btrfs: free path at an earlier point in btrfs_get_extent
[platform/kernel/linux-starfive.git] / fs / btrfs / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <asm/unaligned.h>
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "ordered-data.h"
37 #include "xattr.h"
38 #include "tree-log.h"
39 #include "volumes.h"
40 #include "compression.h"
41 #include "locking.h"
42 #include "free-space-cache.h"
43 #include "inode-map.h"
44 #include "backref.h"
45 #include "props.h"
46 #include "qgroup.h"
47 #include "dedupe.h"
48
49 struct btrfs_iget_args {
50         struct btrfs_key *location;
51         struct btrfs_root *root;
52 };
53
54 struct btrfs_dio_data {
55         u64 reserve;
56         u64 unsubmitted_oe_range_start;
57         u64 unsubmitted_oe_range_end;
58         int overwrite;
59 };
60
61 static const struct inode_operations btrfs_dir_inode_operations;
62 static const struct inode_operations btrfs_symlink_inode_operations;
63 static const struct inode_operations btrfs_dir_ro_inode_operations;
64 static const struct inode_operations btrfs_special_inode_operations;
65 static const struct inode_operations btrfs_file_inode_operations;
66 static const struct address_space_operations btrfs_aops;
67 static const struct address_space_operations btrfs_symlink_aops;
68 static const struct file_operations btrfs_dir_file_operations;
69 static const struct extent_io_ops btrfs_extent_io_ops;
70
71 static struct kmem_cache *btrfs_inode_cachep;
72 struct kmem_cache *btrfs_trans_handle_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
75
76 #define S_SHIFT 12
77 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
79         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
80         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
81         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
82         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
83         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
84         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
85 };
86
87 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
88 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
89 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
90 static noinline int cow_file_range(struct inode *inode,
91                                    struct page *locked_page,
92                                    u64 start, u64 end, u64 delalloc_end,
93                                    int *page_started, unsigned long *nr_written,
94                                    int unlock, struct btrfs_dedupe_hash *hash);
95 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
96                                        u64 orig_start, u64 block_start,
97                                        u64 block_len, u64 orig_block_len,
98                                        u64 ram_bytes, int compress_type,
99                                        int type);
100
101 static void __endio_write_update_ordered(struct inode *inode,
102                                          const u64 offset, const u64 bytes,
103                                          const bool uptodate);
104
105 /*
106  * Cleanup all submitted ordered extents in specified range to handle errors
107  * from the fill_dellaloc() callback.
108  *
109  * NOTE: caller must ensure that when an error happens, it can not call
110  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
111  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
112  * to be released, which we want to happen only when finishing the ordered
113  * extent (btrfs_finish_ordered_io()). Also note that the caller of the
114  * fill_delalloc() callback already does proper cleanup for the first page of
115  * the range, that is, it invokes the callback writepage_end_io_hook() for the
116  * range of the first page.
117  */
118 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
119                                                  const u64 offset,
120                                                  const u64 bytes)
121 {
122         unsigned long index = offset >> PAGE_SHIFT;
123         unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
124         struct page *page;
125
126         while (index <= end_index) {
127                 page = find_get_page(inode->i_mapping, index);
128                 index++;
129                 if (!page)
130                         continue;
131                 ClearPagePrivate2(page);
132                 put_page(page);
133         }
134         return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
135                                             bytes - PAGE_SIZE, false);
136 }
137
138 static int btrfs_dirty_inode(struct inode *inode);
139
140 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
141 void btrfs_test_inode_set_ops(struct inode *inode)
142 {
143         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
144 }
145 #endif
146
147 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
148                                      struct inode *inode,  struct inode *dir,
149                                      const struct qstr *qstr)
150 {
151         int err;
152
153         err = btrfs_init_acl(trans, inode, dir);
154         if (!err)
155                 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
156         return err;
157 }
158
159 /*
160  * this does all the hard work for inserting an inline extent into
161  * the btree.  The caller should have done a btrfs_drop_extents so that
162  * no overlapping inline items exist in the btree
163  */
164 static int insert_inline_extent(struct btrfs_trans_handle *trans,
165                                 struct btrfs_path *path, int extent_inserted,
166                                 struct btrfs_root *root, struct inode *inode,
167                                 u64 start, size_t size, size_t compressed_size,
168                                 int compress_type,
169                                 struct page **compressed_pages)
170 {
171         struct extent_buffer *leaf;
172         struct page *page = NULL;
173         char *kaddr;
174         unsigned long ptr;
175         struct btrfs_file_extent_item *ei;
176         int ret;
177         size_t cur_size = size;
178         unsigned long offset;
179
180         if (compressed_size && compressed_pages)
181                 cur_size = compressed_size;
182
183         inode_add_bytes(inode, size);
184
185         if (!extent_inserted) {
186                 struct btrfs_key key;
187                 size_t datasize;
188
189                 key.objectid = btrfs_ino(BTRFS_I(inode));
190                 key.offset = start;
191                 key.type = BTRFS_EXTENT_DATA_KEY;
192
193                 datasize = btrfs_file_extent_calc_inline_size(cur_size);
194                 path->leave_spinning = 1;
195                 ret = btrfs_insert_empty_item(trans, root, path, &key,
196                                               datasize);
197                 if (ret)
198                         goto fail;
199         }
200         leaf = path->nodes[0];
201         ei = btrfs_item_ptr(leaf, path->slots[0],
202                             struct btrfs_file_extent_item);
203         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
204         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
205         btrfs_set_file_extent_encryption(leaf, ei, 0);
206         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
207         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
208         ptr = btrfs_file_extent_inline_start(ei);
209
210         if (compress_type != BTRFS_COMPRESS_NONE) {
211                 struct page *cpage;
212                 int i = 0;
213                 while (compressed_size > 0) {
214                         cpage = compressed_pages[i];
215                         cur_size = min_t(unsigned long, compressed_size,
216                                        PAGE_SIZE);
217
218                         kaddr = kmap_atomic(cpage);
219                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
220                         kunmap_atomic(kaddr);
221
222                         i++;
223                         ptr += cur_size;
224                         compressed_size -= cur_size;
225                 }
226                 btrfs_set_file_extent_compression(leaf, ei,
227                                                   compress_type);
228         } else {
229                 page = find_get_page(inode->i_mapping,
230                                      start >> PAGE_SHIFT);
231                 btrfs_set_file_extent_compression(leaf, ei, 0);
232                 kaddr = kmap_atomic(page);
233                 offset = start & (PAGE_SIZE - 1);
234                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
235                 kunmap_atomic(kaddr);
236                 put_page(page);
237         }
238         btrfs_mark_buffer_dirty(leaf);
239         btrfs_release_path(path);
240
241         /*
242          * we're an inline extent, so nobody can
243          * extend the file past i_size without locking
244          * a page we already have locked.
245          *
246          * We must do any isize and inode updates
247          * before we unlock the pages.  Otherwise we
248          * could end up racing with unlink.
249          */
250         BTRFS_I(inode)->disk_i_size = inode->i_size;
251         ret = btrfs_update_inode(trans, root, inode);
252
253 fail:
254         return ret;
255 }
256
257
258 /*
259  * conditionally insert an inline extent into the file.  This
260  * does the checks required to make sure the data is small enough
261  * to fit as an inline extent.
262  */
263 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
264                                           u64 end, size_t compressed_size,
265                                           int compress_type,
266                                           struct page **compressed_pages)
267 {
268         struct btrfs_root *root = BTRFS_I(inode)->root;
269         struct btrfs_fs_info *fs_info = root->fs_info;
270         struct btrfs_trans_handle *trans;
271         u64 isize = i_size_read(inode);
272         u64 actual_end = min(end + 1, isize);
273         u64 inline_len = actual_end - start;
274         u64 aligned_end = ALIGN(end, fs_info->sectorsize);
275         u64 data_len = inline_len;
276         int ret;
277         struct btrfs_path *path;
278         int extent_inserted = 0;
279         u32 extent_item_size;
280
281         if (compressed_size)
282                 data_len = compressed_size;
283
284         if (start > 0 ||
285             actual_end > fs_info->sectorsize ||
286             data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
287             (!compressed_size &&
288             (actual_end & (fs_info->sectorsize - 1)) == 0) ||
289             end + 1 < isize ||
290             data_len > fs_info->max_inline) {
291                 return 1;
292         }
293
294         path = btrfs_alloc_path();
295         if (!path)
296                 return -ENOMEM;
297
298         trans = btrfs_join_transaction(root);
299         if (IS_ERR(trans)) {
300                 btrfs_free_path(path);
301                 return PTR_ERR(trans);
302         }
303         trans->block_rsv = &BTRFS_I(inode)->block_rsv;
304
305         if (compressed_size && compressed_pages)
306                 extent_item_size = btrfs_file_extent_calc_inline_size(
307                    compressed_size);
308         else
309                 extent_item_size = btrfs_file_extent_calc_inline_size(
310                     inline_len);
311
312         ret = __btrfs_drop_extents(trans, root, inode, path,
313                                    start, aligned_end, NULL,
314                                    1, 1, extent_item_size, &extent_inserted);
315         if (ret) {
316                 btrfs_abort_transaction(trans, ret);
317                 goto out;
318         }
319
320         if (isize > actual_end)
321                 inline_len = min_t(u64, isize, actual_end);
322         ret = insert_inline_extent(trans, path, extent_inserted,
323                                    root, inode, start,
324                                    inline_len, compressed_size,
325                                    compress_type, compressed_pages);
326         if (ret && ret != -ENOSPC) {
327                 btrfs_abort_transaction(trans, ret);
328                 goto out;
329         } else if (ret == -ENOSPC) {
330                 ret = 1;
331                 goto out;
332         }
333
334         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
335         btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
336 out:
337         /*
338          * Don't forget to free the reserved space, as for inlined extent
339          * it won't count as data extent, free them directly here.
340          * And at reserve time, it's always aligned to page size, so
341          * just free one page here.
342          */
343         btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
344         btrfs_free_path(path);
345         btrfs_end_transaction(trans);
346         return ret;
347 }
348
349 struct async_extent {
350         u64 start;
351         u64 ram_size;
352         u64 compressed_size;
353         struct page **pages;
354         unsigned long nr_pages;
355         int compress_type;
356         struct list_head list;
357 };
358
359 struct async_cow {
360         struct inode *inode;
361         struct btrfs_root *root;
362         struct page *locked_page;
363         u64 start;
364         u64 end;
365         unsigned int write_flags;
366         struct list_head extents;
367         struct btrfs_work work;
368 };
369
370 static noinline int add_async_extent(struct async_cow *cow,
371                                      u64 start, u64 ram_size,
372                                      u64 compressed_size,
373                                      struct page **pages,
374                                      unsigned long nr_pages,
375                                      int compress_type)
376 {
377         struct async_extent *async_extent;
378
379         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
380         BUG_ON(!async_extent); /* -ENOMEM */
381         async_extent->start = start;
382         async_extent->ram_size = ram_size;
383         async_extent->compressed_size = compressed_size;
384         async_extent->pages = pages;
385         async_extent->nr_pages = nr_pages;
386         async_extent->compress_type = compress_type;
387         list_add_tail(&async_extent->list, &cow->extents);
388         return 0;
389 }
390
391 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
392 {
393         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
394
395         /* force compress */
396         if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
397                 return 1;
398         /* defrag ioctl */
399         if (BTRFS_I(inode)->defrag_compress)
400                 return 1;
401         /* bad compression ratios */
402         if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
403                 return 0;
404         if (btrfs_test_opt(fs_info, COMPRESS) ||
405             BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
406             BTRFS_I(inode)->prop_compress)
407                 return btrfs_compress_heuristic(inode, start, end);
408         return 0;
409 }
410
411 static inline void inode_should_defrag(struct btrfs_inode *inode,
412                 u64 start, u64 end, u64 num_bytes, u64 small_write)
413 {
414         /* If this is a small write inside eof, kick off a defrag */
415         if (num_bytes < small_write &&
416             (start > 0 || end + 1 < inode->disk_i_size))
417                 btrfs_add_inode_defrag(NULL, inode);
418 }
419
420 /*
421  * we create compressed extents in two phases.  The first
422  * phase compresses a range of pages that have already been
423  * locked (both pages and state bits are locked).
424  *
425  * This is done inside an ordered work queue, and the compression
426  * is spread across many cpus.  The actual IO submission is step
427  * two, and the ordered work queue takes care of making sure that
428  * happens in the same order things were put onto the queue by
429  * writepages and friends.
430  *
431  * If this code finds it can't get good compression, it puts an
432  * entry onto the work queue to write the uncompressed bytes.  This
433  * makes sure that both compressed inodes and uncompressed inodes
434  * are written in the same order that the flusher thread sent them
435  * down.
436  */
437 static noinline void compress_file_range(struct inode *inode,
438                                         struct page *locked_page,
439                                         u64 start, u64 end,
440                                         struct async_cow *async_cow,
441                                         int *num_added)
442 {
443         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
444         u64 blocksize = fs_info->sectorsize;
445         u64 actual_end;
446         u64 isize = i_size_read(inode);
447         int ret = 0;
448         struct page **pages = NULL;
449         unsigned long nr_pages;
450         unsigned long total_compressed = 0;
451         unsigned long total_in = 0;
452         int i;
453         int will_compress;
454         int compress_type = fs_info->compress_type;
455         int redirty = 0;
456
457         inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
458                         SZ_16K);
459
460         actual_end = min_t(u64, isize, end + 1);
461 again:
462         will_compress = 0;
463         nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
464         BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
465         nr_pages = min_t(unsigned long, nr_pages,
466                         BTRFS_MAX_COMPRESSED / PAGE_SIZE);
467
468         /*
469          * we don't want to send crud past the end of i_size through
470          * compression, that's just a waste of CPU time.  So, if the
471          * end of the file is before the start of our current
472          * requested range of bytes, we bail out to the uncompressed
473          * cleanup code that can deal with all of this.
474          *
475          * It isn't really the fastest way to fix things, but this is a
476          * very uncommon corner.
477          */
478         if (actual_end <= start)
479                 goto cleanup_and_bail_uncompressed;
480
481         total_compressed = actual_end - start;
482
483         /*
484          * skip compression for a small file range(<=blocksize) that
485          * isn't an inline extent, since it doesn't save disk space at all.
486          */
487         if (total_compressed <= blocksize &&
488            (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
489                 goto cleanup_and_bail_uncompressed;
490
491         total_compressed = min_t(unsigned long, total_compressed,
492                         BTRFS_MAX_UNCOMPRESSED);
493         total_in = 0;
494         ret = 0;
495
496         /*
497          * we do compression for mount -o compress and when the
498          * inode has not been flagged as nocompress.  This flag can
499          * change at any time if we discover bad compression ratios.
500          */
501         if (inode_need_compress(inode, start, end)) {
502                 WARN_ON(pages);
503                 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
504                 if (!pages) {
505                         /* just bail out to the uncompressed code */
506                         goto cont;
507                 }
508
509                 if (BTRFS_I(inode)->defrag_compress)
510                         compress_type = BTRFS_I(inode)->defrag_compress;
511                 else if (BTRFS_I(inode)->prop_compress)
512                         compress_type = BTRFS_I(inode)->prop_compress;
513
514                 /*
515                  * we need to call clear_page_dirty_for_io on each
516                  * page in the range.  Otherwise applications with the file
517                  * mmap'd can wander in and change the page contents while
518                  * we are compressing them.
519                  *
520                  * If the compression fails for any reason, we set the pages
521                  * dirty again later on.
522                  *
523                  * Note that the remaining part is redirtied, the start pointer
524                  * has moved, the end is the original one.
525                  */
526                 if (!redirty) {
527                         extent_range_clear_dirty_for_io(inode, start, end);
528                         redirty = 1;
529                 }
530
531                 /* Compression level is applied here and only here */
532                 ret = btrfs_compress_pages(
533                         compress_type | (fs_info->compress_level << 4),
534                                            inode->i_mapping, start,
535                                            pages,
536                                            &nr_pages,
537                                            &total_in,
538                                            &total_compressed);
539
540                 if (!ret) {
541                         unsigned long offset = total_compressed &
542                                 (PAGE_SIZE - 1);
543                         struct page *page = pages[nr_pages - 1];
544                         char *kaddr;
545
546                         /* zero the tail end of the last page, we might be
547                          * sending it down to disk
548                          */
549                         if (offset) {
550                                 kaddr = kmap_atomic(page);
551                                 memset(kaddr + offset, 0,
552                                        PAGE_SIZE - offset);
553                                 kunmap_atomic(kaddr);
554                         }
555                         will_compress = 1;
556                 }
557         }
558 cont:
559         if (start == 0) {
560                 /* lets try to make an inline extent */
561                 if (ret || total_in < actual_end) {
562                         /* we didn't compress the entire range, try
563                          * to make an uncompressed inline extent.
564                          */
565                         ret = cow_file_range_inline(inode, start, end, 0,
566                                                     BTRFS_COMPRESS_NONE, NULL);
567                 } else {
568                         /* try making a compressed inline extent */
569                         ret = cow_file_range_inline(inode, start, end,
570                                                     total_compressed,
571                                                     compress_type, pages);
572                 }
573                 if (ret <= 0) {
574                         unsigned long clear_flags = EXTENT_DELALLOC |
575                                 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
576                                 EXTENT_DO_ACCOUNTING;
577                         unsigned long page_error_op;
578
579                         page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
580
581                         /*
582                          * inline extent creation worked or returned error,
583                          * we don't need to create any more async work items.
584                          * Unlock and free up our temp pages.
585                          *
586                          * We use DO_ACCOUNTING here because we need the
587                          * delalloc_release_metadata to be done _after_ we drop
588                          * our outstanding extent for clearing delalloc for this
589                          * range.
590                          */
591                         extent_clear_unlock_delalloc(inode, start, end, end,
592                                                      NULL, clear_flags,
593                                                      PAGE_UNLOCK |
594                                                      PAGE_CLEAR_DIRTY |
595                                                      PAGE_SET_WRITEBACK |
596                                                      page_error_op |
597                                                      PAGE_END_WRITEBACK);
598                         goto free_pages_out;
599                 }
600         }
601
602         if (will_compress) {
603                 /*
604                  * we aren't doing an inline extent round the compressed size
605                  * up to a block size boundary so the allocator does sane
606                  * things
607                  */
608                 total_compressed = ALIGN(total_compressed, blocksize);
609
610                 /*
611                  * one last check to make sure the compression is really a
612                  * win, compare the page count read with the blocks on disk,
613                  * compression must free at least one sector size
614                  */
615                 total_in = ALIGN(total_in, PAGE_SIZE);
616                 if (total_compressed + blocksize <= total_in) {
617                         *num_added += 1;
618
619                         /*
620                          * The async work queues will take care of doing actual
621                          * allocation on disk for these compressed pages, and
622                          * will submit them to the elevator.
623                          */
624                         add_async_extent(async_cow, start, total_in,
625                                         total_compressed, pages, nr_pages,
626                                         compress_type);
627
628                         if (start + total_in < end) {
629                                 start += total_in;
630                                 pages = NULL;
631                                 cond_resched();
632                                 goto again;
633                         }
634                         return;
635                 }
636         }
637         if (pages) {
638                 /*
639                  * the compression code ran but failed to make things smaller,
640                  * free any pages it allocated and our page pointer array
641                  */
642                 for (i = 0; i < nr_pages; i++) {
643                         WARN_ON(pages[i]->mapping);
644                         put_page(pages[i]);
645                 }
646                 kfree(pages);
647                 pages = NULL;
648                 total_compressed = 0;
649                 nr_pages = 0;
650
651                 /* flag the file so we don't compress in the future */
652                 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
653                     !(BTRFS_I(inode)->prop_compress)) {
654                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
655                 }
656         }
657 cleanup_and_bail_uncompressed:
658         /*
659          * No compression, but we still need to write the pages in the file
660          * we've been given so far.  redirty the locked page if it corresponds
661          * to our extent and set things up for the async work queue to run
662          * cow_file_range to do the normal delalloc dance.
663          */
664         if (page_offset(locked_page) >= start &&
665             page_offset(locked_page) <= end)
666                 __set_page_dirty_nobuffers(locked_page);
667                 /* unlocked later on in the async handlers */
668
669         if (redirty)
670                 extent_range_redirty_for_io(inode, start, end);
671         add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
672                          BTRFS_COMPRESS_NONE);
673         *num_added += 1;
674
675         return;
676
677 free_pages_out:
678         for (i = 0; i < nr_pages; i++) {
679                 WARN_ON(pages[i]->mapping);
680                 put_page(pages[i]);
681         }
682         kfree(pages);
683 }
684
685 static void free_async_extent_pages(struct async_extent *async_extent)
686 {
687         int i;
688
689         if (!async_extent->pages)
690                 return;
691
692         for (i = 0; i < async_extent->nr_pages; i++) {
693                 WARN_ON(async_extent->pages[i]->mapping);
694                 put_page(async_extent->pages[i]);
695         }
696         kfree(async_extent->pages);
697         async_extent->nr_pages = 0;
698         async_extent->pages = NULL;
699 }
700
701 /*
702  * phase two of compressed writeback.  This is the ordered portion
703  * of the code, which only gets called in the order the work was
704  * queued.  We walk all the async extents created by compress_file_range
705  * and send them down to the disk.
706  */
707 static noinline void submit_compressed_extents(struct inode *inode,
708                                               struct async_cow *async_cow)
709 {
710         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
711         struct async_extent *async_extent;
712         u64 alloc_hint = 0;
713         struct btrfs_key ins;
714         struct extent_map *em;
715         struct btrfs_root *root = BTRFS_I(inode)->root;
716         struct extent_io_tree *io_tree;
717         int ret = 0;
718
719 again:
720         while (!list_empty(&async_cow->extents)) {
721                 async_extent = list_entry(async_cow->extents.next,
722                                           struct async_extent, list);
723                 list_del(&async_extent->list);
724
725                 io_tree = &BTRFS_I(inode)->io_tree;
726
727 retry:
728                 /* did the compression code fall back to uncompressed IO? */
729                 if (!async_extent->pages) {
730                         int page_started = 0;
731                         unsigned long nr_written = 0;
732
733                         lock_extent(io_tree, async_extent->start,
734                                          async_extent->start +
735                                          async_extent->ram_size - 1);
736
737                         /* allocate blocks */
738                         ret = cow_file_range(inode, async_cow->locked_page,
739                                              async_extent->start,
740                                              async_extent->start +
741                                              async_extent->ram_size - 1,
742                                              async_extent->start +
743                                              async_extent->ram_size - 1,
744                                              &page_started, &nr_written, 0,
745                                              NULL);
746
747                         /* JDM XXX */
748
749                         /*
750                          * if page_started, cow_file_range inserted an
751                          * inline extent and took care of all the unlocking
752                          * and IO for us.  Otherwise, we need to submit
753                          * all those pages down to the drive.
754                          */
755                         if (!page_started && !ret)
756                                 extent_write_locked_range(inode,
757                                                   async_extent->start,
758                                                   async_extent->start +
759                                                   async_extent->ram_size - 1,
760                                                   WB_SYNC_ALL);
761                         else if (ret)
762                                 unlock_page(async_cow->locked_page);
763                         kfree(async_extent);
764                         cond_resched();
765                         continue;
766                 }
767
768                 lock_extent(io_tree, async_extent->start,
769                             async_extent->start + async_extent->ram_size - 1);
770
771                 ret = btrfs_reserve_extent(root, async_extent->ram_size,
772                                            async_extent->compressed_size,
773                                            async_extent->compressed_size,
774                                            0, alloc_hint, &ins, 1, 1);
775                 if (ret) {
776                         free_async_extent_pages(async_extent);
777
778                         if (ret == -ENOSPC) {
779                                 unlock_extent(io_tree, async_extent->start,
780                                               async_extent->start +
781                                               async_extent->ram_size - 1);
782
783                                 /*
784                                  * we need to redirty the pages if we decide to
785                                  * fallback to uncompressed IO, otherwise we
786                                  * will not submit these pages down to lower
787                                  * layers.
788                                  */
789                                 extent_range_redirty_for_io(inode,
790                                                 async_extent->start,
791                                                 async_extent->start +
792                                                 async_extent->ram_size - 1);
793
794                                 goto retry;
795                         }
796                         goto out_free;
797                 }
798                 /*
799                  * here we're doing allocation and writeback of the
800                  * compressed pages
801                  */
802                 em = create_io_em(inode, async_extent->start,
803                                   async_extent->ram_size, /* len */
804                                   async_extent->start, /* orig_start */
805                                   ins.objectid, /* block_start */
806                                   ins.offset, /* block_len */
807                                   ins.offset, /* orig_block_len */
808                                   async_extent->ram_size, /* ram_bytes */
809                                   async_extent->compress_type,
810                                   BTRFS_ORDERED_COMPRESSED);
811                 if (IS_ERR(em))
812                         /* ret value is not necessary due to void function */
813                         goto out_free_reserve;
814                 free_extent_map(em);
815
816                 ret = btrfs_add_ordered_extent_compress(inode,
817                                                 async_extent->start,
818                                                 ins.objectid,
819                                                 async_extent->ram_size,
820                                                 ins.offset,
821                                                 BTRFS_ORDERED_COMPRESSED,
822                                                 async_extent->compress_type);
823                 if (ret) {
824                         btrfs_drop_extent_cache(BTRFS_I(inode),
825                                                 async_extent->start,
826                                                 async_extent->start +
827                                                 async_extent->ram_size - 1, 0);
828                         goto out_free_reserve;
829                 }
830                 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
831
832                 /*
833                  * clear dirty, set writeback and unlock the pages.
834                  */
835                 extent_clear_unlock_delalloc(inode, async_extent->start,
836                                 async_extent->start +
837                                 async_extent->ram_size - 1,
838                                 async_extent->start +
839                                 async_extent->ram_size - 1,
840                                 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
841                                 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
842                                 PAGE_SET_WRITEBACK);
843                 if (btrfs_submit_compressed_write(inode,
844                                     async_extent->start,
845                                     async_extent->ram_size,
846                                     ins.objectid,
847                                     ins.offset, async_extent->pages,
848                                     async_extent->nr_pages,
849                                     async_cow->write_flags)) {
850                         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
851                         struct page *p = async_extent->pages[0];
852                         const u64 start = async_extent->start;
853                         const u64 end = start + async_extent->ram_size - 1;
854
855                         p->mapping = inode->i_mapping;
856                         tree->ops->writepage_end_io_hook(p, start, end,
857                                                          NULL, 0);
858                         p->mapping = NULL;
859                         extent_clear_unlock_delalloc(inode, start, end, end,
860                                                      NULL, 0,
861                                                      PAGE_END_WRITEBACK |
862                                                      PAGE_SET_ERROR);
863                         free_async_extent_pages(async_extent);
864                 }
865                 alloc_hint = ins.objectid + ins.offset;
866                 kfree(async_extent);
867                 cond_resched();
868         }
869         return;
870 out_free_reserve:
871         btrfs_dec_block_group_reservations(fs_info, ins.objectid);
872         btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
873 out_free:
874         extent_clear_unlock_delalloc(inode, async_extent->start,
875                                      async_extent->start +
876                                      async_extent->ram_size - 1,
877                                      async_extent->start +
878                                      async_extent->ram_size - 1,
879                                      NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
880                                      EXTENT_DELALLOC_NEW |
881                                      EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
882                                      PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
883                                      PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
884                                      PAGE_SET_ERROR);
885         free_async_extent_pages(async_extent);
886         kfree(async_extent);
887         goto again;
888 }
889
890 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
891                                       u64 num_bytes)
892 {
893         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
894         struct extent_map *em;
895         u64 alloc_hint = 0;
896
897         read_lock(&em_tree->lock);
898         em = search_extent_mapping(em_tree, start, num_bytes);
899         if (em) {
900                 /*
901                  * if block start isn't an actual block number then find the
902                  * first block in this inode and use that as a hint.  If that
903                  * block is also bogus then just don't worry about it.
904                  */
905                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
906                         free_extent_map(em);
907                         em = search_extent_mapping(em_tree, 0, 0);
908                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
909                                 alloc_hint = em->block_start;
910                         if (em)
911                                 free_extent_map(em);
912                 } else {
913                         alloc_hint = em->block_start;
914                         free_extent_map(em);
915                 }
916         }
917         read_unlock(&em_tree->lock);
918
919         return alloc_hint;
920 }
921
922 /*
923  * when extent_io.c finds a delayed allocation range in the file,
924  * the call backs end up in this code.  The basic idea is to
925  * allocate extents on disk for the range, and create ordered data structs
926  * in ram to track those extents.
927  *
928  * locked_page is the page that writepage had locked already.  We use
929  * it to make sure we don't do extra locks or unlocks.
930  *
931  * *page_started is set to one if we unlock locked_page and do everything
932  * required to start IO on it.  It may be clean and already done with
933  * IO when we return.
934  */
935 static noinline int cow_file_range(struct inode *inode,
936                                    struct page *locked_page,
937                                    u64 start, u64 end, u64 delalloc_end,
938                                    int *page_started, unsigned long *nr_written,
939                                    int unlock, struct btrfs_dedupe_hash *hash)
940 {
941         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
942         struct btrfs_root *root = BTRFS_I(inode)->root;
943         u64 alloc_hint = 0;
944         u64 num_bytes;
945         unsigned long ram_size;
946         u64 cur_alloc_size = 0;
947         u64 blocksize = fs_info->sectorsize;
948         struct btrfs_key ins;
949         struct extent_map *em;
950         unsigned clear_bits;
951         unsigned long page_ops;
952         bool extent_reserved = false;
953         int ret = 0;
954
955         if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
956                 WARN_ON_ONCE(1);
957                 ret = -EINVAL;
958                 goto out_unlock;
959         }
960
961         num_bytes = ALIGN(end - start + 1, blocksize);
962         num_bytes = max(blocksize,  num_bytes);
963         ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
964
965         inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
966
967         if (start == 0) {
968                 /* lets try to make an inline extent */
969                 ret = cow_file_range_inline(inode, start, end, 0,
970                                             BTRFS_COMPRESS_NONE, NULL);
971                 if (ret == 0) {
972                         /*
973                          * We use DO_ACCOUNTING here because we need the
974                          * delalloc_release_metadata to be run _after_ we drop
975                          * our outstanding extent for clearing delalloc for this
976                          * range.
977                          */
978                         extent_clear_unlock_delalloc(inode, start, end,
979                                      delalloc_end, NULL,
980                                      EXTENT_LOCKED | EXTENT_DELALLOC |
981                                      EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
982                                      EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
983                                      PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
984                                      PAGE_END_WRITEBACK);
985                         *nr_written = *nr_written +
986                              (end - start + PAGE_SIZE) / PAGE_SIZE;
987                         *page_started = 1;
988                         goto out;
989                 } else if (ret < 0) {
990                         goto out_unlock;
991                 }
992         }
993
994         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
995         btrfs_drop_extent_cache(BTRFS_I(inode), start,
996                         start + num_bytes - 1, 0);
997
998         while (num_bytes > 0) {
999                 cur_alloc_size = num_bytes;
1000                 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1001                                            fs_info->sectorsize, 0, alloc_hint,
1002                                            &ins, 1, 1);
1003                 if (ret < 0)
1004                         goto out_unlock;
1005                 cur_alloc_size = ins.offset;
1006                 extent_reserved = true;
1007
1008                 ram_size = ins.offset;
1009                 em = create_io_em(inode, start, ins.offset, /* len */
1010                                   start, /* orig_start */
1011                                   ins.objectid, /* block_start */
1012                                   ins.offset, /* block_len */
1013                                   ins.offset, /* orig_block_len */
1014                                   ram_size, /* ram_bytes */
1015                                   BTRFS_COMPRESS_NONE, /* compress_type */
1016                                   BTRFS_ORDERED_REGULAR /* type */);
1017                 if (IS_ERR(em)) {
1018                         ret = PTR_ERR(em);
1019                         goto out_reserve;
1020                 }
1021                 free_extent_map(em);
1022
1023                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1024                                                ram_size, cur_alloc_size, 0);
1025                 if (ret)
1026                         goto out_drop_extent_cache;
1027
1028                 if (root->root_key.objectid ==
1029                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1030                         ret = btrfs_reloc_clone_csums(inode, start,
1031                                                       cur_alloc_size);
1032                         /*
1033                          * Only drop cache here, and process as normal.
1034                          *
1035                          * We must not allow extent_clear_unlock_delalloc()
1036                          * at out_unlock label to free meta of this ordered
1037                          * extent, as its meta should be freed by
1038                          * btrfs_finish_ordered_io().
1039                          *
1040                          * So we must continue until @start is increased to
1041                          * skip current ordered extent.
1042                          */
1043                         if (ret)
1044                                 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1045                                                 start + ram_size - 1, 0);
1046                 }
1047
1048                 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1049
1050                 /* we're not doing compressed IO, don't unlock the first
1051                  * page (which the caller expects to stay locked), don't
1052                  * clear any dirty bits and don't set any writeback bits
1053                  *
1054                  * Do set the Private2 bit so we know this page was properly
1055                  * setup for writepage
1056                  */
1057                 page_ops = unlock ? PAGE_UNLOCK : 0;
1058                 page_ops |= PAGE_SET_PRIVATE2;
1059
1060                 extent_clear_unlock_delalloc(inode, start,
1061                                              start + ram_size - 1,
1062                                              delalloc_end, locked_page,
1063                                              EXTENT_LOCKED | EXTENT_DELALLOC,
1064                                              page_ops);
1065                 if (num_bytes < cur_alloc_size)
1066                         num_bytes = 0;
1067                 else
1068                         num_bytes -= cur_alloc_size;
1069                 alloc_hint = ins.objectid + ins.offset;
1070                 start += cur_alloc_size;
1071                 extent_reserved = false;
1072
1073                 /*
1074                  * btrfs_reloc_clone_csums() error, since start is increased
1075                  * extent_clear_unlock_delalloc() at out_unlock label won't
1076                  * free metadata of current ordered extent, we're OK to exit.
1077                  */
1078                 if (ret)
1079                         goto out_unlock;
1080         }
1081 out:
1082         return ret;
1083
1084 out_drop_extent_cache:
1085         btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1086 out_reserve:
1087         btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1088         btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1089 out_unlock:
1090         clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1091                 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1092         page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1093                 PAGE_END_WRITEBACK;
1094         /*
1095          * If we reserved an extent for our delalloc range (or a subrange) and
1096          * failed to create the respective ordered extent, then it means that
1097          * when we reserved the extent we decremented the extent's size from
1098          * the data space_info's bytes_may_use counter and incremented the
1099          * space_info's bytes_reserved counter by the same amount. We must make
1100          * sure extent_clear_unlock_delalloc() does not try to decrement again
1101          * the data space_info's bytes_may_use counter, therefore we do not pass
1102          * it the flag EXTENT_CLEAR_DATA_RESV.
1103          */
1104         if (extent_reserved) {
1105                 extent_clear_unlock_delalloc(inode, start,
1106                                              start + cur_alloc_size,
1107                                              start + cur_alloc_size,
1108                                              locked_page,
1109                                              clear_bits,
1110                                              page_ops);
1111                 start += cur_alloc_size;
1112                 if (start >= end)
1113                         goto out;
1114         }
1115         extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1116                                      locked_page,
1117                                      clear_bits | EXTENT_CLEAR_DATA_RESV,
1118                                      page_ops);
1119         goto out;
1120 }
1121
1122 /*
1123  * work queue call back to started compression on a file and pages
1124  */
1125 static noinline void async_cow_start(struct btrfs_work *work)
1126 {
1127         struct async_cow *async_cow;
1128         int num_added = 0;
1129         async_cow = container_of(work, struct async_cow, work);
1130
1131         compress_file_range(async_cow->inode, async_cow->locked_page,
1132                             async_cow->start, async_cow->end, async_cow,
1133                             &num_added);
1134         if (num_added == 0) {
1135                 btrfs_add_delayed_iput(async_cow->inode);
1136                 async_cow->inode = NULL;
1137         }
1138 }
1139
1140 /*
1141  * work queue call back to submit previously compressed pages
1142  */
1143 static noinline void async_cow_submit(struct btrfs_work *work)
1144 {
1145         struct btrfs_fs_info *fs_info;
1146         struct async_cow *async_cow;
1147         struct btrfs_root *root;
1148         unsigned long nr_pages;
1149
1150         async_cow = container_of(work, struct async_cow, work);
1151
1152         root = async_cow->root;
1153         fs_info = root->fs_info;
1154         nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1155                 PAGE_SHIFT;
1156
1157         /* atomic_sub_return implies a barrier */
1158         if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1159             5 * SZ_1M)
1160                 cond_wake_up_nomb(&fs_info->async_submit_wait);
1161
1162         if (async_cow->inode)
1163                 submit_compressed_extents(async_cow->inode, async_cow);
1164 }
1165
1166 static noinline void async_cow_free(struct btrfs_work *work)
1167 {
1168         struct async_cow *async_cow;
1169         async_cow = container_of(work, struct async_cow, work);
1170         if (async_cow->inode)
1171                 btrfs_add_delayed_iput(async_cow->inode);
1172         kfree(async_cow);
1173 }
1174
1175 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1176                                 u64 start, u64 end, int *page_started,
1177                                 unsigned long *nr_written,
1178                                 unsigned int write_flags)
1179 {
1180         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1181         struct async_cow *async_cow;
1182         struct btrfs_root *root = BTRFS_I(inode)->root;
1183         unsigned long nr_pages;
1184         u64 cur_end;
1185
1186         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1187                          1, 0, NULL);
1188         while (start < end) {
1189                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1190                 BUG_ON(!async_cow); /* -ENOMEM */
1191                 async_cow->inode = igrab(inode);
1192                 async_cow->root = root;
1193                 async_cow->locked_page = locked_page;
1194                 async_cow->start = start;
1195                 async_cow->write_flags = write_flags;
1196
1197                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1198                     !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1199                         cur_end = end;
1200                 else
1201                         cur_end = min(end, start + SZ_512K - 1);
1202
1203                 async_cow->end = cur_end;
1204                 INIT_LIST_HEAD(&async_cow->extents);
1205
1206                 btrfs_init_work(&async_cow->work,
1207                                 btrfs_delalloc_helper,
1208                                 async_cow_start, async_cow_submit,
1209                                 async_cow_free);
1210
1211                 nr_pages = (cur_end - start + PAGE_SIZE) >>
1212                         PAGE_SHIFT;
1213                 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1214
1215                 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1216
1217                 *nr_written += nr_pages;
1218                 start = cur_end + 1;
1219         }
1220         *page_started = 1;
1221         return 0;
1222 }
1223
1224 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1225                                         u64 bytenr, u64 num_bytes)
1226 {
1227         int ret;
1228         struct btrfs_ordered_sum *sums;
1229         LIST_HEAD(list);
1230
1231         ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1232                                        bytenr + num_bytes - 1, &list, 0);
1233         if (ret == 0 && list_empty(&list))
1234                 return 0;
1235
1236         while (!list_empty(&list)) {
1237                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1238                 list_del(&sums->list);
1239                 kfree(sums);
1240         }
1241         if (ret < 0)
1242                 return ret;
1243         return 1;
1244 }
1245
1246 /*
1247  * when nowcow writeback call back.  This checks for snapshots or COW copies
1248  * of the extents that exist in the file, and COWs the file as required.
1249  *
1250  * If no cow copies or snapshots exist, we write directly to the existing
1251  * blocks on disk
1252  */
1253 static noinline int run_delalloc_nocow(struct inode *inode,
1254                                        struct page *locked_page,
1255                               u64 start, u64 end, int *page_started, int force,
1256                               unsigned long *nr_written)
1257 {
1258         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1259         struct btrfs_root *root = BTRFS_I(inode)->root;
1260         struct extent_buffer *leaf;
1261         struct btrfs_path *path;
1262         struct btrfs_file_extent_item *fi;
1263         struct btrfs_key found_key;
1264         struct extent_map *em;
1265         u64 cow_start;
1266         u64 cur_offset;
1267         u64 extent_end;
1268         u64 extent_offset;
1269         u64 disk_bytenr;
1270         u64 num_bytes;
1271         u64 disk_num_bytes;
1272         u64 ram_bytes;
1273         int extent_type;
1274         int ret;
1275         int type;
1276         int nocow;
1277         int check_prev = 1;
1278         bool nolock;
1279         u64 ino = btrfs_ino(BTRFS_I(inode));
1280
1281         path = btrfs_alloc_path();
1282         if (!path) {
1283                 extent_clear_unlock_delalloc(inode, start, end, end,
1284                                              locked_page,
1285                                              EXTENT_LOCKED | EXTENT_DELALLOC |
1286                                              EXTENT_DO_ACCOUNTING |
1287                                              EXTENT_DEFRAG, PAGE_UNLOCK |
1288                                              PAGE_CLEAR_DIRTY |
1289                                              PAGE_SET_WRITEBACK |
1290                                              PAGE_END_WRITEBACK);
1291                 return -ENOMEM;
1292         }
1293
1294         nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1295
1296         cow_start = (u64)-1;
1297         cur_offset = start;
1298         while (1) {
1299                 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1300                                                cur_offset, 0);
1301                 if (ret < 0)
1302                         goto error;
1303                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1304                         leaf = path->nodes[0];
1305                         btrfs_item_key_to_cpu(leaf, &found_key,
1306                                               path->slots[0] - 1);
1307                         if (found_key.objectid == ino &&
1308                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1309                                 path->slots[0]--;
1310                 }
1311                 check_prev = 0;
1312 next_slot:
1313                 leaf = path->nodes[0];
1314                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1315                         ret = btrfs_next_leaf(root, path);
1316                         if (ret < 0) {
1317                                 if (cow_start != (u64)-1)
1318                                         cur_offset = cow_start;
1319                                 goto error;
1320                         }
1321                         if (ret > 0)
1322                                 break;
1323                         leaf = path->nodes[0];
1324                 }
1325
1326                 nocow = 0;
1327                 disk_bytenr = 0;
1328                 num_bytes = 0;
1329                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1330
1331                 if (found_key.objectid > ino)
1332                         break;
1333                 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1334                     found_key.type < BTRFS_EXTENT_DATA_KEY) {
1335                         path->slots[0]++;
1336                         goto next_slot;
1337                 }
1338                 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1339                     found_key.offset > end)
1340                         break;
1341
1342                 if (found_key.offset > cur_offset) {
1343                         extent_end = found_key.offset;
1344                         extent_type = 0;
1345                         goto out_check;
1346                 }
1347
1348                 fi = btrfs_item_ptr(leaf, path->slots[0],
1349                                     struct btrfs_file_extent_item);
1350                 extent_type = btrfs_file_extent_type(leaf, fi);
1351
1352                 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1353                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1354                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1355                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1356                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1357                         extent_end = found_key.offset +
1358                                 btrfs_file_extent_num_bytes(leaf, fi);
1359                         disk_num_bytes =
1360                                 btrfs_file_extent_disk_num_bytes(leaf, fi);
1361                         if (extent_end <= start) {
1362                                 path->slots[0]++;
1363                                 goto next_slot;
1364                         }
1365                         if (disk_bytenr == 0)
1366                                 goto out_check;
1367                         if (btrfs_file_extent_compression(leaf, fi) ||
1368                             btrfs_file_extent_encryption(leaf, fi) ||
1369                             btrfs_file_extent_other_encoding(leaf, fi))
1370                                 goto out_check;
1371                         /*
1372                          * Do the same check as in btrfs_cross_ref_exist but
1373                          * without the unnecessary search.
1374                          */
1375                         if (btrfs_file_extent_generation(leaf, fi) <=
1376                             btrfs_root_last_snapshot(&root->root_item))
1377                                 goto out_check;
1378                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1379                                 goto out_check;
1380                         if (btrfs_extent_readonly(fs_info, disk_bytenr))
1381                                 goto out_check;
1382                         ret = btrfs_cross_ref_exist(root, ino,
1383                                                     found_key.offset -
1384                                                     extent_offset, disk_bytenr);
1385                         if (ret) {
1386                                 /*
1387                                  * ret could be -EIO if the above fails to read
1388                                  * metadata.
1389                                  */
1390                                 if (ret < 0) {
1391                                         if (cow_start != (u64)-1)
1392                                                 cur_offset = cow_start;
1393                                         goto error;
1394                                 }
1395
1396                                 WARN_ON_ONCE(nolock);
1397                                 goto out_check;
1398                         }
1399                         disk_bytenr += extent_offset;
1400                         disk_bytenr += cur_offset - found_key.offset;
1401                         num_bytes = min(end + 1, extent_end) - cur_offset;
1402                         /*
1403                          * if there are pending snapshots for this root,
1404                          * we fall into common COW way.
1405                          */
1406                         if (!nolock && atomic_read(&root->snapshot_force_cow))
1407                                 goto out_check;
1408                         /*
1409                          * force cow if csum exists in the range.
1410                          * this ensure that csum for a given extent are
1411                          * either valid or do not exist.
1412                          */
1413                         ret = csum_exist_in_range(fs_info, disk_bytenr,
1414                                                   num_bytes);
1415                         if (ret) {
1416                                 /*
1417                                  * ret could be -EIO if the above fails to read
1418                                  * metadata.
1419                                  */
1420                                 if (ret < 0) {
1421                                         if (cow_start != (u64)-1)
1422                                                 cur_offset = cow_start;
1423                                         goto error;
1424                                 }
1425                                 WARN_ON_ONCE(nolock);
1426                                 goto out_check;
1427                         }
1428                         if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1429                                 goto out_check;
1430                         nocow = 1;
1431                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1432                         extent_end = found_key.offset +
1433                                 btrfs_file_extent_ram_bytes(leaf, fi);
1434                         extent_end = ALIGN(extent_end,
1435                                            fs_info->sectorsize);
1436                 } else {
1437                         BUG_ON(1);
1438                 }
1439 out_check:
1440                 if (extent_end <= start) {
1441                         path->slots[0]++;
1442                         if (nocow)
1443                                 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1444                         goto next_slot;
1445                 }
1446                 if (!nocow) {
1447                         if (cow_start == (u64)-1)
1448                                 cow_start = cur_offset;
1449                         cur_offset = extent_end;
1450                         if (cur_offset > end)
1451                                 break;
1452                         path->slots[0]++;
1453                         goto next_slot;
1454                 }
1455
1456                 btrfs_release_path(path);
1457                 if (cow_start != (u64)-1) {
1458                         ret = cow_file_range(inode, locked_page,
1459                                              cow_start, found_key.offset - 1,
1460                                              end, page_started, nr_written, 1,
1461                                              NULL);
1462                         if (ret) {
1463                                 if (nocow)
1464                                         btrfs_dec_nocow_writers(fs_info,
1465                                                                 disk_bytenr);
1466                                 goto error;
1467                         }
1468                         cow_start = (u64)-1;
1469                 }
1470
1471                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1472                         u64 orig_start = found_key.offset - extent_offset;
1473
1474                         em = create_io_em(inode, cur_offset, num_bytes,
1475                                           orig_start,
1476                                           disk_bytenr, /* block_start */
1477                                           num_bytes, /* block_len */
1478                                           disk_num_bytes, /* orig_block_len */
1479                                           ram_bytes, BTRFS_COMPRESS_NONE,
1480                                           BTRFS_ORDERED_PREALLOC);
1481                         if (IS_ERR(em)) {
1482                                 if (nocow)
1483                                         btrfs_dec_nocow_writers(fs_info,
1484                                                                 disk_bytenr);
1485                                 ret = PTR_ERR(em);
1486                                 goto error;
1487                         }
1488                         free_extent_map(em);
1489                 }
1490
1491                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1492                         type = BTRFS_ORDERED_PREALLOC;
1493                 } else {
1494                         type = BTRFS_ORDERED_NOCOW;
1495                 }
1496
1497                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1498                                                num_bytes, num_bytes, type);
1499                 if (nocow)
1500                         btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1501                 BUG_ON(ret); /* -ENOMEM */
1502
1503                 if (root->root_key.objectid ==
1504                     BTRFS_DATA_RELOC_TREE_OBJECTID)
1505                         /*
1506                          * Error handled later, as we must prevent
1507                          * extent_clear_unlock_delalloc() in error handler
1508                          * from freeing metadata of created ordered extent.
1509                          */
1510                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1511                                                       num_bytes);
1512
1513                 extent_clear_unlock_delalloc(inode, cur_offset,
1514                                              cur_offset + num_bytes - 1, end,
1515                                              locked_page, EXTENT_LOCKED |
1516                                              EXTENT_DELALLOC |
1517                                              EXTENT_CLEAR_DATA_RESV,
1518                                              PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1519
1520                 cur_offset = extent_end;
1521
1522                 /*
1523                  * btrfs_reloc_clone_csums() error, now we're OK to call error
1524                  * handler, as metadata for created ordered extent will only
1525                  * be freed by btrfs_finish_ordered_io().
1526                  */
1527                 if (ret)
1528                         goto error;
1529                 if (cur_offset > end)
1530                         break;
1531         }
1532         btrfs_release_path(path);
1533
1534         if (cur_offset <= end && cow_start == (u64)-1) {
1535                 cow_start = cur_offset;
1536                 cur_offset = end;
1537         }
1538
1539         if (cow_start != (u64)-1) {
1540                 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1541                                      page_started, nr_written, 1, NULL);
1542                 if (ret)
1543                         goto error;
1544         }
1545
1546 error:
1547         if (ret && cur_offset < end)
1548                 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1549                                              locked_page, EXTENT_LOCKED |
1550                                              EXTENT_DELALLOC | EXTENT_DEFRAG |
1551                                              EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1552                                              PAGE_CLEAR_DIRTY |
1553                                              PAGE_SET_WRITEBACK |
1554                                              PAGE_END_WRITEBACK);
1555         btrfs_free_path(path);
1556         return ret;
1557 }
1558
1559 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1560 {
1561
1562         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1563             !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1564                 return 0;
1565
1566         /*
1567          * @defrag_bytes is a hint value, no spinlock held here,
1568          * if is not zero, it means the file is defragging.
1569          * Force cow if given extent needs to be defragged.
1570          */
1571         if (BTRFS_I(inode)->defrag_bytes &&
1572             test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1573                            EXTENT_DEFRAG, 0, NULL))
1574                 return 1;
1575
1576         return 0;
1577 }
1578
1579 /*
1580  * extent_io.c call back to do delayed allocation processing
1581  */
1582 static int run_delalloc_range(void *private_data, struct page *locked_page,
1583                               u64 start, u64 end, int *page_started,
1584                               unsigned long *nr_written,
1585                               struct writeback_control *wbc)
1586 {
1587         struct inode *inode = private_data;
1588         int ret;
1589         int force_cow = need_force_cow(inode, start, end);
1590         unsigned int write_flags = wbc_to_write_flags(wbc);
1591
1592         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1593                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1594                                          page_started, 1, nr_written);
1595         } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1596                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1597                                          page_started, 0, nr_written);
1598         } else if (!inode_need_compress(inode, start, end)) {
1599                 ret = cow_file_range(inode, locked_page, start, end, end,
1600                                       page_started, nr_written, 1, NULL);
1601         } else {
1602                 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1603                         &BTRFS_I(inode)->runtime_flags);
1604                 ret = cow_file_range_async(inode, locked_page, start, end,
1605                                            page_started, nr_written,
1606                                            write_flags);
1607         }
1608         if (ret)
1609                 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1610         return ret;
1611 }
1612
1613 static void btrfs_split_extent_hook(void *private_data,
1614                                     struct extent_state *orig, u64 split)
1615 {
1616         struct inode *inode = private_data;
1617         u64 size;
1618
1619         /* not delalloc, ignore it */
1620         if (!(orig->state & EXTENT_DELALLOC))
1621                 return;
1622
1623         size = orig->end - orig->start + 1;
1624         if (size > BTRFS_MAX_EXTENT_SIZE) {
1625                 u32 num_extents;
1626                 u64 new_size;
1627
1628                 /*
1629                  * See the explanation in btrfs_merge_extent_hook, the same
1630                  * applies here, just in reverse.
1631                  */
1632                 new_size = orig->end - split + 1;
1633                 num_extents = count_max_extents(new_size);
1634                 new_size = split - orig->start;
1635                 num_extents += count_max_extents(new_size);
1636                 if (count_max_extents(size) >= num_extents)
1637                         return;
1638         }
1639
1640         spin_lock(&BTRFS_I(inode)->lock);
1641         btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1642         spin_unlock(&BTRFS_I(inode)->lock);
1643 }
1644
1645 /*
1646  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1647  * extents so we can keep track of new extents that are just merged onto old
1648  * extents, such as when we are doing sequential writes, so we can properly
1649  * account for the metadata space we'll need.
1650  */
1651 static void btrfs_merge_extent_hook(void *private_data,
1652                                     struct extent_state *new,
1653                                     struct extent_state *other)
1654 {
1655         struct inode *inode = private_data;
1656         u64 new_size, old_size;
1657         u32 num_extents;
1658
1659         /* not delalloc, ignore it */
1660         if (!(other->state & EXTENT_DELALLOC))
1661                 return;
1662
1663         if (new->start > other->start)
1664                 new_size = new->end - other->start + 1;
1665         else
1666                 new_size = other->end - new->start + 1;
1667
1668         /* we're not bigger than the max, unreserve the space and go */
1669         if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1670                 spin_lock(&BTRFS_I(inode)->lock);
1671                 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1672                 spin_unlock(&BTRFS_I(inode)->lock);
1673                 return;
1674         }
1675
1676         /*
1677          * We have to add up either side to figure out how many extents were
1678          * accounted for before we merged into one big extent.  If the number of
1679          * extents we accounted for is <= the amount we need for the new range
1680          * then we can return, otherwise drop.  Think of it like this
1681          *
1682          * [ 4k][MAX_SIZE]
1683          *
1684          * So we've grown the extent by a MAX_SIZE extent, this would mean we
1685          * need 2 outstanding extents, on one side we have 1 and the other side
1686          * we have 1 so they are == and we can return.  But in this case
1687          *
1688          * [MAX_SIZE+4k][MAX_SIZE+4k]
1689          *
1690          * Each range on their own accounts for 2 extents, but merged together
1691          * they are only 3 extents worth of accounting, so we need to drop in
1692          * this case.
1693          */
1694         old_size = other->end - other->start + 1;
1695         num_extents = count_max_extents(old_size);
1696         old_size = new->end - new->start + 1;
1697         num_extents += count_max_extents(old_size);
1698         if (count_max_extents(new_size) >= num_extents)
1699                 return;
1700
1701         spin_lock(&BTRFS_I(inode)->lock);
1702         btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1703         spin_unlock(&BTRFS_I(inode)->lock);
1704 }
1705
1706 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1707                                       struct inode *inode)
1708 {
1709         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1710
1711         spin_lock(&root->delalloc_lock);
1712         if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1713                 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1714                               &root->delalloc_inodes);
1715                 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1716                         &BTRFS_I(inode)->runtime_flags);
1717                 root->nr_delalloc_inodes++;
1718                 if (root->nr_delalloc_inodes == 1) {
1719                         spin_lock(&fs_info->delalloc_root_lock);
1720                         BUG_ON(!list_empty(&root->delalloc_root));
1721                         list_add_tail(&root->delalloc_root,
1722                                       &fs_info->delalloc_roots);
1723                         spin_unlock(&fs_info->delalloc_root_lock);
1724                 }
1725         }
1726         spin_unlock(&root->delalloc_lock);
1727 }
1728
1729
1730 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1731                                 struct btrfs_inode *inode)
1732 {
1733         struct btrfs_fs_info *fs_info = root->fs_info;
1734
1735         if (!list_empty(&inode->delalloc_inodes)) {
1736                 list_del_init(&inode->delalloc_inodes);
1737                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1738                           &inode->runtime_flags);
1739                 root->nr_delalloc_inodes--;
1740                 if (!root->nr_delalloc_inodes) {
1741                         ASSERT(list_empty(&root->delalloc_inodes));
1742                         spin_lock(&fs_info->delalloc_root_lock);
1743                         BUG_ON(list_empty(&root->delalloc_root));
1744                         list_del_init(&root->delalloc_root);
1745                         spin_unlock(&fs_info->delalloc_root_lock);
1746                 }
1747         }
1748 }
1749
1750 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1751                                      struct btrfs_inode *inode)
1752 {
1753         spin_lock(&root->delalloc_lock);
1754         __btrfs_del_delalloc_inode(root, inode);
1755         spin_unlock(&root->delalloc_lock);
1756 }
1757
1758 /*
1759  * extent_io.c set_bit_hook, used to track delayed allocation
1760  * bytes in this file, and to maintain the list of inodes that
1761  * have pending delalloc work to be done.
1762  */
1763 static void btrfs_set_bit_hook(void *private_data,
1764                                struct extent_state *state, unsigned *bits)
1765 {
1766         struct inode *inode = private_data;
1767
1768         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1769
1770         if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1771                 WARN_ON(1);
1772         /*
1773          * set_bit and clear bit hooks normally require _irqsave/restore
1774          * but in this case, we are only testing for the DELALLOC
1775          * bit, which is only set or cleared with irqs on
1776          */
1777         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1778                 struct btrfs_root *root = BTRFS_I(inode)->root;
1779                 u64 len = state->end + 1 - state->start;
1780                 u32 num_extents = count_max_extents(len);
1781                 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1782
1783                 spin_lock(&BTRFS_I(inode)->lock);
1784                 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1785                 spin_unlock(&BTRFS_I(inode)->lock);
1786
1787                 /* For sanity tests */
1788                 if (btrfs_is_testing(fs_info))
1789                         return;
1790
1791                 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1792                                          fs_info->delalloc_batch);
1793                 spin_lock(&BTRFS_I(inode)->lock);
1794                 BTRFS_I(inode)->delalloc_bytes += len;
1795                 if (*bits & EXTENT_DEFRAG)
1796                         BTRFS_I(inode)->defrag_bytes += len;
1797                 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1798                                          &BTRFS_I(inode)->runtime_flags))
1799                         btrfs_add_delalloc_inodes(root, inode);
1800                 spin_unlock(&BTRFS_I(inode)->lock);
1801         }
1802
1803         if (!(state->state & EXTENT_DELALLOC_NEW) &&
1804             (*bits & EXTENT_DELALLOC_NEW)) {
1805                 spin_lock(&BTRFS_I(inode)->lock);
1806                 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1807                         state->start;
1808                 spin_unlock(&BTRFS_I(inode)->lock);
1809         }
1810 }
1811
1812 /*
1813  * extent_io.c clear_bit_hook, see set_bit_hook for why
1814  */
1815 static void btrfs_clear_bit_hook(void *private_data,
1816                                  struct extent_state *state,
1817                                  unsigned *bits)
1818 {
1819         struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1820         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1821         u64 len = state->end + 1 - state->start;
1822         u32 num_extents = count_max_extents(len);
1823
1824         if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1825                 spin_lock(&inode->lock);
1826                 inode->defrag_bytes -= len;
1827                 spin_unlock(&inode->lock);
1828         }
1829
1830         /*
1831          * set_bit and clear bit hooks normally require _irqsave/restore
1832          * but in this case, we are only testing for the DELALLOC
1833          * bit, which is only set or cleared with irqs on
1834          */
1835         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1836                 struct btrfs_root *root = inode->root;
1837                 bool do_list = !btrfs_is_free_space_inode(inode);
1838
1839                 spin_lock(&inode->lock);
1840                 btrfs_mod_outstanding_extents(inode, -num_extents);
1841                 spin_unlock(&inode->lock);
1842
1843                 /*
1844                  * We don't reserve metadata space for space cache inodes so we
1845                  * don't need to call dellalloc_release_metadata if there is an
1846                  * error.
1847                  */
1848                 if (*bits & EXTENT_CLEAR_META_RESV &&
1849                     root != fs_info->tree_root)
1850                         btrfs_delalloc_release_metadata(inode, len, false);
1851
1852                 /* For sanity tests. */
1853                 if (btrfs_is_testing(fs_info))
1854                         return;
1855
1856                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1857                     do_list && !(state->state & EXTENT_NORESERVE) &&
1858                     (*bits & EXTENT_CLEAR_DATA_RESV))
1859                         btrfs_free_reserved_data_space_noquota(
1860                                         &inode->vfs_inode,
1861                                         state->start, len);
1862
1863                 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1864                                          fs_info->delalloc_batch);
1865                 spin_lock(&inode->lock);
1866                 inode->delalloc_bytes -= len;
1867                 if (do_list && inode->delalloc_bytes == 0 &&
1868                     test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1869                                         &inode->runtime_flags))
1870                         btrfs_del_delalloc_inode(root, inode);
1871                 spin_unlock(&inode->lock);
1872         }
1873
1874         if ((state->state & EXTENT_DELALLOC_NEW) &&
1875             (*bits & EXTENT_DELALLOC_NEW)) {
1876                 spin_lock(&inode->lock);
1877                 ASSERT(inode->new_delalloc_bytes >= len);
1878                 inode->new_delalloc_bytes -= len;
1879                 spin_unlock(&inode->lock);
1880         }
1881 }
1882
1883 /*
1884  * Merge bio hook, this must check the chunk tree to make sure we don't create
1885  * bios that span stripes or chunks
1886  *
1887  * return 1 if page cannot be merged to bio
1888  * return 0 if page can be merged to bio
1889  * return error otherwise
1890  */
1891 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1892                          size_t size, struct bio *bio,
1893                          unsigned long bio_flags)
1894 {
1895         struct inode *inode = page->mapping->host;
1896         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1897         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1898         u64 length = 0;
1899         u64 map_length;
1900         int ret;
1901
1902         if (bio_flags & EXTENT_BIO_COMPRESSED)
1903                 return 0;
1904
1905         length = bio->bi_iter.bi_size;
1906         map_length = length;
1907         ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1908                               NULL, 0);
1909         if (ret < 0)
1910                 return ret;
1911         if (map_length < length + size)
1912                 return 1;
1913         return 0;
1914 }
1915
1916 /*
1917  * in order to insert checksums into the metadata in large chunks,
1918  * we wait until bio submission time.   All the pages in the bio are
1919  * checksummed and sums are attached onto the ordered extent record.
1920  *
1921  * At IO completion time the cums attached on the ordered extent record
1922  * are inserted into the btree
1923  */
1924 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1925                                     u64 bio_offset)
1926 {
1927         struct inode *inode = private_data;
1928         blk_status_t ret = 0;
1929
1930         ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1931         BUG_ON(ret); /* -ENOMEM */
1932         return 0;
1933 }
1934
1935 /*
1936  * in order to insert checksums into the metadata in large chunks,
1937  * we wait until bio submission time.   All the pages in the bio are
1938  * checksummed and sums are attached onto the ordered extent record.
1939  *
1940  * At IO completion time the cums attached on the ordered extent record
1941  * are inserted into the btree
1942  */
1943 blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
1944                           int mirror_num)
1945 {
1946         struct inode *inode = private_data;
1947         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1948         blk_status_t ret;
1949
1950         ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1951         if (ret) {
1952                 bio->bi_status = ret;
1953                 bio_endio(bio);
1954         }
1955         return ret;
1956 }
1957
1958 /*
1959  * extent_io.c submission hook. This does the right thing for csum calculation
1960  * on write, or reading the csums from the tree before a read.
1961  *
1962  * Rules about async/sync submit,
1963  * a) read:                             sync submit
1964  *
1965  * b) write without checksum:           sync submit
1966  *
1967  * c) write with checksum:
1968  *    c-1) if bio is issued by fsync:   sync submit
1969  *         (sync_writers != 0)
1970  *
1971  *    c-2) if root is reloc root:       sync submit
1972  *         (only in case of buffered IO)
1973  *
1974  *    c-3) otherwise:                   async submit
1975  */
1976 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1977                                  int mirror_num, unsigned long bio_flags,
1978                                  u64 bio_offset)
1979 {
1980         struct inode *inode = private_data;
1981         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1982         struct btrfs_root *root = BTRFS_I(inode)->root;
1983         enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1984         blk_status_t ret = 0;
1985         int skip_sum;
1986         int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1987
1988         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1989
1990         if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1991                 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1992
1993         if (bio_op(bio) != REQ_OP_WRITE) {
1994                 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1995                 if (ret)
1996                         goto out;
1997
1998                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1999                         ret = btrfs_submit_compressed_read(inode, bio,
2000                                                            mirror_num,
2001                                                            bio_flags);
2002                         goto out;
2003                 } else if (!skip_sum) {
2004                         ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2005                         if (ret)
2006                                 goto out;
2007                 }
2008                 goto mapit;
2009         } else if (async && !skip_sum) {
2010                 /* csum items have already been cloned */
2011                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2012                         goto mapit;
2013                 /* we're doing a write, do the async checksumming */
2014                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2015                                           bio_offset, inode,
2016                                           btrfs_submit_bio_start);
2017                 goto out;
2018         } else if (!skip_sum) {
2019                 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2020                 if (ret)
2021                         goto out;
2022         }
2023
2024 mapit:
2025         ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2026
2027 out:
2028         if (ret) {
2029                 bio->bi_status = ret;
2030                 bio_endio(bio);
2031         }
2032         return ret;
2033 }
2034
2035 /*
2036  * given a list of ordered sums record them in the inode.  This happens
2037  * at IO completion time based on sums calculated at bio submission time.
2038  */
2039 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2040                              struct inode *inode, struct list_head *list)
2041 {
2042         struct btrfs_ordered_sum *sum;
2043         int ret;
2044
2045         list_for_each_entry(sum, list, list) {
2046                 trans->adding_csums = true;
2047                 ret = btrfs_csum_file_blocks(trans,
2048                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
2049                 trans->adding_csums = false;
2050                 if (ret)
2051                         return ret;
2052         }
2053         return 0;
2054 }
2055
2056 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2057                               unsigned int extra_bits,
2058                               struct extent_state **cached_state, int dedupe)
2059 {
2060         WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2061         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2062                                    extra_bits, cached_state);
2063 }
2064
2065 /* see btrfs_writepage_start_hook for details on why this is required */
2066 struct btrfs_writepage_fixup {
2067         struct page *page;
2068         struct btrfs_work work;
2069 };
2070
2071 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2072 {
2073         struct btrfs_writepage_fixup *fixup;
2074         struct btrfs_ordered_extent *ordered;
2075         struct extent_state *cached_state = NULL;
2076         struct extent_changeset *data_reserved = NULL;
2077         struct page *page;
2078         struct inode *inode;
2079         u64 page_start;
2080         u64 page_end;
2081         int ret;
2082
2083         fixup = container_of(work, struct btrfs_writepage_fixup, work);
2084         page = fixup->page;
2085 again:
2086         lock_page(page);
2087         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2088                 ClearPageChecked(page);
2089                 goto out_page;
2090         }
2091
2092         inode = page->mapping->host;
2093         page_start = page_offset(page);
2094         page_end = page_offset(page) + PAGE_SIZE - 1;
2095
2096         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2097                          &cached_state);
2098
2099         /* already ordered? We're done */
2100         if (PagePrivate2(page))
2101                 goto out;
2102
2103         ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2104                                         PAGE_SIZE);
2105         if (ordered) {
2106                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2107                                      page_end, &cached_state);
2108                 unlock_page(page);
2109                 btrfs_start_ordered_extent(inode, ordered, 1);
2110                 btrfs_put_ordered_extent(ordered);
2111                 goto again;
2112         }
2113
2114         ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2115                                            PAGE_SIZE);
2116         if (ret) {
2117                 mapping_set_error(page->mapping, ret);
2118                 end_extent_writepage(page, ret, page_start, page_end);
2119                 ClearPageChecked(page);
2120                 goto out;
2121          }
2122
2123         ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2124                                         &cached_state, 0);
2125         if (ret) {
2126                 mapping_set_error(page->mapping, ret);
2127                 end_extent_writepage(page, ret, page_start, page_end);
2128                 ClearPageChecked(page);
2129                 goto out;
2130         }
2131
2132         ClearPageChecked(page);
2133         set_page_dirty(page);
2134         btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2135 out:
2136         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2137                              &cached_state);
2138 out_page:
2139         unlock_page(page);
2140         put_page(page);
2141         kfree(fixup);
2142         extent_changeset_free(data_reserved);
2143 }
2144
2145 /*
2146  * There are a few paths in the higher layers of the kernel that directly
2147  * set the page dirty bit without asking the filesystem if it is a
2148  * good idea.  This causes problems because we want to make sure COW
2149  * properly happens and the data=ordered rules are followed.
2150  *
2151  * In our case any range that doesn't have the ORDERED bit set
2152  * hasn't been properly setup for IO.  We kick off an async process
2153  * to fix it up.  The async helper will wait for ordered extents, set
2154  * the delalloc bit and make it safe to write the page.
2155  */
2156 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2157 {
2158         struct inode *inode = page->mapping->host;
2159         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2160         struct btrfs_writepage_fixup *fixup;
2161
2162         /* this page is properly in the ordered list */
2163         if (TestClearPagePrivate2(page))
2164                 return 0;
2165
2166         if (PageChecked(page))
2167                 return -EAGAIN;
2168
2169         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2170         if (!fixup)
2171                 return -EAGAIN;
2172
2173         SetPageChecked(page);
2174         get_page(page);
2175         btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2176                         btrfs_writepage_fixup_worker, NULL, NULL);
2177         fixup->page = page;
2178         btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2179         return -EBUSY;
2180 }
2181
2182 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2183                                        struct inode *inode, u64 file_pos,
2184                                        u64 disk_bytenr, u64 disk_num_bytes,
2185                                        u64 num_bytes, u64 ram_bytes,
2186                                        u8 compression, u8 encryption,
2187                                        u16 other_encoding, int extent_type)
2188 {
2189         struct btrfs_root *root = BTRFS_I(inode)->root;
2190         struct btrfs_file_extent_item *fi;
2191         struct btrfs_path *path;
2192         struct extent_buffer *leaf;
2193         struct btrfs_key ins;
2194         u64 qg_released;
2195         int extent_inserted = 0;
2196         int ret;
2197
2198         path = btrfs_alloc_path();
2199         if (!path)
2200                 return -ENOMEM;
2201
2202         /*
2203          * we may be replacing one extent in the tree with another.
2204          * The new extent is pinned in the extent map, and we don't want
2205          * to drop it from the cache until it is completely in the btree.
2206          *
2207          * So, tell btrfs_drop_extents to leave this extent in the cache.
2208          * the caller is expected to unpin it and allow it to be merged
2209          * with the others.
2210          */
2211         ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2212                                    file_pos + num_bytes, NULL, 0,
2213                                    1, sizeof(*fi), &extent_inserted);
2214         if (ret)
2215                 goto out;
2216
2217         if (!extent_inserted) {
2218                 ins.objectid = btrfs_ino(BTRFS_I(inode));
2219                 ins.offset = file_pos;
2220                 ins.type = BTRFS_EXTENT_DATA_KEY;
2221
2222                 path->leave_spinning = 1;
2223                 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2224                                               sizeof(*fi));
2225                 if (ret)
2226                         goto out;
2227         }
2228         leaf = path->nodes[0];
2229         fi = btrfs_item_ptr(leaf, path->slots[0],
2230                             struct btrfs_file_extent_item);
2231         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2232         btrfs_set_file_extent_type(leaf, fi, extent_type);
2233         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2234         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2235         btrfs_set_file_extent_offset(leaf, fi, 0);
2236         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2237         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2238         btrfs_set_file_extent_compression(leaf, fi, compression);
2239         btrfs_set_file_extent_encryption(leaf, fi, encryption);
2240         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2241
2242         btrfs_mark_buffer_dirty(leaf);
2243         btrfs_release_path(path);
2244
2245         inode_add_bytes(inode, num_bytes);
2246
2247         ins.objectid = disk_bytenr;
2248         ins.offset = disk_num_bytes;
2249         ins.type = BTRFS_EXTENT_ITEM_KEY;
2250
2251         /*
2252          * Release the reserved range from inode dirty range map, as it is
2253          * already moved into delayed_ref_head
2254          */
2255         ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2256         if (ret < 0)
2257                 goto out;
2258         qg_released = ret;
2259         ret = btrfs_alloc_reserved_file_extent(trans, root,
2260                                                btrfs_ino(BTRFS_I(inode)),
2261                                                file_pos, qg_released, &ins);
2262 out:
2263         btrfs_free_path(path);
2264
2265         return ret;
2266 }
2267
2268 /* snapshot-aware defrag */
2269 struct sa_defrag_extent_backref {
2270         struct rb_node node;
2271         struct old_sa_defrag_extent *old;
2272         u64 root_id;
2273         u64 inum;
2274         u64 file_pos;
2275         u64 extent_offset;
2276         u64 num_bytes;
2277         u64 generation;
2278 };
2279
2280 struct old_sa_defrag_extent {
2281         struct list_head list;
2282         struct new_sa_defrag_extent *new;
2283
2284         u64 extent_offset;
2285         u64 bytenr;
2286         u64 offset;
2287         u64 len;
2288         int count;
2289 };
2290
2291 struct new_sa_defrag_extent {
2292         struct rb_root root;
2293         struct list_head head;
2294         struct btrfs_path *path;
2295         struct inode *inode;
2296         u64 file_pos;
2297         u64 len;
2298         u64 bytenr;
2299         u64 disk_len;
2300         u8 compress_type;
2301 };
2302
2303 static int backref_comp(struct sa_defrag_extent_backref *b1,
2304                         struct sa_defrag_extent_backref *b2)
2305 {
2306         if (b1->root_id < b2->root_id)
2307                 return -1;
2308         else if (b1->root_id > b2->root_id)
2309                 return 1;
2310
2311         if (b1->inum < b2->inum)
2312                 return -1;
2313         else if (b1->inum > b2->inum)
2314                 return 1;
2315
2316         if (b1->file_pos < b2->file_pos)
2317                 return -1;
2318         else if (b1->file_pos > b2->file_pos)
2319                 return 1;
2320
2321         /*
2322          * [------------------------------] ===> (a range of space)
2323          *     |<--->|   |<---->| =============> (fs/file tree A)
2324          * |<---------------------------->| ===> (fs/file tree B)
2325          *
2326          * A range of space can refer to two file extents in one tree while
2327          * refer to only one file extent in another tree.
2328          *
2329          * So we may process a disk offset more than one time(two extents in A)
2330          * and locate at the same extent(one extent in B), then insert two same
2331          * backrefs(both refer to the extent in B).
2332          */
2333         return 0;
2334 }
2335
2336 static void backref_insert(struct rb_root *root,
2337                            struct sa_defrag_extent_backref *backref)
2338 {
2339         struct rb_node **p = &root->rb_node;
2340         struct rb_node *parent = NULL;
2341         struct sa_defrag_extent_backref *entry;
2342         int ret;
2343
2344         while (*p) {
2345                 parent = *p;
2346                 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2347
2348                 ret = backref_comp(backref, entry);
2349                 if (ret < 0)
2350                         p = &(*p)->rb_left;
2351                 else
2352                         p = &(*p)->rb_right;
2353         }
2354
2355         rb_link_node(&backref->node, parent, p);
2356         rb_insert_color(&backref->node, root);
2357 }
2358
2359 /*
2360  * Note the backref might has changed, and in this case we just return 0.
2361  */
2362 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2363                                        void *ctx)
2364 {
2365         struct btrfs_file_extent_item *extent;
2366         struct old_sa_defrag_extent *old = ctx;
2367         struct new_sa_defrag_extent *new = old->new;
2368         struct btrfs_path *path = new->path;
2369         struct btrfs_key key;
2370         struct btrfs_root *root;
2371         struct sa_defrag_extent_backref *backref;
2372         struct extent_buffer *leaf;
2373         struct inode *inode = new->inode;
2374         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2375         int slot;
2376         int ret;
2377         u64 extent_offset;
2378         u64 num_bytes;
2379
2380         if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2381             inum == btrfs_ino(BTRFS_I(inode)))
2382                 return 0;
2383
2384         key.objectid = root_id;
2385         key.type = BTRFS_ROOT_ITEM_KEY;
2386         key.offset = (u64)-1;
2387
2388         root = btrfs_read_fs_root_no_name(fs_info, &key);
2389         if (IS_ERR(root)) {
2390                 if (PTR_ERR(root) == -ENOENT)
2391                         return 0;
2392                 WARN_ON(1);
2393                 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2394                          inum, offset, root_id);
2395                 return PTR_ERR(root);
2396         }
2397
2398         key.objectid = inum;
2399         key.type = BTRFS_EXTENT_DATA_KEY;
2400         if (offset > (u64)-1 << 32)
2401                 key.offset = 0;
2402         else
2403                 key.offset = offset;
2404
2405         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2406         if (WARN_ON(ret < 0))
2407                 return ret;
2408         ret = 0;
2409
2410         while (1) {
2411                 cond_resched();
2412
2413                 leaf = path->nodes[0];
2414                 slot = path->slots[0];
2415
2416                 if (slot >= btrfs_header_nritems(leaf)) {
2417                         ret = btrfs_next_leaf(root, path);
2418                         if (ret < 0) {
2419                                 goto out;
2420                         } else if (ret > 0) {
2421                                 ret = 0;
2422                                 goto out;
2423                         }
2424                         continue;
2425                 }
2426
2427                 path->slots[0]++;
2428
2429                 btrfs_item_key_to_cpu(leaf, &key, slot);
2430
2431                 if (key.objectid > inum)
2432                         goto out;
2433
2434                 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2435                         continue;
2436
2437                 extent = btrfs_item_ptr(leaf, slot,
2438                                         struct btrfs_file_extent_item);
2439
2440                 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2441                         continue;
2442
2443                 /*
2444                  * 'offset' refers to the exact key.offset,
2445                  * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2446                  * (key.offset - extent_offset).
2447                  */
2448                 if (key.offset != offset)
2449                         continue;
2450
2451                 extent_offset = btrfs_file_extent_offset(leaf, extent);
2452                 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2453
2454                 if (extent_offset >= old->extent_offset + old->offset +
2455                     old->len || extent_offset + num_bytes <=
2456                     old->extent_offset + old->offset)
2457                         continue;
2458                 break;
2459         }
2460
2461         backref = kmalloc(sizeof(*backref), GFP_NOFS);
2462         if (!backref) {
2463                 ret = -ENOENT;
2464                 goto out;
2465         }
2466
2467         backref->root_id = root_id;
2468         backref->inum = inum;
2469         backref->file_pos = offset;
2470         backref->num_bytes = num_bytes;
2471         backref->extent_offset = extent_offset;
2472         backref->generation = btrfs_file_extent_generation(leaf, extent);
2473         backref->old = old;
2474         backref_insert(&new->root, backref);
2475         old->count++;
2476 out:
2477         btrfs_release_path(path);
2478         WARN_ON(ret);
2479         return ret;
2480 }
2481
2482 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2483                                    struct new_sa_defrag_extent *new)
2484 {
2485         struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2486         struct old_sa_defrag_extent *old, *tmp;
2487         int ret;
2488
2489         new->path = path;
2490
2491         list_for_each_entry_safe(old, tmp, &new->head, list) {
2492                 ret = iterate_inodes_from_logical(old->bytenr +
2493                                                   old->extent_offset, fs_info,
2494                                                   path, record_one_backref,
2495                                                   old, false);
2496                 if (ret < 0 && ret != -ENOENT)
2497                         return false;
2498
2499                 /* no backref to be processed for this extent */
2500                 if (!old->count) {
2501                         list_del(&old->list);
2502                         kfree(old);
2503                 }
2504         }
2505
2506         if (list_empty(&new->head))
2507                 return false;
2508
2509         return true;
2510 }
2511
2512 static int relink_is_mergable(struct extent_buffer *leaf,
2513                               struct btrfs_file_extent_item *fi,
2514                               struct new_sa_defrag_extent *new)
2515 {
2516         if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2517                 return 0;
2518
2519         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2520                 return 0;
2521
2522         if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2523                 return 0;
2524
2525         if (btrfs_file_extent_encryption(leaf, fi) ||
2526             btrfs_file_extent_other_encoding(leaf, fi))
2527                 return 0;
2528
2529         return 1;
2530 }
2531
2532 /*
2533  * Note the backref might has changed, and in this case we just return 0.
2534  */
2535 static noinline int relink_extent_backref(struct btrfs_path *path,
2536                                  struct sa_defrag_extent_backref *prev,
2537                                  struct sa_defrag_extent_backref *backref)
2538 {
2539         struct btrfs_file_extent_item *extent;
2540         struct btrfs_file_extent_item *item;
2541         struct btrfs_ordered_extent *ordered;
2542         struct btrfs_trans_handle *trans;
2543         struct btrfs_root *root;
2544         struct btrfs_key key;
2545         struct extent_buffer *leaf;
2546         struct old_sa_defrag_extent *old = backref->old;
2547         struct new_sa_defrag_extent *new = old->new;
2548         struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2549         struct inode *inode;
2550         struct extent_state *cached = NULL;
2551         int ret = 0;
2552         u64 start;
2553         u64 len;
2554         u64 lock_start;
2555         u64 lock_end;
2556         bool merge = false;
2557         int index;
2558
2559         if (prev && prev->root_id == backref->root_id &&
2560             prev->inum == backref->inum &&
2561             prev->file_pos + prev->num_bytes == backref->file_pos)
2562                 merge = true;
2563
2564         /* step 1: get root */
2565         key.objectid = backref->root_id;
2566         key.type = BTRFS_ROOT_ITEM_KEY;
2567         key.offset = (u64)-1;
2568
2569         index = srcu_read_lock(&fs_info->subvol_srcu);
2570
2571         root = btrfs_read_fs_root_no_name(fs_info, &key);
2572         if (IS_ERR(root)) {
2573                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2574                 if (PTR_ERR(root) == -ENOENT)
2575                         return 0;
2576                 return PTR_ERR(root);
2577         }
2578
2579         if (btrfs_root_readonly(root)) {
2580                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2581                 return 0;
2582         }
2583
2584         /* step 2: get inode */
2585         key.objectid = backref->inum;
2586         key.type = BTRFS_INODE_ITEM_KEY;
2587         key.offset = 0;
2588
2589         inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2590         if (IS_ERR(inode)) {
2591                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2592                 return 0;
2593         }
2594
2595         srcu_read_unlock(&fs_info->subvol_srcu, index);
2596
2597         /* step 3: relink backref */
2598         lock_start = backref->file_pos;
2599         lock_end = backref->file_pos + backref->num_bytes - 1;
2600         lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2601                          &cached);
2602
2603         ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2604         if (ordered) {
2605                 btrfs_put_ordered_extent(ordered);
2606                 goto out_unlock;
2607         }
2608
2609         trans = btrfs_join_transaction(root);
2610         if (IS_ERR(trans)) {
2611                 ret = PTR_ERR(trans);
2612                 goto out_unlock;
2613         }
2614
2615         key.objectid = backref->inum;
2616         key.type = BTRFS_EXTENT_DATA_KEY;
2617         key.offset = backref->file_pos;
2618
2619         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2620         if (ret < 0) {
2621                 goto out_free_path;
2622         } else if (ret > 0) {
2623                 ret = 0;
2624                 goto out_free_path;
2625         }
2626
2627         extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2628                                 struct btrfs_file_extent_item);
2629
2630         if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2631             backref->generation)
2632                 goto out_free_path;
2633
2634         btrfs_release_path(path);
2635
2636         start = backref->file_pos;
2637         if (backref->extent_offset < old->extent_offset + old->offset)
2638                 start += old->extent_offset + old->offset -
2639                          backref->extent_offset;
2640
2641         len = min(backref->extent_offset + backref->num_bytes,
2642                   old->extent_offset + old->offset + old->len);
2643         len -= max(backref->extent_offset, old->extent_offset + old->offset);
2644
2645         ret = btrfs_drop_extents(trans, root, inode, start,
2646                                  start + len, 1);
2647         if (ret)
2648                 goto out_free_path;
2649 again:
2650         key.objectid = btrfs_ino(BTRFS_I(inode));
2651         key.type = BTRFS_EXTENT_DATA_KEY;
2652         key.offset = start;
2653
2654         path->leave_spinning = 1;
2655         if (merge) {
2656                 struct btrfs_file_extent_item *fi;
2657                 u64 extent_len;
2658                 struct btrfs_key found_key;
2659
2660                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2661                 if (ret < 0)
2662                         goto out_free_path;
2663
2664                 path->slots[0]--;
2665                 leaf = path->nodes[0];
2666                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2667
2668                 fi = btrfs_item_ptr(leaf, path->slots[0],
2669                                     struct btrfs_file_extent_item);
2670                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2671
2672                 if (extent_len + found_key.offset == start &&
2673                     relink_is_mergable(leaf, fi, new)) {
2674                         btrfs_set_file_extent_num_bytes(leaf, fi,
2675                                                         extent_len + len);
2676                         btrfs_mark_buffer_dirty(leaf);
2677                         inode_add_bytes(inode, len);
2678
2679                         ret = 1;
2680                         goto out_free_path;
2681                 } else {
2682                         merge = false;
2683                         btrfs_release_path(path);
2684                         goto again;
2685                 }
2686         }
2687
2688         ret = btrfs_insert_empty_item(trans, root, path, &key,
2689                                         sizeof(*extent));
2690         if (ret) {
2691                 btrfs_abort_transaction(trans, ret);
2692                 goto out_free_path;
2693         }
2694
2695         leaf = path->nodes[0];
2696         item = btrfs_item_ptr(leaf, path->slots[0],
2697                                 struct btrfs_file_extent_item);
2698         btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2699         btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2700         btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2701         btrfs_set_file_extent_num_bytes(leaf, item, len);
2702         btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2703         btrfs_set_file_extent_generation(leaf, item, trans->transid);
2704         btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2705         btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2706         btrfs_set_file_extent_encryption(leaf, item, 0);
2707         btrfs_set_file_extent_other_encoding(leaf, item, 0);
2708
2709         btrfs_mark_buffer_dirty(leaf);
2710         inode_add_bytes(inode, len);
2711         btrfs_release_path(path);
2712
2713         ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2714                         new->disk_len, 0,
2715                         backref->root_id, backref->inum,
2716                         new->file_pos); /* start - extent_offset */
2717         if (ret) {
2718                 btrfs_abort_transaction(trans, ret);
2719                 goto out_free_path;
2720         }
2721
2722         ret = 1;
2723 out_free_path:
2724         btrfs_release_path(path);
2725         path->leave_spinning = 0;
2726         btrfs_end_transaction(trans);
2727 out_unlock:
2728         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2729                              &cached);
2730         iput(inode);
2731         return ret;
2732 }
2733
2734 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2735 {
2736         struct old_sa_defrag_extent *old, *tmp;
2737
2738         if (!new)
2739                 return;
2740
2741         list_for_each_entry_safe(old, tmp, &new->head, list) {
2742                 kfree(old);
2743         }
2744         kfree(new);
2745 }
2746
2747 static void relink_file_extents(struct new_sa_defrag_extent *new)
2748 {
2749         struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2750         struct btrfs_path *path;
2751         struct sa_defrag_extent_backref *backref;
2752         struct sa_defrag_extent_backref *prev = NULL;
2753         struct inode *inode;
2754         struct rb_node *node;
2755         int ret;
2756
2757         inode = new->inode;
2758
2759         path = btrfs_alloc_path();
2760         if (!path)
2761                 return;
2762
2763         if (!record_extent_backrefs(path, new)) {
2764                 btrfs_free_path(path);
2765                 goto out;
2766         }
2767         btrfs_release_path(path);
2768
2769         while (1) {
2770                 node = rb_first(&new->root);
2771                 if (!node)
2772                         break;
2773                 rb_erase(node, &new->root);
2774
2775                 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2776
2777                 ret = relink_extent_backref(path, prev, backref);
2778                 WARN_ON(ret < 0);
2779
2780                 kfree(prev);
2781
2782                 if (ret == 1)
2783                         prev = backref;
2784                 else
2785                         prev = NULL;
2786                 cond_resched();
2787         }
2788         kfree(prev);
2789
2790         btrfs_free_path(path);
2791 out:
2792         free_sa_defrag_extent(new);
2793
2794         atomic_dec(&fs_info->defrag_running);
2795         wake_up(&fs_info->transaction_wait);
2796 }
2797
2798 static struct new_sa_defrag_extent *
2799 record_old_file_extents(struct inode *inode,
2800                         struct btrfs_ordered_extent *ordered)
2801 {
2802         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2803         struct btrfs_root *root = BTRFS_I(inode)->root;
2804         struct btrfs_path *path;
2805         struct btrfs_key key;
2806         struct old_sa_defrag_extent *old;
2807         struct new_sa_defrag_extent *new;
2808         int ret;
2809
2810         new = kmalloc(sizeof(*new), GFP_NOFS);
2811         if (!new)
2812                 return NULL;
2813
2814         new->inode = inode;
2815         new->file_pos = ordered->file_offset;
2816         new->len = ordered->len;
2817         new->bytenr = ordered->start;
2818         new->disk_len = ordered->disk_len;
2819         new->compress_type = ordered->compress_type;
2820         new->root = RB_ROOT;
2821         INIT_LIST_HEAD(&new->head);
2822
2823         path = btrfs_alloc_path();
2824         if (!path)
2825                 goto out_kfree;
2826
2827         key.objectid = btrfs_ino(BTRFS_I(inode));
2828         key.type = BTRFS_EXTENT_DATA_KEY;
2829         key.offset = new->file_pos;
2830
2831         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2832         if (ret < 0)
2833                 goto out_free_path;
2834         if (ret > 0 && path->slots[0] > 0)
2835                 path->slots[0]--;
2836
2837         /* find out all the old extents for the file range */
2838         while (1) {
2839                 struct btrfs_file_extent_item *extent;
2840                 struct extent_buffer *l;
2841                 int slot;
2842                 u64 num_bytes;
2843                 u64 offset;
2844                 u64 end;
2845                 u64 disk_bytenr;
2846                 u64 extent_offset;
2847
2848                 l = path->nodes[0];
2849                 slot = path->slots[0];
2850
2851                 if (slot >= btrfs_header_nritems(l)) {
2852                         ret = btrfs_next_leaf(root, path);
2853                         if (ret < 0)
2854                                 goto out_free_path;
2855                         else if (ret > 0)
2856                                 break;
2857                         continue;
2858                 }
2859
2860                 btrfs_item_key_to_cpu(l, &key, slot);
2861
2862                 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2863                         break;
2864                 if (key.type != BTRFS_EXTENT_DATA_KEY)
2865                         break;
2866                 if (key.offset >= new->file_pos + new->len)
2867                         break;
2868
2869                 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2870
2871                 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2872                 if (key.offset + num_bytes < new->file_pos)
2873                         goto next;
2874
2875                 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2876                 if (!disk_bytenr)
2877                         goto next;
2878
2879                 extent_offset = btrfs_file_extent_offset(l, extent);
2880
2881                 old = kmalloc(sizeof(*old), GFP_NOFS);
2882                 if (!old)
2883                         goto out_free_path;
2884
2885                 offset = max(new->file_pos, key.offset);
2886                 end = min(new->file_pos + new->len, key.offset + num_bytes);
2887
2888                 old->bytenr = disk_bytenr;
2889                 old->extent_offset = extent_offset;
2890                 old->offset = offset - key.offset;
2891                 old->len = end - offset;
2892                 old->new = new;
2893                 old->count = 0;
2894                 list_add_tail(&old->list, &new->head);
2895 next:
2896                 path->slots[0]++;
2897                 cond_resched();
2898         }
2899
2900         btrfs_free_path(path);
2901         atomic_inc(&fs_info->defrag_running);
2902
2903         return new;
2904
2905 out_free_path:
2906         btrfs_free_path(path);
2907 out_kfree:
2908         free_sa_defrag_extent(new);
2909         return NULL;
2910 }
2911
2912 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2913                                          u64 start, u64 len)
2914 {
2915         struct btrfs_block_group_cache *cache;
2916
2917         cache = btrfs_lookup_block_group(fs_info, start);
2918         ASSERT(cache);
2919
2920         spin_lock(&cache->lock);
2921         cache->delalloc_bytes -= len;
2922         spin_unlock(&cache->lock);
2923
2924         btrfs_put_block_group(cache);
2925 }
2926
2927 /* as ordered data IO finishes, this gets called so we can finish
2928  * an ordered extent if the range of bytes in the file it covers are
2929  * fully written.
2930  */
2931 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2932 {
2933         struct inode *inode = ordered_extent->inode;
2934         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2935         struct btrfs_root *root = BTRFS_I(inode)->root;
2936         struct btrfs_trans_handle *trans = NULL;
2937         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2938         struct extent_state *cached_state = NULL;
2939         struct new_sa_defrag_extent *new = NULL;
2940         int compress_type = 0;
2941         int ret = 0;
2942         u64 logical_len = ordered_extent->len;
2943         bool nolock;
2944         bool truncated = false;
2945         bool range_locked = false;
2946         bool clear_new_delalloc_bytes = false;
2947
2948         if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2949             !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2950             !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2951                 clear_new_delalloc_bytes = true;
2952
2953         nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2954
2955         if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2956                 ret = -EIO;
2957                 goto out;
2958         }
2959
2960         btrfs_free_io_failure_record(BTRFS_I(inode),
2961                         ordered_extent->file_offset,
2962                         ordered_extent->file_offset +
2963                         ordered_extent->len - 1);
2964
2965         if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2966                 truncated = true;
2967                 logical_len = ordered_extent->truncated_len;
2968                 /* Truncated the entire extent, don't bother adding */
2969                 if (!logical_len)
2970                         goto out;
2971         }
2972
2973         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2974                 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2975
2976                 /*
2977                  * For mwrite(mmap + memset to write) case, we still reserve
2978                  * space for NOCOW range.
2979                  * As NOCOW won't cause a new delayed ref, just free the space
2980                  */
2981                 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2982                                        ordered_extent->len);
2983                 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2984                 if (nolock)
2985                         trans = btrfs_join_transaction_nolock(root);
2986                 else
2987                         trans = btrfs_join_transaction(root);
2988                 if (IS_ERR(trans)) {
2989                         ret = PTR_ERR(trans);
2990                         trans = NULL;
2991                         goto out;
2992                 }
2993                 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2994                 ret = btrfs_update_inode_fallback(trans, root, inode);
2995                 if (ret) /* -ENOMEM or corruption */
2996                         btrfs_abort_transaction(trans, ret);
2997                 goto out;
2998         }
2999
3000         range_locked = true;
3001         lock_extent_bits(io_tree, ordered_extent->file_offset,
3002                          ordered_extent->file_offset + ordered_extent->len - 1,
3003                          &cached_state);
3004
3005         ret = test_range_bit(io_tree, ordered_extent->file_offset,
3006                         ordered_extent->file_offset + ordered_extent->len - 1,
3007                         EXTENT_DEFRAG, 0, cached_state);
3008         if (ret) {
3009                 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3010                 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3011                         /* the inode is shared */
3012                         new = record_old_file_extents(inode, ordered_extent);
3013
3014                 clear_extent_bit(io_tree, ordered_extent->file_offset,
3015                         ordered_extent->file_offset + ordered_extent->len - 1,
3016                         EXTENT_DEFRAG, 0, 0, &cached_state);
3017         }
3018
3019         if (nolock)
3020                 trans = btrfs_join_transaction_nolock(root);
3021         else
3022                 trans = btrfs_join_transaction(root);
3023         if (IS_ERR(trans)) {
3024                 ret = PTR_ERR(trans);
3025                 trans = NULL;
3026                 goto out;
3027         }
3028
3029         trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3030
3031         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3032                 compress_type = ordered_extent->compress_type;
3033         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3034                 BUG_ON(compress_type);
3035                 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3036                                        ordered_extent->len);
3037                 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3038                                                 ordered_extent->file_offset,
3039                                                 ordered_extent->file_offset +
3040                                                 logical_len);
3041         } else {
3042                 BUG_ON(root == fs_info->tree_root);
3043                 ret = insert_reserved_file_extent(trans, inode,
3044                                                 ordered_extent->file_offset,
3045                                                 ordered_extent->start,
3046                                                 ordered_extent->disk_len,
3047                                                 logical_len, logical_len,
3048                                                 compress_type, 0, 0,
3049                                                 BTRFS_FILE_EXTENT_REG);
3050                 if (!ret)
3051                         btrfs_release_delalloc_bytes(fs_info,
3052                                                      ordered_extent->start,
3053                                                      ordered_extent->disk_len);
3054         }
3055         unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3056                            ordered_extent->file_offset, ordered_extent->len,
3057                            trans->transid);
3058         if (ret < 0) {
3059                 btrfs_abort_transaction(trans, ret);
3060                 goto out;
3061         }
3062
3063         ret = add_pending_csums(trans, inode, &ordered_extent->list);
3064         if (ret) {
3065                 btrfs_abort_transaction(trans, ret);
3066                 goto out;
3067         }
3068
3069         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3070         ret = btrfs_update_inode_fallback(trans, root, inode);
3071         if (ret) { /* -ENOMEM or corruption */
3072                 btrfs_abort_transaction(trans, ret);
3073                 goto out;
3074         }
3075         ret = 0;
3076 out:
3077         if (range_locked || clear_new_delalloc_bytes) {
3078                 unsigned int clear_bits = 0;
3079
3080                 if (range_locked)
3081                         clear_bits |= EXTENT_LOCKED;
3082                 if (clear_new_delalloc_bytes)
3083                         clear_bits |= EXTENT_DELALLOC_NEW;
3084                 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3085                                  ordered_extent->file_offset,
3086                                  ordered_extent->file_offset +
3087                                  ordered_extent->len - 1,
3088                                  clear_bits,
3089                                  (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3090                                  0, &cached_state);
3091         }
3092
3093         if (trans)
3094                 btrfs_end_transaction(trans);
3095
3096         if (ret || truncated) {
3097                 u64 start, end;
3098
3099                 if (truncated)
3100                         start = ordered_extent->file_offset + logical_len;
3101                 else
3102                         start = ordered_extent->file_offset;
3103                 end = ordered_extent->file_offset + ordered_extent->len - 1;
3104                 clear_extent_uptodate(io_tree, start, end, NULL);
3105
3106                 /* Drop the cache for the part of the extent we didn't write. */
3107                 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3108
3109                 /*
3110                  * If the ordered extent had an IOERR or something else went
3111                  * wrong we need to return the space for this ordered extent
3112                  * back to the allocator.  We only free the extent in the
3113                  * truncated case if we didn't write out the extent at all.
3114                  */
3115                 if ((ret || !logical_len) &&
3116                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3117                     !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3118                         btrfs_free_reserved_extent(fs_info,
3119                                                    ordered_extent->start,
3120                                                    ordered_extent->disk_len, 1);
3121         }
3122
3123
3124         /*
3125          * This needs to be done to make sure anybody waiting knows we are done
3126          * updating everything for this ordered extent.
3127          */
3128         btrfs_remove_ordered_extent(inode, ordered_extent);
3129
3130         /* for snapshot-aware defrag */
3131         if (new) {
3132                 if (ret) {
3133                         free_sa_defrag_extent(new);
3134                         atomic_dec(&fs_info->defrag_running);
3135                 } else {
3136                         relink_file_extents(new);
3137                 }
3138         }
3139
3140         /* once for us */
3141         btrfs_put_ordered_extent(ordered_extent);
3142         /* once for the tree */
3143         btrfs_put_ordered_extent(ordered_extent);
3144
3145         /* Try to release some metadata so we don't get an OOM but don't wait */
3146         btrfs_btree_balance_dirty_nodelay(fs_info);
3147
3148         return ret;
3149 }
3150
3151 static void finish_ordered_fn(struct btrfs_work *work)
3152 {
3153         struct btrfs_ordered_extent *ordered_extent;
3154         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3155         btrfs_finish_ordered_io(ordered_extent);
3156 }
3157
3158 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3159                                 struct extent_state *state, int uptodate)
3160 {
3161         struct inode *inode = page->mapping->host;
3162         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3163         struct btrfs_ordered_extent *ordered_extent = NULL;
3164         struct btrfs_workqueue *wq;
3165         btrfs_work_func_t func;
3166
3167         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3168
3169         ClearPagePrivate2(page);
3170         if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3171                                             end - start + 1, uptodate))
3172                 return;
3173
3174         if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3175                 wq = fs_info->endio_freespace_worker;
3176                 func = btrfs_freespace_write_helper;
3177         } else {
3178                 wq = fs_info->endio_write_workers;
3179                 func = btrfs_endio_write_helper;
3180         }
3181
3182         btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3183                         NULL);
3184         btrfs_queue_work(wq, &ordered_extent->work);
3185 }
3186
3187 static int __readpage_endio_check(struct inode *inode,
3188                                   struct btrfs_io_bio *io_bio,
3189                                   int icsum, struct page *page,
3190                                   int pgoff, u64 start, size_t len)
3191 {
3192         char *kaddr;
3193         u32 csum_expected;
3194         u32 csum = ~(u32)0;
3195
3196         csum_expected = *(((u32 *)io_bio->csum) + icsum);
3197
3198         kaddr = kmap_atomic(page);
3199         csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3200         btrfs_csum_final(csum, (u8 *)&csum);
3201         if (csum != csum_expected)
3202                 goto zeroit;
3203
3204         kunmap_atomic(kaddr);
3205         return 0;
3206 zeroit:
3207         btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3208                                     io_bio->mirror_num);
3209         memset(kaddr + pgoff, 1, len);
3210         flush_dcache_page(page);
3211         kunmap_atomic(kaddr);
3212         return -EIO;
3213 }
3214
3215 /*
3216  * when reads are done, we need to check csums to verify the data is correct
3217  * if there's a match, we allow the bio to finish.  If not, the code in
3218  * extent_io.c will try to find good copies for us.
3219  */
3220 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3221                                       u64 phy_offset, struct page *page,
3222                                       u64 start, u64 end, int mirror)
3223 {
3224         size_t offset = start - page_offset(page);
3225         struct inode *inode = page->mapping->host;
3226         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3227         struct btrfs_root *root = BTRFS_I(inode)->root;
3228
3229         if (PageChecked(page)) {
3230                 ClearPageChecked(page);
3231                 return 0;
3232         }
3233
3234         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3235                 return 0;
3236
3237         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3238             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3239                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3240                 return 0;
3241         }
3242
3243         phy_offset >>= inode->i_sb->s_blocksize_bits;
3244         return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3245                                       start, (size_t)(end - start + 1));
3246 }
3247
3248 /*
3249  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3250  *
3251  * @inode: The inode we want to perform iput on
3252  *
3253  * This function uses the generic vfs_inode::i_count to track whether we should
3254  * just decrement it (in case it's > 1) or if this is the last iput then link
3255  * the inode to the delayed iput machinery. Delayed iputs are processed at
3256  * transaction commit time/superblock commit/cleaner kthread.
3257  */
3258 void btrfs_add_delayed_iput(struct inode *inode)
3259 {
3260         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3261         struct btrfs_inode *binode = BTRFS_I(inode);
3262
3263         if (atomic_add_unless(&inode->i_count, -1, 1))
3264                 return;
3265
3266         spin_lock(&fs_info->delayed_iput_lock);
3267         ASSERT(list_empty(&binode->delayed_iput));
3268         list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3269         spin_unlock(&fs_info->delayed_iput_lock);
3270 }
3271
3272 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3273 {
3274
3275         spin_lock(&fs_info->delayed_iput_lock);
3276         while (!list_empty(&fs_info->delayed_iputs)) {
3277                 struct btrfs_inode *inode;
3278
3279                 inode = list_first_entry(&fs_info->delayed_iputs,
3280                                 struct btrfs_inode, delayed_iput);
3281                 list_del_init(&inode->delayed_iput);
3282                 spin_unlock(&fs_info->delayed_iput_lock);
3283                 iput(&inode->vfs_inode);
3284                 spin_lock(&fs_info->delayed_iput_lock);
3285         }
3286         spin_unlock(&fs_info->delayed_iput_lock);
3287 }
3288
3289 /*
3290  * This creates an orphan entry for the given inode in case something goes wrong
3291  * in the middle of an unlink.
3292  */
3293 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3294                      struct btrfs_inode *inode)
3295 {
3296         int ret;
3297
3298         ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3299         if (ret && ret != -EEXIST) {
3300                 btrfs_abort_transaction(trans, ret);
3301                 return ret;
3302         }
3303
3304         return 0;
3305 }
3306
3307 /*
3308  * We have done the delete so we can go ahead and remove the orphan item for
3309  * this particular inode.
3310  */
3311 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3312                             struct btrfs_inode *inode)
3313 {
3314         return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3315 }
3316
3317 /*
3318  * this cleans up any orphans that may be left on the list from the last use
3319  * of this root.
3320  */
3321 int btrfs_orphan_cleanup(struct btrfs_root *root)
3322 {
3323         struct btrfs_fs_info *fs_info = root->fs_info;
3324         struct btrfs_path *path;
3325         struct extent_buffer *leaf;
3326         struct btrfs_key key, found_key;
3327         struct btrfs_trans_handle *trans;
3328         struct inode *inode;
3329         u64 last_objectid = 0;
3330         int ret = 0, nr_unlink = 0;
3331
3332         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3333                 return 0;
3334
3335         path = btrfs_alloc_path();
3336         if (!path) {
3337                 ret = -ENOMEM;
3338                 goto out;
3339         }
3340         path->reada = READA_BACK;
3341
3342         key.objectid = BTRFS_ORPHAN_OBJECTID;
3343         key.type = BTRFS_ORPHAN_ITEM_KEY;
3344         key.offset = (u64)-1;
3345
3346         while (1) {
3347                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3348                 if (ret < 0)
3349                         goto out;
3350
3351                 /*
3352                  * if ret == 0 means we found what we were searching for, which
3353                  * is weird, but possible, so only screw with path if we didn't
3354                  * find the key and see if we have stuff that matches
3355                  */
3356                 if (ret > 0) {
3357                         ret = 0;
3358                         if (path->slots[0] == 0)
3359                                 break;
3360                         path->slots[0]--;
3361                 }
3362
3363                 /* pull out the item */
3364                 leaf = path->nodes[0];
3365                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3366
3367                 /* make sure the item matches what we want */
3368                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3369                         break;
3370                 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3371                         break;
3372
3373                 /* release the path since we're done with it */
3374                 btrfs_release_path(path);
3375
3376                 /*
3377                  * this is where we are basically btrfs_lookup, without the
3378                  * crossing root thing.  we store the inode number in the
3379                  * offset of the orphan item.
3380                  */
3381
3382                 if (found_key.offset == last_objectid) {
3383                         btrfs_err(fs_info,
3384                                   "Error removing orphan entry, stopping orphan cleanup");
3385                         ret = -EINVAL;
3386                         goto out;
3387                 }
3388
3389                 last_objectid = found_key.offset;
3390
3391                 found_key.objectid = found_key.offset;
3392                 found_key.type = BTRFS_INODE_ITEM_KEY;
3393                 found_key.offset = 0;
3394                 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3395                 ret = PTR_ERR_OR_ZERO(inode);
3396                 if (ret && ret != -ENOENT)
3397                         goto out;
3398
3399                 if (ret == -ENOENT && root == fs_info->tree_root) {
3400                         struct btrfs_root *dead_root;
3401                         struct btrfs_fs_info *fs_info = root->fs_info;
3402                         int is_dead_root = 0;
3403
3404                         /*
3405                          * this is an orphan in the tree root. Currently these
3406                          * could come from 2 sources:
3407                          *  a) a snapshot deletion in progress
3408                          *  b) a free space cache inode
3409                          * We need to distinguish those two, as the snapshot
3410                          * orphan must not get deleted.
3411                          * find_dead_roots already ran before us, so if this
3412                          * is a snapshot deletion, we should find the root
3413                          * in the dead_roots list
3414                          */
3415                         spin_lock(&fs_info->trans_lock);
3416                         list_for_each_entry(dead_root, &fs_info->dead_roots,
3417                                             root_list) {
3418                                 if (dead_root->root_key.objectid ==
3419                                     found_key.objectid) {
3420                                         is_dead_root = 1;
3421                                         break;
3422                                 }
3423                         }
3424                         spin_unlock(&fs_info->trans_lock);
3425                         if (is_dead_root) {
3426                                 /* prevent this orphan from being found again */
3427                                 key.offset = found_key.objectid - 1;
3428                                 continue;
3429                         }
3430
3431                 }
3432
3433                 /*
3434                  * If we have an inode with links, there are a couple of
3435                  * possibilities. Old kernels (before v3.12) used to create an
3436                  * orphan item for truncate indicating that there were possibly
3437                  * extent items past i_size that needed to be deleted. In v3.12,
3438                  * truncate was changed to update i_size in sync with the extent
3439                  * items, but the (useless) orphan item was still created. Since
3440                  * v4.18, we don't create the orphan item for truncate at all.
3441                  *
3442                  * So, this item could mean that we need to do a truncate, but
3443                  * only if this filesystem was last used on a pre-v3.12 kernel
3444                  * and was not cleanly unmounted. The odds of that are quite
3445                  * slim, and it's a pain to do the truncate now, so just delete
3446                  * the orphan item.
3447                  *
3448                  * It's also possible that this orphan item was supposed to be
3449                  * deleted but wasn't. The inode number may have been reused,
3450                  * but either way, we can delete the orphan item.
3451                  */
3452                 if (ret == -ENOENT || inode->i_nlink) {
3453                         if (!ret)
3454                                 iput(inode);
3455                         trans = btrfs_start_transaction(root, 1);
3456                         if (IS_ERR(trans)) {
3457                                 ret = PTR_ERR(trans);
3458                                 goto out;
3459                         }
3460                         btrfs_debug(fs_info, "auto deleting %Lu",
3461                                     found_key.objectid);
3462                         ret = btrfs_del_orphan_item(trans, root,
3463                                                     found_key.objectid);
3464                         btrfs_end_transaction(trans);
3465                         if (ret)
3466                                 goto out;
3467                         continue;
3468                 }
3469
3470                 nr_unlink++;
3471
3472                 /* this will do delete_inode and everything for us */
3473                 iput(inode);
3474                 if (ret)
3475                         goto out;
3476         }
3477         /* release the path since we're done with it */
3478         btrfs_release_path(path);
3479
3480         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3481
3482         if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3483                 trans = btrfs_join_transaction(root);
3484                 if (!IS_ERR(trans))
3485                         btrfs_end_transaction(trans);
3486         }
3487
3488         if (nr_unlink)
3489                 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3490
3491 out:
3492         if (ret)
3493                 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3494         btrfs_free_path(path);
3495         return ret;
3496 }
3497
3498 /*
3499  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3500  * don't find any xattrs, we know there can't be any acls.
3501  *
3502  * slot is the slot the inode is in, objectid is the objectid of the inode
3503  */
3504 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3505                                           int slot, u64 objectid,
3506                                           int *first_xattr_slot)
3507 {
3508         u32 nritems = btrfs_header_nritems(leaf);
3509         struct btrfs_key found_key;
3510         static u64 xattr_access = 0;
3511         static u64 xattr_default = 0;
3512         int scanned = 0;
3513
3514         if (!xattr_access) {
3515                 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3516                                         strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3517                 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3518                                         strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3519         }
3520
3521         slot++;
3522         *first_xattr_slot = -1;
3523         while (slot < nritems) {
3524                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3525
3526                 /* we found a different objectid, there must not be acls */
3527                 if (found_key.objectid != objectid)
3528                         return 0;
3529
3530                 /* we found an xattr, assume we've got an acl */
3531                 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3532                         if (*first_xattr_slot == -1)
3533                                 *first_xattr_slot = slot;
3534                         if (found_key.offset == xattr_access ||
3535                             found_key.offset == xattr_default)
3536                                 return 1;
3537                 }
3538
3539                 /*
3540                  * we found a key greater than an xattr key, there can't
3541                  * be any acls later on
3542                  */
3543                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3544                         return 0;
3545
3546                 slot++;
3547                 scanned++;
3548
3549                 /*
3550                  * it goes inode, inode backrefs, xattrs, extents,
3551                  * so if there are a ton of hard links to an inode there can
3552                  * be a lot of backrefs.  Don't waste time searching too hard,
3553                  * this is just an optimization
3554                  */
3555                 if (scanned >= 8)
3556                         break;
3557         }
3558         /* we hit the end of the leaf before we found an xattr or
3559          * something larger than an xattr.  We have to assume the inode
3560          * has acls
3561          */
3562         if (*first_xattr_slot == -1)
3563                 *first_xattr_slot = slot;
3564         return 1;
3565 }
3566
3567 /*
3568  * read an inode from the btree into the in-memory inode
3569  */
3570 static int btrfs_read_locked_inode(struct inode *inode)
3571 {
3572         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3573         struct btrfs_path *path;
3574         struct extent_buffer *leaf;
3575         struct btrfs_inode_item *inode_item;
3576         struct btrfs_root *root = BTRFS_I(inode)->root;
3577         struct btrfs_key location;
3578         unsigned long ptr;
3579         int maybe_acls;
3580         u32 rdev;
3581         int ret;
3582         bool filled = false;
3583         int first_xattr_slot;
3584
3585         ret = btrfs_fill_inode(inode, &rdev);
3586         if (!ret)
3587                 filled = true;
3588
3589         path = btrfs_alloc_path();
3590         if (!path)
3591                 return -ENOMEM;
3592
3593         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3594
3595         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3596         if (ret) {
3597                 btrfs_free_path(path);
3598                 return ret;
3599         }
3600
3601         leaf = path->nodes[0];
3602
3603         if (filled)
3604                 goto cache_index;
3605
3606         inode_item = btrfs_item_ptr(leaf, path->slots[0],
3607                                     struct btrfs_inode_item);
3608         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3609         set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3610         i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3611         i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3612         btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3613
3614         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3615         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3616
3617         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3618         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3619
3620         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3621         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3622
3623         BTRFS_I(inode)->i_otime.tv_sec =
3624                 btrfs_timespec_sec(leaf, &inode_item->otime);
3625         BTRFS_I(inode)->i_otime.tv_nsec =
3626                 btrfs_timespec_nsec(leaf, &inode_item->otime);
3627
3628         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3629         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3630         BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3631
3632         inode_set_iversion_queried(inode,
3633                                    btrfs_inode_sequence(leaf, inode_item));
3634         inode->i_generation = BTRFS_I(inode)->generation;
3635         inode->i_rdev = 0;
3636         rdev = btrfs_inode_rdev(leaf, inode_item);
3637
3638         BTRFS_I(inode)->index_cnt = (u64)-1;
3639         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3640
3641 cache_index:
3642         /*
3643          * If we were modified in the current generation and evicted from memory
3644          * and then re-read we need to do a full sync since we don't have any
3645          * idea about which extents were modified before we were evicted from
3646          * cache.
3647          *
3648          * This is required for both inode re-read from disk and delayed inode
3649          * in delayed_nodes_tree.
3650          */
3651         if (BTRFS_I(inode)->last_trans == fs_info->generation)
3652                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3653                         &BTRFS_I(inode)->runtime_flags);
3654
3655         /*
3656          * We don't persist the id of the transaction where an unlink operation
3657          * against the inode was last made. So here we assume the inode might
3658          * have been evicted, and therefore the exact value of last_unlink_trans
3659          * lost, and set it to last_trans to avoid metadata inconsistencies
3660          * between the inode and its parent if the inode is fsync'ed and the log
3661          * replayed. For example, in the scenario:
3662          *
3663          * touch mydir/foo
3664          * ln mydir/foo mydir/bar
3665          * sync
3666          * unlink mydir/bar
3667          * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3668          * xfs_io -c fsync mydir/foo
3669          * <power failure>
3670          * mount fs, triggers fsync log replay
3671          *
3672          * We must make sure that when we fsync our inode foo we also log its
3673          * parent inode, otherwise after log replay the parent still has the
3674          * dentry with the "bar" name but our inode foo has a link count of 1
3675          * and doesn't have an inode ref with the name "bar" anymore.
3676          *
3677          * Setting last_unlink_trans to last_trans is a pessimistic approach,
3678          * but it guarantees correctness at the expense of occasional full
3679          * transaction commits on fsync if our inode is a directory, or if our
3680          * inode is not a directory, logging its parent unnecessarily.
3681          */
3682         BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3683
3684         path->slots[0]++;
3685         if (inode->i_nlink != 1 ||
3686             path->slots[0] >= btrfs_header_nritems(leaf))
3687                 goto cache_acl;
3688
3689         btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3690         if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3691                 goto cache_acl;
3692
3693         ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3694         if (location.type == BTRFS_INODE_REF_KEY) {
3695                 struct btrfs_inode_ref *ref;
3696
3697                 ref = (struct btrfs_inode_ref *)ptr;
3698                 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3699         } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3700                 struct btrfs_inode_extref *extref;
3701
3702                 extref = (struct btrfs_inode_extref *)ptr;
3703                 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3704                                                                      extref);
3705         }
3706 cache_acl:
3707         /*
3708          * try to precache a NULL acl entry for files that don't have
3709          * any xattrs or acls
3710          */
3711         maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3712                         btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3713         if (first_xattr_slot != -1) {
3714                 path->slots[0] = first_xattr_slot;
3715                 ret = btrfs_load_inode_props(inode, path);
3716                 if (ret)
3717                         btrfs_err(fs_info,
3718                                   "error loading props for ino %llu (root %llu): %d",
3719                                   btrfs_ino(BTRFS_I(inode)),
3720                                   root->root_key.objectid, ret);
3721         }
3722         btrfs_free_path(path);
3723
3724         if (!maybe_acls)
3725                 cache_no_acl(inode);
3726
3727         switch (inode->i_mode & S_IFMT) {
3728         case S_IFREG:
3729                 inode->i_mapping->a_ops = &btrfs_aops;
3730                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3731                 inode->i_fop = &btrfs_file_operations;
3732                 inode->i_op = &btrfs_file_inode_operations;
3733                 break;
3734         case S_IFDIR:
3735                 inode->i_fop = &btrfs_dir_file_operations;
3736                 inode->i_op = &btrfs_dir_inode_operations;
3737                 break;
3738         case S_IFLNK:
3739                 inode->i_op = &btrfs_symlink_inode_operations;
3740                 inode_nohighmem(inode);
3741                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3742                 break;
3743         default:
3744                 inode->i_op = &btrfs_special_inode_operations;
3745                 init_special_inode(inode, inode->i_mode, rdev);
3746                 break;
3747         }
3748
3749         btrfs_sync_inode_flags_to_i_flags(inode);
3750         return 0;
3751 }
3752
3753 /*
3754  * given a leaf and an inode, copy the inode fields into the leaf
3755  */
3756 static void fill_inode_item(struct btrfs_trans_handle *trans,
3757                             struct extent_buffer *leaf,
3758                             struct btrfs_inode_item *item,
3759                             struct inode *inode)
3760 {
3761         struct btrfs_map_token token;
3762
3763         btrfs_init_map_token(&token);
3764
3765         btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3766         btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3767         btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3768                                    &token);
3769         btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3770         btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3771
3772         btrfs_set_token_timespec_sec(leaf, &item->atime,
3773                                      inode->i_atime.tv_sec, &token);
3774         btrfs_set_token_timespec_nsec(leaf, &item->atime,
3775                                       inode->i_atime.tv_nsec, &token);
3776
3777         btrfs_set_token_timespec_sec(leaf, &item->mtime,
3778                                      inode->i_mtime.tv_sec, &token);
3779         btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3780                                       inode->i_mtime.tv_nsec, &token);
3781
3782         btrfs_set_token_timespec_sec(leaf, &item->ctime,
3783                                      inode->i_ctime.tv_sec, &token);
3784         btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3785                                       inode->i_ctime.tv_nsec, &token);
3786
3787         btrfs_set_token_timespec_sec(leaf, &item->otime,
3788                                      BTRFS_I(inode)->i_otime.tv_sec, &token);
3789         btrfs_set_token_timespec_nsec(leaf, &item->otime,
3790                                       BTRFS_I(inode)->i_otime.tv_nsec, &token);
3791
3792         btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3793                                      &token);
3794         btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3795                                          &token);
3796         btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3797                                        &token);
3798         btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3799         btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3800         btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3801         btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3802 }
3803
3804 /*
3805  * copy everything in the in-memory inode into the btree.
3806  */
3807 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3808                                 struct btrfs_root *root, struct inode *inode)
3809 {
3810         struct btrfs_inode_item *inode_item;
3811         struct btrfs_path *path;
3812         struct extent_buffer *leaf;
3813         int ret;
3814
3815         path = btrfs_alloc_path();
3816         if (!path)
3817                 return -ENOMEM;
3818
3819         path->leave_spinning = 1;
3820         ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3821                                  1);
3822         if (ret) {
3823                 if (ret > 0)
3824                         ret = -ENOENT;
3825                 goto failed;
3826         }
3827
3828         leaf = path->nodes[0];
3829         inode_item = btrfs_item_ptr(leaf, path->slots[0],
3830                                     struct btrfs_inode_item);
3831
3832         fill_inode_item(trans, leaf, inode_item, inode);
3833         btrfs_mark_buffer_dirty(leaf);
3834         btrfs_set_inode_last_trans(trans, inode);
3835         ret = 0;
3836 failed:
3837         btrfs_free_path(path);
3838         return ret;
3839 }
3840
3841 /*
3842  * copy everything in the in-memory inode into the btree.
3843  */
3844 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3845                                 struct btrfs_root *root, struct inode *inode)
3846 {
3847         struct btrfs_fs_info *fs_info = root->fs_info;
3848         int ret;
3849
3850         /*
3851          * If the inode is a free space inode, we can deadlock during commit
3852          * if we put it into the delayed code.
3853          *
3854          * The data relocation inode should also be directly updated
3855          * without delay
3856          */
3857         if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3858             && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3859             && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3860                 btrfs_update_root_times(trans, root);
3861
3862                 ret = btrfs_delayed_update_inode(trans, root, inode);
3863                 if (!ret)
3864                         btrfs_set_inode_last_trans(trans, inode);
3865                 return ret;
3866         }
3867
3868         return btrfs_update_inode_item(trans, root, inode);
3869 }
3870
3871 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3872                                          struct btrfs_root *root,
3873                                          struct inode *inode)
3874 {
3875         int ret;
3876
3877         ret = btrfs_update_inode(trans, root, inode);
3878         if (ret == -ENOSPC)
3879                 return btrfs_update_inode_item(trans, root, inode);
3880         return ret;
3881 }
3882
3883 /*
3884  * unlink helper that gets used here in inode.c and in the tree logging
3885  * recovery code.  It remove a link in a directory with a given name, and
3886  * also drops the back refs in the inode to the directory
3887  */
3888 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3889                                 struct btrfs_root *root,
3890                                 struct btrfs_inode *dir,
3891                                 struct btrfs_inode *inode,
3892                                 const char *name, int name_len)
3893 {
3894         struct btrfs_fs_info *fs_info = root->fs_info;
3895         struct btrfs_path *path;
3896         int ret = 0;
3897         struct extent_buffer *leaf;
3898         struct btrfs_dir_item *di;
3899         struct btrfs_key key;
3900         u64 index;
3901         u64 ino = btrfs_ino(inode);
3902         u64 dir_ino = btrfs_ino(dir);
3903
3904         path = btrfs_alloc_path();
3905         if (!path) {
3906                 ret = -ENOMEM;
3907                 goto out;
3908         }
3909
3910         path->leave_spinning = 1;
3911         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3912                                     name, name_len, -1);
3913         if (IS_ERR(di)) {
3914                 ret = PTR_ERR(di);
3915                 goto err;
3916         }
3917         if (!di) {
3918                 ret = -ENOENT;
3919                 goto err;
3920         }
3921         leaf = path->nodes[0];
3922         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3923         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3924         if (ret)
3925                 goto err;
3926         btrfs_release_path(path);
3927
3928         /*
3929          * If we don't have dir index, we have to get it by looking up
3930          * the inode ref, since we get the inode ref, remove it directly,
3931          * it is unnecessary to do delayed deletion.
3932          *
3933          * But if we have dir index, needn't search inode ref to get it.
3934          * Since the inode ref is close to the inode item, it is better
3935          * that we delay to delete it, and just do this deletion when
3936          * we update the inode item.
3937          */
3938         if (inode->dir_index) {
3939                 ret = btrfs_delayed_delete_inode_ref(inode);
3940                 if (!ret) {
3941                         index = inode->dir_index;
3942                         goto skip_backref;
3943                 }
3944         }
3945
3946         ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3947                                   dir_ino, &index);
3948         if (ret) {
3949                 btrfs_info(fs_info,
3950                         "failed to delete reference to %.*s, inode %llu parent %llu",
3951                         name_len, name, ino, dir_ino);
3952                 btrfs_abort_transaction(trans, ret);
3953                 goto err;
3954         }
3955 skip_backref:
3956         ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3957         if (ret) {
3958                 btrfs_abort_transaction(trans, ret);
3959                 goto err;
3960         }
3961
3962         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3963                         dir_ino);
3964         if (ret != 0 && ret != -ENOENT) {
3965                 btrfs_abort_transaction(trans, ret);
3966                 goto err;
3967         }
3968
3969         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3970                         index);
3971         if (ret == -ENOENT)
3972                 ret = 0;
3973         else if (ret)
3974                 btrfs_abort_transaction(trans, ret);
3975 err:
3976         btrfs_free_path(path);
3977         if (ret)
3978                 goto out;
3979
3980         btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3981         inode_inc_iversion(&inode->vfs_inode);
3982         inode_inc_iversion(&dir->vfs_inode);
3983         inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3984                 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3985         ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
3986 out:
3987         return ret;
3988 }
3989
3990 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3991                        struct btrfs_root *root,
3992                        struct btrfs_inode *dir, struct btrfs_inode *inode,
3993                        const char *name, int name_len)
3994 {
3995         int ret;
3996         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3997         if (!ret) {
3998                 drop_nlink(&inode->vfs_inode);
3999                 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4000         }
4001         return ret;
4002 }
4003
4004 /*
4005  * helper to start transaction for unlink and rmdir.
4006  *
4007  * unlink and rmdir are special in btrfs, they do not always free space, so
4008  * if we cannot make our reservations the normal way try and see if there is
4009  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4010  * allow the unlink to occur.
4011  */
4012 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4013 {
4014         struct btrfs_root *root = BTRFS_I(dir)->root;
4015
4016         /*
4017          * 1 for the possible orphan item
4018          * 1 for the dir item
4019          * 1 for the dir index
4020          * 1 for the inode ref
4021          * 1 for the inode
4022          */
4023         return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4024 }
4025
4026 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4027 {
4028         struct btrfs_root *root = BTRFS_I(dir)->root;
4029         struct btrfs_trans_handle *trans;
4030         struct inode *inode = d_inode(dentry);
4031         int ret;
4032
4033         trans = __unlink_start_trans(dir);
4034         if (IS_ERR(trans))
4035                 return PTR_ERR(trans);
4036
4037         btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4038                         0);
4039
4040         ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4041                         BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4042                         dentry->d_name.len);
4043         if (ret)
4044                 goto out;
4045
4046         if (inode->i_nlink == 0) {
4047                 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4048                 if (ret)
4049                         goto out;
4050         }
4051
4052 out:
4053         btrfs_end_transaction(trans);
4054         btrfs_btree_balance_dirty(root->fs_info);
4055         return ret;
4056 }
4057
4058 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4059                                struct inode *dir, u64 objectid,
4060                                const char *name, int name_len)
4061 {
4062         struct btrfs_root *root = BTRFS_I(dir)->root;
4063         struct btrfs_path *path;
4064         struct extent_buffer *leaf;
4065         struct btrfs_dir_item *di;
4066         struct btrfs_key key;
4067         u64 index;
4068         int ret;
4069         u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4070
4071         path = btrfs_alloc_path();
4072         if (!path)
4073                 return -ENOMEM;
4074
4075         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4076                                    name, name_len, -1);
4077         if (IS_ERR_OR_NULL(di)) {
4078                 if (!di)
4079                         ret = -ENOENT;
4080                 else
4081                         ret = PTR_ERR(di);
4082                 goto out;
4083         }
4084
4085         leaf = path->nodes[0];
4086         btrfs_dir_item_key_to_cpu(leaf, di, &key);
4087         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4088         ret = btrfs_delete_one_dir_name(trans, root, path, di);
4089         if (ret) {
4090                 btrfs_abort_transaction(trans, ret);
4091                 goto out;
4092         }
4093         btrfs_release_path(path);
4094
4095         ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4096                                  dir_ino, &index, name, name_len);
4097         if (ret < 0) {
4098                 if (ret != -ENOENT) {
4099                         btrfs_abort_transaction(trans, ret);
4100                         goto out;
4101                 }
4102                 di = btrfs_search_dir_index_item(root, path, dir_ino,
4103                                                  name, name_len);
4104                 if (IS_ERR_OR_NULL(di)) {
4105                         if (!di)
4106                                 ret = -ENOENT;
4107                         else
4108                                 ret = PTR_ERR(di);
4109                         btrfs_abort_transaction(trans, ret);
4110                         goto out;
4111                 }
4112
4113                 leaf = path->nodes[0];
4114                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4115                 index = key.offset;
4116         }
4117         btrfs_release_path(path);
4118
4119         ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4120         if (ret) {
4121                 btrfs_abort_transaction(trans, ret);
4122                 goto out;
4123         }
4124
4125         btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4126         inode_inc_iversion(dir);
4127         dir->i_mtime = dir->i_ctime = current_time(dir);
4128         ret = btrfs_update_inode_fallback(trans, root, dir);
4129         if (ret)
4130                 btrfs_abort_transaction(trans, ret);
4131 out:
4132         btrfs_free_path(path);
4133         return ret;
4134 }
4135
4136 /*
4137  * Helper to check if the subvolume references other subvolumes or if it's
4138  * default.
4139  */
4140 static noinline int may_destroy_subvol(struct btrfs_root *root)
4141 {
4142         struct btrfs_fs_info *fs_info = root->fs_info;
4143         struct btrfs_path *path;
4144         struct btrfs_dir_item *di;
4145         struct btrfs_key key;
4146         u64 dir_id;
4147         int ret;
4148
4149         path = btrfs_alloc_path();
4150         if (!path)
4151                 return -ENOMEM;
4152
4153         /* Make sure this root isn't set as the default subvol */
4154         dir_id = btrfs_super_root_dir(fs_info->super_copy);
4155         di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4156                                    dir_id, "default", 7, 0);
4157         if (di && !IS_ERR(di)) {
4158                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4159                 if (key.objectid == root->root_key.objectid) {
4160                         ret = -EPERM;
4161                         btrfs_err(fs_info,
4162                                   "deleting default subvolume %llu is not allowed",
4163                                   key.objectid);
4164                         goto out;
4165                 }
4166                 btrfs_release_path(path);
4167         }
4168
4169         key.objectid = root->root_key.objectid;
4170         key.type = BTRFS_ROOT_REF_KEY;
4171         key.offset = (u64)-1;
4172
4173         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4174         if (ret < 0)
4175                 goto out;
4176         BUG_ON(ret == 0);
4177
4178         ret = 0;
4179         if (path->slots[0] > 0) {
4180                 path->slots[0]--;
4181                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4182                 if (key.objectid == root->root_key.objectid &&
4183                     key.type == BTRFS_ROOT_REF_KEY)
4184                         ret = -ENOTEMPTY;
4185         }
4186 out:
4187         btrfs_free_path(path);
4188         return ret;
4189 }
4190
4191 /* Delete all dentries for inodes belonging to the root */
4192 static void btrfs_prune_dentries(struct btrfs_root *root)
4193 {
4194         struct btrfs_fs_info *fs_info = root->fs_info;
4195         struct rb_node *node;
4196         struct rb_node *prev;
4197         struct btrfs_inode *entry;
4198         struct inode *inode;
4199         u64 objectid = 0;
4200
4201         if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4202                 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4203
4204         spin_lock(&root->inode_lock);
4205 again:
4206         node = root->inode_tree.rb_node;
4207         prev = NULL;
4208         while (node) {
4209                 prev = node;
4210                 entry = rb_entry(node, struct btrfs_inode, rb_node);
4211
4212                 if (objectid < btrfs_ino(entry))
4213                         node = node->rb_left;
4214                 else if (objectid > btrfs_ino(entry))
4215                         node = node->rb_right;
4216                 else
4217                         break;
4218         }
4219         if (!node) {
4220                 while (prev) {
4221                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
4222                         if (objectid <= btrfs_ino(entry)) {
4223                                 node = prev;
4224                                 break;
4225                         }
4226                         prev = rb_next(prev);
4227                 }
4228         }
4229         while (node) {
4230                 entry = rb_entry(node, struct btrfs_inode, rb_node);
4231                 objectid = btrfs_ino(entry) + 1;
4232                 inode = igrab(&entry->vfs_inode);
4233                 if (inode) {
4234                         spin_unlock(&root->inode_lock);
4235                         if (atomic_read(&inode->i_count) > 1)
4236                                 d_prune_aliases(inode);
4237                         /*
4238                          * btrfs_drop_inode will have it removed from the inode
4239                          * cache when its usage count hits zero.
4240                          */
4241                         iput(inode);
4242                         cond_resched();
4243                         spin_lock(&root->inode_lock);
4244                         goto again;
4245                 }
4246
4247                 if (cond_resched_lock(&root->inode_lock))
4248                         goto again;
4249
4250                 node = rb_next(node);
4251         }
4252         spin_unlock(&root->inode_lock);
4253 }
4254
4255 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4256 {
4257         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4258         struct btrfs_root *root = BTRFS_I(dir)->root;
4259         struct inode *inode = d_inode(dentry);
4260         struct btrfs_root *dest = BTRFS_I(inode)->root;
4261         struct btrfs_trans_handle *trans;
4262         struct btrfs_block_rsv block_rsv;
4263         u64 root_flags;
4264         int ret;
4265         int err;
4266
4267         /*
4268          * Don't allow to delete a subvolume with send in progress. This is
4269          * inside the inode lock so the error handling that has to drop the bit
4270          * again is not run concurrently.
4271          */
4272         spin_lock(&dest->root_item_lock);
4273         if (dest->send_in_progress) {
4274                 spin_unlock(&dest->root_item_lock);
4275                 btrfs_warn(fs_info,
4276                            "attempt to delete subvolume %llu during send",
4277                            dest->root_key.objectid);
4278                 return -EPERM;
4279         }
4280         root_flags = btrfs_root_flags(&dest->root_item);
4281         btrfs_set_root_flags(&dest->root_item,
4282                              root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4283         spin_unlock(&dest->root_item_lock);
4284
4285         down_write(&fs_info->subvol_sem);
4286
4287         err = may_destroy_subvol(dest);
4288         if (err)
4289                 goto out_up_write;
4290
4291         btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4292         /*
4293          * One for dir inode,
4294          * two for dir entries,
4295          * two for root ref/backref.
4296          */
4297         err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4298         if (err)
4299                 goto out_up_write;
4300
4301         trans = btrfs_start_transaction(root, 0);
4302         if (IS_ERR(trans)) {
4303                 err = PTR_ERR(trans);
4304                 goto out_release;
4305         }
4306         trans->block_rsv = &block_rsv;
4307         trans->bytes_reserved = block_rsv.size;
4308
4309         btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4310
4311         ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4312                                   dentry->d_name.name, dentry->d_name.len);
4313         if (ret) {
4314                 err = ret;
4315                 btrfs_abort_transaction(trans, ret);
4316                 goto out_end_trans;
4317         }
4318
4319         btrfs_record_root_in_trans(trans, dest);
4320
4321         memset(&dest->root_item.drop_progress, 0,
4322                 sizeof(dest->root_item.drop_progress));
4323         dest->root_item.drop_level = 0;
4324         btrfs_set_root_refs(&dest->root_item, 0);
4325
4326         if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4327                 ret = btrfs_insert_orphan_item(trans,
4328                                         fs_info->tree_root,
4329                                         dest->root_key.objectid);
4330                 if (ret) {
4331                         btrfs_abort_transaction(trans, ret);
4332                         err = ret;
4333                         goto out_end_trans;
4334                 }
4335         }
4336
4337         ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4338                                   BTRFS_UUID_KEY_SUBVOL,
4339                                   dest->root_key.objectid);
4340         if (ret && ret != -ENOENT) {
4341                 btrfs_abort_transaction(trans, ret);
4342                 err = ret;
4343                 goto out_end_trans;
4344         }
4345         if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4346                 ret = btrfs_uuid_tree_remove(trans,
4347                                           dest->root_item.received_uuid,
4348                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4349                                           dest->root_key.objectid);
4350                 if (ret && ret != -ENOENT) {
4351                         btrfs_abort_transaction(trans, ret);
4352                         err = ret;
4353                         goto out_end_trans;
4354                 }
4355         }
4356
4357 out_end_trans:
4358         trans->block_rsv = NULL;
4359         trans->bytes_reserved = 0;
4360         ret = btrfs_end_transaction(trans);
4361         if (ret && !err)
4362                 err = ret;
4363         inode->i_flags |= S_DEAD;
4364 out_release:
4365         btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4366 out_up_write:
4367         up_write(&fs_info->subvol_sem);
4368         if (err) {
4369                 spin_lock(&dest->root_item_lock);
4370                 root_flags = btrfs_root_flags(&dest->root_item);
4371                 btrfs_set_root_flags(&dest->root_item,
4372                                 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4373                 spin_unlock(&dest->root_item_lock);
4374         } else {
4375                 d_invalidate(dentry);
4376                 btrfs_prune_dentries(dest);
4377                 ASSERT(dest->send_in_progress == 0);
4378
4379                 /* the last ref */
4380                 if (dest->ino_cache_inode) {
4381                         iput(dest->ino_cache_inode);
4382                         dest->ino_cache_inode = NULL;
4383                 }
4384         }
4385
4386         return err;
4387 }
4388
4389 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4390 {
4391         struct inode *inode = d_inode(dentry);
4392         int err = 0;
4393         struct btrfs_root *root = BTRFS_I(dir)->root;
4394         struct btrfs_trans_handle *trans;
4395         u64 last_unlink_trans;
4396
4397         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4398                 return -ENOTEMPTY;
4399         if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4400                 return btrfs_delete_subvolume(dir, dentry);
4401
4402         trans = __unlink_start_trans(dir);
4403         if (IS_ERR(trans))
4404                 return PTR_ERR(trans);
4405
4406         if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4407                 err = btrfs_unlink_subvol(trans, dir,
4408                                           BTRFS_I(inode)->location.objectid,
4409                                           dentry->d_name.name,
4410                                           dentry->d_name.len);
4411                 goto out;
4412         }
4413
4414         err = btrfs_orphan_add(trans, BTRFS_I(inode));
4415         if (err)
4416                 goto out;
4417
4418         last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4419
4420         /* now the directory is empty */
4421         err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4422                         BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4423                         dentry->d_name.len);
4424         if (!err) {
4425                 btrfs_i_size_write(BTRFS_I(inode), 0);
4426                 /*
4427                  * Propagate the last_unlink_trans value of the deleted dir to
4428                  * its parent directory. This is to prevent an unrecoverable
4429                  * log tree in the case we do something like this:
4430                  * 1) create dir foo
4431                  * 2) create snapshot under dir foo
4432                  * 3) delete the snapshot
4433                  * 4) rmdir foo
4434                  * 5) mkdir foo
4435                  * 6) fsync foo or some file inside foo
4436                  */
4437                 if (last_unlink_trans >= trans->transid)
4438                         BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4439         }
4440 out:
4441         btrfs_end_transaction(trans);
4442         btrfs_btree_balance_dirty(root->fs_info);
4443
4444         return err;
4445 }
4446
4447 static int truncate_space_check(struct btrfs_trans_handle *trans,
4448                                 struct btrfs_root *root,
4449                                 u64 bytes_deleted)
4450 {
4451         struct btrfs_fs_info *fs_info = root->fs_info;
4452         int ret;
4453
4454         /*
4455          * This is only used to apply pressure to the enospc system, we don't
4456          * intend to use this reservation at all.
4457          */
4458         bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4459         bytes_deleted *= fs_info->nodesize;
4460         ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4461                                   bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4462         if (!ret) {
4463                 trace_btrfs_space_reservation(fs_info, "transaction",
4464                                               trans->transid,
4465                                               bytes_deleted, 1);
4466                 trans->bytes_reserved += bytes_deleted;
4467         }
4468         return ret;
4469
4470 }
4471
4472 /*
4473  * Return this if we need to call truncate_block for the last bit of the
4474  * truncate.
4475  */
4476 #define NEED_TRUNCATE_BLOCK 1
4477
4478 /*
4479  * this can truncate away extent items, csum items and directory items.
4480  * It starts at a high offset and removes keys until it can't find
4481  * any higher than new_size
4482  *
4483  * csum items that cross the new i_size are truncated to the new size
4484  * as well.
4485  *
4486  * min_type is the minimum key type to truncate down to.  If set to 0, this
4487  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4488  */
4489 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4490                                struct btrfs_root *root,
4491                                struct inode *inode,
4492                                u64 new_size, u32 min_type)
4493 {
4494         struct btrfs_fs_info *fs_info = root->fs_info;
4495         struct btrfs_path *path;
4496         struct extent_buffer *leaf;
4497         struct btrfs_file_extent_item *fi;
4498         struct btrfs_key key;
4499         struct btrfs_key found_key;
4500         u64 extent_start = 0;
4501         u64 extent_num_bytes = 0;
4502         u64 extent_offset = 0;
4503         u64 item_end = 0;
4504         u64 last_size = new_size;
4505         u32 found_type = (u8)-1;
4506         int found_extent;
4507         int del_item;
4508         int pending_del_nr = 0;
4509         int pending_del_slot = 0;
4510         int extent_type = -1;
4511         int ret;
4512         u64 ino = btrfs_ino(BTRFS_I(inode));
4513         u64 bytes_deleted = 0;
4514         bool be_nice = false;
4515         bool should_throttle = false;
4516         bool should_end = false;
4517
4518         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4519
4520         /*
4521          * for non-free space inodes and ref cows, we want to back off from
4522          * time to time
4523          */
4524         if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4525             test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4526                 be_nice = true;
4527
4528         path = btrfs_alloc_path();
4529         if (!path)
4530                 return -ENOMEM;
4531         path->reada = READA_BACK;
4532
4533         /*
4534          * We want to drop from the next block forward in case this new size is
4535          * not block aligned since we will be keeping the last block of the
4536          * extent just the way it is.
4537          */
4538         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4539             root == fs_info->tree_root)
4540                 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4541                                         fs_info->sectorsize),
4542                                         (u64)-1, 0);
4543
4544         /*
4545          * This function is also used to drop the items in the log tree before
4546          * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4547          * it is used to drop the loged items. So we shouldn't kill the delayed
4548          * items.
4549          */
4550         if (min_type == 0 && root == BTRFS_I(inode)->root)
4551                 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4552
4553         key.objectid = ino;
4554         key.offset = (u64)-1;
4555         key.type = (u8)-1;
4556
4557 search_again:
4558         /*
4559          * with a 16K leaf size and 128MB extents, you can actually queue
4560          * up a huge file in a single leaf.  Most of the time that
4561          * bytes_deleted is > 0, it will be huge by the time we get here
4562          */
4563         if (be_nice && bytes_deleted > SZ_32M &&
4564             btrfs_should_end_transaction(trans)) {
4565                 ret = -EAGAIN;
4566                 goto out;
4567         }
4568
4569         path->leave_spinning = 1;
4570         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4571         if (ret < 0)
4572                 goto out;
4573
4574         if (ret > 0) {
4575                 ret = 0;
4576                 /* there are no items in the tree for us to truncate, we're
4577                  * done
4578                  */
4579                 if (path->slots[0] == 0)
4580                         goto out;
4581                 path->slots[0]--;
4582         }
4583
4584         while (1) {
4585                 fi = NULL;
4586                 leaf = path->nodes[0];
4587                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4588                 found_type = found_key.type;
4589
4590                 if (found_key.objectid != ino)
4591                         break;
4592
4593                 if (found_type < min_type)
4594                         break;
4595
4596                 item_end = found_key.offset;
4597                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4598                         fi = btrfs_item_ptr(leaf, path->slots[0],
4599                                             struct btrfs_file_extent_item);
4600                         extent_type = btrfs_file_extent_type(leaf, fi);
4601                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4602                                 item_end +=
4603                                     btrfs_file_extent_num_bytes(leaf, fi);
4604
4605                                 trace_btrfs_truncate_show_fi_regular(
4606                                         BTRFS_I(inode), leaf, fi,
4607                                         found_key.offset);
4608                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4609                                 item_end += btrfs_file_extent_ram_bytes(leaf,
4610                                                                         fi);
4611
4612                                 trace_btrfs_truncate_show_fi_inline(
4613                                         BTRFS_I(inode), leaf, fi, path->slots[0],
4614                                         found_key.offset);
4615                         }
4616                         item_end--;
4617                 }
4618                 if (found_type > min_type) {
4619                         del_item = 1;
4620                 } else {
4621                         if (item_end < new_size)
4622                                 break;
4623                         if (found_key.offset >= new_size)
4624                                 del_item = 1;
4625                         else
4626                                 del_item = 0;
4627                 }
4628                 found_extent = 0;
4629                 /* FIXME, shrink the extent if the ref count is only 1 */
4630                 if (found_type != BTRFS_EXTENT_DATA_KEY)
4631                         goto delete;
4632
4633                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4634                         u64 num_dec;
4635                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4636                         if (!del_item) {
4637                                 u64 orig_num_bytes =
4638                                         btrfs_file_extent_num_bytes(leaf, fi);
4639                                 extent_num_bytes = ALIGN(new_size -
4640                                                 found_key.offset,
4641                                                 fs_info->sectorsize);
4642                                 btrfs_set_file_extent_num_bytes(leaf, fi,
4643                                                          extent_num_bytes);
4644                                 num_dec = (orig_num_bytes -
4645                                            extent_num_bytes);
4646                                 if (test_bit(BTRFS_ROOT_REF_COWS,
4647                                              &root->state) &&
4648                                     extent_start != 0)
4649                                         inode_sub_bytes(inode, num_dec);
4650                                 btrfs_mark_buffer_dirty(leaf);
4651                         } else {
4652                                 extent_num_bytes =
4653                                         btrfs_file_extent_disk_num_bytes(leaf,
4654                                                                          fi);
4655                                 extent_offset = found_key.offset -
4656                                         btrfs_file_extent_offset(leaf, fi);
4657
4658                                 /* FIXME blocksize != 4096 */
4659                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4660                                 if (extent_start != 0) {
4661                                         found_extent = 1;
4662                                         if (test_bit(BTRFS_ROOT_REF_COWS,
4663                                                      &root->state))
4664                                                 inode_sub_bytes(inode, num_dec);
4665                                 }
4666                         }
4667                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4668                         /*
4669                          * we can't truncate inline items that have had
4670                          * special encodings
4671                          */
4672                         if (!del_item &&
4673                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
4674                             btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4675                             btrfs_file_extent_compression(leaf, fi) == 0) {
4676                                 u32 size = (u32)(new_size - found_key.offset);
4677
4678                                 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4679                                 size = btrfs_file_extent_calc_inline_size(size);
4680                                 btrfs_truncate_item(root->fs_info, path, size, 1);
4681                         } else if (!del_item) {
4682                                 /*
4683                                  * We have to bail so the last_size is set to
4684                                  * just before this extent.
4685                                  */
4686                                 ret = NEED_TRUNCATE_BLOCK;
4687                                 break;
4688                         }
4689
4690                         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4691                                 inode_sub_bytes(inode, item_end + 1 - new_size);
4692                 }
4693 delete:
4694                 if (del_item)
4695                         last_size = found_key.offset;
4696                 else
4697                         last_size = new_size;
4698                 if (del_item) {
4699                         if (!pending_del_nr) {
4700                                 /* no pending yet, add ourselves */
4701                                 pending_del_slot = path->slots[0];
4702                                 pending_del_nr = 1;
4703                         } else if (pending_del_nr &&
4704                                    path->slots[0] + 1 == pending_del_slot) {
4705                                 /* hop on the pending chunk */
4706                                 pending_del_nr++;
4707                                 pending_del_slot = path->slots[0];
4708                         } else {
4709                                 BUG();
4710                         }
4711                 } else {
4712                         break;
4713                 }
4714                 should_throttle = false;
4715
4716                 if (found_extent &&
4717                     (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4718                      root == fs_info->tree_root)) {
4719                         btrfs_set_path_blocking(path);
4720                         bytes_deleted += extent_num_bytes;
4721                         ret = btrfs_free_extent(trans, root, extent_start,
4722                                                 extent_num_bytes, 0,
4723                                                 btrfs_header_owner(leaf),
4724                                                 ino, extent_offset);
4725                         if (ret) {
4726                                 btrfs_abort_transaction(trans, ret);
4727                                 break;
4728                         }
4729                         if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4730                                 btrfs_async_run_delayed_refs(fs_info,
4731                                         trans->delayed_ref_updates * 2,
4732                                         trans->transid, 0);
4733                         if (be_nice) {
4734                                 if (truncate_space_check(trans, root,
4735                                                          extent_num_bytes)) {
4736                                         should_end = true;
4737                                 }
4738                                 if (btrfs_should_throttle_delayed_refs(trans,
4739                                                                        fs_info))
4740                                         should_throttle = true;
4741                         }
4742                 }
4743
4744                 if (found_type == BTRFS_INODE_ITEM_KEY)
4745                         break;
4746
4747                 if (path->slots[0] == 0 ||
4748                     path->slots[0] != pending_del_slot ||
4749                     should_throttle || should_end) {
4750                         if (pending_del_nr) {
4751                                 ret = btrfs_del_items(trans, root, path,
4752                                                 pending_del_slot,
4753                                                 pending_del_nr);
4754                                 if (ret) {
4755                                         btrfs_abort_transaction(trans, ret);
4756                                         break;
4757                                 }
4758                                 pending_del_nr = 0;
4759                         }
4760                         btrfs_release_path(path);
4761                         if (should_throttle) {
4762                                 unsigned long updates = trans->delayed_ref_updates;
4763                                 if (updates) {
4764                                         trans->delayed_ref_updates = 0;
4765                                         ret = btrfs_run_delayed_refs(trans,
4766                                                                    updates * 2);
4767                                         if (ret)
4768                                                 break;
4769                                 }
4770                         }
4771                         /*
4772                          * if we failed to refill our space rsv, bail out
4773                          * and let the transaction restart
4774                          */
4775                         if (should_end) {
4776                                 ret = -EAGAIN;
4777                                 break;
4778                         }
4779                         goto search_again;
4780                 } else {
4781                         path->slots[0]--;
4782                 }
4783         }
4784 out:
4785         if (ret >= 0 && pending_del_nr) {
4786                 int err;
4787
4788                 err = btrfs_del_items(trans, root, path, pending_del_slot,
4789                                       pending_del_nr);
4790                 if (err) {
4791                         btrfs_abort_transaction(trans, err);
4792                         ret = err;
4793                 }
4794         }
4795         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4796                 ASSERT(last_size >= new_size);
4797                 if (!ret && last_size > new_size)
4798                         last_size = new_size;
4799                 btrfs_ordered_update_i_size(inode, last_size, NULL);
4800         }
4801
4802         btrfs_free_path(path);
4803
4804         if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) {
4805                 unsigned long updates = trans->delayed_ref_updates;
4806                 int err;
4807
4808                 if (updates) {
4809                         trans->delayed_ref_updates = 0;
4810                         err = btrfs_run_delayed_refs(trans, updates * 2);
4811                         if (err)
4812                                 ret = err;
4813                 }
4814         }
4815         return ret;
4816 }
4817
4818 /*
4819  * btrfs_truncate_block - read, zero a chunk and write a block
4820  * @inode - inode that we're zeroing
4821  * @from - the offset to start zeroing
4822  * @len - the length to zero, 0 to zero the entire range respective to the
4823  *      offset
4824  * @front - zero up to the offset instead of from the offset on
4825  *
4826  * This will find the block for the "from" offset and cow the block and zero the
4827  * part we want to zero.  This is used with truncate and hole punching.
4828  */
4829 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4830                         int front)
4831 {
4832         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4833         struct address_space *mapping = inode->i_mapping;
4834         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4835         struct btrfs_ordered_extent *ordered;
4836         struct extent_state *cached_state = NULL;
4837         struct extent_changeset *data_reserved = NULL;
4838         char *kaddr;
4839         u32 blocksize = fs_info->sectorsize;
4840         pgoff_t index = from >> PAGE_SHIFT;
4841         unsigned offset = from & (blocksize - 1);
4842         struct page *page;
4843         gfp_t mask = btrfs_alloc_write_mask(mapping);
4844         int ret = 0;
4845         u64 block_start;
4846         u64 block_end;
4847
4848         if (IS_ALIGNED(offset, blocksize) &&
4849             (!len || IS_ALIGNED(len, blocksize)))
4850                 goto out;
4851
4852         block_start = round_down(from, blocksize);
4853         block_end = block_start + blocksize - 1;
4854
4855         ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4856                                            block_start, blocksize);
4857         if (ret)
4858                 goto out;
4859
4860 again:
4861         page = find_or_create_page(mapping, index, mask);
4862         if (!page) {
4863                 btrfs_delalloc_release_space(inode, data_reserved,
4864                                              block_start, blocksize, true);
4865                 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4866                 ret = -ENOMEM;
4867                 goto out;
4868         }
4869
4870         if (!PageUptodate(page)) {
4871                 ret = btrfs_readpage(NULL, page);
4872                 lock_page(page);
4873                 if (page->mapping != mapping) {
4874                         unlock_page(page);
4875                         put_page(page);
4876                         goto again;
4877                 }
4878                 if (!PageUptodate(page)) {
4879                         ret = -EIO;
4880                         goto out_unlock;
4881                 }
4882         }
4883         wait_on_page_writeback(page);
4884
4885         lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4886         set_page_extent_mapped(page);
4887
4888         ordered = btrfs_lookup_ordered_extent(inode, block_start);
4889         if (ordered) {
4890                 unlock_extent_cached(io_tree, block_start, block_end,
4891                                      &cached_state);
4892                 unlock_page(page);
4893                 put_page(page);
4894                 btrfs_start_ordered_extent(inode, ordered, 1);
4895                 btrfs_put_ordered_extent(ordered);
4896                 goto again;
4897         }
4898
4899         clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4900                           EXTENT_DIRTY | EXTENT_DELALLOC |
4901                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4902                           0, 0, &cached_state);
4903
4904         ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4905                                         &cached_state, 0);
4906         if (ret) {
4907                 unlock_extent_cached(io_tree, block_start, block_end,
4908                                      &cached_state);
4909                 goto out_unlock;
4910         }
4911
4912         if (offset != blocksize) {
4913                 if (!len)
4914                         len = blocksize - offset;
4915                 kaddr = kmap(page);
4916                 if (front)
4917                         memset(kaddr + (block_start - page_offset(page)),
4918                                 0, offset);
4919                 else
4920                         memset(kaddr + (block_start - page_offset(page)) +  offset,
4921                                 0, len);
4922                 flush_dcache_page(page);
4923                 kunmap(page);
4924         }
4925         ClearPageChecked(page);
4926         set_page_dirty(page);
4927         unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4928
4929 out_unlock:
4930         if (ret)
4931                 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4932                                              blocksize, true);
4933         btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
4934         unlock_page(page);
4935         put_page(page);
4936 out:
4937         extent_changeset_free(data_reserved);
4938         return ret;
4939 }
4940
4941 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4942                              u64 offset, u64 len)
4943 {
4944         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4945         struct btrfs_trans_handle *trans;
4946         int ret;
4947
4948         /*
4949          * Still need to make sure the inode looks like it's been updated so
4950          * that any holes get logged if we fsync.
4951          */
4952         if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4953                 BTRFS_I(inode)->last_trans = fs_info->generation;
4954                 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4955                 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4956                 return 0;
4957         }
4958
4959         /*
4960          * 1 - for the one we're dropping
4961          * 1 - for the one we're adding
4962          * 1 - for updating the inode.
4963          */
4964         trans = btrfs_start_transaction(root, 3);
4965         if (IS_ERR(trans))
4966                 return PTR_ERR(trans);
4967
4968         ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4969         if (ret) {
4970                 btrfs_abort_transaction(trans, ret);
4971                 btrfs_end_transaction(trans);
4972                 return ret;
4973         }
4974
4975         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4976                         offset, 0, 0, len, 0, len, 0, 0, 0);
4977         if (ret)
4978                 btrfs_abort_transaction(trans, ret);
4979         else
4980                 btrfs_update_inode(trans, root, inode);
4981         btrfs_end_transaction(trans);
4982         return ret;
4983 }
4984
4985 /*
4986  * This function puts in dummy file extents for the area we're creating a hole
4987  * for.  So if we are truncating this file to a larger size we need to insert
4988  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4989  * the range between oldsize and size
4990  */
4991 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4992 {
4993         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4994         struct btrfs_root *root = BTRFS_I(inode)->root;
4995         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4996         struct extent_map *em = NULL;
4997         struct extent_state *cached_state = NULL;
4998         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4999         u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5000         u64 block_end = ALIGN(size, fs_info->sectorsize);
5001         u64 last_byte;
5002         u64 cur_offset;
5003         u64 hole_size;
5004         int err = 0;
5005
5006         /*
5007          * If our size started in the middle of a block we need to zero out the
5008          * rest of the block before we expand the i_size, otherwise we could
5009          * expose stale data.
5010          */
5011         err = btrfs_truncate_block(inode, oldsize, 0, 0);
5012         if (err)
5013                 return err;
5014
5015         if (size <= hole_start)
5016                 return 0;
5017
5018         while (1) {
5019                 struct btrfs_ordered_extent *ordered;
5020
5021                 lock_extent_bits(io_tree, hole_start, block_end - 1,
5022                                  &cached_state);
5023                 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
5024                                                      block_end - hole_start);
5025                 if (!ordered)
5026                         break;
5027                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
5028                                      &cached_state);
5029                 btrfs_start_ordered_extent(inode, ordered, 1);
5030                 btrfs_put_ordered_extent(ordered);
5031         }
5032
5033         cur_offset = hole_start;
5034         while (1) {
5035                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5036                                 block_end - cur_offset, 0);
5037                 if (IS_ERR(em)) {
5038                         err = PTR_ERR(em);
5039                         em = NULL;
5040                         break;
5041                 }
5042                 last_byte = min(extent_map_end(em), block_end);
5043                 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5044                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5045                         struct extent_map *hole_em;
5046                         hole_size = last_byte - cur_offset;
5047
5048                         err = maybe_insert_hole(root, inode, cur_offset,
5049                                                 hole_size);
5050                         if (err)
5051                                 break;
5052                         btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5053                                                 cur_offset + hole_size - 1, 0);
5054                         hole_em = alloc_extent_map();
5055                         if (!hole_em) {
5056                                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5057                                         &BTRFS_I(inode)->runtime_flags);
5058                                 goto next;
5059                         }
5060                         hole_em->start = cur_offset;
5061                         hole_em->len = hole_size;
5062                         hole_em->orig_start = cur_offset;
5063
5064                         hole_em->block_start = EXTENT_MAP_HOLE;
5065                         hole_em->block_len = 0;
5066                         hole_em->orig_block_len = 0;
5067                         hole_em->ram_bytes = hole_size;
5068                         hole_em->bdev = fs_info->fs_devices->latest_bdev;
5069                         hole_em->compress_type = BTRFS_COMPRESS_NONE;
5070                         hole_em->generation = fs_info->generation;
5071
5072                         while (1) {
5073                                 write_lock(&em_tree->lock);
5074                                 err = add_extent_mapping(em_tree, hole_em, 1);
5075                                 write_unlock(&em_tree->lock);
5076                                 if (err != -EEXIST)
5077                                         break;
5078                                 btrfs_drop_extent_cache(BTRFS_I(inode),
5079                                                         cur_offset,
5080                                                         cur_offset +
5081                                                         hole_size - 1, 0);
5082                         }
5083                         free_extent_map(hole_em);
5084                 }
5085 next:
5086                 free_extent_map(em);
5087                 em = NULL;
5088                 cur_offset = last_byte;
5089                 if (cur_offset >= block_end)
5090                         break;
5091         }
5092         free_extent_map(em);
5093         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5094         return err;
5095 }
5096
5097 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5098 {
5099         struct btrfs_root *root = BTRFS_I(inode)->root;
5100         struct btrfs_trans_handle *trans;
5101         loff_t oldsize = i_size_read(inode);
5102         loff_t newsize = attr->ia_size;
5103         int mask = attr->ia_valid;
5104         int ret;
5105
5106         /*
5107          * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5108          * special case where we need to update the times despite not having
5109          * these flags set.  For all other operations the VFS set these flags
5110          * explicitly if it wants a timestamp update.
5111          */
5112         if (newsize != oldsize) {
5113                 inode_inc_iversion(inode);
5114                 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5115                         inode->i_ctime = inode->i_mtime =
5116                                 current_time(inode);
5117         }
5118
5119         if (newsize > oldsize) {
5120                 /*
5121                  * Don't do an expanding truncate while snapshotting is ongoing.
5122                  * This is to ensure the snapshot captures a fully consistent
5123                  * state of this file - if the snapshot captures this expanding
5124                  * truncation, it must capture all writes that happened before
5125                  * this truncation.
5126                  */
5127                 btrfs_wait_for_snapshot_creation(root);
5128                 ret = btrfs_cont_expand(inode, oldsize, newsize);
5129                 if (ret) {
5130                         btrfs_end_write_no_snapshotting(root);
5131                         return ret;
5132                 }
5133
5134                 trans = btrfs_start_transaction(root, 1);
5135                 if (IS_ERR(trans)) {
5136                         btrfs_end_write_no_snapshotting(root);
5137                         return PTR_ERR(trans);
5138                 }
5139
5140                 i_size_write(inode, newsize);
5141                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5142                 pagecache_isize_extended(inode, oldsize, newsize);
5143                 ret = btrfs_update_inode(trans, root, inode);
5144                 btrfs_end_write_no_snapshotting(root);
5145                 btrfs_end_transaction(trans);
5146         } else {
5147
5148                 /*
5149                  * We're truncating a file that used to have good data down to
5150                  * zero. Make sure it gets into the ordered flush list so that
5151                  * any new writes get down to disk quickly.
5152                  */
5153                 if (newsize == 0)
5154                         set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5155                                 &BTRFS_I(inode)->runtime_flags);
5156
5157                 truncate_setsize(inode, newsize);
5158
5159                 /* Disable nonlocked read DIO to avoid the end less truncate */
5160                 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5161                 inode_dio_wait(inode);
5162                 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5163
5164                 ret = btrfs_truncate(inode, newsize == oldsize);
5165                 if (ret && inode->i_nlink) {
5166                         int err;
5167
5168                         /*
5169                          * Truncate failed, so fix up the in-memory size. We
5170                          * adjusted disk_i_size down as we removed extents, so
5171                          * wait for disk_i_size to be stable and then update the
5172                          * in-memory size to match.
5173                          */
5174                         err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5175                         if (err)
5176                                 return err;
5177                         i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5178                 }
5179         }
5180
5181         return ret;
5182 }
5183
5184 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5185 {
5186         struct inode *inode = d_inode(dentry);
5187         struct btrfs_root *root = BTRFS_I(inode)->root;
5188         int err;
5189
5190         if (btrfs_root_readonly(root))
5191                 return -EROFS;
5192
5193         err = setattr_prepare(dentry, attr);
5194         if (err)
5195                 return err;
5196
5197         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5198                 err = btrfs_setsize(inode, attr);
5199                 if (err)
5200                         return err;
5201         }
5202
5203         if (attr->ia_valid) {
5204                 setattr_copy(inode, attr);
5205                 inode_inc_iversion(inode);
5206                 err = btrfs_dirty_inode(inode);
5207
5208                 if (!err && attr->ia_valid & ATTR_MODE)
5209                         err = posix_acl_chmod(inode, inode->i_mode);
5210         }
5211
5212         return err;
5213 }
5214
5215 /*
5216  * While truncating the inode pages during eviction, we get the VFS calling
5217  * btrfs_invalidatepage() against each page of the inode. This is slow because
5218  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5219  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5220  * extent_state structures over and over, wasting lots of time.
5221  *
5222  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5223  * those expensive operations on a per page basis and do only the ordered io
5224  * finishing, while we release here the extent_map and extent_state structures,
5225  * without the excessive merging and splitting.
5226  */
5227 static void evict_inode_truncate_pages(struct inode *inode)
5228 {
5229         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5230         struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5231         struct rb_node *node;
5232
5233         ASSERT(inode->i_state & I_FREEING);
5234         truncate_inode_pages_final(&inode->i_data);
5235
5236         write_lock(&map_tree->lock);
5237         while (!RB_EMPTY_ROOT(&map_tree->map)) {
5238                 struct extent_map *em;
5239
5240                 node = rb_first(&map_tree->map);
5241                 em = rb_entry(node, struct extent_map, rb_node);
5242                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5243                 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5244                 remove_extent_mapping(map_tree, em);
5245                 free_extent_map(em);
5246                 if (need_resched()) {
5247                         write_unlock(&map_tree->lock);
5248                         cond_resched();
5249                         write_lock(&map_tree->lock);
5250                 }
5251         }
5252         write_unlock(&map_tree->lock);
5253
5254         /*
5255          * Keep looping until we have no more ranges in the io tree.
5256          * We can have ongoing bios started by readpages (called from readahead)
5257          * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5258          * still in progress (unlocked the pages in the bio but did not yet
5259          * unlocked the ranges in the io tree). Therefore this means some
5260          * ranges can still be locked and eviction started because before
5261          * submitting those bios, which are executed by a separate task (work
5262          * queue kthread), inode references (inode->i_count) were not taken
5263          * (which would be dropped in the end io callback of each bio).
5264          * Therefore here we effectively end up waiting for those bios and
5265          * anyone else holding locked ranges without having bumped the inode's
5266          * reference count - if we don't do it, when they access the inode's
5267          * io_tree to unlock a range it may be too late, leading to an
5268          * use-after-free issue.
5269          */
5270         spin_lock(&io_tree->lock);
5271         while (!RB_EMPTY_ROOT(&io_tree->state)) {
5272                 struct extent_state *state;
5273                 struct extent_state *cached_state = NULL;
5274                 u64 start;
5275                 u64 end;
5276
5277                 node = rb_first(&io_tree->state);
5278                 state = rb_entry(node, struct extent_state, rb_node);
5279                 start = state->start;
5280                 end = state->end;
5281                 spin_unlock(&io_tree->lock);
5282
5283                 lock_extent_bits(io_tree, start, end, &cached_state);
5284
5285                 /*
5286                  * If still has DELALLOC flag, the extent didn't reach disk,
5287                  * and its reserved space won't be freed by delayed_ref.
5288                  * So we need to free its reserved space here.
5289                  * (Refer to comment in btrfs_invalidatepage, case 2)
5290                  *
5291                  * Note, end is the bytenr of last byte, so we need + 1 here.
5292                  */
5293                 if (state->state & EXTENT_DELALLOC)
5294                         btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5295
5296                 clear_extent_bit(io_tree, start, end,
5297                                  EXTENT_LOCKED | EXTENT_DIRTY |
5298                                  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5299                                  EXTENT_DEFRAG, 1, 1, &cached_state);
5300
5301                 cond_resched();
5302                 spin_lock(&io_tree->lock);
5303         }
5304         spin_unlock(&io_tree->lock);
5305 }
5306
5307 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5308                                                         struct btrfs_block_rsv *rsv,
5309                                                         u64 min_size)
5310 {
5311         struct btrfs_fs_info *fs_info = root->fs_info;
5312         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5313         int failures = 0;
5314
5315         for (;;) {
5316                 struct btrfs_trans_handle *trans;
5317                 int ret;
5318
5319                 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5320                                              BTRFS_RESERVE_FLUSH_LIMIT);
5321
5322                 if (ret && ++failures > 2) {
5323                         btrfs_warn(fs_info,
5324                                    "could not allocate space for a delete; will truncate on mount");
5325                         return ERR_PTR(-ENOSPC);
5326                 }
5327
5328                 trans = btrfs_join_transaction(root);
5329                 if (IS_ERR(trans) || !ret)
5330                         return trans;
5331
5332                 /*
5333                  * Try to steal from the global reserve if there is space for
5334                  * it.
5335                  */
5336                 if (!btrfs_check_space_for_delayed_refs(trans, fs_info) &&
5337                     !btrfs_block_rsv_migrate(global_rsv, rsv, min_size, false))
5338                         return trans;
5339
5340                 /* If not, commit and try again. */
5341                 ret = btrfs_commit_transaction(trans);
5342                 if (ret)
5343                         return ERR_PTR(ret);
5344         }
5345 }
5346
5347 void btrfs_evict_inode(struct inode *inode)
5348 {
5349         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5350         struct btrfs_trans_handle *trans;
5351         struct btrfs_root *root = BTRFS_I(inode)->root;
5352         struct btrfs_block_rsv *rsv;
5353         u64 min_size;
5354         int ret;
5355
5356         trace_btrfs_inode_evict(inode);
5357
5358         if (!root) {
5359                 clear_inode(inode);
5360                 return;
5361         }
5362
5363         min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5364
5365         evict_inode_truncate_pages(inode);
5366
5367         if (inode->i_nlink &&
5368             ((btrfs_root_refs(&root->root_item) != 0 &&
5369               root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5370              btrfs_is_free_space_inode(BTRFS_I(inode))))
5371                 goto no_delete;
5372
5373         if (is_bad_inode(inode))
5374                 goto no_delete;
5375         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5376         if (!special_file(inode->i_mode))
5377                 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5378
5379         btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5380
5381         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5382                 goto no_delete;
5383
5384         if (inode->i_nlink > 0) {
5385                 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5386                        root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5387                 goto no_delete;
5388         }
5389
5390         ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5391         if (ret)
5392                 goto no_delete;
5393
5394         rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5395         if (!rsv)
5396                 goto no_delete;
5397         rsv->size = min_size;
5398         rsv->failfast = 1;
5399
5400         btrfs_i_size_write(BTRFS_I(inode), 0);
5401
5402         while (1) {
5403                 trans = evict_refill_and_join(root, rsv, min_size);
5404                 if (IS_ERR(trans))
5405                         goto free_rsv;
5406
5407                 trans->block_rsv = rsv;
5408
5409                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5410                 trans->block_rsv = &fs_info->trans_block_rsv;
5411                 btrfs_end_transaction(trans);
5412                 btrfs_btree_balance_dirty(fs_info);
5413                 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5414                         goto free_rsv;
5415                 else if (!ret)
5416                         break;
5417         }
5418
5419         /*
5420          * Errors here aren't a big deal, it just means we leave orphan items in
5421          * the tree. They will be cleaned up on the next mount. If the inode
5422          * number gets reused, cleanup deletes the orphan item without doing
5423          * anything, and unlink reuses the existing orphan item.
5424          *
5425          * If it turns out that we are dropping too many of these, we might want
5426          * to add a mechanism for retrying these after a commit.
5427          */
5428         trans = evict_refill_and_join(root, rsv, min_size);
5429         if (!IS_ERR(trans)) {
5430                 trans->block_rsv = rsv;
5431                 btrfs_orphan_del(trans, BTRFS_I(inode));
5432                 trans->block_rsv = &fs_info->trans_block_rsv;
5433                 btrfs_end_transaction(trans);
5434         }
5435
5436         if (!(root == fs_info->tree_root ||
5437               root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5438                 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5439
5440 free_rsv:
5441         btrfs_free_block_rsv(fs_info, rsv);
5442 no_delete:
5443         /*
5444          * If we didn't successfully delete, the orphan item will still be in
5445          * the tree and we'll retry on the next mount. Again, we might also want
5446          * to retry these periodically in the future.
5447          */
5448         btrfs_remove_delayed_node(BTRFS_I(inode));
5449         clear_inode(inode);
5450 }
5451
5452 /*
5453  * this returns the key found in the dir entry in the location pointer.
5454  * If no dir entries were found, returns -ENOENT.
5455  * If found a corrupted location in dir entry, returns -EUCLEAN.
5456  */
5457 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5458                                struct btrfs_key *location)
5459 {
5460         const char *name = dentry->d_name.name;
5461         int namelen = dentry->d_name.len;
5462         struct btrfs_dir_item *di;
5463         struct btrfs_path *path;
5464         struct btrfs_root *root = BTRFS_I(dir)->root;
5465         int ret = 0;
5466
5467         path = btrfs_alloc_path();
5468         if (!path)
5469                 return -ENOMEM;
5470
5471         di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5472                         name, namelen, 0);
5473         if (!di) {
5474                 ret = -ENOENT;
5475                 goto out;
5476         }
5477         if (IS_ERR(di)) {
5478                 ret = PTR_ERR(di);
5479                 goto out;
5480         }
5481
5482         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5483         if (location->type != BTRFS_INODE_ITEM_KEY &&
5484             location->type != BTRFS_ROOT_ITEM_KEY) {
5485                 ret = -EUCLEAN;
5486                 btrfs_warn(root->fs_info,
5487 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5488                            __func__, name, btrfs_ino(BTRFS_I(dir)),
5489                            location->objectid, location->type, location->offset);
5490         }
5491 out:
5492         btrfs_free_path(path);
5493         return ret;
5494 }
5495
5496 /*
5497  * when we hit a tree root in a directory, the btrfs part of the inode
5498  * needs to be changed to reflect the root directory of the tree root.  This
5499  * is kind of like crossing a mount point.
5500  */
5501 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5502                                     struct inode *dir,
5503                                     struct dentry *dentry,
5504                                     struct btrfs_key *location,
5505                                     struct btrfs_root **sub_root)
5506 {
5507         struct btrfs_path *path;
5508         struct btrfs_root *new_root;
5509         struct btrfs_root_ref *ref;
5510         struct extent_buffer *leaf;
5511         struct btrfs_key key;
5512         int ret;
5513         int err = 0;
5514
5515         path = btrfs_alloc_path();
5516         if (!path) {
5517                 err = -ENOMEM;
5518                 goto out;
5519         }
5520
5521         err = -ENOENT;
5522         key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5523         key.type = BTRFS_ROOT_REF_KEY;
5524         key.offset = location->objectid;
5525
5526         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5527         if (ret) {
5528                 if (ret < 0)
5529                         err = ret;
5530                 goto out;
5531         }
5532
5533         leaf = path->nodes[0];
5534         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5535         if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5536             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5537                 goto out;
5538
5539         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5540                                    (unsigned long)(ref + 1),
5541                                    dentry->d_name.len);
5542         if (ret)
5543                 goto out;
5544
5545         btrfs_release_path(path);
5546
5547         new_root = btrfs_read_fs_root_no_name(fs_info, location);
5548         if (IS_ERR(new_root)) {
5549                 err = PTR_ERR(new_root);
5550                 goto out;
5551         }
5552
5553         *sub_root = new_root;
5554         location->objectid = btrfs_root_dirid(&new_root->root_item);
5555         location->type = BTRFS_INODE_ITEM_KEY;
5556         location->offset = 0;
5557         err = 0;
5558 out:
5559         btrfs_free_path(path);
5560         return err;
5561 }
5562
5563 static void inode_tree_add(struct inode *inode)
5564 {
5565         struct btrfs_root *root = BTRFS_I(inode)->root;
5566         struct btrfs_inode *entry;
5567         struct rb_node **p;
5568         struct rb_node *parent;
5569         struct rb_node *new = &BTRFS_I(inode)->rb_node;
5570         u64 ino = btrfs_ino(BTRFS_I(inode));
5571
5572         if (inode_unhashed(inode))
5573                 return;
5574         parent = NULL;
5575         spin_lock(&root->inode_lock);
5576         p = &root->inode_tree.rb_node;
5577         while (*p) {
5578                 parent = *p;
5579                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5580
5581                 if (ino < btrfs_ino(entry))
5582                         p = &parent->rb_left;
5583                 else if (ino > btrfs_ino(entry))
5584                         p = &parent->rb_right;
5585                 else {
5586                         WARN_ON(!(entry->vfs_inode.i_state &
5587                                   (I_WILL_FREE | I_FREEING)));
5588                         rb_replace_node(parent, new, &root->inode_tree);
5589                         RB_CLEAR_NODE(parent);
5590                         spin_unlock(&root->inode_lock);
5591                         return;
5592                 }
5593         }
5594         rb_link_node(new, parent, p);
5595         rb_insert_color(new, &root->inode_tree);
5596         spin_unlock(&root->inode_lock);
5597 }
5598
5599 static void inode_tree_del(struct inode *inode)
5600 {
5601         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5602         struct btrfs_root *root = BTRFS_I(inode)->root;
5603         int empty = 0;
5604
5605         spin_lock(&root->inode_lock);
5606         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5607                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5608                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5609                 empty = RB_EMPTY_ROOT(&root->inode_tree);
5610         }
5611         spin_unlock(&root->inode_lock);
5612
5613         if (empty && btrfs_root_refs(&root->root_item) == 0) {
5614                 synchronize_srcu(&fs_info->subvol_srcu);
5615                 spin_lock(&root->inode_lock);
5616                 empty = RB_EMPTY_ROOT(&root->inode_tree);
5617                 spin_unlock(&root->inode_lock);
5618                 if (empty)
5619                         btrfs_add_dead_root(root);
5620         }
5621 }
5622
5623
5624 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5625 {
5626         struct btrfs_iget_args *args = p;
5627         inode->i_ino = args->location->objectid;
5628         memcpy(&BTRFS_I(inode)->location, args->location,
5629                sizeof(*args->location));
5630         BTRFS_I(inode)->root = args->root;
5631         return 0;
5632 }
5633
5634 static int btrfs_find_actor(struct inode *inode, void *opaque)
5635 {
5636         struct btrfs_iget_args *args = opaque;
5637         return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5638                 args->root == BTRFS_I(inode)->root;
5639 }
5640
5641 static struct inode *btrfs_iget_locked(struct super_block *s,
5642                                        struct btrfs_key *location,
5643                                        struct btrfs_root *root)
5644 {
5645         struct inode *inode;
5646         struct btrfs_iget_args args;
5647         unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5648
5649         args.location = location;
5650         args.root = root;
5651
5652         inode = iget5_locked(s, hashval, btrfs_find_actor,
5653                              btrfs_init_locked_inode,
5654                              (void *)&args);
5655         return inode;
5656 }
5657
5658 /* Get an inode object given its location and corresponding root.
5659  * Returns in *is_new if the inode was read from disk
5660  */
5661 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5662                          struct btrfs_root *root, int *new)
5663 {
5664         struct inode *inode;
5665
5666         inode = btrfs_iget_locked(s, location, root);
5667         if (!inode)
5668                 return ERR_PTR(-ENOMEM);
5669
5670         if (inode->i_state & I_NEW) {
5671                 int ret;
5672
5673                 ret = btrfs_read_locked_inode(inode);
5674                 if (!ret) {
5675                         inode_tree_add(inode);
5676                         unlock_new_inode(inode);
5677                         if (new)
5678                                 *new = 1;
5679                 } else {
5680                         iget_failed(inode);
5681                         /*
5682                          * ret > 0 can come from btrfs_search_slot called by
5683                          * btrfs_read_locked_inode, this means the inode item
5684                          * was not found.
5685                          */
5686                         if (ret > 0)
5687                                 ret = -ENOENT;
5688                         inode = ERR_PTR(ret);
5689                 }
5690         }
5691
5692         return inode;
5693 }
5694
5695 static struct inode *new_simple_dir(struct super_block *s,
5696                                     struct btrfs_key *key,
5697                                     struct btrfs_root *root)
5698 {
5699         struct inode *inode = new_inode(s);
5700
5701         if (!inode)
5702                 return ERR_PTR(-ENOMEM);
5703
5704         BTRFS_I(inode)->root = root;
5705         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5706         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5707
5708         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5709         inode->i_op = &btrfs_dir_ro_inode_operations;
5710         inode->i_opflags &= ~IOP_XATTR;
5711         inode->i_fop = &simple_dir_operations;
5712         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5713         inode->i_mtime = current_time(inode);
5714         inode->i_atime = inode->i_mtime;
5715         inode->i_ctime = inode->i_mtime;
5716         BTRFS_I(inode)->i_otime = inode->i_mtime;
5717
5718         return inode;
5719 }
5720
5721 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5722 {
5723         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5724         struct inode *inode;
5725         struct btrfs_root *root = BTRFS_I(dir)->root;
5726         struct btrfs_root *sub_root = root;
5727         struct btrfs_key location;
5728         int index;
5729         int ret = 0;
5730
5731         if (dentry->d_name.len > BTRFS_NAME_LEN)
5732                 return ERR_PTR(-ENAMETOOLONG);
5733
5734         ret = btrfs_inode_by_name(dir, dentry, &location);
5735         if (ret < 0)
5736                 return ERR_PTR(ret);
5737
5738         if (location.type == BTRFS_INODE_ITEM_KEY) {
5739                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5740                 return inode;
5741         }
5742
5743         index = srcu_read_lock(&fs_info->subvol_srcu);
5744         ret = fixup_tree_root_location(fs_info, dir, dentry,
5745                                        &location, &sub_root);
5746         if (ret < 0) {
5747                 if (ret != -ENOENT)
5748                         inode = ERR_PTR(ret);
5749                 else
5750                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
5751         } else {
5752                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5753         }
5754         srcu_read_unlock(&fs_info->subvol_srcu, index);
5755
5756         if (!IS_ERR(inode) && root != sub_root) {
5757                 down_read(&fs_info->cleanup_work_sem);
5758                 if (!sb_rdonly(inode->i_sb))
5759                         ret = btrfs_orphan_cleanup(sub_root);
5760                 up_read(&fs_info->cleanup_work_sem);
5761                 if (ret) {
5762                         iput(inode);
5763                         inode = ERR_PTR(ret);
5764                 }
5765         }
5766
5767         return inode;
5768 }
5769
5770 static int btrfs_dentry_delete(const struct dentry *dentry)
5771 {
5772         struct btrfs_root *root;
5773         struct inode *inode = d_inode(dentry);
5774
5775         if (!inode && !IS_ROOT(dentry))
5776                 inode = d_inode(dentry->d_parent);
5777
5778         if (inode) {
5779                 root = BTRFS_I(inode)->root;
5780                 if (btrfs_root_refs(&root->root_item) == 0)
5781                         return 1;
5782
5783                 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5784                         return 1;
5785         }
5786         return 0;
5787 }
5788
5789 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5790                                    unsigned int flags)
5791 {
5792         struct inode *inode;
5793
5794         inode = btrfs_lookup_dentry(dir, dentry);
5795         if (IS_ERR(inode)) {
5796                 if (PTR_ERR(inode) == -ENOENT)
5797                         inode = NULL;
5798                 else
5799                         return ERR_CAST(inode);
5800         }
5801
5802         return d_splice_alias(inode, dentry);
5803 }
5804
5805 unsigned char btrfs_filetype_table[] = {
5806         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5807 };
5808
5809 /*
5810  * All this infrastructure exists because dir_emit can fault, and we are holding
5811  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5812  * our information into that, and then dir_emit from the buffer.  This is
5813  * similar to what NFS does, only we don't keep the buffer around in pagecache
5814  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5815  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5816  * tree lock.
5817  */
5818 static int btrfs_opendir(struct inode *inode, struct file *file)
5819 {
5820         struct btrfs_file_private *private;
5821
5822         private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5823         if (!private)
5824                 return -ENOMEM;
5825         private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5826         if (!private->filldir_buf) {
5827                 kfree(private);
5828                 return -ENOMEM;
5829         }
5830         file->private_data = private;
5831         return 0;
5832 }
5833
5834 struct dir_entry {
5835         u64 ino;
5836         u64 offset;
5837         unsigned type;
5838         int name_len;
5839 };
5840
5841 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5842 {
5843         while (entries--) {
5844                 struct dir_entry *entry = addr;
5845                 char *name = (char *)(entry + 1);
5846
5847                 ctx->pos = get_unaligned(&entry->offset);
5848                 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5849                                          get_unaligned(&entry->ino),
5850                                          get_unaligned(&entry->type)))
5851                         return 1;
5852                 addr += sizeof(struct dir_entry) +
5853                         get_unaligned(&entry->name_len);
5854                 ctx->pos++;
5855         }
5856         return 0;
5857 }
5858
5859 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5860 {
5861         struct inode *inode = file_inode(file);
5862         struct btrfs_root *root = BTRFS_I(inode)->root;
5863         struct btrfs_file_private *private = file->private_data;
5864         struct btrfs_dir_item *di;
5865         struct btrfs_key key;
5866         struct btrfs_key found_key;
5867         struct btrfs_path *path;
5868         void *addr;
5869         struct list_head ins_list;
5870         struct list_head del_list;
5871         int ret;
5872         struct extent_buffer *leaf;
5873         int slot;
5874         char *name_ptr;
5875         int name_len;
5876         int entries = 0;
5877         int total_len = 0;
5878         bool put = false;
5879         struct btrfs_key location;
5880
5881         if (!dir_emit_dots(file, ctx))
5882                 return 0;
5883
5884         path = btrfs_alloc_path();
5885         if (!path)
5886                 return -ENOMEM;
5887
5888         addr = private->filldir_buf;
5889         path->reada = READA_FORWARD;
5890
5891         INIT_LIST_HEAD(&ins_list);
5892         INIT_LIST_HEAD(&del_list);
5893         put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5894
5895 again:
5896         key.type = BTRFS_DIR_INDEX_KEY;
5897         key.offset = ctx->pos;
5898         key.objectid = btrfs_ino(BTRFS_I(inode));
5899
5900         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5901         if (ret < 0)
5902                 goto err;
5903
5904         while (1) {
5905                 struct dir_entry *entry;
5906
5907                 leaf = path->nodes[0];
5908                 slot = path->slots[0];
5909                 if (slot >= btrfs_header_nritems(leaf)) {
5910                         ret = btrfs_next_leaf(root, path);
5911                         if (ret < 0)
5912                                 goto err;
5913                         else if (ret > 0)
5914                                 break;
5915                         continue;
5916                 }
5917
5918                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5919
5920                 if (found_key.objectid != key.objectid)
5921                         break;
5922                 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5923                         break;
5924                 if (found_key.offset < ctx->pos)
5925                         goto next;
5926                 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5927                         goto next;
5928                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5929                 name_len = btrfs_dir_name_len(leaf, di);
5930                 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5931                     PAGE_SIZE) {
5932                         btrfs_release_path(path);
5933                         ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5934                         if (ret)
5935                                 goto nopos;
5936                         addr = private->filldir_buf;
5937                         entries = 0;
5938                         total_len = 0;
5939                         goto again;
5940                 }
5941
5942                 entry = addr;
5943                 put_unaligned(name_len, &entry->name_len);
5944                 name_ptr = (char *)(entry + 1);
5945                 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5946                                    name_len);
5947                 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
5948                                 &entry->type);
5949                 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5950                 put_unaligned(location.objectid, &entry->ino);
5951                 put_unaligned(found_key.offset, &entry->offset);
5952                 entries++;
5953                 addr += sizeof(struct dir_entry) + name_len;
5954                 total_len += sizeof(struct dir_entry) + name_len;
5955 next:
5956                 path->slots[0]++;
5957         }
5958         btrfs_release_path(path);
5959
5960         ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5961         if (ret)
5962                 goto nopos;
5963
5964         ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5965         if (ret)
5966                 goto nopos;
5967
5968         /*
5969          * Stop new entries from being returned after we return the last
5970          * entry.
5971          *
5972          * New directory entries are assigned a strictly increasing
5973          * offset.  This means that new entries created during readdir
5974          * are *guaranteed* to be seen in the future by that readdir.
5975          * This has broken buggy programs which operate on names as
5976          * they're returned by readdir.  Until we re-use freed offsets
5977          * we have this hack to stop new entries from being returned
5978          * under the assumption that they'll never reach this huge
5979          * offset.
5980          *
5981          * This is being careful not to overflow 32bit loff_t unless the
5982          * last entry requires it because doing so has broken 32bit apps
5983          * in the past.
5984          */
5985         if (ctx->pos >= INT_MAX)
5986                 ctx->pos = LLONG_MAX;
5987         else
5988                 ctx->pos = INT_MAX;
5989 nopos:
5990         ret = 0;
5991 err:
5992         if (put)
5993                 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5994         btrfs_free_path(path);
5995         return ret;
5996 }
5997
5998 /*
5999  * This is somewhat expensive, updating the tree every time the
6000  * inode changes.  But, it is most likely to find the inode in cache.
6001  * FIXME, needs more benchmarking...there are no reasons other than performance
6002  * to keep or drop this code.
6003  */
6004 static int btrfs_dirty_inode(struct inode *inode)
6005 {
6006         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6007         struct btrfs_root *root = BTRFS_I(inode)->root;
6008         struct btrfs_trans_handle *trans;
6009         int ret;
6010
6011         if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6012                 return 0;
6013
6014         trans = btrfs_join_transaction(root);
6015         if (IS_ERR(trans))
6016                 return PTR_ERR(trans);
6017
6018         ret = btrfs_update_inode(trans, root, inode);
6019         if (ret && ret == -ENOSPC) {
6020                 /* whoops, lets try again with the full transaction */
6021                 btrfs_end_transaction(trans);
6022                 trans = btrfs_start_transaction(root, 1);
6023                 if (IS_ERR(trans))
6024                         return PTR_ERR(trans);
6025
6026                 ret = btrfs_update_inode(trans, root, inode);
6027         }
6028         btrfs_end_transaction(trans);
6029         if (BTRFS_I(inode)->delayed_node)
6030                 btrfs_balance_delayed_items(fs_info);
6031
6032         return ret;
6033 }
6034
6035 /*
6036  * This is a copy of file_update_time.  We need this so we can return error on
6037  * ENOSPC for updating the inode in the case of file write and mmap writes.
6038  */
6039 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6040                              int flags)
6041 {
6042         struct btrfs_root *root = BTRFS_I(inode)->root;
6043         bool dirty = flags & ~S_VERSION;
6044
6045         if (btrfs_root_readonly(root))
6046                 return -EROFS;
6047
6048         if (flags & S_VERSION)
6049                 dirty |= inode_maybe_inc_iversion(inode, dirty);
6050         if (flags & S_CTIME)
6051                 inode->i_ctime = *now;
6052         if (flags & S_MTIME)
6053                 inode->i_mtime = *now;
6054         if (flags & S_ATIME)
6055                 inode->i_atime = *now;
6056         return dirty ? btrfs_dirty_inode(inode) : 0;
6057 }
6058
6059 /*
6060  * find the highest existing sequence number in a directory
6061  * and then set the in-memory index_cnt variable to reflect
6062  * free sequence numbers
6063  */
6064 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6065 {
6066         struct btrfs_root *root = inode->root;
6067         struct btrfs_key key, found_key;
6068         struct btrfs_path *path;
6069         struct extent_buffer *leaf;
6070         int ret;
6071
6072         key.objectid = btrfs_ino(inode);
6073         key.type = BTRFS_DIR_INDEX_KEY;
6074         key.offset = (u64)-1;
6075
6076         path = btrfs_alloc_path();
6077         if (!path)
6078                 return -ENOMEM;
6079
6080         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6081         if (ret < 0)
6082                 goto out;
6083         /* FIXME: we should be able to handle this */
6084         if (ret == 0)
6085                 goto out;
6086         ret = 0;
6087
6088         /*
6089          * MAGIC NUMBER EXPLANATION:
6090          * since we search a directory based on f_pos we have to start at 2
6091          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6092          * else has to start at 2
6093          */
6094         if (path->slots[0] == 0) {
6095                 inode->index_cnt = 2;
6096                 goto out;
6097         }
6098
6099         path->slots[0]--;
6100
6101         leaf = path->nodes[0];
6102         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6103
6104         if (found_key.objectid != btrfs_ino(inode) ||
6105             found_key.type != BTRFS_DIR_INDEX_KEY) {
6106                 inode->index_cnt = 2;
6107                 goto out;
6108         }
6109
6110         inode->index_cnt = found_key.offset + 1;
6111 out:
6112         btrfs_free_path(path);
6113         return ret;
6114 }
6115
6116 /*
6117  * helper to find a free sequence number in a given directory.  This current
6118  * code is very simple, later versions will do smarter things in the btree
6119  */
6120 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6121 {
6122         int ret = 0;
6123
6124         if (dir->index_cnt == (u64)-1) {
6125                 ret = btrfs_inode_delayed_dir_index_count(dir);
6126                 if (ret) {
6127                         ret = btrfs_set_inode_index_count(dir);
6128                         if (ret)
6129                                 return ret;
6130                 }
6131         }
6132
6133         *index = dir->index_cnt;
6134         dir->index_cnt++;
6135
6136         return ret;
6137 }
6138
6139 static int btrfs_insert_inode_locked(struct inode *inode)
6140 {
6141         struct btrfs_iget_args args;
6142         args.location = &BTRFS_I(inode)->location;
6143         args.root = BTRFS_I(inode)->root;
6144
6145         return insert_inode_locked4(inode,
6146                    btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6147                    btrfs_find_actor, &args);
6148 }
6149
6150 /*
6151  * Inherit flags from the parent inode.
6152  *
6153  * Currently only the compression flags and the cow flags are inherited.
6154  */
6155 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6156 {
6157         unsigned int flags;
6158
6159         if (!dir)
6160                 return;
6161
6162         flags = BTRFS_I(dir)->flags;
6163
6164         if (flags & BTRFS_INODE_NOCOMPRESS) {
6165                 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6166                 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6167         } else if (flags & BTRFS_INODE_COMPRESS) {
6168                 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6169                 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6170         }
6171
6172         if (flags & BTRFS_INODE_NODATACOW) {
6173                 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6174                 if (S_ISREG(inode->i_mode))
6175                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6176         }
6177
6178         btrfs_sync_inode_flags_to_i_flags(inode);
6179 }
6180
6181 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6182                                      struct btrfs_root *root,
6183                                      struct inode *dir,
6184                                      const char *name, int name_len,
6185                                      u64 ref_objectid, u64 objectid,
6186                                      umode_t mode, u64 *index)
6187 {
6188         struct btrfs_fs_info *fs_info = root->fs_info;
6189         struct inode *inode;
6190         struct btrfs_inode_item *inode_item;
6191         struct btrfs_key *location;
6192         struct btrfs_path *path;
6193         struct btrfs_inode_ref *ref;
6194         struct btrfs_key key[2];
6195         u32 sizes[2];
6196         int nitems = name ? 2 : 1;
6197         unsigned long ptr;
6198         int ret;
6199
6200         path = btrfs_alloc_path();
6201         if (!path)
6202                 return ERR_PTR(-ENOMEM);
6203
6204         inode = new_inode(fs_info->sb);
6205         if (!inode) {
6206                 btrfs_free_path(path);
6207                 return ERR_PTR(-ENOMEM);
6208         }
6209
6210         /*
6211          * O_TMPFILE, set link count to 0, so that after this point,
6212          * we fill in an inode item with the correct link count.
6213          */
6214         if (!name)
6215                 set_nlink(inode, 0);
6216
6217         /*
6218          * we have to initialize this early, so we can reclaim the inode
6219          * number if we fail afterwards in this function.
6220          */
6221         inode->i_ino = objectid;
6222
6223         if (dir && name) {
6224                 trace_btrfs_inode_request(dir);
6225
6226                 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6227                 if (ret) {
6228                         btrfs_free_path(path);
6229                         iput(inode);
6230                         return ERR_PTR(ret);
6231                 }
6232         } else if (dir) {
6233                 *index = 0;
6234         }
6235         /*
6236          * index_cnt is ignored for everything but a dir,
6237          * btrfs_set_inode_index_count has an explanation for the magic
6238          * number
6239          */
6240         BTRFS_I(inode)->index_cnt = 2;
6241         BTRFS_I(inode)->dir_index = *index;
6242         BTRFS_I(inode)->root = root;
6243         BTRFS_I(inode)->generation = trans->transid;
6244         inode->i_generation = BTRFS_I(inode)->generation;
6245
6246         /*
6247          * We could have gotten an inode number from somebody who was fsynced
6248          * and then removed in this same transaction, so let's just set full
6249          * sync since it will be a full sync anyway and this will blow away the
6250          * old info in the log.
6251          */
6252         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6253
6254         key[0].objectid = objectid;
6255         key[0].type = BTRFS_INODE_ITEM_KEY;
6256         key[0].offset = 0;
6257
6258         sizes[0] = sizeof(struct btrfs_inode_item);
6259
6260         if (name) {
6261                 /*
6262                  * Start new inodes with an inode_ref. This is slightly more
6263                  * efficient for small numbers of hard links since they will
6264                  * be packed into one item. Extended refs will kick in if we
6265                  * add more hard links than can fit in the ref item.
6266                  */
6267                 key[1].objectid = objectid;
6268                 key[1].type = BTRFS_INODE_REF_KEY;
6269                 key[1].offset = ref_objectid;
6270
6271                 sizes[1] = name_len + sizeof(*ref);
6272         }
6273
6274         location = &BTRFS_I(inode)->location;
6275         location->objectid = objectid;
6276         location->offset = 0;
6277         location->type = BTRFS_INODE_ITEM_KEY;
6278
6279         ret = btrfs_insert_inode_locked(inode);
6280         if (ret < 0) {
6281                 iput(inode);
6282                 goto fail;
6283         }
6284
6285         path->leave_spinning = 1;
6286         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6287         if (ret != 0)
6288                 goto fail_unlock;
6289
6290         inode_init_owner(inode, dir, mode);
6291         inode_set_bytes(inode, 0);
6292
6293         inode->i_mtime = current_time(inode);
6294         inode->i_atime = inode->i_mtime;
6295         inode->i_ctime = inode->i_mtime;
6296         BTRFS_I(inode)->i_otime = inode->i_mtime;
6297
6298         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6299                                   struct btrfs_inode_item);
6300         memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6301                              sizeof(*inode_item));
6302         fill_inode_item(trans, path->nodes[0], inode_item, inode);
6303
6304         if (name) {
6305                 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6306                                      struct btrfs_inode_ref);
6307                 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6308                 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6309                 ptr = (unsigned long)(ref + 1);
6310                 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6311         }
6312
6313         btrfs_mark_buffer_dirty(path->nodes[0]);
6314         btrfs_free_path(path);
6315
6316         btrfs_inherit_iflags(inode, dir);
6317
6318         if (S_ISREG(mode)) {
6319                 if (btrfs_test_opt(fs_info, NODATASUM))
6320                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6321                 if (btrfs_test_opt(fs_info, NODATACOW))
6322                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6323                                 BTRFS_INODE_NODATASUM;
6324         }
6325
6326         inode_tree_add(inode);
6327
6328         trace_btrfs_inode_new(inode);
6329         btrfs_set_inode_last_trans(trans, inode);
6330
6331         btrfs_update_root_times(trans, root);
6332
6333         ret = btrfs_inode_inherit_props(trans, inode, dir);
6334         if (ret)
6335                 btrfs_err(fs_info,
6336                           "error inheriting props for ino %llu (root %llu): %d",
6337                         btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6338
6339         return inode;
6340
6341 fail_unlock:
6342         discard_new_inode(inode);
6343 fail:
6344         if (dir && name)
6345                 BTRFS_I(dir)->index_cnt--;
6346         btrfs_free_path(path);
6347         return ERR_PTR(ret);
6348 }
6349
6350 static inline u8 btrfs_inode_type(struct inode *inode)
6351 {
6352         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6353 }
6354
6355 /*
6356  * utility function to add 'inode' into 'parent_inode' with
6357  * a give name and a given sequence number.
6358  * if 'add_backref' is true, also insert a backref from the
6359  * inode to the parent directory.
6360  */
6361 int btrfs_add_link(struct btrfs_trans_handle *trans,
6362                    struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6363                    const char *name, int name_len, int add_backref, u64 index)
6364 {
6365         int ret = 0;
6366         struct btrfs_key key;
6367         struct btrfs_root *root = parent_inode->root;
6368         u64 ino = btrfs_ino(inode);
6369         u64 parent_ino = btrfs_ino(parent_inode);
6370
6371         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6372                 memcpy(&key, &inode->root->root_key, sizeof(key));
6373         } else {
6374                 key.objectid = ino;
6375                 key.type = BTRFS_INODE_ITEM_KEY;
6376                 key.offset = 0;
6377         }
6378
6379         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6380                 ret = btrfs_add_root_ref(trans, key.objectid,
6381                                          root->root_key.objectid, parent_ino,
6382                                          index, name, name_len);
6383         } else if (add_backref) {
6384                 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6385                                              parent_ino, index);
6386         }
6387
6388         /* Nothing to clean up yet */
6389         if (ret)
6390                 return ret;
6391
6392         ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6393                                     btrfs_inode_type(&inode->vfs_inode), index);
6394         if (ret == -EEXIST || ret == -EOVERFLOW)
6395                 goto fail_dir_item;
6396         else if (ret) {
6397                 btrfs_abort_transaction(trans, ret);
6398                 return ret;
6399         }
6400
6401         btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6402                            name_len * 2);
6403         inode_inc_iversion(&parent_inode->vfs_inode);
6404         parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6405                 current_time(&parent_inode->vfs_inode);
6406         ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6407         if (ret)
6408                 btrfs_abort_transaction(trans, ret);
6409         return ret;
6410
6411 fail_dir_item:
6412         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6413                 u64 local_index;
6414                 int err;
6415                 err = btrfs_del_root_ref(trans, key.objectid,
6416                                          root->root_key.objectid, parent_ino,
6417                                          &local_index, name, name_len);
6418
6419         } else if (add_backref) {
6420                 u64 local_index;
6421                 int err;
6422
6423                 err = btrfs_del_inode_ref(trans, root, name, name_len,
6424                                           ino, parent_ino, &local_index);
6425         }
6426         return ret;
6427 }
6428
6429 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6430                             struct btrfs_inode *dir, struct dentry *dentry,
6431                             struct btrfs_inode *inode, int backref, u64 index)
6432 {
6433         int err = btrfs_add_link(trans, dir, inode,
6434                                  dentry->d_name.name, dentry->d_name.len,
6435                                  backref, index);
6436         if (err > 0)
6437                 err = -EEXIST;
6438         return err;
6439 }
6440
6441 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6442                         umode_t mode, dev_t rdev)
6443 {
6444         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6445         struct btrfs_trans_handle *trans;
6446         struct btrfs_root *root = BTRFS_I(dir)->root;
6447         struct inode *inode = NULL;
6448         int err;
6449         u64 objectid;
6450         u64 index = 0;
6451
6452         /*
6453          * 2 for inode item and ref
6454          * 2 for dir items
6455          * 1 for xattr if selinux is on
6456          */
6457         trans = btrfs_start_transaction(root, 5);
6458         if (IS_ERR(trans))
6459                 return PTR_ERR(trans);
6460
6461         err = btrfs_find_free_ino(root, &objectid);
6462         if (err)
6463                 goto out_unlock;
6464
6465         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6466                         dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6467                         mode, &index);
6468         if (IS_ERR(inode)) {
6469                 err = PTR_ERR(inode);
6470                 inode = NULL;
6471                 goto out_unlock;
6472         }
6473
6474         /*
6475         * If the active LSM wants to access the inode during
6476         * d_instantiate it needs these. Smack checks to see
6477         * if the filesystem supports xattrs by looking at the
6478         * ops vector.
6479         */
6480         inode->i_op = &btrfs_special_inode_operations;
6481         init_special_inode(inode, inode->i_mode, rdev);
6482
6483         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6484         if (err)
6485                 goto out_unlock;
6486
6487         err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6488                         0, index);
6489         if (err)
6490                 goto out_unlock;
6491
6492         btrfs_update_inode(trans, root, inode);
6493         d_instantiate_new(dentry, inode);
6494
6495 out_unlock:
6496         btrfs_end_transaction(trans);
6497         btrfs_btree_balance_dirty(fs_info);
6498         if (err && inode) {
6499                 inode_dec_link_count(inode);
6500                 discard_new_inode(inode);
6501         }
6502         return err;
6503 }
6504
6505 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6506                         umode_t mode, bool excl)
6507 {
6508         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6509         struct btrfs_trans_handle *trans;
6510         struct btrfs_root *root = BTRFS_I(dir)->root;
6511         struct inode *inode = NULL;
6512         int err;
6513         u64 objectid;
6514         u64 index = 0;
6515
6516         /*
6517          * 2 for inode item and ref
6518          * 2 for dir items
6519          * 1 for xattr if selinux is on
6520          */
6521         trans = btrfs_start_transaction(root, 5);
6522         if (IS_ERR(trans))
6523                 return PTR_ERR(trans);
6524
6525         err = btrfs_find_free_ino(root, &objectid);
6526         if (err)
6527                 goto out_unlock;
6528
6529         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6530                         dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6531                         mode, &index);
6532         if (IS_ERR(inode)) {
6533                 err = PTR_ERR(inode);
6534                 inode = NULL;
6535                 goto out_unlock;
6536         }
6537         /*
6538         * If the active LSM wants to access the inode during
6539         * d_instantiate it needs these. Smack checks to see
6540         * if the filesystem supports xattrs by looking at the
6541         * ops vector.
6542         */
6543         inode->i_fop = &btrfs_file_operations;
6544         inode->i_op = &btrfs_file_inode_operations;
6545         inode->i_mapping->a_ops = &btrfs_aops;
6546
6547         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6548         if (err)
6549                 goto out_unlock;
6550
6551         err = btrfs_update_inode(trans, root, inode);
6552         if (err)
6553                 goto out_unlock;
6554
6555         err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6556                         0, index);
6557         if (err)
6558                 goto out_unlock;
6559
6560         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6561         d_instantiate_new(dentry, inode);
6562
6563 out_unlock:
6564         btrfs_end_transaction(trans);
6565         if (err && inode) {
6566                 inode_dec_link_count(inode);
6567                 discard_new_inode(inode);
6568         }
6569         btrfs_btree_balance_dirty(fs_info);
6570         return err;
6571 }
6572
6573 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6574                       struct dentry *dentry)
6575 {
6576         struct btrfs_trans_handle *trans = NULL;
6577         struct btrfs_root *root = BTRFS_I(dir)->root;
6578         struct inode *inode = d_inode(old_dentry);
6579         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6580         u64 index;
6581         int err;
6582         int drop_inode = 0;
6583
6584         /* do not allow sys_link's with other subvols of the same device */
6585         if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6586                 return -EXDEV;
6587
6588         if (inode->i_nlink >= BTRFS_LINK_MAX)
6589                 return -EMLINK;
6590
6591         err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6592         if (err)
6593                 goto fail;
6594
6595         /*
6596          * 2 items for inode and inode ref
6597          * 2 items for dir items
6598          * 1 item for parent inode
6599          * 1 item for orphan item deletion if O_TMPFILE
6600          */
6601         trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6602         if (IS_ERR(trans)) {
6603                 err = PTR_ERR(trans);
6604                 trans = NULL;
6605                 goto fail;
6606         }
6607
6608         /* There are several dir indexes for this inode, clear the cache. */
6609         BTRFS_I(inode)->dir_index = 0ULL;
6610         inc_nlink(inode);
6611         inode_inc_iversion(inode);
6612         inode->i_ctime = current_time(inode);
6613         ihold(inode);
6614         set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6615
6616         err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6617                         1, index);
6618
6619         if (err) {
6620                 drop_inode = 1;
6621         } else {
6622                 struct dentry *parent = dentry->d_parent;
6623                 int ret;
6624
6625                 err = btrfs_update_inode(trans, root, inode);
6626                 if (err)
6627                         goto fail;
6628                 if (inode->i_nlink == 1) {
6629                         /*
6630                          * If new hard link count is 1, it's a file created
6631                          * with open(2) O_TMPFILE flag.
6632                          */
6633                         err = btrfs_orphan_del(trans, BTRFS_I(inode));
6634                         if (err)
6635                                 goto fail;
6636                 }
6637                 d_instantiate(dentry, inode);
6638                 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6639                                          true, NULL);
6640                 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6641                         err = btrfs_commit_transaction(trans);
6642                         trans = NULL;
6643                 }
6644         }
6645
6646 fail:
6647         if (trans)
6648                 btrfs_end_transaction(trans);
6649         if (drop_inode) {
6650                 inode_dec_link_count(inode);
6651                 iput(inode);
6652         }
6653         btrfs_btree_balance_dirty(fs_info);
6654         return err;
6655 }
6656
6657 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6658 {
6659         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6660         struct inode *inode = NULL;
6661         struct btrfs_trans_handle *trans;
6662         struct btrfs_root *root = BTRFS_I(dir)->root;
6663         int err = 0;
6664         int drop_on_err = 0;
6665         u64 objectid = 0;
6666         u64 index = 0;
6667
6668         /*
6669          * 2 items for inode and ref
6670          * 2 items for dir items
6671          * 1 for xattr if selinux is on
6672          */
6673         trans = btrfs_start_transaction(root, 5);
6674         if (IS_ERR(trans))
6675                 return PTR_ERR(trans);
6676
6677         err = btrfs_find_free_ino(root, &objectid);
6678         if (err)
6679                 goto out_fail;
6680
6681         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6682                         dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6683                         S_IFDIR | mode, &index);
6684         if (IS_ERR(inode)) {
6685                 err = PTR_ERR(inode);
6686                 inode = NULL;
6687                 goto out_fail;
6688         }
6689
6690         drop_on_err = 1;
6691         /* these must be set before we unlock the inode */
6692         inode->i_op = &btrfs_dir_inode_operations;
6693         inode->i_fop = &btrfs_dir_file_operations;
6694
6695         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6696         if (err)
6697                 goto out_fail;
6698
6699         btrfs_i_size_write(BTRFS_I(inode), 0);
6700         err = btrfs_update_inode(trans, root, inode);
6701         if (err)
6702                 goto out_fail;
6703
6704         err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6705                         dentry->d_name.name,
6706                         dentry->d_name.len, 0, index);
6707         if (err)
6708                 goto out_fail;
6709
6710         d_instantiate_new(dentry, inode);
6711         drop_on_err = 0;
6712
6713 out_fail:
6714         btrfs_end_transaction(trans);
6715         if (err && inode) {
6716                 inode_dec_link_count(inode);
6717                 discard_new_inode(inode);
6718         }
6719         btrfs_btree_balance_dirty(fs_info);
6720         return err;
6721 }
6722
6723 static noinline int uncompress_inline(struct btrfs_path *path,
6724                                       struct page *page,
6725                                       size_t pg_offset, u64 extent_offset,
6726                                       struct btrfs_file_extent_item *item)
6727 {
6728         int ret;
6729         struct extent_buffer *leaf = path->nodes[0];
6730         char *tmp;
6731         size_t max_size;
6732         unsigned long inline_size;
6733         unsigned long ptr;
6734         int compress_type;
6735
6736         WARN_ON(pg_offset != 0);
6737         compress_type = btrfs_file_extent_compression(leaf, item);
6738         max_size = btrfs_file_extent_ram_bytes(leaf, item);
6739         inline_size = btrfs_file_extent_inline_item_len(leaf,
6740                                         btrfs_item_nr(path->slots[0]));
6741         tmp = kmalloc(inline_size, GFP_NOFS);
6742         if (!tmp)
6743                 return -ENOMEM;
6744         ptr = btrfs_file_extent_inline_start(item);
6745
6746         read_extent_buffer(leaf, tmp, ptr, inline_size);
6747
6748         max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6749         ret = btrfs_decompress(compress_type, tmp, page,
6750                                extent_offset, inline_size, max_size);
6751
6752         /*
6753          * decompression code contains a memset to fill in any space between the end
6754          * of the uncompressed data and the end of max_size in case the decompressed
6755          * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6756          * the end of an inline extent and the beginning of the next block, so we
6757          * cover that region here.
6758          */
6759
6760         if (max_size + pg_offset < PAGE_SIZE) {
6761                 char *map = kmap(page);
6762                 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6763                 kunmap(page);
6764         }
6765         kfree(tmp);
6766         return ret;
6767 }
6768
6769 /*
6770  * a bit scary, this does extent mapping from logical file offset to the disk.
6771  * the ugly parts come from merging extents from the disk with the in-ram
6772  * representation.  This gets more complex because of the data=ordered code,
6773  * where the in-ram extents might be locked pending data=ordered completion.
6774  *
6775  * This also copies inline extents directly into the page.
6776  */
6777 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6778                 struct page *page,
6779             size_t pg_offset, u64 start, u64 len,
6780                 int create)
6781 {
6782         struct btrfs_fs_info *fs_info = inode->root->fs_info;
6783         int ret;
6784         int err = 0;
6785         u64 extent_start = 0;
6786         u64 extent_end = 0;
6787         u64 objectid = btrfs_ino(inode);
6788         u32 found_type;
6789         struct btrfs_path *path = NULL;
6790         struct btrfs_root *root = inode->root;
6791         struct btrfs_file_extent_item *item;
6792         struct extent_buffer *leaf;
6793         struct btrfs_key found_key;
6794         struct extent_map *em = NULL;
6795         struct extent_map_tree *em_tree = &inode->extent_tree;
6796         struct extent_io_tree *io_tree = &inode->io_tree;
6797         const bool new_inline = !page || create;
6798
6799         read_lock(&em_tree->lock);
6800         em = lookup_extent_mapping(em_tree, start, len);
6801         if (em)
6802                 em->bdev = fs_info->fs_devices->latest_bdev;
6803         read_unlock(&em_tree->lock);
6804
6805         if (em) {
6806                 if (em->start > start || em->start + em->len <= start)
6807                         free_extent_map(em);
6808                 else if (em->block_start == EXTENT_MAP_INLINE && page)
6809                         free_extent_map(em);
6810                 else
6811                         goto out;
6812         }
6813         em = alloc_extent_map();
6814         if (!em) {
6815                 err = -ENOMEM;
6816                 goto out;
6817         }
6818         em->bdev = fs_info->fs_devices->latest_bdev;
6819         em->start = EXTENT_MAP_HOLE;
6820         em->orig_start = EXTENT_MAP_HOLE;
6821         em->len = (u64)-1;
6822         em->block_len = (u64)-1;
6823
6824         path = btrfs_alloc_path();
6825         if (!path) {
6826                 err = -ENOMEM;
6827                 goto out;
6828         }
6829
6830         /* Chances are we'll be called again, so go ahead and do readahead */
6831         path->reada = READA_FORWARD;
6832
6833         ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6834         if (ret < 0) {
6835                 err = ret;
6836                 goto out;
6837         }
6838
6839         if (ret != 0) {
6840                 if (path->slots[0] == 0)
6841                         goto not_found;
6842                 path->slots[0]--;
6843         }
6844
6845         leaf = path->nodes[0];
6846         item = btrfs_item_ptr(leaf, path->slots[0],
6847                               struct btrfs_file_extent_item);
6848         /* are we inside the extent that was found? */
6849         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6850         found_type = found_key.type;
6851         if (found_key.objectid != objectid ||
6852             found_type != BTRFS_EXTENT_DATA_KEY) {
6853                 /*
6854                  * If we backup past the first extent we want to move forward
6855                  * and see if there is an extent in front of us, otherwise we'll
6856                  * say there is a hole for our whole search range which can
6857                  * cause problems.
6858                  */
6859                 extent_end = start;
6860                 goto next;
6861         }
6862
6863         found_type = btrfs_file_extent_type(leaf, item);
6864         extent_start = found_key.offset;
6865         if (found_type == BTRFS_FILE_EXTENT_REG ||
6866             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6867                 extent_end = extent_start +
6868                        btrfs_file_extent_num_bytes(leaf, item);
6869
6870                 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6871                                                        extent_start);
6872         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6873                 size_t size;
6874
6875                 size = btrfs_file_extent_ram_bytes(leaf, item);
6876                 extent_end = ALIGN(extent_start + size,
6877                                    fs_info->sectorsize);
6878
6879                 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6880                                                       path->slots[0],
6881                                                       extent_start);
6882         }
6883 next:
6884         if (start >= extent_end) {
6885                 path->slots[0]++;
6886                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6887                         ret = btrfs_next_leaf(root, path);
6888                         if (ret < 0) {
6889                                 err = ret;
6890                                 goto out;
6891                         }
6892                         if (ret > 0)
6893                                 goto not_found;
6894                         leaf = path->nodes[0];
6895                 }
6896                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6897                 if (found_key.objectid != objectid ||
6898                     found_key.type != BTRFS_EXTENT_DATA_KEY)
6899                         goto not_found;
6900                 if (start + len <= found_key.offset)
6901                         goto not_found;
6902                 if (start > found_key.offset)
6903                         goto next;
6904                 em->start = start;
6905                 em->orig_start = start;
6906                 em->len = found_key.offset - start;
6907                 goto not_found_em;
6908         }
6909
6910         btrfs_extent_item_to_extent_map(inode, path, item,
6911                         new_inline, em);
6912
6913         if (found_type == BTRFS_FILE_EXTENT_REG ||
6914             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6915                 goto insert;
6916         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6917                 unsigned long ptr;
6918                 char *map;
6919                 size_t size;
6920                 size_t extent_offset;
6921                 size_t copy_size;
6922
6923                 if (new_inline)
6924                         goto out;
6925
6926                 size = btrfs_file_extent_ram_bytes(leaf, item);
6927                 extent_offset = page_offset(page) + pg_offset - extent_start;
6928                 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6929                                   size - extent_offset);
6930                 em->start = extent_start + extent_offset;
6931                 em->len = ALIGN(copy_size, fs_info->sectorsize);
6932                 em->orig_block_len = em->len;
6933                 em->orig_start = em->start;
6934                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6935                 if (!PageUptodate(page)) {
6936                         if (btrfs_file_extent_compression(leaf, item) !=
6937                             BTRFS_COMPRESS_NONE) {
6938                                 ret = uncompress_inline(path, page, pg_offset,
6939                                                         extent_offset, item);
6940                                 if (ret) {
6941                                         err = ret;
6942                                         goto out;
6943                                 }
6944                         } else {
6945                                 map = kmap(page);
6946                                 read_extent_buffer(leaf, map + pg_offset, ptr,
6947                                                    copy_size);
6948                                 if (pg_offset + copy_size < PAGE_SIZE) {
6949                                         memset(map + pg_offset + copy_size, 0,
6950                                                PAGE_SIZE - pg_offset -
6951                                                copy_size);
6952                                 }
6953                                 kunmap(page);
6954                         }
6955                         flush_dcache_page(page);
6956                 }
6957                 set_extent_uptodate(io_tree, em->start,
6958                                     extent_map_end(em) - 1, NULL, GFP_NOFS);
6959                 goto insert;
6960         }
6961 not_found:
6962         em->start = start;
6963         em->orig_start = start;
6964         em->len = len;
6965 not_found_em:
6966         em->block_start = EXTENT_MAP_HOLE;
6967 insert:
6968         btrfs_release_path(path);
6969         if (em->start > start || extent_map_end(em) <= start) {
6970                 btrfs_err(fs_info,
6971                           "bad extent! em: [%llu %llu] passed [%llu %llu]",
6972                           em->start, em->len, start, len);
6973                 err = -EIO;
6974                 goto out;
6975         }
6976
6977         err = 0;
6978         write_lock(&em_tree->lock);
6979         err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6980         write_unlock(&em_tree->lock);
6981 out:
6982         btrfs_free_path(path);
6983
6984         trace_btrfs_get_extent(root, inode, em);
6985
6986         if (err) {
6987                 free_extent_map(em);
6988                 return ERR_PTR(err);
6989         }
6990         BUG_ON(!em); /* Error is always set */
6991         return em;
6992 }
6993
6994 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6995                 struct page *page,
6996                 size_t pg_offset, u64 start, u64 len,
6997                 int create)
6998 {
6999         struct extent_map *em;
7000         struct extent_map *hole_em = NULL;
7001         u64 range_start = start;
7002         u64 end;
7003         u64 found;
7004         u64 found_end;
7005         int err = 0;
7006
7007         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7008         if (IS_ERR(em))
7009                 return em;
7010         /*
7011          * If our em maps to:
7012          * - a hole or
7013          * - a pre-alloc extent,
7014          * there might actually be delalloc bytes behind it.
7015          */
7016         if (em->block_start != EXTENT_MAP_HOLE &&
7017             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7018                 return em;
7019         else
7020                 hole_em = em;
7021
7022         /* check to see if we've wrapped (len == -1 or similar) */
7023         end = start + len;
7024         if (end < start)
7025                 end = (u64)-1;
7026         else
7027                 end -= 1;
7028
7029         em = NULL;
7030
7031         /* ok, we didn't find anything, lets look for delalloc */
7032         found = count_range_bits(&inode->io_tree, &range_start,
7033                                  end, len, EXTENT_DELALLOC, 1);
7034         found_end = range_start + found;
7035         if (found_end < range_start)
7036                 found_end = (u64)-1;
7037
7038         /*
7039          * we didn't find anything useful, return
7040          * the original results from get_extent()
7041          */
7042         if (range_start > end || found_end <= start) {
7043                 em = hole_em;
7044                 hole_em = NULL;
7045                 goto out;
7046         }
7047
7048         /* adjust the range_start to make sure it doesn't
7049          * go backwards from the start they passed in
7050          */
7051         range_start = max(start, range_start);
7052         found = found_end - range_start;
7053
7054         if (found > 0) {
7055                 u64 hole_start = start;
7056                 u64 hole_len = len;
7057
7058                 em = alloc_extent_map();
7059                 if (!em) {
7060                         err = -ENOMEM;
7061                         goto out;
7062                 }
7063                 /*
7064                  * when btrfs_get_extent can't find anything it
7065                  * returns one huge hole
7066                  *
7067                  * make sure what it found really fits our range, and
7068                  * adjust to make sure it is based on the start from
7069                  * the caller
7070                  */
7071                 if (hole_em) {
7072                         u64 calc_end = extent_map_end(hole_em);
7073
7074                         if (calc_end <= start || (hole_em->start > end)) {
7075                                 free_extent_map(hole_em);
7076                                 hole_em = NULL;
7077                         } else {
7078                                 hole_start = max(hole_em->start, start);
7079                                 hole_len = calc_end - hole_start;
7080                         }
7081                 }
7082                 em->bdev = NULL;
7083                 if (hole_em && range_start > hole_start) {
7084                         /* our hole starts before our delalloc, so we
7085                          * have to return just the parts of the hole
7086                          * that go until  the delalloc starts
7087                          */
7088                         em->len = min(hole_len,
7089                                       range_start - hole_start);
7090                         em->start = hole_start;
7091                         em->orig_start = hole_start;
7092                         /*
7093                          * don't adjust block start at all,
7094                          * it is fixed at EXTENT_MAP_HOLE
7095                          */
7096                         em->block_start = hole_em->block_start;
7097                         em->block_len = hole_len;
7098                         if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7099                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7100                 } else {
7101                         em->start = range_start;
7102                         em->len = found;
7103                         em->orig_start = range_start;
7104                         em->block_start = EXTENT_MAP_DELALLOC;
7105                         em->block_len = found;
7106                 }
7107         } else {
7108                 return hole_em;
7109         }
7110 out:
7111
7112         free_extent_map(hole_em);
7113         if (err) {
7114                 free_extent_map(em);
7115                 return ERR_PTR(err);
7116         }
7117         return em;
7118 }
7119
7120 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7121                                                   const u64 start,
7122                                                   const u64 len,
7123                                                   const u64 orig_start,
7124                                                   const u64 block_start,
7125                                                   const u64 block_len,
7126                                                   const u64 orig_block_len,
7127                                                   const u64 ram_bytes,
7128                                                   const int type)
7129 {
7130         struct extent_map *em = NULL;
7131         int ret;
7132
7133         if (type != BTRFS_ORDERED_NOCOW) {
7134                 em = create_io_em(inode, start, len, orig_start,
7135                                   block_start, block_len, orig_block_len,
7136                                   ram_bytes,
7137                                   BTRFS_COMPRESS_NONE, /* compress_type */
7138                                   type);
7139                 if (IS_ERR(em))
7140                         goto out;
7141         }
7142         ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7143                                            len, block_len, type);
7144         if (ret) {
7145                 if (em) {
7146                         free_extent_map(em);
7147                         btrfs_drop_extent_cache(BTRFS_I(inode), start,
7148                                                 start + len - 1, 0);
7149                 }
7150                 em = ERR_PTR(ret);
7151         }
7152  out:
7153
7154         return em;
7155 }
7156
7157 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7158                                                   u64 start, u64 len)
7159 {
7160         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7161         struct btrfs_root *root = BTRFS_I(inode)->root;
7162         struct extent_map *em;
7163         struct btrfs_key ins;
7164         u64 alloc_hint;
7165         int ret;
7166
7167         alloc_hint = get_extent_allocation_hint(inode, start, len);
7168         ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7169                                    0, alloc_hint, &ins, 1, 1);
7170         if (ret)
7171                 return ERR_PTR(ret);
7172
7173         em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7174                                      ins.objectid, ins.offset, ins.offset,
7175                                      ins.offset, BTRFS_ORDERED_REGULAR);
7176         btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7177         if (IS_ERR(em))
7178                 btrfs_free_reserved_extent(fs_info, ins.objectid,
7179                                            ins.offset, 1);
7180
7181         return em;
7182 }
7183
7184 /*
7185  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7186  * block must be cow'd
7187  */
7188 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7189                               u64 *orig_start, u64 *orig_block_len,
7190                               u64 *ram_bytes)
7191 {
7192         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7193         struct btrfs_path *path;
7194         int ret;
7195         struct extent_buffer *leaf;
7196         struct btrfs_root *root = BTRFS_I(inode)->root;
7197         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7198         struct btrfs_file_extent_item *fi;
7199         struct btrfs_key key;
7200         u64 disk_bytenr;
7201         u64 backref_offset;
7202         u64 extent_end;
7203         u64 num_bytes;
7204         int slot;
7205         int found_type;
7206         bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7207
7208         path = btrfs_alloc_path();
7209         if (!path)
7210                 return -ENOMEM;
7211
7212         ret = btrfs_lookup_file_extent(NULL, root, path,
7213                         btrfs_ino(BTRFS_I(inode)), offset, 0);
7214         if (ret < 0)
7215                 goto out;
7216
7217         slot = path->slots[0];
7218         if (ret == 1) {
7219                 if (slot == 0) {
7220                         /* can't find the item, must cow */
7221                         ret = 0;
7222                         goto out;
7223                 }
7224                 slot--;
7225         }
7226         ret = 0;
7227         leaf = path->nodes[0];
7228         btrfs_item_key_to_cpu(leaf, &key, slot);
7229         if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7230             key.type != BTRFS_EXTENT_DATA_KEY) {
7231                 /* not our file or wrong item type, must cow */
7232                 goto out;
7233         }
7234
7235         if (key.offset > offset) {
7236                 /* Wrong offset, must cow */
7237                 goto out;
7238         }
7239
7240         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7241         found_type = btrfs_file_extent_type(leaf, fi);
7242         if (found_type != BTRFS_FILE_EXTENT_REG &&
7243             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7244                 /* not a regular extent, must cow */
7245                 goto out;
7246         }
7247
7248         if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7249                 goto out;
7250
7251         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7252         if (extent_end <= offset)
7253                 goto out;
7254
7255         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7256         if (disk_bytenr == 0)
7257                 goto out;
7258
7259         if (btrfs_file_extent_compression(leaf, fi) ||
7260             btrfs_file_extent_encryption(leaf, fi) ||
7261             btrfs_file_extent_other_encoding(leaf, fi))
7262                 goto out;
7263
7264         /*
7265          * Do the same check as in btrfs_cross_ref_exist but without the
7266          * unnecessary search.
7267          */
7268         if (btrfs_file_extent_generation(leaf, fi) <=
7269             btrfs_root_last_snapshot(&root->root_item))
7270                 goto out;
7271
7272         backref_offset = btrfs_file_extent_offset(leaf, fi);
7273
7274         if (orig_start) {
7275                 *orig_start = key.offset - backref_offset;
7276                 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7277                 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7278         }
7279
7280         if (btrfs_extent_readonly(fs_info, disk_bytenr))
7281                 goto out;
7282
7283         num_bytes = min(offset + *len, extent_end) - offset;
7284         if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7285                 u64 range_end;
7286
7287                 range_end = round_up(offset + num_bytes,
7288                                      root->fs_info->sectorsize) - 1;
7289                 ret = test_range_bit(io_tree, offset, range_end,
7290                                      EXTENT_DELALLOC, 0, NULL);
7291                 if (ret) {
7292                         ret = -EAGAIN;
7293                         goto out;
7294                 }
7295         }
7296
7297         btrfs_release_path(path);
7298
7299         /*
7300          * look for other files referencing this extent, if we
7301          * find any we must cow
7302          */
7303
7304         ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7305                                     key.offset - backref_offset, disk_bytenr);
7306         if (ret) {
7307                 ret = 0;
7308                 goto out;
7309         }
7310
7311         /*
7312          * adjust disk_bytenr and num_bytes to cover just the bytes
7313          * in this extent we are about to write.  If there
7314          * are any csums in that range we have to cow in order
7315          * to keep the csums correct
7316          */
7317         disk_bytenr += backref_offset;
7318         disk_bytenr += offset - key.offset;
7319         if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7320                 goto out;
7321         /*
7322          * all of the above have passed, it is safe to overwrite this extent
7323          * without cow
7324          */
7325         *len = num_bytes;
7326         ret = 1;
7327 out:
7328         btrfs_free_path(path);
7329         return ret;
7330 }
7331
7332 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7333                               struct extent_state **cached_state, int writing)
7334 {
7335         struct btrfs_ordered_extent *ordered;
7336         int ret = 0;
7337
7338         while (1) {
7339                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7340                                  cached_state);
7341                 /*
7342                  * We're concerned with the entire range that we're going to be
7343                  * doing DIO to, so we need to make sure there's no ordered
7344                  * extents in this range.
7345                  */
7346                 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7347                                                      lockend - lockstart + 1);
7348
7349                 /*
7350                  * We need to make sure there are no buffered pages in this
7351                  * range either, we could have raced between the invalidate in
7352                  * generic_file_direct_write and locking the extent.  The
7353                  * invalidate needs to happen so that reads after a write do not
7354                  * get stale data.
7355                  */
7356                 if (!ordered &&
7357                     (!writing || !filemap_range_has_page(inode->i_mapping,
7358                                                          lockstart, lockend)))
7359                         break;
7360
7361                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7362                                      cached_state);
7363
7364                 if (ordered) {
7365                         /*
7366                          * If we are doing a DIO read and the ordered extent we
7367                          * found is for a buffered write, we can not wait for it
7368                          * to complete and retry, because if we do so we can
7369                          * deadlock with concurrent buffered writes on page
7370                          * locks. This happens only if our DIO read covers more
7371                          * than one extent map, if at this point has already
7372                          * created an ordered extent for a previous extent map
7373                          * and locked its range in the inode's io tree, and a
7374                          * concurrent write against that previous extent map's
7375                          * range and this range started (we unlock the ranges
7376                          * in the io tree only when the bios complete and
7377                          * buffered writes always lock pages before attempting
7378                          * to lock range in the io tree).
7379                          */
7380                         if (writing ||
7381                             test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7382                                 btrfs_start_ordered_extent(inode, ordered, 1);
7383                         else
7384                                 ret = -ENOTBLK;
7385                         btrfs_put_ordered_extent(ordered);
7386                 } else {
7387                         /*
7388                          * We could trigger writeback for this range (and wait
7389                          * for it to complete) and then invalidate the pages for
7390                          * this range (through invalidate_inode_pages2_range()),
7391                          * but that can lead us to a deadlock with a concurrent
7392                          * call to readpages() (a buffered read or a defrag call
7393                          * triggered a readahead) on a page lock due to an
7394                          * ordered dio extent we created before but did not have
7395                          * yet a corresponding bio submitted (whence it can not
7396                          * complete), which makes readpages() wait for that
7397                          * ordered extent to complete while holding a lock on
7398                          * that page.
7399                          */
7400                         ret = -ENOTBLK;
7401                 }
7402
7403                 if (ret)
7404                         break;
7405
7406                 cond_resched();
7407         }
7408
7409         return ret;
7410 }
7411
7412 /* The callers of this must take lock_extent() */
7413 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7414                                        u64 orig_start, u64 block_start,
7415                                        u64 block_len, u64 orig_block_len,
7416                                        u64 ram_bytes, int compress_type,
7417                                        int type)
7418 {
7419         struct extent_map_tree *em_tree;
7420         struct extent_map *em;
7421         struct btrfs_root *root = BTRFS_I(inode)->root;
7422         int ret;
7423
7424         ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7425                type == BTRFS_ORDERED_COMPRESSED ||
7426                type == BTRFS_ORDERED_NOCOW ||
7427                type == BTRFS_ORDERED_REGULAR);
7428
7429         em_tree = &BTRFS_I(inode)->extent_tree;
7430         em = alloc_extent_map();
7431         if (!em)
7432                 return ERR_PTR(-ENOMEM);
7433
7434         em->start = start;
7435         em->orig_start = orig_start;
7436         em->len = len;
7437         em->block_len = block_len;
7438         em->block_start = block_start;
7439         em->bdev = root->fs_info->fs_devices->latest_bdev;
7440         em->orig_block_len = orig_block_len;
7441         em->ram_bytes = ram_bytes;
7442         em->generation = -1;
7443         set_bit(EXTENT_FLAG_PINNED, &em->flags);
7444         if (type == BTRFS_ORDERED_PREALLOC) {
7445                 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7446         } else if (type == BTRFS_ORDERED_COMPRESSED) {
7447                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7448                 em->compress_type = compress_type;
7449         }
7450
7451         do {
7452                 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7453                                 em->start + em->len - 1, 0);
7454                 write_lock(&em_tree->lock);
7455                 ret = add_extent_mapping(em_tree, em, 1);
7456                 write_unlock(&em_tree->lock);
7457                 /*
7458                  * The caller has taken lock_extent(), who could race with us
7459                  * to add em?
7460                  */
7461         } while (ret == -EEXIST);
7462
7463         if (ret) {
7464                 free_extent_map(em);
7465                 return ERR_PTR(ret);
7466         }
7467
7468         /* em got 2 refs now, callers needs to do free_extent_map once. */
7469         return em;
7470 }
7471
7472
7473 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7474                                         struct buffer_head *bh_result,
7475                                         struct inode *inode,
7476                                         u64 start, u64 len)
7477 {
7478         if (em->block_start == EXTENT_MAP_HOLE ||
7479                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7480                 return -ENOENT;
7481
7482         len = min(len, em->len - (start - em->start));
7483
7484         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7485                 inode->i_blkbits;
7486         bh_result->b_size = len;
7487         bh_result->b_bdev = em->bdev;
7488         set_buffer_mapped(bh_result);
7489
7490         return 0;
7491 }
7492
7493 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7494                                          struct buffer_head *bh_result,
7495                                          struct inode *inode,
7496                                          struct btrfs_dio_data *dio_data,
7497                                          u64 start, u64 len)
7498 {
7499         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7500         struct extent_map *em = *map;
7501         int ret = 0;
7502
7503         /*
7504          * We don't allocate a new extent in the following cases
7505          *
7506          * 1) The inode is marked as NODATACOW. In this case we'll just use the
7507          * existing extent.
7508          * 2) The extent is marked as PREALLOC. We're good to go here and can
7509          * just use the extent.
7510          *
7511          */
7512         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7513             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7514              em->block_start != EXTENT_MAP_HOLE)) {
7515                 int type;
7516                 u64 block_start, orig_start, orig_block_len, ram_bytes;
7517
7518                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7519                         type = BTRFS_ORDERED_PREALLOC;
7520                 else
7521                         type = BTRFS_ORDERED_NOCOW;
7522                 len = min(len, em->len - (start - em->start));
7523                 block_start = em->block_start + (start - em->start);
7524
7525                 if (can_nocow_extent(inode, start, &len, &orig_start,
7526                                      &orig_block_len, &ram_bytes) == 1 &&
7527                     btrfs_inc_nocow_writers(fs_info, block_start)) {
7528                         struct extent_map *em2;
7529
7530                         em2 = btrfs_create_dio_extent(inode, start, len,
7531                                                       orig_start, block_start,
7532                                                       len, orig_block_len,
7533                                                       ram_bytes, type);
7534                         btrfs_dec_nocow_writers(fs_info, block_start);
7535                         if (type == BTRFS_ORDERED_PREALLOC) {
7536                                 free_extent_map(em);
7537                                 *map = em = em2;
7538                         }
7539
7540                         if (em2 && IS_ERR(em2)) {
7541                                 ret = PTR_ERR(em2);
7542                                 goto out;
7543                         }
7544                         /*
7545                          * For inode marked NODATACOW or extent marked PREALLOC,
7546                          * use the existing or preallocated extent, so does not
7547                          * need to adjust btrfs_space_info's bytes_may_use.
7548                          */
7549                         btrfs_free_reserved_data_space_noquota(inode, start,
7550                                                                len);
7551                         goto skip_cow;
7552                 }
7553         }
7554
7555         /* this will cow the extent */
7556         len = bh_result->b_size;
7557         free_extent_map(em);
7558         *map = em = btrfs_new_extent_direct(inode, start, len);
7559         if (IS_ERR(em)) {
7560                 ret = PTR_ERR(em);
7561                 goto out;
7562         }
7563
7564         len = min(len, em->len - (start - em->start));
7565
7566 skip_cow:
7567         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7568                 inode->i_blkbits;
7569         bh_result->b_size = len;
7570         bh_result->b_bdev = em->bdev;
7571         set_buffer_mapped(bh_result);
7572
7573         if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7574                 set_buffer_new(bh_result);
7575
7576         /*
7577          * Need to update the i_size under the extent lock so buffered
7578          * readers will get the updated i_size when we unlock.
7579          */
7580         if (!dio_data->overwrite && start + len > i_size_read(inode))
7581                 i_size_write(inode, start + len);
7582
7583         WARN_ON(dio_data->reserve < len);
7584         dio_data->reserve -= len;
7585         dio_data->unsubmitted_oe_range_end = start + len;
7586         current->journal_info = dio_data;
7587 out:
7588         return ret;
7589 }
7590
7591 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7592                                    struct buffer_head *bh_result, int create)
7593 {
7594         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7595         struct extent_map *em;
7596         struct extent_state *cached_state = NULL;
7597         struct btrfs_dio_data *dio_data = NULL;
7598         u64 start = iblock << inode->i_blkbits;
7599         u64 lockstart, lockend;
7600         u64 len = bh_result->b_size;
7601         int unlock_bits = EXTENT_LOCKED;
7602         int ret = 0;
7603
7604         if (create)
7605                 unlock_bits |= EXTENT_DIRTY;
7606         else
7607                 len = min_t(u64, len, fs_info->sectorsize);
7608
7609         lockstart = start;
7610         lockend = start + len - 1;
7611
7612         if (current->journal_info) {
7613                 /*
7614                  * Need to pull our outstanding extents and set journal_info to NULL so
7615                  * that anything that needs to check if there's a transaction doesn't get
7616                  * confused.
7617                  */
7618                 dio_data = current->journal_info;
7619                 current->journal_info = NULL;
7620         }
7621
7622         /*
7623          * If this errors out it's because we couldn't invalidate pagecache for
7624          * this range and we need to fallback to buffered.
7625          */
7626         if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7627                                create)) {
7628                 ret = -ENOTBLK;
7629                 goto err;
7630         }
7631
7632         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7633         if (IS_ERR(em)) {
7634                 ret = PTR_ERR(em);
7635                 goto unlock_err;
7636         }
7637
7638         /*
7639          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7640          * io.  INLINE is special, and we could probably kludge it in here, but
7641          * it's still buffered so for safety lets just fall back to the generic
7642          * buffered path.
7643          *
7644          * For COMPRESSED we _have_ to read the entire extent in so we can
7645          * decompress it, so there will be buffering required no matter what we
7646          * do, so go ahead and fallback to buffered.
7647          *
7648          * We return -ENOTBLK because that's what makes DIO go ahead and go back
7649          * to buffered IO.  Don't blame me, this is the price we pay for using
7650          * the generic code.
7651          */
7652         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7653             em->block_start == EXTENT_MAP_INLINE) {
7654                 free_extent_map(em);
7655                 ret = -ENOTBLK;
7656                 goto unlock_err;
7657         }
7658
7659         if (create) {
7660                 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7661                                                     dio_data, start, len);
7662                 if (ret < 0)
7663                         goto unlock_err;
7664
7665                 /* clear and unlock the entire range */
7666                 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7667                                  unlock_bits, 1, 0, &cached_state);
7668         } else {
7669                 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7670                                                    start, len);
7671                 /* Can be negative only if we read from a hole */
7672                 if (ret < 0) {
7673                         ret = 0;
7674                         free_extent_map(em);
7675                         goto unlock_err;
7676                 }
7677                 /*
7678                  * We need to unlock only the end area that we aren't using.
7679                  * The rest is going to be unlocked by the endio routine.
7680                  */
7681                 lockstart = start + bh_result->b_size;
7682                 if (lockstart < lockend) {
7683                         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7684                                          lockend, unlock_bits, 1, 0,
7685                                          &cached_state);
7686                 } else {
7687                         free_extent_state(cached_state);
7688                 }
7689         }
7690
7691         free_extent_map(em);
7692
7693         return 0;
7694
7695 unlock_err:
7696         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7697                          unlock_bits, 1, 0, &cached_state);
7698 err:
7699         if (dio_data)
7700                 current->journal_info = dio_data;
7701         return ret;
7702 }
7703
7704 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7705                                                  struct bio *bio,
7706                                                  int mirror_num)
7707 {
7708         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7709         blk_status_t ret;
7710
7711         BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7712
7713         ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7714         if (ret)
7715                 return ret;
7716
7717         ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7718
7719         return ret;
7720 }
7721
7722 static int btrfs_check_dio_repairable(struct inode *inode,
7723                                       struct bio *failed_bio,
7724                                       struct io_failure_record *failrec,
7725                                       int failed_mirror)
7726 {
7727         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7728         int num_copies;
7729
7730         num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7731         if (num_copies == 1) {
7732                 /*
7733                  * we only have a single copy of the data, so don't bother with
7734                  * all the retry and error correction code that follows. no
7735                  * matter what the error is, it is very likely to persist.
7736                  */
7737                 btrfs_debug(fs_info,
7738                         "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7739                         num_copies, failrec->this_mirror, failed_mirror);
7740                 return 0;
7741         }
7742
7743         failrec->failed_mirror = failed_mirror;
7744         failrec->this_mirror++;
7745         if (failrec->this_mirror == failed_mirror)
7746                 failrec->this_mirror++;
7747
7748         if (failrec->this_mirror > num_copies) {
7749                 btrfs_debug(fs_info,
7750                         "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7751                         num_copies, failrec->this_mirror, failed_mirror);
7752                 return 0;
7753         }
7754
7755         return 1;
7756 }
7757
7758 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7759                                    struct page *page, unsigned int pgoff,
7760                                    u64 start, u64 end, int failed_mirror,
7761                                    bio_end_io_t *repair_endio, void *repair_arg)
7762 {
7763         struct io_failure_record *failrec;
7764         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7765         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7766         struct bio *bio;
7767         int isector;
7768         unsigned int read_mode = 0;
7769         int segs;
7770         int ret;
7771         blk_status_t status;
7772         struct bio_vec bvec;
7773
7774         BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7775
7776         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7777         if (ret)
7778                 return errno_to_blk_status(ret);
7779
7780         ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7781                                          failed_mirror);
7782         if (!ret) {
7783                 free_io_failure(failure_tree, io_tree, failrec);
7784                 return BLK_STS_IOERR;
7785         }
7786
7787         segs = bio_segments(failed_bio);
7788         bio_get_first_bvec(failed_bio, &bvec);
7789         if (segs > 1 ||
7790             (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7791                 read_mode |= REQ_FAILFAST_DEV;
7792
7793         isector = start - btrfs_io_bio(failed_bio)->logical;
7794         isector >>= inode->i_sb->s_blocksize_bits;
7795         bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7796                                 pgoff, isector, repair_endio, repair_arg);
7797         bio->bi_opf = REQ_OP_READ | read_mode;
7798
7799         btrfs_debug(BTRFS_I(inode)->root->fs_info,
7800                     "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7801                     read_mode, failrec->this_mirror, failrec->in_validation);
7802
7803         status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7804         if (status) {
7805                 free_io_failure(failure_tree, io_tree, failrec);
7806                 bio_put(bio);
7807         }
7808
7809         return status;
7810 }
7811
7812 struct btrfs_retry_complete {
7813         struct completion done;
7814         struct inode *inode;
7815         u64 start;
7816         int uptodate;
7817 };
7818
7819 static void btrfs_retry_endio_nocsum(struct bio *bio)
7820 {
7821         struct btrfs_retry_complete *done = bio->bi_private;
7822         struct inode *inode = done->inode;
7823         struct bio_vec *bvec;
7824         struct extent_io_tree *io_tree, *failure_tree;
7825         int i;
7826
7827         if (bio->bi_status)
7828                 goto end;
7829
7830         ASSERT(bio->bi_vcnt == 1);
7831         io_tree = &BTRFS_I(inode)->io_tree;
7832         failure_tree = &BTRFS_I(inode)->io_failure_tree;
7833         ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7834
7835         done->uptodate = 1;
7836         ASSERT(!bio_flagged(bio, BIO_CLONED));
7837         bio_for_each_segment_all(bvec, bio, i)
7838                 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7839                                  io_tree, done->start, bvec->bv_page,
7840                                  btrfs_ino(BTRFS_I(inode)), 0);
7841 end:
7842         complete(&done->done);
7843         bio_put(bio);
7844 }
7845
7846 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7847                                                 struct btrfs_io_bio *io_bio)
7848 {
7849         struct btrfs_fs_info *fs_info;
7850         struct bio_vec bvec;
7851         struct bvec_iter iter;
7852         struct btrfs_retry_complete done;
7853         u64 start;
7854         unsigned int pgoff;
7855         u32 sectorsize;
7856         int nr_sectors;
7857         blk_status_t ret;
7858         blk_status_t err = BLK_STS_OK;
7859
7860         fs_info = BTRFS_I(inode)->root->fs_info;
7861         sectorsize = fs_info->sectorsize;
7862
7863         start = io_bio->logical;
7864         done.inode = inode;
7865         io_bio->bio.bi_iter = io_bio->iter;
7866
7867         bio_for_each_segment(bvec, &io_bio->bio, iter) {
7868                 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7869                 pgoff = bvec.bv_offset;
7870
7871 next_block_or_try_again:
7872                 done.uptodate = 0;
7873                 done.start = start;
7874                 init_completion(&done.done);
7875
7876                 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7877                                 pgoff, start, start + sectorsize - 1,
7878                                 io_bio->mirror_num,
7879                                 btrfs_retry_endio_nocsum, &done);
7880                 if (ret) {
7881                         err = ret;
7882                         goto next;
7883                 }
7884
7885                 wait_for_completion_io(&done.done);
7886
7887                 if (!done.uptodate) {
7888                         /* We might have another mirror, so try again */
7889                         goto next_block_or_try_again;
7890                 }
7891
7892 next:
7893                 start += sectorsize;
7894
7895                 nr_sectors--;
7896                 if (nr_sectors) {
7897                         pgoff += sectorsize;
7898                         ASSERT(pgoff < PAGE_SIZE);
7899                         goto next_block_or_try_again;
7900                 }
7901         }
7902
7903         return err;
7904 }
7905
7906 static void btrfs_retry_endio(struct bio *bio)
7907 {
7908         struct btrfs_retry_complete *done = bio->bi_private;
7909         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7910         struct extent_io_tree *io_tree, *failure_tree;
7911         struct inode *inode = done->inode;
7912         struct bio_vec *bvec;
7913         int uptodate;
7914         int ret;
7915         int i;
7916
7917         if (bio->bi_status)
7918                 goto end;
7919
7920         uptodate = 1;
7921
7922         ASSERT(bio->bi_vcnt == 1);
7923         ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
7924
7925         io_tree = &BTRFS_I(inode)->io_tree;
7926         failure_tree = &BTRFS_I(inode)->io_failure_tree;
7927
7928         ASSERT(!bio_flagged(bio, BIO_CLONED));
7929         bio_for_each_segment_all(bvec, bio, i) {
7930                 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7931                                              bvec->bv_offset, done->start,
7932                                              bvec->bv_len);
7933                 if (!ret)
7934                         clean_io_failure(BTRFS_I(inode)->root->fs_info,
7935                                          failure_tree, io_tree, done->start,
7936                                          bvec->bv_page,
7937                                          btrfs_ino(BTRFS_I(inode)),
7938                                          bvec->bv_offset);
7939                 else
7940                         uptodate = 0;
7941         }
7942
7943         done->uptodate = uptodate;
7944 end:
7945         complete(&done->done);
7946         bio_put(bio);
7947 }
7948
7949 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
7950                 struct btrfs_io_bio *io_bio, blk_status_t err)
7951 {
7952         struct btrfs_fs_info *fs_info;
7953         struct bio_vec bvec;
7954         struct bvec_iter iter;
7955         struct btrfs_retry_complete done;
7956         u64 start;
7957         u64 offset = 0;
7958         u32 sectorsize;
7959         int nr_sectors;
7960         unsigned int pgoff;
7961         int csum_pos;
7962         bool uptodate = (err == 0);
7963         int ret;
7964         blk_status_t status;
7965
7966         fs_info = BTRFS_I(inode)->root->fs_info;
7967         sectorsize = fs_info->sectorsize;
7968
7969         err = BLK_STS_OK;
7970         start = io_bio->logical;
7971         done.inode = inode;
7972         io_bio->bio.bi_iter = io_bio->iter;
7973
7974         bio_for_each_segment(bvec, &io_bio->bio, iter) {
7975                 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7976
7977                 pgoff = bvec.bv_offset;
7978 next_block:
7979                 if (uptodate) {
7980                         csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
7981                         ret = __readpage_endio_check(inode, io_bio, csum_pos,
7982                                         bvec.bv_page, pgoff, start, sectorsize);
7983                         if (likely(!ret))
7984                                 goto next;
7985                 }
7986 try_again:
7987                 done.uptodate = 0;
7988                 done.start = start;
7989                 init_completion(&done.done);
7990
7991                 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7992                                         pgoff, start, start + sectorsize - 1,
7993                                         io_bio->mirror_num, btrfs_retry_endio,
7994                                         &done);
7995                 if (status) {
7996                         err = status;
7997                         goto next;
7998                 }
7999
8000                 wait_for_completion_io(&done.done);
8001
8002                 if (!done.uptodate) {
8003                         /* We might have another mirror, so try again */
8004                         goto try_again;
8005                 }
8006 next:
8007                 offset += sectorsize;
8008                 start += sectorsize;
8009
8010                 ASSERT(nr_sectors);
8011
8012                 nr_sectors--;
8013                 if (nr_sectors) {
8014                         pgoff += sectorsize;
8015                         ASSERT(pgoff < PAGE_SIZE);
8016                         goto next_block;
8017                 }
8018         }
8019
8020         return err;
8021 }
8022
8023 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8024                 struct btrfs_io_bio *io_bio, blk_status_t err)
8025 {
8026         bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8027
8028         if (skip_csum) {
8029                 if (unlikely(err))
8030                         return __btrfs_correct_data_nocsum(inode, io_bio);
8031                 else
8032                         return BLK_STS_OK;
8033         } else {
8034                 return __btrfs_subio_endio_read(inode, io_bio, err);
8035         }
8036 }
8037
8038 static void btrfs_endio_direct_read(struct bio *bio)
8039 {
8040         struct btrfs_dio_private *dip = bio->bi_private;
8041         struct inode *inode = dip->inode;
8042         struct bio *dio_bio;
8043         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8044         blk_status_t err = bio->bi_status;
8045
8046         if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8047                 err = btrfs_subio_endio_read(inode, io_bio, err);
8048
8049         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8050                       dip->logical_offset + dip->bytes - 1);
8051         dio_bio = dip->dio_bio;
8052
8053         kfree(dip);
8054
8055         dio_bio->bi_status = err;
8056         dio_end_io(dio_bio);
8057
8058         if (io_bio->end_io)
8059                 io_bio->end_io(io_bio, blk_status_to_errno(err));
8060         bio_put(bio);
8061 }
8062
8063 static void __endio_write_update_ordered(struct inode *inode,
8064                                          const u64 offset, const u64 bytes,
8065                                          const bool uptodate)
8066 {
8067         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8068         struct btrfs_ordered_extent *ordered = NULL;
8069         struct btrfs_workqueue *wq;
8070         btrfs_work_func_t func;
8071         u64 ordered_offset = offset;
8072         u64 ordered_bytes = bytes;
8073         u64 last_offset;
8074
8075         if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8076                 wq = fs_info->endio_freespace_worker;
8077                 func = btrfs_freespace_write_helper;
8078         } else {
8079                 wq = fs_info->endio_write_workers;
8080                 func = btrfs_endio_write_helper;
8081         }
8082
8083         while (ordered_offset < offset + bytes) {
8084                 last_offset = ordered_offset;
8085                 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8086                                                            &ordered_offset,
8087                                                            ordered_bytes,
8088                                                            uptodate)) {
8089                         btrfs_init_work(&ordered->work, func,
8090                                         finish_ordered_fn,
8091                                         NULL, NULL);
8092                         btrfs_queue_work(wq, &ordered->work);
8093                 }
8094                 /*
8095                  * If btrfs_dec_test_ordered_pending does not find any ordered
8096                  * extent in the range, we can exit.
8097                  */
8098                 if (ordered_offset == last_offset)
8099                         return;
8100                 /*
8101                  * Our bio might span multiple ordered extents. In this case
8102                  * we keep goin until we have accounted the whole dio.
8103                  */
8104                 if (ordered_offset < offset + bytes) {
8105                         ordered_bytes = offset + bytes - ordered_offset;
8106                         ordered = NULL;
8107                 }
8108         }
8109 }
8110
8111 static void btrfs_endio_direct_write(struct bio *bio)
8112 {
8113         struct btrfs_dio_private *dip = bio->bi_private;
8114         struct bio *dio_bio = dip->dio_bio;
8115
8116         __endio_write_update_ordered(dip->inode, dip->logical_offset,
8117                                      dip->bytes, !bio->bi_status);
8118
8119         kfree(dip);
8120
8121         dio_bio->bi_status = bio->bi_status;
8122         dio_end_io(dio_bio);
8123         bio_put(bio);
8124 }
8125
8126 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8127                                     struct bio *bio, u64 offset)
8128 {
8129         struct inode *inode = private_data;
8130         blk_status_t ret;
8131         ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8132         BUG_ON(ret); /* -ENOMEM */
8133         return 0;
8134 }
8135
8136 static void btrfs_end_dio_bio(struct bio *bio)
8137 {
8138         struct btrfs_dio_private *dip = bio->bi_private;
8139         blk_status_t err = bio->bi_status;
8140
8141         if (err)
8142                 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8143                            "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8144                            btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8145                            bio->bi_opf,
8146                            (unsigned long long)bio->bi_iter.bi_sector,
8147                            bio->bi_iter.bi_size, err);
8148
8149         if (dip->subio_endio)
8150                 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8151
8152         if (err) {
8153                 /*
8154                  * We want to perceive the errors flag being set before
8155                  * decrementing the reference count. We don't need a barrier
8156                  * since atomic operations with a return value are fully
8157                  * ordered as per atomic_t.txt
8158                  */
8159                 dip->errors = 1;
8160         }
8161
8162         /* if there are more bios still pending for this dio, just exit */
8163         if (!atomic_dec_and_test(&dip->pending_bios))
8164                 goto out;
8165
8166         if (dip->errors) {
8167                 bio_io_error(dip->orig_bio);
8168         } else {
8169                 dip->dio_bio->bi_status = BLK_STS_OK;
8170                 bio_endio(dip->orig_bio);
8171         }
8172 out:
8173         bio_put(bio);
8174 }
8175
8176 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8177                                                  struct btrfs_dio_private *dip,
8178                                                  struct bio *bio,
8179                                                  u64 file_offset)
8180 {
8181         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8182         struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8183         blk_status_t ret;
8184
8185         /*
8186          * We load all the csum data we need when we submit
8187          * the first bio to reduce the csum tree search and
8188          * contention.
8189          */
8190         if (dip->logical_offset == file_offset) {
8191                 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8192                                                 file_offset);
8193                 if (ret)
8194                         return ret;
8195         }
8196
8197         if (bio == dip->orig_bio)
8198                 return 0;
8199
8200         file_offset -= dip->logical_offset;
8201         file_offset >>= inode->i_sb->s_blocksize_bits;
8202         io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8203
8204         return 0;
8205 }
8206
8207 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8208                 struct inode *inode, u64 file_offset, int async_submit)
8209 {
8210         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8211         struct btrfs_dio_private *dip = bio->bi_private;
8212         bool write = bio_op(bio) == REQ_OP_WRITE;
8213         blk_status_t ret;
8214
8215         /* Check btrfs_submit_bio_hook() for rules about async submit. */
8216         if (async_submit)
8217                 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8218
8219         if (!write) {
8220                 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8221                 if (ret)
8222                         goto err;
8223         }
8224
8225         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8226                 goto map;
8227
8228         if (write && async_submit) {
8229                 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8230                                           file_offset, inode,
8231                                           btrfs_submit_bio_start_direct_io);
8232                 goto err;
8233         } else if (write) {
8234                 /*
8235                  * If we aren't doing async submit, calculate the csum of the
8236                  * bio now.
8237                  */
8238                 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8239                 if (ret)
8240                         goto err;
8241         } else {
8242                 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8243                                                      file_offset);
8244                 if (ret)
8245                         goto err;
8246         }
8247 map:
8248         ret = btrfs_map_bio(fs_info, bio, 0, 0);
8249 err:
8250         return ret;
8251 }
8252
8253 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8254 {
8255         struct inode *inode = dip->inode;
8256         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8257         struct bio *bio;
8258         struct bio *orig_bio = dip->orig_bio;
8259         u64 start_sector = orig_bio->bi_iter.bi_sector;
8260         u64 file_offset = dip->logical_offset;
8261         u64 map_length;
8262         int async_submit = 0;
8263         u64 submit_len;
8264         int clone_offset = 0;
8265         int clone_len;
8266         int ret;
8267         blk_status_t status;
8268
8269         map_length = orig_bio->bi_iter.bi_size;
8270         submit_len = map_length;
8271         ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8272                               &map_length, NULL, 0);
8273         if (ret)
8274                 return -EIO;
8275
8276         if (map_length >= submit_len) {
8277                 bio = orig_bio;
8278                 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8279                 goto submit;
8280         }
8281
8282         /* async crcs make it difficult to collect full stripe writes. */
8283         if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8284                 async_submit = 0;
8285         else
8286                 async_submit = 1;
8287
8288         /* bio split */
8289         ASSERT(map_length <= INT_MAX);
8290         atomic_inc(&dip->pending_bios);
8291         do {
8292                 clone_len = min_t(int, submit_len, map_length);
8293
8294                 /*
8295                  * This will never fail as it's passing GPF_NOFS and
8296                  * the allocation is backed by btrfs_bioset.
8297                  */
8298                 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8299                                               clone_len);
8300                 bio->bi_private = dip;
8301                 bio->bi_end_io = btrfs_end_dio_bio;
8302                 btrfs_io_bio(bio)->logical = file_offset;
8303
8304                 ASSERT(submit_len >= clone_len);
8305                 submit_len -= clone_len;
8306                 if (submit_len == 0)
8307                         break;
8308
8309                 /*
8310                  * Increase the count before we submit the bio so we know
8311                  * the end IO handler won't happen before we increase the
8312                  * count. Otherwise, the dip might get freed before we're
8313                  * done setting it up.
8314                  */
8315                 atomic_inc(&dip->pending_bios);
8316
8317                 status = btrfs_submit_dio_bio(bio, inode, file_offset,
8318                                                 async_submit);
8319                 if (status) {
8320                         bio_put(bio);
8321                         atomic_dec(&dip->pending_bios);
8322                         goto out_err;
8323                 }
8324
8325                 clone_offset += clone_len;
8326                 start_sector += clone_len >> 9;
8327                 file_offset += clone_len;
8328
8329                 map_length = submit_len;
8330                 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8331                                       start_sector << 9, &map_length, NULL, 0);
8332                 if (ret)
8333                         goto out_err;
8334         } while (submit_len > 0);
8335
8336 submit:
8337         status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8338         if (!status)
8339                 return 0;
8340
8341         bio_put(bio);
8342 out_err:
8343         dip->errors = 1;
8344         /*
8345          * Before atomic variable goto zero, we must  make sure dip->errors is
8346          * perceived to be set. This ordering is ensured by the fact that an
8347          * atomic operations with a return value are fully ordered as per
8348          * atomic_t.txt
8349          */
8350         if (atomic_dec_and_test(&dip->pending_bios))
8351                 bio_io_error(dip->orig_bio);
8352
8353         /* bio_end_io() will handle error, so we needn't return it */
8354         return 0;
8355 }
8356
8357 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8358                                 loff_t file_offset)
8359 {
8360         struct btrfs_dio_private *dip = NULL;
8361         struct bio *bio = NULL;
8362         struct btrfs_io_bio *io_bio;
8363         bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8364         int ret = 0;
8365
8366         bio = btrfs_bio_clone(dio_bio);
8367
8368         dip = kzalloc(sizeof(*dip), GFP_NOFS);
8369         if (!dip) {
8370                 ret = -ENOMEM;
8371                 goto free_ordered;
8372         }
8373
8374         dip->private = dio_bio->bi_private;
8375         dip->inode = inode;
8376         dip->logical_offset = file_offset;
8377         dip->bytes = dio_bio->bi_iter.bi_size;
8378         dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8379         bio->bi_private = dip;
8380         dip->orig_bio = bio;
8381         dip->dio_bio = dio_bio;
8382         atomic_set(&dip->pending_bios, 0);
8383         io_bio = btrfs_io_bio(bio);
8384         io_bio->logical = file_offset;
8385
8386         if (write) {
8387                 bio->bi_end_io = btrfs_endio_direct_write;
8388         } else {
8389                 bio->bi_end_io = btrfs_endio_direct_read;
8390                 dip->subio_endio = btrfs_subio_endio_read;
8391         }
8392
8393         /*
8394          * Reset the range for unsubmitted ordered extents (to a 0 length range)
8395          * even if we fail to submit a bio, because in such case we do the
8396          * corresponding error handling below and it must not be done a second
8397          * time by btrfs_direct_IO().
8398          */
8399         if (write) {
8400                 struct btrfs_dio_data *dio_data = current->journal_info;
8401
8402                 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8403                         dip->bytes;
8404                 dio_data->unsubmitted_oe_range_start =
8405                         dio_data->unsubmitted_oe_range_end;
8406         }
8407
8408         ret = btrfs_submit_direct_hook(dip);
8409         if (!ret)
8410                 return;
8411
8412         if (io_bio->end_io)
8413                 io_bio->end_io(io_bio, ret);
8414
8415 free_ordered:
8416         /*
8417          * If we arrived here it means either we failed to submit the dip
8418          * or we either failed to clone the dio_bio or failed to allocate the
8419          * dip. If we cloned the dio_bio and allocated the dip, we can just
8420          * call bio_endio against our io_bio so that we get proper resource
8421          * cleanup if we fail to submit the dip, otherwise, we must do the
8422          * same as btrfs_endio_direct_[write|read] because we can't call these
8423          * callbacks - they require an allocated dip and a clone of dio_bio.
8424          */
8425         if (bio && dip) {
8426                 bio_io_error(bio);
8427                 /*
8428                  * The end io callbacks free our dip, do the final put on bio
8429                  * and all the cleanup and final put for dio_bio (through
8430                  * dio_end_io()).
8431                  */
8432                 dip = NULL;
8433                 bio = NULL;
8434         } else {
8435                 if (write)
8436                         __endio_write_update_ordered(inode,
8437                                                 file_offset,
8438                                                 dio_bio->bi_iter.bi_size,
8439                                                 false);
8440                 else
8441                         unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8442                               file_offset + dio_bio->bi_iter.bi_size - 1);
8443
8444                 dio_bio->bi_status = BLK_STS_IOERR;
8445                 /*
8446                  * Releases and cleans up our dio_bio, no need to bio_put()
8447                  * nor bio_endio()/bio_io_error() against dio_bio.
8448                  */
8449                 dio_end_io(dio_bio);
8450         }
8451         if (bio)
8452                 bio_put(bio);
8453         kfree(dip);
8454 }
8455
8456 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8457                                const struct iov_iter *iter, loff_t offset)
8458 {
8459         int seg;
8460         int i;
8461         unsigned int blocksize_mask = fs_info->sectorsize - 1;
8462         ssize_t retval = -EINVAL;
8463
8464         if (offset & blocksize_mask)
8465                 goto out;
8466
8467         if (iov_iter_alignment(iter) & blocksize_mask)
8468                 goto out;
8469
8470         /* If this is a write we don't need to check anymore */
8471         if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8472                 return 0;
8473         /*
8474          * Check to make sure we don't have duplicate iov_base's in this
8475          * iovec, if so return EINVAL, otherwise we'll get csum errors
8476          * when reading back.
8477          */
8478         for (seg = 0; seg < iter->nr_segs; seg++) {
8479                 for (i = seg + 1; i < iter->nr_segs; i++) {
8480                         if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8481                                 goto out;
8482                 }
8483         }
8484         retval = 0;
8485 out:
8486         return retval;
8487 }
8488
8489 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8490 {
8491         struct file *file = iocb->ki_filp;
8492         struct inode *inode = file->f_mapping->host;
8493         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8494         struct btrfs_dio_data dio_data = { 0 };
8495         struct extent_changeset *data_reserved = NULL;
8496         loff_t offset = iocb->ki_pos;
8497         size_t count = 0;
8498         int flags = 0;
8499         bool wakeup = true;
8500         bool relock = false;
8501         ssize_t ret;
8502
8503         if (check_direct_IO(fs_info, iter, offset))
8504                 return 0;
8505
8506         inode_dio_begin(inode);
8507
8508         /*
8509          * The generic stuff only does filemap_write_and_wait_range, which
8510          * isn't enough if we've written compressed pages to this area, so
8511          * we need to flush the dirty pages again to make absolutely sure
8512          * that any outstanding dirty pages are on disk.
8513          */
8514         count = iov_iter_count(iter);
8515         if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8516                      &BTRFS_I(inode)->runtime_flags))
8517                 filemap_fdatawrite_range(inode->i_mapping, offset,
8518                                          offset + count - 1);
8519
8520         if (iov_iter_rw(iter) == WRITE) {
8521                 /*
8522                  * If the write DIO is beyond the EOF, we need update
8523                  * the isize, but it is protected by i_mutex. So we can
8524                  * not unlock the i_mutex at this case.
8525                  */
8526                 if (offset + count <= inode->i_size) {
8527                         dio_data.overwrite = 1;
8528                         inode_unlock(inode);
8529                         relock = true;
8530                 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8531                         ret = -EAGAIN;
8532                         goto out;
8533                 }
8534                 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8535                                                    offset, count);
8536                 if (ret)
8537                         goto out;
8538
8539                 /*
8540                  * We need to know how many extents we reserved so that we can
8541                  * do the accounting properly if we go over the number we
8542                  * originally calculated.  Abuse current->journal_info for this.
8543                  */
8544                 dio_data.reserve = round_up(count,
8545                                             fs_info->sectorsize);
8546                 dio_data.unsubmitted_oe_range_start = (u64)offset;
8547                 dio_data.unsubmitted_oe_range_end = (u64)offset;
8548                 current->journal_info = &dio_data;
8549                 down_read(&BTRFS_I(inode)->dio_sem);
8550         } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8551                                      &BTRFS_I(inode)->runtime_flags)) {
8552                 inode_dio_end(inode);
8553                 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8554                 wakeup = false;
8555         }
8556
8557         ret = __blockdev_direct_IO(iocb, inode,
8558                                    fs_info->fs_devices->latest_bdev,
8559                                    iter, btrfs_get_blocks_direct, NULL,
8560                                    btrfs_submit_direct, flags);
8561         if (iov_iter_rw(iter) == WRITE) {
8562                 up_read(&BTRFS_I(inode)->dio_sem);
8563                 current->journal_info = NULL;
8564                 if (ret < 0 && ret != -EIOCBQUEUED) {
8565                         if (dio_data.reserve)
8566                                 btrfs_delalloc_release_space(inode, data_reserved,
8567                                         offset, dio_data.reserve, true);
8568                         /*
8569                          * On error we might have left some ordered extents
8570                          * without submitting corresponding bios for them, so
8571                          * cleanup them up to avoid other tasks getting them
8572                          * and waiting for them to complete forever.
8573                          */
8574                         if (dio_data.unsubmitted_oe_range_start <
8575                             dio_data.unsubmitted_oe_range_end)
8576                                 __endio_write_update_ordered(inode,
8577                                         dio_data.unsubmitted_oe_range_start,
8578                                         dio_data.unsubmitted_oe_range_end -
8579                                         dio_data.unsubmitted_oe_range_start,
8580                                         false);
8581                 } else if (ret >= 0 && (size_t)ret < count)
8582                         btrfs_delalloc_release_space(inode, data_reserved,
8583                                         offset, count - (size_t)ret, true);
8584                 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8585         }
8586 out:
8587         if (wakeup)
8588                 inode_dio_end(inode);
8589         if (relock)
8590                 inode_lock(inode);
8591
8592         extent_changeset_free(data_reserved);
8593         return ret;
8594 }
8595
8596 #define BTRFS_FIEMAP_FLAGS      (FIEMAP_FLAG_SYNC)
8597
8598 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8599                 __u64 start, __u64 len)
8600 {
8601         int     ret;
8602
8603         ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8604         if (ret)
8605                 return ret;
8606
8607         return extent_fiemap(inode, fieinfo, start, len);
8608 }
8609
8610 int btrfs_readpage(struct file *file, struct page *page)
8611 {
8612         struct extent_io_tree *tree;
8613         tree = &BTRFS_I(page->mapping->host)->io_tree;
8614         return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8615 }
8616
8617 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8618 {
8619         struct inode *inode = page->mapping->host;
8620         int ret;
8621
8622         if (current->flags & PF_MEMALLOC) {
8623                 redirty_page_for_writepage(wbc, page);
8624                 unlock_page(page);
8625                 return 0;
8626         }
8627
8628         /*
8629          * If we are under memory pressure we will call this directly from the
8630          * VM, we need to make sure we have the inode referenced for the ordered
8631          * extent.  If not just return like we didn't do anything.
8632          */
8633         if (!igrab(inode)) {
8634                 redirty_page_for_writepage(wbc, page);
8635                 return AOP_WRITEPAGE_ACTIVATE;
8636         }
8637         ret = extent_write_full_page(page, wbc);
8638         btrfs_add_delayed_iput(inode);
8639         return ret;
8640 }
8641
8642 static int btrfs_writepages(struct address_space *mapping,
8643                             struct writeback_control *wbc)
8644 {
8645         return extent_writepages(mapping, wbc);
8646 }
8647
8648 static int
8649 btrfs_readpages(struct file *file, struct address_space *mapping,
8650                 struct list_head *pages, unsigned nr_pages)
8651 {
8652         return extent_readpages(mapping, pages, nr_pages);
8653 }
8654
8655 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8656 {
8657         int ret = try_release_extent_mapping(page, gfp_flags);
8658         if (ret == 1) {
8659                 ClearPagePrivate(page);
8660                 set_page_private(page, 0);
8661                 put_page(page);
8662         }
8663         return ret;
8664 }
8665
8666 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8667 {
8668         if (PageWriteback(page) || PageDirty(page))
8669                 return 0;
8670         return __btrfs_releasepage(page, gfp_flags);
8671 }
8672
8673 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8674                                  unsigned int length)
8675 {
8676         struct inode *inode = page->mapping->host;
8677         struct extent_io_tree *tree;
8678         struct btrfs_ordered_extent *ordered;
8679         struct extent_state *cached_state = NULL;
8680         u64 page_start = page_offset(page);
8681         u64 page_end = page_start + PAGE_SIZE - 1;
8682         u64 start;
8683         u64 end;
8684         int inode_evicting = inode->i_state & I_FREEING;
8685
8686         /*
8687          * we have the page locked, so new writeback can't start,
8688          * and the dirty bit won't be cleared while we are here.
8689          *
8690          * Wait for IO on this page so that we can safely clear
8691          * the PagePrivate2 bit and do ordered accounting
8692          */
8693         wait_on_page_writeback(page);
8694
8695         tree = &BTRFS_I(inode)->io_tree;
8696         if (offset) {
8697                 btrfs_releasepage(page, GFP_NOFS);
8698                 return;
8699         }
8700
8701         if (!inode_evicting)
8702                 lock_extent_bits(tree, page_start, page_end, &cached_state);
8703 again:
8704         start = page_start;
8705         ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8706                                         page_end - start + 1);
8707         if (ordered) {
8708                 end = min(page_end, ordered->file_offset + ordered->len - 1);
8709                 /*
8710                  * IO on this page will never be started, so we need
8711                  * to account for any ordered extents now
8712                  */
8713                 if (!inode_evicting)
8714                         clear_extent_bit(tree, start, end,
8715                                          EXTENT_DIRTY | EXTENT_DELALLOC |
8716                                          EXTENT_DELALLOC_NEW |
8717                                          EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8718                                          EXTENT_DEFRAG, 1, 0, &cached_state);
8719                 /*
8720                  * whoever cleared the private bit is responsible
8721                  * for the finish_ordered_io
8722                  */
8723                 if (TestClearPagePrivate2(page)) {
8724                         struct btrfs_ordered_inode_tree *tree;
8725                         u64 new_len;
8726
8727                         tree = &BTRFS_I(inode)->ordered_tree;
8728
8729                         spin_lock_irq(&tree->lock);
8730                         set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8731                         new_len = start - ordered->file_offset;
8732                         if (new_len < ordered->truncated_len)
8733                                 ordered->truncated_len = new_len;
8734                         spin_unlock_irq(&tree->lock);
8735
8736                         if (btrfs_dec_test_ordered_pending(inode, &ordered,
8737                                                            start,
8738                                                            end - start + 1, 1))
8739                                 btrfs_finish_ordered_io(ordered);
8740                 }
8741                 btrfs_put_ordered_extent(ordered);
8742                 if (!inode_evicting) {
8743                         cached_state = NULL;
8744                         lock_extent_bits(tree, start, end,
8745                                          &cached_state);
8746                 }
8747
8748                 start = end + 1;
8749                 if (start < page_end)
8750                         goto again;
8751         }
8752
8753         /*
8754          * Qgroup reserved space handler
8755          * Page here will be either
8756          * 1) Already written to disk
8757          *    In this case, its reserved space is released from data rsv map
8758          *    and will be freed by delayed_ref handler finally.
8759          *    So even we call qgroup_free_data(), it won't decrease reserved
8760          *    space.
8761          * 2) Not written to disk
8762          *    This means the reserved space should be freed here. However,
8763          *    if a truncate invalidates the page (by clearing PageDirty)
8764          *    and the page is accounted for while allocating extent
8765          *    in btrfs_check_data_free_space() we let delayed_ref to
8766          *    free the entire extent.
8767          */
8768         if (PageDirty(page))
8769                 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8770         if (!inode_evicting) {
8771                 clear_extent_bit(tree, page_start, page_end,
8772                                  EXTENT_LOCKED | EXTENT_DIRTY |
8773                                  EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8774                                  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8775                                  &cached_state);
8776
8777                 __btrfs_releasepage(page, GFP_NOFS);
8778         }
8779
8780         ClearPageChecked(page);
8781         if (PagePrivate(page)) {
8782                 ClearPagePrivate(page);
8783                 set_page_private(page, 0);
8784                 put_page(page);
8785         }
8786 }
8787
8788 /*
8789  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8790  * called from a page fault handler when a page is first dirtied. Hence we must
8791  * be careful to check for EOF conditions here. We set the page up correctly
8792  * for a written page which means we get ENOSPC checking when writing into
8793  * holes and correct delalloc and unwritten extent mapping on filesystems that
8794  * support these features.
8795  *
8796  * We are not allowed to take the i_mutex here so we have to play games to
8797  * protect against truncate races as the page could now be beyond EOF.  Because
8798  * truncate_setsize() writes the inode size before removing pages, once we have
8799  * the page lock we can determine safely if the page is beyond EOF. If it is not
8800  * beyond EOF, then the page is guaranteed safe against truncation until we
8801  * unlock the page.
8802  */
8803 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8804 {
8805         struct page *page = vmf->page;
8806         struct inode *inode = file_inode(vmf->vma->vm_file);
8807         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8808         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8809         struct btrfs_ordered_extent *ordered;
8810         struct extent_state *cached_state = NULL;
8811         struct extent_changeset *data_reserved = NULL;
8812         char *kaddr;
8813         unsigned long zero_start;
8814         loff_t size;
8815         vm_fault_t ret;
8816         int ret2;
8817         int reserved = 0;
8818         u64 reserved_space;
8819         u64 page_start;
8820         u64 page_end;
8821         u64 end;
8822
8823         reserved_space = PAGE_SIZE;
8824
8825         sb_start_pagefault(inode->i_sb);
8826         page_start = page_offset(page);
8827         page_end = page_start + PAGE_SIZE - 1;
8828         end = page_end;
8829
8830         /*
8831          * Reserving delalloc space after obtaining the page lock can lead to
8832          * deadlock. For example, if a dirty page is locked by this function
8833          * and the call to btrfs_delalloc_reserve_space() ends up triggering
8834          * dirty page write out, then the btrfs_writepage() function could
8835          * end up waiting indefinitely to get a lock on the page currently
8836          * being processed by btrfs_page_mkwrite() function.
8837          */
8838         ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8839                                            reserved_space);
8840         if (!ret2) {
8841                 ret2 = file_update_time(vmf->vma->vm_file);
8842                 reserved = 1;
8843         }
8844         if (ret2) {
8845                 ret = vmf_error(ret2);
8846                 if (reserved)
8847                         goto out;
8848                 goto out_noreserve;
8849         }
8850
8851         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8852 again:
8853         lock_page(page);
8854         size = i_size_read(inode);
8855
8856         if ((page->mapping != inode->i_mapping) ||
8857             (page_start >= size)) {
8858                 /* page got truncated out from underneath us */
8859                 goto out_unlock;
8860         }
8861         wait_on_page_writeback(page);
8862
8863         lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8864         set_page_extent_mapped(page);
8865
8866         /*
8867          * we can't set the delalloc bits if there are pending ordered
8868          * extents.  Drop our locks and wait for them to finish
8869          */
8870         ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8871                         PAGE_SIZE);
8872         if (ordered) {
8873                 unlock_extent_cached(io_tree, page_start, page_end,
8874                                      &cached_state);
8875                 unlock_page(page);
8876                 btrfs_start_ordered_extent(inode, ordered, 1);
8877                 btrfs_put_ordered_extent(ordered);
8878                 goto again;
8879         }
8880
8881         if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8882                 reserved_space = round_up(size - page_start,
8883                                           fs_info->sectorsize);
8884                 if (reserved_space < PAGE_SIZE) {
8885                         end = page_start + reserved_space - 1;
8886                         btrfs_delalloc_release_space(inode, data_reserved,
8887                                         page_start, PAGE_SIZE - reserved_space,
8888                                         true);
8889                 }
8890         }
8891
8892         /*
8893          * page_mkwrite gets called when the page is firstly dirtied after it's
8894          * faulted in, but write(2) could also dirty a page and set delalloc
8895          * bits, thus in this case for space account reason, we still need to
8896          * clear any delalloc bits within this page range since we have to
8897          * reserve data&meta space before lock_page() (see above comments).
8898          */
8899         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8900                           EXTENT_DIRTY | EXTENT_DELALLOC |
8901                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8902                           0, 0, &cached_state);
8903
8904         ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
8905                                         &cached_state, 0);
8906         if (ret2) {
8907                 unlock_extent_cached(io_tree, page_start, page_end,
8908                                      &cached_state);
8909                 ret = VM_FAULT_SIGBUS;
8910                 goto out_unlock;
8911         }
8912         ret2 = 0;
8913
8914         /* page is wholly or partially inside EOF */
8915         if (page_start + PAGE_SIZE > size)
8916                 zero_start = size & ~PAGE_MASK;
8917         else
8918                 zero_start = PAGE_SIZE;
8919
8920         if (zero_start != PAGE_SIZE) {
8921                 kaddr = kmap(page);
8922                 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8923                 flush_dcache_page(page);
8924                 kunmap(page);
8925         }
8926         ClearPageChecked(page);
8927         set_page_dirty(page);
8928         SetPageUptodate(page);
8929
8930         BTRFS_I(inode)->last_trans = fs_info->generation;
8931         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8932         BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8933
8934         unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8935
8936         if (!ret2) {
8937                 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
8938                 sb_end_pagefault(inode->i_sb);
8939                 extent_changeset_free(data_reserved);
8940                 return VM_FAULT_LOCKED;
8941         }
8942
8943 out_unlock:
8944         unlock_page(page);
8945 out:
8946         btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
8947         btrfs_delalloc_release_space(inode, data_reserved, page_start,
8948                                      reserved_space, (ret != 0));
8949 out_noreserve:
8950         sb_end_pagefault(inode->i_sb);
8951         extent_changeset_free(data_reserved);
8952         return ret;
8953 }
8954
8955 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8956 {
8957         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8958         struct btrfs_root *root = BTRFS_I(inode)->root;
8959         struct btrfs_block_rsv *rsv;
8960         int ret;
8961         struct btrfs_trans_handle *trans;
8962         u64 mask = fs_info->sectorsize - 1;
8963         u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
8964
8965         if (!skip_writeback) {
8966                 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8967                                                (u64)-1);
8968                 if (ret)
8969                         return ret;
8970         }
8971
8972         /*
8973          * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8974          * things going on here:
8975          *
8976          * 1) We need to reserve space to update our inode.
8977          *
8978          * 2) We need to have something to cache all the space that is going to
8979          * be free'd up by the truncate operation, but also have some slack
8980          * space reserved in case it uses space during the truncate (thank you
8981          * very much snapshotting).
8982          *
8983          * And we need these to be separate.  The fact is we can use a lot of
8984          * space doing the truncate, and we have no earthly idea how much space
8985          * we will use, so we need the truncate reservation to be separate so it
8986          * doesn't end up using space reserved for updating the inode.  We also
8987          * need to be able to stop the transaction and start a new one, which
8988          * means we need to be able to update the inode several times, and we
8989          * have no idea of knowing how many times that will be, so we can't just
8990          * reserve 1 item for the entirety of the operation, so that has to be
8991          * done separately as well.
8992          *
8993          * So that leaves us with
8994          *
8995          * 1) rsv - for the truncate reservation, which we will steal from the
8996          * transaction reservation.
8997          * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8998          * updating the inode.
8999          */
9000         rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9001         if (!rsv)
9002                 return -ENOMEM;
9003         rsv->size = min_size;
9004         rsv->failfast = 1;
9005
9006         /*
9007          * 1 for the truncate slack space
9008          * 1 for updating the inode.
9009          */
9010         trans = btrfs_start_transaction(root, 2);
9011         if (IS_ERR(trans)) {
9012                 ret = PTR_ERR(trans);
9013                 goto out;
9014         }
9015
9016         /* Migrate the slack space for the truncate to our reserve */
9017         ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9018                                       min_size, false);
9019         BUG_ON(ret);
9020
9021         /*
9022          * So if we truncate and then write and fsync we normally would just
9023          * write the extents that changed, which is a problem if we need to
9024          * first truncate that entire inode.  So set this flag so we write out
9025          * all of the extents in the inode to the sync log so we're completely
9026          * safe.
9027          */
9028         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9029         trans->block_rsv = rsv;
9030
9031         while (1) {
9032                 ret = btrfs_truncate_inode_items(trans, root, inode,
9033                                                  inode->i_size,
9034                                                  BTRFS_EXTENT_DATA_KEY);
9035                 trans->block_rsv = &fs_info->trans_block_rsv;
9036                 if (ret != -ENOSPC && ret != -EAGAIN)
9037                         break;
9038
9039                 ret = btrfs_update_inode(trans, root, inode);
9040                 if (ret)
9041                         break;
9042
9043                 btrfs_end_transaction(trans);
9044                 btrfs_btree_balance_dirty(fs_info);
9045
9046                 trans = btrfs_start_transaction(root, 2);
9047                 if (IS_ERR(trans)) {
9048                         ret = PTR_ERR(trans);
9049                         trans = NULL;
9050                         break;
9051                 }
9052
9053                 btrfs_block_rsv_release(fs_info, rsv, -1);
9054                 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9055                                               rsv, min_size, false);
9056                 BUG_ON(ret);    /* shouldn't happen */
9057                 trans->block_rsv = rsv;
9058         }
9059
9060         /*
9061          * We can't call btrfs_truncate_block inside a trans handle as we could
9062          * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9063          * we've truncated everything except the last little bit, and can do
9064          * btrfs_truncate_block and then update the disk_i_size.
9065          */
9066         if (ret == NEED_TRUNCATE_BLOCK) {
9067                 btrfs_end_transaction(trans);
9068                 btrfs_btree_balance_dirty(fs_info);
9069
9070                 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9071                 if (ret)
9072                         goto out;
9073                 trans = btrfs_start_transaction(root, 1);
9074                 if (IS_ERR(trans)) {
9075                         ret = PTR_ERR(trans);
9076                         goto out;
9077                 }
9078                 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9079         }
9080
9081         if (trans) {
9082                 int ret2;
9083
9084                 trans->block_rsv = &fs_info->trans_block_rsv;
9085                 ret2 = btrfs_update_inode(trans, root, inode);
9086                 if (ret2 && !ret)
9087                         ret = ret2;
9088
9089                 ret2 = btrfs_end_transaction(trans);
9090                 if (ret2 && !ret)
9091                         ret = ret2;
9092                 btrfs_btree_balance_dirty(fs_info);
9093         }
9094 out:
9095         btrfs_free_block_rsv(fs_info, rsv);
9096
9097         return ret;
9098 }
9099
9100 /*
9101  * create a new subvolume directory/inode (helper for the ioctl).
9102  */
9103 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9104                              struct btrfs_root *new_root,
9105                              struct btrfs_root *parent_root,
9106                              u64 new_dirid)
9107 {
9108         struct inode *inode;
9109         int err;
9110         u64 index = 0;
9111
9112         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9113                                 new_dirid, new_dirid,
9114                                 S_IFDIR | (~current_umask() & S_IRWXUGO),
9115                                 &index);
9116         if (IS_ERR(inode))
9117                 return PTR_ERR(inode);
9118         inode->i_op = &btrfs_dir_inode_operations;
9119         inode->i_fop = &btrfs_dir_file_operations;
9120
9121         set_nlink(inode, 1);
9122         btrfs_i_size_write(BTRFS_I(inode), 0);
9123         unlock_new_inode(inode);
9124
9125         err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9126         if (err)
9127                 btrfs_err(new_root->fs_info,
9128                           "error inheriting subvolume %llu properties: %d",
9129                           new_root->root_key.objectid, err);
9130
9131         err = btrfs_update_inode(trans, new_root, inode);
9132
9133         iput(inode);
9134         return err;
9135 }
9136
9137 struct inode *btrfs_alloc_inode(struct super_block *sb)
9138 {
9139         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9140         struct btrfs_inode *ei;
9141         struct inode *inode;
9142
9143         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9144         if (!ei)
9145                 return NULL;
9146
9147         ei->root = NULL;
9148         ei->generation = 0;
9149         ei->last_trans = 0;
9150         ei->last_sub_trans = 0;
9151         ei->logged_trans = 0;
9152         ei->delalloc_bytes = 0;
9153         ei->new_delalloc_bytes = 0;
9154         ei->defrag_bytes = 0;
9155         ei->disk_i_size = 0;
9156         ei->flags = 0;
9157         ei->csum_bytes = 0;
9158         ei->index_cnt = (u64)-1;
9159         ei->dir_index = 0;
9160         ei->last_unlink_trans = 0;
9161         ei->last_log_commit = 0;
9162
9163         spin_lock_init(&ei->lock);
9164         ei->outstanding_extents = 0;
9165         if (sb->s_magic != BTRFS_TEST_MAGIC)
9166                 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9167                                               BTRFS_BLOCK_RSV_DELALLOC);
9168         ei->runtime_flags = 0;
9169         ei->prop_compress = BTRFS_COMPRESS_NONE;
9170         ei->defrag_compress = BTRFS_COMPRESS_NONE;
9171
9172         ei->delayed_node = NULL;
9173
9174         ei->i_otime.tv_sec = 0;
9175         ei->i_otime.tv_nsec = 0;
9176
9177         inode = &ei->vfs_inode;
9178         extent_map_tree_init(&ei->extent_tree);
9179         extent_io_tree_init(&ei->io_tree, inode);
9180         extent_io_tree_init(&ei->io_failure_tree, inode);
9181         ei->io_tree.track_uptodate = 1;
9182         ei->io_failure_tree.track_uptodate = 1;
9183         atomic_set(&ei->sync_writers, 0);
9184         mutex_init(&ei->log_mutex);
9185         mutex_init(&ei->delalloc_mutex);
9186         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9187         INIT_LIST_HEAD(&ei->delalloc_inodes);
9188         INIT_LIST_HEAD(&ei->delayed_iput);
9189         RB_CLEAR_NODE(&ei->rb_node);
9190         init_rwsem(&ei->dio_sem);
9191
9192         return inode;
9193 }
9194
9195 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9196 void btrfs_test_destroy_inode(struct inode *inode)
9197 {
9198         btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9199         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9200 }
9201 #endif
9202
9203 static void btrfs_i_callback(struct rcu_head *head)
9204 {
9205         struct inode *inode = container_of(head, struct inode, i_rcu);
9206         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9207 }
9208
9209 void btrfs_destroy_inode(struct inode *inode)
9210 {
9211         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9212         struct btrfs_ordered_extent *ordered;
9213         struct btrfs_root *root = BTRFS_I(inode)->root;
9214
9215         WARN_ON(!hlist_empty(&inode->i_dentry));
9216         WARN_ON(inode->i_data.nrpages);
9217         WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9218         WARN_ON(BTRFS_I(inode)->block_rsv.size);
9219         WARN_ON(BTRFS_I(inode)->outstanding_extents);
9220         WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9221         WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9222         WARN_ON(BTRFS_I(inode)->csum_bytes);
9223         WARN_ON(BTRFS_I(inode)->defrag_bytes);
9224
9225         /*
9226          * This can happen where we create an inode, but somebody else also
9227          * created the same inode and we need to destroy the one we already
9228          * created.
9229          */
9230         if (!root)
9231                 goto free;
9232
9233         while (1) {
9234                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9235                 if (!ordered)
9236                         break;
9237                 else {
9238                         btrfs_err(fs_info,
9239                                   "found ordered extent %llu %llu on inode cleanup",
9240                                   ordered->file_offset, ordered->len);
9241                         btrfs_remove_ordered_extent(inode, ordered);
9242                         btrfs_put_ordered_extent(ordered);
9243                         btrfs_put_ordered_extent(ordered);
9244                 }
9245         }
9246         btrfs_qgroup_check_reserved_leak(inode);
9247         inode_tree_del(inode);
9248         btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9249 free:
9250         call_rcu(&inode->i_rcu, btrfs_i_callback);
9251 }
9252
9253 int btrfs_drop_inode(struct inode *inode)
9254 {
9255         struct btrfs_root *root = BTRFS_I(inode)->root;
9256
9257         if (root == NULL)
9258                 return 1;
9259
9260         /* the snap/subvol tree is on deleting */
9261         if (btrfs_root_refs(&root->root_item) == 0)
9262                 return 1;
9263         else
9264                 return generic_drop_inode(inode);
9265 }
9266
9267 static void init_once(void *foo)
9268 {
9269         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9270
9271         inode_init_once(&ei->vfs_inode);
9272 }
9273
9274 void __cold btrfs_destroy_cachep(void)
9275 {
9276         /*
9277          * Make sure all delayed rcu free inodes are flushed before we
9278          * destroy cache.
9279          */
9280         rcu_barrier();
9281         kmem_cache_destroy(btrfs_inode_cachep);
9282         kmem_cache_destroy(btrfs_trans_handle_cachep);
9283         kmem_cache_destroy(btrfs_path_cachep);
9284         kmem_cache_destroy(btrfs_free_space_cachep);
9285 }
9286
9287 int __init btrfs_init_cachep(void)
9288 {
9289         btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9290                         sizeof(struct btrfs_inode), 0,
9291                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9292                         init_once);
9293         if (!btrfs_inode_cachep)
9294                 goto fail;
9295
9296         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9297                         sizeof(struct btrfs_trans_handle), 0,
9298                         SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9299         if (!btrfs_trans_handle_cachep)
9300                 goto fail;
9301
9302         btrfs_path_cachep = kmem_cache_create("btrfs_path",
9303                         sizeof(struct btrfs_path), 0,
9304                         SLAB_MEM_SPREAD, NULL);
9305         if (!btrfs_path_cachep)
9306                 goto fail;
9307
9308         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9309                         sizeof(struct btrfs_free_space), 0,
9310                         SLAB_MEM_SPREAD, NULL);
9311         if (!btrfs_free_space_cachep)
9312                 goto fail;
9313
9314         return 0;
9315 fail:
9316         btrfs_destroy_cachep();
9317         return -ENOMEM;
9318 }
9319
9320 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9321                          u32 request_mask, unsigned int flags)
9322 {
9323         u64 delalloc_bytes;
9324         struct inode *inode = d_inode(path->dentry);
9325         u32 blocksize = inode->i_sb->s_blocksize;
9326         u32 bi_flags = BTRFS_I(inode)->flags;
9327
9328         stat->result_mask |= STATX_BTIME;
9329         stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9330         stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9331         if (bi_flags & BTRFS_INODE_APPEND)
9332                 stat->attributes |= STATX_ATTR_APPEND;
9333         if (bi_flags & BTRFS_INODE_COMPRESS)
9334                 stat->attributes |= STATX_ATTR_COMPRESSED;
9335         if (bi_flags & BTRFS_INODE_IMMUTABLE)
9336                 stat->attributes |= STATX_ATTR_IMMUTABLE;
9337         if (bi_flags & BTRFS_INODE_NODUMP)
9338                 stat->attributes |= STATX_ATTR_NODUMP;
9339
9340         stat->attributes_mask |= (STATX_ATTR_APPEND |
9341                                   STATX_ATTR_COMPRESSED |
9342                                   STATX_ATTR_IMMUTABLE |
9343                                   STATX_ATTR_NODUMP);
9344
9345         generic_fillattr(inode, stat);
9346         stat->dev = BTRFS_I(inode)->root->anon_dev;
9347
9348         spin_lock(&BTRFS_I(inode)->lock);
9349         delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9350         spin_unlock(&BTRFS_I(inode)->lock);
9351         stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9352                         ALIGN(delalloc_bytes, blocksize)) >> 9;
9353         return 0;
9354 }
9355
9356 static int btrfs_rename_exchange(struct inode *old_dir,
9357                               struct dentry *old_dentry,
9358                               struct inode *new_dir,
9359                               struct dentry *new_dentry)
9360 {
9361         struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9362         struct btrfs_trans_handle *trans;
9363         struct btrfs_root *root = BTRFS_I(old_dir)->root;
9364         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9365         struct inode *new_inode = new_dentry->d_inode;
9366         struct inode *old_inode = old_dentry->d_inode;
9367         struct timespec64 ctime = current_time(old_inode);
9368         struct dentry *parent;
9369         u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9370         u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9371         u64 old_idx = 0;
9372         u64 new_idx = 0;
9373         u64 root_objectid;
9374         int ret;
9375         bool root_log_pinned = false;
9376         bool dest_log_pinned = false;
9377         struct btrfs_log_ctx ctx_root;
9378         struct btrfs_log_ctx ctx_dest;
9379         bool sync_log_root = false;
9380         bool sync_log_dest = false;
9381         bool commit_transaction = false;
9382
9383         /* we only allow rename subvolume link between subvolumes */
9384         if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9385                 return -EXDEV;
9386
9387         btrfs_init_log_ctx(&ctx_root, old_inode);
9388         btrfs_init_log_ctx(&ctx_dest, new_inode);
9389
9390         /* close the race window with snapshot create/destroy ioctl */
9391         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9392                 down_read(&fs_info->subvol_sem);
9393         if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9394                 down_read(&fs_info->subvol_sem);
9395
9396         /*
9397          * We want to reserve the absolute worst case amount of items.  So if
9398          * both inodes are subvols and we need to unlink them then that would
9399          * require 4 item modifications, but if they are both normal inodes it
9400          * would require 5 item modifications, so we'll assume their normal
9401          * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9402          * should cover the worst case number of items we'll modify.
9403          */
9404         trans = btrfs_start_transaction(root, 12);
9405         if (IS_ERR(trans)) {
9406                 ret = PTR_ERR(trans);
9407                 goto out_notrans;
9408         }
9409
9410         /*
9411          * We need to find a free sequence number both in the source and
9412          * in the destination directory for the exchange.
9413          */
9414         ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9415         if (ret)
9416                 goto out_fail;
9417         ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9418         if (ret)
9419                 goto out_fail;
9420
9421         BTRFS_I(old_inode)->dir_index = 0ULL;
9422         BTRFS_I(new_inode)->dir_index = 0ULL;
9423
9424         /* Reference for the source. */
9425         if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9426                 /* force full log commit if subvolume involved. */
9427                 btrfs_set_log_full_commit(fs_info, trans);
9428         } else {
9429                 btrfs_pin_log_trans(root);
9430                 root_log_pinned = true;
9431                 ret = btrfs_insert_inode_ref(trans, dest,
9432                                              new_dentry->d_name.name,
9433                                              new_dentry->d_name.len,
9434                                              old_ino,
9435                                              btrfs_ino(BTRFS_I(new_dir)),
9436                                              old_idx);
9437                 if (ret)
9438                         goto out_fail;
9439         }
9440
9441         /* And now for the dest. */
9442         if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9443                 /* force full log commit if subvolume involved. */
9444                 btrfs_set_log_full_commit(fs_info, trans);
9445         } else {
9446                 btrfs_pin_log_trans(dest);
9447                 dest_log_pinned = true;
9448                 ret = btrfs_insert_inode_ref(trans, root,
9449                                              old_dentry->d_name.name,
9450                                              old_dentry->d_name.len,
9451                                              new_ino,
9452                                              btrfs_ino(BTRFS_I(old_dir)),
9453                                              new_idx);
9454                 if (ret)
9455                         goto out_fail;
9456         }
9457
9458         /* Update inode version and ctime/mtime. */
9459         inode_inc_iversion(old_dir);
9460         inode_inc_iversion(new_dir);
9461         inode_inc_iversion(old_inode);
9462         inode_inc_iversion(new_inode);
9463         old_dir->i_ctime = old_dir->i_mtime = ctime;
9464         new_dir->i_ctime = new_dir->i_mtime = ctime;
9465         old_inode->i_ctime = ctime;
9466         new_inode->i_ctime = ctime;
9467
9468         if (old_dentry->d_parent != new_dentry->d_parent) {
9469                 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9470                                 BTRFS_I(old_inode), 1);
9471                 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9472                                 BTRFS_I(new_inode), 1);
9473         }
9474
9475         /* src is a subvolume */
9476         if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9477                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9478                 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9479                                           old_dentry->d_name.name,
9480                                           old_dentry->d_name.len);
9481         } else { /* src is an inode */
9482                 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9483                                            BTRFS_I(old_dentry->d_inode),
9484                                            old_dentry->d_name.name,
9485                                            old_dentry->d_name.len);
9486                 if (!ret)
9487                         ret = btrfs_update_inode(trans, root, old_inode);
9488         }
9489         if (ret) {
9490                 btrfs_abort_transaction(trans, ret);
9491                 goto out_fail;
9492         }
9493
9494         /* dest is a subvolume */
9495         if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9496                 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9497                 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9498                                           new_dentry->d_name.name,
9499                                           new_dentry->d_name.len);
9500         } else { /* dest is an inode */
9501                 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9502                                            BTRFS_I(new_dentry->d_inode),
9503                                            new_dentry->d_name.name,
9504                                            new_dentry->d_name.len);
9505                 if (!ret)
9506                         ret = btrfs_update_inode(trans, dest, new_inode);
9507         }
9508         if (ret) {
9509                 btrfs_abort_transaction(trans, ret);
9510                 goto out_fail;
9511         }
9512
9513         ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9514                              new_dentry->d_name.name,
9515                              new_dentry->d_name.len, 0, old_idx);
9516         if (ret) {
9517                 btrfs_abort_transaction(trans, ret);
9518                 goto out_fail;
9519         }
9520
9521         ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9522                              old_dentry->d_name.name,
9523                              old_dentry->d_name.len, 0, new_idx);
9524         if (ret) {
9525                 btrfs_abort_transaction(trans, ret);
9526                 goto out_fail;
9527         }
9528
9529         if (old_inode->i_nlink == 1)
9530                 BTRFS_I(old_inode)->dir_index = old_idx;
9531         if (new_inode->i_nlink == 1)
9532                 BTRFS_I(new_inode)->dir_index = new_idx;
9533
9534         if (root_log_pinned) {
9535                 parent = new_dentry->d_parent;
9536                 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9537                                          BTRFS_I(old_dir), parent,
9538                                          false, &ctx_root);
9539                 if (ret == BTRFS_NEED_LOG_SYNC)
9540                         sync_log_root = true;
9541                 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9542                         commit_transaction = true;
9543                 ret = 0;
9544                 btrfs_end_log_trans(root);
9545                 root_log_pinned = false;
9546         }
9547         if (dest_log_pinned) {
9548                 if (!commit_transaction) {
9549                         parent = old_dentry->d_parent;
9550                         ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9551                                                  BTRFS_I(new_dir), parent,
9552                                                  false, &ctx_dest);
9553                         if (ret == BTRFS_NEED_LOG_SYNC)
9554                                 sync_log_dest = true;
9555                         else if (ret == BTRFS_NEED_TRANS_COMMIT)
9556                                 commit_transaction = true;
9557                         ret = 0;
9558                 }
9559                 btrfs_end_log_trans(dest);
9560                 dest_log_pinned = false;
9561         }
9562 out_fail:
9563         /*
9564          * If we have pinned a log and an error happened, we unpin tasks
9565          * trying to sync the log and force them to fallback to a transaction
9566          * commit if the log currently contains any of the inodes involved in
9567          * this rename operation (to ensure we do not persist a log with an
9568          * inconsistent state for any of these inodes or leading to any
9569          * inconsistencies when replayed). If the transaction was aborted, the
9570          * abortion reason is propagated to userspace when attempting to commit
9571          * the transaction. If the log does not contain any of these inodes, we
9572          * allow the tasks to sync it.
9573          */
9574         if (ret && (root_log_pinned || dest_log_pinned)) {
9575                 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9576                     btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9577                     btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9578                     (new_inode &&
9579                      btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9580                         btrfs_set_log_full_commit(fs_info, trans);
9581
9582                 if (root_log_pinned) {
9583                         btrfs_end_log_trans(root);
9584                         root_log_pinned = false;
9585                 }
9586                 if (dest_log_pinned) {
9587                         btrfs_end_log_trans(dest);
9588                         dest_log_pinned = false;
9589                 }
9590         }
9591         if (!ret && sync_log_root && !commit_transaction) {
9592                 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9593                                      &ctx_root);
9594                 if (ret)
9595                         commit_transaction = true;
9596         }
9597         if (!ret && sync_log_dest && !commit_transaction) {
9598                 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9599                                      &ctx_dest);
9600                 if (ret)
9601                         commit_transaction = true;
9602         }
9603         if (commit_transaction) {
9604                 ret = btrfs_commit_transaction(trans);
9605         } else {
9606                 int ret2;
9607
9608                 ret2 = btrfs_end_transaction(trans);
9609                 ret = ret ? ret : ret2;
9610         }
9611 out_notrans:
9612         if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9613                 up_read(&fs_info->subvol_sem);
9614         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9615                 up_read(&fs_info->subvol_sem);
9616
9617         return ret;
9618 }
9619
9620 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9621                                      struct btrfs_root *root,
9622                                      struct inode *dir,
9623                                      struct dentry *dentry)
9624 {
9625         int ret;
9626         struct inode *inode;
9627         u64 objectid;
9628         u64 index;
9629
9630         ret = btrfs_find_free_ino(root, &objectid);
9631         if (ret)
9632                 return ret;
9633
9634         inode = btrfs_new_inode(trans, root, dir,
9635                                 dentry->d_name.name,
9636                                 dentry->d_name.len,
9637                                 btrfs_ino(BTRFS_I(dir)),
9638                                 objectid,
9639                                 S_IFCHR | WHITEOUT_MODE,
9640                                 &index);
9641
9642         if (IS_ERR(inode)) {
9643                 ret = PTR_ERR(inode);
9644                 return ret;
9645         }
9646
9647         inode->i_op = &btrfs_special_inode_operations;
9648         init_special_inode(inode, inode->i_mode,
9649                 WHITEOUT_DEV);
9650
9651         ret = btrfs_init_inode_security(trans, inode, dir,
9652                                 &dentry->d_name);
9653         if (ret)
9654                 goto out;
9655
9656         ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9657                                 BTRFS_I(inode), 0, index);
9658         if (ret)
9659                 goto out;
9660
9661         ret = btrfs_update_inode(trans, root, inode);
9662 out:
9663         unlock_new_inode(inode);
9664         if (ret)
9665                 inode_dec_link_count(inode);
9666         iput(inode);
9667
9668         return ret;
9669 }
9670
9671 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9672                            struct inode *new_dir, struct dentry *new_dentry,
9673                            unsigned int flags)
9674 {
9675         struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9676         struct btrfs_trans_handle *trans;
9677         unsigned int trans_num_items;
9678         struct btrfs_root *root = BTRFS_I(old_dir)->root;
9679         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9680         struct inode *new_inode = d_inode(new_dentry);
9681         struct inode *old_inode = d_inode(old_dentry);
9682         u64 index = 0;
9683         u64 root_objectid;
9684         int ret;
9685         u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9686         bool log_pinned = false;
9687         struct btrfs_log_ctx ctx;
9688         bool sync_log = false;
9689         bool commit_transaction = false;
9690
9691         if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9692                 return -EPERM;
9693
9694         /* we only allow rename subvolume link between subvolumes */
9695         if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9696                 return -EXDEV;
9697
9698         if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9699             (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9700                 return -ENOTEMPTY;
9701
9702         if (S_ISDIR(old_inode->i_mode) && new_inode &&
9703             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9704                 return -ENOTEMPTY;
9705
9706
9707         /* check for collisions, even if the  name isn't there */
9708         ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9709                              new_dentry->d_name.name,
9710                              new_dentry->d_name.len);
9711
9712         if (ret) {
9713                 if (ret == -EEXIST) {
9714                         /* we shouldn't get
9715                          * eexist without a new_inode */
9716                         if (WARN_ON(!new_inode)) {
9717                                 return ret;
9718                         }
9719                 } else {
9720                         /* maybe -EOVERFLOW */
9721                         return ret;
9722                 }
9723         }
9724         ret = 0;
9725
9726         /*
9727          * we're using rename to replace one file with another.  Start IO on it
9728          * now so  we don't add too much work to the end of the transaction
9729          */
9730         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9731                 filemap_flush(old_inode->i_mapping);
9732
9733         /* close the racy window with snapshot create/destroy ioctl */
9734         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9735                 down_read(&fs_info->subvol_sem);
9736         /*
9737          * We want to reserve the absolute worst case amount of items.  So if
9738          * both inodes are subvols and we need to unlink them then that would
9739          * require 4 item modifications, but if they are both normal inodes it
9740          * would require 5 item modifications, so we'll assume they are normal
9741          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9742          * should cover the worst case number of items we'll modify.
9743          * If our rename has the whiteout flag, we need more 5 units for the
9744          * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9745          * when selinux is enabled).
9746          */
9747         trans_num_items = 11;
9748         if (flags & RENAME_WHITEOUT)
9749                 trans_num_items += 5;
9750         trans = btrfs_start_transaction(root, trans_num_items);
9751         if (IS_ERR(trans)) {
9752                 ret = PTR_ERR(trans);
9753                 goto out_notrans;
9754         }
9755
9756         if (dest != root)
9757                 btrfs_record_root_in_trans(trans, dest);
9758
9759         ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9760         if (ret)
9761                 goto out_fail;
9762
9763         BTRFS_I(old_inode)->dir_index = 0ULL;
9764         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9765                 /* force full log commit if subvolume involved. */
9766                 btrfs_set_log_full_commit(fs_info, trans);
9767         } else {
9768                 btrfs_pin_log_trans(root);
9769                 log_pinned = true;
9770                 ret = btrfs_insert_inode_ref(trans, dest,
9771                                              new_dentry->d_name.name,
9772                                              new_dentry->d_name.len,
9773                                              old_ino,
9774                                              btrfs_ino(BTRFS_I(new_dir)), index);
9775                 if (ret)
9776                         goto out_fail;
9777         }
9778
9779         inode_inc_iversion(old_dir);
9780         inode_inc_iversion(new_dir);
9781         inode_inc_iversion(old_inode);
9782         old_dir->i_ctime = old_dir->i_mtime =
9783         new_dir->i_ctime = new_dir->i_mtime =
9784         old_inode->i_ctime = current_time(old_dir);
9785
9786         if (old_dentry->d_parent != new_dentry->d_parent)
9787                 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9788                                 BTRFS_I(old_inode), 1);
9789
9790         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9791                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9792                 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9793                                         old_dentry->d_name.name,
9794                                         old_dentry->d_name.len);
9795         } else {
9796                 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9797                                         BTRFS_I(d_inode(old_dentry)),
9798                                         old_dentry->d_name.name,
9799                                         old_dentry->d_name.len);
9800                 if (!ret)
9801                         ret = btrfs_update_inode(trans, root, old_inode);
9802         }
9803         if (ret) {
9804                 btrfs_abort_transaction(trans, ret);
9805                 goto out_fail;
9806         }
9807
9808         if (new_inode) {
9809                 inode_inc_iversion(new_inode);
9810                 new_inode->i_ctime = current_time(new_inode);
9811                 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9812                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9813                         root_objectid = BTRFS_I(new_inode)->location.objectid;
9814                         ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9815                                                 new_dentry->d_name.name,
9816                                                 new_dentry->d_name.len);
9817                         BUG_ON(new_inode->i_nlink == 0);
9818                 } else {
9819                         ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9820                                                  BTRFS_I(d_inode(new_dentry)),
9821                                                  new_dentry->d_name.name,
9822                                                  new_dentry->d_name.len);
9823                 }
9824                 if (!ret && new_inode->i_nlink == 0)
9825                         ret = btrfs_orphan_add(trans,
9826                                         BTRFS_I(d_inode(new_dentry)));
9827                 if (ret) {
9828                         btrfs_abort_transaction(trans, ret);
9829                         goto out_fail;
9830                 }
9831         }
9832
9833         ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9834                              new_dentry->d_name.name,
9835                              new_dentry->d_name.len, 0, index);
9836         if (ret) {
9837                 btrfs_abort_transaction(trans, ret);
9838                 goto out_fail;
9839         }
9840
9841         if (old_inode->i_nlink == 1)
9842                 BTRFS_I(old_inode)->dir_index = index;
9843
9844         if (log_pinned) {
9845                 struct dentry *parent = new_dentry->d_parent;
9846
9847                 btrfs_init_log_ctx(&ctx, old_inode);
9848                 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9849                                          BTRFS_I(old_dir), parent,
9850                                          false, &ctx);
9851                 if (ret == BTRFS_NEED_LOG_SYNC)
9852                         sync_log = true;
9853                 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9854                         commit_transaction = true;
9855                 ret = 0;
9856                 btrfs_end_log_trans(root);
9857                 log_pinned = false;
9858         }
9859
9860         if (flags & RENAME_WHITEOUT) {
9861                 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9862                                                 old_dentry);
9863
9864                 if (ret) {
9865                         btrfs_abort_transaction(trans, ret);
9866                         goto out_fail;
9867                 }
9868         }
9869 out_fail:
9870         /*
9871          * If we have pinned the log and an error happened, we unpin tasks
9872          * trying to sync the log and force them to fallback to a transaction
9873          * commit if the log currently contains any of the inodes involved in
9874          * this rename operation (to ensure we do not persist a log with an
9875          * inconsistent state for any of these inodes or leading to any
9876          * inconsistencies when replayed). If the transaction was aborted, the
9877          * abortion reason is propagated to userspace when attempting to commit
9878          * the transaction. If the log does not contain any of these inodes, we
9879          * allow the tasks to sync it.
9880          */
9881         if (ret && log_pinned) {
9882                 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9883                     btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9884                     btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9885                     (new_inode &&
9886                      btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9887                         btrfs_set_log_full_commit(fs_info, trans);
9888
9889                 btrfs_end_log_trans(root);
9890                 log_pinned = false;
9891         }
9892         if (!ret && sync_log) {
9893                 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9894                 if (ret)
9895                         commit_transaction = true;
9896         }
9897         if (commit_transaction) {
9898                 ret = btrfs_commit_transaction(trans);
9899         } else {
9900                 int ret2;
9901
9902                 ret2 = btrfs_end_transaction(trans);
9903                 ret = ret ? ret : ret2;
9904         }
9905 out_notrans:
9906         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9907                 up_read(&fs_info->subvol_sem);
9908
9909         return ret;
9910 }
9911
9912 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9913                          struct inode *new_dir, struct dentry *new_dentry,
9914                          unsigned int flags)
9915 {
9916         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9917                 return -EINVAL;
9918
9919         if (flags & RENAME_EXCHANGE)
9920                 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9921                                           new_dentry);
9922
9923         return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9924 }
9925
9926 struct btrfs_delalloc_work {
9927         struct inode *inode;
9928         struct completion completion;
9929         struct list_head list;
9930         struct btrfs_work work;
9931 };
9932
9933 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9934 {
9935         struct btrfs_delalloc_work *delalloc_work;
9936         struct inode *inode;
9937
9938         delalloc_work = container_of(work, struct btrfs_delalloc_work,
9939                                      work);
9940         inode = delalloc_work->inode;
9941         filemap_flush(inode->i_mapping);
9942         if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9943                                 &BTRFS_I(inode)->runtime_flags))
9944                 filemap_flush(inode->i_mapping);
9945
9946         iput(inode);
9947         complete(&delalloc_work->completion);
9948 }
9949
9950 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9951 {
9952         struct btrfs_delalloc_work *work;
9953
9954         work = kmalloc(sizeof(*work), GFP_NOFS);
9955         if (!work)
9956                 return NULL;
9957
9958         init_completion(&work->completion);
9959         INIT_LIST_HEAD(&work->list);
9960         work->inode = inode;
9961         WARN_ON_ONCE(!inode);
9962         btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9963                         btrfs_run_delalloc_work, NULL, NULL);
9964
9965         return work;
9966 }
9967
9968 /*
9969  * some fairly slow code that needs optimization. This walks the list
9970  * of all the inodes with pending delalloc and forces them to disk.
9971  */
9972 static int start_delalloc_inodes(struct btrfs_root *root, int nr)
9973 {
9974         struct btrfs_inode *binode;
9975         struct inode *inode;
9976         struct btrfs_delalloc_work *work, *next;
9977         struct list_head works;
9978         struct list_head splice;
9979         int ret = 0;
9980
9981         INIT_LIST_HEAD(&works);
9982         INIT_LIST_HEAD(&splice);
9983
9984         mutex_lock(&root->delalloc_mutex);
9985         spin_lock(&root->delalloc_lock);
9986         list_splice_init(&root->delalloc_inodes, &splice);
9987         while (!list_empty(&splice)) {
9988                 binode = list_entry(splice.next, struct btrfs_inode,
9989                                     delalloc_inodes);
9990
9991                 list_move_tail(&binode->delalloc_inodes,
9992                                &root->delalloc_inodes);
9993                 inode = igrab(&binode->vfs_inode);
9994                 if (!inode) {
9995                         cond_resched_lock(&root->delalloc_lock);
9996                         continue;
9997                 }
9998                 spin_unlock(&root->delalloc_lock);
9999
10000                 work = btrfs_alloc_delalloc_work(inode);
10001                 if (!work) {
10002                         iput(inode);
10003                         ret = -ENOMEM;
10004                         goto out;
10005                 }
10006                 list_add_tail(&work->list, &works);
10007                 btrfs_queue_work(root->fs_info->flush_workers,
10008                                  &work->work);
10009                 ret++;
10010                 if (nr != -1 && ret >= nr)
10011                         goto out;
10012                 cond_resched();
10013                 spin_lock(&root->delalloc_lock);
10014         }
10015         spin_unlock(&root->delalloc_lock);
10016
10017 out:
10018         list_for_each_entry_safe(work, next, &works, list) {
10019                 list_del_init(&work->list);
10020                 wait_for_completion(&work->completion);
10021                 kfree(work);
10022         }
10023
10024         if (!list_empty(&splice)) {
10025                 spin_lock(&root->delalloc_lock);
10026                 list_splice_tail(&splice, &root->delalloc_inodes);
10027                 spin_unlock(&root->delalloc_lock);
10028         }
10029         mutex_unlock(&root->delalloc_mutex);
10030         return ret;
10031 }
10032
10033 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
10034 {
10035         struct btrfs_fs_info *fs_info = root->fs_info;
10036         int ret;
10037
10038         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10039                 return -EROFS;
10040
10041         ret = start_delalloc_inodes(root, -1);
10042         if (ret > 0)
10043                 ret = 0;
10044         return ret;
10045 }
10046
10047 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10048 {
10049         struct btrfs_root *root;
10050         struct list_head splice;
10051         int ret;
10052
10053         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10054                 return -EROFS;
10055
10056         INIT_LIST_HEAD(&splice);
10057
10058         mutex_lock(&fs_info->delalloc_root_mutex);
10059         spin_lock(&fs_info->delalloc_root_lock);
10060         list_splice_init(&fs_info->delalloc_roots, &splice);
10061         while (!list_empty(&splice) && nr) {
10062                 root = list_first_entry(&splice, struct btrfs_root,
10063                                         delalloc_root);
10064                 root = btrfs_grab_fs_root(root);
10065                 BUG_ON(!root);
10066                 list_move_tail(&root->delalloc_root,
10067                                &fs_info->delalloc_roots);
10068                 spin_unlock(&fs_info->delalloc_root_lock);
10069
10070                 ret = start_delalloc_inodes(root, nr);
10071                 btrfs_put_fs_root(root);
10072                 if (ret < 0)
10073                         goto out;
10074
10075                 if (nr != -1) {
10076                         nr -= ret;
10077                         WARN_ON(nr < 0);
10078                 }
10079                 spin_lock(&fs_info->delalloc_root_lock);
10080         }
10081         spin_unlock(&fs_info->delalloc_root_lock);
10082
10083         ret = 0;
10084 out:
10085         if (!list_empty(&splice)) {
10086                 spin_lock(&fs_info->delalloc_root_lock);
10087                 list_splice_tail(&splice, &fs_info->delalloc_roots);
10088                 spin_unlock(&fs_info->delalloc_root_lock);
10089         }
10090         mutex_unlock(&fs_info->delalloc_root_mutex);
10091         return ret;
10092 }
10093
10094 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10095                          const char *symname)
10096 {
10097         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10098         struct btrfs_trans_handle *trans;
10099         struct btrfs_root *root = BTRFS_I(dir)->root;
10100         struct btrfs_path *path;
10101         struct btrfs_key key;
10102         struct inode *inode = NULL;
10103         int err;
10104         u64 objectid;
10105         u64 index = 0;
10106         int name_len;
10107         int datasize;
10108         unsigned long ptr;
10109         struct btrfs_file_extent_item *ei;
10110         struct extent_buffer *leaf;
10111
10112         name_len = strlen(symname);
10113         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10114                 return -ENAMETOOLONG;
10115
10116         /*
10117          * 2 items for inode item and ref
10118          * 2 items for dir items
10119          * 1 item for updating parent inode item
10120          * 1 item for the inline extent item
10121          * 1 item for xattr if selinux is on
10122          */
10123         trans = btrfs_start_transaction(root, 7);
10124         if (IS_ERR(trans))
10125                 return PTR_ERR(trans);
10126
10127         err = btrfs_find_free_ino(root, &objectid);
10128         if (err)
10129                 goto out_unlock;
10130
10131         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10132                                 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10133                                 objectid, S_IFLNK|S_IRWXUGO, &index);
10134         if (IS_ERR(inode)) {
10135                 err = PTR_ERR(inode);
10136                 inode = NULL;
10137                 goto out_unlock;
10138         }
10139
10140         /*
10141         * If the active LSM wants to access the inode during
10142         * d_instantiate it needs these. Smack checks to see
10143         * if the filesystem supports xattrs by looking at the
10144         * ops vector.
10145         */
10146         inode->i_fop = &btrfs_file_operations;
10147         inode->i_op = &btrfs_file_inode_operations;
10148         inode->i_mapping->a_ops = &btrfs_aops;
10149         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10150
10151         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10152         if (err)
10153                 goto out_unlock;
10154
10155         path = btrfs_alloc_path();
10156         if (!path) {
10157                 err = -ENOMEM;
10158                 goto out_unlock;
10159         }
10160         key.objectid = btrfs_ino(BTRFS_I(inode));
10161         key.offset = 0;
10162         key.type = BTRFS_EXTENT_DATA_KEY;
10163         datasize = btrfs_file_extent_calc_inline_size(name_len);
10164         err = btrfs_insert_empty_item(trans, root, path, &key,
10165                                       datasize);
10166         if (err) {
10167                 btrfs_free_path(path);
10168                 goto out_unlock;
10169         }
10170         leaf = path->nodes[0];
10171         ei = btrfs_item_ptr(leaf, path->slots[0],
10172                             struct btrfs_file_extent_item);
10173         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10174         btrfs_set_file_extent_type(leaf, ei,
10175                                    BTRFS_FILE_EXTENT_INLINE);
10176         btrfs_set_file_extent_encryption(leaf, ei, 0);
10177         btrfs_set_file_extent_compression(leaf, ei, 0);
10178         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10179         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10180
10181         ptr = btrfs_file_extent_inline_start(ei);
10182         write_extent_buffer(leaf, symname, ptr, name_len);
10183         btrfs_mark_buffer_dirty(leaf);
10184         btrfs_free_path(path);
10185
10186         inode->i_op = &btrfs_symlink_inode_operations;
10187         inode_nohighmem(inode);
10188         inode->i_mapping->a_ops = &btrfs_symlink_aops;
10189         inode_set_bytes(inode, name_len);
10190         btrfs_i_size_write(BTRFS_I(inode), name_len);
10191         err = btrfs_update_inode(trans, root, inode);
10192         /*
10193          * Last step, add directory indexes for our symlink inode. This is the
10194          * last step to avoid extra cleanup of these indexes if an error happens
10195          * elsewhere above.
10196          */
10197         if (!err)
10198                 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10199                                 BTRFS_I(inode), 0, index);
10200         if (err)
10201                 goto out_unlock;
10202
10203         d_instantiate_new(dentry, inode);
10204
10205 out_unlock:
10206         btrfs_end_transaction(trans);
10207         if (err && inode) {
10208                 inode_dec_link_count(inode);
10209                 discard_new_inode(inode);
10210         }
10211         btrfs_btree_balance_dirty(fs_info);
10212         return err;
10213 }
10214
10215 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10216                                        u64 start, u64 num_bytes, u64 min_size,
10217                                        loff_t actual_len, u64 *alloc_hint,
10218                                        struct btrfs_trans_handle *trans)
10219 {
10220         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10221         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10222         struct extent_map *em;
10223         struct btrfs_root *root = BTRFS_I(inode)->root;
10224         struct btrfs_key ins;
10225         u64 cur_offset = start;
10226         u64 i_size;
10227         u64 cur_bytes;
10228         u64 last_alloc = (u64)-1;
10229         int ret = 0;
10230         bool own_trans = true;
10231         u64 end = start + num_bytes - 1;
10232
10233         if (trans)
10234                 own_trans = false;
10235         while (num_bytes > 0) {
10236                 if (own_trans) {
10237                         trans = btrfs_start_transaction(root, 3);
10238                         if (IS_ERR(trans)) {
10239                                 ret = PTR_ERR(trans);
10240                                 break;
10241                         }
10242                 }
10243
10244                 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10245                 cur_bytes = max(cur_bytes, min_size);
10246                 /*
10247                  * If we are severely fragmented we could end up with really
10248                  * small allocations, so if the allocator is returning small
10249                  * chunks lets make its job easier by only searching for those
10250                  * sized chunks.
10251                  */
10252                 cur_bytes = min(cur_bytes, last_alloc);
10253                 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10254                                 min_size, 0, *alloc_hint, &ins, 1, 0);
10255                 if (ret) {
10256                         if (own_trans)
10257                                 btrfs_end_transaction(trans);
10258                         break;
10259                 }
10260                 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10261
10262                 last_alloc = ins.offset;
10263                 ret = insert_reserved_file_extent(trans, inode,
10264                                                   cur_offset, ins.objectid,
10265                                                   ins.offset, ins.offset,
10266                                                   ins.offset, 0, 0, 0,
10267                                                   BTRFS_FILE_EXTENT_PREALLOC);
10268                 if (ret) {
10269                         btrfs_free_reserved_extent(fs_info, ins.objectid,
10270                                                    ins.offset, 0);
10271                         btrfs_abort_transaction(trans, ret);
10272                         if (own_trans)
10273                                 btrfs_end_transaction(trans);
10274                         break;
10275                 }
10276
10277                 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10278                                         cur_offset + ins.offset -1, 0);
10279
10280                 em = alloc_extent_map();
10281                 if (!em) {
10282                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10283                                 &BTRFS_I(inode)->runtime_flags);
10284                         goto next;
10285                 }
10286
10287                 em->start = cur_offset;
10288                 em->orig_start = cur_offset;
10289                 em->len = ins.offset;
10290                 em->block_start = ins.objectid;
10291                 em->block_len = ins.offset;
10292                 em->orig_block_len = ins.offset;
10293                 em->ram_bytes = ins.offset;
10294                 em->bdev = fs_info->fs_devices->latest_bdev;
10295                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10296                 em->generation = trans->transid;
10297
10298                 while (1) {
10299                         write_lock(&em_tree->lock);
10300                         ret = add_extent_mapping(em_tree, em, 1);
10301                         write_unlock(&em_tree->lock);
10302                         if (ret != -EEXIST)
10303                                 break;
10304                         btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10305                                                 cur_offset + ins.offset - 1,
10306                                                 0);
10307                 }
10308                 free_extent_map(em);
10309 next:
10310                 num_bytes -= ins.offset;
10311                 cur_offset += ins.offset;
10312                 *alloc_hint = ins.objectid + ins.offset;
10313
10314                 inode_inc_iversion(inode);
10315                 inode->i_ctime = current_time(inode);
10316                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10317                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10318                     (actual_len > inode->i_size) &&
10319                     (cur_offset > inode->i_size)) {
10320                         if (cur_offset > actual_len)
10321                                 i_size = actual_len;
10322                         else
10323                                 i_size = cur_offset;
10324                         i_size_write(inode, i_size);
10325                         btrfs_ordered_update_i_size(inode, i_size, NULL);
10326                 }
10327
10328                 ret = btrfs_update_inode(trans, root, inode);
10329
10330                 if (ret) {
10331                         btrfs_abort_transaction(trans, ret);
10332                         if (own_trans)
10333                                 btrfs_end_transaction(trans);
10334                         break;
10335                 }
10336
10337                 if (own_trans)
10338                         btrfs_end_transaction(trans);
10339         }
10340         if (cur_offset < end)
10341                 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10342                         end - cur_offset + 1);
10343         return ret;
10344 }
10345
10346 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10347                               u64 start, u64 num_bytes, u64 min_size,
10348                               loff_t actual_len, u64 *alloc_hint)
10349 {
10350         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10351                                            min_size, actual_len, alloc_hint,
10352                                            NULL);
10353 }
10354
10355 int btrfs_prealloc_file_range_trans(struct inode *inode,
10356                                     struct btrfs_trans_handle *trans, int mode,
10357                                     u64 start, u64 num_bytes, u64 min_size,
10358                                     loff_t actual_len, u64 *alloc_hint)
10359 {
10360         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10361                                            min_size, actual_len, alloc_hint, trans);
10362 }
10363
10364 static int btrfs_set_page_dirty(struct page *page)
10365 {
10366         return __set_page_dirty_nobuffers(page);
10367 }
10368
10369 static int btrfs_permission(struct inode *inode, int mask)
10370 {
10371         struct btrfs_root *root = BTRFS_I(inode)->root;
10372         umode_t mode = inode->i_mode;
10373
10374         if (mask & MAY_WRITE &&
10375             (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10376                 if (btrfs_root_readonly(root))
10377                         return -EROFS;
10378                 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10379                         return -EACCES;
10380         }
10381         return generic_permission(inode, mask);
10382 }
10383
10384 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10385 {
10386         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10387         struct btrfs_trans_handle *trans;
10388         struct btrfs_root *root = BTRFS_I(dir)->root;
10389         struct inode *inode = NULL;
10390         u64 objectid;
10391         u64 index;
10392         int ret = 0;
10393
10394         /*
10395          * 5 units required for adding orphan entry
10396          */
10397         trans = btrfs_start_transaction(root, 5);
10398         if (IS_ERR(trans))
10399                 return PTR_ERR(trans);
10400
10401         ret = btrfs_find_free_ino(root, &objectid);
10402         if (ret)
10403                 goto out;
10404
10405         inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10406                         btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10407         if (IS_ERR(inode)) {
10408                 ret = PTR_ERR(inode);
10409                 inode = NULL;
10410                 goto out;
10411         }
10412
10413         inode->i_fop = &btrfs_file_operations;
10414         inode->i_op = &btrfs_file_inode_operations;
10415
10416         inode->i_mapping->a_ops = &btrfs_aops;
10417         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10418
10419         ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10420         if (ret)
10421                 goto out;
10422
10423         ret = btrfs_update_inode(trans, root, inode);
10424         if (ret)
10425                 goto out;
10426         ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10427         if (ret)
10428                 goto out;
10429
10430         /*
10431          * We set number of links to 0 in btrfs_new_inode(), and here we set
10432          * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10433          * through:
10434          *
10435          *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10436          */
10437         set_nlink(inode, 1);
10438         d_tmpfile(dentry, inode);
10439         unlock_new_inode(inode);
10440         mark_inode_dirty(inode);
10441 out:
10442         btrfs_end_transaction(trans);
10443         if (ret && inode)
10444                 discard_new_inode(inode);
10445         btrfs_btree_balance_dirty(fs_info);
10446         return ret;
10447 }
10448
10449 __attribute__((const))
10450 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10451 {
10452         return -EAGAIN;
10453 }
10454
10455 static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10456                                         u64 start, u64 end)
10457 {
10458         struct inode *inode = private_data;
10459         u64 isize;
10460
10461         isize = i_size_read(inode);
10462         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10463                 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10464                     "%s: ino %llu isize %llu odd range [%llu,%llu]",
10465                         caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10466         }
10467 }
10468
10469 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10470 {
10471         struct inode *inode = tree->private_data;
10472         unsigned long index = start >> PAGE_SHIFT;
10473         unsigned long end_index = end >> PAGE_SHIFT;
10474         struct page *page;
10475
10476         while (index <= end_index) {
10477                 page = find_get_page(inode->i_mapping, index);
10478                 ASSERT(page); /* Pages should be in the extent_io_tree */
10479                 set_page_writeback(page);
10480                 put_page(page);
10481                 index++;
10482         }
10483 }
10484
10485 static const struct inode_operations btrfs_dir_inode_operations = {
10486         .getattr        = btrfs_getattr,
10487         .lookup         = btrfs_lookup,
10488         .create         = btrfs_create,
10489         .unlink         = btrfs_unlink,
10490         .link           = btrfs_link,
10491         .mkdir          = btrfs_mkdir,
10492         .rmdir          = btrfs_rmdir,
10493         .rename         = btrfs_rename2,
10494         .symlink        = btrfs_symlink,
10495         .setattr        = btrfs_setattr,
10496         .mknod          = btrfs_mknod,
10497         .listxattr      = btrfs_listxattr,
10498         .permission     = btrfs_permission,
10499         .get_acl        = btrfs_get_acl,
10500         .set_acl        = btrfs_set_acl,
10501         .update_time    = btrfs_update_time,
10502         .tmpfile        = btrfs_tmpfile,
10503 };
10504 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10505         .lookup         = btrfs_lookup,
10506         .permission     = btrfs_permission,
10507         .update_time    = btrfs_update_time,
10508 };
10509
10510 static const struct file_operations btrfs_dir_file_operations = {
10511         .llseek         = generic_file_llseek,
10512         .read           = generic_read_dir,
10513         .iterate_shared = btrfs_real_readdir,
10514         .open           = btrfs_opendir,
10515         .unlocked_ioctl = btrfs_ioctl,
10516 #ifdef CONFIG_COMPAT
10517         .compat_ioctl   = btrfs_compat_ioctl,
10518 #endif
10519         .release        = btrfs_release_file,
10520         .fsync          = btrfs_sync_file,
10521 };
10522
10523 static const struct extent_io_ops btrfs_extent_io_ops = {
10524         /* mandatory callbacks */
10525         .submit_bio_hook = btrfs_submit_bio_hook,
10526         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10527         .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10528
10529         /* optional callbacks */
10530         .fill_delalloc = run_delalloc_range,
10531         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10532         .writepage_start_hook = btrfs_writepage_start_hook,
10533         .set_bit_hook = btrfs_set_bit_hook,
10534         .clear_bit_hook = btrfs_clear_bit_hook,
10535         .merge_extent_hook = btrfs_merge_extent_hook,
10536         .split_extent_hook = btrfs_split_extent_hook,
10537         .check_extent_io_range = btrfs_check_extent_io_range,
10538 };
10539
10540 /*
10541  * btrfs doesn't support the bmap operation because swapfiles
10542  * use bmap to make a mapping of extents in the file.  They assume
10543  * these extents won't change over the life of the file and they
10544  * use the bmap result to do IO directly to the drive.
10545  *
10546  * the btrfs bmap call would return logical addresses that aren't
10547  * suitable for IO and they also will change frequently as COW
10548  * operations happen.  So, swapfile + btrfs == corruption.
10549  *
10550  * For now we're avoiding this by dropping bmap.
10551  */
10552 static const struct address_space_operations btrfs_aops = {
10553         .readpage       = btrfs_readpage,
10554         .writepage      = btrfs_writepage,
10555         .writepages     = btrfs_writepages,
10556         .readpages      = btrfs_readpages,
10557         .direct_IO      = btrfs_direct_IO,
10558         .invalidatepage = btrfs_invalidatepage,
10559         .releasepage    = btrfs_releasepage,
10560         .set_page_dirty = btrfs_set_page_dirty,
10561         .error_remove_page = generic_error_remove_page,
10562 };
10563
10564 static const struct address_space_operations btrfs_symlink_aops = {
10565         .readpage       = btrfs_readpage,
10566         .writepage      = btrfs_writepage,
10567         .invalidatepage = btrfs_invalidatepage,
10568         .releasepage    = btrfs_releasepage,
10569 };
10570
10571 static const struct inode_operations btrfs_file_inode_operations = {
10572         .getattr        = btrfs_getattr,
10573         .setattr        = btrfs_setattr,
10574         .listxattr      = btrfs_listxattr,
10575         .permission     = btrfs_permission,
10576         .fiemap         = btrfs_fiemap,
10577         .get_acl        = btrfs_get_acl,
10578         .set_acl        = btrfs_set_acl,
10579         .update_time    = btrfs_update_time,
10580 };
10581 static const struct inode_operations btrfs_special_inode_operations = {
10582         .getattr        = btrfs_getattr,
10583         .setattr        = btrfs_setattr,
10584         .permission     = btrfs_permission,
10585         .listxattr      = btrfs_listxattr,
10586         .get_acl        = btrfs_get_acl,
10587         .set_acl        = btrfs_set_acl,
10588         .update_time    = btrfs_update_time,
10589 };
10590 static const struct inode_operations btrfs_symlink_inode_operations = {
10591         .get_link       = page_get_link,
10592         .getattr        = btrfs_getattr,
10593         .setattr        = btrfs_setattr,
10594         .permission     = btrfs_permission,
10595         .listxattr      = btrfs_listxattr,
10596         .update_time    = btrfs_update_time,
10597 };
10598
10599 const struct dentry_operations btrfs_dentry_operations = {
10600         .d_delete       = btrfs_dentry_delete,
10601 };