa->cmd != BTRFS_QUOTA_CTL_RESCAN) {
3697                 trans = btrfs_start_transaction(root, 2);
3698                 if (IS_ERR(trans)) {
3699                         ret = PTR_ERR(trans);
3700                         goto out;
3701                 }
3702         }
3703
3704         switch (sa->cmd) {
3705         case BTRFS_QUOTA_CTL_ENABLE:
3706                 ret = btrfs_quota_enable(trans, root->fs_info);
3707                 break;
3708         case BTRFS_QUOTA_CTL_DISABLE:
3709                 ret = btrfs_quota_disable(trans, root->fs_info);
3710                 break;
3711         case BTRFS_QUOTA_CTL_RESCAN:
3712                 ret = btrfs_quota_rescan(root->fs_info);
3713                 break;
3714         default:
3715                 ret = -EINVAL;
3716                 break;
3717         }
3718
3719         if (copy_to_user(arg, sa, sizeof(*sa)))
3720                 ret = -EFAULT;
3721
3722         if (trans) {
3723                 err = btrfs_commit_transaction(trans, root);
3724                 if (err && !ret)
3725                         ret = err;
3726         }
3727 out:
3728         kfree(sa);
3729 drop_write:
3730         mnt_drop_write_file(file);
3731         return ret;
3732 }
3733
3734 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3735 {
3736         struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3737         struct btrfs_ioctl_qgroup_assign_args *sa;
3738         struct btrfs_trans_handle *trans;
3739         int ret;
3740         int err;
3741
3742         if (!capable(CAP_SYS_ADMIN))
3743                 return -EPERM;
3744
3745         ret = mnt_want_write_file(file);
3746         if (ret)
3747                 return ret;
3748
3749         sa = memdup_user(arg, sizeof(*sa));
3750         if (IS_ERR(sa)) {
3751                 ret = PTR_ERR(sa);
3752                 goto drop_write;
3753         }
3754
3755         trans = btrfs_join_transaction(root);
3756         if (IS_ERR(trans)) {
3757                 ret = PTR_ERR(trans);
3758                 goto out;
3759         }
3760
3761         /* FIXME: check if the IDs really exist */
3762         if (sa->assign) {
3763                 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
3764                                                 sa->src, sa->dst);
3765         } else {
3766                 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
3767                                                 sa->src, sa->dst);
3768         }
3769
3770         err = btrfs_end_transaction(trans, root);
3771         if (err && !ret)
3772                 ret = err;
3773
3774 out:
3775         kfree(sa);
3776 drop_write:
3777         mnt_drop_write_file(file);
3778         return ret;
3779 }
3780
3781 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3782 {
3783         struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3784         struct btrfs_ioctl_qgroup_create_args *sa;
3785         struct btrfs_trans_handle *trans;
3786         int ret;
3787         int err;
3788
3789         if (!capable(CAP_SYS_ADMIN))
3790                 return -EPERM;
3791
3792         ret = mnt_want_write_file(file);
3793         if (ret)
3794                 return ret;
3795
3796         sa = memdup_user(arg, sizeof(*sa));
3797         if (IS_ERR(sa)) {
3798                 ret = PTR_ERR(sa);
3799                 goto drop_write;
3800         }
3801
3802         if (!sa->qgroupid) {
3803                 ret = -EINVAL;
3804                 goto out;
3805         }
3806
3807         trans = btrfs_join_transaction(root);
3808         if (IS_ERR(trans)) {
3809                 ret = PTR_ERR(trans);
3810                 goto out;
3811         }
3812
3813         /* FIXME: check if the IDs really exist */
3814         if (sa->create) {
3815                 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
3816                                           NULL);
3817         } else {
3818                 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
3819         }
3820
3821         err = btrfs_end_transaction(trans, root);
3822         if (err && !ret)
3823                 ret = err;
3824
3825 out:
3826         kfree(sa);
3827 drop_write:
3828         mnt_drop_write_file(file);
3829         return ret;
3830 }
3831
3832 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3833 {
3834         struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3835         struct btrfs_ioctl_qgroup_limit_args *sa;
3836         struct btrfs_trans_handle *trans;
3837         int ret;
3838         int err;
3839         u64 qgroupid;
3840
3841         if (!capable(CAP_SYS_ADMIN))
3842                 return -EPERM;
3843
3844         ret = mnt_want_write_file(file);
3845         if (ret)
3846                 return ret;
3847
3848         sa = memdup_user(arg, sizeof(*sa));
3849         if (IS_ERR(sa)) {
3850                 ret = PTR_ERR(sa);
3851                 goto drop_write;
3852         }
3853
3854         trans = btrfs_join_transaction(root);
3855         if (IS_ERR(trans)) {
3856                 ret = PTR_ERR(trans);
3857                 goto out;
3858         }
3859
3860         qgroupid = sa->qgroupid;
3861         if (!qgroupid) {
3862                 /* take the current subvol as qgroup */
3863                 qgroupid = root->root_key.objectid;
3864         }
3865
3866         /* FIXME: check if the IDs really exist */
3867         ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
3868
3869         err = btrfs_end_transaction(trans, root);
3870         if (err && !ret)
3871                 ret = err;
3872
3873 out:
3874         kfree(sa);
3875 drop_write:
3876         mnt_drop_write_file(file);
3877         return ret;
3878 }
3879
3880 static long btrfs_ioctl_set_received_subvol(struct file *file,
3881                                             void __user *arg)
3882 {
3883         struct btrfs_ioctl_received_subvol_args *sa = NULL;
3884         struct inode *inode = file_inode(file);
3885         struct btrfs_root *root = BTRFS_I(inode)->root;
3886         struct btrfs_root_item *root_item = &root->root_item;
3887         struct btrfs_trans_handle *trans;
3888         struct timespec ct = CURRENT_TIME;
3889         int ret = 0;
3890
3891         ret = mnt_want_write_file(file);
3892         if (ret < 0)
3893                 return ret;
3894
3895         down_write(&root->fs_info->subvol_sem);
3896
3897         if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
3898                 ret = -EINVAL;
3899                 goto out;
3900         }
3901
3902         if (btrfs_root_readonly(root)) {
3903                 ret = -EROFS;
3904                 goto out;
3905         }
3906
3907         if (!inode_owner_or_capable(inode)) {
3908                 ret = -EACCES;
3909                 goto out;
3910         }
3911
3912         sa = memdup_user(arg, sizeof(*sa));
3913         if (IS_ERR(sa)) {
3914                 ret = PTR_ERR(sa);
3915                 sa = NULL;
3916                 goto out;
3917         }
3918
3919         trans = btrfs_start_transaction(root, 1);
3920         if (IS_ERR(trans)) {
3921                 ret = PTR_ERR(trans);
3922                 trans = NULL;
3923                 goto out;
3924         }
3925
3926         sa->rtransid = trans->transid;
3927         sa->rtime.sec = ct.tv_sec;
3928         sa->rtime.nsec = ct.tv_nsec;
3929
3930         memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
3931         btrfs_set_root_stransid(root_item, sa->stransid);
3932         btrfs_set_root_rtransid(root_item, sa->rtransid);
3933         root_item->stime.sec = cpu_to_le64(sa->stime.sec);
3934         root_item->stime.nsec = cpu_to_le32(sa->stime.nsec);
3935         root_item->rtime.sec = cpu_to_le64(sa->rtime.sec);
3936         root_item->rtime.nsec = cpu_to_le32(sa->rtime.nsec);
3937
3938         ret = btrfs_update_root(trans, root->fs_info->tree_root,
3939                                 &root->root_key, &root->root_item);
3940         if (ret < 0) {
3941                 btrfs_end_transaction(trans, root);
3942                 trans = NULL;
3943                 goto out;
3944         } else {
3945                 ret = btrfs_commit_transaction(trans, root);
3946                 if (ret < 0)
3947                         goto out;
3948         }
3949
3950         ret = copy_to_user(arg, sa, sizeof(*sa));
3951         if (ret)
3952                 ret = -EFAULT;
3953
3954 out:
3955         kfree(sa);
3956         up_write(&root->fs_info->subvol_sem);
3957         mnt_drop_write_file(file);
3958         return ret;
3959 }
3960
3961 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
3962 {
3963         struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3964         const char *label = root->fs_info->super_copy->label;
3965         size_t len = strnlen(label, BTRFS_LABEL_SIZE);
3966         int ret;
3967
3968         if (len == BTRFS_LABEL_SIZE) {
3969                 pr_warn("btrfs: label is too long, return the first %zu bytes\n",
3970                         --len);
3971         }
3972
3973         mutex_lock(&root->fs_info->volume_mutex);
3974         ret = copy_to_user(arg, label, len);
3975         mutex_unlock(&root->fs_info->volume_mutex);
3976
3977         return ret ? -EFAULT : 0;
3978 }
3979
3980 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
3981 {
3982         struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3983         struct btrfs_super_block *super_block = root->fs_info->super_copy;
3984         struct btrfs_trans_handle *trans;
3985         char label[BTRFS_LABEL_SIZE];
3986         int ret;
3987
3988         if (!capable(CAP_SYS_ADMIN))
3989                 return -EPERM;
3990
3991         if (copy_from_user(label, arg, sizeof(label)))
3992                 return -EFAULT;
3993
3994         if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
3995                 pr_err("btrfs: unable to set label with more than %d bytes\n",
3996                        BTRFS_LABEL_SIZE - 1);
3997                 return -EINVAL;
3998         }
3999
4000         ret = mnt_want_write_file(file);
4001         if (ret)
4002                 return ret;
4003
4004         mutex_lock(&root->fs_info->volume_mutex);
4005         trans = btrfs_start_transaction(root, 0);
4006         if (IS_ERR(trans)) {
4007                 ret = PTR_ERR(trans);
4008                 goto out_unlock;
4009         }
4010
4011         strcpy(super_block->label, label);
4012         ret = btrfs_end_transaction(trans, root);
4013
4014 out_unlock:
4015         mutex_unlock(&root->fs_info->volume_mutex);
4016         mnt_drop_write_file(file);
4017         return ret;
4018 }
4019
4020 long btrfs_ioctl(struct file *file, unsigned int
4021                 cmd, unsigned long arg)
4022 {
4023         struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4024         void __user *argp = (void __user *)arg;
4025
4026         switch (cmd) {
4027         case FS_IOC_GETFLAGS:
4028                 return btrfs_ioctl_getflags(file, argp);
4029         case FS_IOC_SETFLAGS:
4030                 return btrfs_ioctl_setflags(file, argp);
4031         case FS_IOC_GETVERSION:
4032                 return btrfs_ioctl_getversion(file, argp);
4033         case FITRIM:
4034                 return btrfs_ioctl_fitrim(file, argp);
4035         case BTRFS_IOC_SNAP_CREATE:
4036                 return btrfs_ioctl_snap_create(file, argp, 0);
4037         case BTRFS_IOC_SNAP_CREATE_V2:
4038                 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4039         case BTRFS_IOC_SUBVOL_CREATE:
4040                 return btrfs_ioctl_snap_create(file, argp, 1);
4041         case BTRFS_IOC_SUBVOL_CREATE_V2:
4042                 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4043         case BTRFS_IOC_SNAP_DESTROY:
4044                 return btrfs_ioctl_snap_destroy(file, argp);
4045         case BTRFS_IOC_SUBVOL_GETFLAGS:
4046                 return btrfs_ioctl_subvol_getflags(file, argp);
4047         case BTRFS_IOC_SUBVOL_SETFLAGS:
4048                 return btrfs_ioctl_subvol_setflags(file, argp);
4049         case BTRFS_IOC_DEFAULT_SUBVOL:
4050                 return btrfs_ioctl_default_subvol(file, argp);
4051         case BTRFS_IOC_DEFRAG:
4052                 return btrfs_ioctl_defrag(file, NULL);
4053         case BTRFS_IOC_DEFRAG_RANGE:
4054                 return btrfs_ioctl_defrag(file, argp);
4055         case BTRFS_IOC_RESIZE:
4056                 return btrfs_ioctl_resize(file, argp);
4057         case BTRFS_IOC_ADD_DEV:
4058                 return btrfs_ioctl_add_dev(root, argp);
4059         case BTRFS_IOC_RM_DEV:
4060                 return btrfs_ioctl_rm_dev(file, argp);
4061         case BTRFS_IOC_FS_INFO:
4062                 return btrfs_ioctl_fs_info(root, argp);
4063         case BTRFS_IOC_DEV_INFO:
4064                 return btrfs_ioctl_dev_info(root, argp);
4065         case BTRFS_IOC_BALANCE:
4066                 return btrfs_ioctl_balance(file, NULL);
4067         case BTRFS_IOC_CLONE:
4068                 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
4069         case BTRFS_IOC_CLONE_RANGE:
4070                 return btrfs_ioctl_clone_range(file, argp);
4071         case BTRFS_IOC_TRANS_START:
4072                 return btrfs_ioctl_trans_start(file);
4073         case BTRFS_IOC_TRANS_END:
4074                 return btrfs_ioctl_trans_end(file);
4075         case BTRFS_IOC_TREE_SEARCH:
4076                 return btrfs_ioctl_tree_search(file, argp);
4077         case BTRFS_IOC_INO_LOOKUP:
4078                 return btrfs_ioctl_ino_lookup(file, argp);
4079         case BTRFS_IOC_INO_PATHS:
4080                 return btrfs_ioctl_ino_to_path(root, argp);
4081         case BTRFS_IOC_LOGICAL_INO:
4082                 return btrfs_ioctl_logical_to_ino(root, argp);
4083         case BTRFS_IOC_SPACE_INFO:
4084                 return btrfs_ioctl_space_info(root, argp);
4085         case BTRFS_IOC_SYNC:
4086                 btrfs_sync_fs(file->f_dentry->d_sb, 1);
4087                 return 0;
4088         case BTRFS_IOC_START_SYNC:
4089                 return btrfs_ioctl_start_sync(root, argp);
4090         case BTRFS_IOC_WAIT_SYNC:
4091                 return btrfs_ioctl_wait_sync(root, argp);
4092         case BTRFS_IOC_SCRUB:
4093                 return btrfs_ioctl_scrub(file, argp);
4094         case BTRFS_IOC_SCRUB_CANCEL:
4095                 return btrfs_ioctl_scrub_cancel(root, argp);
4096         case BTRFS_IOC_SCRUB_PROGRESS:
4097                 return btrfs_ioctl_scrub_progress(root, argp);
4098         case BTRFS_IOC_BALANCE_V2:
4099                 return btrfs_ioctl_balance(file, argp);
4100         case BTRFS_IOC_BALANCE_CTL:
4101                 return btrfs_ioctl_balance_ctl(root, arg);
4102         case BTRFS_IOC_BALANCE_PROGRESS:
4103                 return btrfs_ioctl_balance_progress(root, argp);
4104         case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4105                 return btrfs_ioctl_set_received_subvol(file, argp);
4106         case BTRFS_IOC_SEND:
4107                 return btrfs_ioctl_send(file, argp);
4108         case BTRFS_IOC_GET_DEV_STATS:
4109                 return btrfs_ioctl_get_dev_stats(root, argp);
4110         case BTRFS_IOC_QUOTA_CTL:
4111                 return btrfs_ioctl_quota_ctl(file, argp);
4112         case BTRFS_IOC_QGROUP_ASSIGN:
4113                 return btrfs_ioctl_qgroup_assign(file, argp);
4114         case BTRFS_IOC_QGROUP_CREATE:
4115                 return btrfs_ioctl_qgroup_create(file, argp);
4116         case BTRFS_IOC_QGROUP_LIMIT:
4117                 return btrfs_ioctl_qgroup_limit(file, argp);
4118         case BTRFS_IOC_DEV_REPLACE:
4119                 return btrfs_ioctl_dev_replace(root, argp);
4120         case BTRFS_IOC_GET_FSLABEL:
4121                 return btrfs_ioctl_get_fslabel(file, argp);
4122         case BTRFS_IOC_SET_FSLABEL:
4123                 return btrfs_ioctl_set_fslabel(file, argp);
4124         }
4125
4126         return -ENOTTY;
4127 }