1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
9 #include <linux/file.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/migrate.h>
32 #include <linux/sched/mm.h>
33 #include <linux/iomap.h>
34 #include <asm/unaligned.h>
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "ordered-data.h"
45 #include "compression.h"
47 #include "free-space-cache.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
55 struct btrfs_iget_args {
57 struct btrfs_root *root;
60 struct btrfs_dio_data {
64 struct extent_changeset *data_reserved;
67 static const struct inode_operations btrfs_dir_inode_operations;
68 static const struct inode_operations btrfs_symlink_inode_operations;
69 static const struct inode_operations btrfs_special_inode_operations;
70 static const struct inode_operations btrfs_file_inode_operations;
71 static const struct address_space_operations btrfs_aops;
72 static const struct file_operations btrfs_dir_file_operations;
74 static struct kmem_cache *btrfs_inode_cachep;
75 struct kmem_cache *btrfs_trans_handle_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78 struct kmem_cache *btrfs_free_space_bitmap_cachep;
80 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
81 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
83 static noinline int cow_file_range(struct btrfs_inode *inode,
84 struct page *locked_page,
85 u64 start, u64 end, int *page_started,
86 unsigned long *nr_written, int unlock);
87 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
88 u64 len, u64 orig_start, u64 block_start,
89 u64 block_len, u64 orig_block_len,
90 u64 ram_bytes, int compress_type,
93 static void __endio_write_update_ordered(struct btrfs_inode *inode,
94 const u64 offset, const u64 bytes,
98 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
100 * ilock_flags can have the following bit set:
102 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
103 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
106 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
108 if (ilock_flags & BTRFS_ILOCK_SHARED) {
109 if (ilock_flags & BTRFS_ILOCK_TRY) {
110 if (!inode_trylock_shared(inode))
115 inode_lock_shared(inode);
117 if (ilock_flags & BTRFS_ILOCK_TRY) {
118 if (!inode_trylock(inode))
129 * btrfs_inode_unlock - unock inode i_rwsem
131 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
132 * to decide whether the lock acquired is shared or exclusive.
134 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
136 if (ilock_flags & BTRFS_ILOCK_SHARED)
137 inode_unlock_shared(inode);
143 * Cleanup all submitted ordered extents in specified range to handle errors
144 * from the btrfs_run_delalloc_range() callback.
146 * NOTE: caller must ensure that when an error happens, it can not call
147 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
148 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
149 * to be released, which we want to happen only when finishing the ordered
150 * extent (btrfs_finish_ordered_io()).
152 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
153 struct page *locked_page,
154 u64 offset, u64 bytes)
156 unsigned long index = offset >> PAGE_SHIFT;
157 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
158 u64 page_start = page_offset(locked_page);
159 u64 page_end = page_start + PAGE_SIZE - 1;
163 while (index <= end_index) {
164 page = find_get_page(inode->vfs_inode.i_mapping, index);
168 ClearPagePrivate2(page);
173 * In case this page belongs to the delalloc range being instantiated
174 * then skip it, since the first page of a range is going to be
175 * properly cleaned up by the caller of run_delalloc_range
177 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
182 return __endio_write_update_ordered(inode, offset, bytes, false);
185 static int btrfs_dirty_inode(struct inode *inode);
187 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
188 struct inode *inode, struct inode *dir,
189 const struct qstr *qstr)
193 err = btrfs_init_acl(trans, inode, dir);
195 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
200 * this does all the hard work for inserting an inline extent into
201 * the btree. The caller should have done a btrfs_drop_extents so that
202 * no overlapping inline items exist in the btree
204 static int insert_inline_extent(struct btrfs_trans_handle *trans,
205 struct btrfs_path *path, bool extent_inserted,
206 struct btrfs_root *root, struct inode *inode,
207 u64 start, size_t size, size_t compressed_size,
209 struct page **compressed_pages)
211 struct extent_buffer *leaf;
212 struct page *page = NULL;
215 struct btrfs_file_extent_item *ei;
217 size_t cur_size = size;
218 unsigned long offset;
220 ASSERT((compressed_size > 0 && compressed_pages) ||
221 (compressed_size == 0 && !compressed_pages));
223 if (compressed_size && compressed_pages)
224 cur_size = compressed_size;
226 if (!extent_inserted) {
227 struct btrfs_key key;
230 key.objectid = btrfs_ino(BTRFS_I(inode));
232 key.type = BTRFS_EXTENT_DATA_KEY;
234 datasize = btrfs_file_extent_calc_inline_size(cur_size);
235 ret = btrfs_insert_empty_item(trans, root, path, &key,
240 leaf = path->nodes[0];
241 ei = btrfs_item_ptr(leaf, path->slots[0],
242 struct btrfs_file_extent_item);
243 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
244 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
245 btrfs_set_file_extent_encryption(leaf, ei, 0);
246 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
247 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
248 ptr = btrfs_file_extent_inline_start(ei);
250 if (compress_type != BTRFS_COMPRESS_NONE) {
253 while (compressed_size > 0) {
254 cpage = compressed_pages[i];
255 cur_size = min_t(unsigned long, compressed_size,
258 kaddr = kmap_atomic(cpage);
259 write_extent_buffer(leaf, kaddr, ptr, cur_size);
260 kunmap_atomic(kaddr);
264 compressed_size -= cur_size;
266 btrfs_set_file_extent_compression(leaf, ei,
269 page = find_get_page(inode->i_mapping,
270 start >> PAGE_SHIFT);
271 btrfs_set_file_extent_compression(leaf, ei, 0);
272 kaddr = kmap_atomic(page);
273 offset = offset_in_page(start);
274 write_extent_buffer(leaf, kaddr + offset, ptr, size);
275 kunmap_atomic(kaddr);
278 btrfs_mark_buffer_dirty(leaf);
279 btrfs_release_path(path);
282 * We align size to sectorsize for inline extents just for simplicity
285 size = ALIGN(size, root->fs_info->sectorsize);
286 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
291 * we're an inline extent, so nobody can
292 * extend the file past i_size without locking
293 * a page we already have locked.
295 * We must do any isize and inode updates
296 * before we unlock the pages. Otherwise we
297 * could end up racing with unlink.
299 BTRFS_I(inode)->disk_i_size = inode->i_size;
306 * conditionally insert an inline extent into the file. This
307 * does the checks required to make sure the data is small enough
308 * to fit as an inline extent.
310 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
311 u64 end, size_t compressed_size,
313 struct page **compressed_pages)
315 struct btrfs_drop_extents_args drop_args = { 0 };
316 struct btrfs_root *root = inode->root;
317 struct btrfs_fs_info *fs_info = root->fs_info;
318 struct btrfs_trans_handle *trans;
319 u64 isize = i_size_read(&inode->vfs_inode);
320 u64 actual_end = min(end + 1, isize);
321 u64 inline_len = actual_end - start;
322 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
323 u64 data_len = inline_len;
325 struct btrfs_path *path;
328 data_len = compressed_size;
331 actual_end > fs_info->sectorsize ||
332 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
334 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
336 data_len > fs_info->max_inline) {
340 path = btrfs_alloc_path();
344 trans = btrfs_join_transaction(root);
346 btrfs_free_path(path);
347 return PTR_ERR(trans);
349 trans->block_rsv = &inode->block_rsv;
351 drop_args.path = path;
352 drop_args.start = start;
353 drop_args.end = aligned_end;
354 drop_args.drop_cache = true;
355 drop_args.replace_extent = true;
357 if (compressed_size && compressed_pages)
358 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
361 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
364 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
366 btrfs_abort_transaction(trans, ret);
370 if (isize > actual_end)
371 inline_len = min_t(u64, isize, actual_end);
372 ret = insert_inline_extent(trans, path, drop_args.extent_inserted,
373 root, &inode->vfs_inode, start,
374 inline_len, compressed_size,
375 compress_type, compressed_pages);
376 if (ret && ret != -ENOSPC) {
377 btrfs_abort_transaction(trans, ret);
379 } else if (ret == -ENOSPC) {
384 btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found);
385 ret = btrfs_update_inode(trans, root, inode);
386 if (ret && ret != -ENOSPC) {
387 btrfs_abort_transaction(trans, ret);
389 } else if (ret == -ENOSPC) {
394 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
397 * Don't forget to free the reserved space, as for inlined extent
398 * it won't count as data extent, free them directly here.
399 * And at reserve time, it's always aligned to page size, so
400 * just free one page here.
402 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
403 btrfs_free_path(path);
404 btrfs_end_transaction(trans);
408 struct async_extent {
413 unsigned long nr_pages;
415 struct list_head list;
420 struct page *locked_page;
423 unsigned int write_flags;
424 struct list_head extents;
425 struct cgroup_subsys_state *blkcg_css;
426 struct btrfs_work work;
431 /* Number of chunks in flight; must be first in the structure */
433 struct async_chunk chunks[];
436 static noinline int add_async_extent(struct async_chunk *cow,
437 u64 start, u64 ram_size,
440 unsigned long nr_pages,
443 struct async_extent *async_extent;
445 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
446 BUG_ON(!async_extent); /* -ENOMEM */
447 async_extent->start = start;
448 async_extent->ram_size = ram_size;
449 async_extent->compressed_size = compressed_size;
450 async_extent->pages = pages;
451 async_extent->nr_pages = nr_pages;
452 async_extent->compress_type = compress_type;
453 list_add_tail(&async_extent->list, &cow->extents);
458 * Check if the inode has flags compatible with compression
460 static inline bool inode_can_compress(struct btrfs_inode *inode)
462 if (inode->flags & BTRFS_INODE_NODATACOW ||
463 inode->flags & BTRFS_INODE_NODATASUM)
469 * Check if the inode needs to be submitted to compression, based on mount
470 * options, defragmentation, properties or heuristics.
472 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
475 struct btrfs_fs_info *fs_info = inode->root->fs_info;
477 if (!inode_can_compress(inode)) {
478 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
479 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
484 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
487 if (inode->defrag_compress)
489 /* bad compression ratios */
490 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
492 if (btrfs_test_opt(fs_info, COMPRESS) ||
493 inode->flags & BTRFS_INODE_COMPRESS ||
494 inode->prop_compress)
495 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
499 static inline void inode_should_defrag(struct btrfs_inode *inode,
500 u64 start, u64 end, u64 num_bytes, u64 small_write)
502 /* If this is a small write inside eof, kick off a defrag */
503 if (num_bytes < small_write &&
504 (start > 0 || end + 1 < inode->disk_i_size))
505 btrfs_add_inode_defrag(NULL, inode);
509 * we create compressed extents in two phases. The first
510 * phase compresses a range of pages that have already been
511 * locked (both pages and state bits are locked).
513 * This is done inside an ordered work queue, and the compression
514 * is spread across many cpus. The actual IO submission is step
515 * two, and the ordered work queue takes care of making sure that
516 * happens in the same order things were put onto the queue by
517 * writepages and friends.
519 * If this code finds it can't get good compression, it puts an
520 * entry onto the work queue to write the uncompressed bytes. This
521 * makes sure that both compressed inodes and uncompressed inodes
522 * are written in the same order that the flusher thread sent them
525 static noinline int compress_file_range(struct async_chunk *async_chunk)
527 struct inode *inode = async_chunk->inode;
528 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
529 u64 blocksize = fs_info->sectorsize;
530 u64 start = async_chunk->start;
531 u64 end = async_chunk->end;
535 struct page **pages = NULL;
536 unsigned long nr_pages;
537 unsigned long total_compressed = 0;
538 unsigned long total_in = 0;
541 int compress_type = fs_info->compress_type;
542 int compressed_extents = 0;
545 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
549 * We need to save i_size before now because it could change in between
550 * us evaluating the size and assigning it. This is because we lock and
551 * unlock the page in truncate and fallocate, and then modify the i_size
554 * The barriers are to emulate READ_ONCE, remove that once i_size_read
558 i_size = i_size_read(inode);
560 actual_end = min_t(u64, i_size, end + 1);
563 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
564 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
565 nr_pages = min_t(unsigned long, nr_pages,
566 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
569 * we don't want to send crud past the end of i_size through
570 * compression, that's just a waste of CPU time. So, if the
571 * end of the file is before the start of our current
572 * requested range of bytes, we bail out to the uncompressed
573 * cleanup code that can deal with all of this.
575 * It isn't really the fastest way to fix things, but this is a
576 * very uncommon corner.
578 if (actual_end <= start)
579 goto cleanup_and_bail_uncompressed;
581 total_compressed = actual_end - start;
584 * skip compression for a small file range(<=blocksize) that
585 * isn't an inline extent, since it doesn't save disk space at all.
587 if (total_compressed <= blocksize &&
588 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
589 goto cleanup_and_bail_uncompressed;
591 total_compressed = min_t(unsigned long, total_compressed,
592 BTRFS_MAX_UNCOMPRESSED);
597 * we do compression for mount -o compress and when the
598 * inode has not been flagged as nocompress. This flag can
599 * change at any time if we discover bad compression ratios.
601 if (inode_need_compress(BTRFS_I(inode), start, end)) {
603 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
605 /* just bail out to the uncompressed code */
610 if (BTRFS_I(inode)->defrag_compress)
611 compress_type = BTRFS_I(inode)->defrag_compress;
612 else if (BTRFS_I(inode)->prop_compress)
613 compress_type = BTRFS_I(inode)->prop_compress;
616 * we need to call clear_page_dirty_for_io on each
617 * page in the range. Otherwise applications with the file
618 * mmap'd can wander in and change the page contents while
619 * we are compressing them.
621 * If the compression fails for any reason, we set the pages
622 * dirty again later on.
624 * Note that the remaining part is redirtied, the start pointer
625 * has moved, the end is the original one.
628 extent_range_clear_dirty_for_io(inode, start, end);
632 /* Compression level is applied here and only here */
633 ret = btrfs_compress_pages(
634 compress_type | (fs_info->compress_level << 4),
635 inode->i_mapping, start,
642 unsigned long offset = offset_in_page(total_compressed);
643 struct page *page = pages[nr_pages - 1];
646 /* zero the tail end of the last page, we might be
647 * sending it down to disk
650 kaddr = kmap_atomic(page);
651 memset(kaddr + offset, 0,
653 kunmap_atomic(kaddr);
660 /* lets try to make an inline extent */
661 if (ret || total_in < actual_end) {
662 /* we didn't compress the entire range, try
663 * to make an uncompressed inline extent.
665 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
666 0, BTRFS_COMPRESS_NONE,
669 /* try making a compressed inline extent */
670 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
672 compress_type, pages);
675 unsigned long clear_flags = EXTENT_DELALLOC |
676 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
677 EXTENT_DO_ACCOUNTING;
678 unsigned long page_error_op;
680 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
683 * inline extent creation worked or returned error,
684 * we don't need to create any more async work items.
685 * Unlock and free up our temp pages.
687 * We use DO_ACCOUNTING here because we need the
688 * delalloc_release_metadata to be done _after_ we drop
689 * our outstanding extent for clearing delalloc for this
692 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
696 PAGE_START_WRITEBACK |
701 * Ensure we only free the compressed pages if we have
702 * them allocated, as we can still reach here with
703 * inode_need_compress() == false.
706 for (i = 0; i < nr_pages; i++) {
707 WARN_ON(pages[i]->mapping);
718 * we aren't doing an inline extent round the compressed size
719 * up to a block size boundary so the allocator does sane
722 total_compressed = ALIGN(total_compressed, blocksize);
725 * one last check to make sure the compression is really a
726 * win, compare the page count read with the blocks on disk,
727 * compression must free at least one sector size
729 total_in = ALIGN(total_in, PAGE_SIZE);
730 if (total_compressed + blocksize <= total_in) {
731 compressed_extents++;
734 * The async work queues will take care of doing actual
735 * allocation on disk for these compressed pages, and
736 * will submit them to the elevator.
738 add_async_extent(async_chunk, start, total_in,
739 total_compressed, pages, nr_pages,
742 if (start + total_in < end) {
748 return compressed_extents;
753 * the compression code ran but failed to make things smaller,
754 * free any pages it allocated and our page pointer array
756 for (i = 0; i < nr_pages; i++) {
757 WARN_ON(pages[i]->mapping);
762 total_compressed = 0;
765 /* flag the file so we don't compress in the future */
766 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
767 !(BTRFS_I(inode)->prop_compress)) {
768 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
771 cleanup_and_bail_uncompressed:
773 * No compression, but we still need to write the pages in the file
774 * we've been given so far. redirty the locked page if it corresponds
775 * to our extent and set things up for the async work queue to run
776 * cow_file_range to do the normal delalloc dance.
778 if (async_chunk->locked_page &&
779 (page_offset(async_chunk->locked_page) >= start &&
780 page_offset(async_chunk->locked_page)) <= end) {
781 __set_page_dirty_nobuffers(async_chunk->locked_page);
782 /* unlocked later on in the async handlers */
786 extent_range_redirty_for_io(inode, start, end);
787 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
788 BTRFS_COMPRESS_NONE);
789 compressed_extents++;
791 return compressed_extents;
794 static void free_async_extent_pages(struct async_extent *async_extent)
798 if (!async_extent->pages)
801 for (i = 0; i < async_extent->nr_pages; i++) {
802 WARN_ON(async_extent->pages[i]->mapping);
803 put_page(async_extent->pages[i]);
805 kfree(async_extent->pages);
806 async_extent->nr_pages = 0;
807 async_extent->pages = NULL;
811 * phase two of compressed writeback. This is the ordered portion
812 * of the code, which only gets called in the order the work was
813 * queued. We walk all the async extents created by compress_file_range
814 * and send them down to the disk.
816 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
818 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
819 struct btrfs_fs_info *fs_info = inode->root->fs_info;
820 struct async_extent *async_extent;
822 struct btrfs_key ins;
823 struct extent_map *em;
824 struct btrfs_root *root = inode->root;
825 struct extent_io_tree *io_tree = &inode->io_tree;
829 while (!list_empty(&async_chunk->extents)) {
830 async_extent = list_entry(async_chunk->extents.next,
831 struct async_extent, list);
832 list_del(&async_extent->list);
835 lock_extent(io_tree, async_extent->start,
836 async_extent->start + async_extent->ram_size - 1);
837 /* did the compression code fall back to uncompressed IO? */
838 if (!async_extent->pages) {
839 int page_started = 0;
840 unsigned long nr_written = 0;
842 /* allocate blocks */
843 ret = cow_file_range(inode, async_chunk->locked_page,
845 async_extent->start +
846 async_extent->ram_size - 1,
847 &page_started, &nr_written, 0);
852 * if page_started, cow_file_range inserted an
853 * inline extent and took care of all the unlocking
854 * and IO for us. Otherwise, we need to submit
855 * all those pages down to the drive.
857 if (!page_started && !ret)
858 extent_write_locked_range(&inode->vfs_inode,
860 async_extent->start +
861 async_extent->ram_size - 1,
863 else if (ret && async_chunk->locked_page)
864 unlock_page(async_chunk->locked_page);
870 ret = btrfs_reserve_extent(root, async_extent->ram_size,
871 async_extent->compressed_size,
872 async_extent->compressed_size,
873 0, alloc_hint, &ins, 1, 1);
875 free_async_extent_pages(async_extent);
877 if (ret == -ENOSPC) {
878 unlock_extent(io_tree, async_extent->start,
879 async_extent->start +
880 async_extent->ram_size - 1);
883 * we need to redirty the pages if we decide to
884 * fallback to uncompressed IO, otherwise we
885 * will not submit these pages down to lower
888 extent_range_redirty_for_io(&inode->vfs_inode,
890 async_extent->start +
891 async_extent->ram_size - 1);
898 * here we're doing allocation and writeback of the
901 em = create_io_em(inode, async_extent->start,
902 async_extent->ram_size, /* len */
903 async_extent->start, /* orig_start */
904 ins.objectid, /* block_start */
905 ins.offset, /* block_len */
906 ins.offset, /* orig_block_len */
907 async_extent->ram_size, /* ram_bytes */
908 async_extent->compress_type,
909 BTRFS_ORDERED_COMPRESSED);
911 /* ret value is not necessary due to void function */
912 goto out_free_reserve;
915 ret = btrfs_add_ordered_extent_compress(inode,
918 async_extent->ram_size,
920 async_extent->compress_type);
922 btrfs_drop_extent_cache(inode, async_extent->start,
923 async_extent->start +
924 async_extent->ram_size - 1, 0);
925 goto out_free_reserve;
927 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
930 * clear dirty, set writeback and unlock the pages.
932 extent_clear_unlock_delalloc(inode, async_extent->start,
933 async_extent->start +
934 async_extent->ram_size - 1,
935 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
936 PAGE_UNLOCK | PAGE_START_WRITEBACK);
937 if (btrfs_submit_compressed_write(inode, async_extent->start,
938 async_extent->ram_size,
940 ins.offset, async_extent->pages,
941 async_extent->nr_pages,
942 async_chunk->write_flags,
943 async_chunk->blkcg_css)) {
944 struct page *p = async_extent->pages[0];
945 const u64 start = async_extent->start;
946 const u64 end = start + async_extent->ram_size - 1;
948 p->mapping = inode->vfs_inode.i_mapping;
949 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
952 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
955 free_async_extent_pages(async_extent);
957 alloc_hint = ins.objectid + ins.offset;
963 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
964 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
966 extent_clear_unlock_delalloc(inode, async_extent->start,
967 async_extent->start +
968 async_extent->ram_size - 1,
969 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
970 EXTENT_DELALLOC_NEW |
971 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
972 PAGE_UNLOCK | PAGE_START_WRITEBACK |
973 PAGE_END_WRITEBACK | PAGE_SET_ERROR);
974 free_async_extent_pages(async_extent);
979 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
982 struct extent_map_tree *em_tree = &inode->extent_tree;
983 struct extent_map *em;
986 read_lock(&em_tree->lock);
987 em = search_extent_mapping(em_tree, start, num_bytes);
990 * if block start isn't an actual block number then find the
991 * first block in this inode and use that as a hint. If that
992 * block is also bogus then just don't worry about it.
994 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
996 em = search_extent_mapping(em_tree, 0, 0);
997 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
998 alloc_hint = em->block_start;
1000 free_extent_map(em);
1002 alloc_hint = em->block_start;
1003 free_extent_map(em);
1006 read_unlock(&em_tree->lock);
1012 * when extent_io.c finds a delayed allocation range in the file,
1013 * the call backs end up in this code. The basic idea is to
1014 * allocate extents on disk for the range, and create ordered data structs
1015 * in ram to track those extents.
1017 * locked_page is the page that writepage had locked already. We use
1018 * it to make sure we don't do extra locks or unlocks.
1020 * *page_started is set to one if we unlock locked_page and do everything
1021 * required to start IO on it. It may be clean and already done with
1022 * IO when we return.
1024 static noinline int cow_file_range(struct btrfs_inode *inode,
1025 struct page *locked_page,
1026 u64 start, u64 end, int *page_started,
1027 unsigned long *nr_written, int unlock)
1029 struct btrfs_root *root = inode->root;
1030 struct btrfs_fs_info *fs_info = root->fs_info;
1033 unsigned long ram_size;
1034 u64 cur_alloc_size = 0;
1036 u64 blocksize = fs_info->sectorsize;
1037 struct btrfs_key ins;
1038 struct extent_map *em;
1039 unsigned clear_bits;
1040 unsigned long page_ops;
1041 bool extent_reserved = false;
1044 if (btrfs_is_free_space_inode(inode)) {
1050 num_bytes = ALIGN(end - start + 1, blocksize);
1051 num_bytes = max(blocksize, num_bytes);
1052 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1054 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1057 /* lets try to make an inline extent */
1058 ret = cow_file_range_inline(inode, start, end, 0,
1059 BTRFS_COMPRESS_NONE, NULL);
1062 * We use DO_ACCOUNTING here because we need the
1063 * delalloc_release_metadata to be run _after_ we drop
1064 * our outstanding extent for clearing delalloc for this
1067 extent_clear_unlock_delalloc(inode, start, end, NULL,
1068 EXTENT_LOCKED | EXTENT_DELALLOC |
1069 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1070 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1071 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1072 *nr_written = *nr_written +
1073 (end - start + PAGE_SIZE) / PAGE_SIZE;
1076 } else if (ret < 0) {
1081 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1082 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1085 * Relocation relies on the relocated extents to have exactly the same
1086 * size as the original extents. Normally writeback for relocation data
1087 * extents follows a NOCOW path because relocation preallocates the
1088 * extents. However, due to an operation such as scrub turning a block
1089 * group to RO mode, it may fallback to COW mode, so we must make sure
1090 * an extent allocated during COW has exactly the requested size and can
1091 * not be split into smaller extents, otherwise relocation breaks and
1092 * fails during the stage where it updates the bytenr of file extent
1095 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1096 min_alloc_size = num_bytes;
1098 min_alloc_size = fs_info->sectorsize;
1100 while (num_bytes > 0) {
1101 cur_alloc_size = num_bytes;
1102 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1103 min_alloc_size, 0, alloc_hint,
1107 cur_alloc_size = ins.offset;
1108 extent_reserved = true;
1110 ram_size = ins.offset;
1111 em = create_io_em(inode, start, ins.offset, /* len */
1112 start, /* orig_start */
1113 ins.objectid, /* block_start */
1114 ins.offset, /* block_len */
1115 ins.offset, /* orig_block_len */
1116 ram_size, /* ram_bytes */
1117 BTRFS_COMPRESS_NONE, /* compress_type */
1118 BTRFS_ORDERED_REGULAR /* type */);
1123 free_extent_map(em);
1125 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1126 ram_size, cur_alloc_size,
1127 BTRFS_ORDERED_REGULAR);
1129 goto out_drop_extent_cache;
1131 if (root->root_key.objectid ==
1132 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1133 ret = btrfs_reloc_clone_csums(inode, start,
1136 * Only drop cache here, and process as normal.
1138 * We must not allow extent_clear_unlock_delalloc()
1139 * at out_unlock label to free meta of this ordered
1140 * extent, as its meta should be freed by
1141 * btrfs_finish_ordered_io().
1143 * So we must continue until @start is increased to
1144 * skip current ordered extent.
1147 btrfs_drop_extent_cache(inode, start,
1148 start + ram_size - 1, 0);
1151 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1153 /* we're not doing compressed IO, don't unlock the first
1154 * page (which the caller expects to stay locked), don't
1155 * clear any dirty bits and don't set any writeback bits
1157 * Do set the Private2 bit so we know this page was properly
1158 * setup for writepage
1160 page_ops = unlock ? PAGE_UNLOCK : 0;
1161 page_ops |= PAGE_SET_PRIVATE2;
1163 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1165 EXTENT_LOCKED | EXTENT_DELALLOC,
1167 if (num_bytes < cur_alloc_size)
1170 num_bytes -= cur_alloc_size;
1171 alloc_hint = ins.objectid + ins.offset;
1172 start += cur_alloc_size;
1173 extent_reserved = false;
1176 * btrfs_reloc_clone_csums() error, since start is increased
1177 * extent_clear_unlock_delalloc() at out_unlock label won't
1178 * free metadata of current ordered extent, we're OK to exit.
1186 out_drop_extent_cache:
1187 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1189 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1190 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1192 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1193 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1194 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1196 * If we reserved an extent for our delalloc range (or a subrange) and
1197 * failed to create the respective ordered extent, then it means that
1198 * when we reserved the extent we decremented the extent's size from
1199 * the data space_info's bytes_may_use counter and incremented the
1200 * space_info's bytes_reserved counter by the same amount. We must make
1201 * sure extent_clear_unlock_delalloc() does not try to decrement again
1202 * the data space_info's bytes_may_use counter, therefore we do not pass
1203 * it the flag EXTENT_CLEAR_DATA_RESV.
1205 if (extent_reserved) {
1206 extent_clear_unlock_delalloc(inode, start,
1207 start + cur_alloc_size - 1,
1211 start += cur_alloc_size;
1215 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1216 clear_bits | EXTENT_CLEAR_DATA_RESV,
1222 * work queue call back to started compression on a file and pages
1224 static noinline void async_cow_start(struct btrfs_work *work)
1226 struct async_chunk *async_chunk;
1227 int compressed_extents;
1229 async_chunk = container_of(work, struct async_chunk, work);
1231 compressed_extents = compress_file_range(async_chunk);
1232 if (compressed_extents == 0) {
1233 btrfs_add_delayed_iput(async_chunk->inode);
1234 async_chunk->inode = NULL;
1239 * work queue call back to submit previously compressed pages
1241 static noinline void async_cow_submit(struct btrfs_work *work)
1243 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1245 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1246 unsigned long nr_pages;
1248 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1251 /* atomic_sub_return implies a barrier */
1252 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1254 cond_wake_up_nomb(&fs_info->async_submit_wait);
1257 * ->inode could be NULL if async_chunk_start has failed to compress,
1258 * in which case we don't have anything to submit, yet we need to
1259 * always adjust ->async_delalloc_pages as its paired with the init
1260 * happening in cow_file_range_async
1262 if (async_chunk->inode)
1263 submit_compressed_extents(async_chunk);
1266 static noinline void async_cow_free(struct btrfs_work *work)
1268 struct async_chunk *async_chunk;
1270 async_chunk = container_of(work, struct async_chunk, work);
1271 if (async_chunk->inode)
1272 btrfs_add_delayed_iput(async_chunk->inode);
1273 if (async_chunk->blkcg_css)
1274 css_put(async_chunk->blkcg_css);
1276 * Since the pointer to 'pending' is at the beginning of the array of
1277 * async_chunk's, freeing it ensures the whole array has been freed.
1279 if (atomic_dec_and_test(async_chunk->pending))
1280 kvfree(async_chunk->pending);
1283 static int cow_file_range_async(struct btrfs_inode *inode,
1284 struct writeback_control *wbc,
1285 struct page *locked_page,
1286 u64 start, u64 end, int *page_started,
1287 unsigned long *nr_written)
1289 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1290 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1291 struct async_cow *ctx;
1292 struct async_chunk *async_chunk;
1293 unsigned long nr_pages;
1295 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1297 bool should_compress;
1299 const unsigned int write_flags = wbc_to_write_flags(wbc);
1301 unlock_extent(&inode->io_tree, start, end);
1303 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1304 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1306 should_compress = false;
1308 should_compress = true;
1311 nofs_flag = memalloc_nofs_save();
1312 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1313 memalloc_nofs_restore(nofs_flag);
1316 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1317 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1318 EXTENT_DO_ACCOUNTING;
1319 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1320 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1322 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1323 clear_bits, page_ops);
1327 async_chunk = ctx->chunks;
1328 atomic_set(&ctx->num_chunks, num_chunks);
1330 for (i = 0; i < num_chunks; i++) {
1331 if (should_compress)
1332 cur_end = min(end, start + SZ_512K - 1);
1337 * igrab is called higher up in the call chain, take only the
1338 * lightweight reference for the callback lifetime
1340 ihold(&inode->vfs_inode);
1341 async_chunk[i].pending = &ctx->num_chunks;
1342 async_chunk[i].inode = &inode->vfs_inode;
1343 async_chunk[i].start = start;
1344 async_chunk[i].end = cur_end;
1345 async_chunk[i].write_flags = write_flags;
1346 INIT_LIST_HEAD(&async_chunk[i].extents);
1349 * The locked_page comes all the way from writepage and its
1350 * the original page we were actually given. As we spread
1351 * this large delalloc region across multiple async_chunk
1352 * structs, only the first struct needs a pointer to locked_page
1354 * This way we don't need racey decisions about who is supposed
1359 * Depending on the compressibility, the pages might or
1360 * might not go through async. We want all of them to
1361 * be accounted against wbc once. Let's do it here
1362 * before the paths diverge. wbc accounting is used
1363 * only for foreign writeback detection and doesn't
1364 * need full accuracy. Just account the whole thing
1365 * against the first page.
1367 wbc_account_cgroup_owner(wbc, locked_page,
1369 async_chunk[i].locked_page = locked_page;
1372 async_chunk[i].locked_page = NULL;
1375 if (blkcg_css != blkcg_root_css) {
1377 async_chunk[i].blkcg_css = blkcg_css;
1379 async_chunk[i].blkcg_css = NULL;
1382 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1383 async_cow_submit, async_cow_free);
1385 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1386 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1388 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1390 *nr_written += nr_pages;
1391 start = cur_end + 1;
1397 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1398 struct page *locked_page, u64 start,
1399 u64 end, int *page_started,
1400 unsigned long *nr_written)
1404 ret = cow_file_range(inode, locked_page, start, end, page_started,
1412 __set_page_dirty_nobuffers(locked_page);
1413 account_page_redirty(locked_page);
1414 extent_write_locked_range(&inode->vfs_inode, start, end, WB_SYNC_ALL);
1420 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1421 u64 bytenr, u64 num_bytes)
1424 struct btrfs_ordered_sum *sums;
1427 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1428 bytenr + num_bytes - 1, &list, 0);
1429 if (ret == 0 && list_empty(&list))
1432 while (!list_empty(&list)) {
1433 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1434 list_del(&sums->list);
1442 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1443 const u64 start, const u64 end,
1444 int *page_started, unsigned long *nr_written)
1446 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1447 const bool is_reloc_ino = (inode->root->root_key.objectid ==
1448 BTRFS_DATA_RELOC_TREE_OBJECTID);
1449 const u64 range_bytes = end + 1 - start;
1450 struct extent_io_tree *io_tree = &inode->io_tree;
1451 u64 range_start = start;
1455 * If EXTENT_NORESERVE is set it means that when the buffered write was
1456 * made we had not enough available data space and therefore we did not
1457 * reserve data space for it, since we though we could do NOCOW for the
1458 * respective file range (either there is prealloc extent or the inode
1459 * has the NOCOW bit set).
1461 * However when we need to fallback to COW mode (because for example the
1462 * block group for the corresponding extent was turned to RO mode by a
1463 * scrub or relocation) we need to do the following:
1465 * 1) We increment the bytes_may_use counter of the data space info.
1466 * If COW succeeds, it allocates a new data extent and after doing
1467 * that it decrements the space info's bytes_may_use counter and
1468 * increments its bytes_reserved counter by the same amount (we do
1469 * this at btrfs_add_reserved_bytes()). So we need to increment the
1470 * bytes_may_use counter to compensate (when space is reserved at
1471 * buffered write time, the bytes_may_use counter is incremented);
1473 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1474 * that if the COW path fails for any reason, it decrements (through
1475 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1476 * data space info, which we incremented in the step above.
1478 * If we need to fallback to cow and the inode corresponds to a free
1479 * space cache inode or an inode of the data relocation tree, we must
1480 * also increment bytes_may_use of the data space_info for the same
1481 * reason. Space caches and relocated data extents always get a prealloc
1482 * extent for them, however scrub or balance may have set the block
1483 * group that contains that extent to RO mode and therefore force COW
1484 * when starting writeback.
1486 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1487 EXTENT_NORESERVE, 0);
1488 if (count > 0 || is_space_ino || is_reloc_ino) {
1490 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1491 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1493 if (is_space_ino || is_reloc_ino)
1494 bytes = range_bytes;
1496 spin_lock(&sinfo->lock);
1497 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1498 spin_unlock(&sinfo->lock);
1501 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1505 return cow_file_range(inode, locked_page, start, end, page_started,
1510 * when nowcow writeback call back. This checks for snapshots or COW copies
1511 * of the extents that exist in the file, and COWs the file as required.
1513 * If no cow copies or snapshots exist, we write directly to the existing
1516 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1517 struct page *locked_page,
1518 const u64 start, const u64 end,
1519 int *page_started, int force,
1520 unsigned long *nr_written)
1522 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1523 struct btrfs_root *root = inode->root;
1524 struct btrfs_path *path;
1525 u64 cow_start = (u64)-1;
1526 u64 cur_offset = start;
1528 bool check_prev = true;
1529 const bool freespace_inode = btrfs_is_free_space_inode(inode);
1530 u64 ino = btrfs_ino(inode);
1532 u64 disk_bytenr = 0;
1534 path = btrfs_alloc_path();
1536 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1537 EXTENT_LOCKED | EXTENT_DELALLOC |
1538 EXTENT_DO_ACCOUNTING |
1539 EXTENT_DEFRAG, PAGE_UNLOCK |
1540 PAGE_START_WRITEBACK |
1541 PAGE_END_WRITEBACK);
1546 struct btrfs_key found_key;
1547 struct btrfs_file_extent_item *fi;
1548 struct extent_buffer *leaf;
1558 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1564 * If there is no extent for our range when doing the initial
1565 * search, then go back to the previous slot as it will be the
1566 * one containing the search offset
1568 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1569 leaf = path->nodes[0];
1570 btrfs_item_key_to_cpu(leaf, &found_key,
1571 path->slots[0] - 1);
1572 if (found_key.objectid == ino &&
1573 found_key.type == BTRFS_EXTENT_DATA_KEY)
1578 /* Go to next leaf if we have exhausted the current one */
1579 leaf = path->nodes[0];
1580 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1581 ret = btrfs_next_leaf(root, path);
1583 if (cow_start != (u64)-1)
1584 cur_offset = cow_start;
1589 leaf = path->nodes[0];
1592 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1594 /* Didn't find anything for our INO */
1595 if (found_key.objectid > ino)
1598 * Keep searching until we find an EXTENT_ITEM or there are no
1599 * more extents for this inode
1601 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1602 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1607 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1608 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1609 found_key.offset > end)
1613 * If the found extent starts after requested offset, then
1614 * adjust extent_end to be right before this extent begins
1616 if (found_key.offset > cur_offset) {
1617 extent_end = found_key.offset;
1623 * Found extent which begins before our range and potentially
1626 fi = btrfs_item_ptr(leaf, path->slots[0],
1627 struct btrfs_file_extent_item);
1628 extent_type = btrfs_file_extent_type(leaf, fi);
1630 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1631 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1632 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1633 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1634 extent_offset = btrfs_file_extent_offset(leaf, fi);
1635 extent_end = found_key.offset +
1636 btrfs_file_extent_num_bytes(leaf, fi);
1638 btrfs_file_extent_disk_num_bytes(leaf, fi);
1640 * If the extent we got ends before our current offset,
1641 * skip to the next extent.
1643 if (extent_end <= cur_offset) {
1648 if (disk_bytenr == 0)
1650 /* Skip compressed/encrypted/encoded extents */
1651 if (btrfs_file_extent_compression(leaf, fi) ||
1652 btrfs_file_extent_encryption(leaf, fi) ||
1653 btrfs_file_extent_other_encoding(leaf, fi))
1656 * If extent is created before the last volume's snapshot
1657 * this implies the extent is shared, hence we can't do
1658 * nocow. This is the same check as in
1659 * btrfs_cross_ref_exist but without calling
1660 * btrfs_search_slot.
1662 if (!freespace_inode &&
1663 btrfs_file_extent_generation(leaf, fi) <=
1664 btrfs_root_last_snapshot(&root->root_item))
1666 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1670 * The following checks can be expensive, as they need to
1671 * take other locks and do btree or rbtree searches, so
1672 * release the path to avoid blocking other tasks for too
1675 btrfs_release_path(path);
1677 ret = btrfs_cross_ref_exist(root, ino,
1679 extent_offset, disk_bytenr, false);
1682 * ret could be -EIO if the above fails to read
1686 if (cow_start != (u64)-1)
1687 cur_offset = cow_start;
1691 WARN_ON_ONCE(freespace_inode);
1694 disk_bytenr += extent_offset;
1695 disk_bytenr += cur_offset - found_key.offset;
1696 num_bytes = min(end + 1, extent_end) - cur_offset;
1698 * If there are pending snapshots for this root, we
1699 * fall into common COW way
1701 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1704 * force cow if csum exists in the range.
1705 * this ensure that csum for a given extent are
1706 * either valid or do not exist.
1708 ret = csum_exist_in_range(fs_info, disk_bytenr,
1712 * ret could be -EIO if the above fails to read
1716 if (cow_start != (u64)-1)
1717 cur_offset = cow_start;
1720 WARN_ON_ONCE(freespace_inode);
1723 /* If the extent's block group is RO, we must COW */
1724 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1727 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1728 extent_end = found_key.offset + ram_bytes;
1729 extent_end = ALIGN(extent_end, fs_info->sectorsize);
1730 /* Skip extents outside of our requested range */
1731 if (extent_end <= start) {
1736 /* If this triggers then we have a memory corruption */
1741 * If nocow is false then record the beginning of the range
1742 * that needs to be COWed
1745 if (cow_start == (u64)-1)
1746 cow_start = cur_offset;
1747 cur_offset = extent_end;
1748 if (cur_offset > end)
1750 if (!path->nodes[0])
1757 * COW range from cow_start to found_key.offset - 1. As the key
1758 * will contain the beginning of the first extent that can be
1759 * NOCOW, following one which needs to be COW'ed
1761 if (cow_start != (u64)-1) {
1762 ret = fallback_to_cow(inode, locked_page,
1763 cow_start, found_key.offset - 1,
1764 page_started, nr_written);
1767 cow_start = (u64)-1;
1770 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1771 u64 orig_start = found_key.offset - extent_offset;
1772 struct extent_map *em;
1774 em = create_io_em(inode, cur_offset, num_bytes,
1776 disk_bytenr, /* block_start */
1777 num_bytes, /* block_len */
1778 disk_num_bytes, /* orig_block_len */
1779 ram_bytes, BTRFS_COMPRESS_NONE,
1780 BTRFS_ORDERED_PREALLOC);
1785 free_extent_map(em);
1786 ret = btrfs_add_ordered_extent(inode, cur_offset,
1787 disk_bytenr, num_bytes,
1789 BTRFS_ORDERED_PREALLOC);
1791 btrfs_drop_extent_cache(inode, cur_offset,
1792 cur_offset + num_bytes - 1,
1797 ret = btrfs_add_ordered_extent(inode, cur_offset,
1798 disk_bytenr, num_bytes,
1800 BTRFS_ORDERED_NOCOW);
1806 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1809 if (root->root_key.objectid ==
1810 BTRFS_DATA_RELOC_TREE_OBJECTID)
1812 * Error handled later, as we must prevent
1813 * extent_clear_unlock_delalloc() in error handler
1814 * from freeing metadata of created ordered extent.
1816 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1819 extent_clear_unlock_delalloc(inode, cur_offset,
1820 cur_offset + num_bytes - 1,
1821 locked_page, EXTENT_LOCKED |
1823 EXTENT_CLEAR_DATA_RESV,
1824 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1826 cur_offset = extent_end;
1829 * btrfs_reloc_clone_csums() error, now we're OK to call error
1830 * handler, as metadata for created ordered extent will only
1831 * be freed by btrfs_finish_ordered_io().
1835 if (cur_offset > end)
1838 btrfs_release_path(path);
1840 if (cur_offset <= end && cow_start == (u64)-1)
1841 cow_start = cur_offset;
1843 if (cow_start != (u64)-1) {
1845 ret = fallback_to_cow(inode, locked_page, cow_start, end,
1846 page_started, nr_written);
1853 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1855 if (ret && cur_offset < end)
1856 extent_clear_unlock_delalloc(inode, cur_offset, end,
1857 locked_page, EXTENT_LOCKED |
1858 EXTENT_DELALLOC | EXTENT_DEFRAG |
1859 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1860 PAGE_START_WRITEBACK |
1861 PAGE_END_WRITEBACK);
1862 btrfs_free_path(path);
1866 static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end)
1869 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1870 !(inode->flags & BTRFS_INODE_PREALLOC))
1874 * @defrag_bytes is a hint value, no spinlock held here,
1875 * if is not zero, it means the file is defragging.
1876 * Force cow if given extent needs to be defragged.
1878 if (inode->defrag_bytes &&
1879 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL))
1886 * Function to process delayed allocation (create CoW) for ranges which are
1887 * being touched for the first time.
1889 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1890 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1891 struct writeback_control *wbc)
1894 int force_cow = need_force_cow(inode, start, end);
1895 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
1897 if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1899 ret = run_delalloc_nocow(inode, locked_page, start, end,
1900 page_started, 1, nr_written);
1901 } else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1903 ret = run_delalloc_nocow(inode, locked_page, start, end,
1904 page_started, 0, nr_written);
1905 } else if (!inode_can_compress(inode) ||
1906 !inode_need_compress(inode, start, end)) {
1908 ret = run_delalloc_zoned(inode, locked_page, start, end,
1909 page_started, nr_written);
1911 ret = cow_file_range(inode, locked_page, start, end,
1912 page_started, nr_written, 1);
1914 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1915 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1916 page_started, nr_written);
1919 btrfs_cleanup_ordered_extents(inode, locked_page, start,
1924 void btrfs_split_delalloc_extent(struct inode *inode,
1925 struct extent_state *orig, u64 split)
1929 /* not delalloc, ignore it */
1930 if (!(orig->state & EXTENT_DELALLOC))
1933 size = orig->end - orig->start + 1;
1934 if (size > BTRFS_MAX_EXTENT_SIZE) {
1939 * See the explanation in btrfs_merge_delalloc_extent, the same
1940 * applies here, just in reverse.
1942 new_size = orig->end - split + 1;
1943 num_extents = count_max_extents(new_size);
1944 new_size = split - orig->start;
1945 num_extents += count_max_extents(new_size);
1946 if (count_max_extents(size) >= num_extents)
1950 spin_lock(&BTRFS_I(inode)->lock);
1951 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1952 spin_unlock(&BTRFS_I(inode)->lock);
1956 * Handle merged delayed allocation extents so we can keep track of new extents
1957 * that are just merged onto old extents, such as when we are doing sequential
1958 * writes, so we can properly account for the metadata space we'll need.
1960 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1961 struct extent_state *other)
1963 u64 new_size, old_size;
1966 /* not delalloc, ignore it */
1967 if (!(other->state & EXTENT_DELALLOC))
1970 if (new->start > other->start)
1971 new_size = new->end - other->start + 1;
1973 new_size = other->end - new->start + 1;
1975 /* we're not bigger than the max, unreserve the space and go */
1976 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1977 spin_lock(&BTRFS_I(inode)->lock);
1978 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1979 spin_unlock(&BTRFS_I(inode)->lock);
1984 * We have to add up either side to figure out how many extents were
1985 * accounted for before we merged into one big extent. If the number of
1986 * extents we accounted for is <= the amount we need for the new range
1987 * then we can return, otherwise drop. Think of it like this
1991 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1992 * need 2 outstanding extents, on one side we have 1 and the other side
1993 * we have 1 so they are == and we can return. But in this case
1995 * [MAX_SIZE+4k][MAX_SIZE+4k]
1997 * Each range on their own accounts for 2 extents, but merged together
1998 * they are only 3 extents worth of accounting, so we need to drop in
2001 old_size = other->end - other->start + 1;
2002 num_extents = count_max_extents(old_size);
2003 old_size = new->end - new->start + 1;
2004 num_extents += count_max_extents(old_size);
2005 if (count_max_extents(new_size) >= num_extents)
2008 spin_lock(&BTRFS_I(inode)->lock);
2009 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2010 spin_unlock(&BTRFS_I(inode)->lock);
2013 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2014 struct inode *inode)
2016 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2018 spin_lock(&root->delalloc_lock);
2019 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2020 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2021 &root->delalloc_inodes);
2022 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2023 &BTRFS_I(inode)->runtime_flags);
2024 root->nr_delalloc_inodes++;
2025 if (root->nr_delalloc_inodes == 1) {
2026 spin_lock(&fs_info->delalloc_root_lock);
2027 BUG_ON(!list_empty(&root->delalloc_root));
2028 list_add_tail(&root->delalloc_root,
2029 &fs_info->delalloc_roots);
2030 spin_unlock(&fs_info->delalloc_root_lock);
2033 spin_unlock(&root->delalloc_lock);
2037 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2038 struct btrfs_inode *inode)
2040 struct btrfs_fs_info *fs_info = root->fs_info;
2042 if (!list_empty(&inode->delalloc_inodes)) {
2043 list_del_init(&inode->delalloc_inodes);
2044 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2045 &inode->runtime_flags);
2046 root->nr_delalloc_inodes--;
2047 if (!root->nr_delalloc_inodes) {
2048 ASSERT(list_empty(&root->delalloc_inodes));
2049 spin_lock(&fs_info->delalloc_root_lock);
2050 BUG_ON(list_empty(&root->delalloc_root));
2051 list_del_init(&root->delalloc_root);
2052 spin_unlock(&fs_info->delalloc_root_lock);
2057 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2058 struct btrfs_inode *inode)
2060 spin_lock(&root->delalloc_lock);
2061 __btrfs_del_delalloc_inode(root, inode);
2062 spin_unlock(&root->delalloc_lock);
2066 * Properly track delayed allocation bytes in the inode and to maintain the
2067 * list of inodes that have pending delalloc work to be done.
2069 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2072 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2074 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2077 * set_bit and clear bit hooks normally require _irqsave/restore
2078 * but in this case, we are only testing for the DELALLOC
2079 * bit, which is only set or cleared with irqs on
2081 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2082 struct btrfs_root *root = BTRFS_I(inode)->root;
2083 u64 len = state->end + 1 - state->start;
2084 u32 num_extents = count_max_extents(len);
2085 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2087 spin_lock(&BTRFS_I(inode)->lock);
2088 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2089 spin_unlock(&BTRFS_I(inode)->lock);
2091 /* For sanity tests */
2092 if (btrfs_is_testing(fs_info))
2095 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2096 fs_info->delalloc_batch);
2097 spin_lock(&BTRFS_I(inode)->lock);
2098 BTRFS_I(inode)->delalloc_bytes += len;
2099 if (*bits & EXTENT_DEFRAG)
2100 BTRFS_I(inode)->defrag_bytes += len;
2101 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2102 &BTRFS_I(inode)->runtime_flags))
2103 btrfs_add_delalloc_inodes(root, inode);
2104 spin_unlock(&BTRFS_I(inode)->lock);
2107 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2108 (*bits & EXTENT_DELALLOC_NEW)) {
2109 spin_lock(&BTRFS_I(inode)->lock);
2110 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2112 spin_unlock(&BTRFS_I(inode)->lock);
2117 * Once a range is no longer delalloc this function ensures that proper
2118 * accounting happens.
2120 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2121 struct extent_state *state, unsigned *bits)
2123 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2124 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2125 u64 len = state->end + 1 - state->start;
2126 u32 num_extents = count_max_extents(len);
2128 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2129 spin_lock(&inode->lock);
2130 inode->defrag_bytes -= len;
2131 spin_unlock(&inode->lock);
2135 * set_bit and clear bit hooks normally require _irqsave/restore
2136 * but in this case, we are only testing for the DELALLOC
2137 * bit, which is only set or cleared with irqs on
2139 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2140 struct btrfs_root *root = inode->root;
2141 bool do_list = !btrfs_is_free_space_inode(inode);
2143 spin_lock(&inode->lock);
2144 btrfs_mod_outstanding_extents(inode, -num_extents);
2145 spin_unlock(&inode->lock);
2148 * We don't reserve metadata space for space cache inodes so we
2149 * don't need to call delalloc_release_metadata if there is an
2152 if (*bits & EXTENT_CLEAR_META_RESV &&
2153 root != fs_info->tree_root)
2154 btrfs_delalloc_release_metadata(inode, len, false);
2156 /* For sanity tests. */
2157 if (btrfs_is_testing(fs_info))
2160 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2161 do_list && !(state->state & EXTENT_NORESERVE) &&
2162 (*bits & EXTENT_CLEAR_DATA_RESV))
2163 btrfs_free_reserved_data_space_noquota(fs_info, len);
2165 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2166 fs_info->delalloc_batch);
2167 spin_lock(&inode->lock);
2168 inode->delalloc_bytes -= len;
2169 if (do_list && inode->delalloc_bytes == 0 &&
2170 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2171 &inode->runtime_flags))
2172 btrfs_del_delalloc_inode(root, inode);
2173 spin_unlock(&inode->lock);
2176 if ((state->state & EXTENT_DELALLOC_NEW) &&
2177 (*bits & EXTENT_DELALLOC_NEW)) {
2178 spin_lock(&inode->lock);
2179 ASSERT(inode->new_delalloc_bytes >= len);
2180 inode->new_delalloc_bytes -= len;
2181 if (*bits & EXTENT_ADD_INODE_BYTES)
2182 inode_add_bytes(&inode->vfs_inode, len);
2183 spin_unlock(&inode->lock);
2188 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2189 * in a chunk's stripe. This function ensures that bios do not span a
2192 * @page - The page we are about to add to the bio
2193 * @size - size we want to add to the bio
2194 * @bio - bio we want to ensure is smaller than a stripe
2195 * @bio_flags - flags of the bio
2197 * return 1 if page cannot be added to the bio
2198 * return 0 if page can be added to the bio
2199 * return error otherwise
2201 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2202 unsigned long bio_flags)
2204 struct inode *inode = page->mapping->host;
2205 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2206 u64 logical = bio->bi_iter.bi_sector << 9;
2207 struct extent_map *em;
2211 struct btrfs_io_geometry geom;
2213 if (bio_flags & EXTENT_BIO_COMPRESSED)
2216 length = bio->bi_iter.bi_size;
2217 map_length = length;
2218 em = btrfs_get_chunk_map(fs_info, logical, map_length);
2221 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), logical,
2226 if (geom.len < length + size)
2229 free_extent_map(em);
2234 * in order to insert checksums into the metadata in large chunks,
2235 * we wait until bio submission time. All the pages in the bio are
2236 * checksummed and sums are attached onto the ordered extent record.
2238 * At IO completion time the cums attached on the ordered extent record
2239 * are inserted into the btree
2241 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2242 u64 dio_file_offset)
2244 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2247 bool btrfs_bio_fits_in_ordered_extent(struct page *page, struct bio *bio,
2250 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
2251 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2252 struct btrfs_ordered_extent *ordered;
2253 u64 len = bio->bi_iter.bi_size + size;
2256 ASSERT(btrfs_is_zoned(fs_info));
2257 ASSERT(fs_info->max_zone_append_size > 0);
2258 ASSERT(bio_op(bio) == REQ_OP_ZONE_APPEND);
2260 /* Ordered extent not yet created, so we're good */
2261 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
2265 if ((bio->bi_iter.bi_sector << SECTOR_SHIFT) + len >
2266 ordered->disk_bytenr + ordered->disk_num_bytes)
2269 btrfs_put_ordered_extent(ordered);
2274 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2275 struct bio *bio, loff_t file_offset)
2277 struct btrfs_ordered_extent *ordered;
2278 struct extent_map *em = NULL, *em_new = NULL;
2279 struct extent_map_tree *em_tree = &inode->extent_tree;
2280 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2281 u64 len = bio->bi_iter.bi_size;
2282 u64 end = start + len;
2287 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2288 if (WARN_ON_ONCE(!ordered))
2289 return BLK_STS_IOERR;
2291 /* No need to split */
2292 if (ordered->disk_num_bytes == len)
2295 /* We cannot split once end_bio'd ordered extent */
2296 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2301 /* We cannot split a compressed ordered extent */
2302 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2307 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2308 /* bio must be in one ordered extent */
2309 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2314 /* Checksum list should be empty */
2315 if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2320 pre = start - ordered->disk_bytenr;
2321 post = ordered_end - end;
2323 ret = btrfs_split_ordered_extent(ordered, pre, post);
2327 read_lock(&em_tree->lock);
2328 em = lookup_extent_mapping(em_tree, ordered->file_offset, len);
2330 read_unlock(&em_tree->lock);
2334 read_unlock(&em_tree->lock);
2336 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2338 * We cannot reuse em_new here but have to create a new one, as
2339 * unpin_extent_cache() expects the start of the extent map to be the
2340 * logical offset of the file, which does not hold true anymore after
2343 em_new = create_io_em(inode, em->start + pre, len,
2344 em->start + pre, em->block_start + pre, len,
2345 len, len, BTRFS_COMPRESS_NONE,
2346 BTRFS_ORDERED_REGULAR);
2347 if (IS_ERR(em_new)) {
2348 ret = PTR_ERR(em_new);
2351 free_extent_map(em_new);
2354 free_extent_map(em);
2355 btrfs_put_ordered_extent(ordered);
2357 return errno_to_blk_status(ret);
2361 * extent_io.c submission hook. This does the right thing for csum calculation
2362 * on write, or reading the csums from the tree before a read.
2364 * Rules about async/sync submit,
2365 * a) read: sync submit
2367 * b) write without checksum: sync submit
2369 * c) write with checksum:
2370 * c-1) if bio is issued by fsync: sync submit
2371 * (sync_writers != 0)
2373 * c-2) if root is reloc root: sync submit
2374 * (only in case of buffered IO)
2376 * c-3) otherwise: async submit
2378 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2379 int mirror_num, unsigned long bio_flags)
2382 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2383 struct btrfs_root *root = BTRFS_I(inode)->root;
2384 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2385 blk_status_t ret = 0;
2387 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2389 skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
2390 !fs_info->csum_root;
2392 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2393 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2395 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2396 struct page *page = bio_first_bvec_all(bio)->bv_page;
2397 loff_t file_offset = page_offset(page);
2399 ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset);
2404 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
2405 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2409 if (bio_flags & EXTENT_BIO_COMPRESSED) {
2410 ret = btrfs_submit_compressed_read(inode, bio,
2416 * Lookup bio sums does extra checks around whether we
2417 * need to csum or not, which is why we ignore skip_sum
2420 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2425 } else if (async && !skip_sum) {
2426 /* csum items have already been cloned */
2427 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2429 /* we're doing a write, do the async checksumming */
2430 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags,
2431 0, btrfs_submit_bio_start);
2433 } else if (!skip_sum) {
2434 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2440 ret = btrfs_map_bio(fs_info, bio, mirror_num);
2444 bio->bi_status = ret;
2451 * given a list of ordered sums record them in the inode. This happens
2452 * at IO completion time based on sums calculated at bio submission time.
2454 static int add_pending_csums(struct btrfs_trans_handle *trans,
2455 struct list_head *list)
2457 struct btrfs_ordered_sum *sum;
2460 list_for_each_entry(sum, list, list) {
2461 trans->adding_csums = true;
2462 ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum);
2463 trans->adding_csums = false;
2470 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2473 struct extent_state **cached_state)
2475 u64 search_start = start;
2476 const u64 end = start + len - 1;
2478 while (search_start < end) {
2479 const u64 search_len = end - search_start + 1;
2480 struct extent_map *em;
2484 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2488 if (em->block_start != EXTENT_MAP_HOLE)
2492 if (em->start < search_start)
2493 em_len -= search_start - em->start;
2494 if (em_len > search_len)
2495 em_len = search_len;
2497 ret = set_extent_bit(&inode->io_tree, search_start,
2498 search_start + em_len - 1,
2499 EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
2502 search_start = extent_map_end(em);
2503 free_extent_map(em);
2510 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2511 unsigned int extra_bits,
2512 struct extent_state **cached_state)
2514 WARN_ON(PAGE_ALIGNED(end));
2516 if (start >= i_size_read(&inode->vfs_inode) &&
2517 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2519 * There can't be any extents following eof in this case so just
2520 * set the delalloc new bit for the range directly.
2522 extra_bits |= EXTENT_DELALLOC_NEW;
2526 ret = btrfs_find_new_delalloc_bytes(inode, start,
2533 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2537 /* see btrfs_writepage_start_hook for details on why this is required */
2538 struct btrfs_writepage_fixup {
2540 struct inode *inode;
2541 struct btrfs_work work;
2544 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2546 struct btrfs_writepage_fixup *fixup;
2547 struct btrfs_ordered_extent *ordered;
2548 struct extent_state *cached_state = NULL;
2549 struct extent_changeset *data_reserved = NULL;
2551 struct btrfs_inode *inode;
2555 bool free_delalloc_space = true;
2557 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2559 inode = BTRFS_I(fixup->inode);
2560 page_start = page_offset(page);
2561 page_end = page_offset(page) + PAGE_SIZE - 1;
2564 * This is similar to page_mkwrite, we need to reserve the space before
2565 * we take the page lock.
2567 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2573 * Before we queued this fixup, we took a reference on the page.
2574 * page->mapping may go NULL, but it shouldn't be moved to a different
2577 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2579 * Unfortunately this is a little tricky, either
2581 * 1) We got here and our page had already been dealt with and
2582 * we reserved our space, thus ret == 0, so we need to just
2583 * drop our space reservation and bail. This can happen the
2584 * first time we come into the fixup worker, or could happen
2585 * while waiting for the ordered extent.
2586 * 2) Our page was already dealt with, but we happened to get an
2587 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2588 * this case we obviously don't have anything to release, but
2589 * because the page was already dealt with we don't want to
2590 * mark the page with an error, so make sure we're resetting
2591 * ret to 0. This is why we have this check _before_ the ret
2592 * check, because we do not want to have a surprise ENOSPC
2593 * when the page was already properly dealt with.
2596 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2597 btrfs_delalloc_release_space(inode, data_reserved,
2598 page_start, PAGE_SIZE,
2606 * We can't mess with the page state unless it is locked, so now that
2607 * it is locked bail if we failed to make our space reservation.
2612 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2614 /* already ordered? We're done */
2615 if (PagePrivate2(page))
2618 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2620 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2623 btrfs_start_ordered_extent(ordered, 1);
2624 btrfs_put_ordered_extent(ordered);
2628 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2634 * Everything went as planned, we're now the owner of a dirty page with
2635 * delayed allocation bits set and space reserved for our COW
2638 * The page was dirty when we started, nothing should have cleaned it.
2640 BUG_ON(!PageDirty(page));
2641 free_delalloc_space = false;
2643 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2644 if (free_delalloc_space)
2645 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2647 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2652 * We hit ENOSPC or other errors. Update the mapping and page
2653 * to reflect the errors and clean the page.
2655 mapping_set_error(page->mapping, ret);
2656 end_extent_writepage(page, ret, page_start, page_end);
2657 clear_page_dirty_for_io(page);
2660 ClearPageChecked(page);
2664 extent_changeset_free(data_reserved);
2666 * As a precaution, do a delayed iput in case it would be the last iput
2667 * that could need flushing space. Recursing back to fixup worker would
2670 btrfs_add_delayed_iput(&inode->vfs_inode);
2674 * There are a few paths in the higher layers of the kernel that directly
2675 * set the page dirty bit without asking the filesystem if it is a
2676 * good idea. This causes problems because we want to make sure COW
2677 * properly happens and the data=ordered rules are followed.
2679 * In our case any range that doesn't have the ORDERED bit set
2680 * hasn't been properly setup for IO. We kick off an async process
2681 * to fix it up. The async helper will wait for ordered extents, set
2682 * the delalloc bit and make it safe to write the page.
2684 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2686 struct inode *inode = page->mapping->host;
2687 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2688 struct btrfs_writepage_fixup *fixup;
2690 /* this page is properly in the ordered list */
2691 if (TestClearPagePrivate2(page))
2695 * PageChecked is set below when we create a fixup worker for this page,
2696 * don't try to create another one if we're already PageChecked()
2698 * The extent_io writepage code will redirty the page if we send back
2701 if (PageChecked(page))
2704 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2709 * We are already holding a reference to this inode from
2710 * write_cache_pages. We need to hold it because the space reservation
2711 * takes place outside of the page lock, and we can't trust
2712 * page->mapping outside of the page lock.
2715 SetPageChecked(page);
2717 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2719 fixup->inode = inode;
2720 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2725 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2726 struct btrfs_inode *inode, u64 file_pos,
2727 struct btrfs_file_extent_item *stack_fi,
2728 const bool update_inode_bytes,
2729 u64 qgroup_reserved)
2731 struct btrfs_root *root = inode->root;
2732 const u64 sectorsize = root->fs_info->sectorsize;
2733 struct btrfs_path *path;
2734 struct extent_buffer *leaf;
2735 struct btrfs_key ins;
2736 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2737 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2738 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2739 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2740 struct btrfs_drop_extents_args drop_args = { 0 };
2743 path = btrfs_alloc_path();
2748 * we may be replacing one extent in the tree with another.
2749 * The new extent is pinned in the extent map, and we don't want
2750 * to drop it from the cache until it is completely in the btree.
2752 * So, tell btrfs_drop_extents to leave this extent in the cache.
2753 * the caller is expected to unpin it and allow it to be merged
2756 drop_args.path = path;
2757 drop_args.start = file_pos;
2758 drop_args.end = file_pos + num_bytes;
2759 drop_args.replace_extent = true;
2760 drop_args.extent_item_size = sizeof(*stack_fi);
2761 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2765 if (!drop_args.extent_inserted) {
2766 ins.objectid = btrfs_ino(inode);
2767 ins.offset = file_pos;
2768 ins.type = BTRFS_EXTENT_DATA_KEY;
2770 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2775 leaf = path->nodes[0];
2776 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2777 write_extent_buffer(leaf, stack_fi,
2778 btrfs_item_ptr_offset(leaf, path->slots[0]),
2779 sizeof(struct btrfs_file_extent_item));
2781 btrfs_mark_buffer_dirty(leaf);
2782 btrfs_release_path(path);
2785 * If we dropped an inline extent here, we know the range where it is
2786 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2787 * number of bytes only for that range contaning the inline extent.
2788 * The remaining of the range will be processed when clearning the
2789 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2791 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2792 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2794 inline_size = drop_args.bytes_found - inline_size;
2795 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2796 drop_args.bytes_found -= inline_size;
2797 num_bytes -= sectorsize;
2800 if (update_inode_bytes)
2801 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2803 ins.objectid = disk_bytenr;
2804 ins.offset = disk_num_bytes;
2805 ins.type = BTRFS_EXTENT_ITEM_KEY;
2807 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2811 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2812 file_pos, qgroup_reserved, &ins);
2814 btrfs_free_path(path);
2819 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2822 struct btrfs_block_group *cache;
2824 cache = btrfs_lookup_block_group(fs_info, start);
2827 spin_lock(&cache->lock);
2828 cache->delalloc_bytes -= len;
2829 spin_unlock(&cache->lock);
2831 btrfs_put_block_group(cache);
2834 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2835 struct btrfs_ordered_extent *oe)
2837 struct btrfs_file_extent_item stack_fi;
2839 bool update_inode_bytes;
2841 memset(&stack_fi, 0, sizeof(stack_fi));
2842 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2843 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2844 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2845 oe->disk_num_bytes);
2846 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2847 logical_len = oe->truncated_len;
2849 logical_len = oe->num_bytes;
2850 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2851 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2852 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2853 /* Encryption and other encoding is reserved and all 0 */
2856 * For delalloc, when completing an ordered extent we update the inode's
2857 * bytes when clearing the range in the inode's io tree, so pass false
2858 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2859 * except if the ordered extent was truncated.
2861 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
2862 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
2864 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
2865 oe->file_offset, &stack_fi,
2866 update_inode_bytes, oe->qgroup_rsv);
2870 * As ordered data IO finishes, this gets called so we can finish
2871 * an ordered extent if the range of bytes in the file it covers are
2874 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2876 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
2877 struct btrfs_root *root = inode->root;
2878 struct btrfs_fs_info *fs_info = root->fs_info;
2879 struct btrfs_trans_handle *trans = NULL;
2880 struct extent_io_tree *io_tree = &inode->io_tree;
2881 struct extent_state *cached_state = NULL;
2883 int compress_type = 0;
2885 u64 logical_len = ordered_extent->num_bytes;
2886 bool freespace_inode;
2887 bool truncated = false;
2888 bool clear_reserved_extent = true;
2889 unsigned int clear_bits = EXTENT_DEFRAG;
2891 start = ordered_extent->file_offset;
2892 end = start + ordered_extent->num_bytes - 1;
2894 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2895 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2896 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2897 clear_bits |= EXTENT_DELALLOC_NEW;
2899 freespace_inode = btrfs_is_free_space_inode(inode);
2901 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2906 if (ordered_extent->disk)
2907 btrfs_rewrite_logical_zoned(ordered_extent);
2909 btrfs_free_io_failure_record(inode, start, end);
2911 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2913 logical_len = ordered_extent->truncated_len;
2914 /* Truncated the entire extent, don't bother adding */
2919 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2920 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2922 btrfs_inode_safe_disk_i_size_write(inode, 0);
2923 if (freespace_inode)
2924 trans = btrfs_join_transaction_spacecache(root);
2926 trans = btrfs_join_transaction(root);
2927 if (IS_ERR(trans)) {
2928 ret = PTR_ERR(trans);
2932 trans->block_rsv = &inode->block_rsv;
2933 ret = btrfs_update_inode_fallback(trans, root, inode);
2934 if (ret) /* -ENOMEM or corruption */
2935 btrfs_abort_transaction(trans, ret);
2939 clear_bits |= EXTENT_LOCKED;
2940 lock_extent_bits(io_tree, start, end, &cached_state);
2942 if (freespace_inode)
2943 trans = btrfs_join_transaction_spacecache(root);
2945 trans = btrfs_join_transaction(root);
2946 if (IS_ERR(trans)) {
2947 ret = PTR_ERR(trans);
2952 trans->block_rsv = &inode->block_rsv;
2954 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2955 compress_type = ordered_extent->compress_type;
2956 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2957 BUG_ON(compress_type);
2958 ret = btrfs_mark_extent_written(trans, inode,
2959 ordered_extent->file_offset,
2960 ordered_extent->file_offset +
2963 BUG_ON(root == fs_info->tree_root);
2964 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
2966 clear_reserved_extent = false;
2967 btrfs_release_delalloc_bytes(fs_info,
2968 ordered_extent->disk_bytenr,
2969 ordered_extent->disk_num_bytes);
2972 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
2973 ordered_extent->num_bytes, trans->transid);
2975 btrfs_abort_transaction(trans, ret);
2979 ret = add_pending_csums(trans, &ordered_extent->list);
2981 btrfs_abort_transaction(trans, ret);
2986 * If this is a new delalloc range, clear its new delalloc flag to
2987 * update the inode's number of bytes. This needs to be done first
2988 * before updating the inode item.
2990 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
2991 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
2992 clear_extent_bit(&inode->io_tree, start, end,
2993 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
2994 0, 0, &cached_state);
2996 btrfs_inode_safe_disk_i_size_write(inode, 0);
2997 ret = btrfs_update_inode_fallback(trans, root, inode);
2998 if (ret) { /* -ENOMEM or corruption */
2999 btrfs_abort_transaction(trans, ret);
3004 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3005 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
3009 btrfs_end_transaction(trans);
3011 if (ret || truncated) {
3012 u64 unwritten_start = start;
3015 unwritten_start += logical_len;
3016 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3018 /* Drop the cache for the part of the extent we didn't write. */
3019 btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
3022 * If the ordered extent had an IOERR or something else went
3023 * wrong we need to return the space for this ordered extent
3024 * back to the allocator. We only free the extent in the
3025 * truncated case if we didn't write out the extent at all.
3027 * If we made it past insert_reserved_file_extent before we
3028 * errored out then we don't need to do this as the accounting
3029 * has already been done.
3031 if ((ret || !logical_len) &&
3032 clear_reserved_extent &&
3033 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3034 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3036 * Discard the range before returning it back to the
3039 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3040 btrfs_discard_extent(fs_info,
3041 ordered_extent->disk_bytenr,
3042 ordered_extent->disk_num_bytes,
3044 btrfs_free_reserved_extent(fs_info,
3045 ordered_extent->disk_bytenr,
3046 ordered_extent->disk_num_bytes, 1);
3051 * This needs to be done to make sure anybody waiting knows we are done
3052 * updating everything for this ordered extent.
3054 btrfs_remove_ordered_extent(inode, ordered_extent);
3057 btrfs_put_ordered_extent(ordered_extent);
3058 /* once for the tree */
3059 btrfs_put_ordered_extent(ordered_extent);
3064 static void finish_ordered_fn(struct btrfs_work *work)
3066 struct btrfs_ordered_extent *ordered_extent;
3067 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3068 btrfs_finish_ordered_io(ordered_extent);
3071 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3072 u64 end, int uptodate)
3074 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3075 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3076 struct btrfs_ordered_extent *ordered_extent = NULL;
3077 struct btrfs_workqueue *wq;
3079 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3081 ClearPagePrivate2(page);
3082 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3083 end - start + 1, uptodate))
3086 if (btrfs_is_free_space_inode(inode))
3087 wq = fs_info->endio_freespace_worker;
3089 wq = fs_info->endio_write_workers;
3091 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
3092 btrfs_queue_work(wq, &ordered_extent->work);
3096 * check_data_csum - verify checksum of one sector of uncompressed data
3098 * @io_bio: btrfs_io_bio which contains the csum
3099 * @bio_offset: offset to the beginning of the bio (in bytes)
3100 * @page: page where is the data to be verified
3101 * @pgoff: offset inside the page
3102 * @start: logical offset in the file
3104 * The length of such check is always one sector size.
3106 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
3107 u32 bio_offset, struct page *page, u32 pgoff,
3110 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3111 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3113 u32 len = fs_info->sectorsize;
3114 const u32 csum_size = fs_info->csum_size;
3115 unsigned int offset_sectors;
3117 u8 csum[BTRFS_CSUM_SIZE];
3119 ASSERT(pgoff + len <= PAGE_SIZE);
3121 offset_sectors = bio_offset >> fs_info->sectorsize_bits;
3122 csum_expected = ((u8 *)io_bio->csum) + offset_sectors * csum_size;
3124 kaddr = kmap_atomic(page);
3125 shash->tfm = fs_info->csum_shash;
3127 crypto_shash_digest(shash, kaddr + pgoff, len, csum);
3129 if (memcmp(csum, csum_expected, csum_size))
3132 kunmap_atomic(kaddr);
3135 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3136 io_bio->mirror_num);
3138 btrfs_dev_stat_inc_and_print(io_bio->device,
3139 BTRFS_DEV_STAT_CORRUPTION_ERRS);
3140 memset(kaddr + pgoff, 1, len);
3141 flush_dcache_page(page);
3142 kunmap_atomic(kaddr);
3147 * When reads are done, we need to check csums to verify the data is correct.
3148 * if there's a match, we allow the bio to finish. If not, the code in
3149 * extent_io.c will try to find good copies for us.
3151 * @bio_offset: offset to the beginning of the bio (in bytes)
3152 * @start: file offset of the range start
3153 * @end: file offset of the range end (inclusive)
3154 * @mirror: mirror number
3156 int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset,
3157 struct page *page, u64 start, u64 end, int mirror)
3159 struct inode *inode = page->mapping->host;
3160 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3161 struct btrfs_root *root = BTRFS_I(inode)->root;
3162 const u32 sectorsize = root->fs_info->sectorsize;
3165 if (PageChecked(page)) {
3166 ClearPageChecked(page);
3170 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3173 if (!root->fs_info->csum_root)
3176 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3177 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3178 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3182 ASSERT(page_offset(page) <= start &&
3183 end <= page_offset(page) + PAGE_SIZE - 1);
3184 for (pg_off = offset_in_page(start);
3185 pg_off < offset_in_page(end);
3186 pg_off += sectorsize, bio_offset += sectorsize) {
3189 ret = check_data_csum(inode, io_bio, bio_offset, page, pg_off,
3190 page_offset(page) + pg_off);
3198 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3200 * @inode: The inode we want to perform iput on
3202 * This function uses the generic vfs_inode::i_count to track whether we should
3203 * just decrement it (in case it's > 1) or if this is the last iput then link
3204 * the inode to the delayed iput machinery. Delayed iputs are processed at
3205 * transaction commit time/superblock commit/cleaner kthread.
3207 void btrfs_add_delayed_iput(struct inode *inode)
3209 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3210 struct btrfs_inode *binode = BTRFS_I(inode);
3212 if (atomic_add_unless(&inode->i_count, -1, 1))
3215 atomic_inc(&fs_info->nr_delayed_iputs);
3216 spin_lock(&fs_info->delayed_iput_lock);
3217 ASSERT(list_empty(&binode->delayed_iput));
3218 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3219 spin_unlock(&fs_info->delayed_iput_lock);
3220 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3221 wake_up_process(fs_info->cleaner_kthread);
3224 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3225 struct btrfs_inode *inode)
3227 list_del_init(&inode->delayed_iput);
3228 spin_unlock(&fs_info->delayed_iput_lock);
3229 iput(&inode->vfs_inode);
3230 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3231 wake_up(&fs_info->delayed_iputs_wait);
3232 spin_lock(&fs_info->delayed_iput_lock);
3235 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3236 struct btrfs_inode *inode)
3238 if (!list_empty(&inode->delayed_iput)) {
3239 spin_lock(&fs_info->delayed_iput_lock);
3240 if (!list_empty(&inode->delayed_iput))
3241 run_delayed_iput_locked(fs_info, inode);
3242 spin_unlock(&fs_info->delayed_iput_lock);
3246 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3249 spin_lock(&fs_info->delayed_iput_lock);
3250 while (!list_empty(&fs_info->delayed_iputs)) {
3251 struct btrfs_inode *inode;
3253 inode = list_first_entry(&fs_info->delayed_iputs,
3254 struct btrfs_inode, delayed_iput);
3255 run_delayed_iput_locked(fs_info, inode);
3257 spin_unlock(&fs_info->delayed_iput_lock);
3261 * Wait for flushing all delayed iputs
3263 * @fs_info: the filesystem
3265 * This will wait on any delayed iputs that are currently running with KILLABLE
3266 * set. Once they are all done running we will return, unless we are killed in
3267 * which case we return EINTR. This helps in user operations like fallocate etc
3268 * that might get blocked on the iputs.
3270 * Return EINTR if we were killed, 0 if nothing's pending
3272 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3274 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3275 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3282 * This creates an orphan entry for the given inode in case something goes wrong
3283 * in the middle of an unlink.
3285 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3286 struct btrfs_inode *inode)
3290 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3291 if (ret && ret != -EEXIST) {
3292 btrfs_abort_transaction(trans, ret);
3300 * We have done the delete so we can go ahead and remove the orphan item for
3301 * this particular inode.
3303 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3304 struct btrfs_inode *inode)
3306 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3310 * this cleans up any orphans that may be left on the list from the last use
3313 int btrfs_orphan_cleanup(struct btrfs_root *root)
3315 struct btrfs_fs_info *fs_info = root->fs_info;
3316 struct btrfs_path *path;
3317 struct extent_buffer *leaf;
3318 struct btrfs_key key, found_key;
3319 struct btrfs_trans_handle *trans;
3320 struct inode *inode;
3321 u64 last_objectid = 0;
3322 int ret = 0, nr_unlink = 0;
3324 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3327 path = btrfs_alloc_path();
3332 path->reada = READA_BACK;
3334 key.objectid = BTRFS_ORPHAN_OBJECTID;
3335 key.type = BTRFS_ORPHAN_ITEM_KEY;
3336 key.offset = (u64)-1;
3339 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3344 * if ret == 0 means we found what we were searching for, which
3345 * is weird, but possible, so only screw with path if we didn't
3346 * find the key and see if we have stuff that matches
3350 if (path->slots[0] == 0)
3355 /* pull out the item */
3356 leaf = path->nodes[0];
3357 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3359 /* make sure the item matches what we want */
3360 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3362 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3365 /* release the path since we're done with it */
3366 btrfs_release_path(path);
3369 * this is where we are basically btrfs_lookup, without the
3370 * crossing root thing. we store the inode number in the
3371 * offset of the orphan item.
3374 if (found_key.offset == last_objectid) {
3376 "Error removing orphan entry, stopping orphan cleanup");
3381 last_objectid = found_key.offset;
3383 found_key.objectid = found_key.offset;
3384 found_key.type = BTRFS_INODE_ITEM_KEY;
3385 found_key.offset = 0;
3386 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3387 ret = PTR_ERR_OR_ZERO(inode);
3388 if (ret && ret != -ENOENT)
3391 if (ret == -ENOENT && root == fs_info->tree_root) {
3392 struct btrfs_root *dead_root;
3393 int is_dead_root = 0;
3396 * this is an orphan in the tree root. Currently these
3397 * could come from 2 sources:
3398 * a) a snapshot deletion in progress
3399 * b) a free space cache inode
3400 * We need to distinguish those two, as the snapshot
3401 * orphan must not get deleted.
3402 * find_dead_roots already ran before us, so if this
3403 * is a snapshot deletion, we should find the root
3404 * in the fs_roots radix tree.
3407 spin_lock(&fs_info->fs_roots_radix_lock);
3408 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3409 (unsigned long)found_key.objectid);
3410 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3412 spin_unlock(&fs_info->fs_roots_radix_lock);
3415 /* prevent this orphan from being found again */
3416 key.offset = found_key.objectid - 1;
3423 * If we have an inode with links, there are a couple of
3424 * possibilities. Old kernels (before v3.12) used to create an
3425 * orphan item for truncate indicating that there were possibly
3426 * extent items past i_size that needed to be deleted. In v3.12,
3427 * truncate was changed to update i_size in sync with the extent
3428 * items, but the (useless) orphan item was still created. Since
3429 * v4.18, we don't create the orphan item for truncate at all.
3431 * So, this item could mean that we need to do a truncate, but
3432 * only if this filesystem was last used on a pre-v3.12 kernel
3433 * and was not cleanly unmounted. The odds of that are quite
3434 * slim, and it's a pain to do the truncate now, so just delete
3437 * It's also possible that this orphan item was supposed to be
3438 * deleted but wasn't. The inode number may have been reused,
3439 * but either way, we can delete the orphan item.
3441 if (ret == -ENOENT || inode->i_nlink) {
3444 trans = btrfs_start_transaction(root, 1);
3445 if (IS_ERR(trans)) {
3446 ret = PTR_ERR(trans);
3449 btrfs_debug(fs_info, "auto deleting %Lu",
3450 found_key.objectid);
3451 ret = btrfs_del_orphan_item(trans, root,
3452 found_key.objectid);
3453 btrfs_end_transaction(trans);
3461 /* this will do delete_inode and everything for us */
3464 /* release the path since we're done with it */
3465 btrfs_release_path(path);
3467 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3469 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3470 trans = btrfs_join_transaction(root);
3472 btrfs_end_transaction(trans);
3476 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3480 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3481 btrfs_free_path(path);
3486 * very simple check to peek ahead in the leaf looking for xattrs. If we
3487 * don't find any xattrs, we know there can't be any acls.
3489 * slot is the slot the inode is in, objectid is the objectid of the inode
3491 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3492 int slot, u64 objectid,
3493 int *first_xattr_slot)
3495 u32 nritems = btrfs_header_nritems(leaf);
3496 struct btrfs_key found_key;
3497 static u64 xattr_access = 0;
3498 static u64 xattr_default = 0;
3501 if (!xattr_access) {
3502 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3503 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3504 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3505 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3509 *first_xattr_slot = -1;
3510 while (slot < nritems) {
3511 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3513 /* we found a different objectid, there must not be acls */
3514 if (found_key.objectid != objectid)
3517 /* we found an xattr, assume we've got an acl */
3518 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3519 if (*first_xattr_slot == -1)
3520 *first_xattr_slot = slot;
3521 if (found_key.offset == xattr_access ||
3522 found_key.offset == xattr_default)
3527 * we found a key greater than an xattr key, there can't
3528 * be any acls later on
3530 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3537 * it goes inode, inode backrefs, xattrs, extents,
3538 * so if there are a ton of hard links to an inode there can
3539 * be a lot of backrefs. Don't waste time searching too hard,
3540 * this is just an optimization
3545 /* we hit the end of the leaf before we found an xattr or
3546 * something larger than an xattr. We have to assume the inode
3549 if (*first_xattr_slot == -1)
3550 *first_xattr_slot = slot;
3555 * read an inode from the btree into the in-memory inode
3557 static int btrfs_read_locked_inode(struct inode *inode,
3558 struct btrfs_path *in_path)
3560 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3561 struct btrfs_path *path = in_path;
3562 struct extent_buffer *leaf;
3563 struct btrfs_inode_item *inode_item;
3564 struct btrfs_root *root = BTRFS_I(inode)->root;
3565 struct btrfs_key location;
3570 bool filled = false;
3571 int first_xattr_slot;
3573 ret = btrfs_fill_inode(inode, &rdev);
3578 path = btrfs_alloc_path();
3583 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3585 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3587 if (path != in_path)
3588 btrfs_free_path(path);
3592 leaf = path->nodes[0];
3597 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3598 struct btrfs_inode_item);
3599 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3600 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3601 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3602 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3603 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3604 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3605 round_up(i_size_read(inode), fs_info->sectorsize));
3607 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3608 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3610 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3611 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3613 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3614 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3616 BTRFS_I(inode)->i_otime.tv_sec =
3617 btrfs_timespec_sec(leaf, &inode_item->otime);
3618 BTRFS_I(inode)->i_otime.tv_nsec =
3619 btrfs_timespec_nsec(leaf, &inode_item->otime);
3621 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3622 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3623 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3625 inode_set_iversion_queried(inode,
3626 btrfs_inode_sequence(leaf, inode_item));
3627 inode->i_generation = BTRFS_I(inode)->generation;
3629 rdev = btrfs_inode_rdev(leaf, inode_item);
3631 BTRFS_I(inode)->index_cnt = (u64)-1;
3632 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3636 * If we were modified in the current generation and evicted from memory
3637 * and then re-read we need to do a full sync since we don't have any
3638 * idea about which extents were modified before we were evicted from
3641 * This is required for both inode re-read from disk and delayed inode
3642 * in delayed_nodes_tree.
3644 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3645 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3646 &BTRFS_I(inode)->runtime_flags);
3649 * We don't persist the id of the transaction where an unlink operation
3650 * against the inode was last made. So here we assume the inode might
3651 * have been evicted, and therefore the exact value of last_unlink_trans
3652 * lost, and set it to last_trans to avoid metadata inconsistencies
3653 * between the inode and its parent if the inode is fsync'ed and the log
3654 * replayed. For example, in the scenario:
3657 * ln mydir/foo mydir/bar
3660 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3661 * xfs_io -c fsync mydir/foo
3663 * mount fs, triggers fsync log replay
3665 * We must make sure that when we fsync our inode foo we also log its
3666 * parent inode, otherwise after log replay the parent still has the
3667 * dentry with the "bar" name but our inode foo has a link count of 1
3668 * and doesn't have an inode ref with the name "bar" anymore.
3670 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3671 * but it guarantees correctness at the expense of occasional full
3672 * transaction commits on fsync if our inode is a directory, or if our
3673 * inode is not a directory, logging its parent unnecessarily.
3675 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3678 * Same logic as for last_unlink_trans. We don't persist the generation
3679 * of the last transaction where this inode was used for a reflink
3680 * operation, so after eviction and reloading the inode we must be
3681 * pessimistic and assume the last transaction that modified the inode.
3683 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3686 if (inode->i_nlink != 1 ||
3687 path->slots[0] >= btrfs_header_nritems(leaf))
3690 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3691 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3694 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3695 if (location.type == BTRFS_INODE_REF_KEY) {
3696 struct btrfs_inode_ref *ref;
3698 ref = (struct btrfs_inode_ref *)ptr;
3699 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3700 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3701 struct btrfs_inode_extref *extref;
3703 extref = (struct btrfs_inode_extref *)ptr;
3704 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3709 * try to precache a NULL acl entry for files that don't have
3710 * any xattrs or acls
3712 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3713 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3714 if (first_xattr_slot != -1) {
3715 path->slots[0] = first_xattr_slot;
3716 ret = btrfs_load_inode_props(inode, path);
3719 "error loading props for ino %llu (root %llu): %d",
3720 btrfs_ino(BTRFS_I(inode)),
3721 root->root_key.objectid, ret);
3723 if (path != in_path)
3724 btrfs_free_path(path);
3727 cache_no_acl(inode);
3729 switch (inode->i_mode & S_IFMT) {
3731 inode->i_mapping->a_ops = &btrfs_aops;
3732 inode->i_fop = &btrfs_file_operations;
3733 inode->i_op = &btrfs_file_inode_operations;
3736 inode->i_fop = &btrfs_dir_file_operations;
3737 inode->i_op = &btrfs_dir_inode_operations;
3740 inode->i_op = &btrfs_symlink_inode_operations;
3741 inode_nohighmem(inode);
3742 inode->i_mapping->a_ops = &btrfs_aops;
3745 inode->i_op = &btrfs_special_inode_operations;
3746 init_special_inode(inode, inode->i_mode, rdev);
3750 btrfs_sync_inode_flags_to_i_flags(inode);
3755 * given a leaf and an inode, copy the inode fields into the leaf
3757 static void fill_inode_item(struct btrfs_trans_handle *trans,
3758 struct extent_buffer *leaf,
3759 struct btrfs_inode_item *item,
3760 struct inode *inode)
3762 struct btrfs_map_token token;
3764 btrfs_init_map_token(&token, leaf);
3766 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3767 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3768 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3769 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3770 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3772 btrfs_set_token_timespec_sec(&token, &item->atime,
3773 inode->i_atime.tv_sec);
3774 btrfs_set_token_timespec_nsec(&token, &item->atime,
3775 inode->i_atime.tv_nsec);
3777 btrfs_set_token_timespec_sec(&token, &item->mtime,
3778 inode->i_mtime.tv_sec);
3779 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3780 inode->i_mtime.tv_nsec);
3782 btrfs_set_token_timespec_sec(&token, &item->ctime,
3783 inode->i_ctime.tv_sec);
3784 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3785 inode->i_ctime.tv_nsec);
3787 btrfs_set_token_timespec_sec(&token, &item->otime,
3788 BTRFS_I(inode)->i_otime.tv_sec);
3789 btrfs_set_token_timespec_nsec(&token, &item->otime,
3790 BTRFS_I(inode)->i_otime.tv_nsec);
3792 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3793 btrfs_set_token_inode_generation(&token, item,
3794 BTRFS_I(inode)->generation);
3795 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3796 btrfs_set_token_inode_transid(&token, item, trans->transid);
3797 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3798 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3799 btrfs_set_token_inode_block_group(&token, item, 0);
3803 * copy everything in the in-memory inode into the btree.
3805 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3806 struct btrfs_root *root,
3807 struct btrfs_inode *inode)
3809 struct btrfs_inode_item *inode_item;
3810 struct btrfs_path *path;
3811 struct extent_buffer *leaf;
3814 path = btrfs_alloc_path();
3818 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3825 leaf = path->nodes[0];
3826 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3827 struct btrfs_inode_item);
3829 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
3830 btrfs_mark_buffer_dirty(leaf);
3831 btrfs_set_inode_last_trans(trans, inode);
3834 btrfs_free_path(path);
3839 * copy everything in the in-memory inode into the btree.
3841 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3842 struct btrfs_root *root,
3843 struct btrfs_inode *inode)
3845 struct btrfs_fs_info *fs_info = root->fs_info;
3849 * If the inode is a free space inode, we can deadlock during commit
3850 * if we put it into the delayed code.
3852 * The data relocation inode should also be directly updated
3855 if (!btrfs_is_free_space_inode(inode)
3856 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3857 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3858 btrfs_update_root_times(trans, root);
3860 ret = btrfs_delayed_update_inode(trans, root, inode);
3862 btrfs_set_inode_last_trans(trans, inode);
3866 return btrfs_update_inode_item(trans, root, inode);
3869 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3870 struct btrfs_root *root, struct btrfs_inode *inode)
3874 ret = btrfs_update_inode(trans, root, inode);
3876 return btrfs_update_inode_item(trans, root, inode);
3881 * unlink helper that gets used here in inode.c and in the tree logging
3882 * recovery code. It remove a link in a directory with a given name, and
3883 * also drops the back refs in the inode to the directory
3885 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3886 struct btrfs_root *root,
3887 struct btrfs_inode *dir,
3888 struct btrfs_inode *inode,
3889 const char *name, int name_len)
3891 struct btrfs_fs_info *fs_info = root->fs_info;
3892 struct btrfs_path *path;
3894 struct btrfs_dir_item *di;
3896 u64 ino = btrfs_ino(inode);
3897 u64 dir_ino = btrfs_ino(dir);
3899 path = btrfs_alloc_path();
3905 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3906 name, name_len, -1);
3907 if (IS_ERR_OR_NULL(di)) {
3908 ret = di ? PTR_ERR(di) : -ENOENT;
3911 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3914 btrfs_release_path(path);
3917 * If we don't have dir index, we have to get it by looking up
3918 * the inode ref, since we get the inode ref, remove it directly,
3919 * it is unnecessary to do delayed deletion.
3921 * But if we have dir index, needn't search inode ref to get it.
3922 * Since the inode ref is close to the inode item, it is better
3923 * that we delay to delete it, and just do this deletion when
3924 * we update the inode item.
3926 if (inode->dir_index) {
3927 ret = btrfs_delayed_delete_inode_ref(inode);
3929 index = inode->dir_index;
3934 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3938 "failed to delete reference to %.*s, inode %llu parent %llu",
3939 name_len, name, ino, dir_ino);
3940 btrfs_abort_transaction(trans, ret);
3944 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3946 btrfs_abort_transaction(trans, ret);
3950 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3952 if (ret != 0 && ret != -ENOENT) {
3953 btrfs_abort_transaction(trans, ret);
3957 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3962 btrfs_abort_transaction(trans, ret);
3965 * If we have a pending delayed iput we could end up with the final iput
3966 * being run in btrfs-cleaner context. If we have enough of these built
3967 * up we can end up burning a lot of time in btrfs-cleaner without any
3968 * way to throttle the unlinks. Since we're currently holding a ref on
3969 * the inode we can run the delayed iput here without any issues as the
3970 * final iput won't be done until after we drop the ref we're currently
3973 btrfs_run_delayed_iput(fs_info, inode);
3975 btrfs_free_path(path);
3979 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3980 inode_inc_iversion(&inode->vfs_inode);
3981 inode_inc_iversion(&dir->vfs_inode);
3982 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3983 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3984 ret = btrfs_update_inode(trans, root, dir);
3989 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3990 struct btrfs_root *root,
3991 struct btrfs_inode *dir, struct btrfs_inode *inode,
3992 const char *name, int name_len)
3995 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3997 drop_nlink(&inode->vfs_inode);
3998 ret = btrfs_update_inode(trans, root, inode);
4004 * helper to start transaction for unlink and rmdir.
4006 * unlink and rmdir are special in btrfs, they do not always free space, so
4007 * if we cannot make our reservations the normal way try and see if there is
4008 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4009 * allow the unlink to occur.
4011 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4013 struct btrfs_root *root = BTRFS_I(dir)->root;
4016 * 1 for the possible orphan item
4017 * 1 for the dir item
4018 * 1 for the dir index
4019 * 1 for the inode ref
4022 return btrfs_start_transaction_fallback_global_rsv(root, 5);
4025 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4027 struct btrfs_root *root = BTRFS_I(dir)->root;
4028 struct btrfs_trans_handle *trans;
4029 struct inode *inode = d_inode(dentry);
4032 trans = __unlink_start_trans(dir);
4034 return PTR_ERR(trans);
4036 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4039 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4040 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4041 dentry->d_name.len);
4045 if (inode->i_nlink == 0) {
4046 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4052 btrfs_end_transaction(trans);
4053 btrfs_btree_balance_dirty(root->fs_info);
4057 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4058 struct inode *dir, struct dentry *dentry)
4060 struct btrfs_root *root = BTRFS_I(dir)->root;
4061 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4062 struct btrfs_path *path;
4063 struct extent_buffer *leaf;
4064 struct btrfs_dir_item *di;
4065 struct btrfs_key key;
4066 const char *name = dentry->d_name.name;
4067 int name_len = dentry->d_name.len;
4071 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4073 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4074 objectid = inode->root->root_key.objectid;
4075 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4076 objectid = inode->location.objectid;
4082 path = btrfs_alloc_path();
4086 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4087 name, name_len, -1);
4088 if (IS_ERR_OR_NULL(di)) {
4089 ret = di ? PTR_ERR(di) : -ENOENT;
4093 leaf = path->nodes[0];
4094 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4095 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4096 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4098 btrfs_abort_transaction(trans, ret);
4101 btrfs_release_path(path);
4104 * This is a placeholder inode for a subvolume we didn't have a
4105 * reference to at the time of the snapshot creation. In the meantime
4106 * we could have renamed the real subvol link into our snapshot, so
4107 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
4108 * Instead simply lookup the dir_index_item for this entry so we can
4109 * remove it. Otherwise we know we have a ref to the root and we can
4110 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4112 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4113 di = btrfs_search_dir_index_item(root, path, dir_ino,
4115 if (IS_ERR_OR_NULL(di)) {
4120 btrfs_abort_transaction(trans, ret);
4124 leaf = path->nodes[0];
4125 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4127 btrfs_release_path(path);
4129 ret = btrfs_del_root_ref(trans, objectid,
4130 root->root_key.objectid, dir_ino,
4131 &index, name, name_len);
4133 btrfs_abort_transaction(trans, ret);
4138 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4140 btrfs_abort_transaction(trans, ret);
4144 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4145 inode_inc_iversion(dir);
4146 dir->i_mtime = dir->i_ctime = current_time(dir);
4147 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
4149 btrfs_abort_transaction(trans, ret);
4151 btrfs_free_path(path);
4156 * Helper to check if the subvolume references other subvolumes or if it's
4159 static noinline int may_destroy_subvol(struct btrfs_root *root)
4161 struct btrfs_fs_info *fs_info = root->fs_info;
4162 struct btrfs_path *path;
4163 struct btrfs_dir_item *di;
4164 struct btrfs_key key;
4168 path = btrfs_alloc_path();
4172 /* Make sure this root isn't set as the default subvol */
4173 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4174 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4175 dir_id, "default", 7, 0);
4176 if (di && !IS_ERR(di)) {
4177 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4178 if (key.objectid == root->root_key.objectid) {
4181 "deleting default subvolume %llu is not allowed",
4185 btrfs_release_path(path);
4188 key.objectid = root->root_key.objectid;
4189 key.type = BTRFS_ROOT_REF_KEY;
4190 key.offset = (u64)-1;
4192 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4198 if (path->slots[0] > 0) {
4200 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4201 if (key.objectid == root->root_key.objectid &&
4202 key.type == BTRFS_ROOT_REF_KEY)
4206 btrfs_free_path(path);
4210 /* Delete all dentries for inodes belonging to the root */
4211 static void btrfs_prune_dentries(struct btrfs_root *root)
4213 struct btrfs_fs_info *fs_info = root->fs_info;
4214 struct rb_node *node;
4215 struct rb_node *prev;
4216 struct btrfs_inode *entry;
4217 struct inode *inode;
4220 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4221 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4223 spin_lock(&root->inode_lock);
4225 node = root->inode_tree.rb_node;
4229 entry = rb_entry(node, struct btrfs_inode, rb_node);
4231 if (objectid < btrfs_ino(entry))
4232 node = node->rb_left;
4233 else if (objectid > btrfs_ino(entry))
4234 node = node->rb_right;
4240 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4241 if (objectid <= btrfs_ino(entry)) {
4245 prev = rb_next(prev);
4249 entry = rb_entry(node, struct btrfs_inode, rb_node);
4250 objectid = btrfs_ino(entry) + 1;
4251 inode = igrab(&entry->vfs_inode);
4253 spin_unlock(&root->inode_lock);
4254 if (atomic_read(&inode->i_count) > 1)
4255 d_prune_aliases(inode);
4257 * btrfs_drop_inode will have it removed from the inode
4258 * cache when its usage count hits zero.
4262 spin_lock(&root->inode_lock);
4266 if (cond_resched_lock(&root->inode_lock))
4269 node = rb_next(node);
4271 spin_unlock(&root->inode_lock);
4274 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4276 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4277 struct btrfs_root *root = BTRFS_I(dir)->root;
4278 struct inode *inode = d_inode(dentry);
4279 struct btrfs_root *dest = BTRFS_I(inode)->root;
4280 struct btrfs_trans_handle *trans;
4281 struct btrfs_block_rsv block_rsv;
4286 * Don't allow to delete a subvolume with send in progress. This is
4287 * inside the inode lock so the error handling that has to drop the bit
4288 * again is not run concurrently.
4290 spin_lock(&dest->root_item_lock);
4291 if (dest->send_in_progress) {
4292 spin_unlock(&dest->root_item_lock);
4294 "attempt to delete subvolume %llu during send",
4295 dest->root_key.objectid);
4298 root_flags = btrfs_root_flags(&dest->root_item);
4299 btrfs_set_root_flags(&dest->root_item,
4300 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4301 spin_unlock(&dest->root_item_lock);
4303 down_write(&fs_info->subvol_sem);
4305 ret = may_destroy_subvol(dest);
4309 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4311 * One for dir inode,
4312 * two for dir entries,
4313 * two for root ref/backref.
4315 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4319 trans = btrfs_start_transaction(root, 0);
4320 if (IS_ERR(trans)) {
4321 ret = PTR_ERR(trans);
4324 trans->block_rsv = &block_rsv;
4325 trans->bytes_reserved = block_rsv.size;
4327 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4329 ret = btrfs_unlink_subvol(trans, dir, dentry);
4331 btrfs_abort_transaction(trans, ret);
4335 btrfs_record_root_in_trans(trans, dest);
4337 memset(&dest->root_item.drop_progress, 0,
4338 sizeof(dest->root_item.drop_progress));
4339 btrfs_set_root_drop_level(&dest->root_item, 0);
4340 btrfs_set_root_refs(&dest->root_item, 0);
4342 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4343 ret = btrfs_insert_orphan_item(trans,
4345 dest->root_key.objectid);
4347 btrfs_abort_transaction(trans, ret);
4352 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4353 BTRFS_UUID_KEY_SUBVOL,
4354 dest->root_key.objectid);
4355 if (ret && ret != -ENOENT) {
4356 btrfs_abort_transaction(trans, ret);
4359 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4360 ret = btrfs_uuid_tree_remove(trans,
4361 dest->root_item.received_uuid,
4362 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4363 dest->root_key.objectid);
4364 if (ret && ret != -ENOENT) {
4365 btrfs_abort_transaction(trans, ret);
4370 free_anon_bdev(dest->anon_dev);
4373 trans->block_rsv = NULL;
4374 trans->bytes_reserved = 0;
4375 ret = btrfs_end_transaction(trans);
4376 inode->i_flags |= S_DEAD;
4378 btrfs_subvolume_release_metadata(root, &block_rsv);
4380 up_write(&fs_info->subvol_sem);
4382 spin_lock(&dest->root_item_lock);
4383 root_flags = btrfs_root_flags(&dest->root_item);
4384 btrfs_set_root_flags(&dest->root_item,
4385 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4386 spin_unlock(&dest->root_item_lock);
4388 d_invalidate(dentry);
4389 btrfs_prune_dentries(dest);
4390 ASSERT(dest->send_in_progress == 0);
4396 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4398 struct inode *inode = d_inode(dentry);
4400 struct btrfs_root *root = BTRFS_I(dir)->root;
4401 struct btrfs_trans_handle *trans;
4402 u64 last_unlink_trans;
4404 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4406 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4407 return btrfs_delete_subvolume(dir, dentry);
4409 trans = __unlink_start_trans(dir);
4411 return PTR_ERR(trans);
4413 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4414 err = btrfs_unlink_subvol(trans, dir, dentry);
4418 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4422 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4424 /* now the directory is empty */
4425 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4426 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4427 dentry->d_name.len);
4429 btrfs_i_size_write(BTRFS_I(inode), 0);
4431 * Propagate the last_unlink_trans value of the deleted dir to
4432 * its parent directory. This is to prevent an unrecoverable
4433 * log tree in the case we do something like this:
4435 * 2) create snapshot under dir foo
4436 * 3) delete the snapshot
4439 * 6) fsync foo or some file inside foo
4441 if (last_unlink_trans >= trans->transid)
4442 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4445 btrfs_end_transaction(trans);
4446 btrfs_btree_balance_dirty(root->fs_info);
4452 * Return this if we need to call truncate_block for the last bit of the
4455 #define NEED_TRUNCATE_BLOCK 1
4458 * this can truncate away extent items, csum items and directory items.
4459 * It starts at a high offset and removes keys until it can't find
4460 * any higher than new_size
4462 * csum items that cross the new i_size are truncated to the new size
4465 * min_type is the minimum key type to truncate down to. If set to 0, this
4466 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4468 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4469 struct btrfs_root *root,
4470 struct btrfs_inode *inode,
4471 u64 new_size, u32 min_type)
4473 struct btrfs_fs_info *fs_info = root->fs_info;
4474 struct btrfs_path *path;
4475 struct extent_buffer *leaf;
4476 struct btrfs_file_extent_item *fi;
4477 struct btrfs_key key;
4478 struct btrfs_key found_key;
4479 u64 extent_start = 0;
4480 u64 extent_num_bytes = 0;
4481 u64 extent_offset = 0;
4483 u64 last_size = new_size;
4484 u32 found_type = (u8)-1;
4487 int pending_del_nr = 0;
4488 int pending_del_slot = 0;
4489 int extent_type = -1;
4491 u64 ino = btrfs_ino(inode);
4492 u64 bytes_deleted = 0;
4493 bool be_nice = false;
4494 bool should_throttle = false;
4495 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4496 struct extent_state *cached_state = NULL;
4498 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4501 * For non-free space inodes and non-shareable roots, we want to back
4502 * off from time to time. This means all inodes in subvolume roots,
4503 * reloc roots, and data reloc roots.
4505 if (!btrfs_is_free_space_inode(inode) &&
4506 test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4509 path = btrfs_alloc_path();
4512 path->reada = READA_BACK;
4514 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4515 lock_extent_bits(&inode->io_tree, lock_start, (u64)-1,
4519 * We want to drop from the next block forward in case this
4520 * new size is not block aligned since we will be keeping the
4521 * last block of the extent just the way it is.
4523 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4524 fs_info->sectorsize),
4529 * This function is also used to drop the items in the log tree before
4530 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4531 * it is used to drop the logged items. So we shouldn't kill the delayed
4534 if (min_type == 0 && root == inode->root)
4535 btrfs_kill_delayed_inode_items(inode);
4538 key.offset = (u64)-1;
4543 * with a 16K leaf size and 128MB extents, you can actually queue
4544 * up a huge file in a single leaf. Most of the time that
4545 * bytes_deleted is > 0, it will be huge by the time we get here
4547 if (be_nice && bytes_deleted > SZ_32M &&
4548 btrfs_should_end_transaction(trans)) {
4553 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4559 /* there are no items in the tree for us to truncate, we're
4562 if (path->slots[0] == 0)
4568 u64 clear_start = 0, clear_len = 0;
4571 leaf = path->nodes[0];
4572 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4573 found_type = found_key.type;
4575 if (found_key.objectid != ino)
4578 if (found_type < min_type)
4581 item_end = found_key.offset;
4582 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4583 fi = btrfs_item_ptr(leaf, path->slots[0],
4584 struct btrfs_file_extent_item);
4585 extent_type = btrfs_file_extent_type(leaf, fi);
4586 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4588 btrfs_file_extent_num_bytes(leaf, fi);
4590 trace_btrfs_truncate_show_fi_regular(
4591 inode, leaf, fi, found_key.offset);
4592 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4593 item_end += btrfs_file_extent_ram_bytes(leaf,
4596 trace_btrfs_truncate_show_fi_inline(
4597 inode, leaf, fi, path->slots[0],
4602 if (found_type > min_type) {
4605 if (item_end < new_size)
4607 if (found_key.offset >= new_size)
4613 /* FIXME, shrink the extent if the ref count is only 1 */
4614 if (found_type != BTRFS_EXTENT_DATA_KEY)
4617 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4620 clear_start = found_key.offset;
4621 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4623 u64 orig_num_bytes =
4624 btrfs_file_extent_num_bytes(leaf, fi);
4625 extent_num_bytes = ALIGN(new_size -
4627 fs_info->sectorsize);
4628 clear_start = ALIGN(new_size, fs_info->sectorsize);
4629 btrfs_set_file_extent_num_bytes(leaf, fi,
4631 num_dec = (orig_num_bytes -
4633 if (test_bit(BTRFS_ROOT_SHAREABLE,
4636 inode_sub_bytes(&inode->vfs_inode,
4638 btrfs_mark_buffer_dirty(leaf);
4641 btrfs_file_extent_disk_num_bytes(leaf,
4643 extent_offset = found_key.offset -
4644 btrfs_file_extent_offset(leaf, fi);
4646 /* FIXME blocksize != 4096 */
4647 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4648 if (extent_start != 0) {
4650 if (test_bit(BTRFS_ROOT_SHAREABLE,
4652 inode_sub_bytes(&inode->vfs_inode,
4656 clear_len = num_dec;
4657 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4659 * we can't truncate inline items that have had
4663 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4664 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4665 btrfs_file_extent_compression(leaf, fi) == 0) {
4666 u32 size = (u32)(new_size - found_key.offset);
4668 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4669 size = btrfs_file_extent_calc_inline_size(size);
4670 btrfs_truncate_item(path, size, 1);
4671 } else if (!del_item) {
4673 * We have to bail so the last_size is set to
4674 * just before this extent.
4676 ret = NEED_TRUNCATE_BLOCK;
4680 * Inline extents are special, we just treat
4681 * them as a full sector worth in the file
4682 * extent tree just for simplicity sake.
4684 clear_len = fs_info->sectorsize;
4687 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4688 inode_sub_bytes(&inode->vfs_inode,
4689 item_end + 1 - new_size);
4693 * We use btrfs_truncate_inode_items() to clean up log trees for
4694 * multiple fsyncs, and in this case we don't want to clear the
4695 * file extent range because it's just the log.
4697 if (root == inode->root) {
4698 ret = btrfs_inode_clear_file_extent_range(inode,
4699 clear_start, clear_len);
4701 btrfs_abort_transaction(trans, ret);
4707 last_size = found_key.offset;
4709 last_size = new_size;
4711 if (!pending_del_nr) {
4712 /* no pending yet, add ourselves */
4713 pending_del_slot = path->slots[0];
4715 } else if (pending_del_nr &&
4716 path->slots[0] + 1 == pending_del_slot) {
4717 /* hop on the pending chunk */
4719 pending_del_slot = path->slots[0];
4726 should_throttle = false;
4729 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4730 struct btrfs_ref ref = { 0 };
4732 bytes_deleted += extent_num_bytes;
4734 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4735 extent_start, extent_num_bytes, 0);
4736 ref.real_root = root->root_key.objectid;
4737 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4738 ino, extent_offset);
4739 ret = btrfs_free_extent(trans, &ref);
4741 btrfs_abort_transaction(trans, ret);
4745 if (btrfs_should_throttle_delayed_refs(trans))
4746 should_throttle = true;
4750 if (found_type == BTRFS_INODE_ITEM_KEY)
4753 if (path->slots[0] == 0 ||
4754 path->slots[0] != pending_del_slot ||
4756 if (pending_del_nr) {
4757 ret = btrfs_del_items(trans, root, path,
4761 btrfs_abort_transaction(trans, ret);
4766 btrfs_release_path(path);
4769 * We can generate a lot of delayed refs, so we need to
4770 * throttle every once and a while and make sure we're
4771 * adding enough space to keep up with the work we are
4772 * generating. Since we hold a transaction here we
4773 * can't flush, and we don't want to FLUSH_LIMIT because
4774 * we could have generated too many delayed refs to
4775 * actually allocate, so just bail if we're short and
4776 * let the normal reservation dance happen higher up.
4778 if (should_throttle) {
4779 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4780 BTRFS_RESERVE_NO_FLUSH);
4792 if (ret >= 0 && pending_del_nr) {
4795 err = btrfs_del_items(trans, root, path, pending_del_slot,
4798 btrfs_abort_transaction(trans, err);
4802 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4803 ASSERT(last_size >= new_size);
4804 if (!ret && last_size > new_size)
4805 last_size = new_size;
4806 btrfs_inode_safe_disk_i_size_write(inode, last_size);
4807 unlock_extent_cached(&inode->io_tree, lock_start, (u64)-1,
4811 btrfs_free_path(path);
4816 * btrfs_truncate_block - read, zero a chunk and write a block
4817 * @inode - inode that we're zeroing
4818 * @from - the offset to start zeroing
4819 * @len - the length to zero, 0 to zero the entire range respective to the
4821 * @front - zero up to the offset instead of from the offset on
4823 * This will find the block for the "from" offset and cow the block and zero the
4824 * part we want to zero. This is used with truncate and hole punching.
4826 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4829 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4830 struct address_space *mapping = inode->vfs_inode.i_mapping;
4831 struct extent_io_tree *io_tree = &inode->io_tree;
4832 struct btrfs_ordered_extent *ordered;
4833 struct extent_state *cached_state = NULL;
4834 struct extent_changeset *data_reserved = NULL;
4836 bool only_release_metadata = false;
4837 u32 blocksize = fs_info->sectorsize;
4838 pgoff_t index = from >> PAGE_SHIFT;
4839 unsigned offset = from & (blocksize - 1);
4841 gfp_t mask = btrfs_alloc_write_mask(mapping);
4842 size_t write_bytes = blocksize;
4847 if (IS_ALIGNED(offset, blocksize) &&
4848 (!len || IS_ALIGNED(len, blocksize)))
4851 block_start = round_down(from, blocksize);
4852 block_end = block_start + blocksize - 1;
4854 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4857 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
4858 /* For nocow case, no need to reserve data space */
4859 only_release_metadata = true;
4864 ret = btrfs_delalloc_reserve_metadata(inode, blocksize);
4866 if (!only_release_metadata)
4867 btrfs_free_reserved_data_space(inode, data_reserved,
4868 block_start, blocksize);
4872 page = find_or_create_page(mapping, index, mask);
4874 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4876 btrfs_delalloc_release_extents(inode, blocksize);
4880 ret = set_page_extent_mapped(page);
4884 if (!PageUptodate(page)) {
4885 ret = btrfs_readpage(NULL, page);
4887 if (page->mapping != mapping) {
4892 if (!PageUptodate(page)) {
4897 wait_on_page_writeback(page);
4899 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4901 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4903 unlock_extent_cached(io_tree, block_start, block_end,
4907 btrfs_start_ordered_extent(ordered, 1);
4908 btrfs_put_ordered_extent(ordered);
4912 clear_extent_bit(&inode->io_tree, block_start, block_end,
4913 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4914 0, 0, &cached_state);
4916 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4919 unlock_extent_cached(io_tree, block_start, block_end,
4924 if (offset != blocksize) {
4926 len = blocksize - offset;
4929 memset(kaddr + (block_start - page_offset(page)),
4932 memset(kaddr + (block_start - page_offset(page)) + offset,
4934 flush_dcache_page(page);
4937 ClearPageChecked(page);
4938 set_page_dirty(page);
4939 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4941 if (only_release_metadata)
4942 set_extent_bit(&inode->io_tree, block_start, block_end,
4943 EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
4947 if (only_release_metadata)
4948 btrfs_delalloc_release_metadata(inode, blocksize, true);
4950 btrfs_delalloc_release_space(inode, data_reserved,
4951 block_start, blocksize, true);
4953 btrfs_delalloc_release_extents(inode, blocksize);
4957 if (only_release_metadata)
4958 btrfs_check_nocow_unlock(inode);
4959 extent_changeset_free(data_reserved);
4963 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4964 u64 offset, u64 len)
4966 struct btrfs_fs_info *fs_info = root->fs_info;
4967 struct btrfs_trans_handle *trans;
4968 struct btrfs_drop_extents_args drop_args = { 0 };
4972 * Still need to make sure the inode looks like it's been updated so
4973 * that any holes get logged if we fsync.
4975 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4976 inode->last_trans = fs_info->generation;
4977 inode->last_sub_trans = root->log_transid;
4978 inode->last_log_commit = root->last_log_commit;
4983 * 1 - for the one we're dropping
4984 * 1 - for the one we're adding
4985 * 1 - for updating the inode.
4987 trans = btrfs_start_transaction(root, 3);
4989 return PTR_ERR(trans);
4991 drop_args.start = offset;
4992 drop_args.end = offset + len;
4993 drop_args.drop_cache = true;
4995 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4997 btrfs_abort_transaction(trans, ret);
4998 btrfs_end_transaction(trans);
5002 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
5003 offset, 0, 0, len, 0, len, 0, 0, 0);
5005 btrfs_abort_transaction(trans, ret);
5007 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5008 btrfs_update_inode(trans, root, inode);
5010 btrfs_end_transaction(trans);
5015 * This function puts in dummy file extents for the area we're creating a hole
5016 * for. So if we are truncating this file to a larger size we need to insert
5017 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5018 * the range between oldsize and size
5020 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5022 struct btrfs_root *root = inode->root;
5023 struct btrfs_fs_info *fs_info = root->fs_info;
5024 struct extent_io_tree *io_tree = &inode->io_tree;
5025 struct extent_map *em = NULL;
5026 struct extent_state *cached_state = NULL;
5027 struct extent_map_tree *em_tree = &inode->extent_tree;
5028 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5029 u64 block_end = ALIGN(size, fs_info->sectorsize);
5036 * If our size started in the middle of a block we need to zero out the
5037 * rest of the block before we expand the i_size, otherwise we could
5038 * expose stale data.
5040 err = btrfs_truncate_block(inode, oldsize, 0, 0);
5044 if (size <= hole_start)
5047 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5049 cur_offset = hole_start;
5051 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5052 block_end - cur_offset);
5058 last_byte = min(extent_map_end(em), block_end);
5059 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5060 hole_size = last_byte - cur_offset;
5062 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5063 struct extent_map *hole_em;
5065 err = maybe_insert_hole(root, inode, cur_offset,
5070 err = btrfs_inode_set_file_extent_range(inode,
5071 cur_offset, hole_size);
5075 btrfs_drop_extent_cache(inode, cur_offset,
5076 cur_offset + hole_size - 1, 0);
5077 hole_em = alloc_extent_map();
5079 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5080 &inode->runtime_flags);
5083 hole_em->start = cur_offset;
5084 hole_em->len = hole_size;
5085 hole_em->orig_start = cur_offset;
5087 hole_em->block_start = EXTENT_MAP_HOLE;
5088 hole_em->block_len = 0;
5089 hole_em->orig_block_len = 0;
5090 hole_em->ram_bytes = hole_size;
5091 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5092 hole_em->generation = fs_info->generation;
5095 write_lock(&em_tree->lock);
5096 err = add_extent_mapping(em_tree, hole_em, 1);
5097 write_unlock(&em_tree->lock);
5100 btrfs_drop_extent_cache(inode, cur_offset,
5104 free_extent_map(hole_em);
5106 err = btrfs_inode_set_file_extent_range(inode,
5107 cur_offset, hole_size);
5112 free_extent_map(em);
5114 cur_offset = last_byte;
5115 if (cur_offset >= block_end)
5118 free_extent_map(em);
5119 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5123 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5125 struct btrfs_root *root = BTRFS_I(inode)->root;
5126 struct btrfs_trans_handle *trans;
5127 loff_t oldsize = i_size_read(inode);
5128 loff_t newsize = attr->ia_size;
5129 int mask = attr->ia_valid;
5133 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5134 * special case where we need to update the times despite not having
5135 * these flags set. For all other operations the VFS set these flags
5136 * explicitly if it wants a timestamp update.
5138 if (newsize != oldsize) {
5139 inode_inc_iversion(inode);
5140 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5141 inode->i_ctime = inode->i_mtime =
5142 current_time(inode);
5145 if (newsize > oldsize) {
5147 * Don't do an expanding truncate while snapshotting is ongoing.
5148 * This is to ensure the snapshot captures a fully consistent
5149 * state of this file - if the snapshot captures this expanding
5150 * truncation, it must capture all writes that happened before
5153 btrfs_drew_write_lock(&root->snapshot_lock);
5154 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5156 btrfs_drew_write_unlock(&root->snapshot_lock);
5160 trans = btrfs_start_transaction(root, 1);
5161 if (IS_ERR(trans)) {
5162 btrfs_drew_write_unlock(&root->snapshot_lock);
5163 return PTR_ERR(trans);
5166 i_size_write(inode, newsize);
5167 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5168 pagecache_isize_extended(inode, oldsize, newsize);
5169 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5170 btrfs_drew_write_unlock(&root->snapshot_lock);
5171 btrfs_end_transaction(trans);
5173 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5175 if (btrfs_is_zoned(fs_info)) {
5176 ret = btrfs_wait_ordered_range(inode,
5177 ALIGN(newsize, fs_info->sectorsize),
5184 * We're truncating a file that used to have good data down to
5185 * zero. Make sure any new writes to the file get on disk
5189 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5190 &BTRFS_I(inode)->runtime_flags);
5192 truncate_setsize(inode, newsize);
5194 inode_dio_wait(inode);
5196 ret = btrfs_truncate(inode, newsize == oldsize);
5197 if (ret && inode->i_nlink) {
5201 * Truncate failed, so fix up the in-memory size. We
5202 * adjusted disk_i_size down as we removed extents, so
5203 * wait for disk_i_size to be stable and then update the
5204 * in-memory size to match.
5206 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5209 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5216 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5219 struct inode *inode = d_inode(dentry);
5220 struct btrfs_root *root = BTRFS_I(inode)->root;
5223 if (btrfs_root_readonly(root))
5226 err = setattr_prepare(&init_user_ns, dentry, attr);
5230 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5231 err = btrfs_setsize(inode, attr);
5236 if (attr->ia_valid) {
5237 setattr_copy(&init_user_ns, inode, attr);
5238 inode_inc_iversion(inode);
5239 err = btrfs_dirty_inode(inode);
5241 if (!err && attr->ia_valid & ATTR_MODE)
5242 err = posix_acl_chmod(&init_user_ns, inode,
5250 * While truncating the inode pages during eviction, we get the VFS calling
5251 * btrfs_invalidatepage() against each page of the inode. This is slow because
5252 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5253 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5254 * extent_state structures over and over, wasting lots of time.
5256 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5257 * those expensive operations on a per page basis and do only the ordered io
5258 * finishing, while we release here the extent_map and extent_state structures,
5259 * without the excessive merging and splitting.
5261 static void evict_inode_truncate_pages(struct inode *inode)
5263 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5264 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5265 struct rb_node *node;
5267 ASSERT(inode->i_state & I_FREEING);
5268 truncate_inode_pages_final(&inode->i_data);
5270 write_lock(&map_tree->lock);
5271 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5272 struct extent_map *em;
5274 node = rb_first_cached(&map_tree->map);
5275 em = rb_entry(node, struct extent_map, rb_node);
5276 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5277 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5278 remove_extent_mapping(map_tree, em);
5279 free_extent_map(em);
5280 if (need_resched()) {
5281 write_unlock(&map_tree->lock);
5283 write_lock(&map_tree->lock);
5286 write_unlock(&map_tree->lock);
5289 * Keep looping until we have no more ranges in the io tree.
5290 * We can have ongoing bios started by readahead that have
5291 * their endio callback (extent_io.c:end_bio_extent_readpage)
5292 * still in progress (unlocked the pages in the bio but did not yet
5293 * unlocked the ranges in the io tree). Therefore this means some
5294 * ranges can still be locked and eviction started because before
5295 * submitting those bios, which are executed by a separate task (work
5296 * queue kthread), inode references (inode->i_count) were not taken
5297 * (which would be dropped in the end io callback of each bio).
5298 * Therefore here we effectively end up waiting for those bios and
5299 * anyone else holding locked ranges without having bumped the inode's
5300 * reference count - if we don't do it, when they access the inode's
5301 * io_tree to unlock a range it may be too late, leading to an
5302 * use-after-free issue.
5304 spin_lock(&io_tree->lock);
5305 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5306 struct extent_state *state;
5307 struct extent_state *cached_state = NULL;
5310 unsigned state_flags;
5312 node = rb_first(&io_tree->state);
5313 state = rb_entry(node, struct extent_state, rb_node);
5314 start = state->start;
5316 state_flags = state->state;
5317 spin_unlock(&io_tree->lock);
5319 lock_extent_bits(io_tree, start, end, &cached_state);
5322 * If still has DELALLOC flag, the extent didn't reach disk,
5323 * and its reserved space won't be freed by delayed_ref.
5324 * So we need to free its reserved space here.
5325 * (Refer to comment in btrfs_invalidatepage, case 2)
5327 * Note, end is the bytenr of last byte, so we need + 1 here.
5329 if (state_flags & EXTENT_DELALLOC)
5330 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5333 clear_extent_bit(io_tree, start, end,
5334 EXTENT_LOCKED | EXTENT_DELALLOC |
5335 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5339 spin_lock(&io_tree->lock);
5341 spin_unlock(&io_tree->lock);
5344 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5345 struct btrfs_block_rsv *rsv)
5347 struct btrfs_fs_info *fs_info = root->fs_info;
5348 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5349 struct btrfs_trans_handle *trans;
5350 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5354 * Eviction should be taking place at some place safe because of our
5355 * delayed iputs. However the normal flushing code will run delayed
5356 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5358 * We reserve the delayed_refs_extra here again because we can't use
5359 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5360 * above. We reserve our extra bit here because we generate a ton of
5361 * delayed refs activity by truncating.
5363 * If we cannot make our reservation we'll attempt to steal from the
5364 * global reserve, because we really want to be able to free up space.
5366 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5367 BTRFS_RESERVE_FLUSH_EVICT);
5370 * Try to steal from the global reserve if there is space for
5373 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5374 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5376 "could not allocate space for delete; will truncate on mount");
5377 return ERR_PTR(-ENOSPC);
5379 delayed_refs_extra = 0;
5382 trans = btrfs_join_transaction(root);
5386 if (delayed_refs_extra) {
5387 trans->block_rsv = &fs_info->trans_block_rsv;
5388 trans->bytes_reserved = delayed_refs_extra;
5389 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5390 delayed_refs_extra, 1);
5395 void btrfs_evict_inode(struct inode *inode)
5397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5398 struct btrfs_trans_handle *trans;
5399 struct btrfs_root *root = BTRFS_I(inode)->root;
5400 struct btrfs_block_rsv *rsv;
5403 trace_btrfs_inode_evict(inode);
5410 evict_inode_truncate_pages(inode);
5412 if (inode->i_nlink &&
5413 ((btrfs_root_refs(&root->root_item) != 0 &&
5414 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5415 btrfs_is_free_space_inode(BTRFS_I(inode))))
5418 if (is_bad_inode(inode))
5421 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5423 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5426 if (inode->i_nlink > 0) {
5427 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5428 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5432 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5436 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5439 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5442 btrfs_i_size_write(BTRFS_I(inode), 0);
5445 trans = evict_refill_and_join(root, rsv);
5449 trans->block_rsv = rsv;
5451 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
5453 trans->block_rsv = &fs_info->trans_block_rsv;
5454 btrfs_end_transaction(trans);
5455 btrfs_btree_balance_dirty(fs_info);
5456 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5463 * Errors here aren't a big deal, it just means we leave orphan items in
5464 * the tree. They will be cleaned up on the next mount. If the inode
5465 * number gets reused, cleanup deletes the orphan item without doing
5466 * anything, and unlink reuses the existing orphan item.
5468 * If it turns out that we are dropping too many of these, we might want
5469 * to add a mechanism for retrying these after a commit.
5471 trans = evict_refill_and_join(root, rsv);
5472 if (!IS_ERR(trans)) {
5473 trans->block_rsv = rsv;
5474 btrfs_orphan_del(trans, BTRFS_I(inode));
5475 trans->block_rsv = &fs_info->trans_block_rsv;
5476 btrfs_end_transaction(trans);
5480 btrfs_free_block_rsv(fs_info, rsv);
5483 * If we didn't successfully delete, the orphan item will still be in
5484 * the tree and we'll retry on the next mount. Again, we might also want
5485 * to retry these periodically in the future.
5487 btrfs_remove_delayed_node(BTRFS_I(inode));
5492 * Return the key found in the dir entry in the location pointer, fill @type
5493 * with BTRFS_FT_*, and return 0.
5495 * If no dir entries were found, returns -ENOENT.
5496 * If found a corrupted location in dir entry, returns -EUCLEAN.
5498 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5499 struct btrfs_key *location, u8 *type)
5501 const char *name = dentry->d_name.name;
5502 int namelen = dentry->d_name.len;
5503 struct btrfs_dir_item *di;
5504 struct btrfs_path *path;
5505 struct btrfs_root *root = BTRFS_I(dir)->root;
5508 path = btrfs_alloc_path();
5512 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5514 if (IS_ERR_OR_NULL(di)) {
5515 ret = di ? PTR_ERR(di) : -ENOENT;
5519 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5520 if (location->type != BTRFS_INODE_ITEM_KEY &&
5521 location->type != BTRFS_ROOT_ITEM_KEY) {
5523 btrfs_warn(root->fs_info,
5524 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5525 __func__, name, btrfs_ino(BTRFS_I(dir)),
5526 location->objectid, location->type, location->offset);
5529 *type = btrfs_dir_type(path->nodes[0], di);
5531 btrfs_free_path(path);
5536 * when we hit a tree root in a directory, the btrfs part of the inode
5537 * needs to be changed to reflect the root directory of the tree root. This
5538 * is kind of like crossing a mount point.
5540 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5542 struct dentry *dentry,
5543 struct btrfs_key *location,
5544 struct btrfs_root **sub_root)
5546 struct btrfs_path *path;
5547 struct btrfs_root *new_root;
5548 struct btrfs_root_ref *ref;
5549 struct extent_buffer *leaf;
5550 struct btrfs_key key;
5554 path = btrfs_alloc_path();
5561 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5562 key.type = BTRFS_ROOT_REF_KEY;
5563 key.offset = location->objectid;
5565 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5572 leaf = path->nodes[0];
5573 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5574 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5575 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5578 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5579 (unsigned long)(ref + 1),
5580 dentry->d_name.len);
5584 btrfs_release_path(path);
5586 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5587 if (IS_ERR(new_root)) {
5588 err = PTR_ERR(new_root);
5592 *sub_root = new_root;
5593 location->objectid = btrfs_root_dirid(&new_root->root_item);
5594 location->type = BTRFS_INODE_ITEM_KEY;
5595 location->offset = 0;
5598 btrfs_free_path(path);
5602 static void inode_tree_add(struct inode *inode)
5604 struct btrfs_root *root = BTRFS_I(inode)->root;
5605 struct btrfs_inode *entry;
5607 struct rb_node *parent;
5608 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5609 u64 ino = btrfs_ino(BTRFS_I(inode));
5611 if (inode_unhashed(inode))
5614 spin_lock(&root->inode_lock);
5615 p = &root->inode_tree.rb_node;
5618 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5620 if (ino < btrfs_ino(entry))
5621 p = &parent->rb_left;
5622 else if (ino > btrfs_ino(entry))
5623 p = &parent->rb_right;
5625 WARN_ON(!(entry->vfs_inode.i_state &
5626 (I_WILL_FREE | I_FREEING)));
5627 rb_replace_node(parent, new, &root->inode_tree);
5628 RB_CLEAR_NODE(parent);
5629 spin_unlock(&root->inode_lock);
5633 rb_link_node(new, parent, p);
5634 rb_insert_color(new, &root->inode_tree);
5635 spin_unlock(&root->inode_lock);
5638 static void inode_tree_del(struct btrfs_inode *inode)
5640 struct btrfs_root *root = inode->root;
5643 spin_lock(&root->inode_lock);
5644 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5645 rb_erase(&inode->rb_node, &root->inode_tree);
5646 RB_CLEAR_NODE(&inode->rb_node);
5647 empty = RB_EMPTY_ROOT(&root->inode_tree);
5649 spin_unlock(&root->inode_lock);
5651 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5652 spin_lock(&root->inode_lock);
5653 empty = RB_EMPTY_ROOT(&root->inode_tree);
5654 spin_unlock(&root->inode_lock);
5656 btrfs_add_dead_root(root);
5661 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5663 struct btrfs_iget_args *args = p;
5665 inode->i_ino = args->ino;
5666 BTRFS_I(inode)->location.objectid = args->ino;
5667 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5668 BTRFS_I(inode)->location.offset = 0;
5669 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5670 BUG_ON(args->root && !BTRFS_I(inode)->root);
5674 static int btrfs_find_actor(struct inode *inode, void *opaque)
5676 struct btrfs_iget_args *args = opaque;
5678 return args->ino == BTRFS_I(inode)->location.objectid &&
5679 args->root == BTRFS_I(inode)->root;
5682 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5683 struct btrfs_root *root)
5685 struct inode *inode;
5686 struct btrfs_iget_args args;
5687 unsigned long hashval = btrfs_inode_hash(ino, root);
5692 inode = iget5_locked(s, hashval, btrfs_find_actor,
5693 btrfs_init_locked_inode,
5699 * Get an inode object given its inode number and corresponding root.
5700 * Path can be preallocated to prevent recursing back to iget through
5701 * allocator. NULL is also valid but may require an additional allocation
5704 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5705 struct btrfs_root *root, struct btrfs_path *path)
5707 struct inode *inode;
5709 inode = btrfs_iget_locked(s, ino, root);
5711 return ERR_PTR(-ENOMEM);
5713 if (inode->i_state & I_NEW) {
5716 ret = btrfs_read_locked_inode(inode, path);
5718 inode_tree_add(inode);
5719 unlock_new_inode(inode);
5723 * ret > 0 can come from btrfs_search_slot called by
5724 * btrfs_read_locked_inode, this means the inode item
5729 inode = ERR_PTR(ret);
5736 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5738 return btrfs_iget_path(s, ino, root, NULL);
5741 static struct inode *new_simple_dir(struct super_block *s,
5742 struct btrfs_key *key,
5743 struct btrfs_root *root)
5745 struct inode *inode = new_inode(s);
5748 return ERR_PTR(-ENOMEM);
5750 BTRFS_I(inode)->root = btrfs_grab_root(root);
5751 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5752 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5754 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5756 * We only need lookup, the rest is read-only and there's no inode
5757 * associated with the dentry
5759 inode->i_op = &simple_dir_inode_operations;
5760 inode->i_opflags &= ~IOP_XATTR;
5761 inode->i_fop = &simple_dir_operations;
5762 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5763 inode->i_mtime = current_time(inode);
5764 inode->i_atime = inode->i_mtime;
5765 inode->i_ctime = inode->i_mtime;
5766 BTRFS_I(inode)->i_otime = inode->i_mtime;
5771 static inline u8 btrfs_inode_type(struct inode *inode)
5774 * Compile-time asserts that generic FT_* types still match
5777 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5778 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5779 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5780 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5781 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5782 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5783 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5784 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5786 return fs_umode_to_ftype(inode->i_mode);
5789 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5791 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5792 struct inode *inode;
5793 struct btrfs_root *root = BTRFS_I(dir)->root;
5794 struct btrfs_root *sub_root = root;
5795 struct btrfs_key location;
5799 if (dentry->d_name.len > BTRFS_NAME_LEN)
5800 return ERR_PTR(-ENAMETOOLONG);
5802 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5804 return ERR_PTR(ret);
5806 if (location.type == BTRFS_INODE_ITEM_KEY) {
5807 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5811 /* Do extra check against inode mode with di_type */
5812 if (btrfs_inode_type(inode) != di_type) {
5814 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5815 inode->i_mode, btrfs_inode_type(inode),
5818 return ERR_PTR(-EUCLEAN);
5823 ret = fixup_tree_root_location(fs_info, dir, dentry,
5824 &location, &sub_root);
5827 inode = ERR_PTR(ret);
5829 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5831 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5833 if (root != sub_root)
5834 btrfs_put_root(sub_root);
5836 if (!IS_ERR(inode) && root != sub_root) {
5837 down_read(&fs_info->cleanup_work_sem);
5838 if (!sb_rdonly(inode->i_sb))
5839 ret = btrfs_orphan_cleanup(sub_root);
5840 up_read(&fs_info->cleanup_work_sem);
5843 inode = ERR_PTR(ret);
5850 static int btrfs_dentry_delete(const struct dentry *dentry)
5852 struct btrfs_root *root;
5853 struct inode *inode = d_inode(dentry);
5855 if (!inode && !IS_ROOT(dentry))
5856 inode = d_inode(dentry->d_parent);
5859 root = BTRFS_I(inode)->root;
5860 if (btrfs_root_refs(&root->root_item) == 0)
5863 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5869 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5872 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5874 if (inode == ERR_PTR(-ENOENT))
5876 return d_splice_alias(inode, dentry);
5880 * All this infrastructure exists because dir_emit can fault, and we are holding
5881 * the tree lock when doing readdir. For now just allocate a buffer and copy
5882 * our information into that, and then dir_emit from the buffer. This is
5883 * similar to what NFS does, only we don't keep the buffer around in pagecache
5884 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5885 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5888 static int btrfs_opendir(struct inode *inode, struct file *file)
5890 struct btrfs_file_private *private;
5892 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5895 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5896 if (!private->filldir_buf) {
5900 file->private_data = private;
5911 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5914 struct dir_entry *entry = addr;
5915 char *name = (char *)(entry + 1);
5917 ctx->pos = get_unaligned(&entry->offset);
5918 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5919 get_unaligned(&entry->ino),
5920 get_unaligned(&entry->type)))
5922 addr += sizeof(struct dir_entry) +
5923 get_unaligned(&entry->name_len);
5929 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5931 struct inode *inode = file_inode(file);
5932 struct btrfs_root *root = BTRFS_I(inode)->root;
5933 struct btrfs_file_private *private = file->private_data;
5934 struct btrfs_dir_item *di;
5935 struct btrfs_key key;
5936 struct btrfs_key found_key;
5937 struct btrfs_path *path;
5939 struct list_head ins_list;
5940 struct list_head del_list;
5942 struct extent_buffer *leaf;
5949 struct btrfs_key location;
5951 if (!dir_emit_dots(file, ctx))
5954 path = btrfs_alloc_path();
5958 addr = private->filldir_buf;
5959 path->reada = READA_FORWARD;
5961 INIT_LIST_HEAD(&ins_list);
5962 INIT_LIST_HEAD(&del_list);
5963 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5966 key.type = BTRFS_DIR_INDEX_KEY;
5967 key.offset = ctx->pos;
5968 key.objectid = btrfs_ino(BTRFS_I(inode));
5970 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5975 struct dir_entry *entry;
5977 leaf = path->nodes[0];
5978 slot = path->slots[0];
5979 if (slot >= btrfs_header_nritems(leaf)) {
5980 ret = btrfs_next_leaf(root, path);
5988 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5990 if (found_key.objectid != key.objectid)
5992 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5994 if (found_key.offset < ctx->pos)
5996 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5998 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5999 name_len = btrfs_dir_name_len(leaf, di);
6000 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6002 btrfs_release_path(path);
6003 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6006 addr = private->filldir_buf;
6013 put_unaligned(name_len, &entry->name_len);
6014 name_ptr = (char *)(entry + 1);
6015 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6017 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6019 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6020 put_unaligned(location.objectid, &entry->ino);
6021 put_unaligned(found_key.offset, &entry->offset);
6023 addr += sizeof(struct dir_entry) + name_len;
6024 total_len += sizeof(struct dir_entry) + name_len;
6028 btrfs_release_path(path);
6030 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6034 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6039 * Stop new entries from being returned after we return the last
6042 * New directory entries are assigned a strictly increasing
6043 * offset. This means that new entries created during readdir
6044 * are *guaranteed* to be seen in the future by that readdir.
6045 * This has broken buggy programs which operate on names as
6046 * they're returned by readdir. Until we re-use freed offsets
6047 * we have this hack to stop new entries from being returned
6048 * under the assumption that they'll never reach this huge
6051 * This is being careful not to overflow 32bit loff_t unless the
6052 * last entry requires it because doing so has broken 32bit apps
6055 if (ctx->pos >= INT_MAX)
6056 ctx->pos = LLONG_MAX;
6063 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6064 btrfs_free_path(path);
6069 * This is somewhat expensive, updating the tree every time the
6070 * inode changes. But, it is most likely to find the inode in cache.
6071 * FIXME, needs more benchmarking...there are no reasons other than performance
6072 * to keep or drop this code.
6074 static int btrfs_dirty_inode(struct inode *inode)
6076 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6077 struct btrfs_root *root = BTRFS_I(inode)->root;
6078 struct btrfs_trans_handle *trans;
6081 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6084 trans = btrfs_join_transaction(root);
6086 return PTR_ERR(trans);
6088 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6089 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6090 /* whoops, lets try again with the full transaction */
6091 btrfs_end_transaction(trans);
6092 trans = btrfs_start_transaction(root, 1);
6094 return PTR_ERR(trans);
6096 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6098 btrfs_end_transaction(trans);
6099 if (BTRFS_I(inode)->delayed_node)
6100 btrfs_balance_delayed_items(fs_info);
6106 * This is a copy of file_update_time. We need this so we can return error on
6107 * ENOSPC for updating the inode in the case of file write and mmap writes.
6109 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6112 struct btrfs_root *root = BTRFS_I(inode)->root;
6113 bool dirty = flags & ~S_VERSION;
6115 if (btrfs_root_readonly(root))
6118 if (flags & S_VERSION)
6119 dirty |= inode_maybe_inc_iversion(inode, dirty);
6120 if (flags & S_CTIME)
6121 inode->i_ctime = *now;
6122 if (flags & S_MTIME)
6123 inode->i_mtime = *now;
6124 if (flags & S_ATIME)
6125 inode->i_atime = *now;
6126 return dirty ? btrfs_dirty_inode(inode) : 0;
6130 * find the highest existing sequence number in a directory
6131 * and then set the in-memory index_cnt variable to reflect
6132 * free sequence numbers
6134 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6136 struct btrfs_root *root = inode->root;
6137 struct btrfs_key key, found_key;
6138 struct btrfs_path *path;
6139 struct extent_buffer *leaf;
6142 key.objectid = btrfs_ino(inode);
6143 key.type = BTRFS_DIR_INDEX_KEY;
6144 key.offset = (u64)-1;
6146 path = btrfs_alloc_path();
6150 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6153 /* FIXME: we should be able to handle this */
6159 * MAGIC NUMBER EXPLANATION:
6160 * since we search a directory based on f_pos we have to start at 2
6161 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6162 * else has to start at 2
6164 if (path->slots[0] == 0) {
6165 inode->index_cnt = 2;
6171 leaf = path->nodes[0];
6172 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6174 if (found_key.objectid != btrfs_ino(inode) ||
6175 found_key.type != BTRFS_DIR_INDEX_KEY) {
6176 inode->index_cnt = 2;
6180 inode->index_cnt = found_key.offset + 1;
6182 btrfs_free_path(path);
6187 * helper to find a free sequence number in a given directory. This current
6188 * code is very simple, later versions will do smarter things in the btree
6190 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6194 if (dir->index_cnt == (u64)-1) {
6195 ret = btrfs_inode_delayed_dir_index_count(dir);
6197 ret = btrfs_set_inode_index_count(dir);
6203 *index = dir->index_cnt;
6209 static int btrfs_insert_inode_locked(struct inode *inode)
6211 struct btrfs_iget_args args;
6213 args.ino = BTRFS_I(inode)->location.objectid;
6214 args.root = BTRFS_I(inode)->root;
6216 return insert_inode_locked4(inode,
6217 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6218 btrfs_find_actor, &args);
6222 * Inherit flags from the parent inode.
6224 * Currently only the compression flags and the cow flags are inherited.
6226 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6233 flags = BTRFS_I(dir)->flags;
6235 if (flags & BTRFS_INODE_NOCOMPRESS) {
6236 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6237 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6238 } else if (flags & BTRFS_INODE_COMPRESS) {
6239 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6240 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6243 if (flags & BTRFS_INODE_NODATACOW) {
6244 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6245 if (S_ISREG(inode->i_mode))
6246 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6249 btrfs_sync_inode_flags_to_i_flags(inode);
6252 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6253 struct btrfs_root *root,
6255 const char *name, int name_len,
6256 u64 ref_objectid, u64 objectid,
6257 umode_t mode, u64 *index)
6259 struct btrfs_fs_info *fs_info = root->fs_info;
6260 struct inode *inode;
6261 struct btrfs_inode_item *inode_item;
6262 struct btrfs_key *location;
6263 struct btrfs_path *path;
6264 struct btrfs_inode_ref *ref;
6265 struct btrfs_key key[2];
6267 int nitems = name ? 2 : 1;
6269 unsigned int nofs_flag;
6272 path = btrfs_alloc_path();
6274 return ERR_PTR(-ENOMEM);
6276 nofs_flag = memalloc_nofs_save();
6277 inode = new_inode(fs_info->sb);
6278 memalloc_nofs_restore(nofs_flag);
6280 btrfs_free_path(path);
6281 return ERR_PTR(-ENOMEM);
6285 * O_TMPFILE, set link count to 0, so that after this point,
6286 * we fill in an inode item with the correct link count.
6289 set_nlink(inode, 0);
6292 * we have to initialize this early, so we can reclaim the inode
6293 * number if we fail afterwards in this function.
6295 inode->i_ino = objectid;
6298 trace_btrfs_inode_request(dir);
6300 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6302 btrfs_free_path(path);
6304 return ERR_PTR(ret);
6310 * index_cnt is ignored for everything but a dir,
6311 * btrfs_set_inode_index_count has an explanation for the magic
6314 BTRFS_I(inode)->index_cnt = 2;
6315 BTRFS_I(inode)->dir_index = *index;
6316 BTRFS_I(inode)->root = btrfs_grab_root(root);
6317 BTRFS_I(inode)->generation = trans->transid;
6318 inode->i_generation = BTRFS_I(inode)->generation;
6321 * We could have gotten an inode number from somebody who was fsynced
6322 * and then removed in this same transaction, so let's just set full
6323 * sync since it will be a full sync anyway and this will blow away the
6324 * old info in the log.
6326 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6328 key[0].objectid = objectid;
6329 key[0].type = BTRFS_INODE_ITEM_KEY;
6332 sizes[0] = sizeof(struct btrfs_inode_item);
6336 * Start new inodes with an inode_ref. This is slightly more
6337 * efficient for small numbers of hard links since they will
6338 * be packed into one item. Extended refs will kick in if we
6339 * add more hard links than can fit in the ref item.
6341 key[1].objectid = objectid;
6342 key[1].type = BTRFS_INODE_REF_KEY;
6343 key[1].offset = ref_objectid;
6345 sizes[1] = name_len + sizeof(*ref);
6348 location = &BTRFS_I(inode)->location;
6349 location->objectid = objectid;
6350 location->offset = 0;
6351 location->type = BTRFS_INODE_ITEM_KEY;
6353 ret = btrfs_insert_inode_locked(inode);
6359 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6363 inode_init_owner(&init_user_ns, inode, dir, mode);
6364 inode_set_bytes(inode, 0);
6366 inode->i_mtime = current_time(inode);
6367 inode->i_atime = inode->i_mtime;
6368 inode->i_ctime = inode->i_mtime;
6369 BTRFS_I(inode)->i_otime = inode->i_mtime;
6371 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6372 struct btrfs_inode_item);
6373 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6374 sizeof(*inode_item));
6375 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6378 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6379 struct btrfs_inode_ref);
6380 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6381 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6382 ptr = (unsigned long)(ref + 1);
6383 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6386 btrfs_mark_buffer_dirty(path->nodes[0]);
6387 btrfs_free_path(path);
6389 btrfs_inherit_iflags(inode, dir);
6391 if (S_ISREG(mode)) {
6392 if (btrfs_test_opt(fs_info, NODATASUM))
6393 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6394 if (btrfs_test_opt(fs_info, NODATACOW))
6395 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6396 BTRFS_INODE_NODATASUM;
6399 inode_tree_add(inode);
6401 trace_btrfs_inode_new(inode);
6402 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6404 btrfs_update_root_times(trans, root);
6406 ret = btrfs_inode_inherit_props(trans, inode, dir);
6409 "error inheriting props for ino %llu (root %llu): %d",
6410 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6415 discard_new_inode(inode);
6418 BTRFS_I(dir)->index_cnt--;
6419 btrfs_free_path(path);
6420 return ERR_PTR(ret);
6424 * utility function to add 'inode' into 'parent_inode' with
6425 * a give name and a given sequence number.
6426 * if 'add_backref' is true, also insert a backref from the
6427 * inode to the parent directory.
6429 int btrfs_add_link(struct btrfs_trans_handle *trans,
6430 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6431 const char *name, int name_len, int add_backref, u64 index)
6434 struct btrfs_key key;
6435 struct btrfs_root *root = parent_inode->root;
6436 u64 ino = btrfs_ino(inode);
6437 u64 parent_ino = btrfs_ino(parent_inode);
6439 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6440 memcpy(&key, &inode->root->root_key, sizeof(key));
6443 key.type = BTRFS_INODE_ITEM_KEY;
6447 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6448 ret = btrfs_add_root_ref(trans, key.objectid,
6449 root->root_key.objectid, parent_ino,
6450 index, name, name_len);
6451 } else if (add_backref) {
6452 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6456 /* Nothing to clean up yet */
6460 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6461 btrfs_inode_type(&inode->vfs_inode), index);
6462 if (ret == -EEXIST || ret == -EOVERFLOW)
6465 btrfs_abort_transaction(trans, ret);
6469 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6471 inode_inc_iversion(&parent_inode->vfs_inode);
6473 * If we are replaying a log tree, we do not want to update the mtime
6474 * and ctime of the parent directory with the current time, since the
6475 * log replay procedure is responsible for setting them to their correct
6476 * values (the ones it had when the fsync was done).
6478 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6479 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6481 parent_inode->vfs_inode.i_mtime = now;
6482 parent_inode->vfs_inode.i_ctime = now;
6484 ret = btrfs_update_inode(trans, root, parent_inode);
6486 btrfs_abort_transaction(trans, ret);
6490 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6493 err = btrfs_del_root_ref(trans, key.objectid,
6494 root->root_key.objectid, parent_ino,
6495 &local_index, name, name_len);
6497 btrfs_abort_transaction(trans, err);
6498 } else if (add_backref) {
6502 err = btrfs_del_inode_ref(trans, root, name, name_len,
6503 ino, parent_ino, &local_index);
6505 btrfs_abort_transaction(trans, err);
6508 /* Return the original error code */
6512 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6513 struct btrfs_inode *dir, struct dentry *dentry,
6514 struct btrfs_inode *inode, int backref, u64 index)
6516 int err = btrfs_add_link(trans, dir, inode,
6517 dentry->d_name.name, dentry->d_name.len,
6524 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6525 struct dentry *dentry, umode_t mode, dev_t rdev)
6527 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6528 struct btrfs_trans_handle *trans;
6529 struct btrfs_root *root = BTRFS_I(dir)->root;
6530 struct inode *inode = NULL;
6536 * 2 for inode item and ref
6538 * 1 for xattr if selinux is on
6540 trans = btrfs_start_transaction(root, 5);
6542 return PTR_ERR(trans);
6544 err = btrfs_get_free_objectid(root, &objectid);
6548 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6549 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6551 if (IS_ERR(inode)) {
6552 err = PTR_ERR(inode);
6558 * If the active LSM wants to access the inode during
6559 * d_instantiate it needs these. Smack checks to see
6560 * if the filesystem supports xattrs by looking at the
6563 inode->i_op = &btrfs_special_inode_operations;
6564 init_special_inode(inode, inode->i_mode, rdev);
6566 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6570 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6575 btrfs_update_inode(trans, root, BTRFS_I(inode));
6576 d_instantiate_new(dentry, inode);
6579 btrfs_end_transaction(trans);
6580 btrfs_btree_balance_dirty(fs_info);
6582 inode_dec_link_count(inode);
6583 discard_new_inode(inode);
6588 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6589 struct dentry *dentry, umode_t mode, bool excl)
6591 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6592 struct btrfs_trans_handle *trans;
6593 struct btrfs_root *root = BTRFS_I(dir)->root;
6594 struct inode *inode = NULL;
6600 * 2 for inode item and ref
6602 * 1 for xattr if selinux is on
6604 trans = btrfs_start_transaction(root, 5);
6606 return PTR_ERR(trans);
6608 err = btrfs_get_free_objectid(root, &objectid);
6612 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6613 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6615 if (IS_ERR(inode)) {
6616 err = PTR_ERR(inode);
6621 * If the active LSM wants to access the inode during
6622 * d_instantiate it needs these. Smack checks to see
6623 * if the filesystem supports xattrs by looking at the
6626 inode->i_fop = &btrfs_file_operations;
6627 inode->i_op = &btrfs_file_inode_operations;
6628 inode->i_mapping->a_ops = &btrfs_aops;
6630 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6634 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6638 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6643 d_instantiate_new(dentry, inode);
6646 btrfs_end_transaction(trans);
6648 inode_dec_link_count(inode);
6649 discard_new_inode(inode);
6651 btrfs_btree_balance_dirty(fs_info);
6655 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6656 struct dentry *dentry)
6658 struct btrfs_trans_handle *trans = NULL;
6659 struct btrfs_root *root = BTRFS_I(dir)->root;
6660 struct inode *inode = d_inode(old_dentry);
6661 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6666 /* do not allow sys_link's with other subvols of the same device */
6667 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6670 if (inode->i_nlink >= BTRFS_LINK_MAX)
6673 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6678 * 2 items for inode and inode ref
6679 * 2 items for dir items
6680 * 1 item for parent inode
6681 * 1 item for orphan item deletion if O_TMPFILE
6683 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6684 if (IS_ERR(trans)) {
6685 err = PTR_ERR(trans);
6690 /* There are several dir indexes for this inode, clear the cache. */
6691 BTRFS_I(inode)->dir_index = 0ULL;
6693 inode_inc_iversion(inode);
6694 inode->i_ctime = current_time(inode);
6696 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6698 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6704 struct dentry *parent = dentry->d_parent;
6706 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6709 if (inode->i_nlink == 1) {
6711 * If new hard link count is 1, it's a file created
6712 * with open(2) O_TMPFILE flag.
6714 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6718 d_instantiate(dentry, inode);
6719 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6724 btrfs_end_transaction(trans);
6726 inode_dec_link_count(inode);
6729 btrfs_btree_balance_dirty(fs_info);
6733 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6734 struct dentry *dentry, umode_t mode)
6736 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6737 struct inode *inode = NULL;
6738 struct btrfs_trans_handle *trans;
6739 struct btrfs_root *root = BTRFS_I(dir)->root;
6745 * 2 items for inode and ref
6746 * 2 items for dir items
6747 * 1 for xattr if selinux is on
6749 trans = btrfs_start_transaction(root, 5);
6751 return PTR_ERR(trans);
6753 err = btrfs_get_free_objectid(root, &objectid);
6757 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6758 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6759 S_IFDIR | mode, &index);
6760 if (IS_ERR(inode)) {
6761 err = PTR_ERR(inode);
6766 /* these must be set before we unlock the inode */
6767 inode->i_op = &btrfs_dir_inode_operations;
6768 inode->i_fop = &btrfs_dir_file_operations;
6770 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6774 btrfs_i_size_write(BTRFS_I(inode), 0);
6775 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6779 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6780 dentry->d_name.name,
6781 dentry->d_name.len, 0, index);
6785 d_instantiate_new(dentry, inode);
6788 btrfs_end_transaction(trans);
6790 inode_dec_link_count(inode);
6791 discard_new_inode(inode);
6793 btrfs_btree_balance_dirty(fs_info);
6797 static noinline int uncompress_inline(struct btrfs_path *path,
6799 size_t pg_offset, u64 extent_offset,
6800 struct btrfs_file_extent_item *item)
6803 struct extent_buffer *leaf = path->nodes[0];
6806 unsigned long inline_size;
6810 WARN_ON(pg_offset != 0);
6811 compress_type = btrfs_file_extent_compression(leaf, item);
6812 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6813 inline_size = btrfs_file_extent_inline_item_len(leaf,
6814 btrfs_item_nr(path->slots[0]));
6815 tmp = kmalloc(inline_size, GFP_NOFS);
6818 ptr = btrfs_file_extent_inline_start(item);
6820 read_extent_buffer(leaf, tmp, ptr, inline_size);
6822 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6823 ret = btrfs_decompress(compress_type, tmp, page,
6824 extent_offset, inline_size, max_size);
6827 * decompression code contains a memset to fill in any space between the end
6828 * of the uncompressed data and the end of max_size in case the decompressed
6829 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6830 * the end of an inline extent and the beginning of the next block, so we
6831 * cover that region here.
6834 if (max_size + pg_offset < PAGE_SIZE) {
6835 char *map = kmap(page);
6836 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6844 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6845 * @inode: file to search in
6846 * @page: page to read extent data into if the extent is inline
6847 * @pg_offset: offset into @page to copy to
6848 * @start: file offset
6849 * @len: length of range starting at @start
6851 * This returns the first &struct extent_map which overlaps with the given
6852 * range, reading it from the B-tree and caching it if necessary. Note that
6853 * there may be more extents which overlap the given range after the returned
6856 * If @page is not NULL and the extent is inline, this also reads the extent
6857 * data directly into the page and marks the extent up to date in the io_tree.
6859 * Return: ERR_PTR on error, non-NULL extent_map on success.
6861 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6862 struct page *page, size_t pg_offset,
6865 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6867 u64 extent_start = 0;
6869 u64 objectid = btrfs_ino(inode);
6870 int extent_type = -1;
6871 struct btrfs_path *path = NULL;
6872 struct btrfs_root *root = inode->root;
6873 struct btrfs_file_extent_item *item;
6874 struct extent_buffer *leaf;
6875 struct btrfs_key found_key;
6876 struct extent_map *em = NULL;
6877 struct extent_map_tree *em_tree = &inode->extent_tree;
6878 struct extent_io_tree *io_tree = &inode->io_tree;
6880 read_lock(&em_tree->lock);
6881 em = lookup_extent_mapping(em_tree, start, len);
6882 read_unlock(&em_tree->lock);
6885 if (em->start > start || em->start + em->len <= start)
6886 free_extent_map(em);
6887 else if (em->block_start == EXTENT_MAP_INLINE && page)
6888 free_extent_map(em);
6892 em = alloc_extent_map();
6897 em->start = EXTENT_MAP_HOLE;
6898 em->orig_start = EXTENT_MAP_HOLE;
6900 em->block_len = (u64)-1;
6902 path = btrfs_alloc_path();
6908 /* Chances are we'll be called again, so go ahead and do readahead */
6909 path->reada = READA_FORWARD;
6912 * The same explanation in load_free_space_cache applies here as well,
6913 * we only read when we're loading the free space cache, and at that
6914 * point the commit_root has everything we need.
6916 if (btrfs_is_free_space_inode(inode)) {
6917 path->search_commit_root = 1;
6918 path->skip_locking = 1;
6921 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6924 } else if (ret > 0) {
6925 if (path->slots[0] == 0)
6931 leaf = path->nodes[0];
6932 item = btrfs_item_ptr(leaf, path->slots[0],
6933 struct btrfs_file_extent_item);
6934 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6935 if (found_key.objectid != objectid ||
6936 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6938 * If we backup past the first extent we want to move forward
6939 * and see if there is an extent in front of us, otherwise we'll
6940 * say there is a hole for our whole search range which can
6947 extent_type = btrfs_file_extent_type(leaf, item);
6948 extent_start = found_key.offset;
6949 extent_end = btrfs_file_extent_end(path);
6950 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6951 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6952 /* Only regular file could have regular/prealloc extent */
6953 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6956 "regular/prealloc extent found for non-regular inode %llu",
6960 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6962 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6963 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6968 if (start >= extent_end) {
6970 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6971 ret = btrfs_next_leaf(root, path);
6977 leaf = path->nodes[0];
6979 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6980 if (found_key.objectid != objectid ||
6981 found_key.type != BTRFS_EXTENT_DATA_KEY)
6983 if (start + len <= found_key.offset)
6985 if (start > found_key.offset)
6988 /* New extent overlaps with existing one */
6990 em->orig_start = start;
6991 em->len = found_key.offset - start;
6992 em->block_start = EXTENT_MAP_HOLE;
6996 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6998 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6999 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7001 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7005 size_t extent_offset;
7011 size = btrfs_file_extent_ram_bytes(leaf, item);
7012 extent_offset = page_offset(page) + pg_offset - extent_start;
7013 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7014 size - extent_offset);
7015 em->start = extent_start + extent_offset;
7016 em->len = ALIGN(copy_size, fs_info->sectorsize);
7017 em->orig_block_len = em->len;
7018 em->orig_start = em->start;
7019 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7021 if (!PageUptodate(page)) {
7022 if (btrfs_file_extent_compression(leaf, item) !=
7023 BTRFS_COMPRESS_NONE) {
7024 ret = uncompress_inline(path, page, pg_offset,
7025 extent_offset, item);
7030 read_extent_buffer(leaf, map + pg_offset, ptr,
7032 if (pg_offset + copy_size < PAGE_SIZE) {
7033 memset(map + pg_offset + copy_size, 0,
7034 PAGE_SIZE - pg_offset -
7039 flush_dcache_page(page);
7041 set_extent_uptodate(io_tree, em->start,
7042 extent_map_end(em) - 1, NULL, GFP_NOFS);
7047 em->orig_start = start;
7049 em->block_start = EXTENT_MAP_HOLE;
7052 btrfs_release_path(path);
7053 if (em->start > start || extent_map_end(em) <= start) {
7055 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7056 em->start, em->len, start, len);
7061 write_lock(&em_tree->lock);
7062 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7063 write_unlock(&em_tree->lock);
7065 btrfs_free_path(path);
7067 trace_btrfs_get_extent(root, inode, em);
7070 free_extent_map(em);
7071 return ERR_PTR(ret);
7076 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7079 struct extent_map *em;
7080 struct extent_map *hole_em = NULL;
7081 u64 delalloc_start = start;
7087 em = btrfs_get_extent(inode, NULL, 0, start, len);
7091 * If our em maps to:
7093 * - a pre-alloc extent,
7094 * there might actually be delalloc bytes behind it.
7096 if (em->block_start != EXTENT_MAP_HOLE &&
7097 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7102 /* check to see if we've wrapped (len == -1 or similar) */
7111 /* ok, we didn't find anything, lets look for delalloc */
7112 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7113 end, len, EXTENT_DELALLOC, 1);
7114 delalloc_end = delalloc_start + delalloc_len;
7115 if (delalloc_end < delalloc_start)
7116 delalloc_end = (u64)-1;
7119 * We didn't find anything useful, return the original results from
7122 if (delalloc_start > end || delalloc_end <= start) {
7129 * Adjust the delalloc_start to make sure it doesn't go backwards from
7130 * the start they passed in
7132 delalloc_start = max(start, delalloc_start);
7133 delalloc_len = delalloc_end - delalloc_start;
7135 if (delalloc_len > 0) {
7138 const u64 hole_end = extent_map_end(hole_em);
7140 em = alloc_extent_map();
7148 * When btrfs_get_extent can't find anything it returns one
7151 * Make sure what it found really fits our range, and adjust to
7152 * make sure it is based on the start from the caller
7154 if (hole_end <= start || hole_em->start > end) {
7155 free_extent_map(hole_em);
7158 hole_start = max(hole_em->start, start);
7159 hole_len = hole_end - hole_start;
7162 if (hole_em && delalloc_start > hole_start) {
7164 * Our hole starts before our delalloc, so we have to
7165 * return just the parts of the hole that go until the
7168 em->len = min(hole_len, delalloc_start - hole_start);
7169 em->start = hole_start;
7170 em->orig_start = hole_start;
7172 * Don't adjust block start at all, it is fixed at
7175 em->block_start = hole_em->block_start;
7176 em->block_len = hole_len;
7177 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7178 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7181 * Hole is out of passed range or it starts after
7184 em->start = delalloc_start;
7185 em->len = delalloc_len;
7186 em->orig_start = delalloc_start;
7187 em->block_start = EXTENT_MAP_DELALLOC;
7188 em->block_len = delalloc_len;
7195 free_extent_map(hole_em);
7197 free_extent_map(em);
7198 return ERR_PTR(err);
7203 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7206 const u64 orig_start,
7207 const u64 block_start,
7208 const u64 block_len,
7209 const u64 orig_block_len,
7210 const u64 ram_bytes,
7213 struct extent_map *em = NULL;
7216 if (type != BTRFS_ORDERED_NOCOW) {
7217 em = create_io_em(inode, start, len, orig_start, block_start,
7218 block_len, orig_block_len, ram_bytes,
7219 BTRFS_COMPRESS_NONE, /* compress_type */
7224 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
7228 free_extent_map(em);
7229 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
7238 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7241 struct btrfs_root *root = inode->root;
7242 struct btrfs_fs_info *fs_info = root->fs_info;
7243 struct extent_map *em;
7244 struct btrfs_key ins;
7248 alloc_hint = get_extent_allocation_hint(inode, start, len);
7249 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7250 0, alloc_hint, &ins, 1, 1);
7252 return ERR_PTR(ret);
7254 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7255 ins.objectid, ins.offset, ins.offset,
7256 ins.offset, BTRFS_ORDERED_REGULAR);
7257 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7259 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7266 * Check if we can do nocow write into the range [@offset, @offset + @len)
7268 * @offset: File offset
7269 * @len: The length to write, will be updated to the nocow writeable
7271 * @orig_start: (optional) Return the original file offset of the file extent
7272 * @orig_len: (optional) Return the original on-disk length of the file extent
7273 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7274 * @strict: if true, omit optimizations that might force us into unnecessary
7275 * cow. e.g., don't trust generation number.
7278 * >0 and update @len if we can do nocow write
7279 * 0 if we can't do nocow write
7280 * <0 if error happened
7282 * NOTE: This only checks the file extents, caller is responsible to wait for
7283 * any ordered extents.
7285 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7286 u64 *orig_start, u64 *orig_block_len,
7287 u64 *ram_bytes, bool strict)
7289 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7290 struct btrfs_path *path;
7292 struct extent_buffer *leaf;
7293 struct btrfs_root *root = BTRFS_I(inode)->root;
7294 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7295 struct btrfs_file_extent_item *fi;
7296 struct btrfs_key key;
7303 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7305 path = btrfs_alloc_path();
7309 ret = btrfs_lookup_file_extent(NULL, root, path,
7310 btrfs_ino(BTRFS_I(inode)), offset, 0);
7314 slot = path->slots[0];
7317 /* can't find the item, must cow */
7324 leaf = path->nodes[0];
7325 btrfs_item_key_to_cpu(leaf, &key, slot);
7326 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7327 key.type != BTRFS_EXTENT_DATA_KEY) {
7328 /* not our file or wrong item type, must cow */
7332 if (key.offset > offset) {
7333 /* Wrong offset, must cow */
7337 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7338 found_type = btrfs_file_extent_type(leaf, fi);
7339 if (found_type != BTRFS_FILE_EXTENT_REG &&
7340 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7341 /* not a regular extent, must cow */
7345 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7348 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7349 if (extent_end <= offset)
7352 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7353 if (disk_bytenr == 0)
7356 if (btrfs_file_extent_compression(leaf, fi) ||
7357 btrfs_file_extent_encryption(leaf, fi) ||
7358 btrfs_file_extent_other_encoding(leaf, fi))
7362 * Do the same check as in btrfs_cross_ref_exist but without the
7363 * unnecessary search.
7366 (btrfs_file_extent_generation(leaf, fi) <=
7367 btrfs_root_last_snapshot(&root->root_item)))
7370 backref_offset = btrfs_file_extent_offset(leaf, fi);
7373 *orig_start = key.offset - backref_offset;
7374 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7375 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7378 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7381 num_bytes = min(offset + *len, extent_end) - offset;
7382 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7385 range_end = round_up(offset + num_bytes,
7386 root->fs_info->sectorsize) - 1;
7387 ret = test_range_bit(io_tree, offset, range_end,
7388 EXTENT_DELALLOC, 0, NULL);
7395 btrfs_release_path(path);
7398 * look for other files referencing this extent, if we
7399 * find any we must cow
7402 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7403 key.offset - backref_offset, disk_bytenr,
7411 * adjust disk_bytenr and num_bytes to cover just the bytes
7412 * in this extent we are about to write. If there
7413 * are any csums in that range we have to cow in order
7414 * to keep the csums correct
7416 disk_bytenr += backref_offset;
7417 disk_bytenr += offset - key.offset;
7418 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7421 * all of the above have passed, it is safe to overwrite this extent
7427 btrfs_free_path(path);
7431 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7432 struct extent_state **cached_state, bool writing)
7434 struct btrfs_ordered_extent *ordered;
7438 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7441 * We're concerned with the entire range that we're going to be
7442 * doing DIO to, so we need to make sure there's no ordered
7443 * extents in this range.
7445 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7446 lockend - lockstart + 1);
7449 * We need to make sure there are no buffered pages in this
7450 * range either, we could have raced between the invalidate in
7451 * generic_file_direct_write and locking the extent. The
7452 * invalidate needs to happen so that reads after a write do not
7456 (!writing || !filemap_range_has_page(inode->i_mapping,
7457 lockstart, lockend)))
7460 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7465 * If we are doing a DIO read and the ordered extent we
7466 * found is for a buffered write, we can not wait for it
7467 * to complete and retry, because if we do so we can
7468 * deadlock with concurrent buffered writes on page
7469 * locks. This happens only if our DIO read covers more
7470 * than one extent map, if at this point has already
7471 * created an ordered extent for a previous extent map
7472 * and locked its range in the inode's io tree, and a
7473 * concurrent write against that previous extent map's
7474 * range and this range started (we unlock the ranges
7475 * in the io tree only when the bios complete and
7476 * buffered writes always lock pages before attempting
7477 * to lock range in the io tree).
7480 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7481 btrfs_start_ordered_extent(ordered, 1);
7484 btrfs_put_ordered_extent(ordered);
7487 * We could trigger writeback for this range (and wait
7488 * for it to complete) and then invalidate the pages for
7489 * this range (through invalidate_inode_pages2_range()),
7490 * but that can lead us to a deadlock with a concurrent
7491 * call to readahead (a buffered read or a defrag call
7492 * triggered a readahead) on a page lock due to an
7493 * ordered dio extent we created before but did not have
7494 * yet a corresponding bio submitted (whence it can not
7495 * complete), which makes readahead wait for that
7496 * ordered extent to complete while holding a lock on
7511 /* The callers of this must take lock_extent() */
7512 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7513 u64 len, u64 orig_start, u64 block_start,
7514 u64 block_len, u64 orig_block_len,
7515 u64 ram_bytes, int compress_type,
7518 struct extent_map_tree *em_tree;
7519 struct extent_map *em;
7522 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7523 type == BTRFS_ORDERED_COMPRESSED ||
7524 type == BTRFS_ORDERED_NOCOW ||
7525 type == BTRFS_ORDERED_REGULAR);
7527 em_tree = &inode->extent_tree;
7528 em = alloc_extent_map();
7530 return ERR_PTR(-ENOMEM);
7533 em->orig_start = orig_start;
7535 em->block_len = block_len;
7536 em->block_start = block_start;
7537 em->orig_block_len = orig_block_len;
7538 em->ram_bytes = ram_bytes;
7539 em->generation = -1;
7540 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7541 if (type == BTRFS_ORDERED_PREALLOC) {
7542 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7543 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7544 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7545 em->compress_type = compress_type;
7549 btrfs_drop_extent_cache(inode, em->start,
7550 em->start + em->len - 1, 0);
7551 write_lock(&em_tree->lock);
7552 ret = add_extent_mapping(em_tree, em, 1);
7553 write_unlock(&em_tree->lock);
7555 * The caller has taken lock_extent(), who could race with us
7558 } while (ret == -EEXIST);
7561 free_extent_map(em);
7562 return ERR_PTR(ret);
7565 /* em got 2 refs now, callers needs to do free_extent_map once. */
7570 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7571 struct inode *inode,
7572 struct btrfs_dio_data *dio_data,
7575 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7576 struct extent_map *em = *map;
7580 * We don't allocate a new extent in the following cases
7582 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7584 * 2) The extent is marked as PREALLOC. We're good to go here and can
7585 * just use the extent.
7588 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7589 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7590 em->block_start != EXTENT_MAP_HOLE)) {
7592 u64 block_start, orig_start, orig_block_len, ram_bytes;
7594 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7595 type = BTRFS_ORDERED_PREALLOC;
7597 type = BTRFS_ORDERED_NOCOW;
7598 len = min(len, em->len - (start - em->start));
7599 block_start = em->block_start + (start - em->start);
7601 if (can_nocow_extent(inode, start, &len, &orig_start,
7602 &orig_block_len, &ram_bytes, false) == 1 &&
7603 btrfs_inc_nocow_writers(fs_info, block_start)) {
7604 struct extent_map *em2;
7606 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7607 orig_start, block_start,
7608 len, orig_block_len,
7610 btrfs_dec_nocow_writers(fs_info, block_start);
7611 if (type == BTRFS_ORDERED_PREALLOC) {
7612 free_extent_map(em);
7616 if (em2 && IS_ERR(em2)) {
7621 * For inode marked NODATACOW or extent marked PREALLOC,
7622 * use the existing or preallocated extent, so does not
7623 * need to adjust btrfs_space_info's bytes_may_use.
7625 btrfs_free_reserved_data_space_noquota(fs_info, len);
7630 /* this will cow the extent */
7631 free_extent_map(em);
7632 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7638 len = min(len, em->len - (start - em->start));
7642 * Need to update the i_size under the extent lock so buffered
7643 * readers will get the updated i_size when we unlock.
7645 if (start + len > i_size_read(inode))
7646 i_size_write(inode, start + len);
7648 dio_data->reserve -= len;
7653 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7654 loff_t length, unsigned int flags, struct iomap *iomap,
7655 struct iomap *srcmap)
7657 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7658 struct extent_map *em;
7659 struct extent_state *cached_state = NULL;
7660 struct btrfs_dio_data *dio_data = NULL;
7661 u64 lockstart, lockend;
7662 const bool write = !!(flags & IOMAP_WRITE);
7665 bool unlock_extents = false;
7668 len = min_t(u64, len, fs_info->sectorsize);
7671 lockend = start + len - 1;
7674 * The generic stuff only does filemap_write_and_wait_range, which
7675 * isn't enough if we've written compressed pages to this area, so we
7676 * need to flush the dirty pages again to make absolutely sure that any
7677 * outstanding dirty pages are on disk.
7679 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7680 &BTRFS_I(inode)->runtime_flags)) {
7681 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7682 start + length - 1);
7687 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7691 dio_data->length = length;
7693 dio_data->reserve = round_up(length, fs_info->sectorsize);
7694 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7695 &dio_data->data_reserved,
7696 start, dio_data->reserve);
7698 extent_changeset_free(dio_data->data_reserved);
7703 iomap->private = dio_data;
7707 * If this errors out it's because we couldn't invalidate pagecache for
7708 * this range and we need to fallback to buffered.
7710 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
7715 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7722 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7723 * io. INLINE is special, and we could probably kludge it in here, but
7724 * it's still buffered so for safety lets just fall back to the generic
7727 * For COMPRESSED we _have_ to read the entire extent in so we can
7728 * decompress it, so there will be buffering required no matter what we
7729 * do, so go ahead and fallback to buffered.
7731 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7732 * to buffered IO. Don't blame me, this is the price we pay for using
7735 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7736 em->block_start == EXTENT_MAP_INLINE) {
7737 free_extent_map(em);
7742 len = min(len, em->len - (start - em->start));
7744 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7748 unlock_extents = true;
7749 /* Recalc len in case the new em is smaller than requested */
7750 len = min(len, em->len - (start - em->start));
7753 * We need to unlock only the end area that we aren't using.
7754 * The rest is going to be unlocked by the endio routine.
7756 lockstart = start + len;
7757 if (lockstart < lockend)
7758 unlock_extents = true;
7762 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7763 lockstart, lockend, &cached_state);
7765 free_extent_state(cached_state);
7768 * Translate extent map information to iomap.
7769 * We trim the extents (and move the addr) even though iomap code does
7770 * that, since we have locked only the parts we are performing I/O in.
7772 if ((em->block_start == EXTENT_MAP_HOLE) ||
7773 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7774 iomap->addr = IOMAP_NULL_ADDR;
7775 iomap->type = IOMAP_HOLE;
7777 iomap->addr = em->block_start + (start - em->start);
7778 iomap->type = IOMAP_MAPPED;
7780 iomap->offset = start;
7781 iomap->bdev = fs_info->fs_devices->latest_bdev;
7782 iomap->length = len;
7784 if (write && btrfs_use_zone_append(BTRFS_I(inode), em))
7785 iomap->flags |= IOMAP_F_ZONE_APPEND;
7787 free_extent_map(em);
7792 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7796 btrfs_delalloc_release_space(BTRFS_I(inode),
7797 dio_data->data_reserved, start,
7798 dio_data->reserve, true);
7799 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve);
7800 extent_changeset_free(dio_data->data_reserved);
7806 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7807 ssize_t written, unsigned int flags, struct iomap *iomap)
7810 struct btrfs_dio_data *dio_data = iomap->private;
7811 size_t submitted = dio_data->submitted;
7812 const bool write = !!(flags & IOMAP_WRITE);
7814 if (!write && (iomap->type == IOMAP_HOLE)) {
7815 /* If reading from a hole, unlock and return */
7816 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7820 if (submitted < length) {
7822 length -= submitted;
7824 __endio_write_update_ordered(BTRFS_I(inode), pos,
7827 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7833 if (dio_data->reserve)
7834 btrfs_delalloc_release_space(BTRFS_I(inode),
7835 dio_data->data_reserved, pos,
7836 dio_data->reserve, true);
7837 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length);
7838 extent_changeset_free(dio_data->data_reserved);
7842 iomap->private = NULL;
7847 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7850 * This implies a barrier so that stores to dio_bio->bi_status before
7851 * this and loads of dio_bio->bi_status after this are fully ordered.
7853 if (!refcount_dec_and_test(&dip->refs))
7856 if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) {
7857 __endio_write_update_ordered(BTRFS_I(dip->inode),
7858 dip->logical_offset,
7860 !dip->dio_bio->bi_status);
7862 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7863 dip->logical_offset,
7864 dip->logical_offset + dip->bytes - 1);
7867 bio_endio(dip->dio_bio);
7871 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7873 unsigned long bio_flags)
7875 struct btrfs_dio_private *dip = bio->bi_private;
7876 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7879 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7881 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7885 refcount_inc(&dip->refs);
7886 ret = btrfs_map_bio(fs_info, bio, mirror_num);
7888 refcount_dec(&dip->refs);
7892 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7893 struct btrfs_io_bio *io_bio,
7894 const bool uptodate)
7896 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7897 const u32 sectorsize = fs_info->sectorsize;
7898 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7899 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7900 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7901 struct bio_vec bvec;
7902 struct bvec_iter iter;
7903 u64 start = io_bio->logical;
7905 blk_status_t err = BLK_STS_OK;
7907 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7908 unsigned int i, nr_sectors, pgoff;
7910 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7911 pgoff = bvec.bv_offset;
7912 for (i = 0; i < nr_sectors; i++) {
7913 ASSERT(pgoff < PAGE_SIZE);
7915 (!csum || !check_data_csum(inode, io_bio,
7916 bio_offset, bvec.bv_page,
7918 clean_io_failure(fs_info, failure_tree, io_tree,
7919 start, bvec.bv_page,
7920 btrfs_ino(BTRFS_I(inode)),
7923 blk_status_t status;
7925 ASSERT((start - io_bio->logical) < UINT_MAX);
7926 status = btrfs_submit_read_repair(inode,
7928 start - io_bio->logical,
7929 bvec.bv_page, pgoff,
7931 start + sectorsize - 1,
7933 submit_dio_repair_bio);
7937 start += sectorsize;
7938 ASSERT(bio_offset + sectorsize > bio_offset);
7939 bio_offset += sectorsize;
7940 pgoff += sectorsize;
7946 static void __endio_write_update_ordered(struct btrfs_inode *inode,
7947 const u64 offset, const u64 bytes,
7948 const bool uptodate)
7950 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7951 struct btrfs_ordered_extent *ordered = NULL;
7952 struct btrfs_workqueue *wq;
7953 u64 ordered_offset = offset;
7954 u64 ordered_bytes = bytes;
7957 if (btrfs_is_free_space_inode(inode))
7958 wq = fs_info->endio_freespace_worker;
7960 wq = fs_info->endio_write_workers;
7962 while (ordered_offset < offset + bytes) {
7963 last_offset = ordered_offset;
7964 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7968 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7970 btrfs_queue_work(wq, &ordered->work);
7973 /* No ordered extent found in the range, exit */
7974 if (ordered_offset == last_offset)
7977 * Our bio might span multiple ordered extents. In this case
7978 * we keep going until we have accounted the whole dio.
7980 if (ordered_offset < offset + bytes) {
7981 ordered_bytes = offset + bytes - ordered_offset;
7987 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
7989 u64 dio_file_offset)
7991 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1);
7994 static void btrfs_end_dio_bio(struct bio *bio)
7996 struct btrfs_dio_private *dip = bio->bi_private;
7997 blk_status_t err = bio->bi_status;
8000 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8001 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8002 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8003 bio->bi_opf, bio->bi_iter.bi_sector,
8004 bio->bi_iter.bi_size, err);
8006 if (bio_op(bio) == REQ_OP_READ) {
8007 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
8012 dip->dio_bio->bi_status = err;
8014 btrfs_record_physical_zoned(dip->inode, dip->logical_offset, bio);
8017 btrfs_dio_private_put(dip);
8020 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8021 struct inode *inode, u64 file_offset, int async_submit)
8023 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8024 struct btrfs_dio_private *dip = bio->bi_private;
8025 bool write = btrfs_op(bio) == BTRFS_MAP_WRITE;
8028 /* Check btrfs_submit_bio_hook() for rules about async submit. */
8030 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8033 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8038 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8041 if (write && async_submit) {
8042 ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset,
8043 btrfs_submit_bio_start_direct_io);
8047 * If we aren't doing async submit, calculate the csum of the
8050 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
8056 csum_offset = file_offset - dip->logical_offset;
8057 csum_offset >>= fs_info->sectorsize_bits;
8058 csum_offset *= fs_info->csum_size;
8059 btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
8062 ret = btrfs_map_bio(fs_info, bio, 0);
8068 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
8069 * or ordered extents whether or not we submit any bios.
8071 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
8072 struct inode *inode,
8075 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8076 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
8078 struct btrfs_dio_private *dip;
8080 dip_size = sizeof(*dip);
8081 if (!write && csum) {
8082 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8085 nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits;
8086 dip_size += fs_info->csum_size * nblocks;
8089 dip = kzalloc(dip_size, GFP_NOFS);
8094 dip->logical_offset = file_offset;
8095 dip->bytes = dio_bio->bi_iter.bi_size;
8096 dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9;
8097 dip->dio_bio = dio_bio;
8098 refcount_set(&dip->refs, 1);
8102 static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap,
8103 struct bio *dio_bio, loff_t file_offset)
8105 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8106 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8107 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
8108 BTRFS_BLOCK_GROUP_RAID56_MASK);
8109 struct btrfs_dio_private *dip;
8112 int async_submit = 0;
8114 int clone_offset = 0;
8118 blk_status_t status;
8119 struct btrfs_io_geometry geom;
8120 struct btrfs_dio_data *dio_data = iomap->private;
8121 struct extent_map *em = NULL;
8123 dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
8126 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8127 file_offset + dio_bio->bi_iter.bi_size - 1);
8129 dio_bio->bi_status = BLK_STS_RESOURCE;
8131 return BLK_QC_T_NONE;
8136 * Load the csums up front to reduce csum tree searches and
8137 * contention when submitting bios.
8139 * If we have csums disabled this will do nothing.
8141 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
8142 if (status != BLK_STS_OK)
8146 start_sector = dio_bio->bi_iter.bi_sector;
8147 submit_len = dio_bio->bi_iter.bi_size;
8150 logical = start_sector << 9;
8151 em = btrfs_get_chunk_map(fs_info, logical, submit_len);
8153 status = errno_to_blk_status(PTR_ERR(em));
8157 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
8158 logical, submit_len, &geom);
8160 status = errno_to_blk_status(ret);
8163 ASSERT(geom.len <= INT_MAX);
8165 clone_len = min_t(int, submit_len, geom.len);
8168 * This will never fail as it's passing GPF_NOFS and
8169 * the allocation is backed by btrfs_bioset.
8171 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
8172 bio->bi_private = dip;
8173 bio->bi_end_io = btrfs_end_dio_bio;
8174 btrfs_io_bio(bio)->logical = file_offset;
8176 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8177 status = extract_ordered_extent(BTRFS_I(inode), bio,
8185 ASSERT(submit_len >= clone_len);
8186 submit_len -= clone_len;
8189 * Increase the count before we submit the bio so we know
8190 * the end IO handler won't happen before we increase the
8191 * count. Otherwise, the dip might get freed before we're
8192 * done setting it up.
8194 * We transfer the initial reference to the last bio, so we
8195 * don't need to increment the reference count for the last one.
8197 if (submit_len > 0) {
8198 refcount_inc(&dip->refs);
8200 * If we are submitting more than one bio, submit them
8201 * all asynchronously. The exception is RAID 5 or 6, as
8202 * asynchronous checksums make it difficult to collect
8203 * full stripe writes.
8209 status = btrfs_submit_dio_bio(bio, inode, file_offset,
8214 refcount_dec(&dip->refs);
8218 dio_data->submitted += clone_len;
8219 clone_offset += clone_len;
8220 start_sector += clone_len >> 9;
8221 file_offset += clone_len;
8223 free_extent_map(em);
8224 } while (submit_len > 0);
8225 return BLK_QC_T_NONE;
8228 free_extent_map(em);
8230 dip->dio_bio->bi_status = status;
8231 btrfs_dio_private_put(dip);
8233 return BLK_QC_T_NONE;
8236 const struct iomap_ops btrfs_dio_iomap_ops = {
8237 .iomap_begin = btrfs_dio_iomap_begin,
8238 .iomap_end = btrfs_dio_iomap_end,
8241 const struct iomap_dio_ops btrfs_dio_ops = {
8242 .submit_io = btrfs_submit_direct,
8245 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8250 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8254 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8257 int btrfs_readpage(struct file *file, struct page *page)
8259 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8260 u64 start = page_offset(page);
8261 u64 end = start + PAGE_SIZE - 1;
8262 unsigned long bio_flags = 0;
8263 struct bio *bio = NULL;
8266 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8268 ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL);
8270 ret = submit_one_bio(bio, 0, bio_flags);
8274 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8276 struct inode *inode = page->mapping->host;
8279 if (current->flags & PF_MEMALLOC) {
8280 redirty_page_for_writepage(wbc, page);
8286 * If we are under memory pressure we will call this directly from the
8287 * VM, we need to make sure we have the inode referenced for the ordered
8288 * extent. If not just return like we didn't do anything.
8290 if (!igrab(inode)) {
8291 redirty_page_for_writepage(wbc, page);
8292 return AOP_WRITEPAGE_ACTIVATE;
8294 ret = extent_write_full_page(page, wbc);
8295 btrfs_add_delayed_iput(inode);
8299 static int btrfs_writepages(struct address_space *mapping,
8300 struct writeback_control *wbc)
8302 return extent_writepages(mapping, wbc);
8305 static void btrfs_readahead(struct readahead_control *rac)
8307 extent_readahead(rac);
8310 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8312 int ret = try_release_extent_mapping(page, gfp_flags);
8314 clear_page_extent_mapped(page);
8318 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8320 if (PageWriteback(page) || PageDirty(page))
8322 return __btrfs_releasepage(page, gfp_flags);
8325 #ifdef CONFIG_MIGRATION
8326 static int btrfs_migratepage(struct address_space *mapping,
8327 struct page *newpage, struct page *page,
8328 enum migrate_mode mode)
8332 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8333 if (ret != MIGRATEPAGE_SUCCESS)
8336 if (page_has_private(page))
8337 attach_page_private(newpage, detach_page_private(page));
8339 if (PagePrivate2(page)) {
8340 ClearPagePrivate2(page);
8341 SetPagePrivate2(newpage);
8344 if (mode != MIGRATE_SYNC_NO_COPY)
8345 migrate_page_copy(newpage, page);
8347 migrate_page_states(newpage, page);
8348 return MIGRATEPAGE_SUCCESS;
8352 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8353 unsigned int length)
8355 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8356 struct extent_io_tree *tree = &inode->io_tree;
8357 struct btrfs_ordered_extent *ordered;
8358 struct extent_state *cached_state = NULL;
8359 u64 page_start = page_offset(page);
8360 u64 page_end = page_start + PAGE_SIZE - 1;
8363 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8364 bool found_ordered = false;
8365 bool completed_ordered = false;
8368 * we have the page locked, so new writeback can't start,
8369 * and the dirty bit won't be cleared while we are here.
8371 * Wait for IO on this page so that we can safely clear
8372 * the PagePrivate2 bit and do ordered accounting
8374 wait_on_page_writeback(page);
8377 btrfs_releasepage(page, GFP_NOFS);
8381 if (!inode_evicting)
8382 lock_extent_bits(tree, page_start, page_end, &cached_state);
8386 ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1);
8388 found_ordered = true;
8390 ordered->file_offset + ordered->num_bytes - 1);
8392 * IO on this page will never be started, so we need to account
8393 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8394 * here, must leave that up for the ordered extent completion.
8396 if (!inode_evicting)
8397 clear_extent_bit(tree, start, end,
8399 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8400 EXTENT_DEFRAG, 1, 0, &cached_state);
8402 * whoever cleared the private bit is responsible
8403 * for the finish_ordered_io
8405 if (TestClearPagePrivate2(page)) {
8406 struct btrfs_ordered_inode_tree *tree;
8409 tree = &inode->ordered_tree;
8411 spin_lock_irq(&tree->lock);
8412 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8413 new_len = start - ordered->file_offset;
8414 if (new_len < ordered->truncated_len)
8415 ordered->truncated_len = new_len;
8416 spin_unlock_irq(&tree->lock);
8418 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8420 end - start + 1, 1)) {
8421 btrfs_finish_ordered_io(ordered);
8422 completed_ordered = true;
8425 btrfs_put_ordered_extent(ordered);
8426 if (!inode_evicting) {
8427 cached_state = NULL;
8428 lock_extent_bits(tree, start, end,
8433 if (start < page_end)
8438 * Qgroup reserved space handler
8439 * Page here will be either
8440 * 1) Already written to disk or ordered extent already submitted
8441 * Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8442 * Qgroup will be handled by its qgroup_record then.
8443 * btrfs_qgroup_free_data() call will do nothing here.
8445 * 2) Not written to disk yet
8446 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8447 * bit of its io_tree, and free the qgroup reserved data space.
8448 * Since the IO will never happen for this page.
8450 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8451 if (!inode_evicting) {
8455 * If there's an ordered extent for this range and we have not
8456 * finished it ourselves, we must leave EXTENT_DELALLOC_NEW set
8457 * in the range for the ordered extent completion. We must also
8458 * not delete the range, otherwise we would lose that bit (and
8459 * any other bits set in the range). Make sure EXTENT_UPTODATE
8460 * is cleared if we don't delete, otherwise it can lead to
8461 * corruptions if the i_size is extented later.
8463 if (found_ordered && !completed_ordered)
8465 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8466 EXTENT_DELALLOC | EXTENT_UPTODATE |
8467 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
8468 delete, &cached_state);
8470 __btrfs_releasepage(page, GFP_NOFS);
8473 ClearPageChecked(page);
8474 clear_page_extent_mapped(page);
8478 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8479 * called from a page fault handler when a page is first dirtied. Hence we must
8480 * be careful to check for EOF conditions here. We set the page up correctly
8481 * for a written page which means we get ENOSPC checking when writing into
8482 * holes and correct delalloc and unwritten extent mapping on filesystems that
8483 * support these features.
8485 * We are not allowed to take the i_mutex here so we have to play games to
8486 * protect against truncate races as the page could now be beyond EOF. Because
8487 * truncate_setsize() writes the inode size before removing pages, once we have
8488 * the page lock we can determine safely if the page is beyond EOF. If it is not
8489 * beyond EOF, then the page is guaranteed safe against truncation until we
8492 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8494 struct page *page = vmf->page;
8495 struct inode *inode = file_inode(vmf->vma->vm_file);
8496 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8497 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8498 struct btrfs_ordered_extent *ordered;
8499 struct extent_state *cached_state = NULL;
8500 struct extent_changeset *data_reserved = NULL;
8502 unsigned long zero_start;
8512 reserved_space = PAGE_SIZE;
8514 sb_start_pagefault(inode->i_sb);
8515 page_start = page_offset(page);
8516 page_end = page_start + PAGE_SIZE - 1;
8520 * Reserving delalloc space after obtaining the page lock can lead to
8521 * deadlock. For example, if a dirty page is locked by this function
8522 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8523 * dirty page write out, then the btrfs_writepage() function could
8524 * end up waiting indefinitely to get a lock on the page currently
8525 * being processed by btrfs_page_mkwrite() function.
8527 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8528 page_start, reserved_space);
8530 ret2 = file_update_time(vmf->vma->vm_file);
8534 ret = vmf_error(ret2);
8540 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8543 size = i_size_read(inode);
8545 if ((page->mapping != inode->i_mapping) ||
8546 (page_start >= size)) {
8547 /* page got truncated out from underneath us */
8550 wait_on_page_writeback(page);
8552 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8553 ret2 = set_page_extent_mapped(page);
8555 ret = vmf_error(ret2);
8556 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8561 * we can't set the delalloc bits if there are pending ordered
8562 * extents. Drop our locks and wait for them to finish
8564 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8567 unlock_extent_cached(io_tree, page_start, page_end,
8570 btrfs_start_ordered_extent(ordered, 1);
8571 btrfs_put_ordered_extent(ordered);
8575 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8576 reserved_space = round_up(size - page_start,
8577 fs_info->sectorsize);
8578 if (reserved_space < PAGE_SIZE) {
8579 end = page_start + reserved_space - 1;
8580 btrfs_delalloc_release_space(BTRFS_I(inode),
8581 data_reserved, page_start,
8582 PAGE_SIZE - reserved_space, true);
8587 * page_mkwrite gets called when the page is firstly dirtied after it's
8588 * faulted in, but write(2) could also dirty a page and set delalloc
8589 * bits, thus in this case for space account reason, we still need to
8590 * clear any delalloc bits within this page range since we have to
8591 * reserve data&meta space before lock_page() (see above comments).
8593 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8594 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8595 EXTENT_DEFRAG, 0, 0, &cached_state);
8597 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8600 unlock_extent_cached(io_tree, page_start, page_end,
8602 ret = VM_FAULT_SIGBUS;
8606 /* page is wholly or partially inside EOF */
8607 if (page_start + PAGE_SIZE > size)
8608 zero_start = offset_in_page(size);
8610 zero_start = PAGE_SIZE;
8612 if (zero_start != PAGE_SIZE) {
8614 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8615 flush_dcache_page(page);
8618 ClearPageChecked(page);
8619 set_page_dirty(page);
8620 SetPageUptodate(page);
8622 BTRFS_I(inode)->last_trans = fs_info->generation;
8623 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8624 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8626 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8628 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8629 sb_end_pagefault(inode->i_sb);
8630 extent_changeset_free(data_reserved);
8631 return VM_FAULT_LOCKED;
8636 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8637 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8638 reserved_space, (ret != 0));
8640 sb_end_pagefault(inode->i_sb);
8641 extent_changeset_free(data_reserved);
8645 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8647 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8648 struct btrfs_root *root = BTRFS_I(inode)->root;
8649 struct btrfs_block_rsv *rsv;
8651 struct btrfs_trans_handle *trans;
8652 u64 mask = fs_info->sectorsize - 1;
8653 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8655 if (!skip_writeback) {
8656 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8663 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8664 * things going on here:
8666 * 1) We need to reserve space to update our inode.
8668 * 2) We need to have something to cache all the space that is going to
8669 * be free'd up by the truncate operation, but also have some slack
8670 * space reserved in case it uses space during the truncate (thank you
8671 * very much snapshotting).
8673 * And we need these to be separate. The fact is we can use a lot of
8674 * space doing the truncate, and we have no earthly idea how much space
8675 * we will use, so we need the truncate reservation to be separate so it
8676 * doesn't end up using space reserved for updating the inode. We also
8677 * need to be able to stop the transaction and start a new one, which
8678 * means we need to be able to update the inode several times, and we
8679 * have no idea of knowing how many times that will be, so we can't just
8680 * reserve 1 item for the entirety of the operation, so that has to be
8681 * done separately as well.
8683 * So that leaves us with
8685 * 1) rsv - for the truncate reservation, which we will steal from the
8686 * transaction reservation.
8687 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8688 * updating the inode.
8690 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8693 rsv->size = min_size;
8697 * 1 for the truncate slack space
8698 * 1 for updating the inode.
8700 trans = btrfs_start_transaction(root, 2);
8701 if (IS_ERR(trans)) {
8702 ret = PTR_ERR(trans);
8706 /* Migrate the slack space for the truncate to our reserve */
8707 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8712 * So if we truncate and then write and fsync we normally would just
8713 * write the extents that changed, which is a problem if we need to
8714 * first truncate that entire inode. So set this flag so we write out
8715 * all of the extents in the inode to the sync log so we're completely
8718 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8719 trans->block_rsv = rsv;
8722 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
8724 BTRFS_EXTENT_DATA_KEY);
8725 trans->block_rsv = &fs_info->trans_block_rsv;
8726 if (ret != -ENOSPC && ret != -EAGAIN)
8729 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
8733 btrfs_end_transaction(trans);
8734 btrfs_btree_balance_dirty(fs_info);
8736 trans = btrfs_start_transaction(root, 2);
8737 if (IS_ERR(trans)) {
8738 ret = PTR_ERR(trans);
8743 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8744 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8745 rsv, min_size, false);
8746 BUG_ON(ret); /* shouldn't happen */
8747 trans->block_rsv = rsv;
8751 * We can't call btrfs_truncate_block inside a trans handle as we could
8752 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8753 * we've truncated everything except the last little bit, and can do
8754 * btrfs_truncate_block and then update the disk_i_size.
8756 if (ret == NEED_TRUNCATE_BLOCK) {
8757 btrfs_end_transaction(trans);
8758 btrfs_btree_balance_dirty(fs_info);
8760 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
8763 trans = btrfs_start_transaction(root, 1);
8764 if (IS_ERR(trans)) {
8765 ret = PTR_ERR(trans);
8768 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8774 trans->block_rsv = &fs_info->trans_block_rsv;
8775 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
8779 ret2 = btrfs_end_transaction(trans);
8782 btrfs_btree_balance_dirty(fs_info);
8785 btrfs_free_block_rsv(fs_info, rsv);
8791 * create a new subvolume directory/inode (helper for the ioctl).
8793 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8794 struct btrfs_root *new_root,
8795 struct btrfs_root *parent_root)
8797 struct inode *inode;
8802 err = btrfs_get_free_objectid(new_root, &ino);
8806 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, ino, ino,
8807 S_IFDIR | (~current_umask() & S_IRWXUGO),
8810 return PTR_ERR(inode);
8811 inode->i_op = &btrfs_dir_inode_operations;
8812 inode->i_fop = &btrfs_dir_file_operations;
8814 set_nlink(inode, 1);
8815 btrfs_i_size_write(BTRFS_I(inode), 0);
8816 unlock_new_inode(inode);
8818 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8820 btrfs_err(new_root->fs_info,
8821 "error inheriting subvolume %llu properties: %d",
8822 new_root->root_key.objectid, err);
8824 err = btrfs_update_inode(trans, new_root, BTRFS_I(inode));
8830 struct inode *btrfs_alloc_inode(struct super_block *sb)
8832 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8833 struct btrfs_inode *ei;
8834 struct inode *inode;
8836 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
8843 ei->last_sub_trans = 0;
8844 ei->logged_trans = 0;
8845 ei->delalloc_bytes = 0;
8846 ei->new_delalloc_bytes = 0;
8847 ei->defrag_bytes = 0;
8848 ei->disk_i_size = 0;
8851 ei->index_cnt = (u64)-1;
8853 ei->last_unlink_trans = 0;
8854 ei->last_reflink_trans = 0;
8855 ei->last_log_commit = 0;
8857 spin_lock_init(&ei->lock);
8858 ei->outstanding_extents = 0;
8859 if (sb->s_magic != BTRFS_TEST_MAGIC)
8860 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8861 BTRFS_BLOCK_RSV_DELALLOC);
8862 ei->runtime_flags = 0;
8863 ei->prop_compress = BTRFS_COMPRESS_NONE;
8864 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8866 ei->delayed_node = NULL;
8868 ei->i_otime.tv_sec = 0;
8869 ei->i_otime.tv_nsec = 0;
8871 inode = &ei->vfs_inode;
8872 extent_map_tree_init(&ei->extent_tree);
8873 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8874 extent_io_tree_init(fs_info, &ei->io_failure_tree,
8875 IO_TREE_INODE_IO_FAILURE, inode);
8876 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8877 IO_TREE_INODE_FILE_EXTENT, inode);
8878 ei->io_tree.track_uptodate = true;
8879 ei->io_failure_tree.track_uptodate = true;
8880 atomic_set(&ei->sync_writers, 0);
8881 mutex_init(&ei->log_mutex);
8882 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8883 INIT_LIST_HEAD(&ei->delalloc_inodes);
8884 INIT_LIST_HEAD(&ei->delayed_iput);
8885 RB_CLEAR_NODE(&ei->rb_node);
8890 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8891 void btrfs_test_destroy_inode(struct inode *inode)
8893 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8894 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8898 void btrfs_free_inode(struct inode *inode)
8900 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8903 void btrfs_destroy_inode(struct inode *vfs_inode)
8905 struct btrfs_ordered_extent *ordered;
8906 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8907 struct btrfs_root *root = inode->root;
8909 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8910 WARN_ON(vfs_inode->i_data.nrpages);
8911 WARN_ON(inode->block_rsv.reserved);
8912 WARN_ON(inode->block_rsv.size);
8913 WARN_ON(inode->outstanding_extents);
8914 WARN_ON(inode->delalloc_bytes);
8915 WARN_ON(inode->new_delalloc_bytes);
8916 WARN_ON(inode->csum_bytes);
8917 WARN_ON(inode->defrag_bytes);
8920 * This can happen where we create an inode, but somebody else also
8921 * created the same inode and we need to destroy the one we already
8928 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8932 btrfs_err(root->fs_info,
8933 "found ordered extent %llu %llu on inode cleanup",
8934 ordered->file_offset, ordered->num_bytes);
8935 btrfs_remove_ordered_extent(inode, ordered);
8936 btrfs_put_ordered_extent(ordered);
8937 btrfs_put_ordered_extent(ordered);
8940 btrfs_qgroup_check_reserved_leak(inode);
8941 inode_tree_del(inode);
8942 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8943 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8944 btrfs_put_root(inode->root);
8947 int btrfs_drop_inode(struct inode *inode)
8949 struct btrfs_root *root = BTRFS_I(inode)->root;
8954 /* the snap/subvol tree is on deleting */
8955 if (btrfs_root_refs(&root->root_item) == 0)
8958 return generic_drop_inode(inode);
8961 static void init_once(void *foo)
8963 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8965 inode_init_once(&ei->vfs_inode);
8968 void __cold btrfs_destroy_cachep(void)
8971 * Make sure all delayed rcu free inodes are flushed before we
8975 kmem_cache_destroy(btrfs_inode_cachep);
8976 kmem_cache_destroy(btrfs_trans_handle_cachep);
8977 kmem_cache_destroy(btrfs_path_cachep);
8978 kmem_cache_destroy(btrfs_free_space_cachep);
8979 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8982 int __init btrfs_init_cachep(void)
8984 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8985 sizeof(struct btrfs_inode), 0,
8986 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8988 if (!btrfs_inode_cachep)
8991 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8992 sizeof(struct btrfs_trans_handle), 0,
8993 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8994 if (!btrfs_trans_handle_cachep)
8997 btrfs_path_cachep = kmem_cache_create("btrfs_path",
8998 sizeof(struct btrfs_path), 0,
8999 SLAB_MEM_SPREAD, NULL);
9000 if (!btrfs_path_cachep)
9003 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9004 sizeof(struct btrfs_free_space), 0,
9005 SLAB_MEM_SPREAD, NULL);
9006 if (!btrfs_free_space_cachep)
9009 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9010 PAGE_SIZE, PAGE_SIZE,
9011 SLAB_MEM_SPREAD, NULL);
9012 if (!btrfs_free_space_bitmap_cachep)
9017 btrfs_destroy_cachep();
9021 static int btrfs_getattr(struct user_namespace *mnt_userns,
9022 const struct path *path, struct kstat *stat,
9023 u32 request_mask, unsigned int flags)
9027 struct inode *inode = d_inode(path->dentry);
9028 u32 blocksize = inode->i_sb->s_blocksize;
9029 u32 bi_flags = BTRFS_I(inode)->flags;
9031 stat->result_mask |= STATX_BTIME;
9032 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9033 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9034 if (bi_flags & BTRFS_INODE_APPEND)
9035 stat->attributes |= STATX_ATTR_APPEND;
9036 if (bi_flags & BTRFS_INODE_COMPRESS)
9037 stat->attributes |= STATX_ATTR_COMPRESSED;
9038 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9039 stat->attributes |= STATX_ATTR_IMMUTABLE;
9040 if (bi_flags & BTRFS_INODE_NODUMP)
9041 stat->attributes |= STATX_ATTR_NODUMP;
9043 stat->attributes_mask |= (STATX_ATTR_APPEND |
9044 STATX_ATTR_COMPRESSED |
9045 STATX_ATTR_IMMUTABLE |
9048 generic_fillattr(&init_user_ns, inode, stat);
9049 stat->dev = BTRFS_I(inode)->root->anon_dev;
9051 spin_lock(&BTRFS_I(inode)->lock);
9052 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9053 inode_bytes = inode_get_bytes(inode);
9054 spin_unlock(&BTRFS_I(inode)->lock);
9055 stat->blocks = (ALIGN(inode_bytes, blocksize) +
9056 ALIGN(delalloc_bytes, blocksize)) >> 9;
9060 static int btrfs_rename_exchange(struct inode *old_dir,
9061 struct dentry *old_dentry,
9062 struct inode *new_dir,
9063 struct dentry *new_dentry)
9065 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9066 struct btrfs_trans_handle *trans;
9067 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9068 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9069 struct inode *new_inode = new_dentry->d_inode;
9070 struct inode *old_inode = old_dentry->d_inode;
9071 struct timespec64 ctime = current_time(old_inode);
9072 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9073 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9078 bool root_log_pinned = false;
9079 bool dest_log_pinned = false;
9081 /* we only allow rename subvolume link between subvolumes */
9082 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9085 /* close the race window with snapshot create/destroy ioctl */
9086 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9087 new_ino == BTRFS_FIRST_FREE_OBJECTID)
9088 down_read(&fs_info->subvol_sem);
9091 * We want to reserve the absolute worst case amount of items. So if
9092 * both inodes are subvols and we need to unlink them then that would
9093 * require 4 item modifications, but if they are both normal inodes it
9094 * would require 5 item modifications, so we'll assume their normal
9095 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9096 * should cover the worst case number of items we'll modify.
9098 trans = btrfs_start_transaction(root, 12);
9099 if (IS_ERR(trans)) {
9100 ret = PTR_ERR(trans);
9105 btrfs_record_root_in_trans(trans, dest);
9108 * We need to find a free sequence number both in the source and
9109 * in the destination directory for the exchange.
9111 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9114 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9118 BTRFS_I(old_inode)->dir_index = 0ULL;
9119 BTRFS_I(new_inode)->dir_index = 0ULL;
9121 /* Reference for the source. */
9122 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9123 /* force full log commit if subvolume involved. */
9124 btrfs_set_log_full_commit(trans);
9126 btrfs_pin_log_trans(root);
9127 root_log_pinned = true;
9128 ret = btrfs_insert_inode_ref(trans, dest,
9129 new_dentry->d_name.name,
9130 new_dentry->d_name.len,
9132 btrfs_ino(BTRFS_I(new_dir)),
9138 /* And now for the dest. */
9139 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9140 /* force full log commit if subvolume involved. */
9141 btrfs_set_log_full_commit(trans);
9143 btrfs_pin_log_trans(dest);
9144 dest_log_pinned = true;
9145 ret = btrfs_insert_inode_ref(trans, root,
9146 old_dentry->d_name.name,
9147 old_dentry->d_name.len,
9149 btrfs_ino(BTRFS_I(old_dir)),
9155 /* Update inode version and ctime/mtime. */
9156 inode_inc_iversion(old_dir);
9157 inode_inc_iversion(new_dir);
9158 inode_inc_iversion(old_inode);
9159 inode_inc_iversion(new_inode);
9160 old_dir->i_ctime = old_dir->i_mtime = ctime;
9161 new_dir->i_ctime = new_dir->i_mtime = ctime;
9162 old_inode->i_ctime = ctime;
9163 new_inode->i_ctime = ctime;
9165 if (old_dentry->d_parent != new_dentry->d_parent) {
9166 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9167 BTRFS_I(old_inode), 1);
9168 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9169 BTRFS_I(new_inode), 1);
9172 /* src is a subvolume */
9173 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9174 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9175 } else { /* src is an inode */
9176 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9177 BTRFS_I(old_dentry->d_inode),
9178 old_dentry->d_name.name,
9179 old_dentry->d_name.len);
9181 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9184 btrfs_abort_transaction(trans, ret);
9188 /* dest is a subvolume */
9189 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9190 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9191 } else { /* dest is an inode */
9192 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9193 BTRFS_I(new_dentry->d_inode),
9194 new_dentry->d_name.name,
9195 new_dentry->d_name.len);
9197 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9200 btrfs_abort_transaction(trans, ret);
9204 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9205 new_dentry->d_name.name,
9206 new_dentry->d_name.len, 0, old_idx);
9208 btrfs_abort_transaction(trans, ret);
9212 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9213 old_dentry->d_name.name,
9214 old_dentry->d_name.len, 0, new_idx);
9216 btrfs_abort_transaction(trans, ret);
9220 if (old_inode->i_nlink == 1)
9221 BTRFS_I(old_inode)->dir_index = old_idx;
9222 if (new_inode->i_nlink == 1)
9223 BTRFS_I(new_inode)->dir_index = new_idx;
9225 if (root_log_pinned) {
9226 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9227 new_dentry->d_parent);
9228 btrfs_end_log_trans(root);
9229 root_log_pinned = false;
9231 if (dest_log_pinned) {
9232 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9233 old_dentry->d_parent);
9234 btrfs_end_log_trans(dest);
9235 dest_log_pinned = false;
9239 * If we have pinned a log and an error happened, we unpin tasks
9240 * trying to sync the log and force them to fallback to a transaction
9241 * commit if the log currently contains any of the inodes involved in
9242 * this rename operation (to ensure we do not persist a log with an
9243 * inconsistent state for any of these inodes or leading to any
9244 * inconsistencies when replayed). If the transaction was aborted, the
9245 * abortion reason is propagated to userspace when attempting to commit
9246 * the transaction. If the log does not contain any of these inodes, we
9247 * allow the tasks to sync it.
9249 if (ret && (root_log_pinned || dest_log_pinned)) {
9250 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9251 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9252 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9254 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9255 btrfs_set_log_full_commit(trans);
9257 if (root_log_pinned) {
9258 btrfs_end_log_trans(root);
9259 root_log_pinned = false;
9261 if (dest_log_pinned) {
9262 btrfs_end_log_trans(dest);
9263 dest_log_pinned = false;
9266 ret2 = btrfs_end_transaction(trans);
9267 ret = ret ? ret : ret2;
9269 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9270 old_ino == BTRFS_FIRST_FREE_OBJECTID)
9271 up_read(&fs_info->subvol_sem);
9276 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9277 struct btrfs_root *root,
9279 struct dentry *dentry)
9282 struct inode *inode;
9286 ret = btrfs_get_free_objectid(root, &objectid);
9290 inode = btrfs_new_inode(trans, root, dir,
9291 dentry->d_name.name,
9293 btrfs_ino(BTRFS_I(dir)),
9295 S_IFCHR | WHITEOUT_MODE,
9298 if (IS_ERR(inode)) {
9299 ret = PTR_ERR(inode);
9303 inode->i_op = &btrfs_special_inode_operations;
9304 init_special_inode(inode, inode->i_mode,
9307 ret = btrfs_init_inode_security(trans, inode, dir,
9312 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9313 BTRFS_I(inode), 0, index);
9317 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9319 unlock_new_inode(inode);
9321 inode_dec_link_count(inode);
9327 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9328 struct inode *new_dir, struct dentry *new_dentry,
9331 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9332 struct btrfs_trans_handle *trans;
9333 unsigned int trans_num_items;
9334 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9335 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9336 struct inode *new_inode = d_inode(new_dentry);
9337 struct inode *old_inode = d_inode(old_dentry);
9341 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9342 bool log_pinned = false;
9344 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9347 /* we only allow rename subvolume link between subvolumes */
9348 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9351 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9352 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9355 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9356 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9360 /* check for collisions, even if the name isn't there */
9361 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9362 new_dentry->d_name.name,
9363 new_dentry->d_name.len);
9366 if (ret == -EEXIST) {
9368 * eexist without a new_inode */
9369 if (WARN_ON(!new_inode)) {
9373 /* maybe -EOVERFLOW */
9380 * we're using rename to replace one file with another. Start IO on it
9381 * now so we don't add too much work to the end of the transaction
9383 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9384 filemap_flush(old_inode->i_mapping);
9386 /* close the racy window with snapshot create/destroy ioctl */
9387 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9388 down_read(&fs_info->subvol_sem);
9390 * We want to reserve the absolute worst case amount of items. So if
9391 * both inodes are subvols and we need to unlink them then that would
9392 * require 4 item modifications, but if they are both normal inodes it
9393 * would require 5 item modifications, so we'll assume they are normal
9394 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9395 * should cover the worst case number of items we'll modify.
9396 * If our rename has the whiteout flag, we need more 5 units for the
9397 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9398 * when selinux is enabled).
9400 trans_num_items = 11;
9401 if (flags & RENAME_WHITEOUT)
9402 trans_num_items += 5;
9403 trans = btrfs_start_transaction(root, trans_num_items);
9404 if (IS_ERR(trans)) {
9405 ret = PTR_ERR(trans);
9410 btrfs_record_root_in_trans(trans, dest);
9412 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9416 BTRFS_I(old_inode)->dir_index = 0ULL;
9417 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9418 /* force full log commit if subvolume involved. */
9419 btrfs_set_log_full_commit(trans);
9421 btrfs_pin_log_trans(root);
9423 ret = btrfs_insert_inode_ref(trans, dest,
9424 new_dentry->d_name.name,
9425 new_dentry->d_name.len,
9427 btrfs_ino(BTRFS_I(new_dir)), index);
9432 inode_inc_iversion(old_dir);
9433 inode_inc_iversion(new_dir);
9434 inode_inc_iversion(old_inode);
9435 old_dir->i_ctime = old_dir->i_mtime =
9436 new_dir->i_ctime = new_dir->i_mtime =
9437 old_inode->i_ctime = current_time(old_dir);
9439 if (old_dentry->d_parent != new_dentry->d_parent)
9440 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9441 BTRFS_I(old_inode), 1);
9443 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9444 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9446 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9447 BTRFS_I(d_inode(old_dentry)),
9448 old_dentry->d_name.name,
9449 old_dentry->d_name.len);
9451 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9454 btrfs_abort_transaction(trans, ret);
9459 inode_inc_iversion(new_inode);
9460 new_inode->i_ctime = current_time(new_inode);
9461 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9462 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9463 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9464 BUG_ON(new_inode->i_nlink == 0);
9466 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9467 BTRFS_I(d_inode(new_dentry)),
9468 new_dentry->d_name.name,
9469 new_dentry->d_name.len);
9471 if (!ret && new_inode->i_nlink == 0)
9472 ret = btrfs_orphan_add(trans,
9473 BTRFS_I(d_inode(new_dentry)));
9475 btrfs_abort_transaction(trans, ret);
9480 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9481 new_dentry->d_name.name,
9482 new_dentry->d_name.len, 0, index);
9484 btrfs_abort_transaction(trans, ret);
9488 if (old_inode->i_nlink == 1)
9489 BTRFS_I(old_inode)->dir_index = index;
9492 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9493 new_dentry->d_parent);
9494 btrfs_end_log_trans(root);
9498 if (flags & RENAME_WHITEOUT) {
9499 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9503 btrfs_abort_transaction(trans, ret);
9509 * If we have pinned the log and an error happened, we unpin tasks
9510 * trying to sync the log and force them to fallback to a transaction
9511 * commit if the log currently contains any of the inodes involved in
9512 * this rename operation (to ensure we do not persist a log with an
9513 * inconsistent state for any of these inodes or leading to any
9514 * inconsistencies when replayed). If the transaction was aborted, the
9515 * abortion reason is propagated to userspace when attempting to commit
9516 * the transaction. If the log does not contain any of these inodes, we
9517 * allow the tasks to sync it.
9519 if (ret && log_pinned) {
9520 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9521 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9522 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9524 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9525 btrfs_set_log_full_commit(trans);
9527 btrfs_end_log_trans(root);
9530 ret2 = btrfs_end_transaction(trans);
9531 ret = ret ? ret : ret2;
9533 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9534 up_read(&fs_info->subvol_sem);
9539 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9540 struct dentry *old_dentry, struct inode *new_dir,
9541 struct dentry *new_dentry, unsigned int flags)
9543 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9546 if (flags & RENAME_EXCHANGE)
9547 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9550 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9553 struct btrfs_delalloc_work {
9554 struct inode *inode;
9555 struct completion completion;
9556 struct list_head list;
9557 struct btrfs_work work;
9560 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9562 struct btrfs_delalloc_work *delalloc_work;
9563 struct inode *inode;
9565 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9567 inode = delalloc_work->inode;
9568 filemap_flush(inode->i_mapping);
9569 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9570 &BTRFS_I(inode)->runtime_flags))
9571 filemap_flush(inode->i_mapping);
9574 complete(&delalloc_work->completion);
9577 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9579 struct btrfs_delalloc_work *work;
9581 work = kmalloc(sizeof(*work), GFP_NOFS);
9585 init_completion(&work->completion);
9586 INIT_LIST_HEAD(&work->list);
9587 work->inode = inode;
9588 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9594 * some fairly slow code that needs optimization. This walks the list
9595 * of all the inodes with pending delalloc and forces them to disk.
9597 static int start_delalloc_inodes(struct btrfs_root *root,
9598 struct writeback_control *wbc, bool snapshot,
9599 bool in_reclaim_context)
9601 struct btrfs_inode *binode;
9602 struct inode *inode;
9603 struct btrfs_delalloc_work *work, *next;
9604 struct list_head works;
9605 struct list_head splice;
9607 bool full_flush = wbc->nr_to_write == LONG_MAX;
9609 INIT_LIST_HEAD(&works);
9610 INIT_LIST_HEAD(&splice);
9612 mutex_lock(&root->delalloc_mutex);
9613 spin_lock(&root->delalloc_lock);
9614 list_splice_init(&root->delalloc_inodes, &splice);
9615 while (!list_empty(&splice)) {
9616 binode = list_entry(splice.next, struct btrfs_inode,
9619 list_move_tail(&binode->delalloc_inodes,
9620 &root->delalloc_inodes);
9622 if (in_reclaim_context &&
9623 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9626 inode = igrab(&binode->vfs_inode);
9628 cond_resched_lock(&root->delalloc_lock);
9631 spin_unlock(&root->delalloc_lock);
9634 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9635 &binode->runtime_flags);
9637 work = btrfs_alloc_delalloc_work(inode);
9643 list_add_tail(&work->list, &works);
9644 btrfs_queue_work(root->fs_info->flush_workers,
9647 ret = sync_inode(inode, wbc);
9649 test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9650 &BTRFS_I(inode)->runtime_flags))
9651 ret = sync_inode(inode, wbc);
9652 btrfs_add_delayed_iput(inode);
9653 if (ret || wbc->nr_to_write <= 0)
9657 spin_lock(&root->delalloc_lock);
9659 spin_unlock(&root->delalloc_lock);
9662 list_for_each_entry_safe(work, next, &works, list) {
9663 list_del_init(&work->list);
9664 wait_for_completion(&work->completion);
9668 if (!list_empty(&splice)) {
9669 spin_lock(&root->delalloc_lock);
9670 list_splice_tail(&splice, &root->delalloc_inodes);
9671 spin_unlock(&root->delalloc_lock);
9673 mutex_unlock(&root->delalloc_mutex);
9677 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
9679 struct writeback_control wbc = {
9680 .nr_to_write = LONG_MAX,
9681 .sync_mode = WB_SYNC_NONE,
9683 .range_end = LLONG_MAX,
9685 struct btrfs_fs_info *fs_info = root->fs_info;
9687 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9690 return start_delalloc_inodes(root, &wbc, true, false);
9693 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9694 bool in_reclaim_context)
9696 struct writeback_control wbc = {
9698 .sync_mode = WB_SYNC_NONE,
9700 .range_end = LLONG_MAX,
9702 struct btrfs_root *root;
9703 struct list_head splice;
9706 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9709 INIT_LIST_HEAD(&splice);
9711 mutex_lock(&fs_info->delalloc_root_mutex);
9712 spin_lock(&fs_info->delalloc_root_lock);
9713 list_splice_init(&fs_info->delalloc_roots, &splice);
9714 while (!list_empty(&splice)) {
9716 * Reset nr_to_write here so we know that we're doing a full
9720 wbc.nr_to_write = LONG_MAX;
9722 root = list_first_entry(&splice, struct btrfs_root,
9724 root = btrfs_grab_root(root);
9726 list_move_tail(&root->delalloc_root,
9727 &fs_info->delalloc_roots);
9728 spin_unlock(&fs_info->delalloc_root_lock);
9730 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9731 btrfs_put_root(root);
9732 if (ret < 0 || wbc.nr_to_write <= 0)
9734 spin_lock(&fs_info->delalloc_root_lock);
9736 spin_unlock(&fs_info->delalloc_root_lock);
9740 if (!list_empty(&splice)) {
9741 spin_lock(&fs_info->delalloc_root_lock);
9742 list_splice_tail(&splice, &fs_info->delalloc_roots);
9743 spin_unlock(&fs_info->delalloc_root_lock);
9745 mutex_unlock(&fs_info->delalloc_root_mutex);
9749 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
9750 struct dentry *dentry, const char *symname)
9752 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9753 struct btrfs_trans_handle *trans;
9754 struct btrfs_root *root = BTRFS_I(dir)->root;
9755 struct btrfs_path *path;
9756 struct btrfs_key key;
9757 struct inode *inode = NULL;
9764 struct btrfs_file_extent_item *ei;
9765 struct extent_buffer *leaf;
9767 name_len = strlen(symname);
9768 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9769 return -ENAMETOOLONG;
9772 * 2 items for inode item and ref
9773 * 2 items for dir items
9774 * 1 item for updating parent inode item
9775 * 1 item for the inline extent item
9776 * 1 item for xattr if selinux is on
9778 trans = btrfs_start_transaction(root, 7);
9780 return PTR_ERR(trans);
9782 err = btrfs_get_free_objectid(root, &objectid);
9786 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9787 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9788 objectid, S_IFLNK|S_IRWXUGO, &index);
9789 if (IS_ERR(inode)) {
9790 err = PTR_ERR(inode);
9796 * If the active LSM wants to access the inode during
9797 * d_instantiate it needs these. Smack checks to see
9798 * if the filesystem supports xattrs by looking at the
9801 inode->i_fop = &btrfs_file_operations;
9802 inode->i_op = &btrfs_file_inode_operations;
9803 inode->i_mapping->a_ops = &btrfs_aops;
9805 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9809 path = btrfs_alloc_path();
9814 key.objectid = btrfs_ino(BTRFS_I(inode));
9816 key.type = BTRFS_EXTENT_DATA_KEY;
9817 datasize = btrfs_file_extent_calc_inline_size(name_len);
9818 err = btrfs_insert_empty_item(trans, root, path, &key,
9821 btrfs_free_path(path);
9824 leaf = path->nodes[0];
9825 ei = btrfs_item_ptr(leaf, path->slots[0],
9826 struct btrfs_file_extent_item);
9827 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9828 btrfs_set_file_extent_type(leaf, ei,
9829 BTRFS_FILE_EXTENT_INLINE);
9830 btrfs_set_file_extent_encryption(leaf, ei, 0);
9831 btrfs_set_file_extent_compression(leaf, ei, 0);
9832 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9833 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9835 ptr = btrfs_file_extent_inline_start(ei);
9836 write_extent_buffer(leaf, symname, ptr, name_len);
9837 btrfs_mark_buffer_dirty(leaf);
9838 btrfs_free_path(path);
9840 inode->i_op = &btrfs_symlink_inode_operations;
9841 inode_nohighmem(inode);
9842 inode_set_bytes(inode, name_len);
9843 btrfs_i_size_write(BTRFS_I(inode), name_len);
9844 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
9846 * Last step, add directory indexes for our symlink inode. This is the
9847 * last step to avoid extra cleanup of these indexes if an error happens
9851 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9852 BTRFS_I(inode), 0, index);
9856 d_instantiate_new(dentry, inode);
9859 btrfs_end_transaction(trans);
9861 inode_dec_link_count(inode);
9862 discard_new_inode(inode);
9864 btrfs_btree_balance_dirty(fs_info);
9868 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9869 struct btrfs_trans_handle *trans_in,
9870 struct btrfs_inode *inode,
9871 struct btrfs_key *ins,
9874 struct btrfs_file_extent_item stack_fi;
9875 struct btrfs_replace_extent_info extent_info;
9876 struct btrfs_trans_handle *trans = trans_in;
9877 struct btrfs_path *path;
9878 u64 start = ins->objectid;
9879 u64 len = ins->offset;
9880 int qgroup_released;
9883 memset(&stack_fi, 0, sizeof(stack_fi));
9885 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9886 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9887 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9888 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9889 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9890 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9891 /* Encryption and other encoding is reserved and all 0 */
9893 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9894 if (qgroup_released < 0)
9895 return ERR_PTR(qgroup_released);
9898 ret = insert_reserved_file_extent(trans, inode,
9899 file_offset, &stack_fi,
9900 true, qgroup_released);
9906 extent_info.disk_offset = start;
9907 extent_info.disk_len = len;
9908 extent_info.data_offset = 0;
9909 extent_info.data_len = len;
9910 extent_info.file_offset = file_offset;
9911 extent_info.extent_buf = (char *)&stack_fi;
9912 extent_info.is_new_extent = true;
9913 extent_info.qgroup_reserved = qgroup_released;
9914 extent_info.insertions = 0;
9916 path = btrfs_alloc_path();
9922 ret = btrfs_replace_file_extents(&inode->vfs_inode, path, file_offset,
9923 file_offset + len - 1, &extent_info,
9925 btrfs_free_path(path);
9932 * We have released qgroup data range at the beginning of the function,
9933 * and normally qgroup_released bytes will be freed when committing
9935 * But if we error out early, we have to free what we have released
9936 * or we leak qgroup data reservation.
9938 btrfs_qgroup_free_refroot(inode->root->fs_info,
9939 inode->root->root_key.objectid, qgroup_released,
9940 BTRFS_QGROUP_RSV_DATA);
9941 return ERR_PTR(ret);
9944 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9945 u64 start, u64 num_bytes, u64 min_size,
9946 loff_t actual_len, u64 *alloc_hint,
9947 struct btrfs_trans_handle *trans)
9949 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9950 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9951 struct extent_map *em;
9952 struct btrfs_root *root = BTRFS_I(inode)->root;
9953 struct btrfs_key ins;
9954 u64 cur_offset = start;
9955 u64 clear_offset = start;
9958 u64 last_alloc = (u64)-1;
9960 bool own_trans = true;
9961 u64 end = start + num_bytes - 1;
9965 while (num_bytes > 0) {
9966 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9967 cur_bytes = max(cur_bytes, min_size);
9969 * If we are severely fragmented we could end up with really
9970 * small allocations, so if the allocator is returning small
9971 * chunks lets make its job easier by only searching for those
9974 cur_bytes = min(cur_bytes, last_alloc);
9975 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9976 min_size, 0, *alloc_hint, &ins, 1, 0);
9981 * We've reserved this space, and thus converted it from
9982 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9983 * from here on out we will only need to clear our reservation
9984 * for the remaining unreserved area, so advance our
9985 * clear_offset by our extent size.
9987 clear_offset += ins.offset;
9989 last_alloc = ins.offset;
9990 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9993 * Now that we inserted the prealloc extent we can finally
9994 * decrement the number of reservations in the block group.
9995 * If we did it before, we could race with relocation and have
9996 * relocation miss the reserved extent, making it fail later.
9998 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9999 if (IS_ERR(trans)) {
10000 ret = PTR_ERR(trans);
10001 btrfs_free_reserved_extent(fs_info, ins.objectid,
10006 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10007 cur_offset + ins.offset -1, 0);
10009 em = alloc_extent_map();
10011 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10012 &BTRFS_I(inode)->runtime_flags);
10016 em->start = cur_offset;
10017 em->orig_start = cur_offset;
10018 em->len = ins.offset;
10019 em->block_start = ins.objectid;
10020 em->block_len = ins.offset;
10021 em->orig_block_len = ins.offset;
10022 em->ram_bytes = ins.offset;
10023 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10024 em->generation = trans->transid;
10027 write_lock(&em_tree->lock);
10028 ret = add_extent_mapping(em_tree, em, 1);
10029 write_unlock(&em_tree->lock);
10030 if (ret != -EEXIST)
10032 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10033 cur_offset + ins.offset - 1,
10036 free_extent_map(em);
10038 num_bytes -= ins.offset;
10039 cur_offset += ins.offset;
10040 *alloc_hint = ins.objectid + ins.offset;
10042 inode_inc_iversion(inode);
10043 inode->i_ctime = current_time(inode);
10044 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10045 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10046 (actual_len > inode->i_size) &&
10047 (cur_offset > inode->i_size)) {
10048 if (cur_offset > actual_len)
10049 i_size = actual_len;
10051 i_size = cur_offset;
10052 i_size_write(inode, i_size);
10053 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
10056 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10059 btrfs_abort_transaction(trans, ret);
10061 btrfs_end_transaction(trans);
10066 btrfs_end_transaction(trans);
10070 if (clear_offset < end)
10071 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
10072 end - clear_offset + 1);
10076 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10077 u64 start, u64 num_bytes, u64 min_size,
10078 loff_t actual_len, u64 *alloc_hint)
10080 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10081 min_size, actual_len, alloc_hint,
10085 int btrfs_prealloc_file_range_trans(struct inode *inode,
10086 struct btrfs_trans_handle *trans, int mode,
10087 u64 start, u64 num_bytes, u64 min_size,
10088 loff_t actual_len, u64 *alloc_hint)
10090 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10091 min_size, actual_len, alloc_hint, trans);
10094 static int btrfs_set_page_dirty(struct page *page)
10096 return __set_page_dirty_nobuffers(page);
10099 static int btrfs_permission(struct user_namespace *mnt_userns,
10100 struct inode *inode, int mask)
10102 struct btrfs_root *root = BTRFS_I(inode)->root;
10103 umode_t mode = inode->i_mode;
10105 if (mask & MAY_WRITE &&
10106 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10107 if (btrfs_root_readonly(root))
10109 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10112 return generic_permission(&init_user_ns, inode, mask);
10115 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10116 struct dentry *dentry, umode_t mode)
10118 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10119 struct btrfs_trans_handle *trans;
10120 struct btrfs_root *root = BTRFS_I(dir)->root;
10121 struct inode *inode = NULL;
10127 * 5 units required for adding orphan entry
10129 trans = btrfs_start_transaction(root, 5);
10131 return PTR_ERR(trans);
10133 ret = btrfs_get_free_objectid(root, &objectid);
10137 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10138 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10139 if (IS_ERR(inode)) {
10140 ret = PTR_ERR(inode);
10145 inode->i_fop = &btrfs_file_operations;
10146 inode->i_op = &btrfs_file_inode_operations;
10148 inode->i_mapping->a_ops = &btrfs_aops;
10150 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10154 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10157 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10162 * We set number of links to 0 in btrfs_new_inode(), and here we set
10163 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10166 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10168 set_nlink(inode, 1);
10169 d_tmpfile(dentry, inode);
10170 unlock_new_inode(inode);
10171 mark_inode_dirty(inode);
10173 btrfs_end_transaction(trans);
10175 discard_new_inode(inode);
10176 btrfs_btree_balance_dirty(fs_info);
10180 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10182 struct inode *inode = tree->private_data;
10183 unsigned long index = start >> PAGE_SHIFT;
10184 unsigned long end_index = end >> PAGE_SHIFT;
10187 while (index <= end_index) {
10188 page = find_get_page(inode->i_mapping, index);
10189 ASSERT(page); /* Pages should be in the extent_io_tree */
10190 set_page_writeback(page);
10198 * Add an entry indicating a block group or device which is pinned by a
10199 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10200 * negative errno on failure.
10202 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10203 bool is_block_group)
10205 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10206 struct btrfs_swapfile_pin *sp, *entry;
10207 struct rb_node **p;
10208 struct rb_node *parent = NULL;
10210 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10215 sp->is_block_group = is_block_group;
10216 sp->bg_extent_count = 1;
10218 spin_lock(&fs_info->swapfile_pins_lock);
10219 p = &fs_info->swapfile_pins.rb_node;
10222 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10223 if (sp->ptr < entry->ptr ||
10224 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10225 p = &(*p)->rb_left;
10226 } else if (sp->ptr > entry->ptr ||
10227 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10228 p = &(*p)->rb_right;
10230 if (is_block_group)
10231 entry->bg_extent_count++;
10232 spin_unlock(&fs_info->swapfile_pins_lock);
10237 rb_link_node(&sp->node, parent, p);
10238 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10239 spin_unlock(&fs_info->swapfile_pins_lock);
10243 /* Free all of the entries pinned by this swapfile. */
10244 static void btrfs_free_swapfile_pins(struct inode *inode)
10246 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10247 struct btrfs_swapfile_pin *sp;
10248 struct rb_node *node, *next;
10250 spin_lock(&fs_info->swapfile_pins_lock);
10251 node = rb_first(&fs_info->swapfile_pins);
10253 next = rb_next(node);
10254 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10255 if (sp->inode == inode) {
10256 rb_erase(&sp->node, &fs_info->swapfile_pins);
10257 if (sp->is_block_group) {
10258 btrfs_dec_block_group_swap_extents(sp->ptr,
10259 sp->bg_extent_count);
10260 btrfs_put_block_group(sp->ptr);
10266 spin_unlock(&fs_info->swapfile_pins_lock);
10269 struct btrfs_swap_info {
10275 unsigned long nr_pages;
10279 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10280 struct btrfs_swap_info *bsi)
10282 unsigned long nr_pages;
10283 u64 first_ppage, first_ppage_reported, next_ppage;
10286 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10287 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10288 PAGE_SIZE) >> PAGE_SHIFT;
10290 if (first_ppage >= next_ppage)
10292 nr_pages = next_ppage - first_ppage;
10294 first_ppage_reported = first_ppage;
10295 if (bsi->start == 0)
10296 first_ppage_reported++;
10297 if (bsi->lowest_ppage > first_ppage_reported)
10298 bsi->lowest_ppage = first_ppage_reported;
10299 if (bsi->highest_ppage < (next_ppage - 1))
10300 bsi->highest_ppage = next_ppage - 1;
10302 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10305 bsi->nr_extents += ret;
10306 bsi->nr_pages += nr_pages;
10310 static void btrfs_swap_deactivate(struct file *file)
10312 struct inode *inode = file_inode(file);
10314 btrfs_free_swapfile_pins(inode);
10315 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10318 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10321 struct inode *inode = file_inode(file);
10322 struct btrfs_root *root = BTRFS_I(inode)->root;
10323 struct btrfs_fs_info *fs_info = root->fs_info;
10324 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10325 struct extent_state *cached_state = NULL;
10326 struct extent_map *em = NULL;
10327 struct btrfs_device *device = NULL;
10328 struct btrfs_swap_info bsi = {
10329 .lowest_ppage = (sector_t)-1ULL,
10336 * If the swap file was just created, make sure delalloc is done. If the
10337 * file changes again after this, the user is doing something stupid and
10338 * we don't really care.
10340 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10345 * The inode is locked, so these flags won't change after we check them.
10347 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10348 btrfs_warn(fs_info, "swapfile must not be compressed");
10351 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10352 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10355 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10356 btrfs_warn(fs_info, "swapfile must not be checksummed");
10361 * Balance or device remove/replace/resize can move stuff around from
10362 * under us. The exclop protection makes sure they aren't running/won't
10363 * run concurrently while we are mapping the swap extents, and
10364 * fs_info->swapfile_pins prevents them from running while the swap
10365 * file is active and moving the extents. Note that this also prevents
10366 * a concurrent device add which isn't actually necessary, but it's not
10367 * really worth the trouble to allow it.
10369 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10370 btrfs_warn(fs_info,
10371 "cannot activate swapfile while exclusive operation is running");
10376 * Prevent snapshot creation while we are activating the swap file.
10377 * We do not want to race with snapshot creation. If snapshot creation
10378 * already started before we bumped nr_swapfiles from 0 to 1 and
10379 * completes before the first write into the swap file after it is
10380 * activated, than that write would fallback to COW.
10382 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10383 btrfs_exclop_finish(fs_info);
10384 btrfs_warn(fs_info,
10385 "cannot activate swapfile because snapshot creation is in progress");
10389 * Snapshots can create extents which require COW even if NODATACOW is
10390 * set. We use this counter to prevent snapshots. We must increment it
10391 * before walking the extents because we don't want a concurrent
10392 * snapshot to run after we've already checked the extents.
10394 atomic_inc(&root->nr_swapfiles);
10396 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10398 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10400 while (start < isize) {
10401 u64 logical_block_start, physical_block_start;
10402 struct btrfs_block_group *bg;
10403 u64 len = isize - start;
10405 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10411 if (em->block_start == EXTENT_MAP_HOLE) {
10412 btrfs_warn(fs_info, "swapfile must not have holes");
10416 if (em->block_start == EXTENT_MAP_INLINE) {
10418 * It's unlikely we'll ever actually find ourselves
10419 * here, as a file small enough to fit inline won't be
10420 * big enough to store more than the swap header, but in
10421 * case something changes in the future, let's catch it
10422 * here rather than later.
10424 btrfs_warn(fs_info, "swapfile must not be inline");
10428 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10429 btrfs_warn(fs_info, "swapfile must not be compressed");
10434 logical_block_start = em->block_start + (start - em->start);
10435 len = min(len, em->len - (start - em->start));
10436 free_extent_map(em);
10439 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
10445 btrfs_warn(fs_info,
10446 "swapfile must not be copy-on-write");
10451 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10457 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10458 btrfs_warn(fs_info,
10459 "swapfile must have single data profile");
10464 if (device == NULL) {
10465 device = em->map_lookup->stripes[0].dev;
10466 ret = btrfs_add_swapfile_pin(inode, device, false);
10471 } else if (device != em->map_lookup->stripes[0].dev) {
10472 btrfs_warn(fs_info, "swapfile must be on one device");
10477 physical_block_start = (em->map_lookup->stripes[0].physical +
10478 (logical_block_start - em->start));
10479 len = min(len, em->len - (logical_block_start - em->start));
10480 free_extent_map(em);
10483 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10485 btrfs_warn(fs_info,
10486 "could not find block group containing swapfile");
10491 if (!btrfs_inc_block_group_swap_extents(bg)) {
10492 btrfs_warn(fs_info,
10493 "block group for swapfile at %llu is read-only%s",
10495 atomic_read(&fs_info->scrubs_running) ?
10496 " (scrub running)" : "");
10497 btrfs_put_block_group(bg);
10502 ret = btrfs_add_swapfile_pin(inode, bg, true);
10504 btrfs_put_block_group(bg);
10511 if (bsi.block_len &&
10512 bsi.block_start + bsi.block_len == physical_block_start) {
10513 bsi.block_len += len;
10515 if (bsi.block_len) {
10516 ret = btrfs_add_swap_extent(sis, &bsi);
10521 bsi.block_start = physical_block_start;
10522 bsi.block_len = len;
10529 ret = btrfs_add_swap_extent(sis, &bsi);
10532 if (!IS_ERR_OR_NULL(em))
10533 free_extent_map(em);
10535 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10538 btrfs_swap_deactivate(file);
10540 btrfs_drew_write_unlock(&root->snapshot_lock);
10542 btrfs_exclop_finish(fs_info);
10548 sis->bdev = device->bdev;
10549 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10550 sis->max = bsi.nr_pages;
10551 sis->pages = bsi.nr_pages - 1;
10552 sis->highest_bit = bsi.nr_pages - 1;
10553 return bsi.nr_extents;
10556 static void btrfs_swap_deactivate(struct file *file)
10560 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10563 return -EOPNOTSUPP;
10568 * Update the number of bytes used in the VFS' inode. When we replace extents in
10569 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10570 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10571 * always get a correct value.
10573 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10574 const u64 add_bytes,
10575 const u64 del_bytes)
10577 if (add_bytes == del_bytes)
10580 spin_lock(&inode->lock);
10582 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10584 inode_add_bytes(&inode->vfs_inode, add_bytes);
10585 spin_unlock(&inode->lock);
10588 static const struct inode_operations btrfs_dir_inode_operations = {
10589 .getattr = btrfs_getattr,
10590 .lookup = btrfs_lookup,
10591 .create = btrfs_create,
10592 .unlink = btrfs_unlink,
10593 .link = btrfs_link,
10594 .mkdir = btrfs_mkdir,
10595 .rmdir = btrfs_rmdir,
10596 .rename = btrfs_rename2,
10597 .symlink = btrfs_symlink,
10598 .setattr = btrfs_setattr,
10599 .mknod = btrfs_mknod,
10600 .listxattr = btrfs_listxattr,
10601 .permission = btrfs_permission,
10602 .get_acl = btrfs_get_acl,
10603 .set_acl = btrfs_set_acl,
10604 .update_time = btrfs_update_time,
10605 .tmpfile = btrfs_tmpfile,
10608 static const struct file_operations btrfs_dir_file_operations = {
10609 .llseek = generic_file_llseek,
10610 .read = generic_read_dir,
10611 .iterate_shared = btrfs_real_readdir,
10612 .open = btrfs_opendir,
10613 .unlocked_ioctl = btrfs_ioctl,
10614 #ifdef CONFIG_COMPAT
10615 .compat_ioctl = btrfs_compat_ioctl,
10617 .release = btrfs_release_file,
10618 .fsync = btrfs_sync_file,
10622 * btrfs doesn't support the bmap operation because swapfiles
10623 * use bmap to make a mapping of extents in the file. They assume
10624 * these extents won't change over the life of the file and they
10625 * use the bmap result to do IO directly to the drive.
10627 * the btrfs bmap call would return logical addresses that aren't
10628 * suitable for IO and they also will change frequently as COW
10629 * operations happen. So, swapfile + btrfs == corruption.
10631 * For now we're avoiding this by dropping bmap.
10633 static const struct address_space_operations btrfs_aops = {
10634 .readpage = btrfs_readpage,
10635 .writepage = btrfs_writepage,
10636 .writepages = btrfs_writepages,
10637 .readahead = btrfs_readahead,
10638 .direct_IO = noop_direct_IO,
10639 .invalidatepage = btrfs_invalidatepage,
10640 .releasepage = btrfs_releasepage,
10641 #ifdef CONFIG_MIGRATION
10642 .migratepage = btrfs_migratepage,
10644 .set_page_dirty = btrfs_set_page_dirty,
10645 .error_remove_page = generic_error_remove_page,
10646 .swap_activate = btrfs_swap_activate,
10647 .swap_deactivate = btrfs_swap_deactivate,
10650 static const struct inode_operations btrfs_file_inode_operations = {
10651 .getattr = btrfs_getattr,
10652 .setattr = btrfs_setattr,
10653 .listxattr = btrfs_listxattr,
10654 .permission = btrfs_permission,
10655 .fiemap = btrfs_fiemap,
10656 .get_acl = btrfs_get_acl,
10657 .set_acl = btrfs_set_acl,
10658 .update_time = btrfs_update_time,
10660 static const struct inode_operations btrfs_special_inode_operations = {
10661 .getattr = btrfs_getattr,
10662 .setattr = btrfs_setattr,
10663 .permission = btrfs_permission,
10664 .listxattr = btrfs_listxattr,
10665 .get_acl = btrfs_get_acl,
10666 .set_acl = btrfs_set_acl,
10667 .update_time = btrfs_update_time,
10669 static const struct inode_operations btrfs_symlink_inode_operations = {
10670 .get_link = page_get_link,
10671 .getattr = btrfs_getattr,
10672 .setattr = btrfs_setattr,
10673 .permission = btrfs_permission,
10674 .listxattr = btrfs_listxattr,
10675 .update_time = btrfs_update_time,
10678 const struct dentry_operations btrfs_dentry_operations = {
10679 .d_delete = btrfs_dentry_delete,