Btrfs: use a slab for the free space entries
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 #include "free-space-cache.h"
54
55 struct btrfs_iget_args {
56         u64 ino;
57         struct btrfs_root *root;
58 };
59
60 static const struct inode_operations btrfs_dir_inode_operations;
61 static const struct inode_operations btrfs_symlink_inode_operations;
62 static const struct inode_operations btrfs_dir_ro_inode_operations;
63 static const struct inode_operations btrfs_special_inode_operations;
64 static const struct inode_operations btrfs_file_inode_operations;
65 static const struct address_space_operations btrfs_aops;
66 static const struct address_space_operations btrfs_symlink_aops;
67 static const struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
79         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
80         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
81         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
82         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
83         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
84         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
85 };
86
87 static void btrfs_truncate(struct inode *inode);
88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
89 static noinline int cow_file_range(struct inode *inode,
90                                    struct page *locked_page,
91                                    u64 start, u64 end, int *page_started,
92                                    unsigned long *nr_written, int unlock);
93
94 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
95                                      struct inode *inode,  struct inode *dir)
96 {
97         int err;
98
99         err = btrfs_init_acl(trans, inode, dir);
100         if (!err)
101                 err = btrfs_xattr_security_init(trans, inode, dir);
102         return err;
103 }
104
105 /*
106  * this does all the hard work for inserting an inline extent into
107  * the btree.  The caller should have done a btrfs_drop_extents so that
108  * no overlapping inline items exist in the btree
109  */
110 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
111                                 struct btrfs_root *root, struct inode *inode,
112                                 u64 start, size_t size, size_t compressed_size,
113                                 struct page **compressed_pages)
114 {
115         struct btrfs_key key;
116         struct btrfs_path *path;
117         struct extent_buffer *leaf;
118         struct page *page = NULL;
119         char *kaddr;
120         unsigned long ptr;
121         struct btrfs_file_extent_item *ei;
122         int err = 0;
123         int ret;
124         size_t cur_size = size;
125         size_t datasize;
126         unsigned long offset;
127         int compress_type = BTRFS_COMPRESS_NONE;
128
129         if (compressed_size && compressed_pages) {
130                 compress_type = root->fs_info->compress_type;
131                 cur_size = compressed_size;
132         }
133
134         path = btrfs_alloc_path();
135         if (!path)
136                 return -ENOMEM;
137
138         path->leave_spinning = 1;
139         btrfs_set_trans_block_group(trans, inode);
140
141         key.objectid = inode->i_ino;
142         key.offset = start;
143         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
144         datasize = btrfs_file_extent_calc_inline_size(cur_size);
145
146         inode_add_bytes(inode, size);
147         ret = btrfs_insert_empty_item(trans, root, path, &key,
148                                       datasize);
149         BUG_ON(ret);
150         if (ret) {
151                 err = ret;
152                 goto fail;
153         }
154         leaf = path->nodes[0];
155         ei = btrfs_item_ptr(leaf, path->slots[0],
156                             struct btrfs_file_extent_item);
157         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
158         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
159         btrfs_set_file_extent_encryption(leaf, ei, 0);
160         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
161         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
162         ptr = btrfs_file_extent_inline_start(ei);
163
164         if (compress_type != BTRFS_COMPRESS_NONE) {
165                 struct page *cpage;
166                 int i = 0;
167                 while (compressed_size > 0) {
168                         cpage = compressed_pages[i];
169                         cur_size = min_t(unsigned long, compressed_size,
170                                        PAGE_CACHE_SIZE);
171
172                         kaddr = kmap_atomic(cpage, KM_USER0);
173                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
174                         kunmap_atomic(kaddr, KM_USER0);
175
176                         i++;
177                         ptr += cur_size;
178                         compressed_size -= cur_size;
179                 }
180                 btrfs_set_file_extent_compression(leaf, ei,
181                                                   compress_type);
182         } else {
183                 page = find_get_page(inode->i_mapping,
184                                      start >> PAGE_CACHE_SHIFT);
185                 btrfs_set_file_extent_compression(leaf, ei, 0);
186                 kaddr = kmap_atomic(page, KM_USER0);
187                 offset = start & (PAGE_CACHE_SIZE - 1);
188                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
189                 kunmap_atomic(kaddr, KM_USER0);
190                 page_cache_release(page);
191         }
192         btrfs_mark_buffer_dirty(leaf);
193         btrfs_free_path(path);
194
195         /*
196          * we're an inline extent, so nobody can
197          * extend the file past i_size without locking
198          * a page we already have locked.
199          *
200          * We must do any isize and inode updates
201          * before we unlock the pages.  Otherwise we
202          * could end up racing with unlink.
203          */
204         BTRFS_I(inode)->disk_i_size = inode->i_size;
205         btrfs_update_inode(trans, root, inode);
206
207         return 0;
208 fail:
209         btrfs_free_path(path);
210         return err;
211 }
212
213
214 /*
215  * conditionally insert an inline extent into the file.  This
216  * does the checks required to make sure the data is small enough
217  * to fit as an inline extent.
218  */
219 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
220                                  struct btrfs_root *root,
221                                  struct inode *inode, u64 start, u64 end,
222                                  size_t compressed_size,
223                                  struct page **compressed_pages)
224 {
225         u64 isize = i_size_read(inode);
226         u64 actual_end = min(end + 1, isize);
227         u64 inline_len = actual_end - start;
228         u64 aligned_end = (end + root->sectorsize - 1) &
229                         ~((u64)root->sectorsize - 1);
230         u64 hint_byte;
231         u64 data_len = inline_len;
232         int ret;
233
234         if (compressed_size)
235                 data_len = compressed_size;
236
237         if (start > 0 ||
238             actual_end >= PAGE_CACHE_SIZE ||
239             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
240             (!compressed_size &&
241             (actual_end & (root->sectorsize - 1)) == 0) ||
242             end + 1 < isize ||
243             data_len > root->fs_info->max_inline) {
244                 return 1;
245         }
246
247         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
248                                  &hint_byte, 1);
249         BUG_ON(ret);
250
251         if (isize > actual_end)
252                 inline_len = min_t(u64, isize, actual_end);
253         ret = insert_inline_extent(trans, root, inode, start,
254                                    inline_len, compressed_size,
255                                    compressed_pages);
256         BUG_ON(ret);
257         btrfs_delalloc_release_metadata(inode, end + 1 - start);
258         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
259         return 0;
260 }
261
262 struct async_extent {
263         u64 start;
264         u64 ram_size;
265         u64 compressed_size;
266         struct page **pages;
267         unsigned long nr_pages;
268         int compress_type;
269         struct list_head list;
270 };
271
272 struct async_cow {
273         struct inode *inode;
274         struct btrfs_root *root;
275         struct page *locked_page;
276         u64 start;
277         u64 end;
278         struct list_head extents;
279         struct btrfs_work work;
280 };
281
282 static noinline int add_async_extent(struct async_cow *cow,
283                                      u64 start, u64 ram_size,
284                                      u64 compressed_size,
285                                      struct page **pages,
286                                      unsigned long nr_pages,
287                                      int compress_type)
288 {
289         struct async_extent *async_extent;
290
291         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
292         async_extent->start = start;
293         async_extent->ram_size = ram_size;
294         async_extent->compressed_size = compressed_size;
295         async_extent->pages = pages;
296         async_extent->nr_pages = nr_pages;
297         async_extent->compress_type = compress_type;
298         list_add_tail(&async_extent->list, &cow->extents);
299         return 0;
300 }
301
302 /*
303  * we create compressed extents in two phases.  The first
304  * phase compresses a range of pages that have already been
305  * locked (both pages and state bits are locked).
306  *
307  * This is done inside an ordered work queue, and the compression
308  * is spread across many cpus.  The actual IO submission is step
309  * two, and the ordered work queue takes care of making sure that
310  * happens in the same order things were put onto the queue by
311  * writepages and friends.
312  *
313  * If this code finds it can't get good compression, it puts an
314  * entry onto the work queue to write the uncompressed bytes.  This
315  * makes sure that both compressed inodes and uncompressed inodes
316  * are written in the same order that pdflush sent them down.
317  */
318 static noinline int compress_file_range(struct inode *inode,
319                                         struct page *locked_page,
320                                         u64 start, u64 end,
321                                         struct async_cow *async_cow,
322                                         int *num_added)
323 {
324         struct btrfs_root *root = BTRFS_I(inode)->root;
325         struct btrfs_trans_handle *trans;
326         u64 num_bytes;
327         u64 blocksize = root->sectorsize;
328         u64 actual_end;
329         u64 isize = i_size_read(inode);
330         int ret = 0;
331         struct page **pages = NULL;
332         unsigned long nr_pages;
333         unsigned long nr_pages_ret = 0;
334         unsigned long total_compressed = 0;
335         unsigned long total_in = 0;
336         unsigned long max_compressed = 128 * 1024;
337         unsigned long max_uncompressed = 128 * 1024;
338         int i;
339         int will_compress;
340         int compress_type = root->fs_info->compress_type;
341
342         actual_end = min_t(u64, isize, end + 1);
343 again:
344         will_compress = 0;
345         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
346         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
347
348         /*
349          * we don't want to send crud past the end of i_size through
350          * compression, that's just a waste of CPU time.  So, if the
351          * end of the file is before the start of our current
352          * requested range of bytes, we bail out to the uncompressed
353          * cleanup code that can deal with all of this.
354          *
355          * It isn't really the fastest way to fix things, but this is a
356          * very uncommon corner.
357          */
358         if (actual_end <= start)
359                 goto cleanup_and_bail_uncompressed;
360
361         total_compressed = actual_end - start;
362
363         /* we want to make sure that amount of ram required to uncompress
364          * an extent is reasonable, so we limit the total size in ram
365          * of a compressed extent to 128k.  This is a crucial number
366          * because it also controls how easily we can spread reads across
367          * cpus for decompression.
368          *
369          * We also want to make sure the amount of IO required to do
370          * a random read is reasonably small, so we limit the size of
371          * a compressed extent to 128k.
372          */
373         total_compressed = min(total_compressed, max_uncompressed);
374         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
375         num_bytes = max(blocksize,  num_bytes);
376         total_in = 0;
377         ret = 0;
378
379         /*
380          * we do compression for mount -o compress and when the
381          * inode has not been flagged as nocompress.  This flag can
382          * change at any time if we discover bad compression ratios.
383          */
384         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
385             (btrfs_test_opt(root, COMPRESS) ||
386              (BTRFS_I(inode)->force_compress))) {
387                 WARN_ON(pages);
388                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
389
390                 if (BTRFS_I(inode)->force_compress)
391                         compress_type = BTRFS_I(inode)->force_compress;
392
393                 ret = btrfs_compress_pages(compress_type,
394                                            inode->i_mapping, start,
395                                            total_compressed, pages,
396                                            nr_pages, &nr_pages_ret,
397                                            &total_in,
398                                            &total_compressed,
399                                            max_compressed);
400
401                 if (!ret) {
402                         unsigned long offset = total_compressed &
403                                 (PAGE_CACHE_SIZE - 1);
404                         struct page *page = pages[nr_pages_ret - 1];
405                         char *kaddr;
406
407                         /* zero the tail end of the last page, we might be
408                          * sending it down to disk
409                          */
410                         if (offset) {
411                                 kaddr = kmap_atomic(page, KM_USER0);
412                                 memset(kaddr + offset, 0,
413                                        PAGE_CACHE_SIZE - offset);
414                                 kunmap_atomic(kaddr, KM_USER0);
415                         }
416                         will_compress = 1;
417                 }
418         }
419         if (start == 0) {
420                 trans = btrfs_join_transaction(root, 1);
421                 BUG_ON(IS_ERR(trans));
422                 btrfs_set_trans_block_group(trans, inode);
423                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
424
425                 /* lets try to make an inline extent */
426                 if (ret || total_in < (actual_end - start)) {
427                         /* we didn't compress the entire range, try
428                          * to make an uncompressed inline extent.
429                          */
430                         ret = cow_file_range_inline(trans, root, inode,
431                                                     start, end, 0, NULL);
432                 } else {
433                         /* try making a compressed inline extent */
434                         ret = cow_file_range_inline(trans, root, inode,
435                                                     start, end,
436                                                     total_compressed, pages);
437                 }
438                 if (ret == 0) {
439                         /*
440                          * inline extent creation worked, we don't need
441                          * to create any more async work items.  Unlock
442                          * and free up our temp pages.
443                          */
444                         extent_clear_unlock_delalloc(inode,
445                              &BTRFS_I(inode)->io_tree,
446                              start, end, NULL,
447                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
448                              EXTENT_CLEAR_DELALLOC |
449                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
450
451                         btrfs_end_transaction(trans, root);
452                         goto free_pages_out;
453                 }
454                 btrfs_end_transaction(trans, root);
455         }
456
457         if (will_compress) {
458                 /*
459                  * we aren't doing an inline extent round the compressed size
460                  * up to a block size boundary so the allocator does sane
461                  * things
462                  */
463                 total_compressed = (total_compressed + blocksize - 1) &
464                         ~(blocksize - 1);
465
466                 /*
467                  * one last check to make sure the compression is really a
468                  * win, compare the page count read with the blocks on disk
469                  */
470                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
471                         ~(PAGE_CACHE_SIZE - 1);
472                 if (total_compressed >= total_in) {
473                         will_compress = 0;
474                 } else {
475                         num_bytes = total_in;
476                 }
477         }
478         if (!will_compress && pages) {
479                 /*
480                  * the compression code ran but failed to make things smaller,
481                  * free any pages it allocated and our page pointer array
482                  */
483                 for (i = 0; i < nr_pages_ret; i++) {
484                         WARN_ON(pages[i]->mapping);
485                         page_cache_release(pages[i]);
486                 }
487                 kfree(pages);
488                 pages = NULL;
489                 total_compressed = 0;
490                 nr_pages_ret = 0;
491
492                 /* flag the file so we don't compress in the future */
493                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
494                     !(BTRFS_I(inode)->force_compress)) {
495                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
496                 }
497         }
498         if (will_compress) {
499                 *num_added += 1;
500
501                 /* the async work queues will take care of doing actual
502                  * allocation on disk for these compressed pages,
503                  * and will submit them to the elevator.
504                  */
505                 add_async_extent(async_cow, start, num_bytes,
506                                  total_compressed, pages, nr_pages_ret,
507                                  compress_type);
508
509                 if (start + num_bytes < end) {
510                         start += num_bytes;
511                         pages = NULL;
512                         cond_resched();
513                         goto again;
514                 }
515         } else {
516 cleanup_and_bail_uncompressed:
517                 /*
518                  * No compression, but we still need to write the pages in
519                  * the file we've been given so far.  redirty the locked
520                  * page if it corresponds to our extent and set things up
521                  * for the async work queue to run cow_file_range to do
522                  * the normal delalloc dance
523                  */
524                 if (page_offset(locked_page) >= start &&
525                     page_offset(locked_page) <= end) {
526                         __set_page_dirty_nobuffers(locked_page);
527                         /* unlocked later on in the async handlers */
528                 }
529                 add_async_extent(async_cow, start, end - start + 1,
530                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
531                 *num_added += 1;
532         }
533
534 out:
535         return 0;
536
537 free_pages_out:
538         for (i = 0; i < nr_pages_ret; i++) {
539                 WARN_ON(pages[i]->mapping);
540                 page_cache_release(pages[i]);
541         }
542         kfree(pages);
543
544         goto out;
545 }
546
547 /*
548  * phase two of compressed writeback.  This is the ordered portion
549  * of the code, which only gets called in the order the work was
550  * queued.  We walk all the async extents created by compress_file_range
551  * and send them down to the disk.
552  */
553 static noinline int submit_compressed_extents(struct inode *inode,
554                                               struct async_cow *async_cow)
555 {
556         struct async_extent *async_extent;
557         u64 alloc_hint = 0;
558         struct btrfs_trans_handle *trans;
559         struct btrfs_key ins;
560         struct extent_map *em;
561         struct btrfs_root *root = BTRFS_I(inode)->root;
562         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
563         struct extent_io_tree *io_tree;
564         int ret = 0;
565
566         if (list_empty(&async_cow->extents))
567                 return 0;
568
569
570         while (!list_empty(&async_cow->extents)) {
571                 async_extent = list_entry(async_cow->extents.next,
572                                           struct async_extent, list);
573                 list_del(&async_extent->list);
574
575                 io_tree = &BTRFS_I(inode)->io_tree;
576
577 retry:
578                 /* did the compression code fall back to uncompressed IO? */
579                 if (!async_extent->pages) {
580                         int page_started = 0;
581                         unsigned long nr_written = 0;
582
583                         lock_extent(io_tree, async_extent->start,
584                                          async_extent->start +
585                                          async_extent->ram_size - 1, GFP_NOFS);
586
587                         /* allocate blocks */
588                         ret = cow_file_range(inode, async_cow->locked_page,
589                                              async_extent->start,
590                                              async_extent->start +
591                                              async_extent->ram_size - 1,
592                                              &page_started, &nr_written, 0);
593
594                         /*
595                          * if page_started, cow_file_range inserted an
596                          * inline extent and took care of all the unlocking
597                          * and IO for us.  Otherwise, we need to submit
598                          * all those pages down to the drive.
599                          */
600                         if (!page_started && !ret)
601                                 extent_write_locked_range(io_tree,
602                                                   inode, async_extent->start,
603                                                   async_extent->start +
604                                                   async_extent->ram_size - 1,
605                                                   btrfs_get_extent,
606                                                   WB_SYNC_ALL);
607                         kfree(async_extent);
608                         cond_resched();
609                         continue;
610                 }
611
612                 lock_extent(io_tree, async_extent->start,
613                             async_extent->start + async_extent->ram_size - 1,
614                             GFP_NOFS);
615
616                 trans = btrfs_join_transaction(root, 1);
617                 BUG_ON(IS_ERR(trans));
618                 ret = btrfs_reserve_extent(trans, root,
619                                            async_extent->compressed_size,
620                                            async_extent->compressed_size,
621                                            0, alloc_hint,
622                                            (u64)-1, &ins, 1);
623                 btrfs_end_transaction(trans, root);
624
625                 if (ret) {
626                         int i;
627                         for (i = 0; i < async_extent->nr_pages; i++) {
628                                 WARN_ON(async_extent->pages[i]->mapping);
629                                 page_cache_release(async_extent->pages[i]);
630                         }
631                         kfree(async_extent->pages);
632                         async_extent->nr_pages = 0;
633                         async_extent->pages = NULL;
634                         unlock_extent(io_tree, async_extent->start,
635                                       async_extent->start +
636                                       async_extent->ram_size - 1, GFP_NOFS);
637                         goto retry;
638                 }
639
640                 /*
641                  * here we're doing allocation and writeback of the
642                  * compressed pages
643                  */
644                 btrfs_drop_extent_cache(inode, async_extent->start,
645                                         async_extent->start +
646                                         async_extent->ram_size - 1, 0);
647
648                 em = alloc_extent_map(GFP_NOFS);
649                 BUG_ON(!em);
650                 em->start = async_extent->start;
651                 em->len = async_extent->ram_size;
652                 em->orig_start = em->start;
653
654                 em->block_start = ins.objectid;
655                 em->block_len = ins.offset;
656                 em->bdev = root->fs_info->fs_devices->latest_bdev;
657                 em->compress_type = async_extent->compress_type;
658                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
659                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
660
661                 while (1) {
662                         write_lock(&em_tree->lock);
663                         ret = add_extent_mapping(em_tree, em);
664                         write_unlock(&em_tree->lock);
665                         if (ret != -EEXIST) {
666                                 free_extent_map(em);
667                                 break;
668                         }
669                         btrfs_drop_extent_cache(inode, async_extent->start,
670                                                 async_extent->start +
671                                                 async_extent->ram_size - 1, 0);
672                 }
673
674                 ret = btrfs_add_ordered_extent_compress(inode,
675                                                 async_extent->start,
676                                                 ins.objectid,
677                                                 async_extent->ram_size,
678                                                 ins.offset,
679                                                 BTRFS_ORDERED_COMPRESSED,
680                                                 async_extent->compress_type);
681                 BUG_ON(ret);
682
683                 /*
684                  * clear dirty, set writeback and unlock the pages.
685                  */
686                 extent_clear_unlock_delalloc(inode,
687                                 &BTRFS_I(inode)->io_tree,
688                                 async_extent->start,
689                                 async_extent->start +
690                                 async_extent->ram_size - 1,
691                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
692                                 EXTENT_CLEAR_UNLOCK |
693                                 EXTENT_CLEAR_DELALLOC |
694                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
695
696                 ret = btrfs_submit_compressed_write(inode,
697                                     async_extent->start,
698                                     async_extent->ram_size,
699                                     ins.objectid,
700                                     ins.offset, async_extent->pages,
701                                     async_extent->nr_pages);
702
703                 BUG_ON(ret);
704                 alloc_hint = ins.objectid + ins.offset;
705                 kfree(async_extent);
706                 cond_resched();
707         }
708
709         return 0;
710 }
711
712 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
713                                       u64 num_bytes)
714 {
715         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
716         struct extent_map *em;
717         u64 alloc_hint = 0;
718
719         read_lock(&em_tree->lock);
720         em = search_extent_mapping(em_tree, start, num_bytes);
721         if (em) {
722                 /*
723                  * if block start isn't an actual block number then find the
724                  * first block in this inode and use that as a hint.  If that
725                  * block is also bogus then just don't worry about it.
726                  */
727                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
728                         free_extent_map(em);
729                         em = search_extent_mapping(em_tree, 0, 0);
730                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
731                                 alloc_hint = em->block_start;
732                         if (em)
733                                 free_extent_map(em);
734                 } else {
735                         alloc_hint = em->block_start;
736                         free_extent_map(em);
737                 }
738         }
739         read_unlock(&em_tree->lock);
740
741         return alloc_hint;
742 }
743
744 /*
745  * when extent_io.c finds a delayed allocation range in the file,
746  * the call backs end up in this code.  The basic idea is to
747  * allocate extents on disk for the range, and create ordered data structs
748  * in ram to track those extents.
749  *
750  * locked_page is the page that writepage had locked already.  We use
751  * it to make sure we don't do extra locks or unlocks.
752  *
753  * *page_started is set to one if we unlock locked_page and do everything
754  * required to start IO on it.  It may be clean and already done with
755  * IO when we return.
756  */
757 static noinline int cow_file_range(struct inode *inode,
758                                    struct page *locked_page,
759                                    u64 start, u64 end, int *page_started,
760                                    unsigned long *nr_written,
761                                    int unlock)
762 {
763         struct btrfs_root *root = BTRFS_I(inode)->root;
764         struct btrfs_trans_handle *trans;
765         u64 alloc_hint = 0;
766         u64 num_bytes;
767         unsigned long ram_size;
768         u64 disk_num_bytes;
769         u64 cur_alloc_size;
770         u64 blocksize = root->sectorsize;
771         struct btrfs_key ins;
772         struct extent_map *em;
773         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
774         int ret = 0;
775
776         BUG_ON(root == root->fs_info->tree_root);
777         trans = btrfs_join_transaction(root, 1);
778         BUG_ON(IS_ERR(trans));
779         btrfs_set_trans_block_group(trans, inode);
780         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
781
782         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
783         num_bytes = max(blocksize,  num_bytes);
784         disk_num_bytes = num_bytes;
785         ret = 0;
786
787         if (start == 0) {
788                 /* lets try to make an inline extent */
789                 ret = cow_file_range_inline(trans, root, inode,
790                                             start, end, 0, NULL);
791                 if (ret == 0) {
792                         extent_clear_unlock_delalloc(inode,
793                                      &BTRFS_I(inode)->io_tree,
794                                      start, end, NULL,
795                                      EXTENT_CLEAR_UNLOCK_PAGE |
796                                      EXTENT_CLEAR_UNLOCK |
797                                      EXTENT_CLEAR_DELALLOC |
798                                      EXTENT_CLEAR_DIRTY |
799                                      EXTENT_SET_WRITEBACK |
800                                      EXTENT_END_WRITEBACK);
801
802                         *nr_written = *nr_written +
803                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
804                         *page_started = 1;
805                         ret = 0;
806                         goto out;
807                 }
808         }
809
810         BUG_ON(disk_num_bytes >
811                btrfs_super_total_bytes(&root->fs_info->super_copy));
812
813         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
814         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
815
816         while (disk_num_bytes > 0) {
817                 unsigned long op;
818
819                 cur_alloc_size = disk_num_bytes;
820                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
821                                            root->sectorsize, 0, alloc_hint,
822                                            (u64)-1, &ins, 1);
823                 BUG_ON(ret);
824
825                 em = alloc_extent_map(GFP_NOFS);
826                 BUG_ON(!em);
827                 em->start = start;
828                 em->orig_start = em->start;
829                 ram_size = ins.offset;
830                 em->len = ins.offset;
831
832                 em->block_start = ins.objectid;
833                 em->block_len = ins.offset;
834                 em->bdev = root->fs_info->fs_devices->latest_bdev;
835                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
836
837                 while (1) {
838                         write_lock(&em_tree->lock);
839                         ret = add_extent_mapping(em_tree, em);
840                         write_unlock(&em_tree->lock);
841                         if (ret != -EEXIST) {
842                                 free_extent_map(em);
843                                 break;
844                         }
845                         btrfs_drop_extent_cache(inode, start,
846                                                 start + ram_size - 1, 0);
847                 }
848
849                 cur_alloc_size = ins.offset;
850                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
851                                                ram_size, cur_alloc_size, 0);
852                 BUG_ON(ret);
853
854                 if (root->root_key.objectid ==
855                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
856                         ret = btrfs_reloc_clone_csums(inode, start,
857                                                       cur_alloc_size);
858                         BUG_ON(ret);
859                 }
860
861                 if (disk_num_bytes < cur_alloc_size)
862                         break;
863
864                 /* we're not doing compressed IO, don't unlock the first
865                  * page (which the caller expects to stay locked), don't
866                  * clear any dirty bits and don't set any writeback bits
867                  *
868                  * Do set the Private2 bit so we know this page was properly
869                  * setup for writepage
870                  */
871                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
872                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
873                         EXTENT_SET_PRIVATE2;
874
875                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
876                                              start, start + ram_size - 1,
877                                              locked_page, op);
878                 disk_num_bytes -= cur_alloc_size;
879                 num_bytes -= cur_alloc_size;
880                 alloc_hint = ins.objectid + ins.offset;
881                 start += cur_alloc_size;
882         }
883 out:
884         ret = 0;
885         btrfs_end_transaction(trans, root);
886
887         return ret;
888 }
889
890 /*
891  * work queue call back to started compression on a file and pages
892  */
893 static noinline void async_cow_start(struct btrfs_work *work)
894 {
895         struct async_cow *async_cow;
896         int num_added = 0;
897         async_cow = container_of(work, struct async_cow, work);
898
899         compress_file_range(async_cow->inode, async_cow->locked_page,
900                             async_cow->start, async_cow->end, async_cow,
901                             &num_added);
902         if (num_added == 0)
903                 async_cow->inode = NULL;
904 }
905
906 /*
907  * work queue call back to submit previously compressed pages
908  */
909 static noinline void async_cow_submit(struct btrfs_work *work)
910 {
911         struct async_cow *async_cow;
912         struct btrfs_root *root;
913         unsigned long nr_pages;
914
915         async_cow = container_of(work, struct async_cow, work);
916
917         root = async_cow->root;
918         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
919                 PAGE_CACHE_SHIFT;
920
921         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
922
923         if (atomic_read(&root->fs_info->async_delalloc_pages) <
924             5 * 1042 * 1024 &&
925             waitqueue_active(&root->fs_info->async_submit_wait))
926                 wake_up(&root->fs_info->async_submit_wait);
927
928         if (async_cow->inode)
929                 submit_compressed_extents(async_cow->inode, async_cow);
930 }
931
932 static noinline void async_cow_free(struct btrfs_work *work)
933 {
934         struct async_cow *async_cow;
935         async_cow = container_of(work, struct async_cow, work);
936         kfree(async_cow);
937 }
938
939 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
940                                 u64 start, u64 end, int *page_started,
941                                 unsigned long *nr_written)
942 {
943         struct async_cow *async_cow;
944         struct btrfs_root *root = BTRFS_I(inode)->root;
945         unsigned long nr_pages;
946         u64 cur_end;
947         int limit = 10 * 1024 * 1042;
948
949         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
950                          1, 0, NULL, GFP_NOFS);
951         while (start < end) {
952                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
953                 async_cow->inode = inode;
954                 async_cow->root = root;
955                 async_cow->locked_page = locked_page;
956                 async_cow->start = start;
957
958                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
959                         cur_end = end;
960                 else
961                         cur_end = min(end, start + 512 * 1024 - 1);
962
963                 async_cow->end = cur_end;
964                 INIT_LIST_HEAD(&async_cow->extents);
965
966                 async_cow->work.func = async_cow_start;
967                 async_cow->work.ordered_func = async_cow_submit;
968                 async_cow->work.ordered_free = async_cow_free;
969                 async_cow->work.flags = 0;
970
971                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
972                         PAGE_CACHE_SHIFT;
973                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
974
975                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
976                                    &async_cow->work);
977
978                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
979                         wait_event(root->fs_info->async_submit_wait,
980                            (atomic_read(&root->fs_info->async_delalloc_pages) <
981                             limit));
982                 }
983
984                 while (atomic_read(&root->fs_info->async_submit_draining) &&
985                       atomic_read(&root->fs_info->async_delalloc_pages)) {
986                         wait_event(root->fs_info->async_submit_wait,
987                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
988                            0));
989                 }
990
991                 *nr_written += nr_pages;
992                 start = cur_end + 1;
993         }
994         *page_started = 1;
995         return 0;
996 }
997
998 static noinline int csum_exist_in_range(struct btrfs_root *root,
999                                         u64 bytenr, u64 num_bytes)
1000 {
1001         int ret;
1002         struct btrfs_ordered_sum *sums;
1003         LIST_HEAD(list);
1004
1005         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1006                                        bytenr + num_bytes - 1, &list);
1007         if (ret == 0 && list_empty(&list))
1008                 return 0;
1009
1010         while (!list_empty(&list)) {
1011                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1012                 list_del(&sums->list);
1013                 kfree(sums);
1014         }
1015         return 1;
1016 }
1017
1018 /*
1019  * when nowcow writeback call back.  This checks for snapshots or COW copies
1020  * of the extents that exist in the file, and COWs the file as required.
1021  *
1022  * If no cow copies or snapshots exist, we write directly to the existing
1023  * blocks on disk
1024  */
1025 static noinline int run_delalloc_nocow(struct inode *inode,
1026                                        struct page *locked_page,
1027                               u64 start, u64 end, int *page_started, int force,
1028                               unsigned long *nr_written)
1029 {
1030         struct btrfs_root *root = BTRFS_I(inode)->root;
1031         struct btrfs_trans_handle *trans;
1032         struct extent_buffer *leaf;
1033         struct btrfs_path *path;
1034         struct btrfs_file_extent_item *fi;
1035         struct btrfs_key found_key;
1036         u64 cow_start;
1037         u64 cur_offset;
1038         u64 extent_end;
1039         u64 extent_offset;
1040         u64 disk_bytenr;
1041         u64 num_bytes;
1042         int extent_type;
1043         int ret;
1044         int type;
1045         int nocow;
1046         int check_prev = 1;
1047         bool nolock = false;
1048
1049         path = btrfs_alloc_path();
1050         BUG_ON(!path);
1051         if (root == root->fs_info->tree_root) {
1052                 nolock = true;
1053                 trans = btrfs_join_transaction_nolock(root, 1);
1054         } else {
1055                 trans = btrfs_join_transaction(root, 1);
1056         }
1057         BUG_ON(IS_ERR(trans));
1058
1059         cow_start = (u64)-1;
1060         cur_offset = start;
1061         while (1) {
1062                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1063                                                cur_offset, 0);
1064                 BUG_ON(ret < 0);
1065                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1066                         leaf = path->nodes[0];
1067                         btrfs_item_key_to_cpu(leaf, &found_key,
1068                                               path->slots[0] - 1);
1069                         if (found_key.objectid == inode->i_ino &&
1070                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1071                                 path->slots[0]--;
1072                 }
1073                 check_prev = 0;
1074 next_slot:
1075                 leaf = path->nodes[0];
1076                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1077                         ret = btrfs_next_leaf(root, path);
1078                         if (ret < 0)
1079                                 BUG_ON(1);
1080                         if (ret > 0)
1081                                 break;
1082                         leaf = path->nodes[0];
1083                 }
1084
1085                 nocow = 0;
1086                 disk_bytenr = 0;
1087                 num_bytes = 0;
1088                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1089
1090                 if (found_key.objectid > inode->i_ino ||
1091                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1092                     found_key.offset > end)
1093                         break;
1094
1095                 if (found_key.offset > cur_offset) {
1096                         extent_end = found_key.offset;
1097                         extent_type = 0;
1098                         goto out_check;
1099                 }
1100
1101                 fi = btrfs_item_ptr(leaf, path->slots[0],
1102                                     struct btrfs_file_extent_item);
1103                 extent_type = btrfs_file_extent_type(leaf, fi);
1104
1105                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1106                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1107                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1108                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1109                         extent_end = found_key.offset +
1110                                 btrfs_file_extent_num_bytes(leaf, fi);
1111                         if (extent_end <= start) {
1112                                 path->slots[0]++;
1113                                 goto next_slot;
1114                         }
1115                         if (disk_bytenr == 0)
1116                                 goto out_check;
1117                         if (btrfs_file_extent_compression(leaf, fi) ||
1118                             btrfs_file_extent_encryption(leaf, fi) ||
1119                             btrfs_file_extent_other_encoding(leaf, fi))
1120                                 goto out_check;
1121                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1122                                 goto out_check;
1123                         if (btrfs_extent_readonly(root, disk_bytenr))
1124                                 goto out_check;
1125                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1126                                                   found_key.offset -
1127                                                   extent_offset, disk_bytenr))
1128                                 goto out_check;
1129                         disk_bytenr += extent_offset;
1130                         disk_bytenr += cur_offset - found_key.offset;
1131                         num_bytes = min(end + 1, extent_end) - cur_offset;
1132                         /*
1133                          * force cow if csum exists in the range.
1134                          * this ensure that csum for a given extent are
1135                          * either valid or do not exist.
1136                          */
1137                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1138                                 goto out_check;
1139                         nocow = 1;
1140                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1141                         extent_end = found_key.offset +
1142                                 btrfs_file_extent_inline_len(leaf, fi);
1143                         extent_end = ALIGN(extent_end, root->sectorsize);
1144                 } else {
1145                         BUG_ON(1);
1146                 }
1147 out_check:
1148                 if (extent_end <= start) {
1149                         path->slots[0]++;
1150                         goto next_slot;
1151                 }
1152                 if (!nocow) {
1153                         if (cow_start == (u64)-1)
1154                                 cow_start = cur_offset;
1155                         cur_offset = extent_end;
1156                         if (cur_offset > end)
1157                                 break;
1158                         path->slots[0]++;
1159                         goto next_slot;
1160                 }
1161
1162                 btrfs_release_path(root, path);
1163                 if (cow_start != (u64)-1) {
1164                         ret = cow_file_range(inode, locked_page, cow_start,
1165                                         found_key.offset - 1, page_started,
1166                                         nr_written, 1);
1167                         BUG_ON(ret);
1168                         cow_start = (u64)-1;
1169                 }
1170
1171                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1172                         struct extent_map *em;
1173                         struct extent_map_tree *em_tree;
1174                         em_tree = &BTRFS_I(inode)->extent_tree;
1175                         em = alloc_extent_map(GFP_NOFS);
1176                         BUG_ON(!em);
1177                         em->start = cur_offset;
1178                         em->orig_start = em->start;
1179                         em->len = num_bytes;
1180                         em->block_len = num_bytes;
1181                         em->block_start = disk_bytenr;
1182                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1183                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1184                         while (1) {
1185                                 write_lock(&em_tree->lock);
1186                                 ret = add_extent_mapping(em_tree, em);
1187                                 write_unlock(&em_tree->lock);
1188                                 if (ret != -EEXIST) {
1189                                         free_extent_map(em);
1190                                         break;
1191                                 }
1192                                 btrfs_drop_extent_cache(inode, em->start,
1193                                                 em->start + em->len - 1, 0);
1194                         }
1195                         type = BTRFS_ORDERED_PREALLOC;
1196                 } else {
1197                         type = BTRFS_ORDERED_NOCOW;
1198                 }
1199
1200                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1201                                                num_bytes, num_bytes, type);
1202                 BUG_ON(ret);
1203
1204                 if (root->root_key.objectid ==
1205                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1206                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1207                                                       num_bytes);
1208                         BUG_ON(ret);
1209                 }
1210
1211                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1212                                 cur_offset, cur_offset + num_bytes - 1,
1213                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1214                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1215                                 EXTENT_SET_PRIVATE2);
1216                 cur_offset = extent_end;
1217                 if (cur_offset > end)
1218                         break;
1219         }
1220         btrfs_release_path(root, path);
1221
1222         if (cur_offset <= end && cow_start == (u64)-1)
1223                 cow_start = cur_offset;
1224         if (cow_start != (u64)-1) {
1225                 ret = cow_file_range(inode, locked_page, cow_start, end,
1226                                      page_started, nr_written, 1);
1227                 BUG_ON(ret);
1228         }
1229
1230         if (nolock) {
1231                 ret = btrfs_end_transaction_nolock(trans, root);
1232                 BUG_ON(ret);
1233         } else {
1234                 ret = btrfs_end_transaction(trans, root);
1235                 BUG_ON(ret);
1236         }
1237         btrfs_free_path(path);
1238         return 0;
1239 }
1240
1241 /*
1242  * extent_io.c call back to do delayed allocation processing
1243  */
1244 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1245                               u64 start, u64 end, int *page_started,
1246                               unsigned long *nr_written)
1247 {
1248         int ret;
1249         struct btrfs_root *root = BTRFS_I(inode)->root;
1250
1251         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1252                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1253                                          page_started, 1, nr_written);
1254         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1255                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1256                                          page_started, 0, nr_written);
1257         else if (!btrfs_test_opt(root, COMPRESS) &&
1258                  !(BTRFS_I(inode)->force_compress))
1259                 ret = cow_file_range(inode, locked_page, start, end,
1260                                       page_started, nr_written, 1);
1261         else
1262                 ret = cow_file_range_async(inode, locked_page, start, end,
1263                                            page_started, nr_written);
1264         return ret;
1265 }
1266
1267 static int btrfs_split_extent_hook(struct inode *inode,
1268                                    struct extent_state *orig, u64 split)
1269 {
1270         /* not delalloc, ignore it */
1271         if (!(orig->state & EXTENT_DELALLOC))
1272                 return 0;
1273
1274         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1275         return 0;
1276 }
1277
1278 /*
1279  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1280  * extents so we can keep track of new extents that are just merged onto old
1281  * extents, such as when we are doing sequential writes, so we can properly
1282  * account for the metadata space we'll need.
1283  */
1284 static int btrfs_merge_extent_hook(struct inode *inode,
1285                                    struct extent_state *new,
1286                                    struct extent_state *other)
1287 {
1288         /* not delalloc, ignore it */
1289         if (!(other->state & EXTENT_DELALLOC))
1290                 return 0;
1291
1292         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1293         return 0;
1294 }
1295
1296 /*
1297  * extent_io.c set_bit_hook, used to track delayed allocation
1298  * bytes in this file, and to maintain the list of inodes that
1299  * have pending delalloc work to be done.
1300  */
1301 static int btrfs_set_bit_hook(struct inode *inode,
1302                               struct extent_state *state, int *bits)
1303 {
1304
1305         /*
1306          * set_bit and clear bit hooks normally require _irqsave/restore
1307          * but in this case, we are only testeing for the DELALLOC
1308          * bit, which is only set or cleared with irqs on
1309          */
1310         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1311                 struct btrfs_root *root = BTRFS_I(inode)->root;
1312                 u64 len = state->end + 1 - state->start;
1313                 int do_list = (root->root_key.objectid !=
1314                                BTRFS_ROOT_TREE_OBJECTID);
1315
1316                 if (*bits & EXTENT_FIRST_DELALLOC)
1317                         *bits &= ~EXTENT_FIRST_DELALLOC;
1318                 else
1319                         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1320
1321                 spin_lock(&root->fs_info->delalloc_lock);
1322                 BTRFS_I(inode)->delalloc_bytes += len;
1323                 root->fs_info->delalloc_bytes += len;
1324                 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1325                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1326                                       &root->fs_info->delalloc_inodes);
1327                 }
1328                 spin_unlock(&root->fs_info->delalloc_lock);
1329         }
1330         return 0;
1331 }
1332
1333 /*
1334  * extent_io.c clear_bit_hook, see set_bit_hook for why
1335  */
1336 static int btrfs_clear_bit_hook(struct inode *inode,
1337                                 struct extent_state *state, int *bits)
1338 {
1339         /*
1340          * set_bit and clear bit hooks normally require _irqsave/restore
1341          * but in this case, we are only testeing for the DELALLOC
1342          * bit, which is only set or cleared with irqs on
1343          */
1344         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1345                 struct btrfs_root *root = BTRFS_I(inode)->root;
1346                 u64 len = state->end + 1 - state->start;
1347                 int do_list = (root->root_key.objectid !=
1348                                BTRFS_ROOT_TREE_OBJECTID);
1349
1350                 if (*bits & EXTENT_FIRST_DELALLOC)
1351                         *bits &= ~EXTENT_FIRST_DELALLOC;
1352                 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1353                         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1354
1355                 if (*bits & EXTENT_DO_ACCOUNTING)
1356                         btrfs_delalloc_release_metadata(inode, len);
1357
1358                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1359                     && do_list)
1360                         btrfs_free_reserved_data_space(inode, len);
1361
1362                 spin_lock(&root->fs_info->delalloc_lock);
1363                 root->fs_info->delalloc_bytes -= len;
1364                 BTRFS_I(inode)->delalloc_bytes -= len;
1365
1366                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1367                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1368                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1369                 }
1370                 spin_unlock(&root->fs_info->delalloc_lock);
1371         }
1372         return 0;
1373 }
1374
1375 /*
1376  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1377  * we don't create bios that span stripes or chunks
1378  */
1379 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1380                          size_t size, struct bio *bio,
1381                          unsigned long bio_flags)
1382 {
1383         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1384         struct btrfs_mapping_tree *map_tree;
1385         u64 logical = (u64)bio->bi_sector << 9;
1386         u64 length = 0;
1387         u64 map_length;
1388         int ret;
1389
1390         if (bio_flags & EXTENT_BIO_COMPRESSED)
1391                 return 0;
1392
1393         length = bio->bi_size;
1394         map_tree = &root->fs_info->mapping_tree;
1395         map_length = length;
1396         ret = btrfs_map_block(map_tree, READ, logical,
1397                               &map_length, NULL, 0);
1398
1399         if (map_length < length + size)
1400                 return 1;
1401         return ret;
1402 }
1403
1404 /*
1405  * in order to insert checksums into the metadata in large chunks,
1406  * we wait until bio submission time.   All the pages in the bio are
1407  * checksummed and sums are attached onto the ordered extent record.
1408  *
1409  * At IO completion time the cums attached on the ordered extent record
1410  * are inserted into the btree
1411  */
1412 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1413                                     struct bio *bio, int mirror_num,
1414                                     unsigned long bio_flags,
1415                                     u64 bio_offset)
1416 {
1417         struct btrfs_root *root = BTRFS_I(inode)->root;
1418         int ret = 0;
1419
1420         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1421         BUG_ON(ret);
1422         return 0;
1423 }
1424
1425 /*
1426  * in order to insert checksums into the metadata in large chunks,
1427  * we wait until bio submission time.   All the pages in the bio are
1428  * checksummed and sums are attached onto the ordered extent record.
1429  *
1430  * At IO completion time the cums attached on the ordered extent record
1431  * are inserted into the btree
1432  */
1433 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1434                           int mirror_num, unsigned long bio_flags,
1435                           u64 bio_offset)
1436 {
1437         struct btrfs_root *root = BTRFS_I(inode)->root;
1438         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1439 }
1440
1441 /*
1442  * extent_io.c submission hook. This does the right thing for csum calculation
1443  * on write, or reading the csums from the tree before a read
1444  */
1445 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1446                           int mirror_num, unsigned long bio_flags,
1447                           u64 bio_offset)
1448 {
1449         struct btrfs_root *root = BTRFS_I(inode)->root;
1450         int ret = 0;
1451         int skip_sum;
1452
1453         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1454
1455         if (root == root->fs_info->tree_root)
1456                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1457         else
1458                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1459         BUG_ON(ret);
1460
1461         if (!(rw & REQ_WRITE)) {
1462                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1463                         return btrfs_submit_compressed_read(inode, bio,
1464                                                     mirror_num, bio_flags);
1465                 } else if (!skip_sum)
1466                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1467                 goto mapit;
1468         } else if (!skip_sum) {
1469                 /* csum items have already been cloned */
1470                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1471                         goto mapit;
1472                 /* we're doing a write, do the async checksumming */
1473                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1474                                    inode, rw, bio, mirror_num,
1475                                    bio_flags, bio_offset,
1476                                    __btrfs_submit_bio_start,
1477                                    __btrfs_submit_bio_done);
1478         }
1479
1480 mapit:
1481         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1482 }
1483
1484 /*
1485  * given a list of ordered sums record them in the inode.  This happens
1486  * at IO completion time based on sums calculated at bio submission time.
1487  */
1488 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1489                              struct inode *inode, u64 file_offset,
1490                              struct list_head *list)
1491 {
1492         struct btrfs_ordered_sum *sum;
1493
1494         btrfs_set_trans_block_group(trans, inode);
1495
1496         list_for_each_entry(sum, list, list) {
1497                 btrfs_csum_file_blocks(trans,
1498                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1499         }
1500         return 0;
1501 }
1502
1503 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1504                               struct extent_state **cached_state)
1505 {
1506         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1507                 WARN_ON(1);
1508         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1509                                    cached_state, GFP_NOFS);
1510 }
1511
1512 /* see btrfs_writepage_start_hook for details on why this is required */
1513 struct btrfs_writepage_fixup {
1514         struct page *page;
1515         struct btrfs_work work;
1516 };
1517
1518 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1519 {
1520         struct btrfs_writepage_fixup *fixup;
1521         struct btrfs_ordered_extent *ordered;
1522         struct extent_state *cached_state = NULL;
1523         struct page *page;
1524         struct inode *inode;
1525         u64 page_start;
1526         u64 page_end;
1527
1528         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1529         page = fixup->page;
1530 again:
1531         lock_page(page);
1532         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1533                 ClearPageChecked(page);
1534                 goto out_page;
1535         }
1536
1537         inode = page->mapping->host;
1538         page_start = page_offset(page);
1539         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1540
1541         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1542                          &cached_state, GFP_NOFS);
1543
1544         /* already ordered? We're done */
1545         if (PagePrivate2(page))
1546                 goto out;
1547
1548         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1549         if (ordered) {
1550                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1551                                      page_end, &cached_state, GFP_NOFS);
1552                 unlock_page(page);
1553                 btrfs_start_ordered_extent(inode, ordered, 1);
1554                 goto again;
1555         }
1556
1557         BUG();
1558         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1559         ClearPageChecked(page);
1560 out:
1561         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1562                              &cached_state, GFP_NOFS);
1563 out_page:
1564         unlock_page(page);
1565         page_cache_release(page);
1566         kfree(fixup);
1567 }
1568
1569 /*
1570  * There are a few paths in the higher layers of the kernel that directly
1571  * set the page dirty bit without asking the filesystem if it is a
1572  * good idea.  This causes problems because we want to make sure COW
1573  * properly happens and the data=ordered rules are followed.
1574  *
1575  * In our case any range that doesn't have the ORDERED bit set
1576  * hasn't been properly setup for IO.  We kick off an async process
1577  * to fix it up.  The async helper will wait for ordered extents, set
1578  * the delalloc bit and make it safe to write the page.
1579  */
1580 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1581 {
1582         struct inode *inode = page->mapping->host;
1583         struct btrfs_writepage_fixup *fixup;
1584         struct btrfs_root *root = BTRFS_I(inode)->root;
1585
1586         /* this page is properly in the ordered list */
1587         if (TestClearPagePrivate2(page))
1588                 return 0;
1589
1590         if (PageChecked(page))
1591                 return -EAGAIN;
1592
1593         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1594         if (!fixup)
1595                 return -EAGAIN;
1596
1597         SetPageChecked(page);
1598         page_cache_get(page);
1599         fixup->work.func = btrfs_writepage_fixup_worker;
1600         fixup->page = page;
1601         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1602         return -EAGAIN;
1603 }
1604
1605 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1606                                        struct inode *inode, u64 file_pos,
1607                                        u64 disk_bytenr, u64 disk_num_bytes,
1608                                        u64 num_bytes, u64 ram_bytes,
1609                                        u8 compression, u8 encryption,
1610                                        u16 other_encoding, int extent_type)
1611 {
1612         struct btrfs_root *root = BTRFS_I(inode)->root;
1613         struct btrfs_file_extent_item *fi;
1614         struct btrfs_path *path;
1615         struct extent_buffer *leaf;
1616         struct btrfs_key ins;
1617         u64 hint;
1618         int ret;
1619
1620         path = btrfs_alloc_path();
1621         BUG_ON(!path);
1622
1623         path->leave_spinning = 1;
1624
1625         /*
1626          * we may be replacing one extent in the tree with another.
1627          * The new extent is pinned in the extent map, and we don't want
1628          * to drop it from the cache until it is completely in the btree.
1629          *
1630          * So, tell btrfs_drop_extents to leave this extent in the cache.
1631          * the caller is expected to unpin it and allow it to be merged
1632          * with the others.
1633          */
1634         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1635                                  &hint, 0);
1636         BUG_ON(ret);
1637
1638         ins.objectid = inode->i_ino;
1639         ins.offset = file_pos;
1640         ins.type = BTRFS_EXTENT_DATA_KEY;
1641         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1642         BUG_ON(ret);
1643         leaf = path->nodes[0];
1644         fi = btrfs_item_ptr(leaf, path->slots[0],
1645                             struct btrfs_file_extent_item);
1646         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1647         btrfs_set_file_extent_type(leaf, fi, extent_type);
1648         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1649         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1650         btrfs_set_file_extent_offset(leaf, fi, 0);
1651         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1652         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1653         btrfs_set_file_extent_compression(leaf, fi, compression);
1654         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1655         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1656
1657         btrfs_unlock_up_safe(path, 1);
1658         btrfs_set_lock_blocking(leaf);
1659
1660         btrfs_mark_buffer_dirty(leaf);
1661
1662         inode_add_bytes(inode, num_bytes);
1663
1664         ins.objectid = disk_bytenr;
1665         ins.offset = disk_num_bytes;
1666         ins.type = BTRFS_EXTENT_ITEM_KEY;
1667         ret = btrfs_alloc_reserved_file_extent(trans, root,
1668                                         root->root_key.objectid,
1669                                         inode->i_ino, file_pos, &ins);
1670         BUG_ON(ret);
1671         btrfs_free_path(path);
1672
1673         return 0;
1674 }
1675
1676 /*
1677  * helper function for btrfs_finish_ordered_io, this
1678  * just reads in some of the csum leaves to prime them into ram
1679  * before we start the transaction.  It limits the amount of btree
1680  * reads required while inside the transaction.
1681  */
1682 /* as ordered data IO finishes, this gets called so we can finish
1683  * an ordered extent if the range of bytes in the file it covers are
1684  * fully written.
1685  */
1686 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1687 {
1688         struct btrfs_root *root = BTRFS_I(inode)->root;
1689         struct btrfs_trans_handle *trans = NULL;
1690         struct btrfs_ordered_extent *ordered_extent = NULL;
1691         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1692         struct extent_state *cached_state = NULL;
1693         int compress_type = 0;
1694         int ret;
1695         bool nolock = false;
1696
1697         ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1698                                              end - start + 1);
1699         if (!ret)
1700                 return 0;
1701         BUG_ON(!ordered_extent);
1702
1703         nolock = (root == root->fs_info->tree_root);
1704
1705         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1706                 BUG_ON(!list_empty(&ordered_extent->list));
1707                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1708                 if (!ret) {
1709                         if (nolock)
1710                                 trans = btrfs_join_transaction_nolock(root, 1);
1711                         else
1712                                 trans = btrfs_join_transaction(root, 1);
1713                         BUG_ON(IS_ERR(trans));
1714                         btrfs_set_trans_block_group(trans, inode);
1715                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1716                         ret = btrfs_update_inode(trans, root, inode);
1717                         BUG_ON(ret);
1718                 }
1719                 goto out;
1720         }
1721
1722         lock_extent_bits(io_tree, ordered_extent->file_offset,
1723                          ordered_extent->file_offset + ordered_extent->len - 1,
1724                          0, &cached_state, GFP_NOFS);
1725
1726         if (nolock)
1727                 trans = btrfs_join_transaction_nolock(root, 1);
1728         else
1729                 trans = btrfs_join_transaction(root, 1);
1730         BUG_ON(IS_ERR(trans));
1731         btrfs_set_trans_block_group(trans, inode);
1732         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1733
1734         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1735                 compress_type = ordered_extent->compress_type;
1736         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1737                 BUG_ON(compress_type);
1738                 ret = btrfs_mark_extent_written(trans, inode,
1739                                                 ordered_extent->file_offset,
1740                                                 ordered_extent->file_offset +
1741                                                 ordered_extent->len);
1742                 BUG_ON(ret);
1743         } else {
1744                 BUG_ON(root == root->fs_info->tree_root);
1745                 ret = insert_reserved_file_extent(trans, inode,
1746                                                 ordered_extent->file_offset,
1747                                                 ordered_extent->start,
1748                                                 ordered_extent->disk_len,
1749                                                 ordered_extent->len,
1750                                                 ordered_extent->len,
1751                                                 compress_type, 0, 0,
1752                                                 BTRFS_FILE_EXTENT_REG);
1753                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1754                                    ordered_extent->file_offset,
1755                                    ordered_extent->len);
1756                 BUG_ON(ret);
1757         }
1758         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1759                              ordered_extent->file_offset +
1760                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1761
1762         add_pending_csums(trans, inode, ordered_extent->file_offset,
1763                           &ordered_extent->list);
1764
1765         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1766         ret = btrfs_update_inode(trans, root, inode);
1767         BUG_ON(ret);
1768 out:
1769         if (nolock) {
1770                 if (trans)
1771                         btrfs_end_transaction_nolock(trans, root);
1772         } else {
1773                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1774                 if (trans)
1775                         btrfs_end_transaction(trans, root);
1776         }
1777
1778         /* once for us */
1779         btrfs_put_ordered_extent(ordered_extent);
1780         /* once for the tree */
1781         btrfs_put_ordered_extent(ordered_extent);
1782
1783         return 0;
1784 }
1785
1786 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1787                                 struct extent_state *state, int uptodate)
1788 {
1789         ClearPagePrivate2(page);
1790         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1791 }
1792
1793 /*
1794  * When IO fails, either with EIO or csum verification fails, we
1795  * try other mirrors that might have a good copy of the data.  This
1796  * io_failure_record is used to record state as we go through all the
1797  * mirrors.  If another mirror has good data, the page is set up to date
1798  * and things continue.  If a good mirror can't be found, the original
1799  * bio end_io callback is called to indicate things have failed.
1800  */
1801 struct io_failure_record {
1802         struct page *page;
1803         u64 start;
1804         u64 len;
1805         u64 logical;
1806         unsigned long bio_flags;
1807         int last_mirror;
1808 };
1809
1810 static int btrfs_io_failed_hook(struct bio *failed_bio,
1811                          struct page *page, u64 start, u64 end,
1812                          struct extent_state *state)
1813 {
1814         struct io_failure_record *failrec = NULL;
1815         u64 private;
1816         struct extent_map *em;
1817         struct inode *inode = page->mapping->host;
1818         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1819         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1820         struct bio *bio;
1821         int num_copies;
1822         int ret;
1823         int rw;
1824         u64 logical;
1825
1826         ret = get_state_private(failure_tree, start, &private);
1827         if (ret) {
1828                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1829                 if (!failrec)
1830                         return -ENOMEM;
1831                 failrec->start = start;
1832                 failrec->len = end - start + 1;
1833                 failrec->last_mirror = 0;
1834                 failrec->bio_flags = 0;
1835
1836                 read_lock(&em_tree->lock);
1837                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1838                 if (em->start > start || em->start + em->len < start) {
1839                         free_extent_map(em);
1840                         em = NULL;
1841                 }
1842                 read_unlock(&em_tree->lock);
1843
1844                 if (!em || IS_ERR(em)) {
1845                         kfree(failrec);
1846                         return -EIO;
1847                 }
1848                 logical = start - em->start;
1849                 logical = em->block_start + logical;
1850                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1851                         logical = em->block_start;
1852                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1853                         extent_set_compress_type(&failrec->bio_flags,
1854                                                  em->compress_type);
1855                 }
1856                 failrec->logical = logical;
1857                 free_extent_map(em);
1858                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1859                                 EXTENT_DIRTY, GFP_NOFS);
1860                 set_state_private(failure_tree, start,
1861                                  (u64)(unsigned long)failrec);
1862         } else {
1863                 failrec = (struct io_failure_record *)(unsigned long)private;
1864         }
1865         num_copies = btrfs_num_copies(
1866                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1867                               failrec->logical, failrec->len);
1868         failrec->last_mirror++;
1869         if (!state) {
1870                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1871                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1872                                                     failrec->start,
1873                                                     EXTENT_LOCKED);
1874                 if (state && state->start != failrec->start)
1875                         state = NULL;
1876                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1877         }
1878         if (!state || failrec->last_mirror > num_copies) {
1879                 set_state_private(failure_tree, failrec->start, 0);
1880                 clear_extent_bits(failure_tree, failrec->start,
1881                                   failrec->start + failrec->len - 1,
1882                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1883                 kfree(failrec);
1884                 return -EIO;
1885         }
1886         bio = bio_alloc(GFP_NOFS, 1);
1887         bio->bi_private = state;
1888         bio->bi_end_io = failed_bio->bi_end_io;
1889         bio->bi_sector = failrec->logical >> 9;
1890         bio->bi_bdev = failed_bio->bi_bdev;
1891         bio->bi_size = 0;
1892
1893         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1894         if (failed_bio->bi_rw & REQ_WRITE)
1895                 rw = WRITE;
1896         else
1897                 rw = READ;
1898
1899         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1900                                                       failrec->last_mirror,
1901                                                       failrec->bio_flags, 0);
1902         return 0;
1903 }
1904
1905 /*
1906  * each time an IO finishes, we do a fast check in the IO failure tree
1907  * to see if we need to process or clean up an io_failure_record
1908  */
1909 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1910 {
1911         u64 private;
1912         u64 private_failure;
1913         struct io_failure_record *failure;
1914         int ret;
1915
1916         private = 0;
1917         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1918                              (u64)-1, 1, EXTENT_DIRTY, 0)) {
1919                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1920                                         start, &private_failure);
1921                 if (ret == 0) {
1922                         failure = (struct io_failure_record *)(unsigned long)
1923                                    private_failure;
1924                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1925                                           failure->start, 0);
1926                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1927                                           failure->start,
1928                                           failure->start + failure->len - 1,
1929                                           EXTENT_DIRTY | EXTENT_LOCKED,
1930                                           GFP_NOFS);
1931                         kfree(failure);
1932                 }
1933         }
1934         return 0;
1935 }
1936
1937 /*
1938  * when reads are done, we need to check csums to verify the data is correct
1939  * if there's a match, we allow the bio to finish.  If not, we go through
1940  * the io_failure_record routines to find good copies
1941  */
1942 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1943                                struct extent_state *state)
1944 {
1945         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1946         struct inode *inode = page->mapping->host;
1947         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1948         char *kaddr;
1949         u64 private = ~(u32)0;
1950         int ret;
1951         struct btrfs_root *root = BTRFS_I(inode)->root;
1952         u32 csum = ~(u32)0;
1953
1954         if (PageChecked(page)) {
1955                 ClearPageChecked(page);
1956                 goto good;
1957         }
1958
1959         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1960                 return 0;
1961
1962         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1963             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1964                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1965                                   GFP_NOFS);
1966                 return 0;
1967         }
1968
1969         if (state && state->start == start) {
1970                 private = state->private;
1971                 ret = 0;
1972         } else {
1973                 ret = get_state_private(io_tree, start, &private);
1974         }
1975         kaddr = kmap_atomic(page, KM_USER0);
1976         if (ret)
1977                 goto zeroit;
1978
1979         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1980         btrfs_csum_final(csum, (char *)&csum);
1981         if (csum != private)
1982                 goto zeroit;
1983
1984         kunmap_atomic(kaddr, KM_USER0);
1985 good:
1986         /* if the io failure tree for this inode is non-empty,
1987          * check to see if we've recovered from a failed IO
1988          */
1989         btrfs_clean_io_failures(inode, start);
1990         return 0;
1991
1992 zeroit:
1993         if (printk_ratelimit()) {
1994                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1995                        "private %llu\n", page->mapping->host->i_ino,
1996                        (unsigned long long)start, csum,
1997                        (unsigned long long)private);
1998         }
1999         memset(kaddr + offset, 1, end - start + 1);
2000         flush_dcache_page(page);
2001         kunmap_atomic(kaddr, KM_USER0);
2002         if (private == 0)
2003                 return 0;
2004         return -EIO;
2005 }
2006
2007 struct delayed_iput {
2008         struct list_head list;
2009         struct inode *inode;
2010 };
2011
2012 void btrfs_add_delayed_iput(struct inode *inode)
2013 {
2014         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2015         struct delayed_iput *delayed;
2016
2017         if (atomic_add_unless(&inode->i_count, -1, 1))
2018                 return;
2019
2020         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2021         delayed->inode = inode;
2022
2023         spin_lock(&fs_info->delayed_iput_lock);
2024         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2025         spin_unlock(&fs_info->delayed_iput_lock);
2026 }
2027
2028 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2029 {
2030         LIST_HEAD(list);
2031         struct btrfs_fs_info *fs_info = root->fs_info;
2032         struct delayed_iput *delayed;
2033         int empty;
2034
2035         spin_lock(&fs_info->delayed_iput_lock);
2036         empty = list_empty(&fs_info->delayed_iputs);
2037         spin_unlock(&fs_info->delayed_iput_lock);
2038         if (empty)
2039                 return;
2040
2041         down_read(&root->fs_info->cleanup_work_sem);
2042         spin_lock(&fs_info->delayed_iput_lock);
2043         list_splice_init(&fs_info->delayed_iputs, &list);
2044         spin_unlock(&fs_info->delayed_iput_lock);
2045
2046         while (!list_empty(&list)) {
2047                 delayed = list_entry(list.next, struct delayed_iput, list);
2048                 list_del(&delayed->list);
2049                 iput(delayed->inode);
2050                 kfree(delayed);
2051         }
2052         up_read(&root->fs_info->cleanup_work_sem);
2053 }
2054
2055 /*
2056  * calculate extra metadata reservation when snapshotting a subvolume
2057  * contains orphan files.
2058  */
2059 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2060                                 struct btrfs_pending_snapshot *pending,
2061                                 u64 *bytes_to_reserve)
2062 {
2063         struct btrfs_root *root;
2064         struct btrfs_block_rsv *block_rsv;
2065         u64 num_bytes;
2066         int index;
2067
2068         root = pending->root;
2069         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2070                 return;
2071
2072         block_rsv = root->orphan_block_rsv;
2073
2074         /* orphan block reservation for the snapshot */
2075         num_bytes = block_rsv->size;
2076
2077         /*
2078          * after the snapshot is created, COWing tree blocks may use more
2079          * space than it frees. So we should make sure there is enough
2080          * reserved space.
2081          */
2082         index = trans->transid & 0x1;
2083         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2084                 num_bytes += block_rsv->size -
2085                              (block_rsv->reserved + block_rsv->freed[index]);
2086         }
2087
2088         *bytes_to_reserve += num_bytes;
2089 }
2090
2091 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2092                                 struct btrfs_pending_snapshot *pending)
2093 {
2094         struct btrfs_root *root = pending->root;
2095         struct btrfs_root *snap = pending->snap;
2096         struct btrfs_block_rsv *block_rsv;
2097         u64 num_bytes;
2098         int index;
2099         int ret;
2100
2101         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2102                 return;
2103
2104         /* refill source subvolume's orphan block reservation */
2105         block_rsv = root->orphan_block_rsv;
2106         index = trans->transid & 0x1;
2107         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2108                 num_bytes = block_rsv->size -
2109                             (block_rsv->reserved + block_rsv->freed[index]);
2110                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2111                                               root->orphan_block_rsv,
2112                                               num_bytes);
2113                 BUG_ON(ret);
2114         }
2115
2116         /* setup orphan block reservation for the snapshot */
2117         block_rsv = btrfs_alloc_block_rsv(snap);
2118         BUG_ON(!block_rsv);
2119
2120         btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2121         snap->orphan_block_rsv = block_rsv;
2122
2123         num_bytes = root->orphan_block_rsv->size;
2124         ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2125                                       block_rsv, num_bytes);
2126         BUG_ON(ret);
2127
2128 #if 0
2129         /* insert orphan item for the snapshot */
2130         WARN_ON(!root->orphan_item_inserted);
2131         ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2132                                        snap->root_key.objectid);
2133         BUG_ON(ret);
2134         snap->orphan_item_inserted = 1;
2135 #endif
2136 }
2137
2138 enum btrfs_orphan_cleanup_state {
2139         ORPHAN_CLEANUP_STARTED  = 1,
2140         ORPHAN_CLEANUP_DONE     = 2,
2141 };
2142
2143 /*
2144  * This is called in transaction commmit time. If there are no orphan
2145  * files in the subvolume, it removes orphan item and frees block_rsv
2146  * structure.
2147  */
2148 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2149                               struct btrfs_root *root)
2150 {
2151         int ret;
2152
2153         if (!list_empty(&root->orphan_list) ||
2154             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2155                 return;
2156
2157         if (root->orphan_item_inserted &&
2158             btrfs_root_refs(&root->root_item) > 0) {
2159                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2160                                             root->root_key.objectid);
2161                 BUG_ON(ret);
2162                 root->orphan_item_inserted = 0;
2163         }
2164
2165         if (root->orphan_block_rsv) {
2166                 WARN_ON(root->orphan_block_rsv->size > 0);
2167                 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2168                 root->orphan_block_rsv = NULL;
2169         }
2170 }
2171
2172 /*
2173  * This creates an orphan entry for the given inode in case something goes
2174  * wrong in the middle of an unlink/truncate.
2175  *
2176  * NOTE: caller of this function should reserve 5 units of metadata for
2177  *       this function.
2178  */
2179 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2180 {
2181         struct btrfs_root *root = BTRFS_I(inode)->root;
2182         struct btrfs_block_rsv *block_rsv = NULL;
2183         int reserve = 0;
2184         int insert = 0;
2185         int ret;
2186
2187         if (!root->orphan_block_rsv) {
2188                 block_rsv = btrfs_alloc_block_rsv(root);
2189                 BUG_ON(!block_rsv);
2190         }
2191
2192         spin_lock(&root->orphan_lock);
2193         if (!root->orphan_block_rsv) {
2194                 root->orphan_block_rsv = block_rsv;
2195         } else if (block_rsv) {
2196                 btrfs_free_block_rsv(root, block_rsv);
2197                 block_rsv = NULL;
2198         }
2199
2200         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2201                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2202 #if 0
2203                 /*
2204                  * For proper ENOSPC handling, we should do orphan
2205                  * cleanup when mounting. But this introduces backward
2206                  * compatibility issue.
2207                  */
2208                 if (!xchg(&root->orphan_item_inserted, 1))
2209                         insert = 2;
2210                 else
2211                         insert = 1;
2212 #endif
2213                 insert = 1;
2214         } else {
2215                 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2216         }
2217
2218         if (!BTRFS_I(inode)->orphan_meta_reserved) {
2219                 BTRFS_I(inode)->orphan_meta_reserved = 1;
2220                 reserve = 1;
2221         }
2222         spin_unlock(&root->orphan_lock);
2223
2224         if (block_rsv)
2225                 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2226
2227         /* grab metadata reservation from transaction handle */
2228         if (reserve) {
2229                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2230                 BUG_ON(ret);
2231         }
2232
2233         /* insert an orphan item to track this unlinked/truncated file */
2234         if (insert >= 1) {
2235                 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2236                 BUG_ON(ret);
2237         }
2238
2239         /* insert an orphan item to track subvolume contains orphan files */
2240         if (insert >= 2) {
2241                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2242                                                root->root_key.objectid);
2243                 BUG_ON(ret);
2244         }
2245         return 0;
2246 }
2247
2248 /*
2249  * We have done the truncate/delete so we can go ahead and remove the orphan
2250  * item for this particular inode.
2251  */
2252 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2253 {
2254         struct btrfs_root *root = BTRFS_I(inode)->root;
2255         int delete_item = 0;
2256         int release_rsv = 0;
2257         int ret = 0;
2258
2259         spin_lock(&root->orphan_lock);
2260         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2261                 list_del_init(&BTRFS_I(inode)->i_orphan);
2262                 delete_item = 1;
2263         }
2264
2265         if (BTRFS_I(inode)->orphan_meta_reserved) {
2266                 BTRFS_I(inode)->orphan_meta_reserved = 0;
2267                 release_rsv = 1;
2268         }
2269         spin_unlock(&root->orphan_lock);
2270
2271         if (trans && delete_item) {
2272                 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2273                 BUG_ON(ret);
2274         }
2275
2276         if (release_rsv)
2277                 btrfs_orphan_release_metadata(inode);
2278
2279         return 0;
2280 }
2281
2282 /*
2283  * this cleans up any orphans that may be left on the list from the last use
2284  * of this root.
2285  */
2286 void btrfs_orphan_cleanup(struct btrfs_root *root)
2287 {
2288         struct btrfs_path *path;
2289         struct extent_buffer *leaf;
2290         struct btrfs_key key, found_key;
2291         struct btrfs_trans_handle *trans;
2292         struct inode *inode;
2293         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2294
2295         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2296                 return;
2297
2298         path = btrfs_alloc_path();
2299         BUG_ON(!path);
2300         path->reada = -1;
2301
2302         key.objectid = BTRFS_ORPHAN_OBJECTID;
2303         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2304         key.offset = (u64)-1;
2305
2306         while (1) {
2307                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2308                 if (ret < 0) {
2309                         printk(KERN_ERR "Error searching slot for orphan: %d"
2310                                "\n", ret);
2311                         break;
2312                 }
2313
2314                 /*
2315                  * if ret == 0 means we found what we were searching for, which
2316                  * is weird, but possible, so only screw with path if we didnt
2317                  * find the key and see if we have stuff that matches
2318                  */
2319                 if (ret > 0) {
2320                         if (path->slots[0] == 0)
2321                                 break;
2322                         path->slots[0]--;
2323                 }
2324
2325                 /* pull out the item */
2326                 leaf = path->nodes[0];
2327                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2328
2329                 /* make sure the item matches what we want */
2330                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2331                         break;
2332                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2333                         break;
2334
2335                 /* release the path since we're done with it */
2336                 btrfs_release_path(root, path);
2337
2338                 /*
2339                  * this is where we are basically btrfs_lookup, without the
2340                  * crossing root thing.  we store the inode number in the
2341                  * offset of the orphan item.
2342                  */
2343                 found_key.objectid = found_key.offset;
2344                 found_key.type = BTRFS_INODE_ITEM_KEY;
2345                 found_key.offset = 0;
2346                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2347                 BUG_ON(IS_ERR(inode));
2348
2349                 /*
2350                  * add this inode to the orphan list so btrfs_orphan_del does
2351                  * the proper thing when we hit it
2352                  */
2353                 spin_lock(&root->orphan_lock);
2354                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2355                 spin_unlock(&root->orphan_lock);
2356
2357                 /*
2358                  * if this is a bad inode, means we actually succeeded in
2359                  * removing the inode, but not the orphan record, which means
2360                  * we need to manually delete the orphan since iput will just
2361                  * do a destroy_inode
2362                  */
2363                 if (is_bad_inode(inode)) {
2364                         trans = btrfs_start_transaction(root, 0);
2365                         BUG_ON(IS_ERR(trans));
2366                         btrfs_orphan_del(trans, inode);
2367                         btrfs_end_transaction(trans, root);
2368                         iput(inode);
2369                         continue;
2370                 }
2371
2372                 /* if we have links, this was a truncate, lets do that */
2373                 if (inode->i_nlink) {
2374                         nr_truncate++;
2375                         btrfs_truncate(inode);
2376                 } else {
2377                         nr_unlink++;
2378                 }
2379
2380                 /* this will do delete_inode and everything for us */
2381                 iput(inode);
2382         }
2383         btrfs_free_path(path);
2384
2385         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2386
2387         if (root->orphan_block_rsv)
2388                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2389                                         (u64)-1);
2390
2391         if (root->orphan_block_rsv || root->orphan_item_inserted) {
2392                 trans = btrfs_join_transaction(root, 1);
2393                 BUG_ON(IS_ERR(trans));
2394                 btrfs_end_transaction(trans, root);
2395         }
2396
2397         if (nr_unlink)
2398                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2399         if (nr_truncate)
2400                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2401 }
2402
2403 /*
2404  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2405  * don't find any xattrs, we know there can't be any acls.
2406  *
2407  * slot is the slot the inode is in, objectid is the objectid of the inode
2408  */
2409 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2410                                           int slot, u64 objectid)
2411 {
2412         u32 nritems = btrfs_header_nritems(leaf);
2413         struct btrfs_key found_key;
2414         int scanned = 0;
2415
2416         slot++;
2417         while (slot < nritems) {
2418                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2419
2420                 /* we found a different objectid, there must not be acls */
2421                 if (found_key.objectid != objectid)
2422                         return 0;
2423
2424                 /* we found an xattr, assume we've got an acl */
2425                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2426                         return 1;
2427
2428                 /*
2429                  * we found a key greater than an xattr key, there can't
2430                  * be any acls later on
2431                  */
2432                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2433                         return 0;
2434
2435                 slot++;
2436                 scanned++;
2437
2438                 /*
2439                  * it goes inode, inode backrefs, xattrs, extents,
2440                  * so if there are a ton of hard links to an inode there can
2441                  * be a lot of backrefs.  Don't waste time searching too hard,
2442                  * this is just an optimization
2443                  */
2444                 if (scanned >= 8)
2445                         break;
2446         }
2447         /* we hit the end of the leaf before we found an xattr or
2448          * something larger than an xattr.  We have to assume the inode
2449          * has acls
2450          */
2451         return 1;
2452 }
2453
2454 /*
2455  * read an inode from the btree into the in-memory inode
2456  */
2457 static void btrfs_read_locked_inode(struct inode *inode)
2458 {
2459         struct btrfs_path *path;
2460         struct extent_buffer *leaf;
2461         struct btrfs_inode_item *inode_item;
2462         struct btrfs_timespec *tspec;
2463         struct btrfs_root *root = BTRFS_I(inode)->root;
2464         struct btrfs_key location;
2465         int maybe_acls;
2466         u64 alloc_group_block;
2467         u32 rdev;
2468         int ret;
2469
2470         path = btrfs_alloc_path();
2471         BUG_ON(!path);
2472         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2473
2474         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2475         if (ret)
2476                 goto make_bad;
2477
2478         leaf = path->nodes[0];
2479         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2480                                     struct btrfs_inode_item);
2481
2482         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2483         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2484         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2485         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2486         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2487
2488         tspec = btrfs_inode_atime(inode_item);
2489         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2490         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2491
2492         tspec = btrfs_inode_mtime(inode_item);
2493         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2494         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2495
2496         tspec = btrfs_inode_ctime(inode_item);
2497         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2498         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2499
2500         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2501         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2502         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2503         inode->i_generation = BTRFS_I(inode)->generation;
2504         inode->i_rdev = 0;
2505         rdev = btrfs_inode_rdev(leaf, inode_item);
2506
2507         BTRFS_I(inode)->index_cnt = (u64)-1;
2508         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2509
2510         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2511
2512         /*
2513          * try to precache a NULL acl entry for files that don't have
2514          * any xattrs or acls
2515          */
2516         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2517         if (!maybe_acls)
2518                 cache_no_acl(inode);
2519
2520         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2521                                                 alloc_group_block, 0);
2522         btrfs_free_path(path);
2523         inode_item = NULL;
2524
2525         switch (inode->i_mode & S_IFMT) {
2526         case S_IFREG:
2527                 inode->i_mapping->a_ops = &btrfs_aops;
2528                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2529                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2530                 inode->i_fop = &btrfs_file_operations;
2531                 inode->i_op = &btrfs_file_inode_operations;
2532                 break;
2533         case S_IFDIR:
2534                 inode->i_fop = &btrfs_dir_file_operations;
2535                 if (root == root->fs_info->tree_root)
2536                         inode->i_op = &btrfs_dir_ro_inode_operations;
2537                 else
2538                         inode->i_op = &btrfs_dir_inode_operations;
2539                 break;
2540         case S_IFLNK:
2541                 inode->i_op = &btrfs_symlink_inode_operations;
2542                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2543                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2544                 break;
2545         default:
2546                 inode->i_op = &btrfs_special_inode_operations;
2547                 init_special_inode(inode, inode->i_mode, rdev);
2548                 break;
2549         }
2550
2551         btrfs_update_iflags(inode);
2552         return;
2553
2554 make_bad:
2555         btrfs_free_path(path);
2556         make_bad_inode(inode);
2557 }
2558
2559 /*
2560  * given a leaf and an inode, copy the inode fields into the leaf
2561  */
2562 static void fill_inode_item(struct btrfs_trans_handle *trans,
2563                             struct extent_buffer *leaf,
2564                             struct btrfs_inode_item *item,
2565                             struct inode *inode)
2566 {
2567         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2568         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2569         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2570         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2571         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2572
2573         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2574                                inode->i_atime.tv_sec);
2575         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2576                                 inode->i_atime.tv_nsec);
2577
2578         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2579                                inode->i_mtime.tv_sec);
2580         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2581                                 inode->i_mtime.tv_nsec);
2582
2583         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2584                                inode->i_ctime.tv_sec);
2585         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2586                                 inode->i_ctime.tv_nsec);
2587
2588         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2589         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2590         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2591         btrfs_set_inode_transid(leaf, item, trans->transid);
2592         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2593         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2594         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2595 }
2596
2597 /*
2598  * copy everything in the in-memory inode into the btree.
2599  */
2600 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2601                                 struct btrfs_root *root, struct inode *inode)
2602 {
2603         struct btrfs_inode_item *inode_item;
2604         struct btrfs_path *path;
2605         struct extent_buffer *leaf;
2606         int ret;
2607
2608         path = btrfs_alloc_path();
2609         BUG_ON(!path);
2610         path->leave_spinning = 1;
2611         ret = btrfs_lookup_inode(trans, root, path,
2612                                  &BTRFS_I(inode)->location, 1);
2613         if (ret) {
2614                 if (ret > 0)
2615                         ret = -ENOENT;
2616                 goto failed;
2617         }
2618
2619         btrfs_unlock_up_safe(path, 1);
2620         leaf = path->nodes[0];
2621         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2622                                   struct btrfs_inode_item);
2623
2624         fill_inode_item(trans, leaf, inode_item, inode);
2625         btrfs_mark_buffer_dirty(leaf);
2626         btrfs_set_inode_last_trans(trans, inode);
2627         ret = 0;
2628 failed:
2629         btrfs_free_path(path);
2630         return ret;
2631 }
2632
2633
2634 /*
2635  * unlink helper that gets used here in inode.c and in the tree logging
2636  * recovery code.  It remove a link in a directory with a given name, and
2637  * also drops the back refs in the inode to the directory
2638  */
2639 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2640                        struct btrfs_root *root,
2641                        struct inode *dir, struct inode *inode,
2642                        const char *name, int name_len)
2643 {
2644         struct btrfs_path *path;
2645         int ret = 0;
2646         struct extent_buffer *leaf;
2647         struct btrfs_dir_item *di;
2648         struct btrfs_key key;
2649         u64 index;
2650
2651         path = btrfs_alloc_path();
2652         if (!path) {
2653                 ret = -ENOMEM;
2654                 goto out;
2655         }
2656
2657         path->leave_spinning = 1;
2658         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2659                                     name, name_len, -1);
2660         if (IS_ERR(di)) {
2661                 ret = PTR_ERR(di);
2662                 goto err;
2663         }
2664         if (!di) {
2665                 ret = -ENOENT;
2666                 goto err;
2667         }
2668         leaf = path->nodes[0];
2669         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2670         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2671         if (ret)
2672                 goto err;
2673         btrfs_release_path(root, path);
2674
2675         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2676                                   inode->i_ino,
2677                                   dir->i_ino, &index);
2678         if (ret) {
2679                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2680                        "inode %lu parent %lu\n", name_len, name,
2681                        inode->i_ino, dir->i_ino);
2682                 goto err;
2683         }
2684
2685         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2686                                          index, name, name_len, -1);
2687         if (IS_ERR(di)) {
2688                 ret = PTR_ERR(di);
2689                 goto err;
2690         }
2691         if (!di) {
2692                 ret = -ENOENT;
2693                 goto err;
2694         }
2695         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2696         btrfs_release_path(root, path);
2697
2698         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2699                                          inode, dir->i_ino);
2700         BUG_ON(ret != 0 && ret != -ENOENT);
2701
2702         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2703                                            dir, index);
2704         if (ret == -ENOENT)
2705                 ret = 0;
2706 err:
2707         btrfs_free_path(path);
2708         if (ret)
2709                 goto out;
2710
2711         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2712         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2713         btrfs_update_inode(trans, root, dir);
2714         btrfs_drop_nlink(inode);
2715         ret = btrfs_update_inode(trans, root, inode);
2716 out:
2717         return ret;
2718 }
2719
2720 /* helper to check if there is any shared block in the path */
2721 static int check_path_shared(struct btrfs_root *root,
2722                              struct btrfs_path *path)
2723 {
2724         struct extent_buffer *eb;
2725         int level;
2726         u64 refs = 1;
2727
2728         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2729                 int ret;
2730
2731                 if (!path->nodes[level])
2732                         break;
2733                 eb = path->nodes[level];
2734                 if (!btrfs_block_can_be_shared(root, eb))
2735                         continue;
2736                 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2737                                                &refs, NULL);
2738                 if (refs > 1)
2739                         return 1;
2740         }
2741         return 0;
2742 }
2743
2744 /*
2745  * helper to start transaction for unlink and rmdir.
2746  *
2747  * unlink and rmdir are special in btrfs, they do not always free space.
2748  * so in enospc case, we should make sure they will free space before
2749  * allowing them to use the global metadata reservation.
2750  */
2751 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2752                                                        struct dentry *dentry)
2753 {
2754         struct btrfs_trans_handle *trans;
2755         struct btrfs_root *root = BTRFS_I(dir)->root;
2756         struct btrfs_path *path;
2757         struct btrfs_inode_ref *ref;
2758         struct btrfs_dir_item *di;
2759         struct inode *inode = dentry->d_inode;
2760         u64 index;
2761         int check_link = 1;
2762         int err = -ENOSPC;
2763         int ret;
2764
2765         trans = btrfs_start_transaction(root, 10);
2766         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2767                 return trans;
2768
2769         if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2770                 return ERR_PTR(-ENOSPC);
2771
2772         /* check if there is someone else holds reference */
2773         if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2774                 return ERR_PTR(-ENOSPC);
2775
2776         if (atomic_read(&inode->i_count) > 2)
2777                 return ERR_PTR(-ENOSPC);
2778
2779         if (xchg(&root->fs_info->enospc_unlink, 1))
2780                 return ERR_PTR(-ENOSPC);
2781
2782         path = btrfs_alloc_path();
2783         if (!path) {
2784                 root->fs_info->enospc_unlink = 0;
2785                 return ERR_PTR(-ENOMEM);
2786         }
2787
2788         trans = btrfs_start_transaction(root, 0);
2789         if (IS_ERR(trans)) {
2790                 btrfs_free_path(path);
2791                 root->fs_info->enospc_unlink = 0;
2792                 return trans;
2793         }
2794
2795         path->skip_locking = 1;
2796         path->search_commit_root = 1;
2797
2798         ret = btrfs_lookup_inode(trans, root, path,
2799                                 &BTRFS_I(dir)->location, 0);
2800         if (ret < 0) {
2801                 err = ret;
2802                 goto out;
2803         }
2804         if (ret == 0) {
2805                 if (check_path_shared(root, path))
2806                         goto out;
2807         } else {
2808                 check_link = 0;
2809         }
2810         btrfs_release_path(root, path);
2811
2812         ret = btrfs_lookup_inode(trans, root, path,
2813                                 &BTRFS_I(inode)->location, 0);
2814         if (ret < 0) {
2815                 err = ret;
2816                 goto out;
2817         }
2818         if (ret == 0) {
2819                 if (check_path_shared(root, path))
2820                         goto out;
2821         } else {
2822                 check_link = 0;
2823         }
2824         btrfs_release_path(root, path);
2825
2826         if (ret == 0 && S_ISREG(inode->i_mode)) {
2827                 ret = btrfs_lookup_file_extent(trans, root, path,
2828                                                inode->i_ino, (u64)-1, 0);
2829                 if (ret < 0) {
2830                         err = ret;
2831                         goto out;
2832                 }
2833                 BUG_ON(ret == 0);
2834                 if (check_path_shared(root, path))
2835                         goto out;
2836                 btrfs_release_path(root, path);
2837         }
2838
2839         if (!check_link) {
2840                 err = 0;
2841                 goto out;
2842         }
2843
2844         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2845                                 dentry->d_name.name, dentry->d_name.len, 0);
2846         if (IS_ERR(di)) {
2847                 err = PTR_ERR(di);
2848                 goto out;
2849         }
2850         if (di) {
2851                 if (check_path_shared(root, path))
2852                         goto out;
2853         } else {
2854                 err = 0;
2855                 goto out;
2856         }
2857         btrfs_release_path(root, path);
2858
2859         ref = btrfs_lookup_inode_ref(trans, root, path,
2860                                 dentry->d_name.name, dentry->d_name.len,
2861                                 inode->i_ino, dir->i_ino, 0);
2862         if (IS_ERR(ref)) {
2863                 err = PTR_ERR(ref);
2864                 goto out;
2865         }
2866         BUG_ON(!ref);
2867         if (check_path_shared(root, path))
2868                 goto out;
2869         index = btrfs_inode_ref_index(path->nodes[0], ref);
2870         btrfs_release_path(root, path);
2871
2872         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2873                                 dentry->d_name.name, dentry->d_name.len, 0);
2874         if (IS_ERR(di)) {
2875                 err = PTR_ERR(di);
2876                 goto out;
2877         }
2878         BUG_ON(ret == -ENOENT);
2879         if (check_path_shared(root, path))
2880                 goto out;
2881
2882         err = 0;
2883 out:
2884         btrfs_free_path(path);
2885         if (err) {
2886                 btrfs_end_transaction(trans, root);
2887                 root->fs_info->enospc_unlink = 0;
2888                 return ERR_PTR(err);
2889         }
2890
2891         trans->block_rsv = &root->fs_info->global_block_rsv;
2892         return trans;
2893 }
2894
2895 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2896                                struct btrfs_root *root)
2897 {
2898         if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2899                 BUG_ON(!root->fs_info->enospc_unlink);
2900                 root->fs_info->enospc_unlink = 0;
2901         }
2902         btrfs_end_transaction_throttle(trans, root);
2903 }
2904
2905 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2906 {
2907         struct btrfs_root *root = BTRFS_I(dir)->root;
2908         struct btrfs_trans_handle *trans;
2909         struct inode *inode = dentry->d_inode;
2910         int ret;
2911         unsigned long nr = 0;
2912
2913         trans = __unlink_start_trans(dir, dentry);
2914         if (IS_ERR(trans))
2915                 return PTR_ERR(trans);
2916
2917         btrfs_set_trans_block_group(trans, dir);
2918
2919         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2920
2921         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2922                                  dentry->d_name.name, dentry->d_name.len);
2923         BUG_ON(ret);
2924
2925         if (inode->i_nlink == 0) {
2926                 ret = btrfs_orphan_add(trans, inode);
2927                 BUG_ON(ret);
2928         }
2929
2930         nr = trans->blocks_used;
2931         __unlink_end_trans(trans, root);
2932         btrfs_btree_balance_dirty(root, nr);
2933         return ret;
2934 }
2935
2936 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2937                         struct btrfs_root *root,
2938                         struct inode *dir, u64 objectid,
2939                         const char *name, int name_len)
2940 {
2941         struct btrfs_path *path;
2942         struct extent_buffer *leaf;
2943         struct btrfs_dir_item *di;
2944         struct btrfs_key key;
2945         u64 index;
2946         int ret;
2947
2948         path = btrfs_alloc_path();
2949         if (!path)
2950                 return -ENOMEM;
2951
2952         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2953                                    name, name_len, -1);
2954         BUG_ON(!di || IS_ERR(di));
2955
2956         leaf = path->nodes[0];
2957         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2958         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2959         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2960         BUG_ON(ret);
2961         btrfs_release_path(root, path);
2962
2963         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2964                                  objectid, root->root_key.objectid,
2965                                  dir->i_ino, &index, name, name_len);
2966         if (ret < 0) {
2967                 BUG_ON(ret != -ENOENT);
2968                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2969                                                  name, name_len);
2970                 BUG_ON(!di || IS_ERR(di));
2971
2972                 leaf = path->nodes[0];
2973                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2974                 btrfs_release_path(root, path);
2975                 index = key.offset;
2976         }
2977
2978         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2979                                          index, name, name_len, -1);
2980         BUG_ON(!di || IS_ERR(di));
2981
2982         leaf = path->nodes[0];
2983         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2984         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2985         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2986         BUG_ON(ret);
2987         btrfs_release_path(root, path);
2988
2989         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2990         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2991         ret = btrfs_update_inode(trans, root, dir);
2992         BUG_ON(ret);
2993
2994         btrfs_free_path(path);
2995         return 0;
2996 }
2997
2998 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2999 {
3000         struct inode *inode = dentry->d_inode;
3001         int err = 0;
3002         struct btrfs_root *root = BTRFS_I(dir)->root;
3003         struct btrfs_trans_handle *trans;
3004         unsigned long nr = 0;
3005
3006         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3007             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3008                 return -ENOTEMPTY;
3009
3010         trans = __unlink_start_trans(dir, dentry);
3011         if (IS_ERR(trans))
3012                 return PTR_ERR(trans);
3013
3014         btrfs_set_trans_block_group(trans, dir);
3015
3016         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3017                 err = btrfs_unlink_subvol(trans, root, dir,
3018                                           BTRFS_I(inode)->location.objectid,
3019                                           dentry->d_name.name,
3020                                           dentry->d_name.len);
3021                 goto out;
3022         }
3023
3024         err = btrfs_orphan_add(trans, inode);
3025         if (err)
3026                 goto out;
3027
3028         /* now the directory is empty */
3029         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3030                                  dentry->d_name.name, dentry->d_name.len);
3031         if (!err)
3032                 btrfs_i_size_write(inode, 0);
3033 out:
3034         nr = trans->blocks_used;
3035         __unlink_end_trans(trans, root);
3036         btrfs_btree_balance_dirty(root, nr);
3037
3038         return err;
3039 }
3040
3041 #if 0
3042 /*
3043  * when truncating bytes in a file, it is possible to avoid reading
3044  * the leaves that contain only checksum items.  This can be the
3045  * majority of the IO required to delete a large file, but it must
3046  * be done carefully.
3047  *
3048  * The keys in the level just above the leaves are checked to make sure
3049  * the lowest key in a given leaf is a csum key, and starts at an offset
3050  * after the new  size.
3051  *
3052  * Then the key for the next leaf is checked to make sure it also has
3053  * a checksum item for the same file.  If it does, we know our target leaf
3054  * contains only checksum items, and it can be safely freed without reading
3055  * it.
3056  *
3057  * This is just an optimization targeted at large files.  It may do
3058  * nothing.  It will return 0 unless things went badly.
3059  */
3060 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3061                                      struct btrfs_root *root,
3062                                      struct btrfs_path *path,
3063                                      struct inode *inode, u64 new_size)
3064 {
3065         struct btrfs_key key;
3066         int ret;
3067         int nritems;
3068         struct btrfs_key found_key;
3069         struct btrfs_key other_key;
3070         struct btrfs_leaf_ref *ref;
3071         u64 leaf_gen;
3072         u64 leaf_start;
3073
3074         path->lowest_level = 1;
3075         key.objectid = inode->i_ino;
3076         key.type = BTRFS_CSUM_ITEM_KEY;
3077         key.offset = new_size;
3078 again:
3079         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3080         if (ret < 0)
3081                 goto out;
3082
3083         if (path->nodes[1] == NULL) {
3084                 ret = 0;
3085                 goto out;
3086         }
3087         ret = 0;
3088         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3089         nritems = btrfs_header_nritems(path->nodes[1]);
3090
3091         if (!nritems)
3092                 goto out;
3093
3094         if (path->slots[1] >= nritems)
3095                 goto next_node;
3096
3097         /* did we find a key greater than anything we want to delete? */
3098         if (found_key.objectid > inode->i_ino ||
3099            (found_key.objectid == inode->i_ino && found_key.type > key.type))
3100                 goto out;
3101
3102         /* we check the next key in the node to make sure the leave contains
3103          * only checksum items.  This comparison doesn't work if our
3104          * leaf is the last one in the node
3105          */
3106         if (path->slots[1] + 1 >= nritems) {
3107 next_node:
3108                 /* search forward from the last key in the node, this
3109                  * will bring us into the next node in the tree
3110                  */
3111                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3112
3113                 /* unlikely, but we inc below, so check to be safe */
3114                 if (found_key.offset == (u64)-1)
3115                         goto out;
3116
3117                 /* search_forward needs a path with locks held, do the
3118                  * search again for the original key.  It is possible
3119                  * this will race with a balance and return a path that
3120                  * we could modify, but this drop is just an optimization
3121                  * and is allowed to miss some leaves.
3122                  */
3123                 btrfs_release_path(root, path);
3124                 found_key.offset++;
3125
3126                 /* setup a max key for search_forward */
3127                 other_key.offset = (u64)-1;
3128                 other_key.type = key.type;
3129                 other_key.objectid = key.objectid;
3130
3131                 path->keep_locks = 1;
3132                 ret = btrfs_search_forward(root, &found_key, &other_key,
3133                                            path, 0, 0);
3134                 path->keep_locks = 0;
3135                 if (ret || found_key.objectid != key.objectid ||
3136                     found_key.type != key.type) {
3137                         ret = 0;
3138                         goto out;
3139                 }
3140
3141                 key.offset = found_key.offset;
3142                 btrfs_release_path(root, path);
3143                 cond_resched();
3144                 goto again;
3145         }
3146
3147         /* we know there's one more slot after us in the tree,
3148          * read that key so we can verify it is also a checksum item
3149          */
3150         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3151
3152         if (found_key.objectid < inode->i_ino)
3153                 goto next_key;
3154
3155         if (found_key.type != key.type || found_key.offset < new_size)
3156                 goto next_key;
3157
3158         /*
3159          * if the key for the next leaf isn't a csum key from this objectid,
3160          * we can't be sure there aren't good items inside this leaf.
3161          * Bail out
3162          */
3163         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3164                 goto out;
3165
3166         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3167         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3168         /*
3169          * it is safe to delete this leaf, it contains only
3170          * csum items from this inode at an offset >= new_size
3171          */
3172         ret = btrfs_del_leaf(trans, root, path, leaf_start);
3173         BUG_ON(ret);
3174
3175         if (root->ref_cows && leaf_gen < trans->transid) {
3176                 ref = btrfs_alloc_leaf_ref(root, 0);
3177                 if (ref) {
3178                         ref->root_gen = root->root_key.offset;
3179                         ref->bytenr = leaf_start;
3180                         ref->owner = 0;
3181                         ref->generation = leaf_gen;
3182                         ref->nritems = 0;
3183
3184                         btrfs_sort_leaf_ref(ref);
3185
3186                         ret = btrfs_add_leaf_ref(root, ref, 0);
3187                         WARN_ON(ret);
3188                         btrfs_free_leaf_ref(root, ref);
3189                 } else {
3190                         WARN_ON(1);
3191                 }
3192         }
3193 next_key:
3194         btrfs_release_path(root, path);
3195
3196         if (other_key.objectid == inode->i_ino &&
3197             other_key.type == key.type && other_key.offset > key.offset) {
3198                 key.offset = other_key.offset;
3199                 cond_resched();
3200                 goto again;
3201         }
3202         ret = 0;
3203 out:
3204         /* fixup any changes we've made to the path */
3205         path->lowest_level = 0;
3206         path->keep_locks = 0;
3207         btrfs_release_path(root, path);
3208         return ret;
3209 }
3210
3211 #endif
3212
3213 /*
3214  * this can truncate away extent items, csum items and directory items.
3215  * It starts at a high offset and removes keys until it can't find
3216  * any higher than new_size
3217  *
3218  * csum items that cross the new i_size are truncated to the new size
3219  * as well.
3220  *
3221  * min_type is the minimum key type to truncate down to.  If set to 0, this
3222  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3223  */
3224 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3225                                struct btrfs_root *root,
3226                                struct inode *inode,
3227                                u64 new_size, u32 min_type)
3228 {
3229         struct btrfs_path *path;
3230         struct extent_buffer *leaf;
3231         struct btrfs_file_extent_item *fi;
3232         struct btrfs_key key;
3233         struct btrfs_key found_key;
3234         u64 extent_start = 0;
3235         u64 extent_num_bytes = 0;
3236         u64 extent_offset = 0;
3237         u64 item_end = 0;
3238         u64 mask = root->sectorsize - 1;
3239         u32 found_type = (u8)-1;
3240         int found_extent;
3241         int del_item;
3242         int pending_del_nr = 0;
3243         int pending_del_slot = 0;
3244         int extent_type = -1;
3245         int encoding;
3246         int ret;
3247         int err = 0;
3248
3249         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3250
3251         if (root->ref_cows || root == root->fs_info->tree_root)
3252                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3253
3254         path = btrfs_alloc_path();
3255         BUG_ON(!path);
3256         path->reada = -1;
3257
3258         key.objectid = inode->i_ino;
3259         key.offset = (u64)-1;
3260         key.type = (u8)-1;
3261
3262 search_again:
3263         path->leave_spinning = 1;
3264         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3265         if (ret < 0) {
3266                 err = ret;
3267                 goto out;
3268         }
3269
3270         if (ret > 0) {
3271                 /* there are no items in the tree for us to truncate, we're
3272                  * done
3273                  */
3274                 if (path->slots[0] == 0)
3275                         goto out;
3276                 path->slots[0]--;
3277         }
3278
3279         while (1) {
3280                 fi = NULL;
3281                 leaf = path->nodes[0];
3282                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3283                 found_type = btrfs_key_type(&found_key);
3284                 encoding = 0;
3285
3286                 if (found_key.objectid != inode->i_ino)
3287                         break;
3288
3289                 if (found_type < min_type)
3290                         break;
3291
3292                 item_end = found_key.offset;
3293                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3294                         fi = btrfs_item_ptr(leaf, path->slots[0],
3295                                             struct btrfs_file_extent_item);
3296                         extent_type = btrfs_file_extent_type(leaf, fi);
3297                         encoding = btrfs_file_extent_compression(leaf, fi);
3298                         encoding |= btrfs_file_extent_encryption(leaf, fi);
3299                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3300
3301                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3302                                 item_end +=
3303                                     btrfs_file_extent_num_bytes(leaf, fi);
3304                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3305                                 item_end += btrfs_file_extent_inline_len(leaf,
3306                                                                          fi);
3307                         }
3308                         item_end--;
3309                 }
3310                 if (found_type > min_type) {
3311                         del_item = 1;
3312                 } else {
3313                         if (item_end < new_size)
3314                                 break;
3315                         if (found_key.offset >= new_size)
3316                                 del_item = 1;
3317                         else
3318                                 del_item = 0;
3319                 }
3320                 found_extent = 0;
3321                 /* FIXME, shrink the extent if the ref count is only 1 */
3322                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3323                         goto delete;
3324
3325                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3326                         u64 num_dec;
3327                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3328                         if (!del_item && !encoding) {
3329                                 u64 orig_num_bytes =
3330                                         btrfs_file_extent_num_bytes(leaf, fi);
3331                                 extent_num_bytes = new_size -
3332                                         found_key.offset + root->sectorsize - 1;
3333                                 extent_num_bytes = extent_num_bytes &
3334                                         ~((u64)root->sectorsize - 1);
3335                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3336                                                          extent_num_bytes);
3337                                 num_dec = (orig_num_bytes -
3338                                            extent_num_bytes);
3339                                 if (root->ref_cows && extent_start != 0)
3340                                         inode_sub_bytes(inode, num_dec);
3341                                 btrfs_mark_buffer_dirty(leaf);
3342                         } else {
3343                                 extent_num_bytes =
3344                                         btrfs_file_extent_disk_num_bytes(leaf,
3345                                                                          fi);
3346                                 extent_offset = found_key.offset -
3347                                         btrfs_file_extent_offset(leaf, fi);
3348
3349                                 /* FIXME blocksize != 4096 */
3350                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3351                                 if (extent_start != 0) {
3352                                         found_extent = 1;
3353                                         if (root->ref_cows)
3354                                                 inode_sub_bytes(inode, num_dec);
3355                                 }
3356                         }
3357                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3358                         /*
3359                          * we can't truncate inline items that have had
3360                          * special encodings
3361                          */
3362                         if (!del_item &&
3363                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3364                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3365                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3366                                 u32 size = new_size - found_key.offset;
3367
3368                                 if (root->ref_cows) {
3369                                         inode_sub_bytes(inode, item_end + 1 -
3370                                                         new_size);
3371                                 }
3372                                 size =
3373                                     btrfs_file_extent_calc_inline_size(size);
3374                                 ret = btrfs_truncate_item(trans, root, path,
3375                                                           size, 1);
3376                                 BUG_ON(ret);
3377                         } else if (root->ref_cows) {
3378                                 inode_sub_bytes(inode, item_end + 1 -
3379                                                 found_key.offset);
3380                         }
3381                 }
3382 delete:
3383                 if (del_item) {
3384                         if (!pending_del_nr) {
3385                                 /* no pending yet, add ourselves */
3386                                 pending_del_slot = path->slots[0];
3387                                 pending_del_nr = 1;
3388                         } else if (pending_del_nr &&
3389                                    path->slots[0] + 1 == pending_del_slot) {
3390                                 /* hop on the pending chunk */
3391                                 pending_del_nr++;
3392                                 pending_del_slot = path->slots[0];
3393                         } else {
3394                                 BUG();
3395                         }
3396                 } else {
3397                         break;
3398                 }
3399                 if (found_extent && (root->ref_cows ||
3400                                      root == root->fs_info->tree_root)) {
3401                         btrfs_set_path_blocking(path);
3402                         ret = btrfs_free_extent(trans, root, extent_start,
3403                                                 extent_num_bytes, 0,
3404                                                 btrfs_header_owner(leaf),
3405                                                 inode->i_ino, extent_offset);
3406                         BUG_ON(ret);
3407                 }
3408
3409                 if (found_type == BTRFS_INODE_ITEM_KEY)
3410                         break;
3411
3412                 if (path->slots[0] == 0 ||
3413                     path->slots[0] != pending_del_slot) {
3414                         if (root->ref_cows) {
3415                                 err = -EAGAIN;
3416                                 goto out;
3417                         }
3418                         if (pending_del_nr) {
3419                                 ret = btrfs_del_items(trans, root, path,
3420                                                 pending_del_slot,
3421                                                 pending_del_nr);
3422                                 BUG_ON(ret);
3423                                 pending_del_nr = 0;
3424                         }
3425                         btrfs_release_path(root, path);
3426                         goto search_again;
3427                 } else {
3428                         path->slots[0]--;
3429                 }
3430         }
3431 out:
3432         if (pending_del_nr) {
3433                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3434                                       pending_del_nr);
3435                 BUG_ON(ret);
3436         }
3437         btrfs_free_path(path);
3438         return err;
3439 }
3440
3441 /*
3442  * taken from block_truncate_page, but does cow as it zeros out
3443  * any bytes left in the last page in the file.
3444  */
3445 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3446 {
3447         struct inode *inode = mapping->host;
3448         struct btrfs_root *root = BTRFS_I(inode)->root;
3449         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3450         struct btrfs_ordered_extent *ordered;
3451         struct extent_state *cached_state = NULL;
3452         char *kaddr;
3453         u32 blocksize = root->sectorsize;
3454         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3455         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3456         struct page *page;
3457         int ret = 0;
3458         u64 page_start;
3459         u64 page_end;
3460
3461         if ((offset & (blocksize - 1)) == 0)
3462                 goto out;
3463         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3464         if (ret)
3465                 goto out;
3466
3467         ret = -ENOMEM;
3468 again:
3469         page = grab_cache_page(mapping, index);
3470         if (!page) {
3471                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3472                 goto out;
3473         }
3474
3475         page_start = page_offset(page);
3476         page_end = page_start + PAGE_CACHE_SIZE - 1;
3477
3478         if (!PageUptodate(page)) {
3479                 ret = btrfs_readpage(NULL, page);
3480                 lock_page(page);
3481                 if (page->mapping != mapping) {
3482                         unlock_page(page);
3483                         page_cache_release(page);
3484                         goto again;
3485                 }
3486                 if (!PageUptodate(page)) {
3487                         ret = -EIO;
3488                         goto out_unlock;
3489                 }
3490         }
3491         wait_on_page_writeback(page);
3492
3493         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3494                          GFP_NOFS);
3495         set_page_extent_mapped(page);
3496
3497         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3498         if (ordered) {
3499                 unlock_extent_cached(io_tree, page_start, page_end,
3500                                      &cached_state, GFP_NOFS);
3501                 unlock_page(page);
3502                 page_cache_release(page);
3503                 btrfs_start_ordered_extent(inode, ordered, 1);
3504                 btrfs_put_ordered_extent(ordered);
3505                 goto again;
3506         }
3507
3508         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3509                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3510                           0, 0, &cached_state, GFP_NOFS);
3511
3512         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3513                                         &cached_state);
3514         if (ret) {
3515                 unlock_extent_cached(io_tree, page_start, page_end,
3516                                      &cached_state, GFP_NOFS);
3517                 goto out_unlock;
3518         }
3519
3520         ret = 0;
3521         if (offset != PAGE_CACHE_SIZE) {
3522                 kaddr = kmap(page);
3523                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3524                 flush_dcache_page(page);
3525                 kunmap(page);
3526         }
3527         ClearPageChecked(page);
3528         set_page_dirty(page);
3529         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3530                              GFP_NOFS);
3531
3532 out_unlock:
3533         if (ret)
3534                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3535         unlock_page(page);
3536         page_cache_release(page);
3537 out:
3538         return ret;
3539 }
3540
3541 int btrfs_cont_expand(struct inode *inode, loff_t size)
3542 {
3543         struct btrfs_trans_handle *trans;
3544         struct btrfs_root *root = BTRFS_I(inode)->root;
3545         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3546         struct extent_map *em = NULL;
3547         struct extent_state *cached_state = NULL;
3548         u64 mask = root->sectorsize - 1;
3549         u64 hole_start = (inode->i_size + mask) & ~mask;
3550         u64 block_end = (size + mask) & ~mask;
3551         u64 last_byte;
3552         u64 cur_offset;
3553         u64 hole_size;
3554         int err = 0;
3555
3556         if (size <= hole_start)
3557                 return 0;
3558
3559         while (1) {
3560                 struct btrfs_ordered_extent *ordered;
3561                 btrfs_wait_ordered_range(inode, hole_start,
3562                                          block_end - hole_start);
3563                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3564                                  &cached_state, GFP_NOFS);
3565                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3566                 if (!ordered)
3567                         break;
3568                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3569                                      &cached_state, GFP_NOFS);
3570                 btrfs_put_ordered_extent(ordered);
3571         }
3572
3573         cur_offset = hole_start;
3574         while (1) {
3575                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3576                                 block_end - cur_offset, 0);
3577                 BUG_ON(IS_ERR(em) || !em);
3578                 last_byte = min(extent_map_end(em), block_end);
3579                 last_byte = (last_byte + mask) & ~mask;
3580                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3581                         u64 hint_byte = 0;
3582                         hole_size = last_byte - cur_offset;
3583
3584                         trans = btrfs_start_transaction(root, 2);
3585                         if (IS_ERR(trans)) {
3586                                 err = PTR_ERR(trans);
3587                                 break;
3588                         }
3589                         btrfs_set_trans_block_group(trans, inode);
3590
3591                         err = btrfs_drop_extents(trans, inode, cur_offset,
3592                                                  cur_offset + hole_size,
3593                                                  &hint_byte, 1);
3594                         BUG_ON(err);
3595
3596                         err = btrfs_insert_file_extent(trans, root,
3597                                         inode->i_ino, cur_offset, 0,
3598                                         0, hole_size, 0, hole_size,
3599                                         0, 0, 0);
3600                         BUG_ON(err);
3601
3602                         btrfs_drop_extent_cache(inode, hole_start,
3603                                         last_byte - 1, 0);
3604
3605                         btrfs_end_transaction(trans, root);
3606                 }
3607                 free_extent_map(em);
3608                 em = NULL;
3609                 cur_offset = last_byte;
3610                 if (cur_offset >= block_end)
3611                         break;
3612         }
3613
3614         free_extent_map(em);
3615         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3616                              GFP_NOFS);
3617         return err;
3618 }
3619
3620 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3621 {
3622         struct btrfs_root *root = BTRFS_I(inode)->root;
3623         struct btrfs_trans_handle *trans;
3624         unsigned long nr;
3625         int ret;
3626
3627         if (attr->ia_size == inode->i_size)
3628                 return 0;
3629
3630         if (attr->ia_size > inode->i_size) {
3631                 unsigned long limit;
3632                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3633                 if (attr->ia_size > inode->i_sb->s_maxbytes)
3634                         return -EFBIG;
3635                 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3636                         send_sig(SIGXFSZ, current, 0);
3637                         return -EFBIG;
3638                 }
3639         }
3640
3641         trans = btrfs_start_transaction(root, 5);
3642         if (IS_ERR(trans))
3643                 return PTR_ERR(trans);
3644
3645         btrfs_set_trans_block_group(trans, inode);
3646
3647         ret = btrfs_orphan_add(trans, inode);
3648         BUG_ON(ret);
3649
3650         nr = trans->blocks_used;
3651         btrfs_end_transaction(trans, root);
3652         btrfs_btree_balance_dirty(root, nr);
3653
3654         if (attr->ia_size > inode->i_size) {
3655                 ret = btrfs_cont_expand(inode, attr->ia_size);
3656                 if (ret) {
3657                         btrfs_truncate(inode);
3658                         return ret;
3659                 }
3660
3661                 i_size_write(inode, attr->ia_size);
3662                 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3663
3664                 trans = btrfs_start_transaction(root, 0);
3665                 BUG_ON(IS_ERR(trans));
3666                 btrfs_set_trans_block_group(trans, inode);
3667                 trans->block_rsv = root->orphan_block_rsv;
3668                 BUG_ON(!trans->block_rsv);
3669
3670                 ret = btrfs_update_inode(trans, root, inode);
3671                 BUG_ON(ret);
3672                 if (inode->i_nlink > 0) {
3673                         ret = btrfs_orphan_del(trans, inode);
3674                         BUG_ON(ret);
3675                 }
3676                 nr = trans->blocks_used;
3677                 btrfs_end_transaction(trans, root);
3678                 btrfs_btree_balance_dirty(root, nr);
3679                 return 0;
3680         }
3681
3682         /*
3683          * We're truncating a file that used to have good data down to
3684          * zero. Make sure it gets into the ordered flush list so that
3685          * any new writes get down to disk quickly.
3686          */
3687         if (attr->ia_size == 0)
3688                 BTRFS_I(inode)->ordered_data_close = 1;
3689
3690         /* we don't support swapfiles, so vmtruncate shouldn't fail */
3691         ret = vmtruncate(inode, attr->ia_size);
3692         BUG_ON(ret);
3693
3694         return 0;
3695 }
3696
3697 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3698 {
3699         struct inode *inode = dentry->d_inode;
3700         struct btrfs_root *root = BTRFS_I(inode)->root;
3701         int err;
3702
3703         if (btrfs_root_readonly(root))
3704                 return -EROFS;
3705
3706         err = inode_change_ok(inode, attr);
3707         if (err)
3708                 return err;
3709
3710         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3711                 err = btrfs_setattr_size(inode, attr);
3712                 if (err)
3713                         return err;
3714         }
3715
3716         if (attr->ia_valid) {
3717                 setattr_copy(inode, attr);
3718                 mark_inode_dirty(inode);
3719
3720                 if (attr->ia_valid & ATTR_MODE)
3721                         err = btrfs_acl_chmod(inode);
3722         }
3723
3724         return err;
3725 }
3726
3727 void btrfs_evict_inode(struct inode *inode)
3728 {
3729         struct btrfs_trans_handle *trans;
3730         struct btrfs_root *root = BTRFS_I(inode)->root;
3731         unsigned long nr;
3732         int ret;
3733
3734         truncate_inode_pages(&inode->i_data, 0);
3735         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3736                                root == root->fs_info->tree_root))
3737                 goto no_delete;
3738
3739         if (is_bad_inode(inode)) {
3740                 btrfs_orphan_del(NULL, inode);
3741                 goto no_delete;
3742         }
3743         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3744         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3745
3746         if (root->fs_info->log_root_recovering) {
3747                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3748                 goto no_delete;
3749         }
3750
3751         if (inode->i_nlink > 0) {
3752                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3753                 goto no_delete;
3754         }
3755
3756         btrfs_i_size_write(inode, 0);
3757
3758         while (1) {
3759                 trans = btrfs_start_transaction(root, 0);
3760                 BUG_ON(IS_ERR(trans));
3761                 btrfs_set_trans_block_group(trans, inode);
3762                 trans->block_rsv = root->orphan_block_rsv;
3763
3764                 ret = btrfs_block_rsv_check(trans, root,
3765                                             root->orphan_block_rsv, 0, 5);
3766                 if (ret) {
3767                         BUG_ON(ret != -EAGAIN);
3768                         ret = btrfs_commit_transaction(trans, root);
3769                         BUG_ON(ret);
3770                         continue;
3771                 }
3772
3773                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3774                 if (ret != -EAGAIN)
3775                         break;
3776
3777                 nr = trans->blocks_used;
3778                 btrfs_end_transaction(trans, root);
3779                 trans = NULL;
3780                 btrfs_btree_balance_dirty(root, nr);
3781
3782         }
3783
3784         if (ret == 0) {
3785                 ret = btrfs_orphan_del(trans, inode);
3786                 BUG_ON(ret);
3787         }
3788
3789         nr = trans->blocks_used;
3790         btrfs_end_transaction(trans, root);
3791         btrfs_btree_balance_dirty(root, nr);
3792 no_delete:
3793         end_writeback(inode);
3794         return;
3795 }
3796
3797 /*
3798  * this returns the key found in the dir entry in the location pointer.
3799  * If no dir entries were found, location->objectid is 0.
3800  */
3801 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3802                                struct btrfs_key *location)
3803 {
3804         const char *name = dentry->d_name.name;
3805         int namelen = dentry->d_name.len;
3806         struct btrfs_dir_item *di;
3807         struct btrfs_path *path;
3808         struct btrfs_root *root = BTRFS_I(dir)->root;
3809         int ret = 0;
3810
3811         path = btrfs_alloc_path();
3812         BUG_ON(!path);
3813
3814         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3815                                     namelen, 0);
3816         if (IS_ERR(di))
3817                 ret = PTR_ERR(di);
3818
3819         if (!di || IS_ERR(di))
3820                 goto out_err;
3821
3822         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3823 out:
3824         btrfs_free_path(path);
3825         return ret;
3826 out_err:
3827         location->objectid = 0;
3828         goto out;
3829 }
3830
3831 /*
3832  * when we hit a tree root in a directory, the btrfs part of the inode
3833  * needs to be changed to reflect the root directory of the tree root.  This
3834  * is kind of like crossing a mount point.
3835  */
3836 static int fixup_tree_root_location(struct btrfs_root *root,
3837                                     struct inode *dir,
3838                                     struct dentry *dentry,
3839                                     struct btrfs_key *location,
3840                                     struct btrfs_root **sub_root)
3841 {
3842         struct btrfs_path *path;
3843         struct btrfs_root *new_root;
3844         struct btrfs_root_ref *ref;
3845         struct extent_buffer *leaf;
3846         int ret;
3847         int err = 0;
3848
3849         path = btrfs_alloc_path();
3850         if (!path) {
3851                 err = -ENOMEM;
3852                 goto out;
3853         }
3854
3855         err = -ENOENT;
3856         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3857                                   BTRFS_I(dir)->root->root_key.objectid,
3858                                   location->objectid);
3859         if (ret) {
3860                 if (ret < 0)
3861                         err = ret;
3862                 goto out;
3863         }
3864
3865         leaf = path->nodes[0];
3866         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3867         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3868             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3869                 goto out;
3870
3871         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3872                                    (unsigned long)(ref + 1),
3873                                    dentry->d_name.len);
3874         if (ret)
3875                 goto out;
3876
3877         btrfs_release_path(root->fs_info->tree_root, path);
3878
3879         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3880         if (IS_ERR(new_root)) {
3881                 err = PTR_ERR(new_root);
3882                 goto out;
3883         }
3884
3885         if (btrfs_root_refs(&new_root->root_item) == 0) {
3886                 err = -ENOENT;
3887                 goto out;
3888         }
3889
3890         *sub_root = new_root;
3891         location->objectid = btrfs_root_dirid(&new_root->root_item);
3892         location->type = BTRFS_INODE_ITEM_KEY;
3893         location->offset = 0;
3894         err = 0;
3895 out:
3896         btrfs_free_path(path);
3897         return err;
3898 }
3899
3900 static void inode_tree_add(struct inode *inode)
3901 {
3902         struct btrfs_root *root = BTRFS_I(inode)->root;
3903         struct btrfs_inode *entry;
3904         struct rb_node **p;
3905         struct rb_node *parent;
3906 again:
3907         p = &root->inode_tree.rb_node;
3908         parent = NULL;
3909
3910         if (inode_unhashed(inode))
3911                 return;
3912
3913         spin_lock(&root->inode_lock);
3914         while (*p) {
3915                 parent = *p;
3916                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3917
3918                 if (inode->i_ino < entry->vfs_inode.i_ino)
3919                         p = &parent->rb_left;
3920                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3921                         p = &parent->rb_right;
3922                 else {
3923                         WARN_ON(!(entry->vfs_inode.i_state &
3924                                   (I_WILL_FREE | I_FREEING)));
3925                         rb_erase(parent, &root->inode_tree);
3926                         RB_CLEAR_NODE(parent);
3927                         spin_unlock(&root->inode_lock);
3928                         goto again;
3929                 }
3930         }
3931         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3932         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3933         spin_unlock(&root->inode_lock);
3934 }
3935
3936 static void inode_tree_del(struct inode *inode)
3937 {
3938         struct btrfs_root *root = BTRFS_I(inode)->root;
3939         int empty = 0;
3940
3941         spin_lock(&root->inode_lock);
3942         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3943                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3944                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3945                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3946         }
3947         spin_unlock(&root->inode_lock);
3948
3949         /*
3950          * Free space cache has inodes in the tree root, but the tree root has a
3951          * root_refs of 0, so this could end up dropping the tree root as a
3952          * snapshot, so we need the extra !root->fs_info->tree_root check to
3953          * make sure we don't drop it.
3954          */
3955         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3956             root != root->fs_info->tree_root) {
3957                 synchronize_srcu(&root->fs_info->subvol_srcu);
3958                 spin_lock(&root->inode_lock);
3959                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3960                 spin_unlock(&root->inode_lock);
3961                 if (empty)
3962                         btrfs_add_dead_root(root);
3963         }
3964 }
3965
3966 int btrfs_invalidate_inodes(struct btrfs_root *root)
3967 {
3968         struct rb_node *node;
3969         struct rb_node *prev;
3970         struct btrfs_inode *entry;
3971         struct inode *inode;
3972         u64 objectid = 0;
3973
3974         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3975
3976         spin_lock(&root->inode_lock);
3977 again:
3978         node = root->inode_tree.rb_node;
3979         prev = NULL;
3980         while (node) {
3981                 prev = node;
3982                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3983
3984                 if (objectid < entry->vfs_inode.i_ino)
3985                         node = node->rb_left;
3986                 else if (objectid > entry->vfs_inode.i_ino)
3987                         node = node->rb_right;
3988                 else
3989                         break;
3990         }
3991         if (!node) {
3992                 while (prev) {
3993                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3994                         if (objectid <= entry->vfs_inode.i_ino) {
3995                                 node = prev;
3996                                 break;
3997                         }
3998                         prev = rb_next(prev);
3999                 }
4000         }
4001         while (node) {
4002                 entry = rb_entry(node, struct btrfs_inode, rb_node);
4003                 objectid = entry->vfs_inode.i_ino + 1;
4004                 inode = igrab(&entry->vfs_inode);
4005                 if (inode) {
4006                         spin_unlock(&root->inode_lock);
4007                         if (atomic_read(&inode->i_count) > 1)
4008                                 d_prune_aliases(inode);
4009                         /*
4010                          * btrfs_drop_inode will have it removed from
4011                          * the inode cache when its usage count
4012                          * hits zero.
4013                          */
4014                         iput(inode);
4015                         cond_resched();
4016                         spin_lock(&root->inode_lock);
4017                         goto again;
4018                 }
4019
4020                 if (cond_resched_lock(&root->inode_lock))
4021                         goto again;
4022
4023                 node = rb_next(node);
4024         }
4025         spin_unlock(&root->inode_lock);
4026         return 0;
4027 }
4028
4029 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4030 {
4031         struct btrfs_iget_args *args = p;
4032         inode->i_ino = args->ino;
4033         BTRFS_I(inode)->root = args->root;
4034         btrfs_set_inode_space_info(args->root, inode);
4035         return 0;
4036 }
4037
4038 static int btrfs_find_actor(struct inode *inode, void *opaque)
4039 {
4040         struct btrfs_iget_args *args = opaque;
4041         return args->ino == inode->i_ino &&
4042                 args->root == BTRFS_I(inode)->root;
4043 }
4044
4045 static struct inode *btrfs_iget_locked(struct super_block *s,
4046                                        u64 objectid,
4047                                        struct btrfs_root *root)
4048 {
4049         struct inode *inode;
4050         struct btrfs_iget_args args;
4051         args.ino = objectid;
4052         args.root = root;
4053
4054         inode = iget5_locked(s, objectid, btrfs_find_actor,
4055                              btrfs_init_locked_inode,
4056                              (void *)&args);
4057         return inode;
4058 }
4059
4060 /* Get an inode object given its location and corresponding root.
4061  * Returns in *is_new if the inode was read from disk
4062  */
4063 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4064                          struct btrfs_root *root, int *new)
4065 {
4066         struct inode *inode;
4067
4068         inode = btrfs_iget_locked(s, location->objectid, root);
4069         if (!inode)
4070                 return ERR_PTR(-ENOMEM);
4071
4072         if (inode->i_state & I_NEW) {
4073                 BTRFS_I(inode)->root = root;
4074                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4075                 btrfs_read_locked_inode(inode);
4076
4077                 inode_tree_add(inode);
4078                 unlock_new_inode(inode);
4079                 if (new)
4080                         *new = 1;
4081         }
4082
4083         return inode;
4084 }
4085
4086 static struct inode *new_simple_dir(struct super_block *s,
4087                                     struct btrfs_key *key,
4088                                     struct btrfs_root *root)
4089 {
4090         struct inode *inode = new_inode(s);
4091
4092         if (!inode)
4093                 return ERR_PTR(-ENOMEM);
4094
4095         BTRFS_I(inode)->root = root;
4096         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4097         BTRFS_I(inode)->dummy_inode = 1;
4098
4099         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4100         inode->i_op = &simple_dir_inode_operations;
4101         inode->i_fop = &simple_dir_operations;
4102         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4103         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4104
4105         return inode;
4106 }
4107
4108 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4109 {
4110         struct inode *inode;
4111         struct btrfs_root *root = BTRFS_I(dir)->root;
4112         struct btrfs_root *sub_root = root;
4113         struct btrfs_key location;
4114         int index;
4115         int ret;
4116
4117         if (dentry->d_name.len > BTRFS_NAME_LEN)
4118                 return ERR_PTR(-ENAMETOOLONG);
4119
4120         ret = btrfs_inode_by_name(dir, dentry, &location);
4121
4122         if (ret < 0)
4123                 return ERR_PTR(ret);
4124
4125         if (location.objectid == 0)
4126                 return NULL;
4127
4128         if (location.type == BTRFS_INODE_ITEM_KEY) {
4129                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4130                 return inode;
4131         }
4132
4133         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4134
4135         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4136         ret = fixup_tree_root_location(root, dir, dentry,
4137                                        &location, &sub_root);
4138         if (ret < 0) {
4139                 if (ret != -ENOENT)
4140                         inode = ERR_PTR(ret);
4141                 else
4142                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4143         } else {
4144                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4145         }
4146         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4147
4148         if (!IS_ERR(inode) && root != sub_root) {
4149                 down_read(&root->fs_info->cleanup_work_sem);
4150                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4151                         btrfs_orphan_cleanup(sub_root);
4152                 up_read(&root->fs_info->cleanup_work_sem);
4153         }
4154
4155         return inode;
4156 }
4157
4158 static int btrfs_dentry_delete(const struct dentry *dentry)
4159 {
4160         struct btrfs_root *root;
4161
4162         if (!dentry->d_inode && !IS_ROOT(dentry))
4163                 dentry = dentry->d_parent;
4164
4165         if (dentry->d_inode) {
4166                 root = BTRFS_I(dentry->d_inode)->root;
4167                 if (btrfs_root_refs(&root->root_item) == 0)
4168                         return 1;
4169         }
4170         return 0;
4171 }
4172
4173 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4174                                    struct nameidata *nd)
4175 {
4176         struct inode *inode;
4177
4178         inode = btrfs_lookup_dentry(dir, dentry);
4179         if (IS_ERR(inode))
4180                 return ERR_CAST(inode);
4181
4182         return d_splice_alias(inode, dentry);
4183 }
4184
4185 static unsigned char btrfs_filetype_table[] = {
4186         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4187 };
4188
4189 static int btrfs_real_readdir(struct file *filp, void *dirent,
4190                               filldir_t filldir)
4191 {
4192         struct inode *inode = filp->f_dentry->d_inode;
4193         struct btrfs_root *root = BTRFS_I(inode)->root;
4194         struct btrfs_item *item;
4195         struct btrfs_dir_item *di;
4196         struct btrfs_key key;
4197         struct btrfs_key found_key;
4198         struct btrfs_path *path;
4199         int ret;
4200         u32 nritems;
4201         struct extent_buffer *leaf;
4202         int slot;
4203         int advance;
4204         unsigned char d_type;
4205         int over = 0;
4206         u32 di_cur;
4207         u32 di_total;
4208         u32 di_len;
4209         int key_type = BTRFS_DIR_INDEX_KEY;
4210         char tmp_name[32];
4211         char *name_ptr;
4212         int name_len;
4213
4214         /* FIXME, use a real flag for deciding about the key type */
4215         if (root->fs_info->tree_root == root)
4216                 key_type = BTRFS_DIR_ITEM_KEY;
4217
4218         /* special case for "." */
4219         if (filp->f_pos == 0) {
4220                 over = filldir(dirent, ".", 1,
4221                                1, inode->i_ino,
4222                                DT_DIR);
4223                 if (over)
4224                         return 0;
4225                 filp->f_pos = 1;
4226         }
4227         /* special case for .., just use the back ref */
4228         if (filp->f_pos == 1) {
4229                 u64 pino = parent_ino(filp->f_path.dentry);
4230                 over = filldir(dirent, "..", 2,
4231                                2, pino, DT_DIR);
4232                 if (over)
4233                         return 0;
4234                 filp->f_pos = 2;
4235         }
4236         path = btrfs_alloc_path();
4237         path->reada = 2;
4238
4239         btrfs_set_key_type(&key, key_type);
4240         key.offset = filp->f_pos;
4241         key.objectid = inode->i_ino;
4242
4243         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4244         if (ret < 0)
4245                 goto err;
4246         advance = 0;
4247
4248         while (1) {
4249                 leaf = path->nodes[0];
4250                 nritems = btrfs_header_nritems(leaf);
4251                 slot = path->slots[0];
4252                 if (advance || slot >= nritems) {
4253                         if (slot >= nritems - 1) {
4254                                 ret = btrfs_next_leaf(root, path);
4255                                 if (ret)
4256                                         break;
4257                                 leaf = path->nodes[0];
4258                                 nritems = btrfs_header_nritems(leaf);
4259                                 slot = path->slots[0];
4260                         } else {
4261                                 slot++;
4262                                 path->slots[0]++;
4263                         }
4264                 }
4265
4266                 advance = 1;
4267                 item = btrfs_item_nr(leaf, slot);
4268                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4269
4270                 if (found_key.objectid != key.objectid)
4271                         break;
4272                 if (btrfs_key_type(&found_key) != key_type)
4273                         break;
4274                 if (found_key.offset < filp->f_pos)
4275                         continue;
4276
4277                 filp->f_pos = found_key.offset;
4278
4279                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4280                 di_cur = 0;
4281                 di_total = btrfs_item_size(leaf, item);
4282
4283                 while (di_cur < di_total) {
4284                         struct btrfs_key location;
4285
4286                         name_len = btrfs_dir_name_len(leaf, di);
4287                         if (name_len <= sizeof(tmp_name)) {
4288                                 name_ptr = tmp_name;
4289                         } else {
4290                                 name_ptr = kmalloc(name_len, GFP_NOFS);
4291                                 if (!name_ptr) {
4292                                         ret = -ENOMEM;
4293                                         goto err;
4294                                 }
4295                         }
4296                         read_extent_buffer(leaf, name_ptr,
4297                                            (unsigned long)(di + 1), name_len);
4298
4299                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4300                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
4301
4302                         /* is this a reference to our own snapshot? If so
4303                          * skip it
4304                          */
4305                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
4306                             location.objectid == root->root_key.objectid) {
4307                                 over = 0;
4308                                 goto skip;
4309                         }
4310                         over = filldir(dirent, name_ptr, name_len,
4311                                        found_key.offset, location.objectid,
4312                                        d_type);
4313
4314 skip:
4315                         if (name_ptr != tmp_name)
4316                                 kfree(name_ptr);
4317
4318                         if (over)
4319                                 goto nopos;
4320                         di_len = btrfs_dir_name_len(leaf, di) +
4321                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
4322                         di_cur += di_len;
4323                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4324                 }
4325         }
4326
4327         /* Reached end of directory/root. Bump pos past the last item. */
4328         if (key_type == BTRFS_DIR_INDEX_KEY)
4329                 /*
4330                  * 32-bit glibc will use getdents64, but then strtol -
4331                  * so the last number we can serve is this.
4332                  */
4333                 filp->f_pos = 0x7fffffff;
4334         else
4335                 filp->f_pos++;
4336 nopos:
4337         ret = 0;
4338 err:
4339         btrfs_free_path(path);
4340         return ret;
4341 }
4342
4343 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4344 {
4345         struct btrfs_root *root = BTRFS_I(inode)->root;
4346         struct btrfs_trans_handle *trans;
4347         int ret = 0;
4348         bool nolock = false;
4349
4350         if (BTRFS_I(inode)->dummy_inode)
4351                 return 0;
4352
4353         smp_mb();
4354         nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4355
4356         if (wbc->sync_mode == WB_SYNC_ALL) {
4357                 if (nolock)
4358                         trans = btrfs_join_transaction_nolock(root, 1);
4359                 else
4360                         trans = btrfs_join_transaction(root, 1);
4361                 if (IS_ERR(trans))
4362                         return PTR_ERR(trans);
4363                 btrfs_set_trans_block_group(trans, inode);
4364                 if (nolock)
4365                         ret = btrfs_end_transaction_nolock(trans, root);
4366                 else
4367                         ret = btrfs_commit_transaction(trans, root);
4368         }
4369         return ret;
4370 }
4371
4372 /*
4373  * This is somewhat expensive, updating the tree every time the
4374  * inode changes.  But, it is most likely to find the inode in cache.
4375  * FIXME, needs more benchmarking...there are no reasons other than performance
4376  * to keep or drop this code.
4377  */
4378 void btrfs_dirty_inode(struct inode *inode)
4379 {
4380         struct btrfs_root *root = BTRFS_I(inode)->root;
4381         struct btrfs_trans_handle *trans;
4382         int ret;
4383
4384         if (BTRFS_I(inode)->dummy_inode)
4385                 return;
4386
4387         trans = btrfs_join_transaction(root, 1);
4388         BUG_ON(IS_ERR(trans));
4389         btrfs_set_trans_block_group(trans, inode);
4390
4391         ret = btrfs_update_inode(trans, root, inode);
4392         if (ret && ret == -ENOSPC) {
4393                 /* whoops, lets try again with the full transaction */
4394                 btrfs_end_transaction(trans, root);
4395                 trans = btrfs_start_transaction(root, 1);
4396                 if (IS_ERR(trans)) {
4397                         if (printk_ratelimit()) {
4398                                 printk(KERN_ERR "btrfs: fail to "
4399                                        "dirty  inode %lu error %ld\n",
4400                                        inode->i_ino, PTR_ERR(trans));
4401                         }
4402                         return;
4403                 }
4404                 btrfs_set_trans_block_group(trans, inode);
4405
4406                 ret = btrfs_update_inode(trans, root, inode);
4407                 if (ret) {
4408                         if (printk_ratelimit()) {
4409                                 printk(KERN_ERR "btrfs: fail to "
4410                                        "dirty  inode %lu error %d\n",
4411                                        inode->i_ino, ret);
4412                         }
4413                 }
4414         }
4415         btrfs_end_transaction(trans, root);
4416 }
4417
4418 /*
4419  * find the highest existing sequence number in a directory
4420  * and then set the in-memory index_cnt variable to reflect
4421  * free sequence numbers
4422  */
4423 static int btrfs_set_inode_index_count(struct inode *inode)
4424 {
4425         struct btrfs_root *root = BTRFS_I(inode)->root;
4426         struct btrfs_key key, found_key;
4427         struct btrfs_path *path;
4428         struct extent_buffer *leaf;
4429         int ret;
4430
4431         key.objectid = inode->i_ino;
4432         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4433         key.offset = (u64)-1;
4434
4435         path = btrfs_alloc_path();
4436         if (!path)
4437                 return -ENOMEM;
4438
4439         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4440         if (ret < 0)
4441                 goto out;
4442         /* FIXME: we should be able to handle this */
4443         if (ret == 0)
4444                 goto out;
4445         ret = 0;
4446
4447         /*
4448          * MAGIC NUMBER EXPLANATION:
4449          * since we search a directory based on f_pos we have to start at 2
4450          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4451          * else has to start at 2
4452          */
4453         if (path->slots[0] == 0) {
4454                 BTRFS_I(inode)->index_cnt = 2;
4455                 goto out;
4456         }
4457
4458         path->slots[0]--;
4459
4460         leaf = path->nodes[0];
4461         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4462
4463         if (found_key.objectid != inode->i_ino ||
4464             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4465                 BTRFS_I(inode)->index_cnt = 2;
4466                 goto out;
4467         }
4468
4469         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4470 out:
4471         btrfs_free_path(path);
4472         return ret;
4473 }
4474
4475 /*
4476  * helper to find a free sequence number in a given directory.  This current
4477  * code is very simple, later versions will do smarter things in the btree
4478  */
4479 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4480 {
4481         int ret = 0;
4482
4483         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4484                 ret = btrfs_set_inode_index_count(dir);
4485                 if (ret)
4486                         return ret;
4487         }
4488
4489         *index = BTRFS_I(dir)->index_cnt;
4490         BTRFS_I(dir)->index_cnt++;
4491
4492         return ret;
4493 }
4494
4495 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4496                                      struct btrfs_root *root,
4497                                      struct inode *dir,
4498                                      const char *name, int name_len,
4499                                      u64 ref_objectid, u64 objectid,
4500                                      u64 alloc_hint, int mode, u64 *index)
4501 {
4502         struct inode *inode;
4503         struct btrfs_inode_item *inode_item;
4504         struct btrfs_key *location;
4505         struct btrfs_path *path;
4506         struct btrfs_inode_ref *ref;
4507         struct btrfs_key key[2];
4508         u32 sizes[2];
4509         unsigned long ptr;
4510         int ret;
4511         int owner;
4512
4513         path = btrfs_alloc_path();
4514         BUG_ON(!path);
4515
4516         inode = new_inode(root->fs_info->sb);
4517         if (!inode)
4518                 return ERR_PTR(-ENOMEM);
4519
4520         if (dir) {
4521                 ret = btrfs_set_inode_index(dir, index);
4522                 if (ret) {
4523                         iput(inode);
4524                         return ERR_PTR(ret);
4525                 }
4526         }
4527         /*
4528          * index_cnt is ignored for everything but a dir,
4529          * btrfs_get_inode_index_count has an explanation for the magic
4530          * number
4531          */
4532         BTRFS_I(inode)->index_cnt = 2;
4533         BTRFS_I(inode)->root = root;
4534         BTRFS_I(inode)->generation = trans->transid;
4535         inode->i_generation = BTRFS_I(inode)->generation;
4536         btrfs_set_inode_space_info(root, inode);
4537
4538         if (mode & S_IFDIR)
4539                 owner = 0;
4540         else
4541                 owner = 1;
4542         BTRFS_I(inode)->block_group =
4543                         btrfs_find_block_group(root, 0, alloc_hint, owner);
4544
4545         key[0].objectid = objectid;
4546         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4547         key[0].offset = 0;
4548
4549         key[1].objectid = objectid;
4550         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4551         key[1].offset = ref_objectid;
4552
4553         sizes[0] = sizeof(struct btrfs_inode_item);
4554         sizes[1] = name_len + sizeof(*ref);
4555
4556         path->leave_spinning = 1;
4557         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4558         if (ret != 0)
4559                 goto fail;
4560
4561         inode_init_owner(inode, dir, mode);
4562         inode->i_ino = objectid;
4563         inode_set_bytes(inode, 0);
4564         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4565         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4566                                   struct btrfs_inode_item);
4567         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4568
4569         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4570                              struct btrfs_inode_ref);
4571         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4572         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4573         ptr = (unsigned long)(ref + 1);
4574         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4575
4576         btrfs_mark_buffer_dirty(path->nodes[0]);
4577         btrfs_free_path(path);
4578
4579         location = &BTRFS_I(inode)->location;
4580         location->objectid = objectid;
4581         location->offset = 0;
4582         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4583
4584         btrfs_inherit_iflags(inode, dir);
4585
4586         if ((mode & S_IFREG)) {
4587                 if (btrfs_test_opt(root, NODATASUM))
4588                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4589                 if (btrfs_test_opt(root, NODATACOW))
4590                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4591         }
4592
4593         insert_inode_hash(inode);
4594         inode_tree_add(inode);
4595         return inode;
4596 fail:
4597         if (dir)
4598                 BTRFS_I(dir)->index_cnt--;
4599         btrfs_free_path(path);
4600         iput(inode);
4601         return ERR_PTR(ret);
4602 }
4603
4604 static inline u8 btrfs_inode_type(struct inode *inode)
4605 {
4606         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4607 }
4608
4609 /*
4610  * utility function to add 'inode' into 'parent_inode' with
4611  * a give name and a given sequence number.
4612  * if 'add_backref' is true, also insert a backref from the
4613  * inode to the parent directory.
4614  */
4615 int btrfs_add_link(struct btrfs_trans_handle *trans,
4616                    struct inode *parent_inode, struct inode *inode,
4617                    const char *name, int name_len, int add_backref, u64 index)
4618 {
4619         int ret = 0;
4620         struct btrfs_key key;
4621         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4622
4623         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4624                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4625         } else {
4626                 key.objectid = inode->i_ino;
4627                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4628                 key.offset = 0;
4629         }
4630
4631         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4632                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4633                                          key.objectid, root->root_key.objectid,
4634                                          parent_inode->i_ino,
4635                                          index, name, name_len);
4636         } else if (add_backref) {
4637                 ret = btrfs_insert_inode_ref(trans, root,
4638                                              name, name_len, inode->i_ino,
4639                                              parent_inode->i_ino, index);
4640         }
4641
4642         if (ret == 0) {
4643                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4644                                             parent_inode->i_ino, &key,
4645                                             btrfs_inode_type(inode), index);
4646                 BUG_ON(ret);
4647
4648                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4649                                    name_len * 2);
4650                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4651                 ret = btrfs_update_inode(trans, root, parent_inode);
4652         }
4653         return ret;
4654 }
4655
4656 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4657                             struct inode *dir, struct dentry *dentry,
4658                             struct inode *inode, int backref, u64 index)
4659 {
4660         int err = btrfs_add_link(trans, dir, inode,
4661                                  dentry->d_name.name, dentry->d_name.len,
4662                                  backref, index);
4663         if (!err) {
4664                 d_instantiate(dentry, inode);
4665                 return 0;
4666         }
4667         if (err > 0)
4668                 err = -EEXIST;
4669         return err;
4670 }
4671
4672 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4673                         int mode, dev_t rdev)
4674 {
4675         struct btrfs_trans_handle *trans;
4676         struct btrfs_root *root = BTRFS_I(dir)->root;
4677         struct inode *inode = NULL;
4678         int err;
4679         int drop_inode = 0;
4680         u64 objectid;
4681         unsigned long nr = 0;
4682         u64 index = 0;
4683
4684         if (!new_valid_dev(rdev))
4685                 return -EINVAL;
4686
4687         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4688         if (err)
4689                 return err;
4690
4691         /*
4692          * 2 for inode item and ref
4693          * 2 for dir items
4694          * 1 for xattr if selinux is on
4695          */
4696         trans = btrfs_start_transaction(root, 5);
4697         if (IS_ERR(trans))
4698                 return PTR_ERR(trans);
4699
4700         btrfs_set_trans_block_group(trans, dir);
4701
4702         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4703                                 dentry->d_name.len, dir->i_ino, objectid,
4704                                 BTRFS_I(dir)->block_group, mode, &index);
4705         err = PTR_ERR(inode);
4706         if (IS_ERR(inode))
4707                 goto out_unlock;
4708
4709         err = btrfs_init_inode_security(trans, inode, dir);
4710         if (err) {
4711                 drop_inode = 1;
4712                 goto out_unlock;
4713         }
4714
4715         btrfs_set_trans_block_group(trans, inode);
4716         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4717         if (err)
4718                 drop_inode = 1;
4719         else {
4720                 inode->i_op = &btrfs_special_inode_operations;
4721                 init_special_inode(inode, inode->i_mode, rdev);
4722                 btrfs_update_inode(trans, root, inode);
4723         }
4724         btrfs_update_inode_block_group(trans, inode);
4725         btrfs_update_inode_block_group(trans, dir);
4726 out_unlock:
4727         nr = trans->blocks_used;
4728         btrfs_end_transaction_throttle(trans, root);
4729         btrfs_btree_balance_dirty(root, nr);
4730         if (drop_inode) {
4731                 inode_dec_link_count(inode);
4732                 iput(inode);
4733         }
4734         return err;
4735 }
4736
4737 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4738                         int mode, struct nameidata *nd)
4739 {
4740         struct btrfs_trans_handle *trans;
4741         struct btrfs_root *root = BTRFS_I(dir)->root;
4742         struct inode *inode = NULL;
4743         int drop_inode = 0;
4744         int err;
4745         unsigned long nr = 0;
4746         u64 objectid;
4747         u64 index = 0;
4748
4749         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4750         if (err)
4751                 return err;
4752         /*
4753          * 2 for inode item and ref
4754          * 2 for dir items
4755          * 1 for xattr if selinux is on
4756          */
4757         trans = btrfs_start_transaction(root, 5);
4758         if (IS_ERR(trans))
4759                 return PTR_ERR(trans);
4760
4761         btrfs_set_trans_block_group(trans, dir);
4762
4763         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4764                                 dentry->d_name.len, dir->i_ino, objectid,
4765                                 BTRFS_I(dir)->block_group, mode, &index);
4766         err = PTR_ERR(inode);
4767         if (IS_ERR(inode))
4768                 goto out_unlock;
4769
4770         err = btrfs_init_inode_security(trans, inode, dir);
4771         if (err) {
4772                 drop_inode = 1;
4773                 goto out_unlock;
4774         }
4775
4776         btrfs_set_trans_block_group(trans, inode);
4777         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4778         if (err)
4779                 drop_inode = 1;
4780         else {
4781                 inode->i_mapping->a_ops = &btrfs_aops;
4782                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4783                 inode->i_fop = &btrfs_file_operations;
4784                 inode->i_op = &btrfs_file_inode_operations;
4785                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4786         }
4787         btrfs_update_inode_block_group(trans, inode);
4788         btrfs_update_inode_block_group(trans, dir);
4789 out_unlock:
4790         nr = trans->blocks_used;
4791         btrfs_end_transaction_throttle(trans, root);
4792         if (drop_inode) {
4793                 inode_dec_link_count(inode);
4794                 iput(inode);
4795         }
4796         btrfs_btree_balance_dirty(root, nr);
4797         return err;
4798 }
4799
4800 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4801                       struct dentry *dentry)
4802 {
4803         struct btrfs_trans_handle *trans;
4804         struct btrfs_root *root = BTRFS_I(dir)->root;
4805         struct inode *inode = old_dentry->d_inode;
4806         u64 index;
4807         unsigned long nr = 0;
4808         int err;
4809         int drop_inode = 0;
4810
4811         if (inode->i_nlink == 0)
4812                 return -ENOENT;
4813
4814         /* do not allow sys_link's with other subvols of the same device */
4815         if (root->objectid != BTRFS_I(inode)->root->objectid)
4816                 return -EPERM;
4817
4818         btrfs_inc_nlink(inode);
4819         inode->i_ctime = CURRENT_TIME;
4820
4821         err = btrfs_set_inode_index(dir, &index);
4822         if (err)
4823                 goto fail;
4824
4825         /*
4826          * 2 items for inode and inode ref
4827          * 2 items for dir items
4828          * 1 item for parent inode
4829          */
4830         trans = btrfs_start_transaction(root, 5);
4831         if (IS_ERR(trans)) {
4832                 err = PTR_ERR(trans);
4833                 goto fail;
4834         }
4835
4836         btrfs_set_trans_block_group(trans, dir);
4837         ihold(inode);
4838
4839         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4840
4841         if (err) {
4842                 drop_inode = 1;
4843         } else {
4844                 struct dentry *parent = dget_parent(dentry);
4845                 btrfs_update_inode_block_group(trans, dir);
4846                 err = btrfs_update_inode(trans, root, inode);
4847                 BUG_ON(err);
4848                 btrfs_log_new_name(trans, inode, NULL, parent);
4849                 dput(parent);
4850         }
4851
4852         nr = trans->blocks_used;
4853         btrfs_end_transaction_throttle(trans, root);
4854 fail:
4855         if (drop_inode) {
4856                 inode_dec_link_count(inode);
4857                 iput(inode);
4858         }
4859         btrfs_btree_balance_dirty(root, nr);
4860         return err;
4861 }
4862
4863 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4864 {
4865         struct inode *inode = NULL;
4866         struct btrfs_trans_handle *trans;
4867         struct btrfs_root *root = BTRFS_I(dir)->root;
4868         int err = 0;
4869         int drop_on_err = 0;
4870         u64 objectid = 0;
4871         u64 index = 0;
4872         unsigned long nr = 1;
4873
4874         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4875         if (err)
4876                 return err;
4877
4878         /*
4879          * 2 items for inode and ref
4880          * 2 items for dir items
4881          * 1 for xattr if selinux is on
4882          */
4883         trans = btrfs_start_transaction(root, 5);
4884         if (IS_ERR(trans))
4885                 return PTR_ERR(trans);
4886         btrfs_set_trans_block_group(trans, dir);
4887
4888         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4889                                 dentry->d_name.len, dir->i_ino, objectid,
4890                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4891                                 &index);
4892         if (IS_ERR(inode)) {
4893                 err = PTR_ERR(inode);
4894                 goto out_fail;
4895         }
4896
4897         drop_on_err = 1;
4898
4899         err = btrfs_init_inode_security(trans, inode, dir);
4900         if (err)
4901                 goto out_fail;
4902
4903         inode->i_op = &btrfs_dir_inode_operations;
4904         inode->i_fop = &btrfs_dir_file_operations;
4905         btrfs_set_trans_block_group(trans, inode);
4906
4907         btrfs_i_size_write(inode, 0);
4908         err = btrfs_update_inode(trans, root, inode);
4909         if (err)
4910                 goto out_fail;
4911
4912         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4913                              dentry->d_name.len, 0, index);
4914         if (err)
4915                 goto out_fail;
4916
4917         d_instantiate(dentry, inode);
4918         drop_on_err = 0;
4919         btrfs_update_inode_block_group(trans, inode);
4920         btrfs_update_inode_block_group(trans, dir);
4921
4922 out_fail:
4923         nr = trans->blocks_used;
4924         btrfs_end_transaction_throttle(trans, root);
4925         if (drop_on_err)
4926                 iput(inode);
4927         btrfs_btree_balance_dirty(root, nr);
4928         return err;
4929 }
4930
4931 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4932  * and an extent that you want to insert, deal with overlap and insert
4933  * the new extent into the tree.
4934  */
4935 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4936                                 struct extent_map *existing,
4937                                 struct extent_map *em,
4938                                 u64 map_start, u64 map_len)
4939 {
4940         u64 start_diff;
4941
4942         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4943         start_diff = map_start - em->start;
4944         em->start = map_start;
4945         em->len = map_len;
4946         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4947             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4948                 em->block_start += start_diff;
4949                 em->block_len -= start_diff;
4950         }
4951         return add_extent_mapping(em_tree, em);
4952 }
4953
4954 static noinline int uncompress_inline(struct btrfs_path *path,
4955                                       struct inode *inode, struct page *page,
4956                                       size_t pg_offset, u64 extent_offset,
4957                                       struct btrfs_file_extent_item *item)
4958 {
4959         int ret;
4960         struct extent_buffer *leaf = path->nodes[0];
4961         char *tmp;
4962         size_t max_size;
4963         unsigned long inline_size;
4964         unsigned long ptr;
4965         int compress_type;
4966
4967         WARN_ON(pg_offset != 0);
4968         compress_type = btrfs_file_extent_compression(leaf, item);
4969         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4970         inline_size = btrfs_file_extent_inline_item_len(leaf,
4971                                         btrfs_item_nr(leaf, path->slots[0]));
4972         tmp = kmalloc(inline_size, GFP_NOFS);
4973         ptr = btrfs_file_extent_inline_start(item);
4974
4975         read_extent_buffer(leaf, tmp, ptr, inline_size);
4976
4977         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4978         ret = btrfs_decompress(compress_type, tmp, page,
4979                                extent_offset, inline_size, max_size);
4980         if (ret) {
4981                 char *kaddr = kmap_atomic(page, KM_USER0);
4982                 unsigned long copy_size = min_t(u64,
4983                                   PAGE_CACHE_SIZE - pg_offset,
4984                                   max_size - extent_offset);
4985                 memset(kaddr + pg_offset, 0, copy_size);
4986                 kunmap_atomic(kaddr, KM_USER0);
4987         }
4988         kfree(tmp);
4989         return 0;
4990 }
4991
4992 /*
4993  * a bit scary, this does extent mapping from logical file offset to the disk.
4994  * the ugly parts come from merging extents from the disk with the in-ram
4995  * representation.  This gets more complex because of the data=ordered code,
4996  * where the in-ram extents might be locked pending data=ordered completion.
4997  *
4998  * This also copies inline extents directly into the page.
4999  */
5000
5001 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5002                                     size_t pg_offset, u64 start, u64 len,
5003                                     int create)
5004 {
5005         int ret;
5006         int err = 0;
5007         u64 bytenr;
5008         u64 extent_start = 0;
5009         u64 extent_end = 0;
5010         u64 objectid = inode->i_ino;
5011         u32 found_type;
5012         struct btrfs_path *path = NULL;
5013         struct btrfs_root *root = BTRFS_I(inode)->root;
5014         struct btrfs_file_extent_item *item;
5015         struct extent_buffer *leaf;
5016         struct btrfs_key found_key;
5017         struct extent_map *em = NULL;
5018         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5019         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5020         struct btrfs_trans_handle *trans = NULL;
5021         int compress_type;
5022
5023 again:
5024         read_lock(&em_tree->lock);
5025         em = lookup_extent_mapping(em_tree, start, len);
5026         if (em)
5027                 em->bdev = root->fs_info->fs_devices->latest_bdev;
5028         read_unlock(&em_tree->lock);
5029
5030         if (em) {
5031                 if (em->start > start || em->start + em->len <= start)
5032                         free_extent_map(em);
5033                 else if (em->block_start == EXTENT_MAP_INLINE && page)
5034                         free_extent_map(em);
5035                 else
5036                         goto out;
5037         }
5038         em = alloc_extent_map(GFP_NOFS);
5039         if (!em) {
5040                 err = -ENOMEM;
5041                 goto out;
5042         }
5043         em->bdev = root->fs_info->fs_devices->latest_bdev;
5044         em->start = EXTENT_MAP_HOLE;
5045         em->orig_start = EXTENT_MAP_HOLE;
5046         em->len = (u64)-1;
5047         em->block_len = (u64)-1;
5048
5049         if (!path) {
5050                 path = btrfs_alloc_path();
5051                 BUG_ON(!path);
5052         }
5053
5054         ret = btrfs_lookup_file_extent(trans, root, path,
5055                                        objectid, start, trans != NULL);
5056         if (ret < 0) {
5057                 err = ret;
5058                 goto out;
5059         }
5060
5061         if (ret != 0) {
5062                 if (path->slots[0] == 0)
5063                         goto not_found;
5064                 path->slots[0]--;
5065         }
5066
5067         leaf = path->nodes[0];
5068         item = btrfs_item_ptr(leaf, path->slots[0],
5069                               struct btrfs_file_extent_item);
5070         /* are we inside the extent that was found? */
5071         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5072         found_type = btrfs_key_type(&found_key);
5073         if (found_key.objectid != objectid ||
5074             found_type != BTRFS_EXTENT_DATA_KEY) {
5075                 goto not_found;
5076         }
5077
5078         found_type = btrfs_file_extent_type(leaf, item);
5079         extent_start = found_key.offset;
5080         compress_type = btrfs_file_extent_compression(leaf, item);
5081         if (found_type == BTRFS_FILE_EXTENT_REG ||
5082             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5083                 extent_end = extent_start +
5084                        btrfs_file_extent_num_bytes(leaf, item);
5085         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5086                 size_t size;
5087                 size = btrfs_file_extent_inline_len(leaf, item);
5088                 extent_end = (extent_start + size + root->sectorsize - 1) &
5089                         ~((u64)root->sectorsize - 1);
5090         }
5091
5092         if (start >= extent_end) {
5093                 path->slots[0]++;
5094                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5095                         ret = btrfs_next_leaf(root, path);
5096                         if (ret < 0) {
5097                                 err = ret;
5098                                 goto out;
5099                         }
5100                         if (ret > 0)
5101                                 goto not_found;
5102                         leaf = path->nodes[0];
5103                 }
5104                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5105                 if (found_key.objectid != objectid ||
5106                     found_key.type != BTRFS_EXTENT_DATA_KEY)
5107                         goto not_found;
5108                 if (start + len <= found_key.offset)
5109                         goto not_found;
5110                 em->start = start;
5111                 em->len = found_key.offset - start;
5112                 goto not_found_em;
5113         }
5114
5115         if (found_type == BTRFS_FILE_EXTENT_REG ||
5116             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5117                 em->start = extent_start;
5118                 em->len = extent_end - extent_start;
5119                 em->orig_start = extent_start -
5120                                  btrfs_file_extent_offset(leaf, item);
5121                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5122                 if (bytenr == 0) {
5123                         em->block_start = EXTENT_MAP_HOLE;
5124                         goto insert;
5125                 }
5126                 if (compress_type != BTRFS_COMPRESS_NONE) {
5127                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5128                         em->compress_type = compress_type;
5129                         em->block_start = bytenr;
5130                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5131                                                                          item);
5132                 } else {
5133                         bytenr += btrfs_file_extent_offset(leaf, item);
5134                         em->block_start = bytenr;
5135                         em->block_len = em->len;
5136                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5137                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5138                 }
5139                 goto insert;
5140         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5141                 unsigned long ptr;
5142                 char *map;
5143                 size_t size;
5144                 size_t extent_offset;
5145                 size_t copy_size;
5146
5147                 em->block_start = EXTENT_MAP_INLINE;
5148                 if (!page || create) {
5149                         em->start = extent_start;
5150                         em->len = extent_end - extent_start;
5151                         goto out;
5152                 }
5153
5154                 size = btrfs_file_extent_inline_len(leaf, item);
5155                 extent_offset = page_offset(page) + pg_offset - extent_start;
5156                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5157                                 size - extent_offset);
5158                 em->start = extent_start + extent_offset;
5159                 em->len = (copy_size + root->sectorsize - 1) &
5160                         ~((u64)root->sectorsize - 1);
5161                 em->orig_start = EXTENT_MAP_INLINE;
5162                 if (compress_type) {
5163                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5164                         em->compress_type = compress_type;
5165                 }
5166                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5167                 if (create == 0 && !PageUptodate(page)) {
5168                         if (btrfs_file_extent_compression(leaf, item) !=
5169                             BTRFS_COMPRESS_NONE) {
5170                                 ret = uncompress_inline(path, inode, page,
5171                                                         pg_offset,
5172                                                         extent_offset, item);
5173                                 BUG_ON(ret);
5174                         } else {
5175                                 map = kmap(page);
5176                                 read_extent_buffer(leaf, map + pg_offset, ptr,
5177                                                    copy_size);
5178                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5179                                         memset(map + pg_offset + copy_size, 0,
5180                                                PAGE_CACHE_SIZE - pg_offset -
5181                                                copy_size);
5182                                 }
5183                                 kunmap(page);
5184                         }
5185                         flush_dcache_page(page);
5186                 } else if (create && PageUptodate(page)) {
5187                         WARN_ON(1);
5188                         if (!trans) {
5189                                 kunmap(page);
5190                                 free_extent_map(em);
5191                                 em = NULL;
5192                                 btrfs_release_path(root, path);
5193                                 trans = btrfs_join_transaction(root, 1);
5194                                 if (IS_ERR(trans))
5195                                         return ERR_CAST(trans);
5196                                 goto again;
5197                         }
5198                         map = kmap(page);
5199                         write_extent_buffer(leaf, map + pg_offset, ptr,
5200                                             copy_size);
5201                         kunmap(page);
5202                         btrfs_mark_buffer_dirty(leaf);
5203                 }
5204                 set_extent_uptodate(io_tree, em->start,
5205                                     extent_map_end(em) - 1, GFP_NOFS);
5206                 goto insert;
5207         } else {
5208                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5209                 WARN_ON(1);
5210         }
5211 not_found:
5212         em->start = start;
5213         em->len = len;
5214 not_found_em:
5215         em->block_start = EXTENT_MAP_HOLE;
5216         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5217 insert:
5218         btrfs_release_path(root, path);
5219         if (em->start > start || extent_map_end(em) <= start) {
5220                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5221                        "[%llu %llu]\n", (unsigned long long)em->start,
5222                        (unsigned long long)em->len,
5223                        (unsigned long long)start,
5224                        (unsigned long long)len);
5225                 err = -EIO;
5226                 goto out;
5227         }
5228
5229         err = 0;
5230         write_lock(&em_tree->lock);
5231         ret = add_extent_mapping(em_tree, em);
5232         /* it is possible that someone inserted the extent into the tree
5233          * while we had the lock dropped.  It is also possible that
5234          * an overlapping map exists in the tree
5235          */
5236         if (ret == -EEXIST) {
5237                 struct extent_map *existing;
5238
5239                 ret = 0;
5240
5241                 existing = lookup_extent_mapping(em_tree, start, len);
5242                 if (existing && (existing->start > start ||
5243                     existing->start + existing->len <= start)) {
5244                         free_extent_map(existing);
5245                         existing = NULL;
5246                 }
5247                 if (!existing) {
5248                         existing = lookup_extent_mapping(em_tree, em->start,
5249                                                          em->len);
5250                         if (existing) {
5251                                 err = merge_extent_mapping(em_tree, existing,
5252                                                            em, start,
5253                                                            root->sectorsize);
5254                                 free_extent_map(existing);
5255                                 if (err) {
5256                                         free_extent_map(em);
5257                                         em = NULL;
5258                                 }
5259                         } else {
5260                                 err = -EIO;
5261                                 free_extent_map(em);
5262                                 em = NULL;
5263                         }
5264                 } else {
5265                         free_extent_map(em);
5266                         em = existing;
5267                         err = 0;
5268                 }
5269         }
5270         write_unlock(&em_tree->lock);
5271 out:
5272         if (path)
5273                 btrfs_free_path(path);
5274         if (trans) {
5275                 ret = btrfs_end_transaction(trans, root);
5276                 if (!err)
5277                         err = ret;
5278         }
5279         if (err) {
5280                 free_extent_map(em);
5281                 return ERR_PTR(err);
5282         }
5283         return em;
5284 }
5285
5286 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5287                                            size_t pg_offset, u64 start, u64 len,
5288                                            int create)
5289 {
5290         struct extent_map *em;
5291         struct extent_map *hole_em = NULL;
5292         u64 range_start = start;
5293         u64 end;
5294         u64 found;
5295         u64 found_end;
5296         int err = 0;
5297
5298         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5299         if (IS_ERR(em))
5300                 return em;
5301         if (em) {
5302                 /*
5303                  * if our em maps to a hole, there might
5304                  * actually be delalloc bytes behind it
5305                  */
5306                 if (em->block_start != EXTENT_MAP_HOLE)
5307                         return em;
5308                 else
5309                         hole_em = em;
5310         }
5311
5312         /* check to see if we've wrapped (len == -1 or similar) */
5313         end = start + len;
5314         if (end < start)
5315                 end = (u64)-1;
5316         else
5317                 end -= 1;
5318
5319         em = NULL;
5320
5321         /* ok, we didn't find anything, lets look for delalloc */
5322         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5323                                  end, len, EXTENT_DELALLOC, 1);
5324         found_end = range_start + found;
5325         if (found_end < range_start)
5326                 found_end = (u64)-1;
5327
5328         /*
5329          * we didn't find anything useful, return
5330          * the original results from get_extent()
5331          */
5332         if (range_start > end || found_end <= start) {
5333                 em = hole_em;
5334                 hole_em = NULL;
5335                 goto out;
5336         }
5337
5338         /* adjust the range_start to make sure it doesn't
5339          * go backwards from the start they passed in
5340          */
5341         range_start = max(start,range_start);
5342         found = found_end - range_start;
5343
5344         if (found > 0) {
5345                 u64 hole_start = start;
5346                 u64 hole_len = len;
5347
5348                 em = alloc_extent_map(GFP_NOFS);
5349                 if (!em) {
5350                         err = -ENOMEM;
5351                         goto out;
5352                 }
5353                 /*
5354                  * when btrfs_get_extent can't find anything it
5355                  * returns one huge hole
5356                  *
5357                  * make sure what it found really fits our range, and
5358                  * adjust to make sure it is based on the start from
5359                  * the caller
5360                  */
5361                 if (hole_em) {
5362                         u64 calc_end = extent_map_end(hole_em);
5363
5364                         if (calc_end <= start || (hole_em->start > end)) {
5365                                 free_extent_map(hole_em);
5366                                 hole_em = NULL;
5367                         } else {
5368                                 hole_start = max(hole_em->start, start);
5369                                 hole_len = calc_end - hole_start;
5370                         }
5371                 }
5372                 em->bdev = NULL;
5373                 if (hole_em && range_start > hole_start) {
5374                         /* our hole starts before our delalloc, so we
5375                          * have to return just the parts of the hole
5376                          * that go until  the delalloc starts
5377                          */
5378                         em->len = min(hole_len,
5379                                       range_start - hole_start);
5380                         em->start = hole_start;
5381                         em->orig_start = hole_start;
5382                         /*
5383                          * don't adjust block start at all,
5384                          * it is fixed at EXTENT_MAP_HOLE
5385                          */
5386                         em->block_start = hole_em->block_start;
5387                         em->block_len = hole_len;
5388                 } else {
5389                         em->start = range_start;
5390                         em->len = found;
5391                         em->orig_start = range_start;
5392                         em->block_start = EXTENT_MAP_DELALLOC;
5393                         em->block_len = found;
5394                 }
5395         } else if (hole_em) {
5396                 return hole_em;
5397         }
5398 out:
5399
5400         free_extent_map(hole_em);
5401         if (err) {
5402                 free_extent_map(em);
5403                 return ERR_PTR(err);
5404         }
5405         return em;
5406 }
5407
5408 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5409                                                   u64 start, u64 len)
5410 {
5411         struct btrfs_root *root = BTRFS_I(inode)->root;
5412         struct btrfs_trans_handle *trans;
5413         struct extent_map *em;
5414         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5415         struct btrfs_key ins;
5416         u64 alloc_hint;
5417         int ret;
5418
5419         btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5420
5421         trans = btrfs_join_transaction(root, 0);
5422         if (IS_ERR(trans))
5423                 return ERR_CAST(trans);
5424
5425         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5426
5427         alloc_hint = get_extent_allocation_hint(inode, start, len);
5428         ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5429                                    alloc_hint, (u64)-1, &ins, 1);
5430         if (ret) {
5431                 em = ERR_PTR(ret);
5432                 goto out;
5433         }
5434
5435         em = alloc_extent_map(GFP_NOFS);
5436         if (!em) {
5437                 em = ERR_PTR(-ENOMEM);
5438                 goto out;
5439         }
5440
5441         em->start = start;
5442         em->orig_start = em->start;
5443         em->len = ins.offset;
5444
5445         em->block_start = ins.objectid;
5446         em->block_len = ins.offset;
5447         em->bdev = root->fs_info->fs_devices->latest_bdev;
5448         set_bit(EXTENT_FLAG_PINNED, &em->flags);
5449
5450         while (1) {
5451                 write_lock(&em_tree->lock);
5452                 ret = add_extent_mapping(em_tree, em);
5453                 write_unlock(&em_tree->lock);
5454                 if (ret != -EEXIST)
5455                         break;
5456                 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5457         }
5458
5459         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5460                                            ins.offset, ins.offset, 0);
5461         if (ret) {
5462                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5463                 em = ERR_PTR(ret);
5464         }
5465 out:
5466         btrfs_end_transaction(trans, root);
5467         return em;
5468 }
5469
5470 /*
5471  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5472  * block must be cow'd
5473  */
5474 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5475                                       struct inode *inode, u64 offset, u64 len)
5476 {
5477         struct btrfs_path *path;
5478         int ret;
5479         struct extent_buffer *leaf;
5480         struct btrfs_root *root = BTRFS_I(inode)->root;
5481         struct btrfs_file_extent_item *fi;
5482         struct btrfs_key key;
5483         u64 disk_bytenr;
5484         u64 backref_offset;
5485         u64 extent_end;
5486         u64 num_bytes;
5487         int slot;
5488         int found_type;
5489
5490         path = btrfs_alloc_path();
5491         if (!path)
5492                 return -ENOMEM;
5493
5494         ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5495                                        offset, 0);
5496         if (ret < 0)
5497                 goto out;
5498
5499         slot = path->slots[0];
5500         if (ret == 1) {
5501                 if (slot == 0) {
5502                         /* can't find the item, must cow */
5503                         ret = 0;
5504                         goto out;
5505                 }
5506                 slot--;
5507         }
5508         ret = 0;
5509         leaf = path->nodes[0];
5510         btrfs_item_key_to_cpu(leaf, &key, slot);
5511         if (key.objectid != inode->i_ino ||
5512             key.type != BTRFS_EXTENT_DATA_KEY) {
5513                 /* not our file or wrong item type, must cow */
5514                 goto out;
5515         }
5516
5517         if (key.offset > offset) {
5518                 /* Wrong offset, must cow */
5519                 goto out;
5520         }
5521
5522         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5523         found_type = btrfs_file_extent_type(leaf, fi);
5524         if (found_type != BTRFS_FILE_EXTENT_REG &&
5525             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5526                 /* not a regular extent, must cow */
5527                 goto out;
5528         }
5529         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5530         backref_offset = btrfs_file_extent_offset(leaf, fi);
5531
5532         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5533         if (extent_end < offset + len) {
5534                 /* extent doesn't include our full range, must cow */
5535                 goto out;
5536         }
5537
5538         if (btrfs_extent_readonly(root, disk_bytenr))
5539                 goto out;
5540
5541         /*
5542          * look for other files referencing this extent, if we
5543          * find any we must cow
5544          */
5545         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5546                                   key.offset - backref_offset, disk_bytenr))
5547                 goto out;
5548
5549         /*
5550          * adjust disk_bytenr and num_bytes to cover just the bytes
5551          * in this extent we are about to write.  If there
5552          * are any csums in that range we have to cow in order
5553          * to keep the csums correct
5554          */
5555         disk_bytenr += backref_offset;
5556         disk_bytenr += offset - key.offset;
5557         num_bytes = min(offset + len, extent_end) - offset;
5558         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5559                                 goto out;
5560         /*
5561          * all of the above have passed, it is safe to overwrite this extent
5562          * without cow
5563          */
5564         ret = 1;
5565 out:
5566         btrfs_free_path(path);
5567         return ret;
5568 }
5569
5570 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5571                                    struct buffer_head *bh_result, int create)
5572 {
5573         struct extent_map *em;
5574         struct btrfs_root *root = BTRFS_I(inode)->root;
5575         u64 start = iblock << inode->i_blkbits;
5576         u64 len = bh_result->b_size;
5577         struct btrfs_trans_handle *trans;
5578
5579         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5580         if (IS_ERR(em))
5581                 return PTR_ERR(em);
5582
5583         /*
5584          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5585          * io.  INLINE is special, and we could probably kludge it in here, but
5586          * it's still buffered so for safety lets just fall back to the generic
5587          * buffered path.
5588          *
5589          * For COMPRESSED we _have_ to read the entire extent in so we can
5590          * decompress it, so there will be buffering required no matter what we
5591          * do, so go ahead and fallback to buffered.
5592          *
5593          * We return -ENOTBLK because thats what makes DIO go ahead and go back
5594          * to buffered IO.  Don't blame me, this is the price we pay for using
5595          * the generic code.
5596          */
5597         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5598             em->block_start == EXTENT_MAP_INLINE) {
5599                 free_extent_map(em);
5600                 return -ENOTBLK;
5601         }
5602
5603         /* Just a good old fashioned hole, return */
5604         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5605                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5606                 free_extent_map(em);
5607                 /* DIO will do one hole at a time, so just unlock a sector */
5608                 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5609                               start + root->sectorsize - 1, GFP_NOFS);
5610                 return 0;
5611         }
5612
5613         /*
5614          * We don't allocate a new extent in the following cases
5615          *
5616          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5617          * existing extent.
5618          * 2) The extent is marked as PREALLOC.  We're good to go here and can
5619          * just use the extent.
5620          *
5621          */
5622         if (!create) {
5623                 len = em->len - (start - em->start);
5624                 goto map;
5625         }
5626
5627         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5628             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5629              em->block_start != EXTENT_MAP_HOLE)) {
5630                 int type;
5631                 int ret;
5632                 u64 block_start;
5633
5634                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5635                         type = BTRFS_ORDERED_PREALLOC;
5636                 else
5637                         type = BTRFS_ORDERED_NOCOW;
5638                 len = min(len, em->len - (start - em->start));
5639                 block_start = em->block_start + (start - em->start);
5640
5641                 /*
5642                  * we're not going to log anything, but we do need
5643                  * to make sure the current transaction stays open
5644                  * while we look for nocow cross refs
5645                  */
5646                 trans = btrfs_join_transaction(root, 0);
5647                 if (IS_ERR(trans))
5648                         goto must_cow;
5649
5650                 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5651                         ret = btrfs_add_ordered_extent_dio(inode, start,
5652                                            block_start, len, len, type);
5653                         btrfs_end_transaction(trans, root);
5654                         if (ret) {
5655                                 free_extent_map(em);
5656                                 return ret;
5657                         }
5658                         goto unlock;
5659                 }
5660                 btrfs_end_transaction(trans, root);
5661         }
5662 must_cow:
5663         /*
5664          * this will cow the extent, reset the len in case we changed
5665          * it above
5666          */
5667         len = bh_result->b_size;
5668         free_extent_map(em);
5669         em = btrfs_new_extent_direct(inode, start, len);
5670         if (IS_ERR(em))
5671                 return PTR_ERR(em);
5672         len = min(len, em->len - (start - em->start));
5673 unlock:
5674         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5675                           EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5676                           0, NULL, GFP_NOFS);
5677 map:
5678         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5679                 inode->i_blkbits;
5680         bh_result->b_size = len;
5681         bh_result->b_bdev = em->bdev;
5682         set_buffer_mapped(bh_result);
5683         if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5684                 set_buffer_new(bh_result);
5685
5686         free_extent_map(em);
5687
5688         return 0;
5689 }
5690
5691 struct btrfs_dio_private {
5692         struct inode *inode;
5693         u64 logical_offset;
5694         u64 disk_bytenr;
5695         u64 bytes;
5696         u32 *csums;
5697         void *private;
5698
5699         /* number of bios pending for this dio */
5700         atomic_t pending_bios;
5701
5702         /* IO errors */
5703         int errors;
5704
5705         struct bio *orig_bio;
5706 };
5707
5708 static void btrfs_endio_direct_read(struct bio *bio, int err)
5709 {
5710         struct btrfs_dio_private *dip = bio->bi_private;
5711         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5712         struct bio_vec *bvec = bio->bi_io_vec;
5713         struct inode *inode = dip->inode;
5714         struct btrfs_root *root = BTRFS_I(inode)->root;
5715         u64 start;
5716         u32 *private = dip->csums;
5717
5718         start = dip->logical_offset;
5719         do {
5720                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5721                         struct page *page = bvec->bv_page;
5722                         char *kaddr;
5723                         u32 csum = ~(u32)0;
5724                         unsigned long flags;
5725
5726                         local_irq_save(flags);
5727                         kaddr = kmap_atomic(page, KM_IRQ0);
5728                         csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5729                                                csum, bvec->bv_len);
5730                         btrfs_csum_final(csum, (char *)&csum);
5731                         kunmap_atomic(kaddr, KM_IRQ0);
5732                         local_irq_restore(flags);
5733
5734                         flush_dcache_page(bvec->bv_page);
5735                         if (csum != *private) {
5736                                 printk(KERN_ERR "btrfs csum failed ino %lu off"
5737                                       " %llu csum %u private %u\n",
5738                                       inode->i_ino, (unsigned long long)start,
5739                                       csum, *private);
5740                                 err = -EIO;
5741                         }
5742                 }
5743
5744                 start += bvec->bv_len;
5745                 private++;
5746                 bvec++;
5747         } while (bvec <= bvec_end);
5748
5749         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5750                       dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5751         bio->bi_private = dip->private;
5752
5753         kfree(dip->csums);
5754         kfree(dip);
5755         dio_end_io(bio, err);
5756 }
5757
5758 static void btrfs_endio_direct_write(struct bio *bio, int err)
5759 {
5760         struct btrfs_dio_private *dip = bio->bi_private;
5761         struct inode *inode = dip->inode;
5762         struct btrfs_root *root = BTRFS_I(inode)->root;
5763         struct btrfs_trans_handle *trans;
5764         struct btrfs_ordered_extent *ordered = NULL;
5765         struct extent_state *cached_state = NULL;
5766         u64 ordered_offset = dip->logical_offset;
5767         u64 ordered_bytes = dip->bytes;
5768         int ret;
5769
5770         if (err)
5771                 goto out_done;
5772 again:
5773         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5774                                                    &ordered_offset,
5775                                                    ordered_bytes);
5776         if (!ret)
5777                 goto out_test;
5778
5779         BUG_ON(!ordered);
5780
5781         trans = btrfs_join_transaction(root, 1);
5782         if (IS_ERR(trans)) {
5783                 err = -ENOMEM;
5784                 goto out;
5785         }
5786         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5787
5788         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5789                 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5790                 if (!ret)
5791                         ret = btrfs_update_inode(trans, root, inode);
5792                 err = ret;
5793                 goto out;
5794         }
5795
5796         lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5797                          ordered->file_offset + ordered->len - 1, 0,
5798                          &cached_state, GFP_NOFS);
5799
5800         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5801                 ret = btrfs_mark_extent_written(trans, inode,
5802                                                 ordered->file_offset,
5803                                                 ordered->file_offset +
5804                                                 ordered->len);
5805                 if (ret) {
5806                         err = ret;
5807                         goto out_unlock;
5808                 }
5809         } else {
5810                 ret = insert_reserved_file_extent(trans, inode,
5811                                                   ordered->file_offset,
5812                                                   ordered->start,
5813                                                   ordered->disk_len,
5814                                                   ordered->len,
5815                                                   ordered->len,
5816                                                   0, 0, 0,
5817                                                   BTRFS_FILE_EXTENT_REG);
5818                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5819                                    ordered->file_offset, ordered->len);
5820                 if (ret) {
5821                         err = ret;
5822                         WARN_ON(1);
5823                         goto out_unlock;
5824                 }
5825         }
5826
5827         add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5828         btrfs_ordered_update_i_size(inode, 0, ordered);
5829         btrfs_update_inode(trans, root, inode);
5830 out_unlock:
5831         unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5832                              ordered->file_offset + ordered->len - 1,
5833                              &cached_state, GFP_NOFS);
5834 out:
5835         btrfs_delalloc_release_metadata(inode, ordered->len);
5836         btrfs_end_transaction(trans, root);
5837         ordered_offset = ordered->file_offset + ordered->len;
5838         btrfs_put_ordered_extent(ordered);
5839         btrfs_put_ordered_extent(ordered);
5840
5841 out_test:
5842         /*
5843          * our bio might span multiple ordered extents.  If we haven't
5844          * completed the accounting for the whole dio, go back and try again
5845          */
5846         if (ordered_offset < dip->logical_offset + dip->bytes) {
5847                 ordered_bytes = dip->logical_offset + dip->bytes -
5848                         ordered_offset;
5849                 goto again;
5850         }
5851 out_done:
5852         bio->bi_private = dip->private;
5853
5854         kfree(dip->csums);
5855         kfree(dip);
5856         dio_end_io(bio, err);
5857 }
5858
5859 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5860                                     struct bio *bio, int mirror_num,
5861                                     unsigned long bio_flags, u64 offset)
5862 {
5863         int ret;
5864         struct btrfs_root *root = BTRFS_I(inode)->root;
5865         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5866         BUG_ON(ret);
5867         return 0;
5868 }
5869
5870 static void btrfs_end_dio_bio(struct bio *bio, int err)
5871 {
5872         struct btrfs_dio_private *dip = bio->bi_private;
5873
5874         if (err) {
5875                 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5876                       "sector %#Lx len %u err no %d\n",
5877                       dip->inode->i_ino, bio->bi_rw,
5878                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
5879                 dip->errors = 1;
5880
5881                 /*
5882                  * before atomic variable goto zero, we must make sure
5883                  * dip->errors is perceived to be set.
5884                  */
5885                 smp_mb__before_atomic_dec();
5886         }
5887
5888         /* if there are more bios still pending for this dio, just exit */
5889         if (!atomic_dec_and_test(&dip->pending_bios))
5890                 goto out;
5891
5892         if (dip->errors)
5893                 bio_io_error(dip->orig_bio);
5894         else {
5895                 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5896                 bio_endio(dip->orig_bio, 0);
5897         }
5898 out:
5899         bio_put(bio);
5900 }
5901
5902 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5903                                        u64 first_sector, gfp_t gfp_flags)
5904 {
5905         int nr_vecs = bio_get_nr_vecs(bdev);
5906         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5907 }
5908
5909 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5910                                          int rw, u64 file_offset, int skip_sum,
5911                                          u32 *csums)
5912 {
5913         int write = rw & REQ_WRITE;
5914         struct btrfs_root *root = BTRFS_I(inode)->root;
5915         int ret;
5916
5917         bio_get(bio);
5918         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5919         if (ret)
5920                 goto err;
5921
5922         if (write && !skip_sum) {
5923                 ret = btrfs_wq_submit_bio(root->fs_info,
5924                                    inode, rw, bio, 0, 0,
5925                                    file_offset,
5926                                    __btrfs_submit_bio_start_direct_io,
5927                                    __btrfs_submit_bio_done);
5928                 goto err;
5929         } else if (!skip_sum)
5930                 btrfs_lookup_bio_sums_dio(root, inode, bio,
5931                                           file_offset, csums);
5932
5933         ret = btrfs_map_bio(root, rw, bio, 0, 1);
5934 err:
5935         bio_put(bio);
5936         return ret;
5937 }
5938
5939 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5940                                     int skip_sum)
5941 {
5942         struct inode *inode = dip->inode;
5943         struct btrfs_root *root = BTRFS_I(inode)->root;
5944         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5945         struct bio *bio;
5946         struct bio *orig_bio = dip->orig_bio;
5947         struct bio_vec *bvec = orig_bio->bi_io_vec;
5948         u64 start_sector = orig_bio->bi_sector;
5949         u64 file_offset = dip->logical_offset;
5950         u64 submit_len = 0;
5951         u64 map_length;
5952         int nr_pages = 0;
5953         u32 *csums = dip->csums;
5954         int ret = 0;
5955
5956         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5957         if (!bio)
5958                 return -ENOMEM;
5959         bio->bi_private = dip;
5960         bio->bi_end_io = btrfs_end_dio_bio;
5961         atomic_inc(&dip->pending_bios);
5962
5963         map_length = orig_bio->bi_size;
5964         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5965                               &map_length, NULL, 0);
5966         if (ret) {
5967                 bio_put(bio);
5968                 return -EIO;
5969         }
5970
5971         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5972                 if (unlikely(map_length < submit_len + bvec->bv_len ||
5973                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5974                                  bvec->bv_offset) < bvec->bv_len)) {
5975                         /*
5976                          * inc the count before we submit the bio so
5977                          * we know the end IO handler won't happen before
5978                          * we inc the count. Otherwise, the dip might get freed
5979                          * before we're done setting it up
5980                          */
5981                         atomic_inc(&dip->pending_bios);
5982                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
5983                                                      file_offset, skip_sum,
5984                                                      csums);
5985                         if (ret) {
5986                                 bio_put(bio);
5987                                 atomic_dec(&dip->pending_bios);
5988                                 goto out_err;
5989                         }
5990
5991                         if (!skip_sum)
5992                                 csums = csums + nr_pages;
5993                         start_sector += submit_len >> 9;
5994                         file_offset += submit_len;
5995
5996                         submit_len = 0;
5997                         nr_pages = 0;
5998
5999                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6000                                                   start_sector, GFP_NOFS);
6001                         if (!bio)
6002                                 goto out_err;
6003                         bio->bi_private = dip;
6004                         bio->bi_end_io = btrfs_end_dio_bio;
6005
6006                         map_length = orig_bio->bi_size;
6007                         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6008                                               &map_length, NULL, 0);
6009                         if (ret) {
6010                                 bio_put(bio);
6011                                 goto out_err;
6012                         }
6013                 } else {
6014                         submit_len += bvec->bv_len;
6015                         nr_pages ++;
6016                         bvec++;
6017                 }
6018         }
6019
6020         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6021                                      csums);
6022         if (!ret)
6023                 return 0;
6024
6025         bio_put(bio);
6026 out_err:
6027         dip->errors = 1;
6028         /*
6029          * before atomic variable goto zero, we must
6030          * make sure dip->errors is perceived to be set.
6031          */
6032         smp_mb__before_atomic_dec();
6033         if (atomic_dec_and_test(&dip->pending_bios))
6034                 bio_io_error(dip->orig_bio);
6035
6036         /* bio_end_io() will handle error, so we needn't return it */
6037         return 0;
6038 }
6039
6040 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6041                                 loff_t file_offset)
6042 {
6043         struct btrfs_root *root = BTRFS_I(inode)->root;
6044         struct btrfs_dio_private *dip;
6045         struct bio_vec *bvec = bio->bi_io_vec;
6046         int skip_sum;
6047         int write = rw & REQ_WRITE;
6048         int ret = 0;
6049
6050         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6051
6052         dip = kmalloc(sizeof(*dip), GFP_NOFS);
6053         if (!dip) {
6054                 ret = -ENOMEM;
6055                 goto free_ordered;
6056         }
6057         dip->csums = NULL;
6058
6059         if (!skip_sum) {
6060                 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6061                 if (!dip->csums) {
6062                         kfree(dip);
6063                         ret = -ENOMEM;
6064                         goto free_ordered;
6065                 }
6066         }
6067
6068         dip->private = bio->bi_private;
6069         dip->inode = inode;
6070         dip->logical_offset = file_offset;
6071
6072         dip->bytes = 0;
6073         do {
6074                 dip->bytes += bvec->bv_len;
6075                 bvec++;
6076         } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6077
6078         dip->disk_bytenr = (u64)bio->bi_sector << 9;
6079         bio->bi_private = dip;
6080         dip->errors = 0;
6081         dip->orig_bio = bio;
6082         atomic_set(&dip->pending_bios, 0);
6083
6084         if (write)
6085                 bio->bi_end_io = btrfs_endio_direct_write;
6086         else
6087                 bio->bi_end_io = btrfs_endio_direct_read;
6088
6089         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6090         if (!ret)
6091                 return;
6092 free_ordered:
6093         /*
6094          * If this is a write, we need to clean up the reserved space and kill
6095          * the ordered extent.
6096          */
6097         if (write) {
6098                 struct btrfs_ordered_extent *ordered;
6099                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6100                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6101                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6102                         btrfs_free_reserved_extent(root, ordered->start,
6103                                                    ordered->disk_len);
6104                 btrfs_put_ordered_extent(ordered);
6105                 btrfs_put_ordered_extent(ordered);
6106         }
6107         bio_endio(bio, ret);
6108 }
6109
6110 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6111                         const struct iovec *iov, loff_t offset,
6112                         unsigned long nr_segs)
6113 {
6114         int seg;
6115         size_t size;
6116         unsigned long addr;
6117         unsigned blocksize_mask = root->sectorsize - 1;
6118         ssize_t retval = -EINVAL;
6119         loff_t end = offset;
6120
6121         if (offset & blocksize_mask)
6122                 goto out;
6123
6124         /* Check the memory alignment.  Blocks cannot straddle pages */
6125         for (seg = 0; seg < nr_segs; seg++) {
6126                 addr = (unsigned long)iov[seg].iov_base;
6127                 size = iov[seg].iov_len;
6128                 end += size;
6129                 if ((addr & blocksize_mask) || (size & blocksize_mask)) 
6130                         goto out;
6131         }
6132         retval = 0;
6133 out:
6134         return retval;
6135 }
6136 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6137                         const struct iovec *iov, loff_t offset,
6138                         unsigned long nr_segs)
6139 {
6140         struct file *file = iocb->ki_filp;
6141         struct inode *inode = file->f_mapping->host;
6142         struct btrfs_ordered_extent *ordered;
6143         struct extent_state *cached_state = NULL;
6144         u64 lockstart, lockend;
6145         ssize_t ret;
6146         int writing = rw & WRITE;
6147         int write_bits = 0;
6148         size_t count = iov_length(iov, nr_segs);
6149
6150         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6151                             offset, nr_segs)) {
6152                 return 0;
6153         }
6154
6155         lockstart = offset;
6156         lockend = offset + count - 1;
6157
6158         if (writing) {
6159                 ret = btrfs_delalloc_reserve_space(inode, count);
6160                 if (ret)
6161                         goto out;
6162         }
6163
6164         while (1) {
6165                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6166                                  0, &cached_state, GFP_NOFS);
6167                 /*
6168                  * We're concerned with the entire range that we're going to be
6169                  * doing DIO to, so we need to make sure theres no ordered
6170                  * extents in this range.
6171                  */
6172                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6173                                                      lockend - lockstart + 1);
6174                 if (!ordered)
6175                         break;
6176                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6177                                      &cached_state, GFP_NOFS);
6178                 btrfs_start_ordered_extent(inode, ordered, 1);
6179                 btrfs_put_ordered_extent(ordered);
6180                 cond_resched();
6181         }
6182
6183         /*
6184          * we don't use btrfs_set_extent_delalloc because we don't want
6185          * the dirty or uptodate bits
6186          */
6187         if (writing) {
6188                 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6189                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6190                                      EXTENT_DELALLOC, 0, NULL, &cached_state,
6191                                      GFP_NOFS);
6192                 if (ret) {
6193                         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6194                                          lockend, EXTENT_LOCKED | write_bits,
6195                                          1, 0, &cached_state, GFP_NOFS);
6196                         goto out;
6197                 }
6198         }
6199
6200         free_extent_state(cached_state);
6201         cached_state = NULL;
6202
6203         ret = __blockdev_direct_IO(rw, iocb, inode,
6204                    BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6205                    iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6206                    btrfs_submit_direct, 0);
6207
6208         if (ret < 0 && ret != -EIOCBQUEUED) {
6209                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6210                               offset + iov_length(iov, nr_segs) - 1,
6211                               EXTENT_LOCKED | write_bits, 1, 0,
6212                               &cached_state, GFP_NOFS);
6213         } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6214                 /*
6215                  * We're falling back to buffered, unlock the section we didn't
6216                  * do IO on.
6217                  */
6218                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6219                               offset + iov_length(iov, nr_segs) - 1,
6220                               EXTENT_LOCKED | write_bits, 1, 0,
6221                               &cached_state, GFP_NOFS);
6222         }
6223 out:
6224         free_extent_state(cached_state);
6225         return ret;
6226 }
6227
6228 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6229                 __u64 start, __u64 len)
6230 {
6231         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6232 }
6233
6234 int btrfs_readpage(struct file *file, struct page *page)
6235 {
6236         struct extent_io_tree *tree;
6237         tree = &BTRFS_I(page->mapping->host)->io_tree;
6238         return extent_read_full_page(tree, page, btrfs_get_extent);
6239 }
6240
6241 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6242 {
6243         struct extent_io_tree *tree;
6244
6245
6246         if (current->flags & PF_MEMALLOC) {
6247                 redirty_page_for_writepage(wbc, page);
6248                 unlock_page(page);
6249                 return 0;
6250         }
6251         tree = &BTRFS_I(page->mapping->host)->io_tree;
6252         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6253 }
6254
6255 int btrfs_writepages(struct address_space *mapping,
6256                      struct writeback_control *wbc)
6257 {
6258         struct extent_io_tree *tree;
6259
6260         tree = &BTRFS_I(mapping->host)->io_tree;
6261         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6262 }
6263
6264 static int
6265 btrfs_readpages(struct file *file, struct address_space *mapping,
6266                 struct list_head *pages, unsigned nr_pages)
6267 {
6268         struct extent_io_tree *tree;
6269         tree = &BTRFS_I(mapping->host)->io_tree;
6270         return extent_readpages(tree, mapping, pages, nr_pages,
6271                                 btrfs_get_extent);
6272 }
6273 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6274 {
6275         struct extent_io_tree *tree;
6276         struct extent_map_tree *map;
6277         int ret;
6278
6279         tree = &BTRFS_I(page->mapping->host)->io_tree;
6280         map = &BTRFS_I(page->mapping->host)->extent_tree;
6281         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6282         if (ret == 1) {
6283                 ClearPagePrivate(page);
6284                 set_page_private(page, 0);
6285                 page_cache_release(page);
6286         }
6287         return ret;
6288 }
6289
6290 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6291 {
6292         if (PageWriteback(page) || PageDirty(page))
6293                 return 0;
6294         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6295 }
6296
6297 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6298 {
6299         struct extent_io_tree *tree;
6300         struct btrfs_ordered_extent *ordered;
6301         struct extent_state *cached_state = NULL;
6302         u64 page_start = page_offset(page);
6303         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6304
6305
6306         /*
6307          * we have the page locked, so new writeback can't start,
6308          * and the dirty bit won't be cleared while we are here.
6309          *
6310          * Wait for IO on this page so that we can safely clear
6311          * the PagePrivate2 bit and do ordered accounting
6312          */
6313         wait_on_page_writeback(page);
6314
6315         tree = &BTRFS_I(page->mapping->host)->io_tree;
6316         if (offset) {
6317                 btrfs_releasepage(page, GFP_NOFS);
6318                 return;
6319         }
6320         lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6321                          GFP_NOFS);
6322         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6323                                            page_offset(page));
6324         if (ordered) {
6325                 /*
6326                  * IO on this page will never be started, so we need
6327                  * to account for any ordered extents now
6328                  */
6329                 clear_extent_bit(tree, page_start, page_end,
6330                                  EXTENT_DIRTY | EXTENT_DELALLOC |
6331                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6332                                  &cached_state, GFP_NOFS);
6333                 /*
6334                  * whoever cleared the private bit is responsible
6335                  * for the finish_ordered_io
6336                  */
6337                 if (TestClearPagePrivate2(page)) {
6338                         btrfs_finish_ordered_io(page->mapping->host,
6339                                                 page_start, page_end);
6340                 }
6341                 btrfs_put_ordered_extent(ordered);
6342                 cached_state = NULL;
6343                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6344                                  GFP_NOFS);
6345         }
6346         clear_extent_bit(tree, page_start, page_end,
6347                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6348                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6349         __btrfs_releasepage(page, GFP_NOFS);
6350
6351         ClearPageChecked(page);
6352         if (PagePrivate(page)) {
6353                 ClearPagePrivate(page);
6354                 set_page_private(page, 0);
6355                 page_cache_release(page);
6356         }
6357 }
6358
6359 /*
6360  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6361  * called from a page fault handler when a page is first dirtied. Hence we must
6362  * be careful to check for EOF conditions here. We set the page up correctly
6363  * for a written page which means we get ENOSPC checking when writing into
6364  * holes and correct delalloc and unwritten extent mapping on filesystems that
6365  * support these features.
6366  *
6367  * We are not allowed to take the i_mutex here so we have to play games to
6368  * protect against truncate races as the page could now be beyond EOF.  Because
6369  * vmtruncate() writes the inode size before removing pages, once we have the
6370  * page lock we can determine safely if the page is beyond EOF. If it is not
6371  * beyond EOF, then the page is guaranteed safe against truncation until we
6372  * unlock the page.
6373  */
6374 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6375 {
6376         struct page *page = vmf->page;
6377         struct inode *inode = fdentry(vma->vm_file)->d_inode;
6378         struct btrfs_root *root = BTRFS_I(inode)->root;
6379         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6380         struct btrfs_ordered_extent *ordered;
6381         struct extent_state *cached_state = NULL;
6382         char *kaddr;
6383         unsigned long zero_start;
6384         loff_t size;
6385         int ret;
6386         u64 page_start;
6387         u64 page_end;
6388
6389         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6390         if (ret) {
6391                 if (ret == -ENOMEM)
6392                         ret = VM_FAULT_OOM;
6393                 else /* -ENOSPC, -EIO, etc */
6394                         ret = VM_FAULT_SIGBUS;
6395                 goto out;
6396         }
6397
6398         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6399 again:
6400         lock_page(page);
6401         size = i_size_read(inode);
6402         page_start = page_offset(page);
6403         page_end = page_start + PAGE_CACHE_SIZE - 1;
6404
6405         if ((page->mapping != inode->i_mapping) ||
6406             (page_start >= size)) {
6407                 /* page got truncated out from underneath us */
6408                 goto out_unlock;
6409         }
6410         wait_on_page_writeback(page);
6411
6412         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6413                          GFP_NOFS);
6414         set_page_extent_mapped(page);
6415
6416         /*
6417          * we can't set the delalloc bits if there are pending ordered
6418          * extents.  Drop our locks and wait for them to finish
6419          */
6420         ordered = btrfs_lookup_ordered_extent(inode, page_start);
6421         if (ordered) {
6422                 unlock_extent_cached(io_tree, page_start, page_end,
6423                                      &cached_state, GFP_NOFS);
6424                 unlock_page(page);
6425                 btrfs_start_ordered_extent(inode, ordered, 1);
6426                 btrfs_put_ordered_extent(ordered);
6427                 goto again;
6428         }
6429
6430         /*
6431          * XXX - page_mkwrite gets called every time the page is dirtied, even
6432          * if it was already dirty, so for space accounting reasons we need to
6433          * clear any delalloc bits for the range we are fixing to save.  There
6434          * is probably a better way to do this, but for now keep consistent with
6435          * prepare_pages in the normal write path.
6436          */
6437         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6438                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6439                           0, 0, &cached_state, GFP_NOFS);
6440
6441         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6442                                         &cached_state);
6443         if (ret) {
6444                 unlock_extent_cached(io_tree, page_start, page_end,
6445                                      &cached_state, GFP_NOFS);
6446                 ret = VM_FAULT_SIGBUS;
6447                 goto out_unlock;
6448         }
6449         ret = 0;
6450
6451         /* page is wholly or partially inside EOF */
6452         if (page_start + PAGE_CACHE_SIZE > size)
6453                 zero_start = size & ~PAGE_CACHE_MASK;
6454         else
6455                 zero_start = PAGE_CACHE_SIZE;
6456
6457         if (zero_start != PAGE_CACHE_SIZE) {
6458                 kaddr = kmap(page);
6459                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6460                 flush_dcache_page(page);
6461                 kunmap(page);
6462         }
6463         ClearPageChecked(page);
6464         set_page_dirty(page);
6465         SetPageUptodate(page);
6466
6467         BTRFS_I(inode)->last_trans = root->fs_info->generation;
6468         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6469
6470         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6471
6472 out_unlock:
6473         if (!ret)
6474                 return VM_FAULT_LOCKED;
6475         unlock_page(page);
6476         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6477 out:
6478         return ret;
6479 }
6480
6481 static void btrfs_truncate(struct inode *inode)
6482 {
6483         struct btrfs_root *root = BTRFS_I(inode)->root;
6484         int ret;
6485         struct btrfs_trans_handle *trans;
6486         unsigned long nr;
6487         u64 mask = root->sectorsize - 1;
6488
6489         if (!S_ISREG(inode->i_mode)) {
6490                 WARN_ON(1);
6491                 return;
6492         }
6493
6494         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6495         if (ret)
6496                 return;
6497
6498         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6499         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6500
6501         trans = btrfs_start_transaction(root, 0);
6502         BUG_ON(IS_ERR(trans));
6503         btrfs_set_trans_block_group(trans, inode);
6504         trans->block_rsv = root->orphan_block_rsv;
6505
6506         /*
6507          * setattr is responsible for setting the ordered_data_close flag,
6508          * but that is only tested during the last file release.  That
6509          * could happen well after the next commit, leaving a great big
6510          * window where new writes may get lost if someone chooses to write
6511          * to this file after truncating to zero
6512          *
6513          * The inode doesn't have any dirty data here, and so if we commit
6514          * this is a noop.  If someone immediately starts writing to the inode
6515          * it is very likely we'll catch some of their writes in this
6516          * transaction, and the commit will find this file on the ordered
6517          * data list with good things to send down.
6518          *
6519          * This is a best effort solution, there is still a window where
6520          * using truncate to replace the contents of the file will
6521          * end up with a zero length file after a crash.
6522          */
6523         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6524                 btrfs_add_ordered_operation(trans, root, inode);
6525
6526         while (1) {
6527                 if (!trans) {
6528                         trans = btrfs_start_transaction(root, 0);
6529                         BUG_ON(IS_ERR(trans));
6530                         btrfs_set_trans_block_group(trans, inode);
6531                         trans->block_rsv = root->orphan_block_rsv;
6532                 }
6533
6534                 ret = btrfs_block_rsv_check(trans, root,
6535                                             root->orphan_block_rsv, 0, 5);
6536                 if (ret) {
6537                         BUG_ON(ret != -EAGAIN);
6538                         ret = btrfs_commit_transaction(trans, root);
6539                         BUG_ON(ret);
6540                         trans = NULL;
6541                         continue;
6542                 }
6543
6544                 ret = btrfs_truncate_inode_items(trans, root, inode,
6545                                                  inode->i_size,
6546                                                  BTRFS_EXTENT_DATA_KEY);
6547                 if (ret != -EAGAIN)
6548                         break;
6549
6550                 ret = btrfs_update_inode(trans, root, inode);
6551                 BUG_ON(ret);
6552
6553                 nr = trans->blocks_used;
6554                 btrfs_end_transaction(trans, root);
6555                 trans = NULL;
6556                 btrfs_btree_balance_dirty(root, nr);
6557         }
6558
6559         if (ret == 0 && inode->i_nlink > 0) {
6560                 ret = btrfs_orphan_del(trans, inode);
6561                 BUG_ON(ret);
6562         }
6563
6564         ret = btrfs_update_inode(trans, root, inode);
6565         BUG_ON(ret);
6566
6567         nr = trans->blocks_used;
6568         ret = btrfs_end_transaction_throttle(trans, root);
6569         BUG_ON(ret);
6570         btrfs_btree_balance_dirty(root, nr);
6571 }
6572
6573 /*
6574  * create a new subvolume directory/inode (helper for the ioctl).
6575  */
6576 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6577                              struct btrfs_root *new_root,
6578                              u64 new_dirid, u64 alloc_hint)
6579 {
6580         struct inode *inode;
6581         int err;
6582         u64 index = 0;
6583
6584         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6585                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6586         if (IS_ERR(inode))
6587                 return PTR_ERR(inode);
6588         inode->i_op = &btrfs_dir_inode_operations;
6589         inode->i_fop = &btrfs_dir_file_operations;
6590
6591         inode->i_nlink = 1;
6592         btrfs_i_size_write(inode, 0);
6593
6594         err = btrfs_update_inode(trans, new_root, inode);
6595         BUG_ON(err);
6596
6597         iput(inode);
6598         return 0;
6599 }
6600
6601 /* helper function for file defrag and space balancing.  This
6602  * forces readahead on a given range of bytes in an inode
6603  */
6604 unsigned long btrfs_force_ra(struct address_space *mapping,
6605                               struct file_ra_state *ra, struct file *file,
6606                               pgoff_t offset, pgoff_t last_index)
6607 {
6608         pgoff_t req_size = last_index - offset + 1;
6609
6610         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6611         return offset + req_size;
6612 }
6613
6614 struct inode *btrfs_alloc_inode(struct super_block *sb)
6615 {
6616         struct btrfs_inode *ei;
6617         struct inode *inode;
6618
6619         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6620         if (!ei)
6621                 return NULL;
6622
6623         ei->root = NULL;
6624         ei->space_info = NULL;
6625         ei->generation = 0;
6626         ei->sequence = 0;
6627         ei->last_trans = 0;
6628         ei->last_sub_trans = 0;
6629         ei->logged_trans = 0;
6630         ei->delalloc_bytes = 0;
6631         ei->reserved_bytes = 0;
6632         ei->disk_i_size = 0;
6633         ei->flags = 0;
6634         ei->index_cnt = (u64)-1;
6635         ei->last_unlink_trans = 0;
6636
6637         atomic_set(&ei->outstanding_extents, 0);
6638         atomic_set(&ei->reserved_extents, 0);
6639
6640         ei->ordered_data_close = 0;
6641         ei->orphan_meta_reserved = 0;
6642         ei->dummy_inode = 0;
6643         ei->force_compress = BTRFS_COMPRESS_NONE;
6644
6645         inode = &ei->vfs_inode;
6646         extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6647         extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6648         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6649         mutex_init(&ei->log_mutex);
6650         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6651         INIT_LIST_HEAD(&ei->i_orphan);
6652         INIT_LIST_HEAD(&ei->delalloc_inodes);
6653         INIT_LIST_HEAD(&ei->ordered_operations);
6654         RB_CLEAR_NODE(&ei->rb_node);
6655
6656         return inode;
6657 }
6658
6659 static void btrfs_i_callback(struct rcu_head *head)
6660 {
6661         struct inode *inode = container_of(head, struct inode, i_rcu);
6662         INIT_LIST_HEAD(&inode->i_dentry);
6663         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6664 }
6665
6666 void btrfs_destroy_inode(struct inode *inode)
6667 {
6668         struct btrfs_ordered_extent *ordered;
6669         struct btrfs_root *root = BTRFS_I(inode)->root;
6670
6671         WARN_ON(!list_empty(&inode->i_dentry));
6672         WARN_ON(inode->i_data.nrpages);
6673         WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6674         WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6675
6676         /*
6677          * This can happen where we create an inode, but somebody else also
6678          * created the same inode and we need to destroy the one we already
6679          * created.
6680          */
6681         if (!root)
6682                 goto free;
6683
6684         /*
6685          * Make sure we're properly removed from the ordered operation
6686          * lists.
6687          */
6688         smp_mb();
6689         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6690                 spin_lock(&root->fs_info->ordered_extent_lock);
6691                 list_del_init(&BTRFS_I(inode)->ordered_operations);
6692                 spin_unlock(&root->fs_info->ordered_extent_lock);
6693         }
6694
6695         if (root == root->fs_info->tree_root) {
6696                 struct btrfs_block_group_cache *block_group;
6697
6698                 block_group = btrfs_lookup_block_group(root->fs_info,
6699                                                 BTRFS_I(inode)->block_group);
6700                 if (block_group && block_group->inode == inode) {
6701                         spin_lock(&block_group->lock);
6702                         block_group->inode = NULL;
6703                         spin_unlock(&block_group->lock);
6704                         btrfs_put_block_group(block_group);
6705                 } else if (block_group) {
6706                         btrfs_put_block_group(block_group);
6707                 }
6708         }
6709
6710         spin_lock(&root->orphan_lock);
6711         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6712                 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6713                        inode->i_ino);
6714                 list_del_init(&BTRFS_I(inode)->i_orphan);
6715         }
6716         spin_unlock(&root->orphan_lock);
6717
6718         while (1) {
6719                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6720                 if (!ordered)
6721                         break;
6722                 else {
6723                         printk(KERN_ERR "btrfs found ordered "
6724                                "extent %llu %llu on inode cleanup\n",
6725                                (unsigned long long)ordered->file_offset,
6726                                (unsigned long long)ordered->len);
6727                         btrfs_remove_ordered_extent(inode, ordered);
6728                         btrfs_put_ordered_extent(ordered);
6729                         btrfs_put_ordered_extent(ordered);
6730                 }
6731         }
6732         inode_tree_del(inode);
6733         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6734 free:
6735         call_rcu(&inode->i_rcu, btrfs_i_callback);
6736 }
6737
6738 int btrfs_drop_inode(struct inode *inode)
6739 {
6740         struct btrfs_root *root = BTRFS_I(inode)->root;
6741
6742         if (btrfs_root_refs(&root->root_item) == 0 &&
6743             root != root->fs_info->tree_root)
6744                 return 1;
6745         else
6746                 return generic_drop_inode(inode);
6747 }
6748
6749 static void init_once(void *foo)
6750 {
6751         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6752
6753         inode_init_once(&ei->vfs_inode);
6754 }
6755
6756 void btrfs_destroy_cachep(void)
6757 {
6758         if (btrfs_inode_cachep)
6759                 kmem_cache_destroy(btrfs_inode_cachep);
6760         if (btrfs_trans_handle_cachep)
6761                 kmem_cache_destroy(btrfs_trans_handle_cachep);
6762         if (btrfs_transaction_cachep)
6763                 kmem_cache_destroy(btrfs_transaction_cachep);
6764         if (btrfs_path_cachep)
6765                 kmem_cache_destroy(btrfs_path_cachep);
6766         if (btrfs_free_space_cachep)
6767                 kmem_cache_destroy(btrfs_free_space_cachep);
6768 }
6769
6770 int btrfs_init_cachep(void)
6771 {
6772         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6773                         sizeof(struct btrfs_inode), 0,
6774                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6775         if (!btrfs_inode_cachep)
6776                 goto fail;
6777
6778         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6779                         sizeof(struct btrfs_trans_handle), 0,
6780                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6781         if (!btrfs_trans_handle_cachep)
6782                 goto fail;
6783
6784         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6785                         sizeof(struct btrfs_transaction), 0,
6786                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6787         if (!btrfs_transaction_cachep)
6788                 goto fail;
6789
6790         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6791                         sizeof(struct btrfs_path), 0,
6792                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6793         if (!btrfs_path_cachep)
6794                 goto fail;
6795
6796         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6797                         sizeof(struct btrfs_free_space), 0,
6798                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6799         if (!btrfs_free_space_cachep)
6800                 goto fail;
6801
6802         return 0;
6803 fail:
6804         btrfs_destroy_cachep();
6805         return -ENOMEM;
6806 }
6807
6808 static int btrfs_getattr(struct vfsmount *mnt,
6809                          struct dentry *dentry, struct kstat *stat)
6810 {
6811         struct inode *inode = dentry->d_inode;
6812         generic_fillattr(inode, stat);
6813         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6814         stat->blksize = PAGE_CACHE_SIZE;
6815         stat->blocks = (inode_get_bytes(inode) +
6816                         BTRFS_I(inode)->delalloc_bytes) >> 9;
6817         return 0;
6818 }
6819
6820 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6821                            struct inode *new_dir, struct dentry *new_dentry)
6822 {
6823         struct btrfs_trans_handle *trans;
6824         struct btrfs_root *root = BTRFS_I(old_dir)->root;
6825         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6826         struct inode *new_inode = new_dentry->d_inode;
6827         struct inode *old_inode = old_dentry->d_inode;
6828         struct timespec ctime = CURRENT_TIME;
6829         u64 index = 0;
6830         u64 root_objectid;
6831         int ret;
6832
6833         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6834                 return -EPERM;
6835
6836         /* we only allow rename subvolume link between subvolumes */
6837         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6838                 return -EXDEV;
6839
6840         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6841             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6842                 return -ENOTEMPTY;
6843
6844         if (S_ISDIR(old_inode->i_mode) && new_inode &&
6845             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6846                 return -ENOTEMPTY;
6847         /*
6848          * we're using rename to replace one file with another.
6849          * and the replacement file is large.  Start IO on it now so
6850          * we don't add too much work to the end of the transaction
6851          */
6852         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6853             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6854                 filemap_flush(old_inode->i_mapping);
6855
6856         /* close the racy window with snapshot create/destroy ioctl */
6857         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6858                 down_read(&root->fs_info->subvol_sem);
6859         /*
6860          * We want to reserve the absolute worst case amount of items.  So if
6861          * both inodes are subvols and we need to unlink them then that would
6862          * require 4 item modifications, but if they are both normal inodes it
6863          * would require 5 item modifications, so we'll assume their normal
6864          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6865          * should cover the worst case number of items we'll modify.
6866          */
6867         trans = btrfs_start_transaction(root, 20);
6868         if (IS_ERR(trans))
6869                 return PTR_ERR(trans);
6870
6871         btrfs_set_trans_block_group(trans, new_dir);
6872
6873         if (dest != root)
6874                 btrfs_record_root_in_trans(trans, dest);
6875
6876         ret = btrfs_set_inode_index(new_dir, &index);
6877         if (ret)
6878                 goto out_fail;
6879
6880         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6881                 /* force full log commit if subvolume involved. */
6882                 root->fs_info->last_trans_log_full_commit = trans->transid;
6883         } else {
6884                 ret = btrfs_insert_inode_ref(trans, dest,
6885                                              new_dentry->d_name.name,
6886                                              new_dentry->d_name.len,
6887                                              old_inode->i_ino,
6888                                              new_dir->i_ino, index);
6889                 if (ret)
6890                         goto out_fail;
6891                 /*
6892                  * this is an ugly little race, but the rename is required
6893                  * to make sure that if we crash, the inode is either at the
6894                  * old name or the new one.  pinning the log transaction lets
6895                  * us make sure we don't allow a log commit to come in after
6896                  * we unlink the name but before we add the new name back in.
6897                  */
6898                 btrfs_pin_log_trans(root);
6899         }
6900         /*
6901          * make sure the inode gets flushed if it is replacing
6902          * something.
6903          */
6904         if (new_inode && new_inode->i_size &&
6905             old_inode && S_ISREG(old_inode->i_mode)) {
6906                 btrfs_add_ordered_operation(trans, root, old_inode);
6907         }
6908
6909         old_dir->i_ctime = old_dir->i_mtime = ctime;
6910         new_dir->i_ctime = new_dir->i_mtime = ctime;
6911         old_inode->i_ctime = ctime;
6912
6913         if (old_dentry->d_parent != new_dentry->d_parent)
6914                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6915
6916         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6917                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6918                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6919                                         old_dentry->d_name.name,
6920                                         old_dentry->d_name.len);
6921         } else {
6922                 btrfs_inc_nlink(old_dentry->d_inode);
6923                 ret = btrfs_unlink_inode(trans, root, old_dir,
6924                                          old_dentry->d_inode,
6925                                          old_dentry->d_name.name,
6926                                          old_dentry->d_name.len);
6927         }
6928         BUG_ON(ret);
6929
6930         if (new_inode) {
6931                 new_inode->i_ctime = CURRENT_TIME;
6932                 if (unlikely(new_inode->i_ino ==
6933                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6934                         root_objectid = BTRFS_I(new_inode)->location.objectid;
6935                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
6936                                                 root_objectid,
6937                                                 new_dentry->d_name.name,
6938                                                 new_dentry->d_name.len);
6939                         BUG_ON(new_inode->i_nlink == 0);
6940                 } else {
6941                         ret = btrfs_unlink_inode(trans, dest, new_dir,
6942                                                  new_dentry->d_inode,
6943                                                  new_dentry->d_name.name,
6944                                                  new_dentry->d_name.len);
6945                 }
6946                 BUG_ON(ret);
6947                 if (new_inode->i_nlink == 0) {
6948                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6949                         BUG_ON(ret);
6950                 }
6951         }
6952
6953         ret = btrfs_add_link(trans, new_dir, old_inode,
6954                              new_dentry->d_name.name,
6955                              new_dentry->d_name.len, 0, index);
6956         BUG_ON(ret);
6957
6958         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6959                 struct dentry *parent = dget_parent(new_dentry);
6960                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
6961                 dput(parent);
6962                 btrfs_end_log_trans(root);
6963         }
6964 out_fail:
6965         btrfs_end_transaction_throttle(trans, root);
6966
6967         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6968                 up_read(&root->fs_info->subvol_sem);
6969
6970         return ret;
6971 }
6972
6973 /*
6974  * some fairly slow code that needs optimization. This walks the list
6975  * of all the inodes with pending delalloc and forces them to disk.
6976  */
6977 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
6978 {
6979         struct list_head *head = &root->fs_info->delalloc_inodes;
6980         struct btrfs_inode *binode;
6981         struct inode *inode;
6982
6983         if (root->fs_info->sb->s_flags & MS_RDONLY)
6984                 return -EROFS;
6985
6986         spin_lock(&root->fs_info->delalloc_lock);
6987         while (!list_empty(head)) {
6988                 binode = list_entry(head->next, struct btrfs_inode,
6989                                     delalloc_inodes);
6990                 inode = igrab(&binode->vfs_inode);
6991                 if (!inode)
6992                         list_del_init(&binode->delalloc_inodes);
6993                 spin_unlock(&root->fs_info->delalloc_lock);
6994                 if (inode) {
6995                         filemap_flush(inode->i_mapping);
6996                         if (delay_iput)
6997                                 btrfs_add_delayed_iput(inode);
6998                         else
6999                                 iput(inode);
7000                 }
7001                 cond_resched();
7002                 spin_lock(&root->fs_info->delalloc_lock);
7003         }
7004         spin_unlock(&root->fs_info->delalloc_lock);
7005
7006         /* the filemap_flush will queue IO into the worker threads, but
7007          * we have to make sure the IO is actually started and that
7008          * ordered extents get created before we return
7009          */
7010         atomic_inc(&root->fs_info->async_submit_draining);
7011         while (atomic_read(&root->fs_info->nr_async_submits) ||
7012               atomic_read(&root->fs_info->async_delalloc_pages)) {
7013                 wait_event(root->fs_info->async_submit_wait,
7014                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7015                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7016         }
7017         atomic_dec(&root->fs_info->async_submit_draining);
7018         return 0;
7019 }
7020
7021 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7022                                    int sync)
7023 {
7024         struct btrfs_inode *binode;
7025         struct inode *inode = NULL;
7026
7027         spin_lock(&root->fs_info->delalloc_lock);
7028         while (!list_empty(&root->fs_info->delalloc_inodes)) {
7029                 binode = list_entry(root->fs_info->delalloc_inodes.next,
7030                                     struct btrfs_inode, delalloc_inodes);
7031                 inode = igrab(&binode->vfs_inode);
7032                 if (inode) {
7033                         list_move_tail(&binode->delalloc_inodes,
7034                                        &root->fs_info->delalloc_inodes);
7035                         break;
7036                 }
7037
7038                 list_del_init(&binode->delalloc_inodes);
7039                 cond_resched_lock(&root->fs_info->delalloc_lock);
7040         }
7041         spin_unlock(&root->fs_info->delalloc_lock);
7042
7043         if (inode) {
7044                 if (sync) {
7045                         filemap_write_and_wait(inode->i_mapping);
7046                         /*
7047                          * We have to do this because compression doesn't
7048                          * actually set PG_writeback until it submits the pages
7049                          * for IO, which happens in an async thread, so we could
7050                          * race and not actually wait for any writeback pages
7051                          * because they've not been submitted yet.  Technically
7052                          * this could still be the case for the ordered stuff
7053                          * since the async thread may not have started to do its
7054                          * work yet.  If this becomes the case then we need to
7055                          * figure out a way to make sure that in writepage we
7056                          * wait for any async pages to be submitted before
7057                          * returning so that fdatawait does what its supposed to
7058                          * do.
7059                          */
7060                         btrfs_wait_ordered_range(inode, 0, (u64)-1);
7061                 } else {
7062                         filemap_flush(inode->i_mapping);
7063                 }
7064                 if (delay_iput)
7065                         btrfs_add_delayed_iput(inode);
7066                 else
7067                         iput(inode);
7068                 return 1;
7069         }
7070         return 0;
7071 }
7072
7073 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7074                          const char *symname)
7075 {
7076         struct btrfs_trans_handle *trans;
7077         struct btrfs_root *root = BTRFS_I(dir)->root;
7078         struct btrfs_path *path;
7079         struct btrfs_key key;
7080         struct inode *inode = NULL;
7081         int err;
7082         int drop_inode = 0;
7083         u64 objectid;
7084         u64 index = 0 ;
7085         int name_len;
7086         int datasize;
7087         unsigned long ptr;
7088         struct btrfs_file_extent_item *ei;
7089         struct extent_buffer *leaf;
7090         unsigned long nr = 0;
7091
7092         name_len = strlen(symname) + 1;
7093         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7094                 return -ENAMETOOLONG;
7095
7096         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7097         if (err)
7098                 return err;
7099         /*
7100          * 2 items for inode item and ref
7101          * 2 items for dir items
7102          * 1 item for xattr if selinux is on
7103          */
7104         trans = btrfs_start_transaction(root, 5);
7105         if (IS_ERR(trans))
7106                 return PTR_ERR(trans);
7107
7108         btrfs_set_trans_block_group(trans, dir);
7109
7110         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7111                                 dentry->d_name.len, dir->i_ino, objectid,
7112                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7113                                 &index);
7114         err = PTR_ERR(inode);
7115         if (IS_ERR(inode))
7116                 goto out_unlock;
7117
7118         err = btrfs_init_inode_security(trans, inode, dir);
7119         if (err) {
7120                 drop_inode = 1;
7121                 goto out_unlock;
7122         }
7123
7124         btrfs_set_trans_block_group(trans, inode);
7125         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7126         if (err)
7127                 drop_inode = 1;
7128         else {
7129                 inode->i_mapping->a_ops = &btrfs_aops;
7130                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7131                 inode->i_fop = &btrfs_file_operations;
7132                 inode->i_op = &btrfs_file_inode_operations;
7133                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7134         }
7135         btrfs_update_inode_block_group(trans, inode);
7136         btrfs_update_inode_block_group(trans, dir);
7137         if (drop_inode)
7138                 goto out_unlock;
7139
7140         path = btrfs_alloc_path();
7141         BUG_ON(!path);
7142         key.objectid = inode->i_ino;
7143         key.offset = 0;
7144         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7145         datasize = btrfs_file_extent_calc_inline_size(name_len);
7146         err = btrfs_insert_empty_item(trans, root, path, &key,
7147                                       datasize);
7148         if (err) {
7149                 drop_inode = 1;
7150                 goto out_unlock;
7151         }
7152         leaf = path->nodes[0];
7153         ei = btrfs_item_ptr(leaf, path->slots[0],
7154                             struct btrfs_file_extent_item);
7155         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7156         btrfs_set_file_extent_type(leaf, ei,
7157                                    BTRFS_FILE_EXTENT_INLINE);
7158         btrfs_set_file_extent_encryption(leaf, ei, 0);
7159         btrfs_set_file_extent_compression(leaf, ei, 0);
7160         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7161         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7162
7163         ptr = btrfs_file_extent_inline_start(ei);
7164         write_extent_buffer(leaf, symname, ptr, name_len);
7165         btrfs_mark_buffer_dirty(leaf);
7166         btrfs_free_path(path);
7167
7168         inode->i_op = &btrfs_symlink_inode_operations;
7169         inode->i_mapping->a_ops = &btrfs_symlink_aops;
7170         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7171         inode_set_bytes(inode, name_len);
7172         btrfs_i_size_write(inode, name_len - 1);
7173         err = btrfs_update_inode(trans, root, inode);
7174         if (err)
7175                 drop_inode = 1;
7176
7177 out_unlock:
7178         nr = trans->blocks_used;
7179         btrfs_end_transaction_throttle(trans, root);
7180         if (drop_inode) {
7181                 inode_dec_link_count(inode);
7182                 iput(inode);
7183         }
7184         btrfs_btree_balance_dirty(root, nr);
7185         return err;
7186 }
7187
7188 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7189                                        u64 start, u64 num_bytes, u64 min_size,
7190                                        loff_t actual_len, u64 *alloc_hint,
7191                                        struct btrfs_trans_handle *trans)
7192 {
7193         struct btrfs_root *root = BTRFS_I(inode)->root;
7194         struct btrfs_key ins;
7195         u64 cur_offset = start;
7196         u64 i_size;
7197         int ret = 0;
7198         bool own_trans = true;
7199
7200         if (trans)
7201                 own_trans = false;
7202         while (num_bytes > 0) {
7203                 if (own_trans) {
7204                         trans = btrfs_start_transaction(root, 3);
7205                         if (IS_ERR(trans)) {
7206                                 ret = PTR_ERR(trans);
7207                                 break;
7208                         }
7209                 }
7210
7211                 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7212                                            0, *alloc_hint, (u64)-1, &ins, 1);
7213                 if (ret) {
7214                         if (own_trans)
7215                                 btrfs_end_transaction(trans, root);
7216                         break;
7217                 }
7218
7219                 ret = insert_reserved_file_extent(trans, inode,
7220                                                   cur_offset, ins.objectid,
7221                                                   ins.offset, ins.offset,
7222                                                   ins.offset, 0, 0, 0,
7223                                                   BTRFS_FILE_EXTENT_PREALLOC);
7224                 BUG_ON(ret);
7225                 btrfs_drop_extent_cache(inode, cur_offset,
7226                                         cur_offset + ins.offset -1, 0);
7227
7228                 num_bytes -= ins.offset;
7229                 cur_offset += ins.offset;
7230                 *alloc_hint = ins.objectid + ins.offset;
7231
7232                 inode->i_ctime = CURRENT_TIME;
7233                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7234                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7235                     (actual_len > inode->i_size) &&
7236                     (cur_offset > inode->i_size)) {
7237                         if (cur_offset > actual_len)
7238                                 i_size = actual_len;
7239                         else
7240                                 i_size = cur_offset;
7241                         i_size_write(inode, i_size);
7242                         btrfs_ordered_update_i_size(inode, i_size, NULL);
7243                 }
7244
7245                 ret = btrfs_update_inode(trans, root, inode);
7246                 BUG_ON(ret);
7247
7248                 if (own_trans)
7249                         btrfs_end_transaction(trans, root);
7250         }
7251         return ret;
7252 }
7253
7254 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7255                               u64 start, u64 num_bytes, u64 min_size,
7256                               loff_t actual_len, u64 *alloc_hint)
7257 {
7258         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7259                                            min_size, actual_len, alloc_hint,
7260                                            NULL);
7261 }
7262
7263 int btrfs_prealloc_file_range_trans(struct inode *inode,
7264                                     struct btrfs_trans_handle *trans, int mode,
7265                                     u64 start, u64 num_bytes, u64 min_size,
7266                                     loff_t actual_len, u64 *alloc_hint)
7267 {
7268         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7269                                            min_size, actual_len, alloc_hint, trans);
7270 }
7271
7272 static int btrfs_set_page_dirty(struct page *page)
7273 {
7274         return __set_page_dirty_nobuffers(page);
7275 }
7276
7277 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7278 {
7279         struct btrfs_root *root = BTRFS_I(inode)->root;
7280
7281         if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7282                 return -EROFS;
7283         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7284                 return -EACCES;
7285         return generic_permission(inode, mask, flags, btrfs_check_acl);
7286 }
7287
7288 static const struct inode_operations btrfs_dir_inode_operations = {
7289         .getattr        = btrfs_getattr,
7290         .lookup         = btrfs_lookup,
7291         .create         = btrfs_create,
7292         .unlink         = btrfs_unlink,
7293         .link           = btrfs_link,
7294         .mkdir          = btrfs_mkdir,
7295         .rmdir          = btrfs_rmdir,
7296         .rename         = btrfs_rename,
7297         .symlink        = btrfs_symlink,
7298         .setattr        = btrfs_setattr,
7299         .mknod          = btrfs_mknod,
7300         .setxattr       = btrfs_setxattr,
7301         .getxattr       = btrfs_getxattr,
7302         .listxattr      = btrfs_listxattr,
7303         .removexattr    = btrfs_removexattr,
7304         .permission     = btrfs_permission,
7305 };
7306 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7307         .lookup         = btrfs_lookup,
7308         .permission     = btrfs_permission,
7309 };
7310
7311 static const struct file_operations btrfs_dir_file_operations = {
7312         .llseek         = generic_file_llseek,
7313         .read           = generic_read_dir,
7314         .readdir        = btrfs_real_readdir,
7315         .unlocked_ioctl = btrfs_ioctl,
7316 #ifdef CONFIG_COMPAT
7317         .compat_ioctl   = btrfs_ioctl,
7318 #endif
7319         .release        = btrfs_release_file,
7320         .fsync          = btrfs_sync_file,
7321 };
7322
7323 static struct extent_io_ops btrfs_extent_io_ops = {
7324         .fill_delalloc = run_delalloc_range,
7325         .submit_bio_hook = btrfs_submit_bio_hook,
7326         .merge_bio_hook = btrfs_merge_bio_hook,
7327         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7328         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7329         .writepage_start_hook = btrfs_writepage_start_hook,
7330         .readpage_io_failed_hook = btrfs_io_failed_hook,
7331         .set_bit_hook = btrfs_set_bit_hook,
7332         .clear_bit_hook = btrfs_clear_bit_hook,
7333         .merge_extent_hook = btrfs_merge_extent_hook,
7334         .split_extent_hook = btrfs_split_extent_hook,
7335 };
7336
7337 /*
7338  * btrfs doesn't support the bmap operation because swapfiles
7339  * use bmap to make a mapping of extents in the file.  They assume
7340  * these extents won't change over the life of the file and they
7341  * use the bmap result to do IO directly to the drive.
7342  *
7343  * the btrfs bmap call would return logical addresses that aren't
7344  * suitable for IO and they also will change frequently as COW
7345  * operations happen.  So, swapfile + btrfs == corruption.
7346  *
7347  * For now we're avoiding this by dropping bmap.
7348  */
7349 static const struct address_space_operations btrfs_aops = {
7350         .readpage       = btrfs_readpage,
7351         .writepage      = btrfs_writepage,
7352         .writepages     = btrfs_writepages,
7353         .readpages      = btrfs_readpages,
7354         .sync_page      = block_sync_page,
7355         .direct_IO      = btrfs_direct_IO,
7356         .invalidatepage = btrfs_invalidatepage,
7357         .releasepage    = btrfs_releasepage,
7358         .set_page_dirty = btrfs_set_page_dirty,
7359         .error_remove_page = generic_error_remove_page,
7360 };
7361
7362 static const struct address_space_operations btrfs_symlink_aops = {
7363         .readpage       = btrfs_readpage,
7364         .writepage      = btrfs_writepage,
7365         .invalidatepage = btrfs_invalidatepage,
7366         .releasepage    = btrfs_releasepage,
7367 };
7368
7369 static const struct inode_operations btrfs_file_inode_operations = {
7370         .truncate       = btrfs_truncate,
7371         .getattr        = btrfs_getattr,
7372         .setattr        = btrfs_setattr,
7373         .setxattr       = btrfs_setxattr,
7374         .getxattr       = btrfs_getxattr,
7375         .listxattr      = btrfs_listxattr,
7376         .removexattr    = btrfs_removexattr,
7377         .permission     = btrfs_permission,
7378         .fiemap         = btrfs_fiemap,
7379 };
7380 static const struct inode_operations btrfs_special_inode_operations = {
7381         .getattr        = btrfs_getattr,
7382         .setattr        = btrfs_setattr,
7383         .permission     = btrfs_permission,
7384         .setxattr       = btrfs_setxattr,
7385         .getxattr       = btrfs_getxattr,
7386         .listxattr      = btrfs_listxattr,
7387         .removexattr    = btrfs_removexattr,
7388 };
7389 static const struct inode_operations btrfs_symlink_inode_operations = {
7390         .readlink       = generic_readlink,
7391         .follow_link    = page_follow_link_light,
7392         .put_link       = page_put_link,
7393         .getattr        = btrfs_getattr,
7394         .permission     = btrfs_permission,
7395         .setxattr       = btrfs_setxattr,
7396         .getxattr       = btrfs_getxattr,
7397         .listxattr      = btrfs_listxattr,
7398         .removexattr    = btrfs_removexattr,
7399 };
7400
7401 const struct dentry_operations btrfs_dentry_operations = {
7402         .d_delete       = btrfs_dentry_delete,
7403 };